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Abstract This paper reports inclusive and differential mea-
surements of the t t̄ charge asymmetry AC in 20.3 fb−1 of√
s = 8 TeV pp collisions recorded by the ATLAS experi-

ment at the Large Hadron Collider at CERN. Three differen-
tial measurements are performed as a function of the invariant
mass, transverse momentum and longitudinal boost of the t t̄
system. The t t̄ pairs are selected in the single-lepton chan-
nels (e or μ) with at least four jets, and a likelihood fit is used
to reconstruct the t t̄ event kinematics. A Bayesian unfolding
procedure is performed to infer the asymmetry at parton level
from the observed data distribution. The inclusive t t̄ charge
asymmetry is measured to be AC = 0.009 ± 0.005 (stat. +
syst.). The inclusive and differential measurements are com-
patible with the values predicted by the Standard Model.
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1 Introduction

The 8 TeV proton–proton (pp) collision data delivered by
the CERN Large Hadron Collider (LHC) represents a unique
laboratory for precision measurements of the top-quark prop-
erties. One interesting feature of t t̄ production is the dif-
ference in rapidity between top quarks and top antiquarks.
In pp collisions, this distinct behaviour of top quarks and
antiquarks is called the charge asymmetry, AC [defined in
Eq. (1)]. The Standard Model (SM) expectation computed at
next-to-leading order (NLO) in quantum chromodynamics
(QCD), including electroweak corrections, predicts AC to be
at the one percent level [1]. Previous asymmetry measure-
ments at the LHC by both the CMS and ATLAS collabora-
tions based on the 7 TeV data, and by the CMS collabora-
tion based on the 8 TeV data, do not report any significant
deviation from the SM predictions [2–7]. Charge asymmetry
measurements are largely limited by the size of the available
data sample, and therefore the larger dataset recorded by the
ATLAS detector at

√
s = 8 TeV allows for an improvement

on the precision of the measurement from the
√
s = 7 TeV

dataset.
At hadron colliders, t t̄ production is predicted to be sym-

metric under the exchange of top quark and antiquark at lead-
ing order (LO). At NLO, the process qq̄ → t t̄ g develops
an asymmetry in the top-quark rapidity distributions, due to
interference between processes with initial- and final-state
gluon emission. The interference between the Born and the
NLO diagrams of the qq̄ → t t̄ process also produces an
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asymmetry. The qg → t t̄ g production process is also asym-
metric, but its contribution is much smaller than that from
qq̄ .

In qq̄ scattering processes in p p̄ collisions at the Tevatron,
the direction of the incoming quark almost always coincides
with that of the proton, and this knowledge of the direction of
the incoming quarks allows one to define a direct measure-
ment of the forward-backward asymmetry, AFB [8–11]. In
pp collisions at the LHC, since the colliding beams are sym-
metric, it is not possible to use the direction of the incoming
quark to define an asymmetry. However, valence quarks carry
on average a larger fraction of the proton momentum than sea
antiquarks, hence top quarks are more forward and top anti-
quarks are more central. Using this feature it is possible to
define a forward–central asymmetry for the t t̄ production,
referred to as the charge asymmetry, AC [8,12,13]:

AC = N (�|y| > 0) − N (�|y| < 0)

N (�|y| > 0) + N (�|y| < 0)
, (1)

where �|y| ≡ |yt | − |yt̄ | is the difference between the abso-
lute value of the top-quark rapidity |yt | and the absolute value
of the top-antiquark rapidity |yt̄ |. At the LHC, the dominant
mechanism for t t̄ production is the gluon fusion process,
while production via the qq̄ or the qg interactions is small.
Since gg → t t̄ processes are charge-symmetric, they only
contribute to the denominator of Eq. (1), thus diluting the
asymmetry.

Several processes beyond the Standard Model (BSM) can
alter AC [12,14–25], either with anomalous vector or axial-
vector couplings (e.g. axigluons) or via interference with SM
processes. Different models also predict different asymme-
tries as a function of the invariant mass mtt̄ , the transverse
momentum pT,t t̄ and the longitudinal boost βz,t t̄ along the
z-axis1 of the t t̄ system [26]. The interest in precisely mea-
suring charge asymmetries in top-quark pair production at
the LHC has grown after the CDF and D0 collaborations
reported measurements of AFB that were significantly larger
than the SM predictions, in both the inclusive and differen-
tial case as a function of mtt̄ and of the rapidity of the t t̄
system, yt t̄ [10,11,27–30]. For the most general BSM sce-
narios [31], the AC measurements from the LHC are still
compatible with the Tevatron results. However, for specific
simple models [20], tension still exists between the LHC and
Tevatron results. This motivates the interest in a more precise
measurement of the t t̄ production charge asymmetry at the
LHC.

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
coinciding with the axis of the beam pipe. The x-axis points from the IP
to the centre of the LHC ring, and the y-axis points upward. Cylindrical
coordinates (r ,φ) are used in the transverse plane, φ being the azimuthal
angle around the beam pipe.

In this paper, a measurement of the t t̄ production charge
asymmetry in the single-lepton final state is reported. To
allow for comparisons with theory calculations, a Bayesian
unfolding procedure is applied to account for distortions due
to the acceptance and detector effects, leading to parton-
level AC measurements. The data sample at a centre-of-mass
energy of 8 TeV, corresponding to an integrated luminosity
of 20.3 fb−1 [32], is used to measure AC inclusively and
differentially as a function of mtt̄ , pT,t t̄ and βz,t t̄ .

This paper is organised as follows. The ATLAS detector
is introduced in Sect. 2, followed by the object reconstruc-
tion in Sect. 3 and the event selection in Sect. 4. The signal
and background modelling is described in Sect. 5 and the
procedure to measure AC in Sect. 6. Finally, the results are
presented and interpreted in Sect. 7, followed by the conclu-
sions in Sect. 8.

2 ATLAS detector

The ATLAS detector [33] consists of the following main sub-
systems: an inner tracking system immersed in a 2 T magnetic
field provided by a superconducting solenoid, electromag-
netic (EM) and hadronic calorimeters, and a muon spectrom-
eter incorporating three large superconducting toroid mag-
nets composed of eight coils each. The inner detector (ID) is
composed of three subsystems: the pixel detector, the semi-
conductor tracker and the transition radiation tracker. The ID
provides tracking information in the pseudorapidity2 range
|η| < 2.5, calorimeters measure energy deposits (clusters)
for |η| < 4.9, and the muon spectrometer records tracks
within |η| < 2.7. A three-level trigger system [34] is used
to select interesting events. It consists of a level-1 hardware
trigger, reducing the event rate to at most 75 kHz, followed
by two software-based trigger levels, collectively referred to
as the high-level trigger, yielding a recorded event rate of
approximately 400 Hz on average, depending on the data-
taking conditions.

3 Object reconstruction

This measurement makes use of reconstructed electrons,
muons, jets, b-jets and missing transverse momentum. A
brief summary of the main reconstruction and identification
criteria applied for each of these objects is given below.

2 The pseudorapidity is defined in terms of the polar angle θ as η =
− ln tan(θ/2) and transverse momentum and energy are defined relative
to the beam line as pT = p sin θ and ET = E sin θ . The angular
distances are given in terms of �R = √

(�η)2 + (�φ)2, where φ is
the azimuthal angle around the beam pipe.
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Electron candidates are reconstructed from clusters in the
EM calorimeter that are matched to reconstructed tracks in
the inner detector. They are required to have a transverse
energy, ET, greater than 25 GeV and |ηcluster | < 2.47, where
ηcluster is the pseudorapidity of the electromagnetic energy
cluster in the calorimeter with respect to the geometric cen-
tre of the detector. Candidates are required to satisfy the tight
quality requirements [35] and are excluded if reconstructed
in the transition region between the barrel and endcap sec-
tions of the EM calorimeter, 1.37 < |ηcluster | < 1.52. They
are also required to originate less than 2 mm along the z-axis
(longitudinal impact parameter) from the selected event pri-
mary vertex (PV)3 and to satisfy two isolation criteria. The
first one is calorimeter-based and consists of a requirement
on the transverse energy sum of cells within a cone of size
�R = 0.2 around the electron direction. The second one is
a track-based isolation requirement made on the track trans-
verse momentum (pT) sum around the electron in a cone of
size �R = 0.3. In both cases, the contribution from the elec-
tron itself is excluded and the isolation cuts are optimised to
individually result in a 90 % efficiency for prompt electrons
from Z → e+e− decays.

Muon candidates [36,37] are reconstructed using the com-
bined information from the muon spectrometer and the inner
detector. They are required to satisfy pT > 25 GeV and
|η| < 2.5 and analogously to electrons, the muon track
longitudinal impact parameter with respect to the PV is
required to be less than 2 mm. Muons are required to sat-
isfy a pT-dependent track-based isolation: the scalar sum of
the track pT within a cone of variable size around the muon,
�R = 10 GeV/pμ

T (excluding the muon track itself) must be
less than 5 % of the muon pT (pμ

T ), corresponding to a 97 %
selection efficiency for prompt muons from Z → μ+μ−
decays.

Jets are reconstructed with the anti-kt algorithm [38–40]
with a radius parameter R = 0.4 from calibrated topological
clusters [33] built from energy deposits in the calorimeters.
Prior to jet finding, a local cluster calibration scheme [41,42]
is applied to correct the topological cluster energies for the
effects of the noncompensating response of the calorimeter,
dead material and out-of-cluster leakage. The corrections are
obtained from simulations of charged and neutral particles
and validated with data. After energy calibration [43], jets are
required to have pT > 25 GeV and |η| < 2.5. Jets from addi-
tional simultaneous pp interactions (pileup) are suppressed
by requiring that the absolute value of the jet vertex fraction
(JVF)4 for candidates with pT < 50 GeV and |η| < 2.4 is
above 0.5 [44]. All high-pT electrons are also reconstructed

3 The method of selecting the PV is described in Sect. 4.
4 The jet vertex fraction is defined as the fraction of the total transverse
momentum of the jet’s associated tracks that is contributed by tracks
from the PV.

as jets, so the closest jet within �R = 0.2 of a selected elec-
tron is discarded to avoid double counting of electrons as jets.
Finally, if selected electrons or muons lie within �R = 0.4
of selected jets, they are discarded.

Jets are identified as originating from the hadronisation of
a b-quark (b-tagged) via an algorithm that uses multivariate
techniques to combine information from the impact param-
eters of displaced tracks as well as topological properties of
secondary and tertiary decay vertices reconstructed within
the jet [45,46]. The algorithm’s operating point used for this
measurement corresponds to 70 % efficiency to tag b-quark
jets, a rejection factor for light-quark and gluon jets of ∼130
and a rejection factor of ∼5 for c-quark jets, as determined
for jets with pT > 20 GeV and |η| < 2.5 in simulated t t̄
events.

The missing transverse momentum (with magnitude
Emiss

T ) is constructed from the negative vector sum of all
calorimeter energy deposits [47]. The ones contained in topo-
logical clusters are calibrated at the energy scale of the
associated high-pT object (e.g. jet or electron). The topo-
logical cluster energies are corrected using the local cluster
calibration scheme discussed in the jet reconstruction para-
graph above. The remaining contributions to the Emiss

T are
called unclustered energy. In addition, the Emiss

T calculation
includes contributions from the selected muons, and muon
energy deposits in the calorimeter are removed to avoid dou-
ble counting.

4 Event selection

Only events recorded with an isolated or non-isolated single-
electron or single-muon trigger under stable beam conditions
with all detector subsystems operational are considered.

The triggers have thresholds on p�
T, the transverse momen-

tum (energy) of the muon (electron). These thresholds
are 24 GeV for isolated single-lepton triggers and 60
(36) GeV for non-isolated single-electron (single-muon) trig-
gers. Events satisfying the trigger selection are required to
have at least one reconstructed vertex with at least five asso-
ciated tracks of pT > 400 MeV, consistent with originating
from the beam collision region in the x–y plane. If more than
one vertex is found, the hard-scatter PV is taken to be the one
which has the largest sum of the squared transverse momenta
of its associated tracks.

Events are required to have exactly one candidate elec-
tron or muon and at least four jets satisfying the quality and
kinematic criteria discussed in Sect. 3. The selected lepton is
required to match, with �R < 0.15, the lepton reconstructed
by the high-level trigger. Events with additional electrons sat-
isfying a looser identification criteria based on a likelihood
variable [48] are rejected in order to suppress di-leptonic
backgrounds (t t̄ or Z+jets). At this point, the events are sep-
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arated into three signal regions defined by the number of
b-tagged jets (zero, one and at least two).

In order to further suppress multijet and Z+jets back-
grounds in events with exactly zero or one b-tagged jets,
the following requirements on Emiss

T and mW
T

5 are applied:
mW

T +Emiss
T > 60 GeV for events with exactly zero or one b-

tagged jets, and Emiss
T > 40 (20) GeV for events with exactly

zero (one) b-tagged jets.
After the event selection, the main background is the pro-

duction of W+jets events. Small contributions arise from
multijet, single top quark, Z+jets and diboson (WW,WZ ,

Z Z ) production. For events with exactly one (at least two)
b-tagged jet(s), 216,465 (193,418) data events are observed,
of which 68 % (89 %) are expected to be t t̄ .

5 Signal and background modelling

Monte Carlo simulated samples are used to model the t t̄
signal and all backgrounds except for those from multijet
events, which are estimated from data. All simulated sam-
ples utilise Photos (version 2.15) [49] to simulate pho-
ton radiation and Tauola (version 1.20) [50] to simulate
τ decays. They also include simultaneous pp interactions
(pile-up), generated using Pythia 8.1 [51], and reweighted
to the number of interactions per bunch crossing in data (on
average 21 in 2012). Most of them are processed through a
full Geant4 [52] simulation of the detector response [53],
and only the alternative t t̄ samples described in Sect. 5.1
are produced using the ATLAS fast simulation that employs
parameterised showers in the calorimeters [54]. Finally, the
simulated events are reconstructed using the same software
as the data. Further details on the modelling of the signal and
each of the backgrounds are provided below.

5.1 t t̄ signal

The default simulated t t̄ events are generated with the
NLO generator Powheg- Box (version 1, r2330) [55–57]
using the CT10 PDF set [58] interfaced to Pythia (ver-
sion 6.427) [59] with the CTEQ6L1 PDF set and the Peru-
gia2011C set of tunable parameters (tune) [60] for the under-
lying event (UE). Thehdamp factor, which is the model param-
eter that controls matrix element/parton shower matching in
Powheg- Box and effectively regulates the high-pT radia-
tion, is set to the top-quark mass.

The alternative samples used to study the modelling of t t̄
are:

5 mW
T =

√
2p�

TE
miss
T (1 − cos �φ), where p�

T is the transverse momen-
tum (energy) of the muon (electron) and �φ is the azimuthal angle sep-
aration between the lepton and the direction of the missing transverse
momentum.

• Mc@nlo (version 4.01) [61] using the CT10 PDF set
and interfaced toHerwig (version 6.520) [62] and Jimmy
(version 4.31) [63].

• Powheg- Box using the CT10 PDF and setting the
hdamp parameter to infinity, interfaced to Pythia (version
6.426) with the CTEQ6L1 PDF set and the Perugia2011C
UE tune.

• Powheg- Box using the CT10 PDF and setting the hdamp

parameter to infinity, and interfaced to Herwig with the
CTEQ6L1 PDF set and Jimmy to simulate the UE.

• AcerMC [64] using the CTEQ6L1 PDF set and inter-
faced to Pythia (version 6.426).

All t t̄ samples are generated assuming a top-quark mass
of 172.5 GeV and are normalised to the theoretical cross
section of σt t̄ = 253+13

−15 pb calculated at next-to-next-to-
leading order (NNLO) in QCD including resummation of
next-to-next-to-leading logarithmic (NNLL) soft gluon terms
with Top++ v2.0 [65–71].

5.2 W/Z+jets background

Samples of events with a W or Z boson produced in associa-
tion with jets (W/Z+jets) are generated with up to five addi-
tional partons using the Alpgen (version 2.14) [72] LO gen-
erator and the CTEQ6L1 PDF set, interfaced to Pythia (ver-
sion 6.426) for parton showering and fragmentation. To avoid
double counting of partonic configurations generated by
both the matrix-element calculation and the parton shower,
a parton–jet matching scheme (“MLM matching”) [73] is
employed. The W+jets samples are generated separately
for W+light-jets, Wbb̄+jets, Wcc̄+jets, and Wc+jets. The
Z+jets samples are generated separately for Z+light-jets,
Zbb̄+jets, and Zcc̄+jets. Overlap between W/ZQQ̄+jets
(Q = b, c) events generated from the matrix-element cal-
culation and those generated from parton-shower evolution
in the W/Z+light-jets samples is avoided via an algorithm
based on the angular separation between the extra heavy
quarks: if �R(Q, Q̄) > 0.4, the matrix-element predic-
tion is used, otherwise the parton-shower prediction is used.
The Z+jets background is normalised to its inclusive NNLO
theoretical cross section [74], while data is used to nor-
malise W+jets (see below for details). Further corrections are
applied to Z+jets simulated events in order to better describe
data in the preselected sample. A correction to the heavy-
flavour fraction was derived to reproduce the relative rates
of Z+2-jets events with zero and one b-tagged jets observed
in data. In addition, the Z boson pT spectrum was compared
between data and the simulation in Z+2-jets events, and a
reweighting function was derived in order to improve the
modelling as described in Ref. [75].

The procedure to estimate the normalisation of the W+jets
background in data exploits the difference in production cross
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section at the LHC between W+ and W−, where the W+ pro-
duction cross section is higher than W− [76]. This is due to
the higher density of u quarks in protons with respect to d
quarks, which causes more ud̄ → W+ to be produced than
dū → W−. The W boson charge asymmetry is then defined
as the difference between the numbers of events with a single
positive or negative lepton divided by the sum. The predic-
tion for the W boson charge asymmetry in W+jets produc-
tion is little affected by theoretical uncertainties and can be
exploited, in combination with constraints from W+ and W−
data samples, to derive the correct overall normalisation for
the MC sample prediction. The W boson charge asymmetry
depends on the flavour composition of the sample, as the size
and sign of the asymmetry varies for Wbb̄+jets, Wcc̄+jets,
Wc+jets, and W+light-jets production. The in situ calibra-
tion procedure embedded in the unfolding and described in
Sect. 6.4, uses different signal and control regions to deter-
mine the normalisation of the W+jets background.

5.3 Multijet background

Multijet events can enter the selected data sample through
several production and misreconstruction mechanisms. In
the electron channel, the multijet background consists of
non-prompt electrons from heavy-flavour decays or pho-
ton conversion or jets with a high fraction of their energy
deposited in the EM calorimeter. In the muon channel, the
background contributed by multijet events is predominantly
due to final states with non-prompt muons, such as those from
semileptonic b- or c-hadron decays. The multijet background
normalisation and shape are estimated from data using the
“Matrix Method” (MM) technique.

The MM exploits differences in the properties used for
lepton identification between prompt, isolated leptons from
W and Z boson decays (referred to as “real leptons”) and
those where the leptons are either non-isolated or result from
the misidentification of photons or jets (referred to as “fake
leptons”). For this purpose, two samples are defined after
imposing the event selection described in Sect. 4, differing
only in the lepton identification criteria: a “tight” sample and
a “loose” sample, the former being a subset of the latter. The
tight selection employs the final lepton identification criteria
used in the analysis. For the loose selection, the lepton isola-
tion requirements are omitted for both the muon and electron
channels, and the quality requirements are also loosened for
the electron channel. The method assumes that the number
of selected events in each sample (N loose and N tight) can be
expressed as a linear combination of the numbers of events
with real and fake leptons, so that the number of multijet
events in the tight sample is given by

N tight
multijet = εfake

εreal − εfake
(εrealN

loose − N tight) (2)

where εreal (εfake) represents the probability for a real
(fake) lepton that satisfies the loose criteria to also sat-
isfy the tight. Both of these probabilities are measured in
data control samples. To measure εreal, samples enriched in
real leptons from W boson decays are selected by requir-
ing high Emiss

T or transverse mass mW
T . The average εreal

is 0.75 (0.98) in the electron (muon) channel. To mea-
sure εfake, samples enriched in multijet background are
selected by requiring either low Emiss

T (electron channel) or
high transverse impact parameter significance for the lep-
ton track (muon channel). The average εfake value is 0.35
(0.20) in the electron (muon) channel. Dependencies of
εreal and εfake on quantities such as lepton pT and η, �R
between the lepton and the closest jet, or number of b-tagged
jets, are parameterised in order to obtain a more accurate
estimate.

5.4 Other backgrounds

Samples of single-top-quark backgrounds corresponding to
the t-channel, s-channel and Wt production mechanisms are
generated with Powheg- Box (version 3.0) [77,78] using
the CT10 PDF set. All samples are generated assuming a
top-quark mass of 172.5 GeV and are interfaced to Pythia
(version 6.425) with the CTEQ6L1 PDF set and the Peru-
gia2011C UE tune. Overlaps between the t t̄ and Wt final
states are removed using the “diagram removal” scheme [79].
The single-top-quark samples are normalised to the approx-
imate NNLO theoretical cross sections [80–82] using the
MSTW 2008 NNLO PDF set.

Most of the diboson WW/WZ/Z Z+jets samples are gen-
erated using Alpgen (version 2.13), with up to three addi-
tional partons, and using the CTEQ6L1 PDF set, interfaced
to Herwig and Jimmy (version 4.31) for parton showering,
fragmentation and UE modelling. For the WW+jets samples,
it is required that at least one of the W bosons decays lepton-
ically, while for the WZ/Z Z+jets samples, it is demanded
that at least one of the Z bosons decays leptonically. Addi-
tional samples of WZ+jets, requiring the W and Z bosons
to decay leptonically and hadronically, respectively, are gen-
erated with up to three additional partons, including massive
b- and c-quarks, using Sherpa v1.4.1 [83] and the CT10
PDF set. All diboson samples are normalised to their NLO
theoretical cross sections [84].

6 Charge asymmetry measurement

To measure the charge asymmetry in top-quark pair events,
the full t t̄ system is reconstructed (Sect. 6.1) and the
�|y| spectra are unfolded to measure parton-level charge
asymmetries (Sect. 6.2) using the estimation of the back-
grounds and systematic uncertainties (Sect. 6.3). Significant
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improvements to the analysis method with respect to the
7 TeV measurement [4] have been made, and these improve-
ments are detailed in the description of the measurement in
Sect. 6.4.

6.1 Reconstruction of the t t̄ kinematics

The reconstruction of the t t̄ system is achieved using a kine-
matic fit [85] that assesses the compatibility of the observed
event with the decays of a t t̄ pair based on a likelihood
approach. The basic reconstruction method is explained in
Ref. [86], but some modifications are introduced as discussed
in the following paragraph.

In events with four or five jets, all jets are considered
in the fit. For events where more than five jets are recon-
structed, only the two jets with the highest likelihood to be
b-jets, according to the multivariate selection (see Sect. 3),
and, of the remaining jets, the three with the highest pT

are considered in the fit. This selection of input jets for the
likelihood was chosen to optimise the correct-sign fraction
of reconstructed �|y|. The average correct-sign fraction is
estimated with simulation studies and found to be 72 and
75 % in events with exactly one and at least two b-tagged
jets, respectively. The most probable combination out of all
the possible jet permutations is chosen. Permutations with
non-b-tagged jets assigned as b-jets and vice versa have a
reduced weight due to the tagging probability in the likeli-
hood. Finally, the lepton charge Q� is used to determine if the
reconstructed semileptonically-decaying quark is a top quark
(Q� > 0) or an anti-top quark (Q� < 0). The distributions
of reconstructed quantities, mtt̄ , pT,t t̄ and βz,t t̄ are shown
in Fig. 1, with the binnings that are used in the differential
measurements.

6.2 Unfolding

The reconstructed �|y| distributions are distorted by accep-
tance and detector resolution effects. An unfolding proce-
dure is used to estimate the true �|y| spectrum, as defined
by the t and t̄ after radiation and before decay in Monte Carlo
events, from the one measured in data. The observed spec-
trum is unfolded using the fully Bayesian unfolding (FBU)
technique [87].

The FBU method consists of the strict application of
Bayesian inference to the problem of unfolding. This appli-
cation can be stated in the following terms: given an observed
spectrum D with Nr reconstructed bins, and a response
matrix M with Nr × Nt bins giving the detector response
to a true spectrum with Nt bins, the posterior probability
density of the true spectrum T (with Nt bins) follows the
probability density

p (T |D) ∝ L (D|T ) · π (T ) , (3)

where L (D|T ) is the likelihood function of D given T and
M, and π (T ) is the prior probability density for T . While
the response matrix is estimated from the simulated sample
of t t̄ events, a uniform prior probability density in all bins is
chosen as π (T ), such that equal probabilities to all T spectra
within a wide range are assigned. The unfolded asymmetry
AC is computed from p (T |D) as

p (AC|D) =
∫

δ(AC − AC(T ))p (T |D) dT . (4)

The treatment of systematic uncertainties is consistently
included in the Bayesian inference approach by extending
the likelihood L (D|T ) with nuisance parameter terms. The
marginal likelihood is defined as

L (D|T ) =
∫

L (D|T , θ) · N (θ) dθ , (5)

where θ are the nuisance parameters, and N (θ) their prior
probability densities, which are assumed to be Normal dis-
tributions with mean μ = 0 and standard deviation σ = 1. A
nuisance parameter is associated with each of the uncertainty
sources (as explained below).

The marginalisation approach provides a natural frame-
work to treat simultaneously the unfolding and background
estimation using multiple data regions. Given the distribu-
tions Di measured in Nch independent channels, the likeli-
hood is extended to the product of likelihoods of each chan-
nel, so that

L ({D1 · · · DNch }|T
) =

∫ Nch∏

i=1

L (Di |T , θ) · N (θ) dθ , (6)

where the nuisance parameters are common to all analysis
channels.

6.3 Systematic uncertainties

Several sources of systematic uncertainty are considered,
which can affect the normalisation of signal and back-
ground and/or the shape of the relevant distributions. Indi-
vidual sources of systematic uncertainty are considered to
be uncorrelated. Correlations of a given systematic uncer-
tainty with others are maintained across signal and back-
ground processes and channels. The following sections
describe each of the systematic uncertainties considered
in the analysis. Experimental uncertainties and background
modelling uncertainties (Sects. 6.3.1, 6.3.2) are marginalised
during the unfolding procedure, while signal modelling
uncertainties, uncertainties due to Monte Carlo sample
size, PDF uncertainties and unfolding response uncertainties
(Sects. 6.3.3, 6.3.4) are added in quadrature to the unfolded
uncertainty.
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Fig. 1 Comparison between data and prediction for the e+jets and
μ+jets channels combined for distributions of kinematic quantities, in
the sample with one b-tagged jet (left) and in the sample with at least two
b-tagged jets (right). From top to bottom invariant mass mtt̄ , transverse
momentum pT,t t̄ , z-component of the velocity of the t t̄ system βz,t t̄ .
The total uncertainty, before the unfolding process, on the signal and

background estimation is shown together with statistical uncertainty as
a black hashed band, and the binnings are those that are used for the
differential measurements. The bottom part of each plot shows the ratio
of the data to the predicted value together with combined statistical and
systematic uncertainties

6.3.1 Experimental uncertainties

Jet energy scale and resolution: The jet energy scale (JES)
and its uncertainty have been derived by combining infor-

mation from test-beam data, LHC collision data and simu-
lation [43]. The jet energy scale uncertainty is split into 22
uncorrelated components which can have different jet pT and
η dependencies and are treated independently in this analy-
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sis. The jet energy resolution (JER) has been determined as
a function of jet pT and rapidity using dijet events from data
and simulation. The JER in data and in simulation are found
to agree within 10 %, and the corresponding uncertainty is
assessed by smearing the jet pT in the simulation. The JES
and JER uncertainties represent the leading sources of uncer-
tainty associated with reconstructed objects in this analysis.

Heavy- and light-flavour tagging: The efficiencies to tag
jets fromb-quarks, c-quarks, and light quarks are measured in
data as a function of pT (and η for light-quark jets), and these
efficiencies are used to adjust the simulation to match data.
The uncertainties in the calibration are propagated through
this analysis and represent a minor source of uncertainty.

Jet reconstruction and identification: The uncertainty
associated with the jet reconstruction efficiency is assessed
by randomly removing 0.2 % of the jets with pT below
30 GeV, to match the measured jet inefficiency in data for
this pT range [43]. The uncertainty on the efficiency that each
jet satisfies the JVF requirement is estimated by changing the
JVF cut value from its nominal value by ±0.1, and repeating
the analysis using the modified cut value. Both uncertainties
have a negligible impact on the measurement.

Leptons: Uncertainties associated with leptons affect the
reconstruction, identification and trigger efficiencies, as well
as the lepton momentum scale and resolution. They are esti-
mated from Z → �+�− (� = e, μ), J/ψ → �+�− andW →
eν processes using techniques described in Refs. [35,36,88].
The combined effect of all these uncertainties results in an
overall normalisation uncertainty on the signal and back-
ground of approximately 1.5 %. Charge misidentification is
not considered as it is small [88] and has a negligible impact
on the measurement.

Missing transverse momentum: The Emiss
T reconstruction

is affected by uncertainties associated with leptons, jet energy
scales and resolutions which are propagated to the Emiss

T cal-
culation. Additional small uncertainties associated with the
modelling of the underlying event, in particular its impact
on the pT scale and resolution of unclustered energy, are
also taken into account. All uncertainties associated with the
Emiss

T have a negligible effect.

Luminosity: The uncertainty on the integrated luminosity
is 2.8 %, affecting the overall normalisation of all processes
estimated from MC simulation. It is derived following the
methodology detailed in Ref. [32]. The impact of this uncer-
tainty is negligible in this measurement.

6.3.2 Background modelling

W+jets: The predictions of normalisation and flavour com-
position of the W+jets background are affected by large

uncertainties, but the in situ data-driven technique described
in Sect. 5.2 reduces these to a negligible level. All sources
of uncertainty other than normalisation are propagated to the
W+jets estimation.

Z+jets: Uncertainties affecting the modelling of the Z+jets
background include a 5 % normalisation uncertainty from
the theoretical NNLO cross section [74], as well as an addi-
tional 24 % normalisation uncertainty added in quadrature
for each additional inclusive jet-multiplicity bin, based on
a comparison among different algorithms for merging LO
matrix elements and parton showers [89]. The normalisation
uncertainties for Z+jets are described by three uncorrelated
nuisance parameters corresponding to the three b-tag multi-
plicities considered in the analysis.

Multijet background: Uncertainties on the multijet back-
ground estimated via the Matrix Method receive contribu-
tions from the size of the data sample as well as from the
uncertainty on εfake, estimated in different control regions.
A normalisation uncertainty of 50 % due to all these effects
is assigned independently to the electron and muon chan-
nels and to each b-tag multiplicity, leading to a total of six
uncorrelated uncertainties.

Other physics backgrounds: Uncertainties affecting the
normalisation of the single-top-quark background include a
+5 %/–4 % uncertainty on the total cross section estimated
as a weighted average of the theoretical uncertainties on t-,
Wt- and s-channel production [80–82]. Including an addi-
tional uncertainty in quadrature of 24 % per additional jet
has a negligible impact on the measurement. Uncertainties
on the diboson background normalisation include 5 % from
the NLO theoretical cross sections [84] added in quadrature
to an uncertainty of 24 % due to the extrapolation to the high
jet-multiplicity region, following the procedure described for
Z+jets.

6.3.3 Signal modelling

In order to investigate the impact of uncertainties on the t t̄ sig-
nal modelling, additional samples generated with Powheg-
Box interfaced to Herwig, Mc@nlo interfaced to Her-
wig and AcerMC interfaced to Pythia are considered
(see Sect. 5.1 for more details). Different predictions and
response matrices built with those t t̄ samples are used to
repeat the full analysis procedure isolating one effect at
the time. For each case, the intrinsic asymmetry and the
unfolded asymmetry are measured. The intrinsic asymme-
try is the asymmetry generated in each Monte Carlo sam-
ple before the simulation of the detector response. Double
differencees between the intrinsic (int) asymmetry and the
unfolded (unf) values of the nominal (nom) and the alterna-
tive (alt) sample are considered as uncertainties to account
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for the different AC predictions of the different samples,
(AC

int,nom − AC
int,alt) − (AC

unf,nom − AC
unf,alt). This is

referred to as the double difference.

NLO generator: The uncertainty associated with the choice
of NLO generator is estimated from the double difference of
the parton-level AC and unfolded AC comparing Powheg-
Box interfaced to Herwig (nom) and Mc@nlo interfaced
to Herwig (alt).

Fragmentation model: The uncertainty associated with the
fragmentation model is estimated from the double differ-
ence of the parton-level AC and unfolded AC comparing
Powheg- Box interfaced to Pythia (nom) and Powheg-
Box interfaced to Herwig (alt).

Initial- and final-state radiation (ISR/FSR): The uncer-
tainty associated with the ISR/FSR modelling is estimated
using the AcerMC generator where the parameters of the
generation were varied to be compatible with the results of
a measurement of t t̄ production with a veto on additional
central jet activity [90]. Two variations producing more and
less ISR/FSR are considered. The uncertainty is estimated
from half of the double difference of the parton-level AC and
unfolded AC comparing Powheg- Box (nom) and AcerMC
(alt) interfaced to Pythia producing more and less ISR/FSR.

6.3.4 Others

Monte Carlo sample size: To assess the effect on the mea-
surement of the limited number of Monte Carlo events, an
ensemble of 1000 response matrices, each of them fluctuated
according to the raw number of simulated events, is produced.
Unfolding is repeated with the same pseudo-dataset for each
fluctuated response matrix. The uncertainty is estimated as
the standard deviation of the ensemble of the 1000 AC val-
ues obtained. The estimated systematic uncertainty associ-
ated with limited number of Monte Carlo events is about
ten times smaller than the data statistical uncertainty; this is
consistent with the size of the available Monte Carlo sample.

PDF uncertainties: The choice of PDF in simulation has a
significant impact on the charge asymmetry of the simulated
W+jets background. Since this asymmetry is exploited to
calibrate the W+jets prediction, the related uncertainty has
to be estimated. The uncertainty on the PDFs is evaluated
using three different PDF sets: CT10 [58], MSTW 2008 [91]
and NNPDF2.1 [92]. For each set, the PDFs are varied based
on the uncertainties along each of the PDF eigenvectors. Each
variation is applied by reweighting the W+jets sample event-
by-event. The AC measurements are repeated for each varied
W+jets template and the uncertainty is estimated as half of the
largest difference between any variation of CT10 and MSTW
2008, and the ±1σ variations for NNPDF2.1. The resulting
uncertainties are small, but non-negligible. The impact of

uncertainties related to PDFs are found to be negligible in t t̄
modelling.

Unfolding response: The response of the unfolding proce-
dure, i.e. any non-linearity or bias, is determined using a
set of six pseudo-datasets, each of them being composed of
the default t t̄ signal reweighted to simulate an asymmetry
and the default MC simulation predictions. The injected AC

value ranges between −0.2 and 0.2 depending on the differ-
ential variable and bin. The six reweighted pseudo-datasets
are unfolded using the default response matrix and the uncer-
tainty associated with the unfolding response is calculated as:
Ameas

C − (Ameas
C −b)/a, with a and b the slope and offset of a

linear fit of the generator-level (intrinsic) AC versus unfolded
AC of the six reweighted pseudo-datasets previously defined
and Ameas

C the measured value in data.

6.4 Measurement

A fit is performed which maximises the extended likelihood
of Eq. (6). In this fit, the events are further separated based
on the sign of the lepton charge Q�. The measurements are
then performed using a combination of six channels based
on the lepton charge (Q� > 0 and Q� < 0) and the b-jet
multiplicity (zero b-jets, one b-jet, at least two b-jets). The
�|y| distribution is split into four bins in all the channels
except the zero b-jets channel, as no extra information for
AC is expected. Four bins in �|y| are considered in each
differential bin of all differential measurements.

The W+jets in situ calibration procedure consists of fitting
the calibration factors Kbb̄/cc̄, Kc and Klight for scaling the
flavor components of the W+jets background with different
charge asymmetries, assuming uniform prior probabilities π

during the posterior probability estimation defined in Eq. (7).
The b-jet multiplicity provides information about the heavy-
and light-flavour composition of the W+jets background,
while the lepton charge asymmetry is used to determine the
normalisation of each component. Figure 2 shows the differ-
ent W+jets contributions for the different b-jet multiplicities
and lepton charges. In addition to the expected number of t t̄
events for each bin in T , the W+jets calibration factors are
free parameters in the likelihood. The posterior probability
density is thus

p
(
T |{D1 · · · DNch }

)

=
∫ Nch∏

i=1

L
(
Di |Ri (T ; θ s), Bi (Kbb̄/cc̄, Kc, Klight; θ s, θb)

)

× N (θ s) N (θb)π(T ) π(Kbb̄/cc̄)π(Kc)

× π(Klight) dθ s dθb, (7)

where B = B(Kbb̄/cc̄, Kc, Klight; θ s, θb) is the total back-
ground prediction, the probability densities π are uniform
priors and R is the reconstructed signal prediction. Two cat-
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Fig. 2 Comparison between prediction and data for the 18 bins used
in the inclusive AC measurement before (top) and after (bottom) the
simultaneous unfolding procedure and W+jets in situ background cal-
ibration, including only uncertainties that are marginalized. The �|y|
distribution in four bins is considered for the t t̄-enriched event sam-
ples with exactly one and at least two b-jets; a single bin is considered
for the background-enriched sample with zero b-jets. After the calibra-
tion, the background components are scaled to the measured values for
the nuisance parameters, and the prediction for t t̄ events in each bin
is estimated by folding the measured parton-level parameters through
the response matrix. The bottom part of each plot shows the ratio of
the data to the predicted value together with combined statistical and
systematic uncertainties

egories of nuisance parameters are considered: the normali-
sation of the background processes (θb), and the uncertain-
ties associated with the object identification, reconstruction
and calibration (θ s). While the first ones only affect the back-
ground predictions, the latter, referred to as object systematic
uncertainties, affect both the reconstructed distribution for t t̄
signal and the total background prediction. The W+jets cal-
ibration factors are found to be Kbb̄/cc̄ = 1.50 ± 0.11, Kc =
1.07±0.27 and Klight = 0.80±0.04, where the uncertainties
include both the statistical and systematic components.

The final numbers of expected and observed data events
after the full event selection, marginalisation of nuisance

Table 1 Observed number of data events compared to the expected
number of signal events and different background contributions for
different b-tagging multiplicities in the combined μ+jets and e+jets
channels. These yields are shown after marginalisation of the nuisance
parameters and the in situ calibration of the W+jets background, and
the marginalized uncertainties are shown. The marginalized uncertain-
ties for each background and signal component are correlated, and the
correlation is taken into account in their combination

Channel � + jets 0-tag � + jets 1-tag � + jets 2-tag

Single top 3400 ± 400 12,100 ± 1300 8700 ± 900

W+jets 173,000 ± 9000 45,000 ± 4000 8600 ± 700

Z+jets 13,000 ± 6000 3900 ± 2000 1900 ± 900

Diboson 8000 ± 4000 2000 ± 900 400 ± 200

Multijets 10,800 ± 3500 6300 ± 2000 2200 ± 700

Total background 208,500 ± 1300 69,600 ± 2600 21,800 ± 1300

t t̄ 33,900 ± 1200 146,900 ± 2700 171,600 ± 1500

Total expected 242,400 ± 600 216,500 ± 500 193,400 ± 400

Observed 242,420 216,465 193,418

parameters andW+jets in situ calibration are listed in Table 1,
while Fig. 2 shows the good level of agreement between
the data and expectation before and after marginalisation for
the six channels. In both cases, the uncertainties that are
marginalized are shown. Since these uncertainties are cor-
related for the background and signal components, the total
combined marginalized uncertainty is smaller than the sum
of the constituent parts.

7 Results

7.1 Inclusive measurement

The inclusive t t̄ production charge asymmetry is measured
to be

AC = 0.009 ± 0.005 (stat. + syst.),

compatible with the SM prediction, AC = 0.0111 ±
0.0004 [1].

Since the background estimation is part of the Bayesian
inference procedure described in Sect. 6.2, it is not pos-
sible to study the impact of systematic uncertainties by
repeating unfolding on data with varied templates, without
using marginalisation. Instead, the expected impact of sys-
tematic uncertainties is studied with pseudo-data distribu-
tions corresponding to the sum of the background and sig-
nal predictions. For each source of uncertainty, the ±1σ

variations of the predictions are used to build the pseudo-
data, and the unfolding procedure is repeated. The base-
line background templates and response matrices, as in the
actual measurements, are used. Table 2 shows the aver-
age asymmetry variation δAC computed, for each source
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of uncertainty, as |AC(+1σ) − AC(−1σ)|/2, but only the
uncertainties having a variation above 10 % of the statisti-
cal uncertainty are reported in the table. The total uncer-
tainty associated with the marginalised systematic uncer-
tainties is estimated by subtracting in quadrature the statis-

Table 2 Impact of individual sources of uncertainty on the inclusive AC
measurement. All uncertainties described in Sect. 6.3 are considered,
but only the ones having a variation above 10% of the statistical uncer-
tainty are reported in the table. Systematic uncertainties in group (a) are
marginalised while systematic uncertainties in group (b) are added in
quadrature to the marginalised posterior

Source of systematic uncertainty δAC

(a) Jet energy scale and resolution 0.0016

Multijet background normalisation 0.0005

(b) Initial-/final-state radiation 0.0009

Monte Carlo sample size 0.0010

PDF 0.0007

Statistical uncertainty 0.0044

Total uncertainty 0.0049

tical term from the total marginalised uncertainty. It yields
0.002 (category (a) in Table 2). The total, non-marginalised
uncertainty associated with systematic uncertainties is esti-
mated by summing in quadrature sources from category (b) in
Table 2.

The precision of the measurement is limited by the sta-
tistical uncertainty, and the main sources of systematic
uncertainty are the signal modelling and the uncertain-
ties with a large impact on the size of the W+jets back-
ground, such as the uncertainty on the jet energy scale and
resolution.

7.2 Differential measurements

The AC differential spectra are compared in Fig. 3 with the
theoretical SM predictions, as well as with BSM predictions
for right-handed colour octets with low and high masses [93].
The BSM predictions are not shown in the measurement as
a function of pT,t t̄ as they are LO 2 → 2 calculations. The
results are compatible with the SM, and it is not possible to
distinguish between the SM and BSM models at this level of

Fig. 3 Measured AC values as a function of bin-averaged mtt̄ , βz,t t̄
and pT,t t̄ , compared with predictions for SM [1] and for right-handed
colour octets with masses below the t t̄ threshold and beyond the kine-

matic reach of current LHC searches [93]. The BSM predictions are
shown only for the two top plots. The bins are the same as the ones
reported in Tables 3 and 4
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precision. The BSM models are tuned to be compatible with
the Tevatron asymmetry measurements and the AC measure-
ments at

√
s = 7 TeV.

Table 3 shows the average asymmetry variation δAC com-
puted for each differential measurement, for each source of
uncertainty, as explained in Sect. 7.1. The precision of the

Table 3 Impact of individual
sources of uncertainty on the
measurement of AC in bins of
mtt̄ , βz,t t̄ and pT,t t̄ . All
uncertainties described in
Sect. 6.3 are considered, but
only the ones having at least one
bin with a variation above 10 %
of the statistical uncertainty are
reported in the table; the others
are quoted as “–”. Systematic
uncertainties in group (a) are
marginalised while systematic
uncertainties in group (b) are
added in quadrature to the
marginalised posterior

Source of systematic uncertainty δAC in mtt̄ [GeV]

0–420 420–500 500–600 600–750 750–900 >900

(a) Jet energy scale and resolution 0.010 0.007 0.007 0.009 0.013 0.009

b-tagging/mis-tag efficiencies 0.006 0.005 0.005 0.005 0.008 0.005

Missing transverse momentum – – 0.003 0.002 – –

Lepton reconstruction/identification 0.004 – – – – –

Other backgrounds normalisation 0.009 0.006 – 0.002 – –

(b) Signal modelling 0.030 0.005 0.004 0.009 – 0.007

Parton shower/hadronisation – 0.005 – – 0.010 0.011

Initial-/final-state radiation 0.006 0.002 0.004 0.004 0.004 0.011

Monte Carlo sample size 0.006 0.004 0.004 0.005 0.010 0.009

PDF 0.004 0.002 0.002 0.004 0.005 0.007

Statistical uncertainty 0.025 0.017 0.018 0.023 0.042 0.037

Total 0.041 0.020 0.021 0.027 0.046 0.045

Source of systematic uncertainty δAC in βz,t t̄

<0.3 0.3–0.6 0.6–1.0

(a) Jet energy scale and resolution 0.009 0.013 0.003

b-tagging/mis-tag efficiencies 0.003 0.003 0.001

Multijet background normalisation 0.003 – –

(b) Signal modelling 0.025 0.027 0.002

Parton shower/hadronisation 0.009 0.010 0.006

Initial-/final-state radiation 0.006 – –

Monte Carlo sample size 0.005 0.004 0.002

PDF 0.004 0.006 0.002

Statistical uncertainty 0.018 0.015 0.008

Total 0.034 0.038 0.011

Source of systematic uncertainty δAC in pT,t t̄ [GeV]

0–25 25–60 >60

(a) Jet energy scale and resolution 0.009 0.009 0.003

Lepton energy scale and resolution 0.001 – 0.003

b-tagging/mis-tag efficiencies 0.007 0.008 0.003

Missing transverse momentum 0.002 0.004 0.002

Multijet background normalisation 0.005 0.003 −
Lepton reconstruction/identification 0.005 0.004 0.001

Other backgrounds normalisation – 0.003 0.002

(b) Signal modelling 0.067 0.017 0.057

Parton shower/hadronisation 0.040 0.043 0.019

Initial-/final-state radiation 0.015 0.017 0.009

Monte Carlo sample size 0.006 0.008 0.003

PDF 0.009 0.009 0.004

Statistical uncertainty 0.017 0.028 0.014

Total 0.089 0.068 0.063
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Table 4 Measured charge asymmetry, AC, values for the electron
and muon channels combined after unfolding as a function of the
t t̄ invariant mass, mtt̄ (top), the t t̄ velocity along the z-axis, βz,t t̄
(middle), and the t t̄ transverse momentum, pT,t t̄ (bottom). SM and
BSM predictions, for right–handed colour octets with masses below

the t t̄ threshold (Light BSM) and beyond the kinematic reach of cur-
rent LHC searches (Heavy BSM) [93], are also reported. The quoted
uncertainties include statistical and systematic components after the
marginalisation

AC mtt̄ [GeV]

<420 420–500 500–600 600–750 750–900 >900

Data 0.026 ± 0.041 −0.005 ± 0.020 0.026 ± 0.021 0.009 ± 0.027 −0.007 ± 0.046 0.068 ± 0.044

SM 0.0081+0.0003
−0.0004 0.0112 ± 0.0005 0.0114+0.0003

−0.0004 0.0134+0.0003
−0.0005 0.0167+0.0005

−0.0006 0.0210+0.0003
−0.0002

Light BSM 0.0100 ± 0.0004 0.0134 ± 0.0006 0.0135+0.0004
−0.0005 0.0155+0.0005

−0.0006 0.0186+0.0007
−0.0008 0.0235+0.0006

−0.0005

Heavy BSM 0.0089 ± 0.0004 0.0132 ± 0.0006 0.0148+0.0004
−0.0005 0.0201+0.0004

−0.0006 0.0310+0.0006
−0.0007 0.0788+0.0007

−0.0006

AC βz,t t̄

<0.3 0.3–0.6 0.6–1.0

Data −0.005 ± 0.034 0.054 ± 0.038 0.028 ± 0.011

SM 0.0031 ± 0.0003 0.0068 +0.0002
−0.0003 0.0175 +0.0007

−0.0008

Light BSM 0.0037 ± 0.0004 0.0075 ± 0.0004 0.0211 +0.0007
−0.0008

Heavy BSM 0.0048 ± 0.0004 0.0103 ± 0.0004 0.0242 +0.0007
−0.0008

AC pT,t t̄ [GeV]

<25 25–60 >60

Data 0.044 ± 0.088 0.004 ± 0.066 0.002 ± 0.062

SM 0.0141 ± 0.0007 −0.0051 ± 0.0003 −0.0026 ± 0.0002

differential measurements is limited by the same factors as
the inclusive result. The measurement versus pT,t t̄ is partic-
ularly affected by the parton-shower model.

The resulting charge asymmetry AC is shown in Table 4
for the differential measurements as a function of mtt̄ βz,t t̄
and pT,t t̄ . The theoretical values are described in Ref. [1]
(SM) and Ref. [93] (BSM), and they have been provided
for the chosen bins. The correlation matrices are shown in
Table 5 for the measurements as a function of mtt̄ , βz,t t̄ and
pT,t t̄ .

In regions with sensitivity to BSM (high values of mtt̄ and
βz,t t̄ ), the uncertainty on the measurements is largely dom-
inated by the available statistics, while in other regions the
uncertainty on signal modeling and/or parton shower domi-
nates.

7.3 Interpretation

Figure 4 shows the inclusive AC measurement presented in
Sect. 7. The measurement is compared to the t t̄ forward–

backward asymmetry6 AFB measured at the Tevatron by CDF
and D0 experiments. Predictions given by several BSM mod-
els, the details of which can be found in Refs. [20,94], are
also displayed. These BSM models include a W ′ boson,
a heavy axigluon (Gμ), a scalar isodoublet (φ), a colour-
triplet scalar (ω4), and a colour-sextet scalar (�4). For each
model, the predictions for AFB and AC are derived using
the PROTOS generator [95] with the constraints described
in Ref. [86]. The ranges of predicted values for AFB and
AC for a given set of BSM model are also shown. The
BSM physics contributions are computed using the tree-
level SM amplitude plus the one(s) from the new particle(s),
to account for the interference between the two contribu-
tions. The phase-space of the parameters describing the var-
ious BSM models (such as the BSM particle masses and
couplings) is limited by the measurement presented in this
paper.

6 The t t̄ asymmetry at the Tevatron is measured as a forward–backward
asymmetry and defined as AFB = N (�y>0)−N (�y<0)

N (�y>0)+N (�y<0)
.
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Table 5 Correlation coefficients
ρi, j for the statistical and
systematic uncertainties
between the i-th and j-th bin of
the differential AC measurement
as a function of the t t̄ invariant
mass, mtt̄ (top), the t t̄ velocity
along the z-axis, βz,t t̄ (bottom
left), and the transverse
momentum, pT,t t̄ (bottom right)

ρi j mt t̄ [GeV]

mtt̄ (GeV) <420 420–500 500–600 600–750 750–900 >900

<420 1. −0.263 0.076 −0.034 −0.017 −0.001

420–500 1. −0.578 0.195 −0.035 −0.002

500–600 1. −0.591 0.160 −0.028

600–750 1. −0.573 0.132

750–900 1. −0.487

>900 1.

ρi j βz,t t̄

βz,t t̄ <0.3 0.3–0.6 0.6–1.0

<0.3 1. −0.262 0.095

0.3–0.6 1. −0.073

0.6–1.0 1.

ρi j pT,t t̄ (GeV)

pT,t t̄ (GeV) <25 25–60 >60

<25 1. −0.812 0.431

25–60 1. −0.722

>60 1.
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Fig. 4 Measured inclusive charge asymmetries AC at the LHC ver-
sus forward–backward asymmetries AFB at Tevatron, compared with
the SM predictions [1,9] as well as predictions incorporating various
potential BSM contributions [20,94]: a W ′ boson, a heavy axigluon
(Gμ), a scalar isodoublet (φ), a colour-triplet scalar (ω4), and a colour-

sextet scalar (�4). The horizontal bands and lines correspond to the
ATLAS and CMS measurements, while the vertical ones correspond to
the CDF and D0 measurements. The uncertainty bands correspond to a
68 % confidence level interval. The figure on the right is a zoomed-in
version of the figure on the left

8 Conclusion

The top-quark pair production charge asymmetry was mea-
sured with pp collisions at the LHC using an integrated lumi-
nosity of 20.3 fb−1 recorded by the ATLAS experiment at a

centre-of-mass energy of
√
s = 8 TeV in t t̄ events with

a single lepton (electron or muon), at least four jets and
large missing transverse momentum. The reconstruction of
t t̄ events was performed using a kinematic fit. The recon-
structed inclusive distribution of �|y| and the distributions
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as a function of mtt̄ , pT,t t̄ and βz,t t̄ were unfolded to obtain
results that can be directly compared to theoretical compu-
tations. The measured inclusive t t̄ production charge asym-
metry is AC = 0.009 ± 0.005 (stat.+ syst.), to be compared
to the SM prediction AC = 0.0111 ± 0.0004 [1]. All mea-
surements presented in this paper are statistically limited and
are found to be compatible with the SM prediction within the
uncertainties. The precision of the measurements also allows
for the exclusion of a large phase-space of the parameters
describing various BSM models.
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