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Temporal multiplexing of perception and 
memory codes in IT cortex

Liang She1 ✉, Marcus K. Benna2,3, Yuelin Shi1, Stefano Fusi2 & Doris Y. Tsao1,4,5 ✉

A central assumption of neuroscience is that long-term memories are represented by 
the same brain areas that encode sensory stimuli1. Neurons in inferotemporal (IT) 
cortex represent the sensory percept of visual objects using a distributed axis code2–4. 
Whether and how the same IT neural population represents the long-term memory of 
visual objects remains unclear. Here we examined how familiar faces are encoded in 
the IT anterior medial face patch (AM), perirhinal face patch (PR) and temporal pole 
face patch (TP). In AM and PR we observed that the encoding axis for familiar faces is 
rotated relative to that for unfamiliar faces at long latency; in TP this memory-related 
rotation was much weaker. Contrary to previous claims, the relative response 
magnitude to familiar versus unfamiliar faces was not a stable indicator of familiarity 
in any patch5–11. The mechanism underlying the memory-related axis change is likely 
intrinsic to IT cortex, because inactivation of PR did not affect axis change dynamics  
in AM. Overall, our results suggest that memories of familiar faces are represented in 
AM and perirhinal cortex by a distinct long-latency code, explaining how the same cell 
population can encode both the percept and memory of faces.

Our experience of the world is profoundly shaped by memory. Whether 
we are shopping for a list of items at the grocery store or talking to 
friends at a social gathering, our actions depend critically on remember-
ing a large number of visual objects. Multiple studies have explored the 
molecular12,13 and cellular14,15 basis for memory, but the network-level 
code remains elusive. How is a familiar song, place or face encoded by 
the activity of neurons?

Recent work on the sensory code for visual object identity in the 
inferotemporal (IT) cortex suggests that objects are encoded as points 
in a continuous, low-dimensional object space, with single IT neurons 
linearly projecting objects onto specific preferred axes2–4 (Fig. 1a, left). 
These axes are defined by weightings of a small set of independent 
parameters spanning the object space. This coding scheme (also 
referred to as linear mixed selectivity16,17, and related to disentangled 
representations in machine learning18) is efficient, allowing a huge 
number of different objects to be represented by a small number of 
neurons. Indeed, the axis code carried by macaque face patches allows 
detailed reconstruction of random realistic faces using activity from 
only a few hundred neurons3.

Here we set out to leverage recent insight into the detailed sensory 
code for facial identity in IT cortex3 to explore the population code for 
face memories. A long-standing assumption of neuroscience is that 
long-term memories are stored by the same cortical populations that 
encode sensory stimuli1. This suggests that the same neurons that carry 
a continuous, axis-based, object-coding scheme should also support 
tagging of a discrete set of remembered objects as familiar. However, 
schemes for representing discrete familiar items often invoke attrac-
tors19,20 that would lead to breakdowns in continuous representation 
(Fig. 1a, right). This raises a key question: does familiarity alter the IT 

axis code for facial identity? We surmised that discovering the answer 
might uncover the neural code for face memory.

Previous studies have generally found decreased and sparsened 
responses to familiar stimuli in IT and perirhinal cortex and have 
proposed that this decrease, or ‘repetition suppression’, is the neural 
correlate of object memory5–11. However, these studies were not tar-
geted to specific subregions of IT cortex known to play a causal role in 
discrimination of the visual object class being studied21 and where the 
visual feature code is precisely understood3. Here, to study the neural 
mechanism that represents long-term object memories, we targeted 
three regions: anterior medial face patch (AM), the most anterior face 
patch in IT cortex22, and PR and TP, two recently reported face patches 
in the perirhinal cortex and anterior temporal pole, respectively23,24. 
These three regions lie at the apex of the macaque face patch system, 
an anatomically connected network of regions in the temporal lobe 
dedicated to face processing22,25–29. AM harbours a strong signal for 
invariant facial identity3,22, perirhinal cortex is known to play a critical 
role in visual memory30–33 and TP has recently been suggested to provide 
a privileged pathway for rapid recognition of familiar individuals24. We 
thus hypothesized that a representation of face memory should occur 
in AM, PR and/or TP.

Our recordings showed that, in all three patches, familiar faces 
were distinguished from unfamiliar faces. First, in all three patches, 
familiar faces were represented in a subspace distinct from unfamiliar 
faces. Second, in all three patches the relative response magnitude 
to familiar faces differed significantly from that to unfamiliar faces; 
however, the sign of this difference was not stable and depended 
strongly on the relative frequency of presentation of familiar and unfa-
miliar faces (that is, temporal context). Third, and most strikingly, 
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Fig. 1 | Cells in face patches are modulated by familiarity. a, Two alternative 
schemes for face representation: a low-dimensional (low-d) continuous feature 
space (left) and a set of discrete attractors (right). b, Left, view preference test. 
Pairs of faces (n = 72), one familiar and one unfamiliar, were presented  
for 10 s and the time spent fixating each was recorded. Right, ratio of time  
spent fixating personally familiar versus unfamiliar faces for two animals  
(each dot represents one face pair). Error bar, mean ± s.e.m. c, Responses  
of cells to stimuli from six stimulus categories (familiar human faces, unfamiliar 
human faces, familiar monkey faces, unfamiliar monkey faces, familiar  
objects and unfamiliar objects) across three face patches (AM, PR and TP). 
Responses were averaged between 50 and 300 ms following stimulus onset 
(‘full’-response window; AM, n = 152 cells; PR, n = 171 cells; TP, n = 266 cells; 
Supplementary Methods and Supplementary Table 1 provide additional 
statistical information). d, Same as c but for the ‘short’-response window  

(AM, 50–125 ms; PR, 50–150 ms; TP, 50–150 ms). e, Similarity (Pearson 
correlation coefficient) matrix of population responses for full-response 
window. f, Same as e but for short-response window. g, Left, average response 
time course across AM (top), PR (middle) and TP (bottom) populations to  
each of the screening stimuli. Right, AM, PR and TP response time courses 
averaged across both cells and category exemplars (normalized for each cell; 
Supplementary Methods). Left-hand arrow indicates mean time when visual 
responses to faces became significantly higher than baseline (AM, 85 ms; PR, 
105 ms; TP, 75 ms; Supplementary Methods); right-hand arrow indicates mean 
time when responses to familiar versus unfamiliar faces became significantly 
different (AM, 105 and 145 ms for human and monkey faces, respectively; PR, 
155 and 215 ms, respectively; TP, 145 and 205 ms, respectively). Shaded areas, 
s.e.m. across neurons.
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in AM and PR, but not in TP, familiar faces were encoded by a unique 
geometry at long latency; furthermore, unlike response magni-
tude, this unique geometry associated with familiar faces was stable 
across contexts. These results suggest that the memory of familiar 
faces is primarily represented in face patches AM and PR through 
axis change rather than altered response magnitude. This conclu-
sion—that a major piece of the network code for visual memory is 
temporally multiplexed with the perceptual code and activated only 
at long latency—sheds light on how we can both veridically perceive 
visual stimuli and recall past experiences from them using the same  
set of neurons.

AM and PR are modulated by familiarity
We identified face patches AM, PR and TP in five animals using func-
tional magnetic resonance imaging25. To characterize the role of famili-
arity in modulating the responses of cells in AM, PR and TP, we targeted 
electrodes to these three patches (Extended Data Fig. 1) and recorded 
responses to a set of screening stimuli consisting of human faces, 
monkey faces and objects. The stimuli were either personally famil-
iar or unfamiliar (Extended Data Fig. 2a), with eight or nine images 
per category. Personally familiar images depicted people, monkeys 
and objects with which the animals interacted on a daily basis; a new 
set of unfamiliar images was presented per recording site. Animals 
showed highly significant preferential looking towards the unfamiliar 
face stimuli and away from familiar face stimuli (Fig. 1b), confirming 
behaviourally that these stimuli were indeed familiar to the mon-
key34. Monkeys also performed significantly better on a face identi-
fication task for familiar compared with unfamiliar faces (Extended 
Data Fig. 3a,b), indicating a behavioural recognition advantage for  
familiar faces.

Across the population, 93% of cells in AM, 74% in PR and 88% in TP 
were face selective (Extended Data Fig. 3c). Below, we group data 
from three monkeys for AM, three for PR and two for TP becaue we 
did not find any marked differences between individuals (Extended 
Data Figs. 4 and 5 show the main results separately for each animal). 
All three patches exhibited a significantly stronger response across the 
population to unfamiliar compared with personally familiar stimuli 
in this experiment (Fig. 1c). This is inconsistent with a recent study 
reporting that TP is specialized for representing personally familiar 
faces24 (however, the latter study never actually presented unfamiliar 
faces but contrasted responses only to personally versus pictorially 
familiar faces; Extended Data Fig. 6a–c provides further detail). Fur-
ther casting doubt on a specialized role for TP in encoding person-
ally familiar faces, we found that the response in TP to faces of other 
species was stronger than to human or monkey faces (Extended Data 
Fig. 6d–f). Overall, the pattern of decreased responses to familiar faces 
across AM, PR and TP is consistent with a large number of previous 
studies reporting suppression of responses to familiar stimuli in IT and 
perirhinal cortex5–10. Individual cells showed a diversity of selectivity 
profiles for face species and familiarity type (Extended Data Fig. 7a–c). 
Representation similarity matrices showed distinct population rep-
resentations of the six stimulus classes in both AM and PR, and more  
weakly in TP (Fig. 1e).

Mean responses to familiar versus unfamiliar faces diverged over 
time, with difference becoming significant at 125 ms in AM, 185 ms 
in PR and 175 ms in TP; the mean visual response to faces themselves 
significantly exceeded baseline earlier, at 85 ms in AM, 105 ms in PR 
and 75 ms in TP (Fig. 1g). The delay in suppression to familiar faces is 
consistent with previous reports of delayed suppression to familiar 
stimuli in IT5,7–9. Single-cell response profiles and representation similar-
ity matrices computed using a short time window showed less distinct 
responses to familiar versus unfamiliar stimuli (Fig. 1d,f). Overall, the 
results so far show that AM, PR and TP all exhibit long-latency suppres-
sion to familiar faces.

An axis code for unfamiliar faces
Responses of AM, PR and TP cells to familiar stimuli, although lower 
on average at long latencies, remained highly heterogeneous across 
faces (Fig. 1c and Extended Data Fig. 7a–c), indicating that cells were 
driven by both familiarity and identity. We next asked how familiarity 
interacts with the recently discovered axis code for facial identity3.

According to this axis code, face cells in IT compute a linear projec-
tion of incoming faces formatted in shape and appearance coordinates 
onto specific preferred axes3. For each cell, the preferred axis is given 
by the coefficients c in the equation r = c·f + c0, where r is the response 
of the cell, f is a vector of shape and appearance features and c0 is a 
constant offset (Supplementary Methods); shape features capture 
variations in the location of key facial landmarks (for example, outline, 
eye, nose and mouth positions and so on) whereas appearance fea-
tures capture the shape-independent texture map of a face3. Together, 
a population of face cells with different preferred axes encodes a 
face space that is embedded as a linear subspace of the neural state 
space. The axis code has so far been examined only for unfamiliar 
faces. By studying whether and how this code is modified by familiar-
ity, we reasoned that we could potentially understand the code for  
face memory.

We first asked whether face cells encode familiar and unfamiliar faces 
using the same axis. To address this, we examined tuning to unfamiliar 
faces (described in this section) and then compared this with tuning 
to familiar faces (described in the next section). We began by mapping 
the preferred axes of AM, PR and TP cells using a set of 1,000 unfamiliar 
monkey faces (Extended Data Fig. 2b). We used monkey faces because 
responses to the screening stimuli were stronger to monkey than to 
human faces on average in AM/PR/TP (Fig. 1c; P < 4 × 10−6, two-sided 
paired t-test, t = −4.68, degrees of freedom = 588, difference = 0.75 Hz, 
95% confidence interval = [0.44, 1.07], n = 589 cells pooled across AM, 
PR and TP). The 1,000 monkey faces were randomly drawn from a mon-
key face space defined by 120 parameters (Supplementary Methods) 
encompassing a wide variety of identities, allowing the selection of 
a subset that was matched in feature distributions to familiar faces 
(Extended Data Fig. 8).

As expected, cells in AM showed ramp-shaped tuning along their 
preferred axes (Fig. 2a and Extended Data Fig. 3e). Interestingly, a large 
proportion of cells in PR and TP also showed ramp-shaped tuning along 
their preferred axes (Fig. 2a and Extended Data Fig. 3e). To our knowl-
edge this is the first time that axis coding of visual features has been 
reported for face patches outside the IT cortex. In all three patches, 
preferred axes computed using split halves of the data were highly 
consistent (Extended Data Fig. 3f). These results suggest that AM, PR 
and TP share a common axis code for representing unfamiliar faces.

Off-axis responses to familiar faces
We next examined how familiarity modulates the axis code. We pro-
jected the features of personally familiar and a random subset of unfa-
miliar faces onto the preferred axis of each AM/PR/TP cell and plotted 
responses. In AM and PR, responses to unfamiliar faces followed the 
axis (Fig. 2a, green dots) whereas, strikingly, responses to familiar faces 
departed from the axis (Fig. 2a, yellow dots).

This departure in AM and PR was not a simple gain change: the 
strongest responses to familiar faces were often to faces projecting 
somewhere in the middle of the ramp rather than on the end (Fig. 2a). It 
cannot be explained, therefore, by an attentional increase or decrease 
to familiar faces, which would elicit a gain change35. Indeed, the effect 
cannot be explained by any monotonic transform in response, such 
as repetition suppression or monotonic sparsening8,10, because any 
such transform should preserve the rank ordering of preferred stimuli.

The surprising finding of off-axis responses to familiar faces was 
prevalent across the AM and PR populations, but not TP. To quantify 
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this phenomenon at the population level we first created a larger set of 
familiar faces. To this end, animals were shown face images and videos 
daily for at least 1 month, resulting in a total of 36 familiar monkey faces, 
augmenting the nine personally familiar monkey faces in our initial 
screening set (Extended Data Fig. 2c and Supplementary Methods). 
Preferential looking tests confirmed that pictorially and cinemati-
cally familiar faces were treated similarly to the personally familiar 
faces (Extended Data Fig. 3d). These 36 familiar faces were presented 
randomly interleaved with the 1,000 unfamiliar monkey faces while 
we recorded from AM, PR and TP.

We computed preferred axes for cells using responses to the 36 famil-
iar faces. We found that, when familiar and unfamiliar faces were 
matched in number (36), familiar axes performed as well in explaining 
responses to familiar faces as unfamiliar axes in explaining responses 
to unfamiliar faces (Extended Data Fig. 3g,h). The comparable strength 
of axis tuning for familiar and unfamiliar faces naturally raised the 
question: are familiar and unfamiliar axes the same?

To compare familiar and unfamiliar axes, for each cell we first com-
puted the preferred axis using responses to the large set of unfamiliar 
faces (1,000 − 36 faces). We then correlated this to a preferred axis 
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computed using responses to either (1) the set of 36 familiar faces 
(‘unfamiliar–familiar’ condition) or (2) the omitted set of 36 unfamiliar 
faces (‘unfamiliar–unfamiliar’ condition). The distribution of correla-
tion coefficients showed significantly higher similarities for the unfa-
miliar–unfamiliar compared with the unfamiliar–familiar condition in 
AM and PR, but not in TP (Fig. 2b).

As a control, we presented a set of low-contrast faces expected to 
elicit a simple decrease in response gain but preserving rank ordering 
of preferred stimuli. Confirming expectations, axis similarities com-
puted using these contrast-varied faces were not significantly differ-
ent for high–high- versus high–low-contrast faces (Fig. 2b, inset). As  
a second control, to ensure that the effects were not due to differences 
in the feature content of familiar versus unfamiliar faces, we identified 
30 familiar and 30 unfamiliar faces that were precisely feature matched. 
In brief, we used gradient descent to search for a subset of familiar and 
unfamiliar faces that were matched in the distribution of each feature 
as well as in the distribution of pairwise face distances (Supplemen-
tary Methods and Extended Data Fig. 8). We recomputed unfamiliar– 
familiar and unfamiliar–unfamiliar correlations and continued to find 
that familiar faces were encoded by a different axis than unfamiliar 
faces in AM and PR, but not in TP (Extended Data Fig. 9a, top). Finally, 
we confirmed that axis divergence persisted when axes were computed 
using only the subset of cells showing significant axis tuning for both 
familiar and unfamiliar faces (Extended Data Fig. 9a, middle).

Previously we observed that the decrease in firing rate for famil-
iar faces occurred at long latency (Fig. 1g). We next investigated the 
time course of the deviation in the preferred axis. We performed a 
time-resolved version of the analysis in Fig. 2b, comparing the pre-
ferred axis computed from 36 unfamiliar or 36 familiar faces with that 
computed from 1,000 − 36 unfamiliar faces over a rolling time window 
(Fig. 2c). Initially, axes for familiar and unfamiliar faces were similar but, 
at longer latency (t > 105 ms in AM, t > 155 ms in PR), the preferred axis 
for familiar faces diverged from that for unfamiliar faces.

The divergence in preferred axis over time for familiar versus unfamil-
iar faces suggests that the brain would need to use a different decoder 
for familiar versus unfamiliar faces at long latencies. Supporting this, 
in both AM and PR, at short latencies, feature values for familiar faces 
obtained using a decoder trained on unfamiliar faces matched actual 
feature values, and reconstructions were good (Fig. 2d,e). By contrast, 
a decoder trained on unfamiliar faces at long latency performed poorly 
on recovering feature values of familiar faces (Fig. 2d,e).

Could the apparent axis change be explained by a simpler change—
for example, sensitivity decrease in a subset of features or an output 
nonlinearity change, without necessitating a change in axis? Further 
analyses demonstrated that these simpler models could not explain the 
change in responses of cells to familiar faces (Extended Data Fig. 9b,c).

An early shift in familiar face subspace
So far we have uncovered a distinct geometry for encoding familiar ver-
sus unfamiliar face features in AM and PR at long latency. But how is the 
categorical variable of familiarity itself encoded in AM and PR? Previous 
studies have suggested that familiarity is encoded by response suppres-
sion across cells5–10. Supporting this, our first experiment (a screening 
set consisting of familiar and unfamiliar human faces, monkey faces 
and objects) showed a decreased average response to familiar com-
pared with unfamiliar faces (Fig. 1). However, to our great surprise, data 
from our second experiment (1,000 unfamiliar faces interleaved with 
36 familiar faces; Fig. 2) showed a stronger mean response to familiar 
compared with unfamiliar stimuli (Fig. 3a,b). This was true even when we 
compared responses to the exact same subset of images (Extended Data 
Fig. 9d). What could explain this reversal? The two experiments had one 
major difference: in the first experiment the ratio of familiar to unfa-
miliar faces was 34:16 whereas in the second the ratio was 36:1,000 (in 
both experiments, stimuli were randomly interleaved and presentation 

times were identical). Thus the expectation of familiar faces was much 
lower in the second experiment. Previous studies in IT have suggested 
that expectation can strongly modulate response magnitudes, with 
unexpected stimuli exhibiting stronger responses36. The marked rever-
sal of relative response magnitude to familiar versus unfamiliar faces 
across the two experiments suggests that mean response magnitude 
is not a robust indicator of familiarity, because it depends on temporal 
context. Importantly, and, by contrast, axis change for familiar faces 
was stable across the two experiments (Extended Data Fig. 9e).

Even more challenging to the repetition suppression model of famili-
arity coding, the accuracy for decoding familiarity rose above chance 
extremely early, starting at 95 ms in AM, 105 ms in PR and 135 ms in 
TP (Fig. 3c, decoding using responses from Experiment 2); in PR this 
occurred even before any significant difference in mean firing rates 
between familiar and unfamiliar faces (compare black arrowheads in 
Fig. 3c with green arrowheads in Fig. 3b). What signal could support 
this ultrafast decoding of familiarity, which moreover generalized 
across face identity, if not mean firing rate difference? Recall earlier 
that we had found that, at short latency, familiar faces were encoded 
using the same axes as unfamiliar faces (Fig. 2d). This implies that, at 
short latency, familiar and unfamiliar faces are represented in either 
identical or parallel manifolds. Agreeing with this, familiar face fea-
tures could be readily decoded using a decoder trained on unfamiliar 
faces (Fig. 2e). This suggested to us that their representations might 
be shifted relative to each other and that this shift is what permits early 
familiarity decoding. A plot of the neural distance between familiar 
and unfamiliar response centroids over time supported this hypoth-
esis (Fig. 3d): the familiar–unfamiliar centroid distance increased 
extremely rapidly compared with that of unfamiliar–unfamiliar, and d′  
(Supplementary Methods) along the unfamiliar–familiar centroid 
axis became significantly higher than a shuffle control at 95 ms in AM, 
105 ms in PR and 135 ms in TP, equal to the time when familiarity could 
be decoded significantly above chance in each of these areas. Direct 
inspection of shifts between responses to familiar versus unfamiliar 
faces across cells showed a distribution of positive and negative values 
that could be exploited by a decoder for familiarity (Fig. 3e).

Further supporting the shift hypothesis, we found that the familiarity 
decoding axis was orthogonal to the face feature space at both short and 
long latency. We computed cosine similarity in the neural state space 
between the familiarity decoding and face feature decoding axes, both 
familiar and unfamiliar, for 20 features capturing the most variance. 
The resulting values were tightly distributed around 0 at both short 
(50–150 ms) and long (150–300 ms) latency (Fig. 3f). Overall, these 
results suggest a geometric picture in which familiar and unfamiliar 
stimuli are represented in distinct subspaces, with the familiar face 
subspace shifted relative to the unfamiliar face subspace at short laten-
cies and then further distorted at long latencies in AM and PR (Fig. 3g).

Localization of the site of face memory
The finding of memory-driven axis change at long latency in AM and PR 
is consistent with decades of functional studies suggesting a unique role 
for interactions between IT and the medial temporal lobe in memory 
formation37,38. Is the distinct representational geometry for familiar 
faces at long latency in AM due to feedback from PR? To address this 
we silenced PR while recording responses to familiar and unfamiliar 
faces in AM (Fig. 4a). IT cortex is known to receive strong feedback 
from perirhinal cortex39, and this is true in particular for face patch 
AM29. Consistent with this, inactivation of PR produced strong changes 
in AM responses with some cells showing an increase in response and 
others a decrease (Fig. 4b,c).

We next asked whether feedback modulation from PR specifically 
affected AM responses to familiar faces, as one might expect if PR were 
the source of AM memory signals. We found that divergence between 
familiar and unfamiliar axes at long latency continued to occur in AM 
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following PR inactivation (Fig. 4d). Indeed, responses to familiar and 
unfamiliar faces were similarly modulated by PR inactivation across the 
population (Fig. 4e). Finally, decoding of both face familiarity and face 
features from AM activity was unaffected by PR inactivation (Fig. 4f,g). 
Overall, these results show that inactivation of PR had a strong effect 
on the gain of AM responses but no apparent effect on face coding, 
including memory-related axis change.

Do signatures of familiarity coding, as observed in AM, PR and TP, 
exist even earlier in the face patch pathway? We mapped responses to 
familiar and unfamiliar faces in middle lateral face patch (ML), a hier-
archically earlier patch in the macaque face-processing pathway that 
provides direct anatomical input to AM22,29. Responses to the screening 
stimuli in ML exhibited a similar pattern as in AM, showing suppression 

to personally familiar faces at long latency (Extended Data Fig. 10a,c). 
However, population representation similarity matrices did not show 
distinct responses to familiar versus unfamiliar faces (Extended Data 
Fig. 10b). Furthermore, the population average firing rate showed a sus-
tained divergence between responses to familiar and unfamiliar faces 
much later than in AM (160 compared with 140 ms in AM; Extended Data 
Fig. 10c), suggesting that ML may receive a familiarity-specific feedback 
signal from AM. Importantly, ML neurons also showed axis divergence 
(Extended Data Fig. 10d–f), consistent with the idea that memory is 
stored in a distributed way across the entire hierarchical network used 
for representation40. Finally, familiarity could be decoded in ML even 
earlier than in AM (Extended Data Fig. 10g–i). Overall, these results sug-
gest that ML also plays a significant role in storing memories of faces.
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Fig. 3 | An early shift in response subspace allows decoding of familiarity.  
a, Responses of cells to stimuli from 36 familiar and 1,000 unfamiliar monkey 
faces, averaged over 50–300 ms following stimulus onset. b, Response time 
course across AM, PR and TP populations, averaged across cells and all  
familiar or unfamiliar faces from the 1,036 monkey face stimulus set. Shaded 
areas, s.e.m. Red arrowheads indicate the time when responses to faces 
became significantly higher than baseline (AM, 95 ms; PR, 105 ms; TP. 90 ms; 
Supplementary Methods). Green arrowheads indicate the time when responses 
to familiar versus unfamiliar faces became significantly different (AM, 125 ms; 
PR, 135 ms; TP, 105 ms). c, Black line, time course of accuracy for decoding 
familiarity; shaded area, s.e.m.; grey line, chance level. Arrowheads indicate the 
time at which decoding accuracy rose above chance (AM, 95 ms; PR, 105 ms;  
TP, 135 ms). d, Time course of neural distance between centroids of 36 familiar 

and 1,000 − 36 unfamiliar face responses (blue) and between centroids of 
responses to a subset of 36 unfamiliar faces and responses to the remaining 
1,000 − 36 unfamiliar faces (orange). Arrowheads indicate the time when d′ 
along the two centroids became significant (AM, 95 ms; PR, 105 ms; TP, 135 ms). 
e, Distribution of differences between mean firing rates to familiar and 
unfamiliar faces at three different time intervals. Grey bars indicate cells 
showing a significant difference (Supplementary Methods). f, Distribution of 
cosine similarities between familiarity decoding and face feature decoding axes 
at short (50–150 ms) and long (150–300 ms) latency for the first 20 features  
(ten shape, ten appearance). g, Schematic illustration of neural representation 
of familiar (blue) and unfamiliar (orange) faces at short and long latency for  
AM and PR.
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Discussion
In this paper we investigated the elusive neural code for long-term 
object memory. Although classic lesion studies suggest that long-term 
object memories should reside in IT cortex1, recent work on IT coding 
has focused on representation of incoming visual input and concluded 
that IT neurons extract high-level visual features agnostic to semantic 
content4,41. How can such meaning-agnostic, feature-selective cells be 
responsible for encoding long-term object memories that are highly 
context and familiarity dependent? Here we shed light on this conun-
drum, finding that in anterior face patches AM and PR a distinct neural 
code for familiar faces emerges at long latency in the form of a change in 
preferred axis. Thus, feedforward feature-coding properties of IT cells 
may be reconciled with a putative role in long-term memory through 
temporal multiplexing. Inactivation of PR did not affect axis change 
dynamics in AM, suggesting that the memory-related axis change 
mechanism may be intrinsic to IT cortex.

Previous physiological work on representation of familiar stimuli 
has focused largely on repetition suppression, the observation that 
the response to familiar stimuli is reduced5–11. We found that repeti-
tion suppression was not a robust indicator of familiarity in any face 
patch. Instead, relative response amplitude to familiar versus unfa-
miliar faces was highly sensitive to temporal context. We speculate 
that these relative response amplitudes, and associated neural dis-
tances and decoding accuracies (Extended Data Fig. 10j,k), may reflect 

momentary changes in stimulus saliency rather than face memory. 
By contrast, axis change for familiar faces at long latency was consist-
ent across context (Extended Data Fig. 9e), indicating a reliable code  
for face memory.

What could the computational purpose of this axis change be? We 
speculate that, by lifting representations of face memories into a sepa-
rate subspace from that used to represent unfamiliar faces (Fig. 3g), 
attractor-like dynamics may be built around these memories through 
a recurrent network to allow reconstruction of familiar face features 
from noisy cues without interfering with veridical representation of 
sensory inputs42,43. Computational considerations make it clear that the 
ability to recall (that is, reconstruct from noisy cues) a large number of 
familiar faces requires a code change. This is because a perfectly disen-
tangled representation (the axis code) is inherently low dimensional; 
the memory capacity of a recurrent network using disentangled repre-
sentations increases only linearly with the number of dimensions of the 
representation44. Importantly, recoding stimuli with small, nonlinear 
distortions of disentangled representations can significantly increase 
the memory capacity to one that scales linearly with the number of 
neurons43,44, as in Hopfield networks with random memories43. We 
hypothesize that long-latency axis change reflects this recoding. To 
date, studies of IT have emphasized the stability of response tuning over 
months45,46. Our results suggest such stability coexists with a precisely 
orchestrated dynamics for representing familiar stimuli through the 
mechanism of long-latency change in axis.
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Extended Data Fig. 1 | Coronal slices showing the electrode targeting nine 
recording sites from five monkeys. a–c, Single electrode targeting AM, PR, 
and TP in monkey A. d, Single electrode targeting PR in monkey B. e, Brush  
array electrodes targeting AM in monkey C. f, Single electrode targeting  
ML in monkey D. g–i, Single electrode targeting AM, PR, and TP in monkey E. 

Activations for the contrast faces versus objects are shown, at p values in 
−log10, two-sided t-test, not corrected for multiple comparisons. Note: There is 
no corresponding MRI image showing the recording targeting ML in monkey  
A because the recording was performed using an early version of an 
Neuropixels NHP probe which was not MRI compatible.



Extended Data Fig. 2 | Visual stimuli. a, Screening stimuli. Eight out of nine 
personally familiar faces are shown. Example unfamiliar stimuli are shown here; 
a new set was presented for every recording site, drawn from image sets 
described in the Methods. Note that unfamiliar human faces and unfamiliar 
objects are not the actual stimuli but synthetic images similar to the actual 
stimuli, due to difficulty in obtaining permission for publication. b, Examples 
of unfamiliar faces in the thousand face stimulus set. Monkey faces were 

generated by a 120d shape-appearance model (see Methods). The thousand 
monkey face stimulus set was extremely diverse, allowing subsets of faces  
to be chosen that were matched in feature distributions to familiar faces (see 
Supplementary Methods). Shown here are examples from two subsets, one 
matched to the personally familiar faces, and one matched to all familiar faces. 
c, Additional familiar faces (pictorially and cinematically familiar).
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Extended Data Fig. 3 | Quantification of familiarity-related behavior, face 
selectivity, and axis tuning. a, Schematic illustration of face identification 
task, a sample face with different Gaussian blur level was presented for 1 s 
followed by a test period with two faces presented side by side. The subject  
had to choose the one matching the sample to get reward (see Supplementary 
Methods). b, Rate of correct performance on the face identification task across 
different difficulty levels (accomplished by varying Gaussian blur of the sample 
face, see Supplementary Methods); n = 30 faces. Error bar, SEM. c, Histograms 
of face selectivity indices computed using screening stimuli (see Supplementary 
Methods). d, Preferential looking test. Comparing looking time to personally 

familiar faces versus novel unfamiliar faces, unfamiliar faces (from 1000  
face set), personally familiar faces (two distinct personally familiar faces were 
presented on each trial), pictorially familiar faces, and cinematically familiar 
faces. Error bar, SEM. e, Distribution of explained variance by the linear axis 
model for responses to 1000 unfamiliar faces; shaded bars indicate the subset 
of cells for which the explained variance was significantly higher than for 
stimulus-shuffled data (1000 repeats). f, Distributions of mean cosine similarity 
of preferred axes across repeated split halves (100 repeats) of responses to 
1000 unfamiliar faces for AM and PR. Same conventions as in e. g, h, Same  
as e and f but for 36 familiar and unfamiliar faces.



Extended Data Fig. 4 | Main results of experiment 1 computed separately 
for each animal individually. a, Responses of cells to stimuli from six stimulus 
categories (same as Fig. 1c). Note that Monkey C was not presented with this 
stimulus. Number of cells: Monkey A, AM, 84, PR, 128, TP, 164, ML, 135; Monkey 
B, PR, 43; Monkey E, AM, 62, PR, 46, TP, 102; Monkey D, ML, 35. b, Similarity 

(Pearson correlation coefficient) matrix of population responses for full 
response window (same as Fig. 1e). Number of cells same as a. c, Response time 
course averaged across cells and exemplars within each screening category 
(same as Fig. 1g, right). Shaded area, SEM. Number of cells same as a.



Article

Extended Data Fig. 5 | Main results of experiment 2 computed separately 
for each animal individually. a, Population analysis comparing preferred axes 
for familiar versus unfamiliar faces (same as Fig. 2b). Number of cells: Monkey A,  
AM, 49, PR, 62, TP, 95, ML, 122; Monkey E, AM, 79, PR, 46, TP, 102; Monkey D, ML, 
32; Monkey C, AM, 56; Monkey B, PR, 14. b, Time course of the similarity 

between preferred axes for unfamiliar-unfamiliar (orange) and unfamiliar- 
familiar (blue) faces (same as Fig. 2c). Shaded area, SEM. Number of cells  
same as a. c, Time course of mean pairwise neural distance (Euclidean distance 
between population responses) between feature-matched familiar or unfamiliar 
faces. Number of cells same as a.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Temporal pole face patch (TP) did not respond 
specifically to personally familiar faces. a, Left: replicate of Fig. 2a from 
Landi et al.23 using the data they published. Right: average z-Scores of familiar 
monkey faces for each cell, showing the population average of z-Scores (bar 
plot on the left bottom) was dominated by a small fraction of cells. b, Replotted 
population summary balancing the contribution of each cell by normalizing 
each cell’s response by its maximum across all stimuli. c, replicate of Fig. 1c 
from Landi et al.23 showing face patch TP in two animals d, MRI image overlaid 
with face patches showing location of TP which we recorded from in two 

animals. e, Stimuli depicting unfamiliar faces from other species; the images 
shown are synthetic images similar to the actual stimuli, due to difficulty in 
obtaining permission for publication. f, Responses of cells to stimuli from 
seven stimulus categories (familiar human faces, unfamiliar human faces, 
familiar monkey faces, unfamiliar monkey faces, familiar objects, unfamiliar 
objects, and unfamiliar faces from other species) recorded from face patch 
TP in two animals. Responses were averaged between 50 to 300 ms after 
stimulus onset.



Extended Data Fig. 7 | Responses of example neurons to familiar and unfamiliar screening stimuli. a, Seven example cells from AM. b, Seven example cells 
from PR. c, Seven example cells from TP.
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Extended Data Fig. 8 | Matching the face features of familiar and unfamiliar 
faces. a, Distribution of variances of first 20 features for 30 familiar and 30 
unfamiliar feature-matched faces (two-sided Kolmogorov–Smirnov (K-S) test, 
p = 0.96, K-S statistic (D) = 0.15, n = 20 features). b, Distribution of pairwise 
distances in face feature space (first 20 features) for the 30 familiar and 30 

unfamiliar feature-matched faces (K-S test, p = 0.51, D = 0.055, n = 435 face pairs). 
c, Distribution of values for the top 20 features for the 30 familiar and 30 
unfamiliar feature-matched faces; the number above each plot gives the p value 
of K-S test (n = 30 faces) between the two feature distributions. d, Images of the 
30 familiar and 30 unfamiliar feature-matched faces.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Control analyses confirming axis robustness. a, Top, 
Row 1: population analysis of preferred axes for familiar versus unfamiliar 
faces; same conventions as in Fig. 2b except 30 familiar and 30 unfamiliar 
feature-matched faces were used (see Methods and Extended Data Fig. 8).  
Row 2: time course from the same analysis; same conventions as in Fig. 2c. 
Shaded area, SEM. Note that new feature-matched 36 familiar and 36 unfamiliar 
faces were used for TP, thus the result shown in Fig. 2c for TP is already perfectly 
feature matched, and is replicated here for comparison. Middle, same analysis 
as in Fig 2b, c except a subset of neurons showing significant axis tuning  
were used. Shaded area, SEM. Bottom, same analysis as Fig. 2b,c except the 
preferred axes were computed using linear regression rather than spike-
triggered averaging (see Supplementary Methods). Shaded area, SEM. b, Top: 
scatter plot of 20 feature sensitivities (see Supplementary Methods) from  
134 AM cells and 72 PR cells, for familiar (y-axis) and unfamiliar (x-axis) faces.  
The dots in the blue rectangles (corralling points for which sensitivity to the 
familiar feature goes to ~0) indicate loss of tuning for familiar faces in some 
cells, while the dots in the red rectangles indicate gain of tuning. Bottom: 
Distribution of feature sensitivity values for familiar and unfamiliar faces.  
This shows that on average, sensitivity for familiar faces was larger than that  
for unfamiliar faces. c, Top: explained variance for responses to 36 unfamiliar 
(y-axis) or 36 familiar (x-axis) faces using unfamiliar axis (fitted on 1000 - 36 
faces) with linear output function (each dot is one cell, n = 134 cells for AM and 

n = 72 cells for PR). Middle: explained variance for responses to 36 familiar faces 
using unfamiliar axis with linear output function (y -axis) or a logistic output 
nonlinearity (x-axis); the latter values are only slightly higher. Bottom: explained 
variance for responses to 36 unfamiliar faces using unfamiliar axis with linear 
output function (y-axis) or 36 familiar faces using axis model with a logistic 
output nonlinearity (x-axis). The slight increase in explained variance obtained 
by applying a logistic output nonlinearity cannot undo the decrease caused by 
axis change (however, explained variance is similar using familiar axes for 
familiar responses and unfamiliar axes for unfamiliar responses, Extended 
Data Fig. 3g). d, Comparison of average response time courses in AM and PR to 
the exact same set of familiar and unfamiliar stimuli, presented in two different 
temporal contexts. Scatter plot: average over time window [100 300] ms  
(AM, N = 80 cells; PR, N = 70 cells). Top: Responses to 9 personally familiar and 8 
unfamiliar monkey faces presented as part of screening stimulus (experiment 1). 
Bottom: responses to the same set of stimuli presented as part of thousand  
face stimulus (experiment 2). Shaded area, SEM. e, Correlation in rank order 
(Spearman correlation) of neuronal responses to personally familiar face 
stimuli at short or long latency between split halves of trials (y-axis, correlation 
values averaged across experiments 1 and 2) is plotted against correlation 
between rank order of the same faces between experiments 1 and 2; each dot 
represents one cell (AM, N = 80 cells; PR, N = 70 cells; TP, N = 197 cells).



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Representation of familiar stimuli in face patch ML 
and additional analysis of repetition suppression-related signals.  
a, Responses of cells to screening stimuli from six stimulus categories  
(familiar human faces, unfamiliar human faces, familiar monkey faces, 
unfamiliar monkey faces, familiar objects, and unfamiliar objects), recorded 
the face patch ML. Left, responses were averaged between 50 to 300 ms after 
stimulus onset (“full” response window). Right, same for a “short” window 50 to 
125 ms. b, Similarity matrix of population responses for full response window 
(left) and short response window (right). c, Left: Average response time course 
across the ML population to each of the screening stimuli. Right: Response 
time course averaged across cells and category exemplars. Shaded area, SEM. 
Earlier arrow indicates the mean time when visual responses to faces became 
significantly higher than baseline (77.5 ms). Later arrow indicates the mean 
time when responses to familiar versus unfamiliar faces became significantly 
different (175 ms and 145 ms for human and monkey faces, respectively). 

Responses also diverged briefly at very short latency (95 ms and 105 ms for 
human and monkey faces, respectively). d, Population analysis comparing 
preferred axes for familiar versus unfamiliar faces. Same conventions as Fig. 2b. 
e-i, Same analyses for the ML population (n = 154 cells) as in Fig. 2c, d, Fig. 3b–d. 
j, Time course of mean pairwise neural distance (Euclidean distance) between 
familiar or unfamiliar faces computed using a 50 ms sliding time window,  
step size 10 ms, normalized by mean baseline (0–50 ms) distance between 
unfamiliar faces. Distances were computed using a subset of familiar and 
unfamiliar feature-matched faces (see Extended Data Fig. 8). k, Time course  
of face identity decoding accuracy for 30 familiar (blue) or unfamiliar (orange) 
feature-matched faces, computed using a 50 ms sliding time window, step size 
10 ms. Shaded area, SEM. Half the trials were used to train a linear classifier  
and decoding performance was tested on the remaining half of trials; chance 
performance was 1/30.
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