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Abstract Carcinogenesis and cancer progression are often modeled using population dy-
namics equations for a diverse somatic cell population undergoing mutations or other
alterations that alter the fitness of a cell and its progeny. Usually it is then assumed, paral-
leling standard mathematical approaches to evolution, that such alterations are slow com-
pared to selection, i.e., compared to subpopulation frequency changes induced by unequal
subpopulation proliferation rates. However, the alterations can be rapid in some cases. For
example, results in our lab on in vitro analogues of transformation and progression in car-
cinogenesis suggest there could be periods where rapid alterations triggered by horizontal
intercellular transfer of genetic material occur and quickly result in marked changes of
cell population structure.

We here initiate a mathematical study of situations where alterations are rapid com-
pared to selection. A classic selection-mutation formalism is generalized to obtain a
“proliferation-alteration” system of ordinary differential equations, which we analyze us-
ing a rapid-alteration approximation. A system-theoretical estimate of the total-population
net growth rate emerges. This rate characterizes the diverse, interacting cell population
acting as a single system; it is a weighted average of subpopulation rates, the weights
being components of the Perron–Frobenius eigenvector for an ergodic Markov-process
matrix that describes alterations by themselves. We give a detailed numerical example
to illustrate the rapid-alteration approximation, suggest a possible interpretation of the
fact that average aneuploidy during cancer progression often appears to be comparatively
stable in time, and briefly discuss possible generalizations as well as weaknesses of our
approach.

Keywords Carcinogenesis · Somatic cell population diversity · Proliferation · Fitness
alterations · Evolutionary ecology · Replicator-mutator equations
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Abbreviation
“Alteration” refers to changes that can affect the fitness of a somatic cell and its progeny,

for example, any of the following: point mutations in important genes,
other comparatively small-scale DNA modifications, larger-scale DNA
gains or losses, chromosome rearrangements such as translocations,
changes in chromosome copy number, or persistent epigenetic changes.

1. Introduction

When analyzing carcinogenesis, one needs to consider various kinds of alterations in so-
matic cells that can be inherited by daughter cells and change fitness. In addition to point
mutations in important genes, there are other comparatively small-scale DNA changes,
larger scale structural chromosomal changes such as translocations and chromatin du-
plications or deletions (Mitelman et al., 2007), persistent epigenetic modifications (Chin
and Gray, 2008; Vucic et al., 2008), changes in chromosome copy numbers (Duesberg
et al., 2005; Chi and Jeang, 2007), horizontal transfer of genetic materials (Bjerkvig et al.,
2005), etc.

Carcinogenesis and tumor progression are often modeled as evolutionary or ecological-
evolutionary processes for a diverse somatic cell population whose subpopulation fre-
quencies change due to selection (i.e., to heritably different net proliferation rates)
or to random drift (reviewed in Gatenby and Vincent, 2003; Michor et al., 2003;
Frank and Nowak, 2004; Nagy, 2004; Komarova, 2005; Merlo et al., 2006). For ex-
ample, the classic two-stage clonal expansion carcinogenesis model and its gener-
alizations assume one or more initiation alterations, each typically followed by a
prolonged period of clonal expansion, then a further malignant-transformation al-
teration, and then tumor progression (reviewed in Moolgavkar and Luebeck, 2003;
Little et al., 2008).

Usually these evolutionary approaches to carcinogenesis assume that selection is rapid
compared to the time interval between fitness-altering alterations, paralleling analyses of
species evolution where relevant mutations occur very infrequently compared to the life-
time of an organism. For example, one often starts by considering a zeroth-order limiting
case where cell mutation rates are negligible and then estimates the effects of infrequent
mutations perturbing this zeroth-order approximation (e.g. Michor et al., 2005). Even in
analyses of “stochastic tunneling,” where several alterations may occur before selection
or random drift result in a complete takeover of a cell population niche by a subpopula-
tion (Iwasa et al., 2004), the alteration rate is usually considered small compared to the
proliferation rate.

However, in some situations, e.g., situations involving chromosomal instability (Yuen
and Desai, 2008), time-dependent aneuploidy (Duesberg et al., 2007), horizontal trans-
fer of genetic material or cell fusion (Bjerkvig et al., 2005), or mitochondrial mutations
(Coller et al., 2001), the alterations can be rapid compared to selection. Rapid alterations
call for starting from a zeroth-order approximation different from the no-alteration or
slow-alteration approximations usually considered. Our goal is to devise a mathemati-
cal/computational approach to cell population dynamics that can systematically approxi-
mate situations where alterations are rapid.
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To this end, we first introduce a proliferation-alteration system of ordinary differential
equations which generalizes selection-mutation systems suggested earlier (Hofbauer and
Sigmund, 1998; Marx et al., 2007). The proliferation-alteration system has the following
three properties, which have not previously, as far as we are aware, been combined in a
cell population dynamics approach.

• The equations involve cell subpopulation numbers rather than just subpopulation fre-
quencies.

• Rather than just tracking independent subpopulations, the equations incorporate cell-
cell interactions of a general type; such interactions are currently believed to play an
important role in radiation-induced carcinogenesis and cancer progression (reviewed,
e.g., in Sachs et al., 2005; Weinberg, 2007). Specifically, each subpopulation prolifera-
tion rate can depend nonlinearly on all the cell subpopulation numbers.

• In contrast to typical replicator-mutator equations (reviewed, e.g., in Page and Nowak,
2002; Komarova, 2005), our equations have alteration terms which are explicitly sep-
arated out from proliferation terms and are comparatively simple, allowing the imple-
mentation of a “rapid-alteration” approximation procedure.

As a zeroth-order approximation, we analyze the effects of the alteration terms alone.
In the special case that will be emphasized here, this zeroth-order approximation reduces
to the differential equations of an ergodic Markov process, so that many standard tech-
niques, for example, the potent Perron–Frobenius theory of nonnegative matrices (Minc,
1988), can be brought to bear (Kijima, 1997). As first-order effects modulating the zeroth-
order approximation, we then take into account heterogeneous subpopulation prolifera-
tion rates, using a “slowly varying amplitude” approach which has some similarities to
the WKBJ approximation of quantum mechanics (Griffiths, 2004) and to approximations
used in deriving geometric from physical optics (Born et al., 1999). Under surprisingly
general conditions, this approach leads to a system-theoretical estimate for the net growth
rate (positive or negative) of the diverse, interacting cell population considered as a whole,
somewhat similar to the asymptotic overall Malthusian parameter for a heterogeneous
population with asymptotically stable subpopulation frequencies at large times.

A specific example, illustrating the proliferation-alteration formalism and accuracy
estimates for the rapid-alteration approximation will be given; the example grew out of
a preliminary mathematical analysis of experiments studying aneuploidy during in vitro
analogues of transformation and progression in our laboratory, but will here be treated
simply as a computational example. We will also discuss briefly the following points:

• The rapid-alteration approximation could give new insights into other scenarios, espe-
cially for human solid tumors and in vitro analogues, where an unexpected degree of
karyotype stability is often found despite highly heterogeneous aneuploidy at each in-
stant (Nowell, 1976; Eshleman et al., 1998; Macville et al., 1999; Roschke et al., 2002;
Jin et al., 2005; Li et al., 2009).

• The formalism can be generalized, for example, by considering a state space which is
a direct sum of state spaces for each one of which our assumptions hold.

• The approach has weaknesses. For example, the case where proliferation rates are com-
parable to alteration rates, which is important in some cancer progression scenarios, is
no more amenable to our treatment than it is to older treatments that assume selection
is rapid compared to alteration.
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2. Mathematical methods

2.1. Assumptions

We consider a diverse system of somatic cells, modeled as a population where the num-
ber of cells in the j th subpopulation at time t is represented by a smooth nonnegative
function yj (t). We assume there are N + 1 different cell subpopulations, “states,” la-
beled by j = 0,1,2, . . . ,N (letting j run from 0 to N rather than 1 to N keeps con-
sistency with some of our main references); generalizations to infinite state-spaces are
outlined in the Discussion section, but our application to data, and our formal devel-
opments here, will use finite N . Different cell subpopulations are thought of as being
characterized by their own heritable, fitness-influencing genomic, and/or epigenetic con-
figurations. The treatment will not attempt to take into account the fact that subpopula-
tion numbers yj are in some scenarios more realistically modeled as random functions
of time which jump from nonnegative integer to nonnegative integer as the cell pop-
ulation, subject to demographic/stochastic fluctuations, develops in time. The underly-
ing picture is thus deterministic rather than stochastic, despite our later use of Markov
process theory as a mathematical tool. A partial justification for this deterministic ap-
proach is that the phenomenon of subpopulation extinction, which is often the main rea-
son for replacing a deterministic by a more detailed stochastic analysis (e.g. Tan, 2002;
Sachs et al., 2007), is not as important in the present context as in many other population
dynamics models, because on the present picture rapid alterations can rapidly resurrect an
extinct subpopulation.

We will assume the time-development of the cell population is governed by the fol-
lowing proliferation-alteration system of ordinary differential equations:

dyk

dt
= ykfk(y0, y1, . . . , yN) +

N∑

j=0

yjQjk, k = 0,1, . . . ,N. (1)

Here:

(1) fk , modeling net proliferation rates, is a smooth function of the subpopulation num-
bers yj (t). For example, fk might be a net proliferation rate constant λk , and if fk is
a given constant for each k then Eq. (1) is a linear system for the unknowns yk(t).
More generally, one might have intercellular interactions, leading to density or other
types of population-dependence. Then fk could be a logistic term λk(1 − yk/Kk); or
it could be a Lotka–Volterra sum, i.e., fk = [λk +∑N

j=0 yjajk] with ajk real constants
(Hofbauer and Sigmund, 1998); or it could be some more complicated function.

(2) Qjk are real constants (independent of time and of subpopulation numbers) compris-
ing the elements of the transition matrix Q of a continuous-time Markov process.
That is, all off-diagonal elements of Q are nonnegative and

∑N

k=0 Qjk = 0 for each j

(Kijima, 1997).

The proliferation-alteration system, Eq. (1), is time-homogeneous, i.e., time does not
appear explicitly. The intercellular interactions (if any) are contained in the dependence,
if any, of fk on the subpopulation numbers.



A Rapid-Mutation Approximation for Cell Population Dynamics 363

2.2. Total population and subpopulation frequencies

Instead of the dependent variables yj (t) we will usually use an equivalent set, consisting
of the total population number, which we designate P (t), and the subpopulation frequen-
cies xk(t). Thus,

P (t) =
N∑

j=0

yj (t) and xk(t) = yk(t)/P (t). (2)

Each xk(t) is nonnegative and Eq. (2) implies that
∑N

j=0 xj (t) = 1. Thus, we may regard
the population frequencies as a discrete probability distribution: xk(t) is the probability
that at time t a cell is in subpopulation k.

Substituting Eq. (2) into Eq. (1) gives, after a few manipulations, an equivalent equa-
tion set:

(a) dP/dt = 〈f 〉P, and (b) dxk/dt = xk

[
fk − 〈f 〉] +

N∑

j=0

xjQjk;

where (c)
N∑

j=0

xj (t) = 1, and (d) 〈f 〉 ≡
N∑

j=0

xjfj .

(3)

Here, 〈f 〉 is the population average proliferation rate at one instant; fk − 〈f 〉 is the
instantaneous relative fitness of the kth subpopulation (Hofbauer and Sigmund, 1998).
Summing the right-hand side of Eq. (3b) over k gives zero, as required for consistency
with Eq. (3c).

Equation (3b) is more general than a selection-mutation equation suggested earlier
(Hofbauer and Sigmund, 1998, Eq. 20.4) inasmuch as fk can be any smooth function
of the subpopulation numbers yj = Pxj . Moreover, Eq. (1) and thus Eq. (3) differ from
replicator-mutator equations in the literature (e.g. Page and Nowak, 2002) in two main
ways:

(1) They involve subpopulation numbers, not just subpopulation frequencies.
(2) In Eq. (1) and Eq. (3b), the alteration terms, involving Q, are explicitly separated from

the proliferation terms and are linear in the dependent variables. The idea behind
assuming linearity of the alteration terms is that alteration may be less sensitive to
signals from other cells than proliferation, which is very responsive to such signals
because for normal cells regulation by the local microenvironment is the key factor in
organized tissue growth.

In the present preliminary analysis, we will unless explicitly stated to the contrary,
always assume that Q is an irreducible matrix; generalizations are outlined in the Discus-
sion section. Under our above assumptions about Q, irreducibility of Q is equivalent to the
condition that the matrix exp[Q] ≡ ∑∞

n=0(Q
n/n!) has no zero elements (Kijima, 1997),

and this irreducibility also implies a number of other useful properties, listed under Eq. (4)
below.
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2.3. Vector notation

In analyzing Q, it will sometimes be convenient to use vector notation. Because Q is
not in general symmetric, we need to distinguish systematically between row-space and
column-space. We will use the following conventions, based on the conventions of our
main reference on Markov processes (Kijima, 1997). Boldface lower case letters x, y, z,
etc. denote column vectors with N + 1 components, e.g., y = (y0, y1, . . . , yN)T, where T
denotes the transpose. The column vector each of whose components is 1 is denoted by 1,
so that our condition

∑N

k=0 Qjk = 0 above can be written Q1 = 0. In this notation, yTz =
zTy is the scalar sum

∑N

j=0 yj zj ; for example, our above relation between subpopulation
frequencies x(t) and subpopulation numbers y(t) can be written x = y/(1Ty). However,
yzT is the tensor product, i.e., it is a matrix, with matrix elements yj zk .

2.4. Zeroth-order solutions

Corresponding to our rapid-alteration assumption we consider, as our zeroth-order ap-
proximation, the equation obtained by neglecting the proliferation terms in Eq. (1) or
equivalently in Eq. (3). Setting fk = 0 in Eq. (3b) and writing the zeroth-order approxi-
mation to x as w gives the following zeroth-order equations

dwT/dt = wTQ, where wT1 = 1. (4)

Equation (4) means that our zeroth-order analysis is formally identical to analyzing a con-
tinuous time, time-homogeneous Markov process with infinitesimal generator Q (Kijima,
1997). Under our default assumption that Q is irreducible, standard results about nonneg-
ative matrices and Markov processes (Kijima, 1997) show the following properties of Eq.
(4), of Q, and of the eigenvectors of Q.

(1) Given the initial condition w(0) = a with a a nonnegative vector obeying aT1 = 1,
there is a unique solution of Eq. (4) for t ≥ 0, namely wT(t) = aT exp[Qt]. For all
t > 0, all matrix elements of exp[Qt] and all components of w(t) are greater than
zero.

(2) There is a unique vector π characterized by the following two conditions: πTQ = 0
and πT1 = 1. πT is called the Perron–Frobenius left eigenvector of Q. Importantly,
every component of π is real and positive. The (N + 1)-dimensional space of row
vectors is the direct sum of the 1-dimensional subspace spanned by πT and the N di-
mensional subspace V characterized by: zT1 = 0 for all zT in V . Right multiplication
by Q is an isomorphism of V onto itself. Any left eigenvector of Q not proportional
to πT lies in V , and the corresponding eigenvalue has a negative real part.

(3) πT is a time-independent solution of Eq. (4). Moreover, for any initial vector w(0) = a
with aT1 = 1, limt→∞ w(t) = π . The intuitive picture corresponding to πT is that of
a dynamic steady state: rapid alterations take place, but in steady state, the alterations
that move cells into any subpopulation are balanced by alterations which remove cells
from that same subpopulation, so that the frequency of each subpopulation remains
constant, the constant being the corresponding component of π . Note also an ergod-
icity property: even if there is initially just a single subpopulation, each subpopula-
tion frequency eventually approaches the positive value given by the corresponding
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component of π , such that the additional alterations (which then still occur) do not
subsequently alter the subpopulation frequencies. Often it is reasonable to use π as
an approximation for the initial value of the subpopulation frequencies, correspond-
ing to a scenario where the subpopulation frequencies have more or less settled down
before the first experimental observation is made.

(4) For t large,

π − w = O
(
e−ρt

)
component by component. (5)

Here, ρ is positive and −ρ is the largest (i.e., least negative) real part for any nonzero
eigenvalue of Q. ρ is called the decay parameter, and e−ρ corresponds to the coeffi-
cient of ergodicity of an ergodic discrete-time Markov chain; various rather sophis-
ticated approximations are available for estimating the decay parameter ρ (Kijima,
1997).

2.5. First-order and exact solutions

First-order modulations of the solutions to the zeroth-order approximation discussed
above were calculated using perturbation theory, as described in the next section. The
steady state solution π , other zeroth-order solutions, solutions of the first-order equa-
tions, and corresponding solutions of the full proliferation-alteration system, Eq. (1), were
obtained numerically in a specific example; these zeroth and first-order approximations
were compared to the full solutions. Throughout, Fortran and Mathematica were used in
computational implementations.

3. First-order approximation

In accordance with our rapid-alteration assumption, we assume that to zeroth-order the
subpopulation frequencies are given, apart from a possible brief initial transient not es-
sential to the overall process, by the Perron–Frobenius eigenvector, x = π , independent
of time. Then we implement a standard perturbation scheme as follows. Introduce a
formal perturbation parameter ε, regarded intuitively as “small” but to be set equal to
1 at the end of the calculation; replace the proliferation rate fk by εfk everywhere in
our basic proliferation-alteration system, Eq. (3), to make explicit the assumption that
fk is small; expand the vector x of subpopulation frequencies in a formal power series
x = π + εb(t) + ε2c(t) + · · · , where bT1 = 0 = cT1, etc.; expand Eq. (3b) systematically
as a formal power series in ε and require the coefficients of εn to match, to obtain an
equation for the nth approximation; in Eq. (3a) retain only terms up through order εn in
the nth approximation. The procedure is similar to the WKBJ approximation in quantum
mechanics (Griffiths, 2004). We shall in this paper consider only the first-order modula-
tion of the zeroth-order solutions. The intuitive picture is that comparatively slow (though
cumulative) changes in total cell number P (t) occur due to net proliferation, and slight
deviations b(t) of subpopulation frequencies from the steady state frequencies given by
π occur due to heterogeneous proliferation rates, but rapid alterations hold the subpopu-
lation frequencies close to π .
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Carrying out the perturbation calculation outlined above gives for Eq. (3a) to first-
order:

dP1/dt = P1〈f 〉1, where 〈f 〉1 =
N∑

k=0

πkfk1 and

fk1 = fk(P1π0,P1π1, . . . ,P1πN). (6)

Here, 〈f 〉1 is the average fitness to first-order and P1 denotes the first-order approximation
to total population number. The only unknown in this equation is P1 (b has dropped out),
so we regard the equation as determining P1(t) from its initial value P1(0). The intuitive
picture for Eq. (6) is that when alterations are rapid the population, though diverse, tends
to grow or decrease as a unit. For example, if one cell subpopulation has a comparatively
large net proliferation rate, the result is not that the frequency of that subpopulation in
the total population increases markedly. Rather, that subpopulation also loses many cells
through alterations; the altered cells increase the cell numbers of other cell subpopula-
tions, and thus the high fitness of one cell subpopulation contributes to the overall growth
of the entire population rather than just the growth of the highly fit subpopulation. Accord-
ing to Eq. (6), when the population grows as a unit, its overall Malthusian parameter is
〈f 〉1 and is obtained as a weighted average of the subpopulation growth rates, the weights
being the components of the Perron–Frobenius eigenvector π .

For Eq. (3b), the calculation gives to first-order

dbk/dt = πk

[
fk1 − 〈f 〉1

] +
N∑

j=0

bjQjk ≡ gk +
N∑

j=0

bjQjk. (7)

In general, we must regard the vector g, with components πk[fk1 −〈f 〉1], as a function
of time, g(t), due to the possible dependence of fk on the numbers in the various subpop-
ulations which in turn depend on time through P1(t) (compare Eq. (6)). We regard Eq. (7)
as a system of equations for the unknowns bk(t),π being known from the zeroth-order
calculation and P1 being known from solving Eq. (6). In general, Eq. (6) is nonlinear;
however, the system (7) is linear in the unknowns, so we can obtain an explicit solution,
namely

bT(t) = bT(0) exp[Qt] +
∫ t

0
dsgT(s) exp

[
Q(t − s)

]
. (8)

Equation (8) can be interpreted by standard methods for linear differential equations,
in terms of influence operators (i.e., Green’s functions), as follows: (a) the initial value
bT(0) is carried forward to time t by the influence operator exp[Qt] that tracks alterations;
and (b), for the term in Eq. (8) involving the integral that same influence-operator carries
forward from s to t the small increment dsP (s)gT(s) added to bT by proliferation during
the short time interval ds near s.

A useful point is that the entire time development of b refers to an N -dimensional
subspace V , characterized by zT1 = 0 and discussed above, of (N + 1)-dimensional row-
space. V is invariant under right multiplication by Q, only the restriction of Q to this
subspace is relevant to the time development of b, and the eigenvalues of that restriction
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all have negative real parts. To make these points explicit, one can introduce the projection
matrix S = I − 1πT, where I is the identity matrix. Right multiplication of row vectors by
S projects row-space onto V . Moreover, S2 = S, SQ = QS = Q, bTS = bT, and gTS = gT.
Multiplying Eq. (8) on the right by S and using these identities gives an equation explic-
itly restricted to V . Thus, for t > 0, the influence operator exp[Qt] acting on V should
be regarded conceptually as having an overall damping term exp[−ρt], where ρ is the
decay constant for Q (see Eq. (5)); similarly the influence operator under the integral
corresponds to decay at least as rapidly as exp[−ρ(t − s)] with (t − s) ≥ 0. Intuitively
speaking, Eq. (8) thus indicates an interplay between proliferation and alteration: when
proliferation causes an incremental change in b the cell subpopulation frequencies are
pulled away from π somewhat, but alterations are constantly tending to force the subpop-
ulation frequencies back toward π , i.e., tending to decrease b to zero.

4. Example

We illustrate the formalism with an example. The example, including some of the para-
meters chosen, was motivated by experiments in our laboratory which will be reported on
elsewhere. Here, we will present a purely computational analysis, comparing solutions of
our basic proliferation-alteration Eq. (1) with the zeroth-order solution π for subpopula-
tion frequencies and with solutions of the first-order Eqs. (6) and (7). The results illustrate
in a specific case how the accuracy of our zeroth- and first-order approximations depends
on the rapidity of the alterations.

4.1. Mathematical formulation of the example

Mice have 21 chromosome types, namely autosomes 1–19, X, and Y. Consider a mouse
cell population whose cells sometimes fuse with other cells, thereby increasing the chro-
mosome number in the fused cell, and sometimes lose some of their chromosomes, result-
ing overall in heterogeneous aneuploidy. This aneuploidy situation in vitro is regarded as
being a biological model for mouse and human solid cancers, which typically also show
heterogeneous aneuploidy (Mitelman et al., 2007).

The number of chromosomes of each type in a given metaphase cell can be determined.
Focus attention on one particular autosome type. For the sake of our example, assume
viable cells have at most 8 chromosomes of this type, compared to the normal chromo-
some copy number of 2, and divide the cell population into nine subpopulations yj (t)

(j = 0,1, . . . ,8) according to the copy number in that cell. Suppose the proliferation-
alteration equations (1) above hold with the proliferation terms ykfk determined by a
logistic form fk = [1 − (P/ζ )]μk , where P (t) is the total population number as before,
ζ is a positive constant interpreted as an over-all carrying capacity, and each μk is a real
constant giving the net proliferation rate for the kth subpopulation when P/ζ 	 1; thus,
μ tracks how copy number influences net cell proliferation. In this mathematical example,
we do not attempt to track the influence of copy numbers for the other 20 chromosome
types.

The alteration matrix Q for our example can be written in the form Q = γ R, where γ

is a dimensionless overall scale factor and R is a matrix whose nonzero elements Rkj are
given by Table 1.

Here, for γ = 1, the parameters have the following interpretations:
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Table 1 The positive parameters α,β , and ψ are rate constants: α for the addition of two chromosomes
by fusion; β and ψ for chromosome loss. For each k the kth row sum of R is zero, as required

k Rk,k−1 −Rk,k Rk,k+2

0 • α α

1–4 kβ α + kβ α

5, 6 k[β + (k − 4)ψ] α + k[β + (k − 4)ψ] α

7, 8 k[β + (k − 4)ψ] k[β + (k − 4)ψ] •

• α is a rate constant for a cell in the population to fuse with a cell of an external, ambient,
normal cell population, presumed to have the same cell density throughout the entire
process. The result of such a fusion is to increase the copy number by 2.

• β is the rate at which chromosomes copy number decreases by 1, e.g., due to a lag-
ging chromosome entering a micronucleus (Thompson and Compton, 2008) and sub-
sequently getting lost.

• ψ describes accelerated chromosome loss for copy number greater than 4.

To recapitulate, our example is defined as follows:

(1) P (t) ≡ ∑8
j=0 yj (t) ≡ yT1 is the total cell population number.

(2) The parameters are the scale factor γ , the carrying capacity ζ , three aneusomy rate
parameters (α,β,ψ), and the proliferation rate constants μk.

(3) Equation (1) determines the time dependence for the vector y(t) of subpopulation
numbers, with fk = [1 − (P/ζ )]μk , Q given by Q = γ R, and R given by Table 1.

(4) πTQ = 0 and πT1 = 1 determine the zeroth-order approximation π to the subpopu-
lation frequencies x ≡ y/yT1.

(5) Equation (6) gives the first-order approximation P1(t) to total population number.
(6) Equation (7), which is equivalent to Eq. (8), gives the first-order approximation,

b(t) = x(t) − π , to the deviation of subpopulation frequencies from π .

The example has two convenient scaling properties. First, if every parameter except the
scale factor γ and the carrying capacity ζ (i.e., every parameter with dimensions of inverse
time) is multiplied by a positive factor and the time scale is multiplied by the same factor,
the equations remain invariant. We can and shall take advantage of this scaling property
to set α = 1, without essential loss of generality; this convention is equivalent to using the
dimensionless time τ = αt . Second, if y and the carrying capacity are multiplied by the
same positive factor, the equations remain invariant. We can and shall take advantage of
this second scaling property by setting the initial value of P to 1.

To illustrate the formalism, we used the following default values for the parameters:
carrying capacity ζ = 10 (i.e., ten times as large as the initial cell population size), pro-
liferation rates μ = {−0.01, 0.03, 0.03, 0.2, 0.03, 0.03, 0.02, 0.01, −0.01}T, and aneu-
somy rates (α = 1, β = 0.2,ψ = 0.45). With these aneusomy rates, the Perron–Frobenius
eigenvector π has components π ≈ {0.0062, 0.031, 0.093, 0.21, 0.37, 0.18, 0.084, 0.024,
0.0052}, roughly equal to observed ploidy distributions. The values of μ specify a hy-
pothetical growth advantage (large relative fitness) for trisomy, and growth disadvantages
especially for nullisomy or copy number higher than 5. Note that here the smallest nonzero
entry of R equals maxk |μk|. With this condition, which involves no essential loss of gen-
erality, γ acquires an intuitive interpretation as a “rapidity parameter,” a measure of how
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Fig. 1 Effects of transients on the solutions of Eq. (1). Panels A and C show the time dependence of
subpopulation numbers, expressed as percentages of the overall carrying capacity ζ , for rapidity parameter
γ = 1 and for the following two different initial conditions: (a) y(0) is the Perron–Frobenius eigenvector;
or (b) y(0) is for a purely diploid population, i.e., y2(0) = 1 and yk(0) = 0 if k �= 2. After the initial
transient has decayed away, there is little difference in the curves. Panel A shows, as one example, the
results for y2 and panel C is for y3 as one additional example. Panel B shows the ratio of the two curves
in panel A, and shows corresponding ratios for other values of the rapidity parameter. Similarly panel D
shows the ratio of the curves in panel C and corresponding ratios for the other values of γ . The transients
decay more quickly, and the curves are thereafter more nearly identical, for larger rapidity parameters. The
decay parameter for R is ρ ≈ 0.755, i.e., −0.755 is the least negative real part for any nonzero eigenvalue
of R; since Q = γ R, γρ governs the rate of approach of subpopulation frequencies to π (Eq. (5)). The
effect of the initial conditions on all other components of y, and on the total cell population number P(t),
is even smaller than in the two examples shown.

big the rate constants in the alteration matrix Q are compared to the rate constants for
proliferation.

With these parameter values, we analyzed how the solutions of our equation depend
on rapidity parameter γ and on time. Figure 1 examines transients; Figs. 2 and 3 give
insights into the accuracy of the rapid alteration approximations.

4.2. Dependence of solution on initial conditions

In order to specify a unique solution of the differential equation system (1), one need only
specify the subpopulation frequencies at time t = 0, the initial value of the total popula-
tion P being set to 1 without essential loss of generality by our above conventions. One
reasonable assumption is that the initial subpopulation frequencies are the components of
π , appropriate for a situation where transients have damped out before we first observe
the population at t = 0. In that case the appropriate assumption for the initial value of the
frequency deviation b is b(0) = 0. For any other initial condition there are initial tran-
sients which, however, die out rapidly if the rapidity parameter γ is at least 1, as indicated
in Fig. 1. The transients are not really relevant to our argument and henceforth we shall
always use the initial condition x(0) = π .
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Fig. 2 Total cell number. The figure shows P(t) obtained from numerical integration of the prolifera-
tion-alteration Eq. (1) using our default parameters described above and using values of the rapidity para-
meter given on the figure, from γ = 0.1 to large values (indicated by the limiting curve γ = ∞). The insert
shows a magnified view of part of the curves for γ = 1, γ = 3, and γ = ∞. The first-order approximation
P1(t) is independent of rapidity parameter and coincides with the γ = ∞ curve. For rapidity parameter
≥3, the first-order approximation is accurate within a few percent over the full range of times, as indicated
by the figure.

4.3. First-order approximation

For the total cell number P (t), the full result, without rapid-alteration approximations,
is obtained by integrating Eq. (1) numerically and summing the components of y. The
first-order approximation, P1(t), is obtained by integrating Eq. (6). Equation (6) happens
in this case to reduce to the logistic equation and thus have an explicit analytic solution,
namely P1(t) = ζ exp[νt]/(ζ + exp[νt] − 1) where ν = πTμ. Thus, P1(t) is independent
of the rapidity parameter γ . As illustrated in Fig. 2, if γ ≥ 1, then P1(t) is close to P (t)

for all times t; the difference goes to zero pointwise as γ → ∞.
Figure 3 shows that a similar situation holds for the subpopulation frequencies. For

rapidity parameter at least 1, the deviations from the zeroth-order values π are small, and
in addition the first-order approximation to these small differences is highly accurate.

5. Discussion

The implication of our main result, Eqs. (6) and (7) is that during very rapid alteration
phases cancer should be modeled as a diverse “ecological” system of interacting cells,
rather than as one increasingly malignant clone. For example, suppose that one subpopu-
lation proliferates rapidly, that another is slow growing but invasive, that the first can alter
rapidly into the second, and that the two are synergistic. Then the two subpopulations
grow in step, and it is their interrelation rather than the individual properties of either
which is the key to carcinogenesis.

This scenario of interacting populations gives a mechanism for maintaining the clonal
heterogeneity that is typical of late (progression) stages of solid tumors. Cancers and
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Fig. 3 Comparing exact and approximate calculations for individual subpopulations. The parameters used
for the figure are the default parameters together with rapidity parameter γ = 1. Panel A shows components
dk(t) = [xk(t) − πk]/πk , i.e., the differences of the subpopulation frequencies from those given by the
Perron–Frobenius vector π , normalized by dividing by the same component for π . Values dk obtained
from solutions of the proliferation-alteration equation itself, Eq. (1) or equivalently Eq. (3), are shown as
dotted lines; values dk1 obtained as first-order approximations from Eqs. (6) and (7) are shown as solid
lines. The insert shows some details on the curves for d0 and d01. It is seen that even for subpopulation 3,
which has the highest net proliferation rate, and subpopulation 0, which has the lowest (indeed negative)
net proliferation rate, relative differences from the zeroth-order, proliferation-independent solutions are at

most about 6%. Panel B shows values of dk ≡ (dk1 − dk)/

√
d2
k

+ (dk1)2, a normalized difference of
differences. It is seen from panel B that the difference between approximate and exact differences is only
a few percent of the differences, which are themselves small (panel A); correspondingly our first-order
approximation x0(t) ≈ π0 + d01(t) approximates x0(t) to a relative accuracy of better than 0.003 for all
values of t . For other components xk or for rapidity parameter γ > 1 the accuracy is even higher.

in vitro cancer cell lines, are typically aneuploid, with highly heterogeneous populations,
and with individual cell lineages observed to undergo rapid chromosome copy number
alterations (Duesberg et al., 2005; Chi and Jeang, 2007). However, various authors have
commented on the surprising temporal stability (“stability within instability,” Gusev et
al., 2001) of average total chromosome number, given the heterogeneity of the population
(Nowell, 1976; Eshleman et al., 1998; Macville et al., 1999; Roschke et al., 2002; Jin
et al., 2005). It could be that this stability within instability is the result of rapid alterations
that determine a stable subpopulation frequency distribution even while the overall cell
number is increasing.

Our formalism has various drawbacks. Like all present carcinogenesis formalisms,
this one is unduly simplistic. Moreover, it is not envisaged that Eq. (1) with fixed parame-
ters and fixed state space remains a useful approximation throughout cancer progression.
Rather there should be periods where an equation of the form (1) is useful, interspersed
with alterations to brand new states; after such an alteration a different set of parameters
and a larger state space would be required. Perhaps such a pattern could be approximated
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by using a Q in Eq. (1) corresponding to a reducible Markov process, or a leaky one, or
by using an infinite state space.

Formally, it is clear that the basic proliferation-alteration system can in fact be gen-
eralized considerably to try to overcome some drawbacks without vitiating the rapid-
alteration approximation approach. Here are the simplest examples.

• If state space is denumerably infinite, but Q is still ergodic, there is still a unique vector
π obeying πTQ = 0 and πT1 = 1, and each component of π is positive (Kijima, 1997).
Then the entire formalism goes through as before provided appropriate restrictions are
placed on fk for k large, e.g., that the sum 〈f 〉1 = ∑∞

k=0 πkfk1 converges.
• Suppose state space is the direct sum of a finite number of subspaces, with each sub-

space invariant under right multiplication by Q and the restriction of Q to each ergodic.
Then with appropriate, essentially bookkeeping, modifications, the entire formalism
remains applicable. This direct sum construct is relevant, for example, if we consider
aneusomy of all 21 mouse chromosome types, with the alterations of each type gov-
erned by different parameters but cell fitness governed jointly by all 21 copy number
values.

• Suppose
∑N

j=0 yjQjk in Eq. (1) is replaced by a nonlinear function Qk(Px0,P x1, . . . ,

P xN) and suppose that for any fixed positive constant P the equations dxj/dt = Qk

have a unique asymptotically stable solution π(P ), depending parametrically on P ,
that obeys πT1 = 1 and has nonnegative components. Then the rapid-alteration ap-
proximation remains applicable in essentially the same form as analyzed here.

To summarize, we have here presented a population dynamical approach for analyzing
an interacting, diverse, proliferating, rapidly altering somatic cell population. The ap-
proach is plausibly applicable to restricted time intervals during some cancer progression
processes and can readily be generalized somewhat. It predicts that the overall growth rate
is an emergent parameter of the entire cell system, given by an appropriate average.
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