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Key Points:

 A bin microphysics scheme is modified to act like a bulk microphysics 
scheme. 

 The new scheme can predict arbitrary combinations of two or three 
moments of the hydrometeor size distribution.

 Box model tests show that standard configurations of two-moment 
schemes perform poorly for predicting some microphysical processes.

1

1

2

3

4

5

6

7

8

9

10

11
12

13
14

15
16
17

mailto:aigel@ucdavis.edu)


Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems

Abstract

Most bulk cloud microphysics schemes predict up to three standard 
properties of hydrometeor size distributions, namely, the mass mixing ratio, 
number concentration, and reflectivity factor in order of increasing scheme 
complexity. However, it is unclear whether this combination of properties is 
optimal for obtaining the best simulation of clouds and precipitation in 
models. In this study, a bin microphysics scheme has been modified to act 
like a bulk microphysics scheme. The new scheme can predict an arbitrary 
combination of two or three moments of the hydrometeor size distributions.  
As a first test of the arbitrary moment predictor (AMP), box model 
simulations of condensation, evaporation, and collision-coalescence are 
conducted for a variety of initial cloud droplet distributions and for a variety 
of configurations of AMP. The performance of AMP is assessed relative to the 
bin scheme from which it was built. The results show that no double- or 
triple-moment configuration of AMP can simultaneously minimize the error of
all cloud droplet distribution moments. In general, predicting low-order 
moments helps to minimize errors in the cloud droplet number 
concentration, but predicting high-order moments tends to minimize errors 
in the cloud mass mixing ratio. The results have implications for which 
moments should be predicted by bulk microphysics schemes for the cloud 
droplet category.

Plain Language Summary

Countless cloud droplets with a variety of sizes exist in every cloud. Since 
cloud models cannot keep track of every individual droplet, most models 
instead predict quantities such as the total mass of cloud droplets and the 
total number of cloud droplets inside a model grid box. The values of these 
quantities dictate how fast clouds grow, how spatially extensive they are, 
and how well they reflect sunlight. In this study we explore whether the 
evolution of clouds could be improved if models instead predicted other 
properties of the cloud droplets, such as total surface area of all droplets or 
total diameter of all droplets. Our results show that improvements to current 
cloud models are likely possible.

1 Introduction

With improvements in computational speed and memory, atmospheric 
models are being designed with increasingly complex parameterizations to 
represent physical processes and systems such as the land surface, ocean, 
sub-grid turbulence, convection, and clouds. One of the more 
computationally expensive parameterizations in many contemporary models 
is the cloud microphysics parameterization. Traditionally, microphysics 
parameterizations predicted only the total mass mixing ratio (proportional to 
the 3rd moment of particle size distributions, or PSDs) of a limited number of 
cloud hydrometeor categories (e.g. Kessler 1969; Lin et al. 1983). Such 

2

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

40
41
42
43
44
45
46
47
48
49

50

51
52
53
54
55
56
57
58
59



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems

schemes are known as single-moment schemes. It is becoming common for 
weather and climate models to predict both the mass mixing ratio and 
number concentration (0th moment of PSDs) of each hydrometeor type (e.g. 
Meyers et al., 1997; Morrison et al., 2005; Seifert & Beheng, 2006; Thompson
& Eidhammer, 2014). Although these double-moment schemes take longer 
to run and can require more assumptions, most studies have found that the 
increased complexity of the scheme leads to better predictions (Ekman, 
2014; Igel et al., 2015 and references therein). Triple-moment schemes, 
which predict an additional third property of the cloud particle size 
distributions (Dawson et al., 2014; Milbrandt & Yau, 2005; Shipway & Hill, 
2012), are currently primarily used for research applications and are not 
nearly as prevalent as single- and double-moment schemes. Most, if not all, 
triple-moment schemes have been designed to predict the radar reflectivity 
factor (6th moment of PSDs).  A review of bulk microphysics schemes was 
given recently by Khain et al. (2015). Finally, it should be noted that the 
proportionality of the 3rd moment to mass and 6th moment to reflectivity 
factor is only strictly valid for constant density spheres such as spherical 
liquid drops. The proportionality does not hold for most ice hydrometeors. 
Since the focus of this study will be on liquid, I will continue to use these 
physical interpretations of the 3rd and 6th moments.

The choice to predict the 3rd, 0th, and 6th moments in cloud microphysics 
schemes has been made naturally. The 3rd moment must be predicted in 
order to absolutely conserve water mass in any model. Mass conservation is 
a law of physics; however, no other such fundamental laws exist to guide our
choice of which additional moments to predict. The 0th moment, or number 
concentration, is an easy property to understand and formulate predictive 
equations for. The earliest double-moment schemes provide little or no 
justification for the choice to predict this property because it is such an 
obvious one to make (Koenig and Murray 1976; Ziegler 1985). Perhaps the 
best motivation is that number concentration is strongly associated with the 
nucleation of new cloud droplets and ice crystals. Another motivation is that 
the number concentration is conserved during condensation and provides a 
constraint on the PSD during that process. Therefore, there are strong, 
physically-based arguments to be made for predicting the 0th moment. 
Nonetheless, for other processes, such as collision-coalescence, it is not 
obvious that the 0th moment is logically a better quantity to predict than 
another moment of the distribution since number is not conserved when 
droplets collect one another. Finally, predicting the 6th moment, or 
reflectivity factor, in triple-moment schemes is convenient for contrasting 
model output and radar observations, and for data assimilation, but is a 
choice that is harder to motivate based on physical considerations.

From a statistical standpoint, Morrison et al. (2019) find that knowledge of 
just the 0th and 3rd moments gives little constraint on higher order moments. 
They suggest that predicting a combination of high and low moments such 
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as is done by triple-moment schemes may be best for reducing uncertainty 
in the simulations of all moments. Therefore, there may be more uncertainty 
in which two moments ought to be predicted in a double-moment scheme 
than in which three moments ought to be predicted in a triple-moment 
scheme. 

There has been no systematic study to address the question of which 
moments to predict, which in retrospect, is somewhat surprising. Wacker and
Lüpkes (2009) and Milbrandt and McTaggart-Cowan (2010) examined the 
problem for the case of sedimentation. Both studies find that the evolution of
the moments in a precipitation shaft strongly depends on the predicted 
moments and the value of the shape parameter in the gamma probability 
distribution function.  Predicting the 0th and 3rd moments yields the lowest 
average error of the 0th-7th moments only if the shape parameter is 
diagnosed based on current conditions. Predicting the 0th and 8th moment 
yields the lowest average error when the shape parameter is held constant
(Milbrandt & McTaggart-Cowan, 2010), but unfortunately does not give mass 
conservation. 

Sedimentation is a relatively simple process to examine since it is essentially
a moment advection problem. The difficulty in examining the dependency of 
additional processes on predicted moments lies in developing bulk scheme 
equations for each moment. Kogan and Belochitski (2012) developed 
equations for the 0th, 2nd, 3rd, 4th, and 6th moments for all major warm phase 
processes and Szyrmer et al. (2005) developed generic tendency equations 
for any moment for condensation and evaporation. In this study a different 
approach is taken. To avoid developing equations, a bin microphysics 
scheme is modified to behave like a bulk scheme. The modifications allow 
the bin scheme to be run as a “bulk-emulating” arbitrary moment predictor 
scheme. This arbitrary moment predictor scheme can be run with either a 
double- or triple-moment configuration and with any combination of 
moments predicted. By comparing its performance to the underlying bin 
scheme, the new scheme is used to make suggestions about the optimal 
choice of prognostic moments in bulk microphysics schemes for the cloud 
droplet category. 

The development of the new scheme is described in Section 2, simulations 
are described in Section 3, results for double-moment configurations are 
discussed in Section 4 and for triple-moment configurations in Section 5.  

2 Methods

2.1 Overview

The design of the Arbitrary Moment Predictor (AMP) microphysics scheme 
follows work first described in Igel and van den Heever (2017). Their work 
has been substantially expanded and the AMP scheme is described in detail 
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here for the first time. A similar methodology was also adopted by Paukert et
al. (2019). A flow chart is shown in Figure 1 to illustrate the process for a 
single arbitrary hydrometeor category. The basic approach is to initialize a 
grid box with a binned distribution of hydrometeors for each hydrometeor 
species that conforms to a gamma probability distribution function (PDF) 
based on the current values of predicted moments of each species. Next, the
bin microphysics routines are run using this binned gamma PDF. At the end 
of the call to the bin microphysics routines, a user-defined set of moments 
(i.e. the arbitrary moments) of the hydrometeor distributions are calculated. 
In a box model, these moments are used to find new parameters of the 
gamma PDF for each species at the beginning of the next time step. In a full 
physics model, these moments would be passed back to the main model for 
use in other routines such as advection. Currently AMP can be configured as 
a double- or triple-moment scheme by changing the number of moments 
that are calculated at the end of the microphysics routines.  The number of 
moments is not required to be the same for each species, but the 3rd 
moment is always predicted. It would be trivial to also allow it to act like a 
single-moment scheme, but that has not been done. At this time, cloud 
droplets and raindrops are the only two hydrometeor species included in 
AMP.

2.2 Technical Description

In this section, the technical development of the AMP scheme is described. 
The particular bin microphysics scheme that is used in this study is the 
Hebrew University Spectral Bin Model (SBM) (Khain et al., 2004). In principle 
any bin scheme may be used. 

Like in most bulk schemes, the number distribution in AMP is assumed to 
conform to a gamma PDF. This number distribution is defined here as 

n (D∨N0 ,ν ,Dn )=
dN

d lnD
=

N0

Γ (ν ) (
D
Dn

)
ν

e
−D
Dn                                                          

(1)
where n is the probability size distribution of a hydrometeor category, N is 
the cumulative size distribution, D is the hydrometeor diameter, N0 is the 
total number mixing ratio, ν is the shape parameter, and Dn is the scaling 
diameter (Walko et al. 1995).  Note that (1) uses dN/dlnD rather than dN/dD. 
This choice is made for convenience because the SBM uses a mass-doubling 
set of bins. Since mass will always be conserved in AMP, and because the 
SBM solves for mass mixing ratio in each bin, it is useful to also define a 
mass distribution as  

r (D∨r0 ,ν ,Dn )=
π
6

ρw D3n (D )=
r 0

Γ (ν+3 ) (
D
Dn

)
ν+3

e
−D
Dn                                           

(2)
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where r0=
π
6

ρw N0Dn
3 Γ (ν+3 )

Γ (ν )
 is the mass mixing ratio for a hydrometeor 

category and m ( D)=
π
6

ρw D3is the mass of a single hydrometeor. Finally, the 

number distribution can be rewritten with r0 rather than N0:

n (D∨r0 ,ν , Dn)=
r0

m (D ) Γ (ν+3) (
D
Dn

)
ν+3

e
−D
Dn                                                       

(3)

At the beginning of each call to AMP, the values of the parameter set r0 ,ν ,Dn

for both cloud droplets and rain must be determined from the predicted 
moments. For double-moment configurations of AMP, r0 and Dn are 
determined from the values of the predicted moments of each species and 
the value of ν is specified as a constant value. For triple-moment 
configurations, all three parameters, r0, Dn, and ν are determined solely from 
the values of the predicted moments of each species. The procedure for 
determining the parameter values is described fully in the Appendix. In brief,
binned distributions are inherently doubly truncated, which forces us to use 
iterative methods to find the parameter set that creates a binned gamma 
n(D) with the appropriate moment values. The procedure is applied to each 
hydrometeor species separately. Note that as in standard bulk schemes, AMP
splits the liquid hydrometeors into two categories: cloud droplets and 
raindrops. Specifically, drops with diameters of 80 μm or larger are 
considered rain drops. 

It is important to mention that AMP is treated as an ideal bulk scheme. As 
such, it will not behave in the same way as any particular existing bulk 
scheme. Existing bulk schemes often take very different approaches to 
parameterizing some processes, most notably for example, collision-
coalescence. Existing bulk schemes artificially separate this process into 
autoconversion and accretion, whereas bin schemes, and by extension AMP, 
makes no such artificial distinction. As such, this study cannot make any 
comments on the strengths or weaknesses of the parameterization of 
individual processes in existing bulk schemes. Rather, the idea here is to 
suppose that AMP is a perfect bulk scheme, that is, one with a perfect 
representation of process rates, and the only limitation in this otherwise 
perfect scheme is that distributions must conform to gamma PDFs. While 
existing bulk schemes do not have perfect parameterizations currently, it 
can be supposed that a perfect parameterization that does not rely on 
binned representations could be developed in the future. In this case, how 
well could this “perfect” bulk scheme do? 

Inherently AMP assumes that the underlying bin scheme is perfect. This is 
the primary limitation of the study since problems with bin schemes are 
known to exist – for example, numerical diffusion across bins can lead to 

6

190

191

192

193

194
195

196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229
230
231



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems

artificially wide distributions (see Morrison et al. (2018) for a recent summary
of these problems). Regardless, they are built on the fundamental physical 
principles and equations that underly the three processes that are 
investigated in this study with a minimal number of simplifying assumptions. 
For this reason, bin schemes have been used as a benchmark against which 
to compare bulk schemes in many past studies (see Khain et al. 2015). 
Furthermore, developers of many bulk schemes have used bin schemes to 
parameterize individual processes, such as sedimentation, collision-
coalescence, and droplet activation (Feingold et al., 1998; Morrison & 
Milbrandt, 2015; Saleeby & Cotton, 2004, 2008; Thompson & Eidhammer, 
2014; Thompson et al., 2008). 

In regards to the specific bin scheme being used in this study, the HUCM 
SBM, it is imperfect like any other bin scheme. It should be noted that the 
developers of this bin scheme have extensively studied the problem of 
artificial broadening and minimized it to the extent possible (Khain et al., 
2004; Pinsky & Khain, 2002). Nonetheless, it is acknowledged that errors in 
the bin scheme associated with spectral broadening or any other source will 
impact the quantitative results of this study. 

3 Box Model Simulations

This paper describes initial tests that have been done using AMP to 
understand which (arbitrary) moments of the cloud droplet size distribution 
should be predicted to minimize the errors in distribution moments during 
condensation, evaporation, and collision-coalescence.  Each process has 
been simulated in isolation in a 0-D box. A suite of 280 initial conditions are 
designed to span a reasonable phase space for initial cloud water content, 
cloud droplet concentration, and the cloud droplet size distribution shape 
parameter. Specifically, initial cloud water content ranges from 1 to 5 g/kg in 
increments of 1 g/kg, cloud droplet concentration is doubled from 100 to 
3200 mg-1, and the shape parameter ranges from 1 to 15 in increments of 2. 
The ranges of cloud water content and cloud droplet concentration give 
initial mass mean cloud droplet diameters of 8.4 μm to 58 μm. 58 μm is 
typical of very large cloud droplets or small drizzle drops. 

Simulations with each initial condition were conducted with several 
configurations of AMP. Double-moment configurations predicting the 3rd and 
0th, 2nd, 4th, 6th, or 8th moments of the cloud droplet category were tested. The
double-moment configurations will be designated as 2M-3X where X 
indicates the second predicted moment. For example, 2M-34 indicates the 
AMP configuration with the 3rd and 4th moments predicted. In all 2M tests, the
shape parameter was held constant for the duration of the simulations. For 
triple-moment configurations, all combinations of two even-numbered 
moments plus the third moment were tested for the cloud droplet category. 
Triple-moment configurations will be denoted 3M-3XY where X is the first 
predicted moment and Y is the second. 
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In 2M configurations, the 0th and 3rd moments of rain were always predicted; 
in 3M configurations, the 6th moment of rain was also predicted. Additional 
testing showed that the results were not highly sensitive to the configuration
of the rain category (not shown). Although accretion of cloud droplets by rain
is the dominant mechanism by which cloud is converted to rain, the 
insensitivity to the rain configuration in the collision-coalescence tests is 
consistent with the theoretical work of Seifert and Beheng (2001) who 
showed that accretion rates are primarily controlled by the total mass mixing
ratios of cloud and rain.

Simulations are also run with just the HUCM bin scheme without any use of 
gamma PDFs. These bin simulations will be used to evaluate the AMP 
simulations.

Both the condensation and evaporation tests were run with temperature of 
283 K and pressure of 1000 hPa. Evaporation tests used a relative humidity 
of 95% while condensation tests used a supersaturation of 0.5%. The 
temperature, pressure, and humidity of the box was held constant in time. 
Condensation tests were run for one minute. Such a short time was used 
since droplet distributions growing by condensation quickly become 
unrealistically narrow in the absence of distribution broadening mechanisms 
that occur naturally outside of box model simulations. Evaporation tests were
run for thirty minutes to allow enough time for complete evaporation of the 
initial cloud water. Collision-coalescence tests were also run for thirty 
minutes; unsurprisingly, many initial conditions failed to produce 
precipitation in that time. All sets of initial conditions that did not produce 
rain with any AMP configuration or with the bin model were discarded. 

Although only two or three moments were predicted in each AMP simulation, 
values of all moments (0th – 9th) were diagnosed and written to the output 
after each time step by integrating over the final size distribution produced 
by the parameterization routines. 

4 Results Using AMP in Double-Moment Configurations

Results for each process are analyzed similarly.  A percent error was 
calculated for each moment in each simulation by comparing its value to 
that in the corresponding bin simulation. The bin simulations are considered 
truth for the purposes of comparison. Absolute values of the percent errors 
are used. For each diagnosed moment, there are 280 percent error values 
from the 280 initial conditions for each AMP configuration. 

4.1 Condensation

The 5th, 25th, 50th, 75th, and 95th percentiles of the 280 percent error values 
associated with the condensation simulations are shown in Figure 2 for the 
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0th, 3rd, and 6th moments diagnosed after one minute of condensation. Most 
impressively, the percent error of the 3rd moment (mass) is almost always 
1% or less, regardless of the combination of moments predicted (Figure 2b). 
Errors increase somewhat from 2M-30 to 2M-38, but ultimately all 
configurations accurately predict the evolution of mass during condensation. 

The cloud droplet number concentration (0th moment) should be conserved 
during condensation since new particles are not generated by condensation. 
Figure 2a shows that conservation of the 0th moment is only achieved by 
explicitly predicting the 0th moment. Otherwise, there is about a 10-20% 
median error after one minute of condensation regardless of the moments 
predicted. This is quite a rapid increase in error that is approximately linear 
in time; after five minutes, the median error is about 60-100% (not shown). 
The most immediate concern may be that errors in the number 
concentration would propagate to errors in the average cloud droplet 
diameter. Figure 3a shows error distributions for the ratio of the 1st moment 
to the 0th moment (mean diameter) and 3b shows error distributions for the 
ratio of the 3rd moment to the 2nd moment (effective diameter). They show 
that the median errors for these two quantities are not nearly so different 
between 2M-30 and the other 2M configurations after one minute as they are
for the number concentration. For cloud droplet effective diameter, the 
median errors are quite similar across all configurations (Fig. 3b) since it 
does not rely on the prediction of number concentration. Therefore, while a 
lack of conservation of the cloud droplet number concentration propagates 
to an error in the mean diameter, this error is relatively small compared to 
the original error in number concentration.

Perhaps unsurprisingly, median errors in the 6th moment are minimized by 
explicitly predicting the 6th moment (Fig. 2c). Nonetheless, apart from 2M-30,
all combinations of predicted moments have values of the 95th percentile 
error of only about 20%. This result indicates that these configurations all 
generally keep errors in cloud droplet reflectivity factor low. However, 2M-30 
is the only configuration for which errors in the predicted cloud droplet 
number concentration are low. Therefore, there is no AMP configuration 
which allows us to simultaneously minimize the errors in all moments even 
for a relatively simple physical process like condensation.

4.2 Evaporation

The errors in the AMP simulations are evaluated as a function of time for 
evaporation. Since the time for complete evaporation depends on the initial 
conditions, the fraction of mass remaining in the bin simulation of each 
simulation set is used as a proxy metric for time. Median percent errors are 
shown as a function of this “time” in the top row and the median evolution of
the normalized moments are shown in the bottom row of Figure 4. The 
moments have been normalized by their initial value.
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Median errors are generally 20% or less for both the 0th and 3rd cloud droplet 
moments regardless of the AMP configuration (Fig. 4a-b). Errors tend to be 
larger toward the end of the simulation when most cloud mass has already 
evaporated. So, while the percent errors are larger, the absolute errors are in
fact small. 

Unlike for condensation, 2M-30 does not result in substantially lower errors in
the predicted cloud droplet number concentration compared to other 
configurations (Fig. 4a). In fact, by the end of the evaporation process, 2M-30
has the highest errors of all configurations. Figure 4d indicates that the 2M-
30 simulations have the most variability in the evolution of the number 
concentration and that these simulations tend to evaporate full droplets too 
slowly. Similar behavior was seen by Igel and van den Heever (2017b). 
Evaporation will naturally result in a size distribution with a non-zero number 
of droplets in the smallest size bin, i.e. a truncated left distribution tail that is
difficult to capture with fixed size distribution functions. However, the 
truncated left tail will be less prominent in distributions of higher moments, 
and therefore it may be easier numerically to capture the evolution of the 
distribution with these higher moments. To investigate this problem, the 
binned distribution of cloud droplets at the end of the call to the bin 
microphysics routines during each AMP simulation was written to a file. Each 
distribution could then be compared to the idealized distribution that was 
initialized at the start of the subsequent time step. When the 0th moment is 
predicted with AMP, fitting a PDF to a truncated size distribution usually 
results in a left tail that is too small. For example, in 70% (91%) of left-
truncated distributions after the first timestep, the number concentration in 
the first bin of the re-initialized gamma distribution is ≥50% (≥10%) less 
than the predicted number concentration in the first bin at the end of the 
previous time step. If the bin scheme were to always produced perfect 
gamma distributions, then these two values would always be equal. These 
statistics indicate that undersized left tails are quite common in 2M-30 
configurations of AMP during evaporation. An undersized left tail would cause
too few droplets to be evaporated during each time step as is observed in 
Figure 4d.

The 2M-32 configuration seems to best predict the cloud mass evolution for 
the first half of evaporation while the other configurations perform similarly 
(Figure 4b). For the reflectivity factor, predicting higher moments clearly 
leads to reductions in the median error (Figure 4c). Interestingly, for 
evaporation, the error in the 6th moment is minimized by predicting the 8th 
moment during the latter half of evaporation, and not by predicting the 6th 
moment. For evaporation, it is clearly seen that predicting a moment does 
not necessarily lead to the best simulation of that moment – predicting the 
0th moment does not minimize errors in the number concentration and 
predicting the 6th moment does not always minimize errors in the reflectivity 
factor. Lower errors for reflectivity factor with 2M-36 rather than 2M-30 are in
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agreement with the results of Szyrmer et al. (2005) who examined steady-
state evaporation in a rain shaft model.

4.3 Collision-Coalescence

The results of the collision-coalescence tests are shown in Figure 5 in the 
same way as for evaporation in Figure 4. Recall that although tests are only 
run for the configuration and initial conditions of the cloud droplet category, 
the rain category is active in all collision-coalescence simulations. Therefore, 
total liquid mass is constant during all simulations.

Errors in the cloud droplet reflectivity factor are about the same for each 
AMP cloud droplet configuration (Figure 5c). However, the errors for the 
cloud droplet number concentration (Figure 5a) and mass mixing ratio 
(Figure 5b) are distinctly different for each AMP configuration. Errors in the 
cloud droplet number concentration increase whereas errors in the cloud 
droplet mass mixing ratio decrease as higher moments are predicted. The 
magnitude of errors varies substantially among the AMP configurations; 
median errors in the mass mixing ratio are 10% or less during the entire 
evolution of the cloud droplet distribution for 2M-38 whereas they approach 
100% at the end of the process for 2M-30 (Figure 5b). This result suggests 
that the evolution of cloud mass during the collision-coalescence process 
could potentially be substantially improved in current bulk schemes by 
predicting a higher moment. The cost though is that the evolution of the 
cloud droplet number concentration would deteriorate. Of the three 
processes examined, collision-coalescence provides the clearest example of 
how no single AMP configuration minimizes the errors of all cloud droplet 
moments simultaneously. 

Collision-coalescence errors also clearly illustrate some shortcomings of 
assuming a gamma PDF for the cloud droplet size distribution. Nearly all AMP
simulations convert cloud mass to rain too slowly (Fig. 5e). Since AMP and 
the bin scheme both use the same parameterization for collision-
coalescence, this slowness must be due to the use of an assumed size 
distribution function. The failure of all AMP configurations to produce rain 
quickly enough likely arises because the initiation of rain from a collection of 
cloud droplets depends crucially on the production of a small number of 
larger droplets that reside in the right tail of the cloud droplet size 
distribution. Any microphysics scheme must be able to “remember” that 
these larger droplets exist since they are the ones that will collect the most 
additional cloud droplets in subsequent time steps and first grow to rain drop
sizes. When low moments of the distribution are predicted, Figure 6 shows 
that AMP indeed fails to retain the largest cloud droplets with an assumed 
gamma PDF in 90% or more of simulations when at the same time the 
corresponding bin simulations show that rain production has begun. As a 
result, these AMP configurations produce rain much too slowly (Fig. 5e). AMP 
is much more likely to remember the few-but-important large cloud droplets 
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if high moments of the cloud droplet distribution are predicted since higher 
moments give more weight to these larger droplets. Figure 6 shows that this 
is the case although a large majority of simulations in 2M-36 and 2M-38 still 
underestimate the right tail of the cloud droplet distribution during the 
earliest stages of rain production in the bin simulations. Interestingly, 2M-36 
and 2M-38 convert cloud water to rain too slowly even though the calculated 
6th moment tends to be too large (Fig. 5f). This result seems to illustrate just 
how difficult it is for a bulk scheme to replicate the behavior of a bin scheme 
even when the process parameterization is identical. 

4.4 Discussion

It is impossible to take the results for all three microphysical processes and 
determine which is the “best” combination of moments to predict for the 
cloud droplet distribution. First, doing so will require running 3D simulations 
of warm phase clouds which is beyond the scope of this paper but is planned
for future work. Second, the answer to this question seems likely to be 
application specific. For example, one combination of moments may be best 
for predicting liquid water path, while another is best for predicting cloud 
albedo. 

Nonetheless, some synthesis of the preceding tests is desirable. To do so, 
the median time-averaged absolute normalized errors of the 0th - 6th 
moments of the cloud droplet distributions in the AMP simulations have been
calculated for each AMP configuration and for each process. These errors are
additionally averaged over all processes (colored lines in Figure 7) and 
across the 0th to 3rd moments (black line) and 0th to 6th moments (gray line). 
The normalization is done with respect to the initial values of each moment 
in each simulation and all processes are given equal weight in the average. 
These summary quantities are similar to the one used by Milbrandt and 
McTaggart-Cowen (2010). 

Figure 7 clearly shows that the process-ensemble errors in the 0th to 2nd 
moments of the cloud droplet distribution are minimized for 2M-32 or 2M-34 
whereas errors in all higher order moments are minimized in 2M-36 or 2M-
38. The inability of 2M configurations to simultaneously simulate low and 
high moments well was also found by Szyrmer et al. (2005). Unsurprisingly 
then, the average error in all cloud distribution moments (both 0th-3rd and 0th 

– 6th) is minimized by predicting a middling moment (Figure 7). Predicting the
3rd and 4th moments or 3rd and 6th moments seem optimal. Morrison et al 
(2019) speculated that this may be the case based on their analysis of the 
relationships between moments of rain drop size distributions.
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5 Results Using AMP in Triple-Moment Configurations

Simulations with AMP in triple-moment configurations were also conducted 
as described in Section 3. Median time-averaged absolute normalized errors 
of the number, mass, and reflectivity factor of the cloud droplet distribution 
like those in Figure 7 are shown in Figures 8-11 for each process and for all 
processes averaged together. While a lot of information is contained in each 
figure, I will focus on the ‘x’s and ‘o’s in each panel which indicate the 
configurations with the highest and lowest errors, respectively, for each 
moment.

Overall, the results for the 3M tests are qualitatively similar to the 2M tests. 
Cloud mass is well predicted during condensation regardless of the 
combination of predicted moments (Fig. 8). Droplet number concentration 
during condensation is only conserved if the 0th moment is predicted (Fig. 8a-
d), and cloud reflectivity factor errors are usually low if the 6th or 8th moment 
is predicted (right half of Fig. 8). Overall, errors during condensation are 
minimized in the 3M-304 and 3M-306 configurations (Fig. 8b-c). 3M-306 is 
the typical combination of moments predicted by triple-moment bulk 
schemes. Errors are maximized in the 3M-368 configuration.

Errors for cloud mass in AMP during evaporation are generally low for all 3M 
configurations (Fig. 9). Errors in the droplet number concentration are 
highest when the 0th moment is actually predicted (Fig. 9a-d) whereas errors 
in number are minimized when combinations of higher order moments are 
predicted (Fig. 9h). Again, this unusual result may stem from large 
departures of size distributions from the assumed gamma PDF shape. As it 
turns out, all moments have their highest error when the 0th moment is 
predicted – 3M-308 for lower order moments (Fig. 9d) or 3M-302 for higher 
order moments (Fig. 9a). Errors in reflectivity factor also remain lowest when
combinations of higher order moments are predicted (Fig. 9h-j). These 
results taken together mean that errors overall are minimized in 3M-346 (Fig.
9h).

Again, the errors during collision-coalescence in 3M configurations of AMP 
mirror behaviors of 2M configurations. Errors in the number concentration 
are strongly reduced in 3M configurations when the 0th moment is predicted 
regardless of which other moment is also predicted (Fig. 10a-d). 2M-30 
results in lower errors than any 3M configuration that doesn’t include the 0th 
moment (not shown). This result serves to emphasize the importance of 
predicting the 0th moment of the cloud droplet size distribution during 
collision-coalescence in order to minimize errors in the evolution of the 
number concentration. On the other hand, errors in the higher order 
moments (4th-6th) are lowest in 3M-368 when errors in lower order moments 
(0th-2nd) are maximized (Fig. 10j). Errors in both the cloud droplet number 
and mass concentrations are lowest in 3M-308 (Fig. 10d).  Although this 
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configuration also has the highest errors for the 5th and 6th moments, errors 
in the 5th and 6th moments are generally similar regardless of the AMP 
configuration and so the overall errors are minimized for 3M-308 again.  

Overall, errors in 0th-3rd moments of the cloud droplet size distribution are 
each minimized in a different configuration (3M-302, 3M-304, 3M-306, and 
3M-328, respectively; Fig. 11a-c, g), and errors in the 4th-6th moments are all 
minimized in a fifth configuration (3M-368; Fig. 11j).  Like for the 2M cloud 
droplet configurations, no single 3M configuration minimizes the error in all 
moments simultaneously. Likewise, errors in each of the three processes are 
minimized by predicting a different combination of moments – 3M-304/3M-
306 for condensation, 3M-346 for evaporation, and 3M-308 for collision-
coalescence (Fig. 9b-c, Fig. 9h, Fig. 10d). Evaporation stands out as the only 
process for which errors were minimized when the predicted integer 
moments are all close. For the other two processes, the optimal 
configuration includes both high and low order moments. This result agrees 
with Morrison et al. (2019) as discussed in the introduction.

The preceding paragraph identifies seven configurations as “best” for 
predicting the cloud droplet category depending on the evaluation used. This
result serves to highlight that it is impossible to design a bulk scheme that 
can perform well under all circumstances. When all errors for the 0th-3rd 
moments are averaged together, 3M-304 emerges as the configuration with 
the lowest error (Fig. 11b), whereas when the 0th-6th moments are averaged 
together it is 3M-306 (Fig. 11c), although the difference in error between 3M-
304 and 3M-306 is slight for both averages. While this error metric is by no 
means perfect, this result is an encouraging one since existing triple-moment
schemes typically predict the 0th, 3rd, and 6th moments. 

5 Conclusions

In this study, a flexible “bulk-emulating”, arbitrary moment predictor 
microphysics scheme has been developed by modifying a bin microphysics 
scheme. Moments of the size distribution are calculated at the end of one 
microphysical time step, used to find parameters of the gamma PDF, and 
used to initialize a binned distribution at the start of the next microphysical 
time step. Therefore, the arbitrary moment predictor and bin schemes have 
identical process parameterizations, but different representations of the 
hydrometeor size distributions. There are two motivations for developing this
scheme. First, it allows an “apples-to-apples” comparison of bulk and bin 
schemes and gives us a way to understand the consequences of assuming a 
gamma PDF in bulk schemes. Second, the arbitrary moment predictor 
scheme can predict any combination of distribution moments.  This 
capability allows us to investigate which combinations of predicted moments 
minimize the errors of a bulk scheme. As far as the author is aware, these 
are novel capabilities for a cloud microphysics scheme.
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The arbitrary moment predictor microphysics scheme was run in several 
configurations of the cloud droplet category for many different initial 
conditions in a box model. Three processes were investigated – 
condensation, evaporation, and collision-coalescence. The evolution of the 
number concentration, mass mixing ratio, and reflectivity factor of the cloud 
droplet size distribution were compared to their evolution using a pure bin 
scheme with the same initial conditions. Based on these simulations, the 
following conclusions are drawn:

 No 2M or 3M cloud droplet configuration can simultaneously minimize 
the error of all cloud droplet distribution moments. This result is in 
agreement with the results of Szyrmer et al. (2005) and Milbrandt and 
McTaggart-Cowan (2010) for precipitating hydrometeors.

 Predicting a moment may or may not minimize the error of that 
moment. During condensation the error in the number concentration 
and reflectivity factor was minimized when the 0th moment and 6th 
moment were predicted, respectively in both 2M and 3M 
configurations. During evaporation, errors in the number concentration
were instead maximized when the 0th moment was predicted.

 Errors during collision-coalescence were higher than those for 
condensation and evaporation. Nearly all arbitrary moment predictor 
simulations produced rain too slowly. This result points to a 
fundamental limitation of assuming gamma PDFs.

 Double-moment bulk schemes predicting the 3rd and 4th or 3rd and 6th 
moments of the cloud droplet size distribution may have the potential 
to perform better than those predicting the standard combination of 
the 3rd and 0th moments. 

 Current triple-moment bulk schemes may already be predicting the 
optimal combination of cloud droplet size distribution moments. 

The last two conclusion points need to be confirmed by running AMP in a 3D 
model with all processes occurring simultaneously. Implementation of AMP in
a 3D model will be done in the future to further investigate and substantiate 
these results. The current results will serve as a basis for interpreting the 
results obtained in a 3D model.

Finally, it is important to frame the conclusions drawn above.  The 
suggestions made by AMP are very general and only apply strictly to what 
may be thought of as the ideal bulk scheme.  Existing bulk schemes behave 
in non-ideal ways.  Therefore, in practice, real-world bulk schemes may not 
actually perform best when predicting the moments suggested above.  
Rather, what our results show is that an ideal bulk scheme with physical 
parameterizations as good as those in the bin scheme will behave best with 
the predicted moments above.  As we continue to improve bulk schemes 
with better physics, the results should become ever more relevant.
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Appendix

Here the procedure for determining the parameter values for n(D) at the 
start of the microphysics routines is described. The variable first, second, 
and third predicted moments will be referred to as the Ist, IInd and IIIrd 
predicted moments, respectively.  Note, for example, that the IInd predicted 
moment is not necessarily the 2nd moment of a PSD. The IInd predicted 
moment instead is the second predicted moment and can take on any value 
(i.e. it is arbitrary) except for the 3rd.  In standard bulk microphysics 
schemes, the Ist predicted moment is the 3rd moment and the IInd predicted 
moment is the 0th moment.  

To start, it is important to point out that there are two sets of moments in 
the AMP scheme. The first is the set of moments predicted by the bin 
scheme, M j❑

p . The subscript j is the moment number.  For example, M3❑

p  is the
Ist predicted moment and M0❑

p  is the IInd predicted moment in standard 
double-moment bulk schemes. At the start of the microphysics routines, the 
predicted moments are used to find parameters of n(D). Once n(D) is known,
any moment of n(D), not just the Ist, IInd and IIIrd moments, may be calculated.
This brings us to the second set of moments, which are those moments 
diagnosed from n(D) and denoted by M j❑

d . The goal at the start of each call to
the microphysics routines is to find a set of parameters r0 ,ν ,Dn of n(D) such 
that M j❑

p
= M j❑

d  for each hydrometeor type. At the end of each call to the 
microphysics routines, the values of M j❑

p  are updated by calculating the 

corresponding values of M j❑

d . 

Moments of a continuous distribution are calculated by integrating n(D) 
multiplied by a power of D over all diameters from 0 to ∞. In the model, the 
distribution is discretized which requires us to know the discrete value of 
dlnD, also known as the bin width (w). For the case of mass-doubling bins, w 
= ln(2)/3 for all bins.  The moments M j❑

d
 are then calculated as

M j❑

d = ∑
i=1

nbins

n (Di ) Di
jw                                                                                     

(A1)

To solve for the parameter set, we first recognize that r0 is independent of Dn

and ν and that all moments are directly proportional to r0. This means that 
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we can initially choose an arbitrary, temporary value of r0 that we will call 
r0temp for use in calculating M j❑

d  for all j. In that case M j❑

d
/ M j❑

p  is a constant for 
all values of j. Specifically,

 
M j❑

d

M j❑

p
=

r 0temp

r0

                                                                                               

(A2) 

Once Dn and ν are calculated, r0 can be solved for analytically using Eq. A2 
and then values of M j❑

d  can be recalculated with the updated (true) value of 

r0 such that M j❑

p
= M j❑

d . 

For complete gamma PDFs, equations exist to solve analytically for Dn and ν. 
However, binned distributions inherently represent doubly-truncated 
distributions that span from the smallest bin’s diameter to the largest bin’s 
diameter. Analytical solutions for Dn and ν do not exist for truncated, 
incomplete gamma PDFs. To solve for these two parameters, we instead use 
iterative routines to minimize the error of M j❑

d
 compared to M j❑

p . Values of M j❑

d

can be calculated at any point during the iterative procedure from the 
current guesses of the parameter values. The goal is to ensure that at the 
end of the iterative procedure that Eq. A2 is satisfied.

From Eq. A2 we can write 
MII❑

p

M3❑

p
=

MII❑

d

M3❑

d  and 
MIII❑

p

M3❑

p
=

MIII❑

d

M3❑

d

or

1−
M II❑

p

M3❑

p

M3❑

d

MII❑

d
=0 and 1−

M III❑

p

M3❑

p

M3❑

d

M III❑

d
=0                                                            

(A3)
if the correct values of Dn and ν have been determined. If the correct values 
of Dn and ν have not been determined, then the left-hand sides of (A3) can 
be evaluated to quantify the error associated with the current values of Dn 
and ν.  The Fortran Minpack hybrd1.f routines are used to iteratively 
minimize the absolute value of the LHSs of Eq. A3. The performance of this 
routine (and all iterative solvers) depends crucially on the first guess for the 
parameters. To determine a first guess, we use either the values of the 
parameters from the previous timestep, or we use look-up tables. The look-

up tables are functions of 
MII❑

p

M3❑

p  and 
MIII❑

p

M3❑

p .  Once Dn and ν have been 

determined, Eq. A2 is used with M3❑

p  to solve for r0. These lookup tables were 
constructed in MATLAB by systematically creating binned distributions with 4
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million combinations of Dn and ν, calculating values of 
MII❑

p

M3❑

p  and 
MIII❑

p

M3❑

p , and 

inverting the data to make Dn and ν functions of 
MII❑

p

M3❑

p  and 
MIII❑

p

M3❑

p  in the tables.

It is possible to predict values of M j❑

p  for which no solution exists in both the 
double- and triple-moment configurations. In this case we ensure that
M3❑

p
= M3❑

d , and additionally if possible that MII❑

p
= M II❑

d  in the triple-moment 
configurations. Therefore, mass is always conserved by AMP. In this case, 
values of M j❑

p  are updated by finding the change in the initial and final values
of M j❑

d  and adding it to M j❑

p .
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Figure Captions

Figure 1. A flow chart depicting the steps taken in AMP to predict moments 
of one hydrometeor species. 
Figure 2. Box and whisker plots of the percent errors of the AMP simulations
relative to the BIN simulations after one minute of condensation for the a) 
0th, b) 3rd, and c) 6th moments of the cloud droplet distributions. Boxes show 
the 25th, 50th, and 75th percentiles of the error distributions, and whiskers 
show the 5th and 95th percentiles. See the text for more details.
Figure 3. Like Figure 2 except for (a) cloud droplet mean diameter and (b) 
cloud droplet effective diameter.

20

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

828
829

830
831
832
833
834
835
836
837
838



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems

Figure 4. Evolution of the median percent error (a-c) and median 
normalized moment values (d-f) during evaporation for the (a, d) 0th, (b, e) 
3rd, and (c, f) 6th moments of the cloud droplet size distribution. 25th and 75th 
percentile values are shown intermittently. In (d-f), the median evolution of 
the bin simulations is shown by the black dashed line. Note that the x-axes in
all panels are defined such that the black dashed line in (e) is straight.
Figure 5. As in Figure 4 except for the collision-coalescence tests.
Figure 6. Fraction of 2M AMP simulations in each configuration that have 
too few droplets in the largest cloud droplet bin (the right tail of the cloud 
droplet size distribution) when the distribution is initialized as a gamma PDF 
at the start of a time step compared to the explicit size distribution from 
which the moments are calculated at the end of the previous time step. The 
fractions are shown as a function of the time in the corresponding bin 
simulations at which a given fraction of the cloud mass remains unconverted 
to rain water (as in Figure 5).
Figure 7. Median across 2M AMP simulations (average of all three 
processes) in each configuration of the time-averaged absolute normalized 
error of the 0th through 6th moments of the cloud droplet size distribution. 
The black and gray lines show the mean average absolute error of the 0th-3rd 
moments and 0th-6th moments, respectively. Circles indicate the 
configuration with the lowest average error for each line.
Figure 8. Median across all AMP condensation simulations in each 3M 
configuration of the time-averaged absolute normalized error of the 0th 
through 6th moments of the cloud droplet size distribution. The light and dark
orange bars show the mean average absolute error of the 0th-3rd moments 
and 0th-6th moments, respectively. ‘x’s and ‘o’s indicate the configuration 
with the highest and lowest average error, respectively, for each set of bars 
with the same color. Errors in (a-d) for the 0th moment are not shown and are
generally about 10-10.
Figure 9. As in Figure 8 except for the evaporation simulations.
Figure 10. As in Figure 8 except for the collision-coalescence simulations.
Figure 11. As in Figure 8 except for the average across all process 
simulations.
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