UC Irvine

Working Papers Series

Title

A generative model for feedback networks - A Natasa Kejzar presentation, Applied Statistics conference, 2005

Permalink

https://escholarship.org/uc/item/8wg8p6qs

Authors

Kejzar, Natasa White, Douglas R Tsallis, Constantino <u>et al.</u>

Publication Date

2005-09-18

Motivation	Model	Results 00000000	Summary

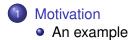
A generative model for feedback networks

D.R. White¹ N. Kejžar² C. Tsallis³ D. Farmer⁴ S. White¹

¹University of California Irvine, USA

²University of Ljubljana, Slovenia

³Centro Brasileiro de Pesquisas Físicas, Brazil


⁴Santa Fe Institute, USA

Applied Statistics, Ribno, 2005

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Motivation 000	Model	Results 00000000	Summary
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Network properties
- Simulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Cycle formation in growing network

How to model a growing network which forms cycles (establishes closer connections by adding links)?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Cycle formation in growing network

How to model a growing network which forms cycles (establishes closer connections by adding links)?

Examples of such networks:

- kinship network (where to find a suitable, not blood-related, partner)
- trading network (search for distant trading partners to avoid the costs of paying too dearly in exchanges with close partners)
- business network (seeking for not too similar business partners)

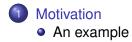
Cycle formation in growing network

How to model a growing network which forms cycles (establishes closer connections by adding links)?

Examples of such networks:

- kinship network (where to find a suitable, not blood-related, partner)
- trading network (search for distant trading partners to avoid the costs of paying too dearly in exchanges with close partners)
- business network (seeking for not too similar business partners)

Cycle formation in growing network

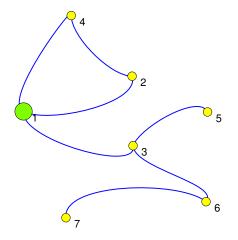

How to model a growing network which forms cycles (establishes closer connections by adding links)?

Examples of such networks:

- kinship network (where to find a suitable, not blood-related, partner)
- trading network (search for distant trading partners to avoid the costs of paying too dearly in exchanges with close partners)
- business network (seeking for not too similar business partners)

Motivation ●○○	Model	Results 00000000	Summary
Outline			

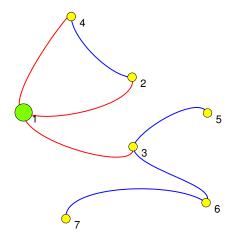
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



2 Model

- Network properties
- Simulations

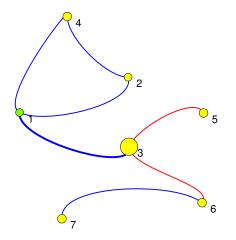
Motivation ○●○	Model	Results 00000000	Summary
An evample			



A company which wants to make a strategic alliance.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

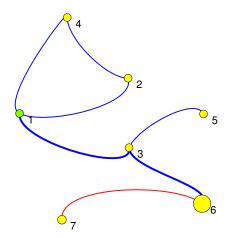
ъ


Motivation ○●○	Model	Results 00000000	Summary
An ovampla			

Possible paths on the way. First two from the top do not lead to a successful alliance. The company chooses the link to company 3.

・ロット (雪) (日) (日)

Motivation ○●○	Model	Results 00000000	Summary
An ovampla			

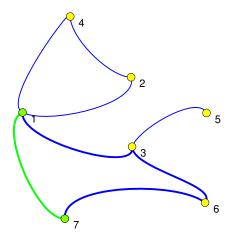


Step 1: $1 \rightarrow 3$

Company 3 can choose between two possible paths. The top one does not lead to a successful alliance. It chooses the link to company 6.

・ロン ・ 聞 と ・ 臣 と ・ 臣 と

Motivation ○●○	Model	Results 00000000	Summary
An ovampla			


Step 2: $3 \rightarrow 6$

From company 6 there is only one way to choose the next company (company 7).

ヘロト 人間 とくほとくほとう

-

Motivation ○●○	Model	Results 00000000	Summary
An avampla			

Step 3: $6 \rightarrow 7$

The path with 3 consecutive links was found. Alliance is created from company 1 to company 7.

・ コット (雪) ・ (目) ・ (目)

Motivation oo●	Model	Results 00000000	Summary
Previous work			

- lots of work on generative models for graphs (preferential attachment model of Albert and Barabási (1999), copying model of Kumar et al. (2000)); do not create cyclic networks
- social networks model of Newman (2003); not an evolving network model
- autocatalytic network model (Kauffman et al., 1986) which focused on topological graph closure properties and simulation of chemical kinetics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

Motivation oo●	Model	Results 00000000	Summary
Previous work			

- lots of work on generative models for graphs (preferential attachment model of Albert and Barabási (1999), copying model of Kumar et al. (2000)); do not create cyclic networks
- social networks model of Newman (2003); not an evolving network model
- autocatalytic network model (Kauffman et al., 1986) which focused on topological graph closure properties and simulation of chemical kinetics

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Motivation oo●	Model	Results 00000000	Summary
Previous work			

- lots of work on generative models for graphs (preferential attachment model of Albert and Barabási (1999), copying model of Kumar et al. (2000)); do not create cyclic networks
- social networks model of Newman (2003); not an evolving network model
- autocatalytic network model (Kauffman et al., 1986) which focused on topological graph closure properties and simulation of chemical kinetics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

Motivation	Model	Results 00000000	Summary
Growth of a with 3 parameters			

At each time step

• select a starting node *i* according to probability

$$\mathsf{P}_{\alpha}(i) = \frac{[deg(i)]^{\alpha}}{\sum_{m=1}^{N} [deg(m)]^{\alpha}}$$

• assign of search distance d according to probability

$$\mathsf{P}_{\beta}(d) = rac{d^{-eta}}{\sum_{m=1}^{\infty} m^{-eta}}$$

 generate a search path (selection of the following nodes (/s) on the path)

$$\mathsf{P}_{\gamma}(l) = \frac{\left[1 + \mathsf{u}(l)^{\gamma}\right]}{\sum_{m=1}^{M} \left[1 + \mathsf{u}(m)^{\gamma}\right]}$$

 $u(x) \equiv$ unused degree of x

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Motivation	Model	Results ooooooooo	Summary
Growth of a with 3 parameters	\ /		

At each time step

• select a starting node *i* according to probability

$$\mathsf{P}_{lpha}(i) = rac{[deg(i)]^{lpha}}{\sum_{m=1}^{N} [deg(m)]^{lpha}}$$

• assign of search distance d according to probability

$$\mathsf{P}_{eta}(d) = rac{d^{-eta}}{\sum_{m=1}^{\infty} m^{-eta}}$$

 generate a search path (selection of the following nodes (/s) on the path)

$$\mathsf{P}_{\gamma}(l) = \frac{\left[1 + \mathsf{u}(l)^{\gamma}\right]}{\sum_{m=1}^{M} \left[1 + \mathsf{u}(m)^{\gamma}\right]}$$

 $u(x) \equiv$ unused degree of x

▲□▶▲□▶▲□▶▲□▶ □ のへで

Motivation	Model	Results 00000000	Summary
Growth of a with 3 parameters	\ /		

At each time step

• select a starting node *i* according to probability

$$\mathsf{P}_{lpha}(i) = rac{[deg(i)]^{lpha}}{\sum_{m=1}^{N} [deg(m)]^{lpha}}$$

• assign of search distance d according to probability

$$\mathsf{P}_{eta}(d) = rac{d^{-eta}}{\sum_{m=1}^{\infty} m^{-eta}}$$

 generate a search path (selection of the following nodes (/s) on the path)

$$\mathsf{P}_{\gamma}(I) = \frac{\left[1 + \mathsf{u}(I)^{\gamma}\right]}{\sum_{m=1}^{M} \left[1 + \mathsf{u}(m)^{\gamma}\right]}$$

(日) (日) (日) (日) (日) (日) (日)

 $u(x) \equiv$ unused degree of x

Crowth of a p	$\sim 1 $ (0)		
Motivation 000	Model	Results 00000000	Summary

Growth of a model (2)

If the search path

- can be traversed for *d* nodes, a starting node and target node are linked (a cycle is formed)
- otherwise a newly created node is linked to a starting node

O_{result} of a model (0)	
Motivation Model Result	ts Summary 200000

Growth of a model (2)

If the search path

- can be traversed for *d* nodes, a starting node and target node are linked (a cycle is formed)
- otherwise a newly created node is linked to a starting node

Motivation		Model	Results	Summary

Growth of a model (2)

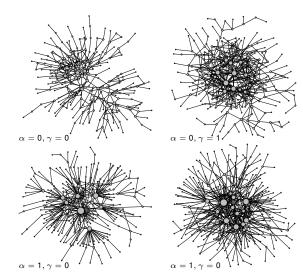
If the search path

- can be traversed for *d* nodes, a starting node and target node are linked (a cycle is formed)
- otherwise a newly created node is linked to a starting node Initial condition (asympototically not important): 1 node.

Motivation 000	Model	Results ●oo	Summary
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Network properties
- Simulations

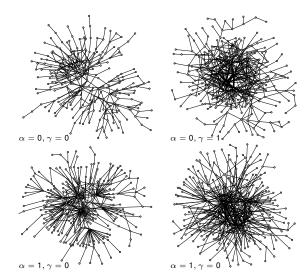

Motivation

Model

Results

Summary

Representations of network models with 250 nodes, $\beta = 1.3$


Motivation

Model

Results

Summary

Representations of network models with 250 nodes, $\beta = 1.3$

◆ロ▶◆舂▶◆臣▶◆臣▶ 臣 のなぐ

Motivation	Model	Results	Summary
		0000000	

- $\alpha \dots$ the attachment parameter describes forming hubs (highly connected nodes)
- β... the distance decay parameter accounts for density of the network
- γ... the routing parameter increases search more cycle formations, it accounts for more interconnected network

(日) (日) (日) (日) (日) (日) (日)

Motivation	Model	Results	Summary
		0000000	

- $\alpha \dots$ the attachment parameter describes forming hubs (highly connected nodes)
- β... the distance decay parameter accounts for density of the network
- γ... the routing parameter increases search more cycle formations, it accounts for more interconnected network

(日) (日) (日) (日) (日) (日) (日)

Motivation	Model	Results	Summary
		0000000	

- $\alpha \dots$ the attachment parameter describes forming hubs (highly connected nodes)
- β... the distance decay parameter accounts for density of the network
- γ... the routing parameter increases search more cycle formations, it accounts for more interconnected network

Motivation	Model	Results	Summary
		0000000	

- $\alpha \dots$ the attachment parameter describes forming hubs (highly connected nodes)
- β... the distance decay parameter accounts for density of the network
- γ... the routing parameter increases search more cycle formations, it accounts for more interconnected network

Network evolution depends on local information, but cycle formation depends on global properties of the network:

- successful search decreases mean distance of a node to other nodes
- failed search increases the distance (with adding a new node)

Motivation	Model	Results	Summary
		0000000	

- $\alpha \dots$ the attachment parameter describes forming hubs (highly connected nodes)
- β... the distance decay parameter accounts for density of the network
- γ... the routing parameter increases search more cycle formations, it accounts for more interconnected network

Network evolution depends on local information, but cycle formation depends on global properties of the network:

- successful search decreases mean distance of a node to other nodes
- failed search increases the distance (with adding a new node)

Motivation	Model	Results ○○○●ooooo	Summary
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

2 Model

Network properties

Simulations

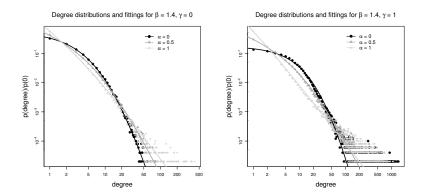
Successful searches and adding nodes influence the frequency of one another \longrightarrow long-range interactions among nodes. We simulated the networks to check whether the degree (*k*) distributions can be described of the form (generalized *q*-exponential function)

$$p(k) = p_0 k^{\delta} e_q^{-k/\kappa}$$

where the *q*-exponential (Tsallis, 1988) function e_a^x is defined as

$$e_q^x \equiv \left[1 + (1-q)x\right]^{1/(1-q)}$$
 $(e_1^x = e^x)$

if 1 + (1 - q)x > 0, and zero otherwise.


Motivation 000	Model	Results ○○○○○●○○○	Summary
Simulations			

- simulate 10 realizations of networks with 5000 nodes
- different parameters α , β and γ
- fit generalized *q*-exponential function to simulated distributions using Gauss-Newton algorithm for nonlinear least-squares estimates (some tail regions had to be manually corrected)

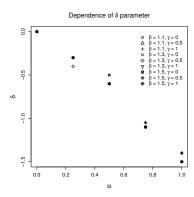
• get the fitted the parameters (q, κ and δ)

Motivation 000	Model	Results ○○○○○○○	Summary
Simulations			

Some results

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Motivation 000	Model	Results ○○○○○○●○	Summary
Simulations Goodness of fit tests			

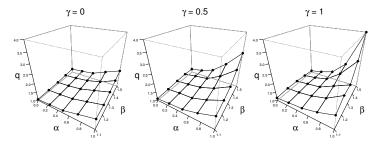

In order to test the *q*-exponential fits we used two nonparametric statistical tests

- Kolmogorov-Smirnov test (since *q*-exponential is defined on [0, inf) only, we used two sample test): null hypotesis was never rejected
- Wilcoxon rank sum test: null hypotesis rejected in 1/12 examples

Since data are very sparse in the tail, we excluded datapoints with probability $< 10^{-4}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

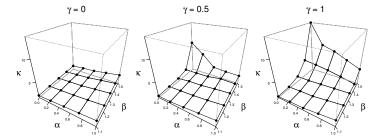
 $p(k) = p_0 k^{\delta} e_q^{-k/\kappa}$


 δ depends only on parameter α .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

3

Motivation
coorModelResults
coorSummaryModel parameters and q-exponential
 $p(k) = p_0 k^{\delta} e_a^{-k/\kappa}$ Summary


Dependence of parameter q.

Parameter *q* grows rapidly as each of the 3 model parameters increase.

Motivation
coorModelResults
coorSummaryModel parameters and q-exponential
 $p(k) = p_0 k^{\delta} e_a^{-k/\kappa}$ Summary

Dependence of parameter κ .

Parameter κ diverges when β and γ grow large and $\alpha = 0$.

Motivation 000	Model	Results	Summary
Conclusion			

- A generative model for creating graphs representing feedback networks was presented. Algorithm uses only local properties of the nodes.
- The simulated networks confirmed the assumption of long-range interactions in such a network (generalized *q*-exponential functions were fitted to empirical degree distributions).
- The competition between creating cycles (stronger feedback) and adding new nodes (growth in size).
- In the future
 - Apply the present model to real networks (biotech intercorporate networks).
 - Analyze more network model topological properties (e.g. mean distance of a node to other nodes).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Motivation 000	Model	Results ooooooooo	Summary
Conclusion			

- A generative model for creating graphs representing feedback networks was presented. Algorithm uses only local properties of the nodes.
- The simulated networks confirmed the assumption of long-range interactions in such a network (generalized *q*-exponential functions were fitted to empirical degree distributions).
- The competition between creating cycles (stronger feedback) and adding new nodes (growth in size).
- In the future
 - Apply the present model to real networks (biotech intercorporate networks).
 - Analyze more network model topological properties (e.g. mean distance of a node to other nodes).

・ コット (雪) ・ (目) ・ (目)

Motivation 000	Model	Results ooooooooo	Summary
Conclusion			

- A generative model for creating graphs representing feedback networks was presented. Algorithm uses only local properties of the nodes.
- The simulated networks confirmed the assumption of long-range interactions in such a network (generalized *q*-exponential functions were fitted to empirical degree distributions).
- The competition between creating cycles (stronger feedback) and adding new nodes (growth in size).
- In the future
 - Apply the present model to real networks (biotech intercorporate networks).
 - Analyze more network model topological properties (e.g. mean distance of a node to other nodes).

Motivation 000	Model	Results ooooooooo	Summary
Conclusion			

- A generative model for creating graphs representing feedback networks was presented. Algorithm uses only local properties of the nodes.
- The simulated networks confirmed the assumption of long-range interactions in such a network (generalized *q*-exponential functions were fitted to empirical degree distributions).
- The competition between creating cycles (stronger feedback) and adding new nodes (growth in size).
- In the future
 - Apply the present model to real networks (biotech intercorporate networks).
 - Analyze more network model topological properties (e.g. mean distance of a node to other nodes).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Motivation 000	Model	Results 00000000	Summary
Conclusion			

- A generative model for creating graphs representing feedback networks was presented. Algorithm uses only local properties of the nodes.
- The simulated networks confirmed the assumption of long-range interactions in such a network (generalized *q*-exponential functions were fitted to empirical degree distributions).
- The competition between creating cycles (stronger feedback) and adding new nodes (growth in size).
- In the future
 - Apply the present model to real networks (biotech intercorporate networks).
 - Analyze more network model topological properties (e.g. mean distance of a node to other nodes).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>