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A central assumption of neuroscience is that long-term memories are represented by
the same brain areas that encode sensory stimuli’. Neurons in inferotemporal (IT)
cortex represent the sensory percept of visual objects using a distributed axis code®™.
Whether and how the same IT neural population represents the long-term memory of
visual objects remains unclear. Here we examined how familiar faces are encoded in
the IT anterior medial face patch (AM), perirhinal face patch (PR) and temporal pole
face patch (TP).In AM and PR we observed that the encoding axis for familiar faces is
rotated relative to that for unfamiliar faces at long latency; in TP this memory-related
rotation was much weaker. Contrary to previous claims, the relative response
magnitude to familiar versus unfamiliar faces was not a stable indicator of familiarity
in any patch® . The mechanism underlying the memory-related axis change is likely
intrinsic to IT cortex, because inactivation of PR did not affect axis change dynamics
in AM. Overall, our results suggest that memories of familiar faces are represented in
AM and perirhinal cortex by a distinct long-latency code, explaining how the same cell

population can encode both the percept and memory of faces.

Our experience of the world is profoundly shaped by memory. Whether
we are shopping for alist of items at the grocery store or talking to
friends atasocial gathering, our actions depend critically on remember-
ingalarge number of visual objects. Multiple studies have explored the
molecular®®and cellular*" basis for memory, but the network-level
coderemains elusive. How is a familiar song, place or face encoded by
the activity of neurons?

Recent work on the sensory code for visual object identity in the
inferotemporal (IT) cortex suggests that objects are encoded as points
inacontinuous, low-dimensional object space, with single IT neurons
linearly projecting objects onto specific preferred axes®* (Fig. 1a, left).
These axes are defined by weightings of a small set of independent
parameters spanning the object space. This coding scheme (also
referred to as linear mixed selectivity’®?, and related to disentangled
representations in machine learning') is efficient, allowing a huge
number of different objects to be represented by a small number of
neurons. Indeed, the axis code carried by macaque face patches allows
detailed reconstruction of random realistic faces using activity from
only afew hundred neurons®.

Here we set out to leverage recent insight into the detailed sensory
code for facial identity inIT cortex®to explore the population code for
face memories. A long-standing assumption of neuroscience is that
long-term memories are stored by the same cortical populations that
encode sensory stimuli'. This suggests that the same neurons that carry
acontinuous, axis-based, object-coding scheme should also support
tagging of adiscrete set of remembered objects as familiar. However,
schemes for representing discrete familiar items often invoke attrac-
tors®?° that would lead to breakdowns in continuous representation
(Fig. 1a, right). This raises a key question: does familiarity alter the IT

axis code for facialidentity? We surmised that discovering the answer
might uncover the neural code for face memory.

Previous studies have generally found decreased and sparsened
responses to familiar stimuli in IT and perirhinal cortex and have
proposed that this decrease, or ‘repetition suppression’, is the neural
correlate of object memory* ™. However, these studies were not tar-
geted to specificsubregions of IT cortexknown to play acausalrolein
discrimination of the visual object class being studied® and where the
visual feature codeis precisely understood®. Here, to study the neural
mechanism that represents long-term object memories, we targeted
threeregions: anterior medial face patch (AM), the most anterior face
patchinlIT cortex??,and PRand TP, two recently reported face patches
in the perirhinal cortex and anterior temporal pole, respectively??*,
These three regions lie at the apex of the macaque face patch system,
an anatomically connected network of regions in the temporal lobe
dedicated to face processing?* . AM harbours a strong signal for
invariant facial identity>*, perirhinal cortexis known to play a critical
roleinvisualmemory***and TP has recently been suggested to provide
aprivileged pathway for rapid recognition of familiar individuals®. We
thus hypothesized that arepresentation of face memory should occur
inAM, PRand/or TP.

Our recordings showed that, in all three patches, familiar faces
were distinguished from unfamiliar faces. First, in all three patches,
familiar faces wererepresented in a subspace distinct from unfamiliar
faces. Second, in all three patches the relative response magnitude
to familiar faces differed significantly from that to unfamiliar faces;
however, the sign of this difference was not stable and depended
strongly on the relative frequency of presentation of familiar and unfa-
miliar faces (that is, temporal context). Third, and most strikingly,
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(AM, 50-125 ms; PR, 50-150 ms; TP, 50-150 ms). e, Similarity (Pearson
correlation coefficient) matrix of population responses for full-response
window. f, Same as ebut for short-response window. g, Left, average response
time course across AM (top), PR (middle) and TP (bottom) populations to
each of the screening stimuli. Right, AM, PR and TP response time courses
averaged across both cells and category exemplars (normalized for each cell;
Supplementary Methods). Left-hand arrow indicates mean time when visual
responses to faces became significantly higher thanbaseline (AM, 85 ms; PR,
105 ms; TP, 75 ms; Supplementary Methods); right-hand arrow indicates mean
timewhenresponses to familiar versus unfamiliar faces became significantly
different (AM, 105 and 145 ms for human and monkey faces, respectively; PR,
155and 215 ms, respectively; TP,145and 205 ms, respectively). Shaded areas,
S.e.Mm.across neurons.

Fig.1|Cellsinface patches are modulated by familiarity. a, Two alternative
schemes for face representation: alow-dimensional (low-d) continuous feature
space (left) and aset of discrete attractors (right). b, Left, view preference test.
Pairs of faces (n = 72), one familiar and one unfamiliar, were presented

for10 s and the time spent fixating each was recorded. Right, ratio of time
spent fixating personally familiar versus unfamiliar faces for two animals

(each dotrepresents one face pair). Error bar, mean + s.e.m. ¢, Responses

of cells to stimuli from six stimulus categories (familiar human faces, unfamiliar
human faces, familiar monkey faces, unfamiliar monkey faces, familiar

objects and unfamiliar objects) across three face patches (AM, PRand TP).
Responses were averaged between 50 and 300 ms following stimulus onset
(‘full-response window; AM, n =152 cells; PR,n=171cells; TP, n =266 cells;
Supplementary Methods and Supplementary Table 1 provide additional
statisticalinformation).d, Same as c but for the ‘short-response window
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in AM and PR, but not in TP, familiar faces were encoded by a unique
geometry at long latency; furthermore, unlike response magni-
tude, this unique geometry associated with familiar faces was stable
across contexts. These results suggest that the memory of familiar
faces is primarily represented in face patches AM and PR through
axis change rather than altered response magnitude. This conclu-
sion—that a major piece of the network code for visual memory is
temporally multiplexed with the perceptual code and activated only
at long latency—sheds light on how we can both veridically perceive
visual stimuli and recall past experiences from them using the same
set of neurons.

AM and PR are modulated by familiarity

We identified face patches AM, PR and TP in five animals using func-
tional magnetic resonance imaging®. To characterize the role of famili-
arityinmodulating theresponses of cellsinAM, PR and TP, we targeted
electrodestothese three patches (Extended Data Fig.1) and recorded
responses to a set of screening stimuli consisting of human faces,
monkey faces and objects. The stimuli were either personally famil-
iar or unfamiliar (Extended Data Fig. 2a), with eight or nine images
per category. Personally familiar images depicted people, monkeys
and objects with which the animals interacted on a daily basis; a new
set of unfamiliar images was presented per recording site. Animals
showed highly significant preferential looking towards the unfamiliar
face stimuli and away from familiar face stimuli (Fig. 1b), confirming
behaviourally that these stimuli were indeed familiar to the mon-
key**. Monkeys also performed significantly better on a face identi-
fication task for familiar compared with unfamiliar faces (Extended
Data Fig. 3a,b), indicating a behavioural recognition advantage for
familiar faces.

Across the population, 93% of cells in AM, 74% in PR and 88% in TP
were face selective (Extended Data Fig. 3¢). Below, we group data
from three monkeys for AM, three for PR and two for TP becaue we
did not find any marked differences between individuals (Extended
Data Figs. 4 and 5 show the main results separately for each animal).
Allthree patches exhibited asignificantly stronger response acrossthe
population to unfamiliar compared with personally familiar stimuli
in this experiment (Fig. 1c). This is inconsistent with a recent study
reporting that TP is specialized for representing personally familiar
faces®* (however, the latter study never actually presented unfamiliar
faces but contrasted responses only to personally versus pictorially
familiar faces; Extended Data Fig. 6a—c provides further detail). Fur-
ther casting doubt on a specialized role for TP in encoding person-
ally familiar faces, we found that the response in TP to faces of other
species was stronger than to human or monkey faces (Extended Data
Fig. 6d-f). Overall, the pattern of decreased responses to familiar faces
across AM, PR and TP is consistent with a large number of previous
studies reporting suppression of responses to familiar stimuliinIT and
perirhinal cortex> . Individual cells showed a diversity of selectivity
profiles for face species and familiarity type (Extended Data Fig. 7a-c).
Representation similarity matrices showed distinct population rep-
resentations of the six stimulus classes in both AM and PR, and more
weakly in TP (Fig. le).

Mean responses to familiar versus unfamiliar faces diverged over
time, with difference becoming significant at 125 ms in AM, 185 ms
in PRand 175 ms in TP; the mean visual response to faces themselves
significantly exceeded baseline earlier, at 85 msin AM, 105 ms in PR
and 75 msin TP (Fig. 1g). The delay in suppression to familiar faces is
consistent with previous reports of delayed suppression to familiar
stimuliinIT>?, Single-cell response profiles and representation similar-
ity matrices computed using ashort time window showed less distinct
responses to familiar versus unfamiliar stimuli (Fig. 1d,f). Overall, the
results so far show that AM, PRand TP all exhibit long-latency suppres-
sion to familiar faces.

An axis code for unfamiliar faces

Responses of AM, PR and TP cells to familiar stimuli, although lower
on average at long latencies, remained highly heterogeneous across
faces (Fig. 1c and Extended Data Fig. 7a-c), indicating that cells were
driven by both familiarity and identity. We next asked how familiarity
interacts with the recently discovered axis code for facial identity?>.

Accordingto this axis code, face cellsin IT compute a linear projec-
tionofincoming faces formatted in shape and appearance coordinates
onto specific preferred axes®. For each cell, the preferred axis is given
by the coefficients cin the equationr=c-f+c,, whereristheresponse
of the cell, fis a vector of shape and appearance features and c, is a
constant offset (Supplementary Methods); shape features capture
variationsin thelocation of key facial landmarks (for example, outline,
eye, nose and mouth positions and so on) whereas appearance fea-
tures capture the shape-independent texture map of aface®. Together,
a population of face cells with different preferred axes encodes a
face space that isembedded as a linear subspace of the neural state
space. The axis code has so far been examined only for unfamiliar
faces. By studying whether and how this code is modified by familiar-
ity, we reasoned that we could potentially understand the code for
face memory.

We first asked whether face cells encode familiar and unfamiliar faces
using the same axis. To address this, we examined tuning to unfamiliar
faces (described in this section) and then compared this with tuning
to familiar faces (described in the next section). We began by mapping
the preferred axes of AM, PRand TP cells using a set of 1,000 unfamiliar
monkey faces (Extended Data Fig. 2b). We used monkey faces because
responses to the screening stimuli were stronger to monkey than to
human faces on average in AM/PR/TP (Fig. 1c; P < 4 x 1075, two-sided
paired t-test, t =-4.68, degrees of freedom = 588, difference = 0.75 Hz,
95% confidenceinterval =[0.44,1.07],n = 589 cells pooled across AM,
PRand TP). The1,000 monkey faces wererandomly drawn from amon-
key face space defined by 120 parameters (Supplementary Methods)
encompassing a wide variety of identities, allowing the selection of
asubset that was matched in feature distributions to familiar faces
(Extended DataFig. 8).

As expected, cells in AM showed ramp-shaped tuning along their
preferred axes (Fig.2a and Extended Data Fig. 3e). Interestingly, alarge
proportion of cellsin PRand TP also showed ramp-shaped tuning along
their preferred axes (Fig. 2a and Extended Data Fig. 3e). To our knowl-
edge thisis the first time that axis coding of visual features has been
reported for face patches outside the IT cortex. In all three patches,
preferred axes computed using split halves of the data were highly
consistent (Extended Data Fig. 3f). These results suggest that AM, PR
and TP share acommon axis code for representing unfamiliar faces.

Off-axis responses to familiar faces

We next examined how familiarity modulates the axis code. We pro-
jectedthefeatures of personally familiar and arandom subset of unfa-
miliar faces onto the preferred axis of each AM/PR/TP cell and plotted
responses. In AM and PR, responses to unfamiliar faces followed the
axis (Fig.2a, green dots) whereas, strikingly, responses to familiar faces
departed from the axis (Fig. 2a, yellow dots).

This departure in AM and PR was not a simple gain change: the
strongest responses to familiar faces were often to faces projecting
somewherein the middle of the ramp rather thanonthe end (Fig. 2a). It
cannotbe explained, therefore, by anattentionalincrease or decrease
to familiar faces, which would elicit a gain change®. Indeed, the effect
cannot be explained by any monotonic transform in response, such
as repetition suppression or monotonic sparsening®'°, because any
suchtransformshould preserve the rank ordering of preferred stimuli.

The surprising finding of off-axis responses to familiar faces was
prevalent across the AM and PR populations, but not TP. To quantify
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Fig.2|AMand PR cells use different axes to represent familiar versus
unfamiliarfaces. a, Three example cells showing axis tuning. Top, mean
response as afunction of distance along the preferred axis. Green (yellow) dots
denoteresponses to eight random unfamiliar (nine personally familiar) faces.
Errorbar,s.e.m.Bottom, responses to1,000 unfamiliar faces, projected onto
the cell’s preferred axis and principal (longest) orthogonal axis in the face
feature space. Response magnitudes are colour coded. b, Population analysis
comparing preferred axes for familiar versus unfamiliar faces. Distribution of
cosine similarities between axes computed using 1,000 - 36 unfamiliar faces
and 36 omitted unfamiliar faces (orange), and between axes computed using
1,000 - 36 unfamiliar faces and 36 familiar faces (blue) are shown. Preferred
axes were computed using the top ten shape and top ten appearance features
of presented faces. Inset, control experiment with 36 low-contrast faces in

this phenomenon at the population level we first created alarger set of
familiar faces. To this end, animals were shown faceimages and videos
daily for atleast1 month, resultinginatotal of 36 familiar monkey faces,
augmenting the nine personally familiar monkey faces in our initial
screening set (Extended Data Fig. 2c and Supplementary Methods).
Preferential looking tests confirmed that pictorially and cinemati-
cally familiar faces were treated similarly to the personally familiar
faces (Extended Data Fig. 3d). These 36 familiar faces were presented
randomly interleaved with the 1,000 unfamiliar monkey faces while
we recorded from AM, PR and TP.

864 | Nature | Vol 629 | 23 May 2024

place of 36 familiar faces. ¢, Time course of cosine similarity between preferred
axes for unfamiliar-unfamiliar (orange) and unfamiliar-familiar (blue) faces
asinb. Arrowheadsindicate when differences became significant (AM, 105 ms;
PR, 175 ms; TP, 255 ms; one-tailed t-test, P < 0.001; AM, n=134cells; PR, n=72
cells; TP, n =197 cells; Supplementary Methods and Supplementary Table1give
additional information about statistical tests). Shaded areas, s.e.m.d, Time
course of linear decoding of facial features (Supplementary Methods). Shaded
areas, s.e.m.Lighter colour, same analysis using stimulusidentity-shuffled data
(tenrepeats). e, Examplelinearly reconstructed faces from short (120-170 ms)
andlong (220-270 ms) latency responses combining cells fromboth AM and
PR.Reconstructions were performed usinglinear decoderstrainedonalarge
setof unfamiliar faces, similar tod (Supplementary Methods).

We computed preferred axes for cells using responses to the 36 famil-
iar faces. We found that, when familiar and unfamiliar faces were
matched innumber (36), familiar axes performed as well in explaining
responses to familiar faces as unfamiliar axes in explaining responses
to unfamiliar faces (Extended DataFig.3g,h). The comparable strength
of axis tuning for familiar and unfamiliar faces naturally raised the
question: are familiar and unfamiliar axes the same?

To compare familiar and unfamiliar axes, for each cell we first com-
puted the preferred axis using responses to the large set of unfamiliar
faces (1,000 - 36 faces). We then correlated this to a preferred axis



computed using responses to either (1) the set of 36 familiar faces
(‘'unfamiliar-familiar’ condition) or (2) the omitted set of 36 unfamiliar
faces (‘unfamiliar-unfamiliar’ condition). The distribution of correla-
tion coefficients showed significantly higher similarities for the unfa-
miliar-unfamiliar compared with the unfamiliar-familiar conditionin
AM and PR, but not in TP (Fig. 2b).

As a control, we presented a set of low-contrast faces expected to
elicitasimple decrease inresponse gainbut preserving rank ordering
of preferred stimuli. Confirming expectations, axis similarities com-
puted using these contrast-varied faces were not significantly differ-
ent for high-high- versus high-low-contrast faces (Fig. 2b, inset). As
asecond control, to ensure that the effects were not due to differences
inthe feature content of familiar versus unfamiliar faces, we identified
30 familiar and 30 unfamiliar faces that were precisely feature matched.
Inbrief, we used gradient descent to search for asubset of familiar and
unfamiliar faces that were matched in the distribution of each feature
as well as in the distribution of pairwise face distances (Supplemen-
tary Methods and Extended Data Fig. 8). We recomputed unfamiliar-
familiar and unfamiliar-unfamiliar correlations and continued to find
that familiar faces were encoded by a different axis than unfamiliar
facesin AM and PR, but notin TP (Extended Data Fig. 9a, top). Finally,
we confirmed that axis divergence persisted when axes were computed
using only the subset of cells showing significant axis tuning for both
familiar and unfamiliar faces (Extended Data Fig. 9a, middle).

Previously we observed that the decrease in firing rate for famil-
iar faces occurred at long latency (Fig. 1g). We next investigated the
time course of the deviation in the preferred axis. We performed a
time-resolved version of the analysis in Fig. 2b, comparing the pre-
ferred axis computed from 36 unfamiliar or 36 familiar faces with that
computed from1,000 - 36 unfamiliar faces over arolling time window
(Fig.2c). Initially, axes for familiar and unfamiliar faces were similar but,
atlonger latency (¢ >105 msin AM, ¢ > 155 msin PR), the preferred axis
for familiar faces diverged from that for unfamiliar faces.

Thedivergencein preferred axis over time for familiar versus unfamil-
iar faces suggests that the brain would need to use a different decoder
for familiar versus unfamiliar faces at long latencies. Supporting this,
inboth AM and PR, at short latencies, feature values for familiar faces
obtained using a decoder trained on unfamiliar faces matched actual
feature values, and reconstructions were good (Fig. 2d,e). By contrast,
adecoder trained on unfamiliar faces at long latency performed poorly
onrecovering feature values of familiar faces (Fig. 2d,e).

Couldthe apparent axis change be explained by a simpler change—
for example, sensitivity decrease in a subset of features or an output
nonlinearity change, without necessitating a change in axis? Further
analyses demonstrated that these simpler models could not explain the
changeinresponses of cells to familiar faces (Extended Data Fig. 9b,c).

An early shift in familiar face subspace

Sofar we have uncovered adistinct geometry for encoding familiar ver-
sus unfamiliar face featuresin AM and PR at longlatency. But how is the
categorical variable of familiarity itselfencoded in AM and PR? Previous
studies have suggested that familiarity is encoded by response suppres-
sionacross cells*'°. Supporting this, our first experiment (ascreening
set consisting of familiar and unfamiliar human faces, monkey faces
and objects) showed a decreased average response to familiar com-
pared with unfamiliar faces (Fig.1). However, to our great surprise, data
fromour second experiment (1,000 unfamiliar faces interleaved with
36 familiar faces; Fig. 2) showed a stronger mean response to familiar
compared with unfamiliar stimuli (Fig.3a,b). This was true even whenwe
compared responses to the exact same subset of images (Extended Data
Fig.9d). What could explainthis reversal? The two experiments had one
major difference: in the first experiment the ratio of familiar to unfa-
miliar faces was 34:16 whereas in the second the ratio was 36:1,000 (in
both experiments, stimuli were randomly interleaved and presentation

times were identical). Thus the expectation of familiar faces was much
lowerinthe second experiment. Previous studies in IT have suggested
that expectation can strongly modulate response magnitudes, with
unexpected stimuli exhibiting stronger responses®. The marked rever-
sal of relative response magnitude to familiar versus unfamiliar faces
across the two experiments suggests that mean response magnitude
isnotarobustindicator of familiarity, because it depends on temporal
context. Importantly, and, by contrast, axis change for familiar faces
was stable across the two experiments (Extended Data Fig. 9e).

Even more challenging to the repetition suppression model of famili-
arity coding, the accuracy for decoding familiarity rose above chance
extremely early, starting at 95 msin AM, 105 ms in PR and 135 ms in
TP (Fig. 3¢, decoding using responses from Experiment 2); in PR this
occurred even before any significant difference in mean firing rates
between familiar and unfamiliar faces (compare black arrowheads in
Fig. 3c with green arrowheads in Fig. 3b). What signal could support
this ultrafast decoding of familiarity, which moreover generalized
across face identity, if not mean firing rate difference? Recall earlier
that we had found that, at short latency, familiar faces were encoded
using the same axes as unfamiliar faces (Fig. 2d). This implies that, at
short latency, familiar and unfamiliar faces are represented in either
identical or parallel manifolds. Agreeing with this, familiar face fea-
tures could be readily decoded using adecoder trained on unfamiliar
faces (Fig. 2e). This suggested to us that their representations might
be shifted relative to each other and that this shiftis what permits early
familiarity decoding. A plot of the neural distance between familiar
and unfamiliar response centroids over time supported this hypoth-
esis (Fig. 3d): the familiar-unfamiliar centroid distance increased
extremely rapidly compared with that of unfamiliar-unfamiliar,and @’
(Supplementary Methods) along the unfamiliar-familiar centroid
axis becamessignificantly higher thanashuffle controlat 95 msin AM,
105 msinPRand 135 msin TP, equal to the time when familiarity could
be decoded significantly above chance in each of these areas. Direct
inspection of shifts between responses to familiar versus unfamiliar
facesacross cells showed a distribution of positive and negative values
that could be exploited by a decoder for familiarity (Fig. 3e).

Further supporting the shift hypothesis, we found that the familiarity
decodingaxis was orthogonal to the face feature space at both shortand
long latency. We computed cosine similarity in the neural state space
between the familiarity decoding and face feature decoding axes, both
familiar and unfamiliar, for 20 features capturing the most variance.
The resulting values were tightly distributed around 0 at both short
(50-150 ms) and long (150-300 ms) latency (Fig. 3f). Overall, these
results suggest a geometric picture in which familiar and unfamiliar
stimuli are represented in distinct subspaces, with the familiar face
subspace shiftedrelative to the unfamiliar face subspace at short laten-
ciesandthenfurther distorted atlong latenciesin AM and PR (Fig. 3g).

Localization of the site of face memory

The finding of memory-driven axis change atlong latencyin AM and PR
is consistent with decades of functional studies suggesting auniquerole
for interactions between IT and the medial temporal lobe in memory
formation®, Is the distinct representational geometry for familiar
faces at long latency in AM due to feedback from PR? To address this
we silenced PR while recording responses to familiar and unfamiliar
facesin AM (Fig. 4a). IT cortex is known to receive strong feedback
from perirhinal cortex®, and this is true in particular for face patch
AM?, Consistent with this, inactivation of PR produced strong changes
in AM responses with some cells showing anincrease in response and
others adecrease (Fig. 4b,c).

We next asked whether feedback modulation from PR specifically
affected AM responses to familiar faces, as one might expectif PRwere
the source of AM memory signals. We found that divergence between
familiar and unfamiliar axes at long latency continued to occurin AM
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Fig.3|Anearlyshiftinresponsesubspace allows decoding of familiarity.

a, Responses of cells to stimuli from 36 familiar and 1,000 unfamiliar monkey
faces, averaged over 50-300 ms following stimulus onset. b, Response time
courseacross AM, PRand TP populations, averaged across cellsand all

familiar or unfamiliar faces from the 1,036 monkey face stimulus set. Shaded
areas, s.e.m.Red arrowheadsindicate the time when responsesto faces
becamesignificantly higher than baseline (AM, 95 ms; PR, 105 ms; TP.90 ms;
Supplementary Methods). Green arrowheads indicate the time whenresponses
to familiar versus unfamiliar faces became significantly different (AM, 125 ms;
PR,135 ms; TP,105 ms). ¢, Black line, time course of accuracy for decoding
familiarity; shaded area, s.e.m.; grey line, chancelevel. Arrowheads indicate the
time at which decoding accuracy rose above chance (AM, 95 ms; PR, 105 ms;
TP,135 ms).d, Time course of neural distance between centroids of 36 familiar

following PR inactivation (Fig. 4d). Indeed, responses to familiar and
unfamiliar faces were similarly modulated by PRinactivation across the
population (Fig.4e). Finally, decoding of both face familiarity and face
features from AM activity was unaffected by PRinactivation (Fig. 4f,g).
Overall, these results show that inactivation of PR had a strong effect
on the gain of AM responses but no apparent effect on face coding,
including memory-related axis change.

Do signatures of familiarity coding, as observed in AM, PRand TP,
existeven earlier in the face patch pathway? We mapped responses to
familiar and unfamiliar faces in middle lateral face patch (ML), a hier-
archically earlier patch in the macaque face-processing pathway that
provides direct anatomical input to AM?>?°, Responses to the screening
stimuliin ML exhibited asimilar pattern asin AM, showing suppression
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Short latency: shift Long latency: distortion

and 1,000 - 36 unfamiliar face responses (blue) and between centroids of
responsestoasubset of 36 unfamiliar faces and responses to the remaining
1,000 - 36 unfamiliar faces (orange). Arrowheads indicate the time when d’
alongthe two centroids became ssignificant (AM, 95 ms; PR, 105 ms; TP,135 ms).
e, Distribution of differences between mean firing rates to familiar and
unfamiliar faces at three different time intervals. Grey barsindicate cells
showingasignificant difference (Supplementary Methods). f, Distribution of
cosine similarities between familiarity decoding and face feature decoding axes
atshort (50-150 ms) and long (150-300 ms) latency for the first 20 features
(tenshape, tenappearance). g, Schematicillustration of neural representation
of familiar (blue) and unfamiliar (orange) faces at short and long latency for
AMandPR.

to personally familiar faces at long latency (Extended Data Fig.10a,c).
However, population representation similarity matrices did not show
distinct responses to familiar versus unfamiliar faces (Extended Data
Fig.10b).Furthermore, the population average firing rate showed a sus-
tained divergence between responses to familiar and unfamiliar faces
muchlater thanin AM (160 compared with 140 msin AM; Extended Data
Fig.10c), suggesting that ML may receive a familiarity-specific feedback
signal from AM. Importantly, ML neurons also showed axis divergence
(Extended Data Fig. 10d-f), consistent with the idea that memory is
storedinadistributed way across the entire hierarchical network used
for representation*. Finally, familiarity could be decoded in ML even
earlier thanin AM (Extended Data Fig.10g-i). Overall, these results sug-
gest that ML also plays a significant role in storing memories of faces.
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Fig.4|Axis change for familiar faces doesnot depend on PRfeedback toIT.
a, Schematic ofexperiment aimed at identifying the origin of memory-related
signalsin AM. Muscimol was injected into face patch PRand the responses

of AMneurons wererecorded both before and after PRinactivationusinga
multi-electrode probe. b, Responses of two example AM cells to screening
stimulibefore and after PRinactivation. ¢, Response profiles of the AM
population to screening stimulibefore and after PRinactivation.d, Time
course of the similarity between preferred axes for unfamiliar-unfamiliar

Discussion

In this paper we investigated the elusive neural code for long-term
object memory. Although classiclesion studies suggest thatlong-term
object memories should reside inIT cortex’, recent work onIT coding
hasfocused onrepresentation ofincoming visual input and concluded
thatIT neurons extract high-level visual features agnostic to semantic
content**, How can such meaning-agnostic, feature-selective cells be
responsible for encoding long-term object memories that are highly
context and familiarity dependent? Here we shed light on this conun-
drum, finding thatinanterior face patches AM and PR adistinct neural
code for familiar faces emerges atlong latency inthe form of achangein
preferred axis. Thus, feedforward feature-coding properties of IT cells
may be reconciled with a putative role in long-term memory through
temporal multiplexing. Inactivation of PR did not affect axis change
dynamics in AM, suggesting that the memory-related axis change
mechanism may be intrinsic toIT cortex.

Previous physiological work on representation of familiar stimuli
has focused largely on repetition suppression, the observation that
the response to familiar stimuli is reduced® ™. We found that repeti-
tion suppression was not a robust indicator of familiarity in any face
patch. Instead, relative response amplitude to familiar versus unfa-
miliar faces was highly sensitive to temporal context. We speculate
that these relative response amplitudes, and associated neural dis-
tances and decodingaccuracies (Extended Data Fig.10j,k), may reflect

and unfamiliar-familiar faces (asin Fig. 2c) before and after PRinactivation.
Shaded areas, s.e.m. e, Normalized firing rate changes for familiar and
unfamiliar facesinduced by PR inactivation (n = 85 cells). f, Familiarity
decodingaccuracy for screening stimulibefore and after PRinactivation
(n=17 for human and monkey faces, n =16 for objects). For objects, chi-square
testx?(1, N=16)=0.58, P=0.45.g, Face feature decoding error (mean square
error) for unfamiliar (n=1,000) and familiar (n=36) faces before and after
PRinactivation.

momentary changes in stimulus saliency rather than face memory.
By contrast, axis change for familiar faces at long latency was consist-
ent across context (Extended Data Fig. 9e), indicating a reliable code
for face memory.

What could the computational purpose of this axis change be? We
speculate that, by lifting representations of face memories into asepa-
rate subspace from that used to represent unfamiliar faces (Fig. 3g),
attractor-like dynamics may be built around these memories through
arecurrent network to allow reconstruction of familiar face features
from noisy cues without interfering with veridical representation of
sensory inputs***, Computational considerations make it clear that the
ability torecall (thatis, reconstruct from noisy cues) alarge number of
familiar faces requires a code change. Thisis because a perfectly disen-
tangled representation (the axis code) is inherently low dimensional;
the memory capacity of arecurrent network using disentangled repre-
sentationsincreases only linearly with the number of dimensions of the
representation*!. Importantly, recoding stimuli with small, nonlinear
distortions of disentangled representations cansignificantly increase
the memory capacity to one that scales linearly with the number of
neurons***, as in Hopfield networks with random memories*. We
hypothesize that long-latency axis change reflects this recoding. To
date, studies of IT have emphasized the stability of response tuning over
months**¢, Our results suggest such stability coexists with a precisely
orchestrated dynamics for representing familiar stimuli through the
mechanism of long-latency change in axis.
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Extended DataFig.1|Coronalslices showing theelectrode targeting nine
recording sites from five monkeys. a-c, Single electrode targeting AM, PR,
and TPinmonkey A.d, Single electrode targeting PR in monkey B. e, Brush
arrayelectrodestargeting AMin monkey C. f, Single electrode targeting
MLin monkey D. g-i, Single electrode targeting AM, PR, and TPin monkey E.
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Extended DataFig. 4 |Mainresults ofexperiment1computed separately
for each animalindividually. a, Responses of cells to stimuli from six stimulus
categories (same as Fig. 1c). Note that Monkey C was not presented with this
stimulus. Number of cells: Monkey A, AM, 84, PR, 128, TP,164, ML, 135; Monkey
B, PR,43;MonkeyE, AM, 62,PR, 46, TP,102; Monkey D, ML, 35. b, Similarity
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response window (same as Fig. 1e). Number of cellssame as a. ¢, Response time
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(sameas Fig.1g, right). Shaded area, SEM. Number of cellssame as a.
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Extended DataFig. 6 | Temporal pole face patch (TP) did not respond
specifically to personally familiar faces. a, Left: replicate of Fig. 2a from
Landi et al.”? using the data they published. Right: average z-Scores of familiar
monkey faces for each cell, showing the population average of z-Scores (bar
plotontheleft bottom)was dominated by asmall fraction of cells. b, Replotted
populationsummary balancing the contribution of each cell by normalizing
eachcell’'sresponse by its maximum across all stimuli. ¢, replicate of Fig. 1c
from Landi etal.” showing face patch TP in two animals d, MRlimage overlaid
with face patches showinglocation of TP which we recorded fromintwo

animals. e, Stimuli depicting unfamiliar faces from other species; the images
shownare syntheticimages similar to the actual stimuli, due to difficulty in
obtaining permission for publication. f, Responses of cells to stimuli from
seven stimulus categories (familiar human faces, unfamiliar human faces,
familiar monkey faces, unfamiliar monkey faces, familiar objects, unfamiliar
objects, and unfamiliar faces from other species) recorded from face patch
TPintwoanimals. Responses were averaged between 50 to 300 ms after
stimulus onset.
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Extended DataFig. 9| Control analyses confirming axis robustness. a, Top,
Row1: population analysis of preferred axes for familiar versus unfamiliar
faces; same conventions asin Fig.2b except 30 familiar and 30 unfamiliar
feature-matched faces were used (see Methods and Extended Data Fig. 8).
Row 2:time course from the same analysis; same conventions asin Fig. 2c.
Shaded area, SEM. Note that new feature-matched 36 familiar and 36 unfamiliar
faces were used for TP, thus the result shownin Fig. 2c for TPis already perfectly
feature matched, andisreplicated here for comparison. Middle, same analysis
asinFig2b, cexceptasubset of neurons showingsignificant axis tuning

were used. Shaded area, SEM. Bottom, same analysis as Fig. 2b,c except the
preferred axes were computed using linear regression rather than spike-
triggered averaging (see Supplementary Methods). Shaded area, SEM. b, Top:
scatter plot of 20 feature sensitivities (see Supplementary Methods) from

134 AM cells and 72 PR cells, for familiar (y-axis) and unfamiliar (x-axis) faces.
Thedotsintheblue rectangles (corralling points for which sensitivity to the
familiar feature goes to ~0) indicate loss of tuning for familiar facesinsome
cells, while the dotsinthered rectanglesindicate gain of tuning. Bottom:
Distribution of feature sensitivity values for familiar and unfamiliar faces.
Thisshows that on average, sensitivity for familiar faces was larger than that
for unfamiliar faces. ¢, Top: explained variance for responses to 36 unfamiliar
(y-axis) or 36 familiar (x-axis) faces using unfamiliar axis (fitted on 1000 - 36
faces) withlinear output function (each dotis onecell, n =134 cells for AM and

n=72cellsfor PR). Middle: explained variance for responses to 36 familiar faces
using unfamiliar axis with linear output function (y -axis) or alogistic output
nonlinearity (x-axis); the latter values are only slightly higher. Bottom: explained
variance for responses to 36 unfamiliar faces using unfamiliar axis with linear
output function (y-axis) or 36 familiar faces using axis model with alogistic
outputnonlinearity (x-axis). The slightincrease in explained variance obtained
by applyingalogisticoutput nonlinearity cannotundo the decrease caused by
axis change (however, explained variance is similar using familiar axes for
familiar responses and unfamiliar axes for unfamiliar responses, Extended
DataFig.3g).d, Comparison of average response time coursesinAM and PR to
the exact same set of familiar and unfamiliar stimuli, presented in two different
temporal contexts. Scatter plot: average over time window [100 3001 ms
(AM, N =80 cells; PR,N=70 cells). Top: Responses to 9 personally familiar and 8
unfamiliar monkey faces presented as part of screening stimulus (experiment1).
Bottom: responses to the same set of stimuli presented as part of thousand
face stimulus (experiment 2). Shaded area, SEM. e, Correlationinrank order
(Spearman correlation) of neuronal responses to personally familiar face
stimuliatshortorlonglatency between split halves of trials (y-axis, correlation
values averaged across experiments1and 2) is plotted against correlation
betweenrank order of the same faces between experiments1and 2; each dot
representsone cell (AM, N=80 cells; PR, N=70 cells; TP, N=197 cells).
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Extended DataFig.10|Representation of familiar stimuliin face patch ML
and additional analysis of repetition suppression-related signals.

a, Responses of cells to screening stimuli from six stimulus categories
(familiar human faces, unfamiliar human faces, familiar monkey faces,
unfamiliar monkey faces, familiar objects, and unfamiliar objects), recorded
theface patch ML. Left, responses were averaged between 50 to 300 ms after
stimulus onset (“full” response window). Right, same for a “short” window 50 to
125 ms. b, Similarity matrix of population responses for full response window
(left) and short response window (right). ¢, Left: Average response time course
acrossthe ML populationto each of the screening stimuli. Right: Response
time course averaged across cells and category exemplars. Shaded area, SEM.
Earlier arrowindicates the mean time when visual responses to faces became
significantly higher thanbaseline (77.5 ms). Later arrow indicates the mean
time when responses to familiar versus unfamiliar faces became significantly
different (175 ms and 145 ms for human and monkey faces, respectively).

Responsesalso diverged briefly at very shortlatency (95 ms and 105 ms for
human and monkey faces, respectively). d, Population analysis comparing
preferred axes for familiar versus unfamiliar faces. Same conventions as Fig. 2b.
e-i, Same analyses for the ML population (n =154 cells) asin Fig. 2¢c, d, Fig. 3b-d.
j, Time course of mean pairwise neural distance (Euclidean distance) between
familiar or unfamiliar faces computed using a 50 mssliding time window,

step size 10 ms, normalized by meanbaseline (0-50 ms) distance between
unfamiliar faces. Distances were computed using a subset of familiar and
unfamiliar feature-matched faces (see Extended Data Fig. 8). k, Time course
offaceidentity decoding accuracy for 30 familiar (blue) or unfamiliar (orange)
feature-matched faces, computed using a 50 mssliding time window, step size
10 ms. Shaded area, SEM. Half the trials were used to train alinear classifier
and decoding performance was tested on the remaining half of trials; chance
performance was1/30.
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Sample size Sample sizes were chosen in a manner commensurate with similar previous studies.
Data exclusions  We recorded from every neuron encountered. Only visual responsive units were considered for further analysis.
Replication Results were replicated across 2-3 different animals for each experiment independently.

Randomization  The visual stimuli were shown in a random order. Organisms random allocation is not relevant to this study, different subjects were used to
repeat the same experimental condition.

Blinding Investigators were not blinded to experimental groups due to the nature of the experiments.
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Seven male rhesus macaques (Macaca mulatta) of 5-13 years old were used in this study.
Wild animals The study did not involve wild animals.
Reporting on sex This study was conducted using only male animals.

Field-collected samples  The study did not involve field-collected samples.

Ethics oversight All procedures conformed to local and US National Institutes of Health guidelines, including the US National Institutes of Health
Guide for Care and Use of Laboratory Animals. All experiments were performed with the approval of the Caltech and UC Berkeley
Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Block design

Design specifications Each block lasted 24 s blocks (each image lasted 500 ms). In each run, the face block was repeated four times and each
of the non-face blocks was shown once. A block of grid-scrambled noise patterns was presented between each stimulus
block and at the beginning and end of each run. Each scan lasted 408 seconds.

Behavioral performance measures  Subjects' eye position was monitored using an infrared eye tracking system (ISCAN). Juice reward was delivered every
2-4 s in exchange for maintaining fixation on a small spot (0.2 degree)

Acquisition

Imaging type(s) Functional and anatomical imaging

Field strength 3 Tesla

Sequence & imaging parameters T1-weighted anatomical volumes were measured with MP-RAGE sequence( TR 2,300 ms; IR 1,100 ms; TE 3.37 ms; 0.5
mm isotropic voxels) . EPl volumes were acquired in an AC88 gradient insert (Siemens) TR was 2000 ms,TE was 17 ms,
voxels were 1 x 1 x 1 mm with an no gap between slices. Matrix size was (96, 96, 64) (read [x], phase [y], slice [z]), the
field of view was 96 x 96 mm in-plane. Flip angle was 80°

Area of acquisition Whole brain

Diffusion MRI [ Used X Not used

Preprocessing

Preprocessing software Analysis of functional volumes was performed using the FreeSurfer Functional Analysis Stream (Massachusetts General
Hospital). Volumes were corrected for motion and undistorted based on acquired field map.

Normalization No normalization needed as analysis only compare data from the same scan.




Normalization template We did not normalize any imaging data into template. All the analysis were done in the single subject's original space.
Noise and artifact removal We remove the linear or quadratic trends in the timeseries.

Volume censoring Motion noises were removed by putting the motion parameters as the regressors in the GLM analysis.

Statistical modeling & inference

Model type and settings The analysis used only first-level analysis.
Effect(s) tested We ran t-tests between different conditions within each single subject.

Specify type of analysis: X whole brain [ | ROI-based || Both

Statistic type for inference All the analyses were done using voxel-wise inference.

(See Eklund et al. 2016)
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Correction We did not apply any multiple-comparison correction in the fMRI imaging analysis.

Models & analysis

n/a | Involved in the study
|Z |:| Functional and/or effective connectivity

|Z |:| Graph analysis

|Z |:| Multivariate modeling or predictive analysis
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