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It has been more than a decade since the human genome was sequenced, but a 

complete understanding of the functional elements in the human genome is still lacking, 

especially for the non-coding part of the genome. The lack of complete understanding of 

the genome makes interpreting the function of genetic variants a daunting challenge. 
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Here I exploited multiple ways to decipher the function of genetic variants by leveraging 

knowledge about transcriptional regulation and three-dimension genome organization.   

First, we developed SNP-SELEX, a high throughput method to assess the effect 

of SNPs on transcription factor (TF) binding. I demonstrated the superior performance of 

SNP-SELEX over previous delta PWM models, and applied results of SNP-SELEX to 

identify putative causal variants for type 2 diabetes. Furthermore, I employed deltaSVM 

algorithm to develop models that could predict the effect of SNPs on TF binding for any 

non-coding variants. Those models not only outperform delta PWM models in vitro and in 

vivo but also could help identify novel master regulator for complex traits and diseases. 

Next, I co-led a study to investigate the effect of genetic variants on three-

dimensional (3D) chromatin conformation. I identified thousands of regions across the 

genome where 3D chromatin conformation varies between individuals and found those 

variations often accompany changes in other genome functions. Moreover, I found DNA 

sequence variations could influence 3D chromatin conformation and mapped hundreds 

of Quantitative Trait Loci (QTLs) associated with 3D chromatin features, some of which 

confer disease risk.  

Finally, I analyzed Hi-C data from human embryonic stem cells differentiated to 

beta cell progenitors to characterize changes in chromatin organizations during 

differentiation. I identified chromatin loops that are dynamic during different stages and 

found those loops are also associated with transcriptional regulation. Further, I revealed 

that chromatin loops form interaction hubs that are related to the establishment of stage-

specific transcriptional programs.   
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INTRODUCTION 

A long-standing question in the field of biology is how to interpret phenotypic 

variations due to genotypic variations. The initial sequencing of the human genome1 

decades ago provided an unprecedented opportunity to approach the question. In 

particular, with the advance of next-generation sequencing technologies, millions of 

genetic variants have been identified. These variants, including single nucleotide 

polymorphism (SNP), short indels, and structural variations (SV), have widely broadened 

our understanding of human genetic variations2. 

Genome-wide association studies (GWAS) have proven to be a powerful tool to 

link genetic variants to various phenotypes, especially complex traits and human 

diseases. To date, about 20,000 associations between genetic variants and traits have 

been identified by GWAS3. A better understanding of the mechanisms underlying trait-

associated variants would likely provide valuable insights into the biological function of 

those genetic variants and may eventually lead to a more comprehensive picture of the 

relationships between genotype and phenotype4.  

However, most of the genetic variants associated with traits or disease lie in the 

non-coding part of the genome5,6, making it a daunting challenge to decipher their 

biological function and molecular mechanisms. It is believed that many of those non-

coding variants lead to phenotypic changes through changes of gene expression, which 

are highly regulated processes involving multiple layers. For instance, Hnisz et al found 

that trait-associated variants are highly enriched in super-enhancers, which play vital 

roles in shaping cell-type-specific gene expression programs5. In another example, 

Huang et al showed that a genetic variant associated with prostate cancer risks affects 
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the expression level of RFX6 by changing in transcription factor HOXB13 binding and 

leads to differences in prostate cancer risk7.  

Sequence-specific transcription factors (TFs) bind to cis-regulatory elements such 

as enhancers and promoters8 to modulate transcription of target genes. Many TFs are 

master regulators for cell identity. Over-expression of TFs could readily induce trans-

differentiation across distinct cell types9.  Because of the critical roles of TFs, it is crucial 

to understand how non-coding variants affect TF binding and gene expression. Despite 

a few case studies focused on specific variants, only less than 100 differential TF-DNA 

interactions have been linked to phenotypic variations10, leaving most of the trait-

associated variants uncharacterized in terms of their effect on TF binding. 

The most popular approach to quantify allelic TF binding is delta PWM scores 

based on position weight matrix (PWM) models. While it is convenient to compute delta 

PWM scores for any variants for TFs with known motifs, the prediction made by delta 

PWM scores suffer from pretty high false positives11, limiting its broad applications. To 

overcome this challenge, as described in the first chapter of my thesis, my collaborators 

and I have systematically characterized the effect of 95,886 SNPs on the binding of 270 

TF using a high-throughput assay termed as SNP-SELEX. In addition to experimentally 

assayed SNPs, I developed computational models that significantly outperform delta 

PWM models to predict the effect of TF binding to DNA variants. I demonstrated that the 

information about allelic TF binding could be leveraged to identify causal SNPs and pave 

the way to a complete picture of genetic variations’ effect on various phenotypes.  

The human genome adopts complicated higher-order structures in three-

dimensional (3D) nuclear space. The higher-order chromatin structure has been studied 
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for decades. Early observations of 3D genome structure was primarily made using 

microscopy. For example, different chromosomes reside in distinct spatial territories12. 

With the advent of C-techniques, including 3C13, 4C14, 5C15, and Hi-C16, that can map 

chromatin interactions in an unprecedented resolution and throughput, more features of 

chromatin conformation have been revealed. Within each chromosome territory, genome 

segments form the co-associated active or inactive compartments16. At the megabase 

scale, there are self-interacting blocks of DNA known as topological associated domains 

(TADs) that are conserved between different cell types17. At a finer scale, cis-regulatory 

elements that are distal from each other could form specific contacts18. At all levels, the 

3D genome organization is related to numerous cellular and molecular events in cells 

such as transcription regulation, DNA replication, X chromosome inactivation, and DNA 

repair18-21. 

As gene regulation is believed to be important in interpreting the relationship 

between genotype and phenotype, many molecular phenotypes have been mapped 

across individuals such as gene expressions22, histone modifications23,24, and other 

epigenetic marks25-27, and extensive variations of those molecular phenotypes have been 

found. Since chromatin conformation is highly related to gene regulation, it is very likely 

that the difference in chromatin conformation also contributes to the difference in 

phenotype. There is also evidence showing that disruption of normal chromatin 

conformation leads to a phenotypical effect28. However, how the 3D genome organization 

differs between normal individuals and its impact on other genome functions remain 

unexplored. With decreased cost of next-generation sequencing and more efficient Hi-C 

protocol, the study of variation of the chromatin conformation in multiple individuals 
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becomes feasible. The second chapter of my thesis focused on the study of the effect of 

genetic variations on 3D genome organization, which provides initial discoveries of 

genetic influence on 3D chromatin conformation and will facilitate future efforts to unravel 

the molecular basis of genetic disease risk. 

To better understand the function of genetic variants, it is crucial to gain more 

insight about 3D genome organization, since the three-dimensional structure has been 

shown to be important in many genome functions. However, only a few studies focused 

on dynamics in the three-dimensional structure. One study focused on human ES cells 

and four ES-derived lineages and found that interactions within TADs change in 

conjunction with transcription activity while TADs are maintained29. Another study used 

5C to look at 3D interaction patterns during differentiation of pluripotent mouse embryonic 

stem cells (mES) cells along the neuroectoderm lineage and observed reorganization at 

the sub-megabase scale at seven loci30. However, previous studies either lacked the 

resolution to study dynamics in interaction at the sub-megabase scale or lacked coverage 

to yield a complete result, and lots of questions are still unanswered. For instance, how 

enhancer-promoter interactions reorganize during differentiation and which 

transcriptional factors help establish stage-specific chromatin organization remain 

unveiled. The third chapter of my thesis described the study of the dynamic chromatin 

conformation in fine-resolution over a time course of human embryonic stem cell (hESC) 

differentiation. This not only expanded our knowledge regarding dynamics in 3D genome 

organization during differentiation but also helped us understand the relationship between 

chromatin organization and transcription regulation.  

  



 
 

5 
 

References 

1. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C. & al, E. Initial 
sequencing and analysis of the human genome. Nature (2001). 

2. 1000 Genomes Project Consortium, Abecasis, G. R., Auton, A., Brooks, L. D., 
DePristo, M. A., Durbin, R. M., Handsaker, R. E., Kang, H. M., Marth, G. T. & McVean, 
G. A. An integrated map of genetic variation from 1,092 human genomes. Nature 
491, 56–65 (2012). 

3. Mills, M. C. & Rahal, C. A scientometric review of genome-wide association studies. 
Communications Biology 2, 1–11 (2018). 

4. Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A. & 
Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. 
Hum. Genet. 101, 5–22 (2017). 

5. Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-André, V., Sigova, A. A., Hoke, H. 
A. & Young, R. A. Super-Enhancers in the Control of Cell Identity and Disease. Cell 
155, 1–28 (2013). 

6. Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., 
Reynolds, A. P., Sandstrom, R., Qu, H., Brody, J., Shafer, A., Neri, F., Lee, K., 
Kutyavin, T., Stehling-Sun, S., Johnson, A. K., Canfield, T. K., Giste, E., Diegel, M., 
Bates, D., Hansen, R. S., Neph, S., Sabo, P. J., Heimfeld, S., Raubitschek, A., 
Ziegler, S., Cotsapas, C., Sotoodehnia, N., Glass, I., Sunyaev, S. R., Kaul, R. & 
Stamatoyannopoulos, J. A. Systematic Localization of Common Disease-Associated 
Variation in Regulatory DNA. Science 337, 1190–1195 (2012). 

7. Huang, Q., Whitington, T., Gao, P., Lindberg, J. F., Yang, Y., Sun, J., Väisänen, M.-
R., Szulkin, R., Annala, M., Yan, J., Egevad, L. A., Zhang, K., Lin, R., Jolma, A., 
Nykter, M., Manninen, A., Wiklund, F., Vaarala, M. H., Visakorpi, T., Xu, J., Taipale, 
J. & Wei, G.-H. A prostate cancer susceptibility allele at 6q22 increases RFX6 
expression by modulating HOXB13 chromatin binding. Nat. Genet. 46, 126–135 
(2014). 

8. Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., 
Taipale, J., Hughes, T. R. & Weirauch, M. T. The Human Transcription Factors. Cell 
172, 650–665 (2018). 

9. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. 
Cell 152, 1237–1251 (2013). 

10. Deplancke, B., Alpern, D. & Gardeux, V. The Genetics of Transcription Factor DNA 
Binding Variation. Cell 166, 538–554 (2016). 

11. Svetlichnyy, D., Imrichova, H., Fiers, M., Kalender Atak, Z. & Aerts, S. Identification 
of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random 



 
 

6 
 

Forest Models. PLoS Comput Biol 11, e1004590 (2015). 

12. Bolzer, A., Kreth, G., Solovei, I., Koehler, D., Saracoglu, K., Fauth, C., Müller, S., Eils, 
R., Cremer, C., Speicher, M. R. & Cremer, T. Three-dimensional maps of all 
chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS 
Biol. 3, e157 (2005). 

13. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome 
conformation. Science 295, 1306–1311 (2002). 

14. van de Werken, H. J. G., Landan, G., Holwerda, S. J. B., Hoichman, M., Klous, P., 
Chachik, R., Splinter, E., Valdes-Quezada, C., Oz, Y., Bouwman, B. A. M., 
Verstegen, M. J. A. M., de Wit, E., Tanay, A. & De Laat, W. Robust 4C-seq data 
analysis to screen for regulatory DNA interactions. Nat Meth 9, 969–972 (2012). 

15. Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee, W. L., Honan, T. A., 
Rubio, E. D., Krumm, A., Lamb, J., Nusbaum, C., Green, R. D. & Dekker, J. 
Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution 
for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 
(2006). 

16. Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., 
Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., 
Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., 
Mirny, L. A., Lander, E. S. & Dekker, J. Comprehensive Mapping of Long-Range 
Interactions Reveals Folding Principles of the Human Genome. Science 326, 289–
293 (2009). 

17. Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. & Ren, 
B. Topological domains in mammalian genomes identified by analysis of chromatin 
interactions. Nature 485, 376–380 (2012). 

18. Gorkin, D. U., Leung, D. & Ren, B. The 3D Genome in Transcriptional Regulation and 
Pluripotency. Cell Stem Cell 14, 762–775 (2014). 

19. Pope, B. D., Ryba, T., Dileep, V., Yue, F., Wu, W., Denas, O., Vera, D. L., Wang, Y., 
Hansen, R. S., Canfield, T. K., Thurman, R. E., Cheng, Y., Gülsoy, G., Dennis, J. H., 
Snyder, M. P., Stamatoyannopoulos, J. A., Taylor, J., Hardison, R. C., Kahveci, T., 
Ren, B. & Gilbert, D. M. Topologically associating domains are stable units of 
replication-timing regulation. Nature 515, 402–405 (2015). 

20. Engreitz, J. M., Pandya-Jones, A., McDonel, P., Shishkin, A., Sirokman, K., Surka, 
C., Kadri, S., Xing, J., Goren, A., Lander, E. S., Plath, K. & Guttman, M. The Xist 
lncRNA exploits three-dimensional genome architecture to spread across the X 
chromosome. Science 341, 1237973–1237973 (2013). 

21. Misteli, T. & Soutoglou, E. The emerging role of nuclear architecture in DNA repair 
and genome maintenance. Nat. Rev. Mol. Cell Biol. 10, 243–254 (2009). 



 
 

7 
 

22. Lappalainen, T., Sammeth, M., Friedländer, M. R., 't Hoen, P. A. C., Monlong, J., 
Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., Barann, 
M., Wieland, T., Greger, L., van Iterson, M., Almlöf, J., Ribeca, P., Pulyakhina, I., 
Esser, D., Giger, T., Tikhonov, A., Sultan, M., Bertier, G., MacArthur, D. G., Lek, M., 
Lizano, E., Buermans, H. P. J., Padioleau, I., Schwarzmayr, T., Karlberg, O., Ongen, 
H., Kilpinen, H., Beltran, S., Gut, M., Kahlem, K., Amstislavskiy, V., Stegle, O., 
Pirinen, M., Montgomery, S. B., Donnelly, P., McCarthy, M. I., Flicek, P., Strom, T. 
M., Geuvadis Consortium, Lehrach, H., Schreiber, S., Sudbrak, R., Carracedo, A., 
Antonarakis, S. E., Häsler, R., Syvänen, A.-C., van Ommen, G.-J., Brazma, A., 
Meitinger, T., Rosenstiel, P., Guigo, R., Gut, I. G., Estivill, X. & Dermitzakis, E. T. 
Transcriptome and genome sequencing uncovers functional variation in humans. 
Nature 501, 506–511 (2013). 

23. Kasowski, M., Kyriazopoulou-Panagiotopoulou, S., Grubert, F., Zaugg, J. B., 
Kundaje, A., Liu, Y., Boyle, A. P., Zhang, Q. C., Zakharia, F., Spacek, D. V., Li, J., 
Xie, D., Olarerin-George, A., Steinmetz, L. M., Hogenesch, J. B., Kellis, M., 
Batzoglou, S. & Snyder, M. Extensive variation in chromatin states across humans. 
Science 342, 750–752 (2013). 

24. McVicker, G., van de Geijn, B., Degner, J. F., Cain, C. E., Banovich, N. E., Raj, A., 
Lewellen, N., Myrthil, M., Gilad, Y. & Pritchard, J. K. Identification of genetic variants 
that affect histone modifications in human cells. Science 342, 747–749 (2013). 

25. Degner, J. F., Pai, A. A., Pique-Regi, R., Veyrieras, J.-B., Gaffney, D. J., Pickrell, J. 
K., De Leon, S., Michelini, K., Lewellen, N., Crawford, G. E., Stephens, M., Gilad, Y. 
& Pritchard, J. K. DNase I sensitivity QTLs are a major determinant of human 
expression variation. Nature 482, 390–394 (2012). 

26. Ding, Z., Ni, Y., Timmer, S. W., Lee, B.-K., Battenhouse, A., Louzada, S., Yang, F., 
Dunham, I., Crawford, G. E., Lieb, J. D., Durbin, R., Iyer, V. R. & Birney, E. 
Quantitative genetics of CTCF binding reveal local sequence effects and different 
modes of X-chromosome association. PLoS Genet. 10, e1004798 (2014). 

27. Tehranchi, A. K., Myrthil, M., Martin, T., Hie, B. L., Golan, D. & Fraser, H. B. Pooled 
ChIP-Seq Links Variation in Transcription Factor Binding to Complex Disease Risk. 
Cell 165, 730–741 (2016). 

28. Lupiáñez, D. G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, 
D., Kayserili, H., Opitz, J. M., Laxova, R., Santos-Simarro, F., Gilbert-Dussardier, B., 
Wittler, L., Borschiwer, M., Haas, S. A., Osterwalder, M., Franke, M., Timmermann, 
B., Hecht, J., Spielmann, M., Visel, A. & Mundlos, S. Disruptions of topological 
chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 
161, 1012–1025 (2015). 

29. Dixon, J. R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J. E., Lee, A. Y., 
Ye, Z., Kim, A., Rajagopal, N., Xie, W., Diao, Y., Liang, J., Zhao, H., Lobanenkov, V. 
V., Ecker, J. R., Thomson, J. A. & Ren, B. Chromatin architecture reorganization 
during stem cell differentiation. Nature 518, 331–336 (2015). 



 
 

8 
 

30. Phillips-Cremins, J. E., Sauria, M. E. G., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., 
Bell, J. S. K., Ong, C.-T., Hookway, T. A., Guo, C., Sun, Y., Bland, M. J., Wagstaff, 
W., Dalton, S., McDevitt, T. C., Sen, R., Dekker, J., Taylor, J. & Corces, V. G. 
Architectural protein subclasses shape 3D organization of genomes during lineage 
commitment. Cell 153, 1281–1295 (2013). 

 

  



 
 

9 
 

CHAPTER 1: Systematic analysis of differential transcription factor binding to 

non-coding variants in the human genome 

1.1 Abstract 

A large number of sequence variants have been linked to complex human traits 

and diseases1,2, but deciphering their biological function remains a daunting challenge 

especially for the non-protein-coding variants. To fill this gap, we have systematically 

assessed the differential binding of transcription factors (TF) to different alleles of 

noncoding variants in the human genome. Using an ultra-high throughput multiplex 

protein-DNA binding assay, we examined the binding of 270 human TFs to 95,886 

common sequence variants within the 110 type 2 diabetes (T2D) risk loci. We then 

employed a machine-learning approach to derive computational models to predict 

differential DNA binding of 124 TFs to other common non-coding variants in the human 

genome. We showed that the newly derived models outperformed current position-weight 

matrices (PWM) in describing TF binding to non-coding variants and facilitated discovery 

of potential causal variants and dysregulated molecular pathways in human diseases. 
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1.2 Introduction 

Sequence-specific TFs shape cell-type specific gene expression programs by 

binding to cis-regulatory sequences and modulating transcription of target genes. 

Mutations in the cis-regulatory sequences are believed to underlie the genetic basis of 

most complex human traits and disease3. Currently, we have very limited understanding 

of how disease associated non-coding variants affect binding of TFs and expression of 

target genes. 

Tremendous efforts have been devoted to mapping of disease risk genetic 

variants, resulting in discovery of more than 10,000 single nucleotide polymorphisms 

(SNPs) associated with various disease and traits1,2. One of the most extensively studied 

genetic diseases is Type 2 diabetes mellitus (T2D), which affects over 350 million people 

worldwide (by WHO: http://www.who.int/news-room/fact-sheets/detail/diabetes). 

Genome-Wide Association Study (GWAS) has identified 243 susceptible loci for T2D4. 

However, very few causal variants have been reported, with only a handful 

mechanistically characterized4-9. This is in large part because existing approaches to 

predicting non-coding variant effects on TF binding suffer from a high false positive rate 

and yet incomplete knowledge of the binding specificity for many human TFs. To better 

define the mode of action of non-coding genetic variants associated with human diseases 

and physiological traits, it is necessary to systematically assess TF binding to noncoding 

variants and develop quantitative and predictive models of TF binding. 
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1.3 Results 

In this study, we adopted an ultra-high-throughput, multiplex TF-DNA binding 

assay, HT-SELEX (for High Throughput Systematic Evolution of Ligands by EXponential 

enrichment) to examine the binding of human TFs to common sequence variants in the 

human genome, with an initial focus on those associated with T2D10,11. Compared to 

previous approaches, which employed randomized DNA sequences as the first cycle 

input11, our strategy, referred hereafter as SNP-SELEX, used a library consisting of 

double-stranded custom-design DNA oligonucleotides. Each oligo included a 40-bp-

sequence matching the reference human genomic DNA sequence with the center position 

corresponding to a single nucleotide polymorphism (SNP), permutated with all four 

nucleotides (Figure 1.1a; Figure S1.1a)10,11. At the time when this project began, 110 

distinct tagging SNPs were reported linked to T2D susceptibility5,12. We designed 6,724 

DNA oligos to represent these tagging variants and the SNPs in linkage disequilibrium 

(LD) with them. Additionally, we designed 89,162 oligos representing common SNPs 

located in annotated candidate cis-regulatory sequences within 500 kb of these 110 T2D 

tagging SNPs5,12. A total of 768 SNP-SELEX experiments were conducted with 751 

recombinant TF proteins, each with six cycles of consecutive binding, washing, elution 

and sequencing. Out of these experiments, 360 experiments passed QC, corresponding 

to 270 distinct TFs. Biological replicates were performed for 43 of these TFs. Additionally, 

DNA binding for 47 full length (FL) transcription factors was compared to their DNA-

binding domains (DBDs). The results are accessible through a searchable web resource 

(GVAT database http://renlab.sdsc.edu/GVATdb/). 
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To determine the differential binding of TFs to the reference and alternative alleles 

of each SNP, we first identified the oligo sequences that exhibited significant binding to 

the TFs. We computed the relative enrichment of oligo sequences in the DNA oligo pool 

as an odds ratio after each cycle of binding, washing, elution and sequencing. We then 

defined the Oligo Binding Score (OBS) as the accumulative area under the curve (AUC) 

of the enrichment values across the six cycles. Using Monte-Carlo Randomization 

(p<0.05; n=250,000), we determined the significance of OBS for each oligo, finding 

89,171 oligos that displayed binding to at least one TF (Figure 1.1b, c). We next defined 

the Preferential Binding Score (PBS) to describe the differential TF binding to the 

reference or alternative allele of each SNP, by subtracting OBS of its alternative allele 

from that of the reference allele. A total of 11,079 SNPs exhibited significant differential 

binding to at least one TF (p<0.01; n=25,000). We termed them pbSNPs hereafter. 

Among the 270 TFs that passed QC, 251 showed preferential binding to one or more 

pbSNPs. Overall, each TF bound differentially to a median number of 53 pbSNPs (Figure 

1.1d), and each pbSNP was differentially bound by just one TF on average (Figure 1.1e). 

Several lines of evidence support the high quality of the SNP-SELEX results. First, 

both OBS and PBS were highly reproducible in biological or technical replicative 

experiments for the same TF (Figure S1.1b-d), where data was available. Second, the 

PBS and OBS of the full-length TFs matched very well with those of the corresponding 

DNA-binding domains (DBD), to a similar degree as those between the biological 

replicates (Figure S1.1b, d), as noted previously11. Third, the correlation between 

different TFs within the same structural family was significantly lower than biological 

replicates but higher than random pairs of TFs (Mann-Whitney U test, p<2×10-16), also as 
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noted previously11,13. The majority of TFs from the same families except for zinc finger 

family TFs, tended to have similar pbSNPs, consistent with previous reports11,14(Figure 

1.1f). Overall, our results suggest that the SNP-SELEX assay is a cost-effective and 

highly reproducible platform for systematic study of TF binding to non-coding variants in 

vitro. 

The Position Weight Matrix (PWM) has been a standard tool to predict effects of 

SNPs on TF binding, but the accuracy of this approach has yet to be systematically 

validated. We compared the preferential binding scores (PBS) of TFs to differential PWM 

scores for 191 TFs for which both datasets were available. In general, the PBS and 

differential PWM scores (delta PWM score) correlated very well (Figure 1.2a). When 

differential PWM scores greater than two were used to assign preferential DNA binding 

to a SNP, PWM and SNP-SELEX agreed in more than 80% of cases (634,527 TF-SNP 

pairs) (Figure 1.2b). However, in a substantial fraction of cases (19.75%), predictions 

using the PWM models did not match those from SNPSELEX assays (153,411 TF-SNP 

pairs). These discordant cases mainly corresponded to weak TF-DNA binding events, as 

evaluated by both PWM scores and OBS (Figure 1.2c, d). Interestingly, the degrees of 

correlation between SNP-SELEX and PWM prediction varied dramatically among 

different TF structural families. For example, PBSs of the TFAP family were highly 

correlated with the differential PWM scores whereas MADS and E2F families showed 

poor concordance, despite similar information content of the PWM models (Figure 1.2e). 

One reason for the discrepancy could be interdependency between nucleotides within the 

DNA binding sites, which was not considered by PWM models11. Another reason might 

be that some TFs could form heterodimers when binding to DNA, a scenario not 
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accounted for in the current design of SNP-SELEX experiments. Third, this could also be 

due to flanking sequence features favored by some TF families, such as A-stacking, 

yielding poorer predictions by the PWM models13. In any case, the above comparison 

suggests that the current PWM are imperfect models for assessing the impact of genetic 

variants on TF binding in vitro. 

We also found that SNP-SELEX could more accurately predict the impact of a SNP 

on TF binding in vivo than PWM models. First, SNP-SELEX results better predicted allelic 

biases of DNA binding by sequence-specific transcription factors in vivo. We examined 

14 ChIP-seq datasets, generated in-house or obtained from public databases, of 12 

transcription factors in a human hepatocyte-derived cell line HepG2 or a lymphoblastoid 

cell line GM12878. Among the 85 SNPs displaying allelic biases in binding to one or more 

TFs in HepG2 cells and assayed in SNP-SELEX, the allelic imbalance ratios were 

significantly correlated with PBS from SNP-SELEX experiments (t-test p=3.45×10-5, 

r=0.42; Figure 1.2f) while their correlation with differential PWM scores was much weaker 

(t-test p=0.001, r=0.21; Figure S1.2a). The same trend was observed in ChIP-seq 

datasets from GM12878 cells (Figure S1.2b, c). Second, pbSNPs better predicted allelic 

chromatin state at cis-regulatory elements than PWMs. Indeed, we quantified the 

enrichment of pbSNPs derived from SNP-SELEX experiments or predicted by differential 

PWM scores in genomic regions showing allelic biases in chromatin accessibility15 and 

active chromatin mark histone H3 lysine 27 acetylation16(H3K27ac hereafter) relative to 

non-pbSNPs. While significant enrichment was found for pbSNPs, no significant 

enrichment was detected for PWM predictions, and the difference was much weaker for 

PWM predictions (Figure 1.2g, h; Figure S2d, e). We also predicted the regulatory effect 
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of genetic variants assayed by SNP-SELEX using two well-established computational 

algorithms deltaSVM17 and DeepSEA18. Both algorithms predicted higher impact of 

pbSNPs on regulatory activity than the non-pbSNPs controls (deltaSVM p=0.008; 

DeepSEA p=6.66e−07; see also Figure S1.2f, g). By contrast, when using allelic SNPs 

predicted from PWM models, the regulatory activity difference between allelic SNPs and 

non-allelic SNPs was no longer significant (deltaSVM p=0.745; DeepSEA p=0.014). 

Third, pbSNPs better predicted a SNP’s effect on enhancer activity than PWMs. Using a 

high throughput reporter assay STARR-seq19, we examined the enhancer activity of 2,246 

pbSNPs and 1,697 non-pbSNPs containing genomic fragments in HepG2 cells and 

HEK293T cells (Figure S1.3a). We found genomic DNA corresponding to 424 and 527 

pbSNPs showed significant enhancer activity in HepG2 and HEK293 cells, respectively 

(empirical FDR<0.05). Additionally, 200 SNP containing fragments displayed allelic 

biases on enhancer activity in HepG2 cells and 206 in HEK293T cells (FDR<0.05) and 

termed these SNPs paSNPs (Figure S1.3b). We found that the pbSNPs were more likely 

to be associated with allelic enhancer activity than non-pbSNPs (Fisher exact test p=0.02, 

OR=1.62; Figure 1.2i). By contrast, SNPs predicted by PWMs to be differentially bound 

by a TF were not enriched for SNPs with differential enhancer activity (Figure S1.3c). 

These results, taken together, strongly suggest that SNP-SELEX results more accurately 

predict TF binding and regulatory activity in vivo than PWMs. Therefore, SNP-SELEX is 

a valuable tool to study the interactions of transcription factors with non-coding variants 

in the human genome. 

To further demonstrate the utility of SNP-SELEX, we explored further the T2D risk 

variants in terms of differential TF binding and consequences on target gene expression. 



 
 

16 
 

First, supporting the hypothesis that non-coding SNPs may contribute directly to T2D 

susceptibility by affecting TF binding, we found that the aforementioned pbSNPs were 

indeed enriched in a set of likely T2D causal variants defined in a recent genetic fine-

mapping study20 (Fisher exact test p=0.014, OR=1.08). As a matter of fact, 1,538 out of 

70,975 likely causal variants are pbSNPs of the TFs that we tested. Next, we defined 

candidate target genes for these likely functional pbSNPs. Using high resolution in situ 

Hi-C21, we identified 9,108 and 9,789 long-range chromatin interactions in HepG2 cells 

and human pancreatic islet tissues, respectively (Figure S1.4a), and then used this 

information to assign target genes to SNPs when a SNP and a gene promoter were 

located within the two anchors of a chromatin loop (Figure 1.3a). We also assigned a 

SNP to a gene when it was within 2 kb upstream of the gene’s transcription starting site 

(TSS). With this approach, we assigned candidate target genes to 205 pbSNPs in HepG2 

cells, and 250 pbSNPs in pancreatic islet tissues. For example, SNP rs7578326, located 

in a super-enhancer, was predicted to affect the binding of a liver-specific TF CEBPB 

(Figure 1.3b; Figure S1.4b). The super-enhancer that harbored this SNP was linked to 

Insulin Receptor Substrate 1 (IRS1) gene located ~500kb downstream through long-

range chromatin interaction in HepG2 cells. To confirm the regulatory role of the 

underlying SNP-harboring enhancer in HepG2 cells, we silenced the region in HepG2 

and HEK293T cells using CRISPR inference (CRISPRi) with a guide RNA (sgRNA) 

targeting the sequence adjacent to the SNP rs7578326. Significant reduction of IRS1 was 

observed in HepG2 cells, which expressed a high level of TF CEBPB protein, whereas 

no reduction was detected in the control HEK293T cells, where the expression of CEBPB 

was much lower (Figure 1.3c). This result was consistent with an independent study 
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showing that this SNP was an eQTL of IRS1 gene in liver and adipose tissue (Figure 

1.3d; Figure S1.4c). The same SNP has also been reported to be genetically associated 

with fasting insulin level and insulin sensitivity24, suggesting its role in T2D pathogenesis 

likely through regulation of insulin sensitivity in metabolic organs22,23. In another case, a 

candidate SNP rs231361 displayed allelic binding for several RFX TFs including RFX1 

and RFX2, consistent with a previous report that disruption of RFX motif increases the 

susceptibility of T2D24. The region enclosing rs231361 interacted with genesSLC22A18 

and CDKN1C located ~500Kb away, evidenced by in situ Hi-C data (Figure S1.4d). An 

earlier study has suggested that CDKN1C can mediate T2D susceptibility through its 

regulatory function in beta cell early development25. Together, our findings extended 

previous knowledge on T2D risk variants and demonstrated allelic TF binding as a 

valuable and unique resource to prioritize casual variants and understand their underlying 

mechanisms. 

The number of SNPs functionally tested in the SNP-SELEX assay is still finite and 

far less than the non-coding SNPs in the human genome26. To be able to predict 

differential DNA binding by a TF to any genetic variant in the human genome, we used a 

machine learning approach trained with our SNP-SELEX raw data. Specifically, we 

employed the deltaSVM algorithm17 to train our computational models using the enriched 

oligo sequences from each SNP-SELEX experiment (Figure 1.4a). We named these 

computational models as k-mer based estimation of impact of SNP on TF binding (KEIS) 

(Figure 1.4a). We successfully obtained KEIS models for 167 TFs with excellent 

performance in five-fold cross-validation. The median area under the receiver operating 

characteristic curve (AUROC) of these TFs is 0.980, while the median area under the 
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Precision-Recall (PR) curve (AUPRC) is 0.830 (Figure 1.4b). By contrast, the 

performance of PWM in predicting differentiation DNA binding was much lower, with 

AUROC and AUPRC 0.898 and 0.470 respectively (Figure 1.4b). Among the 167 TFs 

with KEIS models, 124 TFs had an AUPR score higher than 0.75, and were used for 

subsequent genome-wide prediction (Figure 1.4c). KEIS models of these 124 TFs 

predicted 1,827,007 out of 10,679,051 common variants in the human genome as 

differentially recognized by one or more of the TFs. To avoid being confused with SELEX 

derived allelic SNPs (pbSNPs), we termed these SNPs predicted by KEIS models k-

SNPs. 

Like SNP-SELEX, KEIS models also outperformed PWMs in predicting differential 

TF binding to SNPs in vivo (Figure 1.2f; Figure S1.2b). Analyzing the allelic DNA TF 

binding in HepG2 cells from ChIP-seq datasets, KEIS models recovered twice as many 

SNPs with allelic DNA binding than PWM models (Figure 1.4d; Figure S1.5a). Similarly, 

KEIS models could explain a more significant percentage of allelic DNA binding for ATF2, 

PKNOX1 and NR2F1 in GM12878 cells than PWM models (Figure S1.5b, c). 

Additionally, KEIS models recovered SNPs with allelic regulatory effects at an equivalent 

odds ratio to the original SNP-SELEX data, further supporting the reliability of the 

computational models of TF binding specificity (Figure 1.4e, f; Figure 1.2g, h). 

Master transcription factors are key nodes in the transcriptional network of each 

cell lineage. We reasoned that SNPs affecting the DNA binding of master TFs were more 

likely to cause disease than other categories of SNPs. In line with predicting the TFs most 

likely affected by the genetic variants associated with a particular trait or disease, we used 

stratified LD score regression (S-LDSC)27 to determine the enrichment of SNPs showing 
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differential binding to a TF in SNPs associated with traits and diseases in order to 

associate the TF with the corresponding phenotypes 31,37-4523,28-36. As a first step, we 

focused on T2D-relevant traits as well as several brain-related traits and diseases. As 

expected, TFs previously known to be associated with these traits showed strong 

enrichment (Figure 1.5a). 

In our analysis, we found TFAP2B, a known regulator of insulin resistance and 

central adiposity37, was enriched in the set of non-coding variants that had been 

associated with fasting glucose traits. CCAAT-Enhancer Binding Protein-β (CEBPB), a 

pivotal factor in Alzheimer’s disease (AD) pathogenesis38 that was up-regulated in the AD 

cortex39, was also enriched in the set of non-coding SNPs associated with this trait. 

Similarly, ELK1, recently found to be selectively increased in depressed patient and 

mouse models of depression40, was significantly affected by SNPs associated with 

heritability of major depressive disorders. These examples suggest that we could use the 

k-SNPs to predict mater regulators involved in a particular trait or disease phenotype. 

Furthermore, we identified novel candidate TFs associated with additional human 

traits and diseases. For instance, MAFG is predicted to act in regulating fasting insulin, 

which was a well-known sign of insulin sensitivity24. To validate this prediction, we 

identified the genes differentially expressed following shRNA knockdown of MAFG in 

HepG2 cells and found that genes in the PPAR signaling pathway were most affected 

(Figure 1.5b; Figure S1.6a, b). It was known that the activation of PPAR signaling 

pathway regulated the insulin signaling cascade and insulin sensitivity41. This result 

therefore suggests that MAFG could regulate expression of genes in PPAR signaling 

pathway and modulate insulin sensitivity and the fasting insulin level. 
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Another master TF predicted by our analysis to be associated with circulating 

triglycerides level (Figure 1.5a) is the hepatic leukemia factor (HLF), previously known to 

be involved in childhood B-lineage acute lymphoid leukemia42. Consistent with this 

prediction, knockdown of HLF in HepG2 cells by RNA interference resulted in changes of 

mRNA expression in genes significantly involved in metabolic pathways and PPAR 

signaling pathway (Figure 1.5c; Figure S1.6c, d), both of which contributed to the 

regulation of blood triglycerides. In particular, HLF directly regulated the expression of 

APOC3, a gene encoding apolipoprotein C III (APOC-III) and known to be important for 

triglyceride-rich lipoprotein (TRL) metabolism43,44. APOC-III is among the most affected 

genes after HLF knockdown (Figure 1.5d). ChIP-seq experiment further showed that HLF 

bound to a candidate enhancer enclosing SNP rs7118999, located approximately 70 kb 

upstream of, but was spatially close to, the APOC3 gene promoter (Figure 1.5e). 

Importantly, allelic binding of HLF to the heterozygous SNP rs7118999 was accompanied 

with the allelic expression of APOC-III in HepG2 cells, where higher binding of HLF 

corresponded to higher expression of APOC-III in cis (Figure 1.5e). Therefore, HLF could 

regulate APOC-III expression and in turn mediates the size of triglyceride-rich lipoprotein, 

which is a major risk factor for coronary artery disease (CAD)44,45. Since APOC-III has 

already been considered as a target to reduce the risk of CAD in a variety of clinical 

studies46, our analysis supports that HLF could be a novel therapeutic target for CAD. 
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1.4 Discussion 

Overall, the above results demonstrated the power of high throughput SNP-SELEX 

approach in the study of human disease and traits. While GWAS can locate disease-

associated genetic variants, determining the molecular mechanisms of these variants 

remains difficult47-49. Currently, fewer than 50 risk SNPs have been mechanistically 

characterized for TF binding (reviewed in Deplancke et al50), while the mode of action for 

more than 99% of disease associated non-coding genetic variants is unknown. Here, we 

have established a general strategy and public resource to address this challenge. Using 

SNP-SELEX method, we have systematically investigated the differential binding of 270 

distinct human TFs, from 25 different structural families, to 95,886 common SNPs. The 

current study has not only improved our knowledge of TF binding specificity for nearly 

200 human TFs, but also defined DNA binding specificity for additional 79 TFs, for which 

PWM models are not yet available. More importantly, using machine-learning techniques, 

we built highly quantitative and predictive models for 124 TFs and expanded the 

differential TF binding analysis to the rest of non-coding variants in the human genome. 

We demonstrated the superior performance of our TF binding models over the standard 

PWM models in predicting the influence of SNPs on TF binding both in vitro and in vivo.  

Additionally, we used these models to assess the impact of risk variants on TF 

binding, and predict master TFs potentially involved in a variety of complex traits and 

diseases. This allows us to analyze the enrichment of allelic SNPs of various TFs in a 

variety of trait-associated genetic variants and identify potential master TFs involved in 

these phenotypic traits. It is important to note that if we perform enrichment analysis for 

the presence of trait-associated SNPs in TF binding sites alone without including the 



 
 

22 
 

allelic binding information, we won’t be able to recover the trait-associating master TFs 

(Figure S1.7), demonstrating crucial roles of allelic TF binding information. 

In summary, our results addressed a critical gap in our knowledge about the impact 

of variants on TF binding. By combining data from population genetic studies and 

quantitative models of TF binding to non-coding SNPs, we will be in an excellent position 

to unravel the mechanisms of human disease and identify new therapeutic targets. 
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1.5 Methods 

SNP Selection  

In total, 110 leading SNPs were selected from previous T2D GWAS5,6. Common 

SNPs (minor allele frequency>1%) within 500 kb of the 110 leading SNPs were extracted 

from 1000 Genome Project from all available populations, resulting in 379,895 unique 

SNPs. From these SNPs, 6,724 SNPs were selected in Linkage Disequilibrium with 

leading SNPs in East Asian and Caucasian populations (r2≥0.8) from 1000 Genome 

Project Pilot 151, and 89,162 SNPs were selected based on their distance (≤500 kb) to the 

accessible chromatin regions in ENCODE DHS sites52 or FANTOME 553 permissive 

enhancers for all cell and tissue types. Altogether, 95,886 SNPs were included in the 

current study. 

SNP-SELEX Experiments  

Oligo design was adapted to illumina TruSeq dual-index system (Figure S1.1a) 

and synthesized as a 92,000 pool by CustomArray (Seattle, WA). The oligos were 

amplified using 20 cycles of PCR and sequenced with illumina HiSeq 2500 to verify the 

identities. The cDNAs of TF proteins were cloned to pET20a plasmids54 and expressed 

using Rosetta (DE3) pLysS strains. 

The HT-SELEX experiments were performed essentially the same as previously 

described11. Briefly, the E. coli expressed 6xHis-tagged TF proteins were immobilized to 

Ni sepharose beads (GE, 17-5318-01) in Promega binding buffer (10mM Tris pH7.5, 

50mM NaCl, 1mM MgCl2, 4% glycerol, 0.5mM EDTA, 5µg/ml poly-dIdC). Oligos from 

input or previous HT-SELEX cycles were added into the protein beads mixture and 

incubated at ambient temperature for 30 min. After binding, the beads were consecutively 
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washed for 12 times with the Promega binding buffer. After final wash, TE (10mM Tris pH 

8.0, 1mM EDTA) was used to re-suspend the beads and for PCR amplification. The PCR 

products from each HT-SELEX cycle were purified (Qiagen, 28004) and sequenced with 

illumina HiSeq 2500.  

Cell Culture and Transfection  

The HEK293T cells (ATCC, CRL-3216) and HepG2 (ATCC, HB-8065) cells were 

cultured under normal condition with 5% CO2 at 37 °C. Fugene HD (Promega, E2311) 

was used for plasmid transfection. Specifically, 2 µg of STARR-seq plasmids were mixed 

with 5 µl of transfection reagents for transfection into 300,000 cells cultured in a single 

well of 6-well plate. For siRNA transfection, HiPerfect transfection was used following the 

manufacture guidance. For each experiment, 50 nM of siRNA was used with 5 ul of 

HiPerfect reagent to make the transfection complex for 1-3×104 cells. Cells were 

continued to be cultured for 72 hours. The siRNAs targeting human HLF (cat. #GS3131) 

and MAFG (cat. #GS4097) were commercially available from Qiagen. Silencer negative 

control siRNA was commercially manufactured and order from Thermo Fisher (cat. 

#AM4635). 

STARR-seq Experiments 

To directly evaluate pbSNP impact on enhancer activity, STARR-seq19 was 

conducted with human embryonic kidney (HEK293T) and human hepatocarcinoma 

(HepG2) cell lines. In total, 11,961 genomic sequences harboring 2,246 pbSNPs and 

1,697 non-pbSNPs were designed. In addition, we included 37 true positive controls 

which are known enhancers and 2,998 negative controls that are random yeast open read 

frames (ORFs) sequences. 
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Oligo design was adapted from the previously published STARR-seq work19 and 

synthesized from Agilent (Santa Clara, CA). Briefly, each oligo contains 190 bp of 

genomic sequence enclosing the SNP and 20 bp constant flanking sequences (upstream: 

5’- ACACGACGCTCTTCCGATCT; downstream: AGATCGGAAGAGCACACGTC-3’) on 

both sides which were used for amplification and cloning. The generic PCR primers 

including illumina Truseq adapter sequences and different indexes were used to amplify 

the oligo pool and cloned into the human STARR-seq plasmid (a gift from the Stark lab, 

Austria). PCR amplification from the plasmids was performed and sequenced for 2x100 

paired-end cycles with illumina HiSeq 4000 sequencer as input control. 

The plasmid pool was transfected into HEK293T or HepG2 cell lines using Fugene 

HD and continued culturing for 48 hours before harvest. Total RNA was extracted with 

RNeasy kit (Qiagen, 74104) and mRNA was enriched with poly(dT)25 Dynabeads 

(Invitrogen, 61002). First strand cDNA was synthesized using a specific primer (5’-

CAAACTCATCAATGTATCTTATCATG) with high High-Capacity cDNA Reverse 

Transcription kit (ThermoFisher Scientific, 4368814). The nested PCR was used to 

amplify the SNP specific fragments from cDNA, first using two reporter-specific PCR 

primers (5’-GGGCCAGCTGTTGGGGTGTCCAC & 5’-CTTATCATGTCTGCTCGAAGC) 

and then generic primers used in HT-SELEX. DNA was purified with AMPure beads and 

sequenced for 2x100 paired-end cycles with illumina HiSeq 2500 sequencer. In total, 

three biological replicates were performed with two technical replicates each for both 

HepG2 and HEK293T cells. 

in situ Hi-C Experiments 
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The in situ Hi-C was performed according to a previously described protocal21 with 

slight modifications. Briefly, the human islets were washed with cold PBS and cut into 

small pieces. For HepG2 cells, the cells were trypsinized and washed with PBS. The 

chromatin was cross-linked with 1% formaldehyde (Sigma) at ambient temperature for 10 

min and quenched with 125mM glycine for 5 min. PBS washed tissue was homogenized 

with loose fitting douncer for 30 strokes before centrifugation to isolate the nuclei.  

Nuclei were isolated and directly applied for digestion using 4 cutter restriction 

enzyme MboI (NEB) at 37 °C o/n. The single strand overhang was filled with biotinylated-

14-ATP (Life Tech.) using Klenow DNA polymerase (NEB). Different from tradition Hi-C, 

with in situ protocol the ligation was performed when the nuclear membrane was still 

intact. DNA was ligated for 4h at 16 °C using T4 ligase (NEB). Protein was degraded by 

proteinase K (NEB) treatment at 55 °C for 30 min. The crosslinking was reversed with 

500 mM of NaCl and heated at 68 °C o/n. DNA was purified and sonicated to 300-700 bp 

small fragments. Biotinylated DNA was selected with Dynabeads My One T1 Streptavidin 

beads (Life Tech.). Sequencing library was prepared on beads and intensive wash was 

performed between different reactions. Libraries were checked with Agilent TapeStation 

and quantified using Qubit (Life Tech.). Libraries were sequenced with illumina HiSeq 

4000 100 cycles of paired-end reads. 

ChIP-seq Experiments 

The ChIP-seq experiment was carried out using an established protocol55. Briefly, 

the cells were crossed linked with 1% formaldehyde at ambient temperature for 10 min. 

The reaction was quenched by 125mM glycine for 5 min at room temperature. Cells were 

washed with PBS and treated with hypotonic buffer (20mM Hepes pH7.9, 10mM KCl, 
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1mM EDTA, 10% Glycerol and 1mM DTT with additional protease inhibitor (Roche)) to 

isolate nuclei. The nuclei were suspended with RIPA buffer (10 mM Tris-HCl pH 8.0, 140 

mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate with 

protease inhibitor) and sonicated using Covaris S220 Focused-ultrasonicator. 

Fragmented chromatin was pre-cleared with protein G conjugated sepharose beads (GE).  

Antibodies against HLF (Santa Cruz, sc-134359), MAFG (Santa Cruz, sc-166548 

X), Histone H3K4me1 (Abcam, ab8895), H3K4me3 (Abcam, ab8580) and H3K27ac 

(Abcam, ab4729) were used to pull down the respective proteins and their associated 

chromatin. Washes with different concentration of NaCl were performed. The enriched 

protein-DNA complexes were reverse crosslinked at 65 °C over night with proteinase K 

(NEB). DNA was purified with Qiagen MinElute kit.  

Sequencing library was prepared using an in-house kit, including end-repair, “A” 

addition and adapter ligation. The library was sequenced with illumina HiSeq 4000 for 

50bp single reads or 100bp pair-end reads.  

Whole Genome Sequencing  

The genomic DNA was extracted using Qiagen kit (cat. no. 69506). The DNA was 

then fragmented with Covaris S220 ultrasonicator to 300-500 bp long. Sequencing library 

was then prepared using the same in-house kit as ChIP-seq, including end-repair, “A” 

addition and adapter ligation. The library was sequenced with illumina HiSeq 4000 

sequenced for 100 bp paired-end reads to achieve an average coverage of 30-40 times 

of the human genome.   

RNA-seq Experiments 
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The total RNA was isolated using Qiagen RNeasy mini kit. The sequencing library 

was prepared using Truseq illumine RNA Library Prep Kit v2 (cat. #RS-122-2001). The 

library was sequenced using illumina HiSeq 4000 for 100bp paired-end reads.  

CRISPRi 

CRISPR/dCas9 fused with KRAB domain (addgene cat. no. 71236) was 

introduced to genomic locus enclosing the SNP rs7578326 using sgRNA (targeting 

sequence TCCGTTGGTGACACAGTTGG) in HepG2 cells. CRISPR/dCas9 with the 

same sgRNA was used as negative control. Similarly, both plasmids were transfected in 

293T cells as control. RNA was extracted using Qiagen RNeasy kit and reverse 

transcribed using High-Capacity cDNA Reverse Transcription Kit (Thermo). Quantitative 

PCR was performed to measure the expression of IRS1 gene using pre-designed primers 

(Qiagen QT00074144) and beta actin for internal control (Qiagen QT00095431). 

Triplicates were carried out for each experiment to compute the statistical significance 

using t-test. 

SNP-SELEX Data Analysis 

Sequencing data of each HT-SELEX cycle was aligned to the oligo library using 

BWA56. Several filters were applied to aligned reads after alignments: 1) Reads of low 

quality, containing ambiguous bases, unaligned to reference and aligned outside of the 

oligo boundaries were filtered out and experiments with less than 10,000 reads were 

excluded from further analysis; 2) To control for PCR-duplication bias, the frequency of 

all PCR bias control (PDC) sequences (256 combinations) of each cycle were compared 

to the input library (cycle 0) using a linear regression model. PDC whose difference 
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between expected and observed frequency exceeded 30% of the observed values were 

considered biased and all reads containing the biased PDC were removed.  

De novo motif discovery was then conducted using the cycle six reads with Homer 

toolset57. Motifs were then compared to JASPAR 2016 non-redundant vertebrates’ motifs 

58 and HT-SELEX models to examine quality of the experiments54. Only SNP-SELEX 

experiments whose motif models match either its TF or TF of same structural family11 

were kept for further analysis. The frequencies of reads supporting each SNP oligo and 

its alleles were obtained from the remaining dataset. 

Aiming to quantify the TF binding to genomic oligo, oligo binding score (OBS) was 

defined as area under the curve (AUC) of logarithmic odds-ratio along HT-SELEX cycles. 

We first estimated odds ratio of observing oligo 𝑜. 𝑂𝑅%  at cycle c compared to the input 

library, where 𝑜. 𝑂𝑑𝑑𝑠%  is the odds of observing oligo at cycle c regarding all other oligos. 

OBS was then computed as AUC of log base 10 of 𝑜. 𝑂𝑅%over six HT-SELEX cycles. 

Likewise, preferential binding score (PBS) was introduced to quantify each SNP 

allele preferential binding as difference of AUC between reference and alternative alleles 

in terms of logarithmic odds-ratio along HT-SELEX cycles. PBS was obtained by 

estimating the odds ratio of observing allele a at cycle c compared to cycle 0, where 

𝑂𝑑𝑑(,%	is the odds of observing allele a at cycle c given other alleles. Given the difference 

of reference and mutant alleles (r and m, respectively) logarithmic odds-ratio at cycle c, 

PBS was obtained by computing AUC of ∆𝐿𝑂𝑅%	over six HT-SELEX cycles. 

The statistical significance of both PBS and OBS in each experiment was 

measured by Monte-Carlo randomization, where the oligo and allele read counts were 

shuffled within each cycle and the scores were recomputed for 250,000 times. Oligos 
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were considered significantly bound to the TF for OBS p-value < 0.05. Oligos were 

considered significantly preferentially bound for SNPs for PBS p-value < 0.01 and OBS 

p-value < 0.05. 

PWM Binding Preference Determination 

Using JASPAR 2016 non-redundant vertebrate motif database58, the score for 

reference and alternative genomic oligo sequences was measured for 208 distinct TFs 

using Biopython62. The PWM score of each sequence was obtained by computing the 

maximum motif score of a sliding window over sequence in both forward and reverse 

strand. Only oligos with at least one allele passed threshold false positive rate (FPR) 0.01 

were considered for further analysis. Specifically, the FPR threshold was computed based 

on the human genome GC content (0.4) for each TF separately. The difference of PWM 

score between reference allele r and alternative allele a respectively (∆PWM) was used 

to estimate allele preferential binding. 

The PWM model allele preference was determined as follow: (i) preferred 

reference allele, when only PWMr is above 0 or ∆PWM is above 2; (ii) preferred mutant 

allele, when only PWMa is above 0 or ∆PWM is below -2; (iii) no allele preference 

otherwise. 

Genotyping of HepG2 cells 

 Reads from whole genome sequencing (WGS) were aligned using BWA MEM59 in 

pair-end model with default parameters. PCR duplicates were removed using Picard tools 

(http://broadinstitute.github.io/picard). Variants were then called according to the GATK 

best practice pipeline using GATK 3.6-0 60 . Briefly, reads were realigned locally, and base 

pair qualities were recalibrated. Variants were then called using HaplotypeCaller with 
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default parameters. Variants were then recalibrated based on known gold standard 

variants. Only variants that passed filters were used in the downstream analysis.  

ChIP-seq Data Analysis 

Reads were aligned using BWA MEM59 with either single-end or pair-end model to 

the hg19 reference genome. Reads with low mapping quality (mapq<10) were filtered out, 

and PCR duplicates were removed using Picard tool 

(http://broadinstitute.github.io/picard/). MACS261 were then applied to call peaks and 

generate signal tracks to view in the genome browser. 

Determination of Allele Imbalance of TF binding from ChIP-seq data 

In addition to ChIP-seq performed in this study, ChIP-seq for additional TFs were 

also collected from ENCODE project. For allelic analysis, reads were aligned using WASP 

mapping pipeline to control potential allelic mapping bias62. Specifically, heterozygous 

SNPs called using WGS data were used for HepG2 cells, and heterozygous SNPs from 

1000 genome project were used for GM12878 cells. Allelic read counts for each phased 

heterozygous SNP within the 300bp window in TF ChIP-seq data and corresponding 

control data were obtained using custom python scripts. To remove sampling biases, 

SNPs that are covered by less than 20 reads in either the treatment or the control were 

filtered out. Odds ratios were then computed for each SNPs comparing allelic counts 

between the treatment and control to measure allelic imbalance. SNPs were tested for 

allelic imbalance using binomial test using background ratio derived from control data. 

SNPs with Benjamin-Hochberg adjusted p-value < 0.05 were considered as allelic 

imbalanced. 

STARR-seq Data Analysis 
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STARR-seq reads were aligned to the oligo libraries using BWA56 with default 

parameters. Read counts for each oligos were then counted using custom scripts. Counts 

for technical replicates were merged. Oligos were filtered to keep only oligos covered by 

more than 25 reads in the input library and more than five reads in at least three libraries. 

We first identified oligo that were enriched compared to the input library. Enriched 

oligos were determined by a negative binomial regression from R package edgeR63. 

Common biological dispersion was estimated using only yeast oligos where no real 

variation is expected. The resulting p-values were adjusted by Benjamin-Hochberg 

procedure, and the significance cutoff for enriched oligos was set to limit the rate of 

enriched yeast oligos to 5%.  

We then focused on SNPs for which at least one allele were significantly enriched, 

and calculated the difference of log fold-change activity between two alleles using paired 

t-test from R package limma64, shirking the variance with an empirical Bayesian method. 

The p-values were adjusted by Benjamin-Hochberg procedure and SNPs were 

considered significant with adjusted p-value < 0.01. 

RNA-seq Data Analysis 

 Reads were aligned to the hg19 reference genome using STAR 2.4.2a65 with 

default parameters in pair-end model. Only uniquely aligned reads were kept for further 

analysis. Cufflinks 2.2.166 was used to compute FPKM for each gene.  

Determination of Allele Imbalance in Gene Expression 

For allelic analysis, reads were aligned to the hg19 reference genome using STAR 

and WASP62 pipeline to control allelic mapping bias. The same set of SNPs and 

haplotypes were used for RNA-seq as ChIP-seq as described above in HepG2 cells. 



 
 

33 
 

Allelic counts for each gene were generated using htseq-count 0.6.067. Genes with at 

least 10 allelic reads were tested for allelic imbalance using the Binomial test using 

background ratio derived from whole genome sequencing data. Genes with Benjamin-

Hochberg adjusted p-value < 0.1 were considered allelic imbalanced. 

Enrichment of pbSNP in Allele Imbalanced Chromatin Features 

To evaluate if pbSNPs were enriched for allele imbalanced chromatin features, 

fraction of pbSNP between imbalanced and balanced SNPs were compared using Fisher-

test for allele imbalanced sites from ChIP-seq data (as described above), DHS15, 

H3K27ac16 and paSNPs. 

Compare SNP-SELEX with DeltaSVM and DeepSEA  

DeltaSVM17 and DeepSEA18 are two other computational tools used to predict the 

regulatory activity and chromatin effects of variants. Briefly, machine learning models 

were trained using predefined positive and negative sequences, where positive 

sequences are sequences overlapping with ChIP-seq or DHS peaks and negative 

sequences are random sampled genomic sequences without peaks. Then the models 

were applied to score genomic sequences surrounding SNPs of interest for both alleles. 

For DeepSEA, log2 fold change between two alleles were used as score for SNPs. For 

DeltaSVM, weights for all 10mers surrounding the SNP were summed as the score for 

SNPs. SNPs with higher scores were more likely to affect regulatory activity.  

We applied both DeltaSVM and DeepSEA models to measure chromatin effects 

of all 95,886 SNPs evaluated by SNP-SELEX experiments. DeltaSVM evaluated SNP 

scores using the weights obtained from GM12878, K562 and HepG2 DHS data29. 

DeepSEA evaluated SNP log fold-change of DNase I sensitivity on AoAF, CD20+, Caco-
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2, Fibrobl, HepG2, Hepatocytes, K562, Myometr, PANC-1, PanIsletD, and PanIslets cell 

lines. 

Hi-C Data Analysis 

 Hi-C data was processed as previously described68. Briefly, each end of read pairs 

were aligned separately using BWA MEM to the hg19 reference genome with default 

parameters. Chimeric read ends were further processed to keep only the five-prime 

alignment. Read ends with low mapping quality (mapq<10) were removed, and remaining 

read ends were paired using custom scripts. PCR duplicates were removed using Picard 

tool (http://broadinstitute.github.io/picard). Aligned reads were further transformed to the 

juicer format and processed into hic format using juicebox tool69. Chromatin loops were 

called using Hiccups with default parameters.  

Haplotype Phasing of HepG2 cells using Hi-C and WGS 

 Aligned Hi-C bam files were processed through GATK realignment pipeline the 

same as WGS data describe above. Two filters were applied to SNPs to keep only high-

quality SNPs: 1) Only bi-allelic SNPs were kept; 2) Only heterozygous SNPs with high 

genotype quality (GQ>20) were kept. WGS and Hi-C data were then parsed to extract 

informative fragments with extractHAIRs70  using filtered SNPs. The fragments from Hi-C 

and WGS data were combined, and HAPCUT270 was used to derive haplotypes. Results 

from HAPCUT2 were then paired with SNPs in 1000 Genome Project Phase 3 data, and 

Beagle 4.171  was used to impute haplotypes for SNPs that were not phased by 

HAPCUT2. We obtained chromosome-span haplotypes for all auto chromosomes except 

for chr22. Phasing quality was further examined by computing fraction of homologous 

trans (h-trans) reads in RNA-seq data from HepG2 cells. Specifically, h-trans reads were 
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read pairs that contain SNPs from both haplotypes. Chromosome-span haplotypes with 

high accuracy were obtained. 

Predicting target genes of non-coding SNPs  

 To assign potential target genes for SNPs, two approaches were taken: 1) SNPs 

within 2Kb upstream region of a TSS were assigned to the TSS; 2) SNPs overlapping 

one anchor of chromatin loops (with in 25Kb window) were assigned to the TSS 

overlapping the other anchor (with in 25Kb window). Similar approaches were used to 

connect TF binding sites to target genes.  

Training and Validation of KEIS Models 

TFs with at least 20 pbSNPs were selected to build KEIS models. For each TF, 

two separate models with different k-mer size were built for each experiment in each cycle 

using SELEX reads as positive sequences and other sequences in cycle 0 as negative 

sequences. Both positive and negative sequences were randomly down-sampled to 

20,000 sequences. The models were trained using lsgkm with two k-mer size using 

parameters “-l 10 -k 6 -d 3" and “-l 8 -k 5 -d 3” respectively. The models were then used 

to score SNPs using deltasvm.pl script. For each SNPs, deltaSVM scores were computed 

using 40bp sequences with SNP at the center.  

For each model, we measured the performance of the model based on SNPs 

tested directly by SNP-SELEX. Specifically, pbSNPs (p-value < 0.01) were treated as true 

positive sets and non-pbSNPs (p-value > 0.5) were used as true negative sets. We 

computed AUROC and AUPR for each model using R package PPROC. For each TF, 

we select the best model based on AUPR for genome-wide prediction. 
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Five-fold cross validation was also performed to measure the performance of KEIS 

models. Specifically, SNPs for benchmarking were divided equally into five folds. 

Sequences containing SNPs in the one-fold used to test were removed when training the 

models, and the remaining four-fold of SNPs were used for testing.  

Genome-wide Prediction using KEIS Models 

 For each SNP to test, a pair of 40bp genomic sequences from the hg19 reference 

genome with the SNP to test in the center were generated. We first scored both 

sequences using gkm models and determined if at least one of oligos can be bound by 

the TF. Threshold was determined based on bound oligos identified using SNP-SELEX 

experiments. Specifically, we computed gkm scores for all bound oligos and used the 

medium of the scores for bound oligos for each TF as the threshold to determine binding. 

Only bound oligos were further predicted for allelic TF binding. 

The pair of sequences were then scored using deltasvm script. Similarly, threshold 

was determined based on pbSNPs measured by SNP-SELEX. Specifically, we computed 

KEIS scores for all pbSNPs and used the medium of pbSNPs’ scores for each TF as the 

threshold to determine allelic TF binding. 

Performance Comparison of PWM and KEIS 

For PWM models, delta PWM scores were calculated as described in the previous 

section for all TF-SNP pairs. PWM models were applied to the same set of SNPs as KEIS 

models. Only 125 TFs for which models for both PWM models and KEIS models are 

available were included in the comparison. 

Comparison with TF ChIP-seq Data 
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We made predictions for heterozygous SNPs covered by at least 20 allelic reads 

in ChIP-seq experiments in HepG2 and GM12878 cells respectively. For each TF ChIP-

seq experiment, we computed the percentage of allelic imbalanced SNP in k-SNPs and 

non-kSNPs. Allelic imbalanced SNPs were determined as described in the previous 

section. 

For PWM models, we determined threshold for oligo binding and k-SNPs using the 

exact procedure as KEIS models. For ATF2 data, we used ATF3 motif because there is 

no motif for ATF2 in JASPAR database. 

Partition Heritability of Complex Traits using k-SNPs 

 To partition heritability of diseases and complex traits in context of k-SNPs, we 

applied previously established method LDSC27. Briefly, LDSC models the casual effect of 

each SNP for a given trait as a linear additive contribution by a list of annotations and 

then estimates per-SNP heritability for each annotation as regression coefficient 

considering not only the SNP to test but also all SNPs in LD. Then p-value was computed 

to test if regression coefficient for annotation i is positive, which means annotation i 

explains additional heritability in addition to other annotations. 

   We made predictions for 124 TFs with good KEIS models for all common SNPs in 

1000 genome project phase 3 for European population as mentioned above. The list of 

SNPs was downloaded from ldsc website 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/). K-SNP predictions for each TF 

within DHS regions in any Roadmap tissues were then used as annotation to estimate 

annotation-specific LD scores for each TF. We then run LDSC using k-SNPs for each TF 

along with 53 baseline models including genic regions, enhancer regions and conserved 
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regions. To rule out the effect of TF binding rather than allelic TF binding, we also included 

predictions for SNPs bound by the TF in the regression model. In summary, we run LDSC 

using 55 annotations including k-SNP prediction, binding SNP prediction, and 53 baseline 

models, and p values for regression coefficient of k-SNP prediction for each TF were used 

to measure if k-SNP explains additional heritability. The p-values for the term of binding 

SNP prediction were used in Figure S1.6. 

Differentially Gene Expression Analysis 

 Read counts for each gene were obtained using htseq-count using GENCODE 

human annotation release 24 as reference. DESeq272 was used to identify differentially 

expressed genes using default parameters.  Genes with Benjamin-Hochberg adjusted p-

value < 0.2 were considered as differentially expressed. KEGG pathway enrichment 

analysis was performed with DAVID.  
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1.6 Figures 

 
Figure 1.1. Determination of differential DNA binding of human TFs to common 
sequence variants by SNP-SELEX. (a) An overview of the SNP-SELEX procedure. (b-
e) Histograms show the number of oligos bound by each TF (b), the number of binding 
TFs for each oligo (c), the number of pbSNPs bound by each TF (d), and the number of 
TFs showing allelic binding for each pbSNP (e). (f) A clustering diagram of TFs tested in 
this study was generated based on the pairwise correlation of their DNA binding specificity 
from the SNP-SELEX data.  
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Figure 1.2.  Comparison of differentially bound SNPs identified by SNP-SELEX and 
PWM models. (a) A scatterplot shows the preferential binding score (PBS) from SNP-
SELEX experiments on the y-axis and differential PWM scores (∆PWM) on the x-axis. (b) 
Comparison of the SNPs with differential TF binding determined by SNP-SELEX and 
PWM. (c-d) Comparison of the PWM scores (b) and the OBS scores (c) between SNPs 
with consistent (Agreed) and inconsistent (Disagreed) prediction. (e) Boxplot showing 
Pearson correlation coefficients of PBS and ∆PWM (left) and information content (right) 
for each TF family. (f) Scatterplot showing the correlation of allelic biases of DNA binding 
detected from ChIP-seq data in HepG2 cells and those predicted by PBS and SNP-
SELEX, respectively. (g) Bar plot showing the comparison of the fraction of allelic 
imbalanced DHS sites in pbSNPs and non-pbSNPs. (h) Bar plot comparing the fraction 
of enhancers showing allelic imbalance in H3K27ac with regard to pbSNPs and non-
pbSNPs. (i) Bar plot comparing the fractions of paSNPs determined using STARR-seq in 
pbSNPs and non-pbSNPs.  
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Figure 1.3. pbSNPs uncover potential mode of action for likely T2D causal variants. 
(a) Semantic plot showing two approaches to link SNPs to target genes: (top) chromatin 
loops where DNA forms a loop and brings the SNP in proximity to TSS, which can be 
identified as a red dot in the Hi-C contact map (dot circled in black); (bottom) A SNP is 
located within 2Kb upstream of TSS. (b) A T2D GWAS leading SNP rs7578326, a pbSNP 
differentially bound by TFs CEBPB, CEBPE, MYBL2 and NFE2, is predicted to target the 
IRS1 gene based on Hi-C analysis (circled in blue in bottom panel) in HepG2 cells. (c) 
CRISPRi using dCas9 fused with repressive KRAB domain and guide RNA targeting the 
locus of SNP rs7578326 (upper) leads to reduced expression of IRS1 gene in HepG2 but 
not in HEK293T cells. (d) SNP rs7578326 is an eQTL in the liver. Normalized expression 
value in liver from 153 individuals from GTEx project for IRS1 gene is grouped based on 
individual’s genotype of SNP rs7578326.  
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Figure 1.4. KEIS better predicts differential TF binding to non-coding variants in 
vitro and in vivo than PWM. (a) A schematic graph for development of KEIS models for 
the TFs. (b) Boxplot showing the comparison of performance for PWM and KEIS for 167 
TFs with KEIS models based on AUROC and AUPR in five-fold cross-validation. AUROC, 
area under the receiver operating characteristic curve. AUPR, area under the precision-
recall curve. (c) Venn diagram showing the number of TFs with DNA binding specificities 
defined by PWM, KEIS, and SNP-SELEX, respectively. (d) KEIS outperforms PWM 
models in predicting differential DNA binding in vivo. (e) Bar plot showing the comparison 
of the fraction of allelic imbalanced DHS sites for k-SNPs and non-kSNPs. (f) Bar plot 
showing the comparison of the fraction of allelic imbalanced enhancers measured by 
H3K27ac around k-SNPs and non-kSNPs.  
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Figure 1.5. KEIS models identify candidate master TFs involved in complex traits 
and diseases. a) Heatmap showing the significance of enrichment of SNPs with 
differential binding to TFs among traits- or disease-associated SNP. Only TFs showing 
significant enrichment ratio in at least one trait are shown in the figure for clarity. (b, c) 
Bar plot showing enriched KEGG pathways affected by MAFG (b) and HLF (c) knockdown 
in HepG2 cells. (d) Bar plot showing normalized gene expression for APOC3 in HLF KO 
and WT HepG2 cells. P-value is 6.67e-05 as computed by DESeq2. (e) Genome browser 
shot showing differential HLF binding to rs7118999 is linked to allelic gene expression of 
APOC3, which is predicted to be targeted by the SNP based on chromatin looping in 
HepG2. 
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1.7 Supplemental Figures 

Figure S1.1. Quality controls and reproducibility of SNP-SELEX data. (a) Two 
random nucleotides were added to each end of the oligos as unique molecule identifiers 
(UMIs) to remove over-represented PCR duplicates. Illumina TruSeq dual-index system 
was adapted for oligo design. (b-c) Comparison of oligo selection (b) and allele preference 
(c) between different biological replicates (replicates), of full length (FL) and DNA Binding 
Domain (DBD), members of the same structural family (family), and random pairs 
(others). (d) An example illustrating differential DNA binding at six SNPs, in four SNP-
SELEX experiments, including (i) two full-length ELK1 replicates, on the first two lines; (ii) 
one DNA binding domain (DBD) ELK1, on the third line; and one full-length ELK4 TF 
which belongs to the same structure family, on the last line.  
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Figure S1.2. SNP-SELEX results are correlated with TF binding in vivo and 
enhancer activity from high through reporter assays. (a, c) Scatterplot showing the 
correlation of delta PWM score and allelic binding ratio and ChIP-seq in HepG2 (a) and 
GM12878 (c) cells respectively. (b) Scatterplot showing correlation of PBS and allelic 
binding ratio derived from SNP-SELEX and ChIP-seq in GM12878 cells respectively. (d) 
Bar plot showing the comparison of the fraction of allelic imbalanced DHS sites in pbSNPs 
and non-pbSNPs predicted by PWM models instead of SNP-SELEX. (e) Bar plot 
comparing the fraction of enhancers showing allelic biased in H3K27ac with regard to 
pbSNPs and non-pbSNPs predicted by PWM models instead of SNP-SELEX. (f-g) 
Predictions of differential TF binding using deltaSVM (d) and DeepSea (e) are well correlated 
with SNP-SELEX results.  
  



 
 

49 
 

 
  



 
 

50 
 

Figure S1.3. SNP-SELEX results are correlated with enhancer activity from high 
through reporter assays. (a) Heatmap of Pearson’s correlation coefficient calculated 
among STARR-seq read counts in the input library, three HepG2 replicates, and three 
HEK293T replicates. (b) An illustration of the oligo logarithmic fold-change (y-axis) over 
the library logarithmic counts per million (CPM) (x-axis) for HEK293T, on the top panel, 
and HepG2, on the bottom panel. (c) Bar plot comparing the fractions of paSNPs 
determined using STARR-seq in pbSNPs and non-pbSNPs predicted by PWM models 
instead of SNP-SELEX. SNPs with absolute PWM changes larger than three were 
considered as pbSNPs.  
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Figure S1.4. Exploring the mode of action of likely T2D causal SNPs with the help 
of SNP-SELEX and Hi-C. (a) Contact matrix for the pair of three human islets and two 
replicates for HepG2 cells are highly reproducible (see Methods for details). (b) Browser 
view of CEBPB binding at rs7578326, which is located in a CEBPB binding site. Two 
independent ChIP-seq data from ENCODE were shown. (c) SNP rs7578326 is an eQTL 
in adipose tissues. Normalized expression value in adipose tissues from 385 individuals 
from GTEx project for IRS1 gene is grouped based on individual’s genotype of SNP 
rs7578326. Linear regression p-value and effect size are noted on the top.  (d) A T2D 
GWAS leading SNP rs231361 differentially bound by RFX1, and RFX2 is predicted to 
regulate SLC22A18 and CDKN1C gene based on chromatin loops (circled in blue in 
bottom panel) in islets. 
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Figure S1.5. KEIS more accurately predicts non-coding variants affecting TF 
binding in vivo than PWM. (a) Comparison of the fraction of allelic imbalanced SNPs 
measured by TF ChIP-seq in pbSNPs predicted by KEIS model and PWM models in 
HepG2 cells. (b) Bar plot showing the comparison of the allelic imbalance of SNPs as 
measured by TF ChIP-seq for k-SNPs and non-kSNPs for KEIS models in GM12878 
cells, where k-SNPs are SNPs are predicted to affect TF binding by KEIS models.(c) 
Comparison of the fraction of allelic imbalance of SNPs as measured by TF ChIP-seq in 
pbSNPs and predicted by KEIS model and PWM models in GM12878 cells.  
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Figure S1.6. Analysis of differentially expressed genes upon knockdown of HLF 
and MAFG in HepG2 cells. (a, c) qPCR results of MAFG (a) and HLF (c) in WT (HepG2), 
Control (Negative and HiPerfect), and cells treated with different siRNAs. (b, d) MA-plot 
showing differentially expressed genes comparing MAFG knockdown (b) and HLF 
knockdown (d) versus controls. Significant differentially expressed genes (FDR<0.2) were 
marked in red.  
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Figure S1.7. KEIS models help identify master TFs involved in complex traits and 
diseases. Heatmap showing the significance of enrichment of TFs showing differential 
DNA binding to traits- or disease-associated SNP. The color key is shown, and the value 
represents the -log10 p-value. TF-trait pairs mentioned in the text were marked with *. 
Note that the master regulator we observed and validated (Figure 1.5a) could not be 
identified here if we only use the presence of SNPs at the binding sites without taking into 
account the impact of SNP on binding affinity. 
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CHAPTER 2: Common DNA sequence variation influences 3-dimensional 

conformation of the human genome 

2.1 Abstract 

The 3-dimensional (3D) conformation of chromatin inside the nucleus is integral to 

a variety of nuclear processes including transcriptional regulation, DNA replication, and 

DNA damage repair. Aberrations in 3D chromatin conformation have been implicated in 

developmental abnormalities and cancer. Despite the importance of 3D chromatin 

conformation to cellular function and human health, little is known about how 3D 

chromatin conformation varies in the human population, or whether DNA sequence 

variation between individuals influences 3D chromatin conformation. To address these 

questions, we performed Hi-C on Lymphoblastoid Cell Lines (LCLs) from 20 individuals. 

We identified thousands of regions across the genome where 3D chromatin conformation 

varies between individuals and found that this conformational variation is often 

accompanied by variation in gene expression, histone modifications, and transcription 

factor (TF) binding. Moreover, we found that DNA sequence variation influences several 

features of 3D chromatin conformation including loop strength, contact insulation, contact 

directionality and density of local cis contacts. We mapped hundreds of Quantitative Trait 

Loci (QTLs) associated with 3D chromatin features and found evidence that some of 

these same variants are associated at modest levels with other molecular phenotypes as 

well as complex disease risk. Our results demonstrate that common DNA sequence 

variants can influence 3D chromatin conformation, pointing to a more pervasive role for 

3D chromatin conformation in human phenotypic variation than previously recognized. 
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2.2 Introduction 

3-dimensional (3D) organization of chromatin is essential for proper regulation of 

gene expression1-3, and plays an important role in other nuclear processes including DNA 

replication4,5, X chromosome inactivation6-8, and DNA repair9,10. Many recent insights 

about 3D chromatin conformation have been enabled by a suite of technologies based 

on Chromatin Conformation Capture (3C)11. A high-throughput version of 3C called “Hi-

C” enables the mapping of 3D chromatin conformation at genome-wide scale12, and has 

revealed several key features of 3D chromatin conformation including: 1) compartments 

(often referred to as “A/B compartments”), which refer to the tendency of loci with similar 

transcriptional activity to physically segregate in 3D space12-14, 2) chromatin domains 

(often referred to as Topologically Associating Domains, or TADs) demarcated by sharp 

boundaries across which contacts are relatively infrequent15-17, 3) chromatin loops, which 

describe point-to-point interactions that occur more frequently than would be expected 

based on the linear distance between interacting loci, and often anchored by convergent 

CTCF motif pairs13, and 4) Frequently Interacting Regions (FIREs), which are regions of 

increased local interaction frequency enriched for tissue-specific genes and 

enhancers18,19. 

Previous studies have used Hi-C to profile 3D chromatin conformation across 

different cell types13,15,20, different primary tissues18, different cell states21, and in 

response to different genetic and molecular perturbations22-26, producing a wealth of 

knowledge about key features of 3D chromatin conformation. However, to our knowledge 

no study to date has measured variation in 3D chromatin conformation across more than 

a handful of unrelated individuals. Several observations demonstrate that at least in some 
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cases DNA sequence variation between individuals can alter 3D chromatin organization 

with pathological consequences27. Pioneering work by Mundlos and colleagues described 

several cases in which rearrangements of TAD structure lead to gene dysregulation and 

consequent developmental malformations28,29. In cancer, somatic mutations and aberrant 

DNA methylation can disrupt TAD boundaries leading to dysregulation of proto-

oncogenes30,31. Moreover, many genetic variants associated with human traits by GWAS 

occur in distal regulatory elements that loop to putative target gene promoters in 3D, and 

in some cases, the strength of these looping interactions has been shown to vary between 

alleles of the associated SNP32,33. Although these studies demonstrate that that both large 

effects as well as more subtle aberrations of 3D chromatin conformation are potential 

mechanisms of disease, population-level variation in 3D chromatin conformation more 

broadly has remained unexplored.  

In the present study, we set out to characterize inter-individual variation in 3D 

chromatin conformation by performing Hi-C on Lymphoblastoid Cell Lines (LCLs) derived 

from individuals whose genetic variation has been cataloged by the HapMap or 1000 

Genomes Consortia34. LCLs have been used as a model system to study variation in 

several other molecular phenotypes including gene expression, histone modifications, 

transcription factor (TF) binding, and chromatin accessibility35-41. These previous efforts 

provide a rich context to explore variation in 3D chromatin conformation identified in this 

model system. Through integrative analyses, we found that inter-individual variation in 3D 

chromatin conformation occurs on many levels including compartments, TAD boundary 

strengths, FIREs, and looping interaction strengths. Moreover, we found that variation in 

3D chromatin conformation coincides with variation in activity of the underlying genome 
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sequence as evidenced by transcription, histone modifications, and TF binding. Although 

our sample size is small, we observe reproducible effects of DNA sequence variation on 

3D chromatin conformation and identify hundreds of Quantitative Trait Loci (QTLs) 

associated with multiple features of 3D chromatin conformation. Our results demonstrate 

that variation in 3D chromatin conformation is readily detectable from Hi-C data, often 

overlaps with regions of transcriptomic and epigenomic variability, and is influenced in 

part by genetic variation that may contribute to disease risk. 
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2.3 Results 

Mapping 3D chromatin conformation across individuals 

To generate maps of 3D chromatin conformation suitable for comparison across 

individuals, we performed “dilution” Hi-C on LCLs derived from 13 Yoruban individuals 

(including one trio), one Puerto Rican trio, and one Han Chinese trio (19 individuals total). 

We also include published Hi-C data from one European LCL (GM12878) generated 

previously by our group using the same protocol42, for a total of 20 individuals from four 

different populations. Many of these same LCLs have been used in previous genomic 

studies37,39,41, allowing us to leverage multiple transcriptomic and epigenomic datasets in 

our analysis below. Importantly, 18 of these individuals have had their genetic variation 

cataloged by the 1000 Genomes Consortium34,43, which allowed us to examine the 

influence of genetic variation on 3D chromatin conformation. Two replicates of Hi-C were 

performed on each LCL, with each replicate performed on cells grown independently in 

culture for at least two passages. 

All Hi-C data were processed using a uniform pipeline that incorporates the WASP 

approach39,44 to eliminate allelic mapping biases. For each sample, we mapped a series 

of well-established Hi-C-derived features including 40Kb resolution contact matrices, 

Directionality Index (DI)15, Insulation score (INS)7, and compartmentalization12 (Figure 

2.1a; Figure S2.1a-c). Compartmentalization is measured by the first Principal 

Component (PC1) of Hi-C contact matrices, and thus we use the acronym “PC1” below 

to refer to this measure of compartmentalization. We also identified regions known as 

Frequently Interacting Regions (FIREs)18 and their corresponding “FIRE scores”, which 

measure how frequently a given region interacts with its neighboring regions (15~200kb). 
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The concept of FIRE is based on the observation that the frequency of contacts at this 

distance is not evenly distributed across the genome, but rather, tends to peak in regions 

showing epigenomic signatures of transcriptional and regulatory activity (Figure S2.2). 

As we have shown previously18,19, FIRE regions often overlap putative enhancer 

elements (Figure S2.1d-e). We did not call “chromatin loops” in this study because our 

data was not of sufficient resolution, but we use a set of loops called previously in the 

LCL GM1287814 to examine variation in loop strength among the LCLs in our study. 

Aggregate analysis shows that these published LCL loops are generally reproduced in 

our data (Figure S2.3). 

3D chromatin conformation variations between individuals 

After uniformly processing all Hi-C data, we compared chromatin conformation 

across LCLs at the level of contact matrices and multiple derived features (PC1, DI, INS, 

and FIRE). From a genome-wide perspective, each of these 3D chromatin features shows 

a signature consistent with reproducible inter-individual variation whereby replicates from 

the same individual (i.e. same LCL) are more highly correlated than datasets from 

different individuals (PC1 p=2.4e-7, INS p=1.6e-7, DI p=3.3e-7, FIRE p=0.0157 by 

Wilcoxon rank sum test; Figure 2.1b-d, Figure S2.4a-f). The Hi-C data also cluster by 

population (Figure S2.4f-g) consistent with an influence from genetic background, but we 

note that this population-level clustering can be caused by other factors such as batch of 

sample acquisition45.  

Despite generally high correlations of Hi-C data across individuals, we frequently 

observed regions where 3D chromatin conformation varies reproducibly between 

individuals (example shown in Figure 2.2a, Figure S2.5a). To more systematically 
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identify regions of variable 3D chromatin conformation, we used the “limma” package46 to 

identify regions where variation between individuals was more significant than variation 

between two replicates from the same individual. We applied this approach to DI, INS, 

FIRE, and PC1. For each metric, we first defined a set of testable 40kb bins across the 

genome by filtering out bins with low levels of signal across all individuals or near 

structural variants that can appear as aberrations in Hi-C maps47. We then applied a False 

Discovery Rate (FDR) threshold of 0.1 and merged neighboring variable bins, resulting in 

the identification of 2,318 variable DI regions, 2,485 variable INS regions, 1,996 variable 

FIRE regions, and 7,732 variable PC1 regions (Figure 2.2b, Figure S2.5b). We note that 

there is strong overlap between the variable DI, INS, FIRE, and PC1 regions detected 

across all 20 LCLs and those detected using only the 11 unrelated YRI LCLs, which 

suggests that potential confounding effects of variation between different populations are 

not driving the identification of these variable regions (Figure S2.5c). Although each 

metric has a unique set of testable bins, we found significant enrichment for bins that are 

variable in more than one metric (Figure 2.2c, Figure S2.5d-e), indicating that the same 

regions often vary across multiple features of 3D chromatin conformation. 

We next used Fluorescent In Situ Hybridization (FISH) to examine whether 

variable regions detected by Hi-C are consistent with distance measurements from 

imaging data (Figure 2.2d-e). Focusing on a variable DI region on chromosome 15 

(chr15:96720000-96920000; hg19), we performed FISH in LCLs from four individuals with 

different levels of DI at the variable region being evaluated (YRI-3, YRI-4, YRI-5, YRI-8).  

We used three BAC probes that hybridize respectively to the variable DI region (“center”, 

probe covers chr15:96715965-96898793), a region approximately 668Kb upstream 
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(“upstream”, probe covers chr15:95897555-96047720), or a region approximately 590Kb 

downstream (“downstream”, probe covers chr15:97488414-97648104). We found that 

distances between the center probe and these flanking probes vary significantly between 

individuals with strong upstream contact bias as measured by DI (YRI-4, YRI-8) and 

individuals without this upstream contact bias (YRI-3, YRI-5)(Figure 2.2d-e, center-

upstream distance p=0.017, center-downstream distance p=1.7e-5 by Wilcoxon rank sum 

test). Moreover, we found that the center probe is closer to the upstream than the 

downstream probe in the two individuals with strong upstream DI signal at the central 

variable DI region (p=3.2e-3 for YRI-3, p=1.5e-4 for YRI-5 by Wilcoxon rank sum test). 

However, this trend is reversed in individuals without upstream DI signal where the center 

probe is now closer to the downstream probe (p=0.021 for YRI-4, p=0.1 for YRI-8 by 

Wilcoxon rank sum test) (Figure S2.6a). 

We also sought to identify variable entries in the Hi-C contact matrix itself (“matrix 

cells”). To facilitate this search, we used a method called Bandwise Normalization and 

Batch Correction (BNBC) that we recently developed to normalize Hi-C data across 

individuals (Fletez-Brant et al. Pre-print: https://doi.org/10.1101/214361). BNBC takes 

contact distance into account as a co-variate because batch effects in Hi-C data can be 

distance-dependent. To identify variable matrix cells, we performed a variance 

decomposition on Hi-C contact matrix cells which exhibited statistically-significant 

variability between individuals, resulting in a measure of biological variability for each bin 

in the contact matrix (see example in Figure 2.2a and Figure S2.5a). To identify matrix 

cells with significant levels of biological variability, we estimated FDR using the IHW 

framework48 to include the distance between anchor bins as an informative covariate. At 
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an FDR threshold of 0.1, we identified 115,817 matrix cells showing significant variability 

between samples. These variable bins are heavily skewed toward shorter contact 

distances (Figure 2.2f, Figure S2.6b), likely due in part to higher read counts and thus 

increased power at these distances. We observed that the anchor regions of variable 

matrix cells overlap with variable regions of DI, INS, FIRE, and PC1 more often than 

would be expected by chance (Figure 2.2g; Figure S2.6c). We also observed that 

variable matrix cells tend to occur in groups (Figures 2.2a, 2.3a), suggesting that 

variation in 3D chromatin conformation often affects more than one adjacent genomic 

window. 

Coordinated variation of the 3D genome, epigenome, and transcriptome 

To investigate the relationship between variation in 3D chromatin conformation and 

gene regulation, we analyzed multiple published datasets including RNA-seq, ChIP-seq, 

and DNase-seq data generated from some of the same LCLs in our study. Strikingly, for 

all external datasets examined here, we see an enrichment for regions at which 3D 

chromatin conformation across individuals is correlated with measures of genome activity 

in the same 40Kb bin (see example in Figure 2.3a and Figure S2.7a). To assign a level 

of statistical significance to these observations, we approximated the null distribution by 

randomly permuting the sample labels of external datasets, thus disrupting the link 

between Hi-C and ChIP/RNA/DNase-seq data from the same individual, but not changing 

the underlying data structure (see schematic in Figure S2.7b). We used these 

permutations to calculate the bootstrap p-values in Figure 2.3b. Among variable PC1 

regions, we observed a significant enrichment for regions at which PC1 values across 

individuals are positively correlated with histone modifications indicative of transcriptional 
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activity including H3K27ac (bootstrap P<0.001), H3K4me1, and H3K4me3 (but notably 

less so with H3K27me3, which is marker of transcriptional repression) (bootstrap P<0.001 

for all histone modifications, Figure 2.3b). The correlations between PC1 and marks of 

transcriptional activity occur in the expected direction -- i.e. higher PC1 values are 

associated with higher gene expression and more active histone modifications. Similar 

correlations were apparent in two distinct sets of ChIP-seq data generated by different 

groups39,41, and observed whether we use variable regions identified across all 20 LCLs 

or only across the 11 unrelated YRI LCLs (Figure S2.7c). 

The relationship between variation in 3D chromatin conformation and underlying 

genome activity extends beyond A/B compartmentalization. At variable FIRE regions, we 

found an abundance of regions where FIRE score is positively correlated with marks of 

cis-regulatory activity including H3K27ac and H3K4me1 (Bootstrap P<0.001; Figure 

2.3b, Figure S2.9a), consistent with the previously reported relationship between FIREs 

and cis-regulatory activity18,19. DI and INS values at variable regions tend to be correlated 

histone modification levels as well as CTCF and Cohesin subunit SA1 binding (Bootstrap 

P<0.001; Figure 2.3b, Figure S2.8a-b), which are known to influence these 3D chromatin 

features15,49,50. For INS, the relationship is directional such that higher CTCF/Cohesin 

binding corresponds to more contact insulation (i.e. lower INS score). However, at 

variable DI regions the correlations are not as clearly directional, reflecting current 

understanding that the direction of DI (i.e. upstream vs downstream contact bias) is 

arbitrary relative to strength of CTCF/Cohesin binding. We performed similar analysis on 

variable cells in the contact matrix, and found that the interaction frequency in these matrix 

cells across individuals tends to be correlated with epigenetic or transcriptional properties 
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of one or both corresponding “anchor” bins (Bootstrap P<0.001; Figure 2.3b, Figure 

S2.9b). Importantly, for all types of variable regions examined here we found correlation 

with RNA-seq signal, indicating that at least at some regions, variation in 3D chromatin 

features accompanies variation in gene expression. 

We examined further whether 3D chromatin conformation at a given variable 

region tends to be correlated with only one epigenomic property, or with several 

properties simultaneously. We found that PC1, FIRE, INS, and DI values across 

individuals are often correlated with multiple features of active regions (e.g. H3K27ac, 

H3K4me1, RNA), and anti-correlated with the repressive H3K27me3 histone modification 

(Figure 2.3c, d). For DI, where direction is not as clearly linked to magnitude of gene 

regulatory activity, we note a larger set of regions with anti-correlation to features of active 

regions (e.g. H3K27ac, H3K4me1, RNA) and positive correlation with H3K27me3 (Figure 

2.3e, f). These results demonstrate that variation in 3D chromatin conformation is often 

accompanied by variation in transcriptional and regulatory activity of the same region. 

Moreover, the correlations between multiple molecular phenotypes at the same region 

suggest that shared mechanism(s) underlie variation in these phenotypes across 

individuals.  

Genetic loci influencing 3D chromatin conformation  

To examine genetic influence on 3D chromatin conformation we first considered 

genetic variants overlapping CTCF motifs at chromatin loop anchors13, because 

disruption of these CTCF motifs by genome engineering has been shown to alter 

chromatin looping22. Focusing on SNPs at variation-intolerant positions in anchor CTCF 

motifs (“anchor disrupting SNPs”, at sequence weight matrix positions where a single 
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base has a probability of >0.75, Figure 2.4a), we observed a significant linear relationship 

between SNP genotype and the strength of corresponding loops (p=7.6e-5 by linear 

regression; Figure 2.4b,c). We also examined whether individuals heterozygous for 

anchor disrupting SNPs showed allelic imbalance in loop strength. To facilitate this 

analysis, we used the HaploSeq42 method to generate chromosome-span haplotype 

blocks for each LCL. Although few Hi-C read pairs overlap a SNP allowing haplotype 

assignment (mean 7.89% of usable reads per LCL), we do observe that the haplotype 

bearing the stronger motif allele tends to show more reads connecting the corresponding 

loop anchors (p=5.9e-4 by one-sided t-test of mean > 0.5; Figure 2.4d). Our observation 

that CTCF motif SNPs can modulate 3D chromatin conformation is consistent with similar 

findings reported from ChIA-PET data51, and a recent report of haplotype-associate 

chromatin loop published while this manuscript was in preparation26. 

Motivated by these preliminary observations of genetic effects on 3D chromatin 

conformation, we next searched directly for QTLs associated with Hi-C derived features 

of 3D chromatin conformation. Power calculations indicated that, despite limited sample 

size, we were moderately powered to find QTLs with strong effect sizes using a linear 

mixed effect model (LMM) approach that takes advantage of the Hi-C replicates for each 

LCL. Thus, we conducted a targeted search for QTLs associated with variation in FIRE, 

DI, INS, and contact frequency. We did not include PC1 in the QTL search because we 

reasoned that individual genetic variants would be more likely to have detectable effects 

on local chromatin conformation rather than large-scale features like 

compartmentalization. For this same reason, we used modified versions of DI and INS 

scores for the QTL search calculated with a window size of 200Kb upstream and 
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downstream of the target bin, rather than the standard 2Mb window size for DI15 or 480Kb 

for INS8. We also limited our QTL searches to the 11 unrelated YRI individuals in our 

study (referred to below as the “discovery set”) to mitigate potential confounding 

differences between populations. 

For each 3D genome phenotype under study we identified a list of testable bins 

that showed appreciable levels of signal in at least one individual in our discovery set. We 

also identified a set of test SNPs that includes at most one tag SNP among those in 

perfect LD in each 40Kb bin. Response variables (i.e. 3D chromatin phenotype values) 

were quantile normalized across the discovery set. For each testable bin, we measured 

the association of the given 3D chromatin phenotype with all test SNPs in that bin. In 

cases where multiple SNPs in the same bin were significantly associated with the 

phenotype, we selected only the most significantly associated SNP per bin for our final 

QTL list. Ultimately, at an FDR of 0.2, we identified 387 FIRE-QTLs (i.e. testable bins in 

which FIRE score is associated with at least one SNPs in that bin; comprising 6.6% of 

tested bins), 545 DI-QTLs (4.2% of tested bins), and 911 INS-QTLs (12.0% of tested 

bins)(Figure 2.4e, Figure S2.10a). For analysis of DI-QTLs, we separated the testable 

bins into those with upstream bias and those with downstream, because we observed a 

Simpson's paradox when we analyzed the genotype trend at all DI-QTL regions together 

(Figure S2.10b). 

We also searched for QTLs associated directly with interaction frequency in 

individual contact matrix cells using an LMM approach like that described above for FIRE, 

DI, and INS. The large number of cells in a Hi-C contact matrix, together with limited 

sample size, made a true genome-wide QTL search unfeasible. However, power 
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calculations indicated that if we limited our QTL search to a subset of cells in the matrix, 

we could have moderate power to detect strong genetic signal. Thus, we limited our QTL 

search for contact matrix QTLs (“C-QTLs”) to matrix cells that showed significant 

biological variability in our samples, as described above. We tested for association in our 

discovery set between the BNBC-normalized interaction frequency in these variable 

matrix cells and the genotype of test SNPs in either of the two anchor bins. We selected 

at most one QTL SNP per matrix cell, using association p-value to prioritize, finally 

yielding 345 C-QTL SNPs associated with 463 matrix cells at an IHW-FDR threshold of 

0.2 (Figure 2.4f). 

To evaluate the reproducibility of each of these QTLs sets (FIRE-QTLs, DI-QTLs, 

INS-QTLs, and C-QTLs), we examined Hi-C data from 6 individuals who were not 

included in our discovery set (we refer to these 6 individuals our “validation set). These 

individuals represent four different populations (CEU, PUR, CHS, YRI), and they include 

a child of two individuals in the discovery set (YRI-13/NA19240 is child of YRI-

11/NA19238 and YRI-12/NA19239). In each case, we find a significant linear relationship 

in the validation set between QTL genotype and the corresponding 3D chromatin 

phenotype (p=1.8e-14 for FIRE-QTLs, p=2.5e-7 for DI-QTLs at positive DI bins, p=0.008 

for DI-QTLs at negative DI bins, p=3e-4 for INS-QTLs, p=4.1e-9 for C-QTLs; Figure 2.4g). 

To provide an additional and more stringent estimate of the significance of these 

observations, we performed permutations by randomly selecting sets of test SNPs and 

measuring the linear relationship between genotype and phenotype in the validation set. 

In all cases, the observed relationship was also significant by this more conservative 

bootstrap approach (p<0.001 for FIRE-QTLs, p<0.001 for DI-QTLs at positive DI bins, 
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p=0.041 for DI-QTLs at negative DI bins, p=0.005 for INS-QTLs, p=0.006 for C-QTLs; 

Figure 2.4h). 

There is little direct overlap between our different QTL sets (Figure S2.10c), likely 

due to limited power and the fact that the testable bins were different for each metric. 

However, we observed genotype-dependent INS score at FIRE-QTLs and C-QTLs, and 

genotype-dependent FIRE score at INS-QTLs and DI-QTLs (Figure S2.10d), which 

suggested that overlapping signal between different types of 3D chromatin QTLs in 

present below the level of test-wide significance. To more rigorously assess overlapping 

signal between our QTL sets we examined shared association below the threshold of 

multiple test correction, inspired by similar approaches reported elsewhere52. Our 

underlying hypothesis is that genetic association studies of two different phenotypes “X” 

and “Y” with overlapping (or partially overlapping) genetic architecture may have few 

direct overlaps between significant hits due to limited power or differing study designs, 

but the shared signal should become apparent when the full range of association results 

are considered. To quantify this, we calculated the fraction of QTLs for a given phenotype 

X that exceed a nominal level of significance (p < 0.05) when tested for association with 

a different phenotype Y. We refer to this value as the “nominal fraction” below and in 

Figure 2.4i. To test whether the nominal fraction of X-QTLs was significantly higher than 

would be expected by chance, we approximated the null distribution by calculating 

nominal fractions for 10,000 sets of SNPs selected randomly from among all X test SNPs. 

In almost all pairwise comparisons between 3D chromatin QTL types examined here, we 

find that the observed nominal fractions are significantly higher than would be expected 

in the absence of shared genetic architecture (Figure 2.4i, j). 
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Contribution of 3D chromatin QTLs to molecular phenotypes and disease risk  

Given the correlation observed between 3D chromatin variation and epigenome 

variation, we next investigated whether 3D chromatin QTLs could modulate both the 

epigenome and 3D genome. Here, we made use of published ChIP-seq data for histone 

modifications (H3K4me1, H3K4me3, H3K27ac) in a large set of 65 YRI LCLs38, DNase-

seq data from 59 YRI LCLs37, and CTCF ChIP-seq data from 15 CEU LCLs53. Notably, 

most individuals in these datasets were not included in our QTL discovery or validation 

sets (54/65 for histone modification ChIP-seq, 48/59 for DNase-seq, 15/15 for CTCF 

ChIP-seq). In many cases, we found a significant linear relationship between 3D 

chromatin QTL genotypes and these different epigenetic phenotypes (Figure 2.5a, 

Figure S2.11a). For example, at FIRE-QTLs, the high-FIRE allele is also associated with 

higher levels of active histone modifications and chromatin accessibility (Figure 2.5a). 

We note that although these associations are all significant by linear regression, only 

H3K27ac and H3K4me1 passed more conservative permutation testing in which the null 

distribution is approximated by selecting random SNPs from the full set of tested SNPs 

(Figure 2.5b). At C-QTLs, the high-contact alleles show higher levels of the enhancer-

associated mark H3K4me1 in the two anchor bins that connect the corresponding matrix 

cell. Moreover, the nominal fraction of C-QTLs (i.e. fraction of c-QTLs with p<0.05) in a 

published set of H3K4me1-QTLs is significantly higher than expected in the absence of 

shared genetic association (p=6.9e-6 by chi square test, bootstrap p=0.028; Figure 

S2.11b,d). At INS-QTLs, the slope of these genotype-phenotype relationships is inverted 

such that higher levels of histone modifications and chromatin accessibility are associated 

with the low INS score allele (i.e. more contact insulation), although only the association 
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with chromatin accessibility is significant by both linear regression and permutation test 

(p=1.6e-40 by linear regression, bootstrap p=0.023; Figure S2.11b,d). The genotype-

phenotype relationships observed at DI-QTLs are not as clear as for other metrics (Figure 

2.5b, Figure S2.11a), but this is expected because increased histone modifications or 

chromatin accessibility can influence DI in either direction, potentially confounding this 

type of aggregate analysis. Anecdotally, we do observe examples of individual DI-QTLs 

where genotype appears to correlate with epigenomic phenotype (Figure 2.5c).  

Finally, we sought to examine whether 3D chromatin QTLs might contribute risk 

for complex diseases. There are 44 direct overlaps between our 3D chromatin QTLs (or 

SNPs in perfect LD in the same 40Kb bin) and NHGRI-EBI GWAS54. However, the 

significance of these direct overlaps is hard to assess given the differences between the 

populations and study designs in question. Thus, here again we examined overlaps below 

the level of genome-wide significance by looking at nominal fractions to assess shared 

signal between association studies. We compiled full summary statistics for large GWAS 

(>50,000 individuals) of the related immune-relevant phenotypes Crohn’s Disease (CD), 

Ulcerative Colitis (UC), and Inflammatory Bowel Disease (IBD)55, as well as studies of the 

non-immune phenotypes height56 and Body Mass Index (BMI)57. We observed striking 

enrichments for INS-QTLs among variants with nominal associations to UC and IBD risk 

(1.67- and 1.65-fold, respectively), and these enrichments are significant by both chi 

square and permutation tests (INS-QTL with UC chi square p=2.5e-16 and bootstrap 

p=0.024; INS-QTL with IBD chi square p=5.5e-17 and bootstrap p=0.018; Figure 2.5d,e). 

We also note a trend in which FIRE-QTLs show nominal association with UC and IBD 

(1.36- and 1.58-fold enrichment, respectively), although these observations fall just below 
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the threshold of significance by the more stringent permutation test (FIRE-QTL with UC 

chi square p= 7.6e-6 and bootstrap p=0.090; FIRE-QTL with IBD chi square p= 4.2e-8 

and bootstrap p=0.056; Figure 2.5d,f). 
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2.4 Discussion 

Our results provide the first systematic characterization of how chromatin 

conformation varies between unrelated individuals at the population level, and as a 

consequence of genetic variation. The most important finding of our study is that genetic 

variation influences multiple features of 3D chromatin conformation and does so to an 

extent that is detectable even with limited sample size and Hi-C resolution. To the best of 

our knowledge, this represents the first report of QTLs directly associated with 3D 

chromatin conformation. However, there are limitations to our QTL search that are 

important to note here. First, the small sample size means that our power to detect QTLs 

is limited, and in order to identify QTL sets that could be analyzed in aggregate we 

tolerated elevated type I error by using an FDR threshold of 0.2 (as done previously for 

molecular QTL studies with limited power39). Second, the limited resolution of our Hi-C 

data (40Kb) and extensive LD in our study population prevented us from identifying 

specific causal variant(s) for validation through genetic perturbation experiments. 

Nonetheless, we were able to validate the 3D chromatin QTL sets through aggregate 

analysis of Hi-C data from a small set of individuals who were not included in the QTL 

search, and with independently generated ChIP-seq and DNase-seq data from a larger 

set of individuals. Taken together, our results show that genetic variation influences 

several features of 3D chromatin conformation, which is an important step forward to 

evaluate the role of 3D chromatin conformation in mediating disease risk. 

Another key finding of our study is that regions which vary in 3D chromatin 

conformation across individuals also tend to vary in measures of transcriptional and 

regulatory activity. This supports the existence of shared mechanisms that underlie 
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variation in 3D chromatin conformation, transcription, and epigenomic properties. We 

suspect that no single mechanism or causal hierarchy applies to all regions of the genome 

with variation in one or more of these properties. However, in at least some cases, this 

shared mechanism is likely genetic. This raises the question of whether 3D chromatin 

QTLs are fundamentally the same as QTLs previously described for other molecular 

phenotypes (e.g. eQTLs, dsQTLs, histoneQTLs; collectively referred to below as 

“molQTLs”), or represent a separate set of QTLs not detectable with other methods. This 

question is difficult to answer in the present study for two main reasons: 1) Our power is 

limited and thus we cannot say with confidence that a given SNP is not a 3D chromatin 

QTL. Many molQTL studies also have limited power and are thus prone to type II error. 

2) Our QTL searches, like most molQTL studies, are not truly genome-wide because 

subsets of testable regions and testable SNPs are preselected to focus the search space. 

These selection criteria can differ widely between studies, making direct QTL-to-QTL 

comparisons challenging. The observation of genotype dependent epigenetic signal at 

3D chromatin QTLs suggest that at least some 3D chromatin QTLs could also be detected 

as other types of molQTLs if those studies had sufficient statistical power. However, the 

limited overlap between 3D chromatin QTLs and published molQTLs (even when 

considering SNPs with only a nominal level of significance) points to a lack of power in 

current studies, and suggests further that the QTLs with largest effects on 3D chromatin 

conformation are not necessarily the same as those with large effects on other molecular 

phenotypes, and vice versa. Therefore, it is likely that QTL studies directed toward 

different types of molecular phenotypes (including 3D chromatin features) are likely to be 

complimentary rather than redundant.  
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Future studies with higher resolution Hi-C data and larger sample sizes will be 

important to identify functional variants modulating 3D chromatin conformation, and to 

further dissect the mechanistic relationships between genetics, 3D chromatin 

conformation, and other molecular phenotypes. We anticipate that these studies will 

continue to reveal cases in which perturbation of 3D chromatin conformation is a 

molecular mechanism through which disease-associated genetic variants confer disease 

risk. The present study provides initial discoveries of genetic influence on 3D chromatin 

conformation and an analytical framework and that we believe will facilitate future efforts 

to unravel the molecular basis of genetic disease risk. 



 
 

94 
 

2.5 Methods 

Hi-C data generation 

Hi-C was performed as previously described12. We note that all Hi-C experiments 

were performed using a “dilution” HindIII protocol, rather than the newer “in situ” version 

of the protocol, for consistency because data generation began before the invention of in 

situ Hi-C. In addition, the resolution of 40kb used here for most analysis was determined 

primarily by sequencing depth rather than choice of a restriction enzyme. Thus, even if a 

4-cutter like MboI had been used, the prohibitive cost of sequencing would have 

prevented us taking advantage of the additional possible resolution. 

Hi-C data processing 

Alignment with WASP Read ends were aligned to the hg19 reference genome 

using BWA-MEM58 v0.7.8 as single-end reads with the following parameters: -L 13,13. 

We used the WASP pipeline39,44 to control for potential allelic mapping biases, which 

some modifications to account for unique aspects of Hi-C data. BWA-MEM can produce 

split alignments where different parts of a read are aligned to different parts of the 

genome. This is critical for Hi-C data, because a read can span a Hi-C ligation junction 

between two interacting fragments. In the case of a split alignment, BWA-MEM will mark 

the higher-scoring alignment as the primary alignment. For Hi-C data this is not ideal – 

we want the five-prime-most alignment (before the ligation junction) to be the primary 

alignment. To account for this, we further processed the alignments from BWA-MEM to 

select the five-prime-most alignment in cases where one read was split. Reads without 

an alignment to the five-prime end of the read were filtered out, as were alignments with 

low mapping quality (<10). The WASP pipeline was then used to generate alternative 



 
 

95 
 

reads by flipping the allele in reads overlapping SNPs, and these reads were then 

realigned using the same pipeline. As input to WASP, we included all SNPs and indels 

present in the PUR individuals in our set (HG00731, 732, 733), CHS individuals in 1000 

genomes (we included all CHS to account for the fact that no 1000 genomes genotype 

calls were available for HG00514), YRI individuals in 1000 genomes (we included all YRI 

individuals to account for the fact that no 1000 genomes genotype calls were available 

for GM19193),  and the H1 cell line21 (to facilitate uniform processing and comparisons 

between LCLs and H1-derived datasets). After alignment of the alternative reads, 

alignment of the original reads and alternative reads were compared by WASP, and only 

the original reads for which all alternative reads aligned at the same location with same 

CIGAR string were kept. Reads overlapping indels were removed. Reads were then re-

paired, and only pairs in which both reads survived this filtering were kept. PCR duplicates 

were removed using Picard tool (http://broadinstitute.github.io/picard/) with default 

parameters. To ensure that our adapted WASP pipeline removed allelic mapping biases 

effectively, we simulated all possible 100bp single end reads spanning SNPs in our LCLs 

and aligned them back to the genome using our adapted WASP pipeline. We found no 

SNPs which depart from 50/50 mapping ration between reference and alternative allele 

in these simulations.  

We also took steps to remove any potential artifacts due to HindIII polymorphisms. 

Hi-C data was obtained by cutting the genome with HindIII, so we reasoned that SNPs or 

indels that disrupt existing HindIII sites or create novel HindIII sites could lead to 

differential cutting of two alleles and thus the appearance of differential contact frequency. 

To mitigate these potential artifacts, we identified all HindIII sites that would be disrupted 
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or created by genetic variants present in our samples, and removed all reads within 1Kb 

of these polymorphisms in all individuals.  

Contact Matrix Calculations Matrices were generated and normalized as 

previously described20. Briefly, intra-chromosomal read pairs were divided into 40Kb bin 

pairs based on five prime positions. The number of read pairs connecting each pair of 

40Kb bins were tallied to produce contact matrices for each chromosome. Raw counts in 

the contact matrices were then normalized using HiCNorm59 to correct for known sources 

of bias in Hi-C contact matrices (GC content, mappability, fragment length). Bins that are 

unmappable (effective fragment length, GC content or mappability is 0) were assigned 

NA values. These normalized matrices were further quantile normalized across samples 

to account for differing read depths and mitigate potential batch effects. One such quantile 

normalized matrix was generated for each chromosome in each replicate, as well as in 

each sample (replicates pooled together). We eliminated chromosomes X and Y from all 

downstream analyses due to the gender differences between our samples. 

PC1 Score PC1 scores were computed using methods defined previously12. 

Briefly, quantile normalized matrices for each chromosome were transformed to 

Observed/Expected (O/E) matrices by dividing each entry in the matrix by the expected 

contact frequency between regions in that matrix at a given genomic distance. For a given 

matrix, the expected contact frequencies were computed by averaging contact 

frequencies at the same distance in that each matrix. The O/E matrices were further 

transformed to Pearson correlation matrices by the “cor” function in R and eigen vectors 

(principal components) were computed using the “cov” function in R. Generally, the first 

eigenvector (“PC1”) reflects A/B compartmentalization. However, for some chromosomes 
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we have seen that the second eigenvector sometimes reflects compartmentalization, 

while the first eigenvector reflects other features like the two chromosome arms. To 

systematically account for this effect, we examined the first three eigenvectors for each 

chromosome in each replicate by correlating them with the gene density 

(compartmentalization is correlated with gene density, while other properties like 

chromosome arms generally are not). We required that PC1 show the highest correlation 

with gene density among the first three eigenvectors in every replicate. If this was not the 

case for a given chromosome, we eliminated that chromosome from all downstream 

analyses in all individuals to be conservative. Six chromosomes were eliminated in this 

way: chr1, chr9, chr14, chr19, chr21 and chr22. For the chromosomes that passed this 

filter, the sign of the first eigenvector (which is arbitrary) was adjusted such that the 

correlation between PC1 and gene density is positive, and this positive PC1 values 

correspond to compartment A. Finally, PC1 tracks were manually inspected to ensure 

that they are consistent with expected checkerboard patterns of compartmentalization. 

Directionality Index Directionality Index was computed as previously described15. 

Briefly, upstream and downstream contacts within 2Mb window for each 40Kb bin were 

counted, and chi-square statistics were calculated under equal assumption. The sign of 

the chi-square statistics was adjusted such that positive values represent upstream 

biases. For some bins, there are more than five NA bins within 2Mb window and DI for 

those bins are not calculated. As noted in the main text, we made a slight variation of 

these DI scores for the QTL searches in which DI was recalculated using a window size 

of 200Kb to capture more local features.  

Insulation Score Insulation scores were computed as previously described7 with 
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some adjustments. Briefly, contacts linking upstream and downstream 400Kb windows 

for each 40Kb bin were calculated in the O/E matrices instead of raw matrices. We further 

divided the contact frequency by the average of upstream and downstream 400Kb 

windows, to account for differences in contact density across the chromosome. The 

Insulation Scores were then ranged from 0 to 1, representing absolute insulation and no 

insulation respectively. Insulation scores for bins, for which more than 50% cells in the 

400Kb window as NA values, were not computed. For the QTL search, we also calculated 

insulation scores using 200Kb window. 

TADs Calling TADs were called using the same approach as described 

previously15. DI values for each 40Kb bins were used to build a Hidden Markov Model 

and predict the probability being upstream bias, no bias, and downstream bias. Regions 

switching from upstream bias to downstream bias were called as boundaries. 

FIRE We first calculated FIRE score for each of 20 individuals, as described in our 

previous study18. Specifically, we mapped the raw reads to the reference genome hg19 

as described above. Next, we removed all intra-chromosomal reads within 15Kb, and 

created 40Kb raw Hi-C contact matrix for each individual for each autosome. For each 

40Kb bin, we calculated the total number of intra-chromosomal reads in the distance 

range of 15-200Kb. We then filtered bins as follows, starting from 72,036 autosomal 40Kb 

bins: First, we removed 40Kb bins with zero effective fragment size, zero GC content, or 

zero mappability score. Next, we filtered out 40Kb bins within 200Kb of the bins removed 

in the previous step. We further filtered out 40Kb bins overlapping with the chr6 MHC 

region (chr6:28,477,797-33,448,354; hg19), which has extremely high SNP density that 

can make it difficult to correct for allelic mapping artifacts. This left 64,222 40Kb bins for 
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downstream analysis. Next, we applied HiCNormCis to remove systematic biases from 

local genomic features, including effective fragment size, GC content and mappability. 

The normalized total number of cis intra-chromosomal reads is defined as FIRE score. 

We further performed quantile normalization across multiple individuals using R package 

“preprocessCore”. The final FIRE score is log transformation log2(FIRE score + 1) and 

converted into a Z-score to create a mean of 0 and standard deviation of one. To identify 

significant FIRE bins in each individual, we used one-sided P-value < 0.05. Ultimately, 

merging across all individuals, we identified 6,980 40Kb bins which are FIRE bin in at 

least one of 12 YRI individuals. Consistent with our previous findings18, we observed 

significant enrichment of GM12878 typical enhancers and super enhancers among these 

6,980 40Kb FIRE bins (Figure S2.1d). GREAT analysis60 further showed immune-related 

biological pathways and disease ontologies are enriched in these 6,980 40Kb FIRE bins 

(Figure S2.1e). 

Comparison of intra-individual vs inter-individual variation 

To estimate variability between replicates, we computed Pearson correlation 

coefficient for all pairs of biological replicates for each score (DI, INS, FIRE and PC1). 

The pairs then can be divided into two groups based on whether they are from the same 

individuals as illustrated in Figure S2.4c. We then tested if the distribution of Pearson 

correlation coefficients were different comparing two groups. Similar analysis was 

performed for contact matrices. For contact matrices, we calculated Pearson correlation 

coefficient for each distance and each chromosome separately as shown in Figure 2.1c. 

Variable regions 

limma test for variable bin To test regions that are variable across genomes, we 
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applied limma46 with default parameters. First, values for each 40Kb bin in hg19 reference 

genome were calculated for each metrics tested (DI, FIRE, INS, PC1) as described 

above. DI, PC1, and INS scores were calculated based on contact matrices quantile 

normalized across 40 replicates. FIRE scores were calculated based on raw counts using 

HiCNormCis and then quantile normalized across 40 replicates. Second, we filtered out 

bins that are not testable. Specifically, FIRE scores were only tested for bins that are 

FIRE regions (p-value < 0.05) in any of 40 replicates. DI scores were only tested for bins 

where strong biases are observed (abs(DI) > 10.82757, which correspond to Chi-squared 

test p-value 0.001) in any of 40 replicates. INS scores were only tested for bins where 

strong insulation is observed (z-score transformed INS score < -1) in any of 40 replicates. 

No filterers were performed for PC1 scores. Third, we filtered out any bins that 

overlapping large SVs (> 10,000 bp) to avoid effect caused by SVs. Specifically, for FIRE, 

INS, and DI scores, bins that are within 200Kb, 400Kb, and 2Mb respectively upstream 

or downstream of large SVs were removed. For PC1 scores, bins overlapping large SVs 

were removed. Lastly, we applied limma standard model with individual as a fixed factor 

and eBayes correction. To estimate empirical false positive rate (FDR), we bootstrapped 

replicates to calculate the number of false positives in random background. Briefly, we 

random selected 40 or 22 replicates with replacement for LCL20 and YRI11 respectively, 

and identified variable regions as mentioned above. We performed 1,000 permutations 

and calculated empirical FDR as the average positive hits in 1,000 permutations divided 

by number of hits in real data. 

Normalizing Hi-C contact matrices using BNBC normalization To directly compare 

individual Hi-C contact matrix cells across samples, we sought to remove unwanted per-
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cell variation owing to date of processing or other unknown ‘batch’ effects. To this end we 

developed Bandwise Normalization and Batch effect Correction (BNBC), described and 

evaluated in a separate manuscript (preprint on bioRxiv 

https://www.biorxiv.org/content/10.1101/214361v1). A brief description follows. For each 

chromosome and for each strata of distance between loci (a matrix “band”, hence the 

term “bandwise”), we correct for unwanted variation by taking the log counts-per-million-

transformed values of all samples and generating a matrix whose entries are the 

observations for that chromosome’s matrix band across all samples (columns indexes 

samples and rows indexes contact matrix cells with anchor bins separated by a fixed 

distance). We then quantile normalize this matrix and regress out the impact of known 

batches (here, date of processing) using ComBat61 (specifically we correct both mean 

and variance). This procedure essentially conditions on genomic distance. We correct the 

majority of each contact matrix for each chromosome for each sample: we correct all but 

the 8 most distal matrix bands, for which we set all values to 0. The choice of the last 8 

bands is empirical and reflects the small number of observations in each band matrix. 

The procedure is implemented in the bnbc package available through Bioconductor 

(http://www.bioconductor.org/packages/bnbc). Correction of contact matrices was 

performed on replicate-level data using the following LCLs:  GM18486 (YRI-1), GM18505 

(YRI-2), GM18507 (YRI-3), GM18508 (YRI-4), GM18516 (YRI-5), GM18522 (YRI-6), 

GM19099 (YRI-7), GM19141 (YRI-8), GM19204 (YRI-10), GM19238 (YRI-11), 

GM19239  (YRI-12), GM19240 (YRI-13), HG00731 (PUR-1), HG00732 (PUR-2), 

HG00512 (CHS-1), HG00513 (CHS-2). We note that NA19239 (YRI-12) replicate 1 and 

NA19240 (YRI-13) replicate 2 were excluded because the BNBC algorithm requires 
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multiple samples from a given experimental batch to estimate batch effect parameters. 

Identifying biological variability in Hi-C contact matrices To identify contacts with 

significant levels of between-individual variability we employed the following procedure, 

which mimics the analysis for INS, DI, FIRE and PC1, on contact matrices normalized by 

BNBC. For each contact matrix cell (representing loci separated by less than 28 Mb, this 

is a subset of the matrix cells normalized by BNBC) we used a linear model with individual 

modeled as a fixed factor, note we have 2 growth replicates for almost every individual. 

We used a parametric likelihood ratio test (equivalent to an F-test) to test whether there 

was significant between-individual variation. We used the IHW framework with the 

distance between anchor bins as informative covariate, to increase power and estimate 

false discovery rate. We used a FDR of 10% as significance threshold, resulting in 

115,817 contact matrix cells with significant biological variability across the autosomes. 

To estimate effect size (depicted in Figures 2.2a, 2.3a and Figure S2.5) we used a linear 

mixed effect model with individual as random effect, to decompose the variance into 

between-individual variability (biological) and within-individual variability (technical). As 

the measure of biological variability in these figures, we used the estimated biological 

variance. For this analysis, all 16 samples we normalized using BNBC were used. 

Correlation with other datasets To examine correlation between 3D genome 

organization and other genome features, we reidentified variable regions with the same 

pipeline mentioned above using only individuals of which data is available for other gnome 

features, and then computed Spearman correlation coefficient between 3D genome 

metrics (DI, INS, PC1, and FIRE) and other genome features (RNA-seq, ChIP-seq, and 

DNase-seq) for each 40Kb bin that is variable. Signals for each 40Kb bins were calculated 
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by averaging signals for the bin. Specifically, signals for ChIP-seq were the average signal 

of all peaks within the bin, signals for RNA-seq were the average FPKM of all genes in 

the bin, and DNase signals were simply average signal for each base pair in the bin. In 

some cases, serval consecutive bins were identified as variable. We only kept the bin 

with strongest signal for other genome features among consecutive bins. To generate 

random backgrounds, we permutated individual labels for the same set of bins and 

recomputed Spearman correlation coefficient. 10,000 such permutations were used to 

calculate the statistical significance of departure from the null hypothesis in which the 

median value of true correlation values and permutated correlation values are equal. 

Similar analysis was performed for variable matrix cells with the following modifications. 

First, we used the variable matrix cells in the preceding section. Second, to correlate 

matrix-cell-level contacts with bin-level DNase and ChIP-seq signals, anchor bins of 

variable matrix cells were used. Since each anchor bin may belong to more than one 

matrix cells, we only used each bin once and selected the one with the highest Spearman 

correlation coefficient. Exactly same approach was performed during permutation to 

ensure a fair comparison. 

Identification of QTLs 

Testable bins To identify testable bins for FIRE-QTL, DI-QTL, INS-QTL and C-QTL 

searches, we began with 72,036 autosomal 40Kb bins based on reference genome hg19. 

We eliminated “unreliable” bins with effective length, GC content, or mappability equal to 

zero, resulting in 66,597 bins remaining. We further removed any 40Kb bins within 200Kb 

of an unreliable bin, resulting in 64,337 40Kb bins. We also removed bins covering the 

chr6 MHC locus (hg19: chr6:28,477,797-33,448,354, which is extremely polymorphic and 
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may lead to complex mapping artifacts that are difficult to correct. To eliminate false 

signals in Hi-C data that could arise from large structural variations (SVs), we obtained 

SVs from the 1000 Genomes consortium34 (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map/ALL.wgs.integrated_sv

_map_v2.20130502.svs.genotypes.vcf.gz) and removed bins which overlap one or more 

structural variants previously annotated in these individuals (N=123,015 SVs), or within 

200Kb of large structural variations (>10Kb, N=1,253 SVs). These filtering steps yielded 

a set of 51,511 testable bins, which represent a common starting point for FIRE-QTL, DI-

QTL, INS-QTL and C-QTL searches as described below.  

Testable SNPs  We began with a list of 15,765,667 variants among all 20 LCL 

individuals. We kept 14,177,284 variants among 11 unrelated YRI individuals, removed 

all indels, HindIII site polymorphisms, multi-allelic SNPs, and SNPs with minor allele 

frequency (MAF) < 5%. We also required that remaining SNPs were within the 51,511 

testable bins described above, and that both alleles were present in at least 2 individuals 

in the discovery set individuals. (N=4,132,791 SNPs remaining). Finally, where multiple 

SNPs in the same bin were in perfect LD among 11 unrelated YRI individuals, we selected 

one with the smallest genomic position (to avoid the introduction of a random selection 

that would not be perfectly reproducible), ultimately yielding 1,304,404 potentially testable 

SNPs that served as a common input set to all QTL searches. 

Power Calculations To explore the power of our approach and data, we performed 

a Monte Carlo-based power calculation. Specifically, we varied four variables: (1) the 

minor allele frequency of a variant; (2) the effect size of genotype (a fixed effect); (3) the 

variability between subjects (a random effect); (4) the variability of the residuals. For 
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contact QTLs, we also varied the mean of the Hi-C contact frequency in question. For 

analyses reported, we fixed the number of replicates-per-subject to be 2 (consistent with 

our study design). We explored a variety of settings for these parameters to assess power 

as each variable changes. Each setting tested was chosen to reflect the distribution of 

observed values in our real Hi-C data. For each configuration of parameters, we 

performed the following simulation: We simulated genotypes by randomly sampling a set 

of alleles (one allele per subject) from a binomial distribution parameterized by the 

number of subjects and the MAF; we repeated this process twice and create per-subject 

genotypes by adding the results of the sampling of alleles. We simulated per-subject 

random effects, and per-sample residuals. To obtain a given sample's simulated Hi-C 

contact matrix value, we added the mean Hi-C contact matrix value to that sample's 

simulated genotype (multiplied by the pre-specified effect size), the specific subject's 

random intercept and the sample's random residual. After performing this for all samples, 

we then fitted the same LMM model used in our QTL search. We repeated this simulation 

and model fitting process 1,000 times and computed power as the fraction of times the 

null hypothesis that the effect of genotype is equal to 0 is rejected at a nominal p-value of 

0.05. 

FIRE, DI, and INS QTL searches. We limited our FIRE QTL search to the subset 

of testable bins that were called as FIRE in at least one YRI LCL (N=5,822 FIRE test 

bins), and the subset of testable SNPs therein (N=128,137 FIRE test SNPs). For the INS-

QTL search, we examined 328,530 test SNPs with 12,976 variable INS bins. For the DI-

QTL search, we examined 181,950 test SNPs with 7,590 variable DI bins. For the DI-QTL 

search, we further classified each DI bin based on which whether it showed stronger 
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upstream or downstream bias, because we saw a Simpson’s paradox when we 

considered them together. For each test SNP, we identified the 40Kb bin it belongs to, 

and fitted a linear mixed effect model, using FIRE, DI (200Kb window), or INS score 

(200Kb window) in each biological replicate as the response variable and genotype of 

that testable SNP as the explanatory variable. Since two biological replicates from the 

same individuals are correlated included an individual-specific random effect to account 

for within-individual correlation. We used the R package “nlme” and R function “gls” to fit 

the linear mixed effect model. The quantile-quantile plots (QQplot) showed only minor 

genomic inflation (median p-value = 0.4821, lambda = 1.0864 for FIRE-QTLs; median p-

value = 0.4864, lambda = 1.0649 for upstream-biased DI-QTLs; median p-value = 0.4828, 

lambda = 1.0826 for downstream-biased DI-QTLs; median p-value = 0.4865, lambda = 

1.0646 for INS-QTLs). The linear mixed effect model identified 476, 315, 315, and 1,092 

SNPs with false discovery rate (FDR) less than 0.20 for FIRE, upstream-biased DI, 

downstream-biased DI and INS, respectively. When more than one SNP in the same bin 

was identified, we selected the SNP with lowest p-value among them to be included in 

the final QTL sets. After this filtering, we ended up with 387 candidate FIRE-QTLs, 268 

candidate upstream-biased DI-QTLs, 277 downstream-biased DI-QTLs, and 911 

candidate INS-QTLs. As a control for each of these QTL searches, we randomly shuffled 

the score in question (i.e. FIRE, DI, or INS) among all 11 YRI individuals and performed 

QTL searches on this permuted data. In each of these tests, we found no SNPs 

associated with the permuted scores at FDR < 0.20.  

C-QTL search To find QTLs affecting Hi-C contact strength we first identified 

115,187 Hi-C contact matrix cells exhibiting substantial biological variability as described 
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above, and constrained our QTL search to these cells. We then intersected these contact 

cells with 1,304,404 testable SNPs by requiring a SNP to sit in one anchor bin of one of 

these variable matrix cells. We also filtered out matrix cells to ensure both anchor bins of 

the matric cell are among 51,511 testable bins. In total, we obtained 3,109,039 tests 

involving 687,655 SNPs and 54,880 matrix cells on all 22 autosomes. For each test, we 

used the BNBC normalized data described above, but used only the 11 unrelated YRI 

individuals with genotypes available and fit a linear mixed effect model in which genotype 

is a fixed effect and subject is a random intercept. We then used “lmerTest” package in 

R to estimate p-values for the fixed effect of genotype62. We used the IHW framework to 

estimate FDR, with the distance between anchor bins as an informative covariate, and 

call any matrix cell with FDR < 0.2 as significant. We further filtered significant tests by 

selecting the most significant SNPs per matrix cell and kept the leftmost SNPs among 

SNPs in perfect LD in two anchor bins of the matrix cell. After filtering, we ended up with 

463 tests involving 345 SNPs and 463 matrix cells. To make the aggregate contact plots 

in Figure 2.4g, we recoded the genotypes based on the direction of effect such that 0, 1, 

2 refer to the genotypes containing 0, 1 or 2 alleles associated with the increased 

phenotype, respectively. Next, to avoid aggregating the same submatrix multiple times, 

we filtered by 1) selecting only the most significant matrix cell associated with each QTL, 

2) selecting only the most significant QTL associated with each anchor bin (in some cases 

the same bin anchors multiple matrix cells associated with different QTL SNPs). This 

filtering left 165 unique matrix cell QTL interactions for plotting. For each matrix cell, we 

then extracted a submatrix including 25 bins upstream and 25 bins downstream. 

Submatrices with missing values were discarded. For each QTL, we then calculated the 
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mean submatrix values for each genotype, and then subtracted submatrices to calculate 

the difference in interaction frequency between the 1 and 0 genotypes, and between the 

1 and 2 genotypes. These differences were then averaged across QTLs and plotted in 

Figure 2.4g. 

Validation of QTLs in additional individuals Our validation set included six 

unrelated individuals not included in the discovery set: NA12878, NA19240, HG00512, 

HG00513, HG00731 and HG00732. For each QTL, we collected the genotype among six 

additional individuals, and the corresponding FIRE, DI, or INS scores. Note that a small 

fraction of QTLs have missing genotypes in these six individuals (coded as “-1”), and 

these missing data points were eliminated from validation analysis. We examined the 

distributions of scores for each genotype. For each QTL type (i.e. FIRE, DI, or INS), we 

found that the same direction of effect observed in the discovery set is observed on 

average in the validation set. To assess the significance of this observation, we 

approximated the null expectation as follows. For FIRE-QTLs, for example, we started 

from all 128,137 FIRE test SNPs and 5,822 FIRE test bins. Note that in our discovery set, 

we identified 387 FIRE-QTLs, each in a different 40Kb bin. To create a random control 

SNP group, we first randomly selected 387 40Kb bins from all 5,822 FIRE test bins. Next, 

within each select bin, we randomly selected one SNP, and combined all these 387 

selected SNPs into a control SNP group.  We then tested their SNP effect on the six 

additional individuals. We repeated such sampling with replacement 1,000 times, to 

create a null distribution of positive and negative SNP effect, respectively. We performed 

the same type of permutations for DI, INS. Similar analysis was performed for C-QTLs 

with a few modifications. First, we only used replicates from NA19420, HG00512, 



 
 

109 
 

HG00513, HG00731 and HG00732 as explained above. Second, 1,000 random 

permutations were performed by sampling matrix cells instead of bins. Third, we used 

values of biological replicates separately instead of as merged data because the BNBC 

normalization is performed at the level of replicates. 

Examining epigenetic variation at FIRE, DI, INS, and C-QTLs To examine 

epigenetic variation at 3D genome QTLs, we re-analyzed DNase-seq data from 59 LCLs, 

histone modification ChIP-Seq data (H3K27ac, H3K4me1 and H3K4me3) for 65 LCLs, 

and CTCF ChIP-seq data from 11 LCLs. These data were re-mapped using the WASP 

pipeline to control for allelic mapping artifacts and calculating the signal in 40kb bins as 

described. We examined the effect of genotype at FIRE, DI, INS or C-QTLs on DNase-

seq and ChIP-seq signal by linear regression. As a control, we randomly selected the 

matched number of SNPs with the same approach described above and re-did such 

validation analysis. We repeated such random sample 1,000 times to create the empirical 

null distribution of no genetic effect. For C-QTLs, we used the sum of epigenetic features 

in two anchor bins to calculate correlation with contact frequency. 

Nominal fraction analyses 

Comparing between 3D chromatin QTL types To compare between different 3D 

chromatin QTLs, we took the raw test results for each QTL set and projected other 3D 

QTLs into the test results. For example, in Figure 2.4j we selected subset of SNPs that 

are DI-QTLs and plotted them (dark green dots) using p-values from FIRE-QTLs along 

with all tested in the FIRE-QTL search (black dots). We also used all tested SNPs in the 

DI-QTL search (light green dots) as a control set. To assign significance to the overlap, 

we compared the fraction of SNPs with nominal significance (p-value<0.05) in each set: 
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1) DI-QTL tested SNPs that were not significant QTLs, and 2) DI-QTLs. We calculated p-

values for this comparison by Chi-square test. To rule out the effect of sampling bias when 

selecting a small number of SNPs, we also performed permutation. In each permutation, 

we randomly selected the same number of SNPs as the real QTL set (from the full set of 

tested SNPs) and calculated the fraction with nominal significance. We then computed 

bootstrap p-values using 10,000 such permutations under the null hypothesis that the 

fraction of nominal significance is the same between QTLs and random selected SNPs. 

For C-QTLs, one SNP may be tested against multiple matrix cells, so we only keep the 

most significant p-value for each SNP to avoid biases towards SNPs with multiple tests. 

Comparing 3D chromatin QTLs to other molQTLs Similar approaches were used 

to assess overlap between 3D chromatin QTLs and other molQTLs. We obtained full test 

results (all tested SNPs with the p-values) from previous molQTL studies and projected 

3D chromatin QTLs into those test results. We the calculated fraction of nominal 

significance and used chi-square test to evaluate significance between 3D-QTLs and non-

3D-QTLs. Similarly, we performed bootstrap to estimate significance empirically. One 

modification is that we extended our QTL sets by incorporating all SNPs in perfect LD 

with the same 40Kb bin because we may not use the same tagging SNP in our study as 

used in other studies. To ensure a fair comparison, we performed the same extension for 

the control sets of all tested SNPs. 

Comparing 3D chromatin QTLs to GWAS Comparison with the GWAS results was 

performed in the same manner as described above for other molQTLs. Instead of test 

results for other molQTLs, we used summary statistics from previous GWAS.  

FISH 
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Cell preparation for FISH Approximately 100,000 cells were adhered to center of 

PDL-coated coverslips (Neuvitro, GG-22-15-PDL) by placing 100 uL of cells at 1 x 106 

cells/mL. Cells on coverslips were incubated for an hour at 37°C, carefully washed with 

PBS, and fixed with 4% paraformaldehyde in 1X PBS for 10 mins. PFA was quenched 

with 0.1 M Tris-Cl, pH 7.4 for 10 mins, washed with PBS, and stored in 1X PBS at 4°C for 

up to 1 month.  

BAC probe labeling and preparation All BAC clones were ordered from the 

BACPAC Resource Center at the Children's Hospital Oakland Research Institute: “U” 

probe is RP11-74P5, “C” probe is RP11-337N12, and “D” probe is RP11-248M23. BAC 

DNAs were labeled with either Chromatide Alexa Fluor 488-5 dUTP (Invitrogen, C-11397) 

or Alexa Fluor 647-aha-dUTP (Invitrogen, A32764) using nick-translation kit (Roche, 

10976776001), and incubated in 15°C for 4 hours. The nick-translation reaction was 

deactivated using 1 uL of 0.5 M EDTA, pH 8.0 and heated for 10 mins at 65°C. The probes 

were then purified using illustra ProbeQuant G-50 Micro Columns (GE Healthcare, 

28903408) and eluted to a concentration of 20 ng/uL. Probes were mixed with Human 

Cot-1 DNA (Invitrogen, 15279011) and salmon sperm (Invitrogen, 15632011), and 

precipitated with 1/10th volume of 3M sodium acetate, pH 5.2 and 2.5 volume of absolute 

ethanol for at least 2 hours at -20°C. Probes were then spun down, washed with cold 70% 

ethanol, resuspended in formamide and 40% dextran sulfate in 8X SSC, and incubated 

at 55°C.  

Hybridization Cells on coverslips were blocked with 5% BSA and 0.1% triton-X 100 

in PBS for 30 mins at 37°C, and washed twice with 0.1% triton-X 100 in PBS for 10 mins 

each with gentle agitation at room temperature. Cells were permeabilized with 0.1% 
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saponin and 0.1% triton-X 100 in PBS for 10 mins at room temperature. Next, they were 

incubated in 20% glycerol in PBS for 20 mins, freeze-thawed three times with liquid 

nitrogen, and incubated in 0.1M hydrogen chloride at room temperature for 30 mins. Cells 

were further blocked for 1 hour at 37°C in 3% BSA and 100 ug/mL RNase A in PBS. Cells 

were permeabilized again with 0.5% saponin and 0.5% triton-X 100 in PBS for 30 mins 

at room temperature. Lastly, they were rinsed with 1X PBS and washed with 2X SSC for 

5 mins. For hybridization of probes, the prepared probes were denatured at 73°C for 5 

mins in water bath. Cells were denatured in a two-step process in a 73°C water bath: 2.5 

mins in 70% formamide in 2X SSC and 1 min in 50% formamide in 2X SSC. Denatured 

probes were transferred onto microscope slides, and coverslips were placed on top with 

cell-side facing down. The coverslips were sealed with rubber cement and incubated 

overnight at 37°C in a dark, humid chamber. Next day, coverslips were carefully removed 

and transferred onto a 6-well plate. Cells were washed at 37°C with gentle agitation, twice 

with 50% formamide in 2X SSC for 15 mins and three times with 2X SSC for 5 mins. The 

cells were then stained with DAPI (Invitrogen, D1306), mounted on microscope slides 

with ProLong Gold Antifade Mountant (Invitrogen, P36930), sealed with nail polish, and 

imaged.  

Microscope and analysis Images were acquired with DeltaVision RT 

Deconvolution Microscope at UC San Diego’s department of neuroscience (acquired with 

award NS047101). Captured images were processed using the TANGO72 plugin in 

ImageJ for quantitative analysis. Each FISH experiment contained two probes labeled 

with different color dyes (either U-C or C-D). We limited our analysis to nuclei containing 

2 labeled foci for each color (4 total foci), allowing us to more confidently distinguish foci 
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in cis from those in trans. Distances were measured from the center of one color focus to 

the center of the closest focus of the other color. 

Re-analysis of public datasets 

Analysis of ChIP-seq data from Kasowski et al and McVicker et al Raw fastq files 

were downloaded from SRA database for each experiment (SRP030041 and 

SRP026077, respectively). Reads were aligned to hg19 reference genome using BWA 

MEM (Kasowski) or BWA ALN v0.7.8 (McVicker) with WASP pipeline44 to eliminate allelic 

mapping bias. Only reads with high mapping quality (>10) were kept. PCR duplicates 

were removed using Picard tools v1.131 (http://broadinstitute.github.io/picard). MACS263 

v2.2.1 was then used to call peaks using corresponding input files. For CTCF and SA1, 

default parameters were used for MACS2. For H3K27ac, H3K4me1, and H3K4me3, peak 

calling was done using “--nomodel” parameter because we do not expect sharp peaks for 

histone modifications. For H3K27me3 and H3K36me3, peak calling was done using “--

nomodel --broad” parameter. Bigwig files were generated by MACS2 using fold 

enrichment for viewing in genome browser. All Kasowski data were processed in pair-end 

mode and both replicates were merged for analysis. All McVicker data were processed in 

single-end mode, and the pooled input data were used for all samples because there are 

no individual input files.  To compute signals in peaks, we used a set of merged peaks 

across all individuals for each mark.  

Analysis of RNA-seq data from Kasowski et al Raw fastq files were downloaded 

from SRA database (SRP030041). Reads were aligned to hg19 reference genome using 

STAR64 v2.4.2a with the WASP pipeline in pair-end mode to eliminate allelic mapping 

bias. Gencode v24 annotation was used to construct STAR index and computing FPKM. 
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Only uniquely mapped reads were kept. Cufflinks65 v2.2.1 was applied to compute FPKM 

values. Both replicates were merged for analysis. 

Analysis of DNase-seq data from Degner et al Raw fastq files were downloaded 

from SRA database for each experiment (SRP007821). Reads were aligned to hg19 

reference genome using BWA ALN with the WASP pipeline in single-end mode to 

eliminate allelic mapping bias. Only reads with high mapping quality (>10) were kept. PCR 

duplicates were removed using Picard tools. Bigwig files were generated using 

makeUCSCfile commands in homer tools66 v4.9.1. 

Analysis of ChIP-seq data from Ding et al Raw fastq files were downloaded from 

SRA database for each experiment (SRP004714). Reads were aligned to hg19 reference 

genome using BWA MEM v0.7.8 with the WASP pipeline to eliminate allelic mapping bias. 

Only reads with high mapping quality (>10) were kept. PCR duplicates were removed 

using Picard tools. We performed quality control for CTCF ChIP-seq data by FRIP 

(Fraction of Reads In Peaks) and used datasets with FRIP > 10. Bigwig files were 

generated using bamCoverage commands in deepTools67 v2.3.3. To compute signals in 

peaks, we used the merged CTCF peaks from Kasowski data.  

Analysis of ChIP-seq data from Grubert et al Bigwig files and peaks for H3K27ac, 

H3K4me1 and H3K4me3 were downloaded from GEO database (GSE62742). Peaks for 

each mark were merged and then used to compute the averaged signal. 
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2.6 Figures 

 
Figure 2.1. Biological variability in multiple aspects of 3D chromatin. (a) Browser 
view to illustrate the Hi-C-derived molecular phenotypes examined here: contact 
matrices, FIRE, DI, INS, and PC1 (chr8:125,040,000-132,560,000; hg19). (b) Boxplots 
show correlation between biological replicates from the same cell line (Individuals = 
“within”, N = 20), and between replicates from different cell lines (Individuals = “between”, 
N = 760). (c) The Pearson correlation coefficient between quantile normalized Hi-C matrix 
replicates from the same cell line or different cell lines is plotted as a function of genomic 
distance between anchor bins. (d) Significance of the difference between the “within” and 
“between” values in (c) was calculated at multiple points along the distance-correlation 
curve by two-sided Wilcoxon rank sum test.  
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Figure 2.2. Variable regions of 3D chromatin conformation. (a) Example of a variable 
region (chr15:93,040,000-100,560,000; hg19). (b) The number of testable bins and 
significantly variable regions for each 3D chromatin phenotype examined here. (c) 
Significance of pairwise overlap between different sets of variable regions. (d) Boxplots 
showing the distance between indicated probe sets in four different LCLs. (e) 
Representative images of nuclei corresponding to panel (d). (f) Blue line shows the 
fraction of variable matrix cells distributed across a range of interaction distances. Black 
shows the fraction of all matrix cells distributed across the same range of interaction 
distances. (g) Top panel shows the percentage of variable matrix cell anchor bins that 
overlap variable DI, FIRE, INS, or PC1 regions, respectably.  
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Figure 2.3. Coordinated variation of the 3D genome, epigenome, and transcriptome. 
(a) Example of a variable region where 3D chromatin phenotypes are correlated with 
epigenomic and transcriptomic phenotypes (chr6:126,280,000-131,280,000; hg19). (b) 
Density plots show the distribution of Spearman correlation coefficients at variable 
regions between the epigenomic or transcriptomic phenotype indicated in the top margin 
of panel and the 3D chromatin phenotype indicated in the right margin of panel. (c) 
Heatmap showing Spearman correlation coefficients between PC1 and multiple 
epigenomic/transcriptomic phenotypes, arranged by k-means clustering (k=4). (d) Similar 
to (c), showing correlations with FIRE at N=132 variable FIRE regions. (e) Similar to (c), 
showing correlations with DI N=265 variable DI regions. (f) Similar to (c), showing 
correlations with INS at N=154 variable INS regions. 
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Figure 2.4. A genetic contribution to variations in 3D chromatin conformation. (a) 
A graphic representation of the CTCF Position Weight Matrix (PWM) is shown. (b) Boxplot 
shows the distribution of interaction frequencies at loops with exactly one anchor 
containing a CTCF motif disrupting SNP (N=138), separated according to genotype (c) 
Aggregate contact map shows the average difference in interaction frequency per loop 
between SS and SW genotypes (top; N=117 SNPs), and between SW and WW 
genotypes (bottom; N=31 SNPs). (d) Histogram shows the allelic imbalance in reads 
connecting loop anchors on the S vs W haplotypes in WS heterozygotes (N=135 loops). 
(e) Line plots show the genotype-dependent signal of FIRE-QTL, INS-QTL and DI-QTL 
using 11 independent YRI individuals. (f) For C-QTLs, an aggregate contact plot 
analogous to panel c is used to show the average difference in BNBC corrected 
interaction frequency (“Δ log(norm contacts)”) between the high and medium contact 
genotypes (top; N=138 interactions), and between the genotypes medium and low 
genotypes (bottom; N=94 interactions). (g) Boxplots show the genotype-dependent signal 
at QTLs using additional 6 individuals as a validation set. (h) Results of permutation test 
to evaluate the statistical significance of results in (g). (i) Line plot shows the fraction of 
foreground SNPs with nominal significance in the background association study (“nominal 
fraction”). (j) QQ Plot shows FIRE-QTL search results, including all SNPs tested for FIRE 
association (black points, N=128,137), and several subsets as follows: DI-QTL tested 
(light green, N=46,784), INS-QTLs tested (light red; N=6,238), C-QTL tested (light blue; 
N=69,847), DI-QTLs (dark green, N=152), INS-QTLs (dark red, N=60), C-QTLs (dark 
blue, N=53). 



 
 

121 
 

 



 
 

122 
 

Figure 2.5. Contribution of 3D chromatin QTLs to other molecular and organismal 
phenotypes. (a) Boxplots show signal for epigenetic phenotypes separated by genotype 
at FIRE-QTLs (top row), C-QTLs (middle row), and INS-QTLs (bottom row). (b) Line plots 
shows beta values of linear relationships between QTL genotypes as indicated to the left 
and epigenetic phenotype indicated above each subpanel. (c) Genome browser view 
(chr2:201,222,342-201,386,844; hg19) showing examples of a DI-QTL (chr2:201333312) 
and FIRE-QTL (chr2:201254049). (d) Left subpanel shows the enrichment values for 3D 
QTL SNPs with nominal significance in the indicated GWAS study calculated as follows: 
(fraction of indicated 3D QTL SNPs with nominal significance in the indicated GWAS) / 
(fraction of SNPs tested in the indicated 3D QTL search with nominal significance in the 
indicated GWAS). (e) QQ plot shows the results of UC GWAS with all tested SNPs shows 
as black points, and two subsets as follows: SNPs also tested in our INS-QTL search 
(light red), and SNP called as INS-QTLs or in perfect LD with INS-QTLs in the same 40Kb 
bin (dark red). (f) QQ plot shows the results of IBD GWAS with all tested SNPs shows as 
black points, and two subsets as follows: SNPs also tested in our FIRE-QTL search (light 
green), and SNP called as FIRE-QTLs or in perfect LD with FIRE-QTLs in the same 40Kb 
bin (dark green). 
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2.7 Supplemental Figures 

Figure S2.1. Hi-C derived molecular phenotypes measured across 20 LCLs. (a) Hi-
C contact matrices show for all 20 LCLs. (b) Same region as above, but showing PC1 
and FIRE values. ChIP-seq data for several histone modifications, CTCF, and Cohesin 
subunit SA1 are shown for one LCL (YRI-13, GM19240) as a reference for the epigenomic 
landscape.  (c) Same region as above, but showing DI and INS values. (d) Bar plots show 
the percentage of super-enhancers (left) or typical enhancers (right) in GM1287859 that 
overlap with 6,980 LCL FIRE bins (called as FIRE in at least one individual in our dataset) 
and 6,980 random 40kb bins. (e) Biological Process Gene Ontology terms associated 
with genes proximate to FIRE regions as defined by GREAT.  
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Figure S2.2. FIRE measures density of local interactions. Illustrative example 
showing that overall density of Hi-C reads (all reads irrespective of location of interacting 
partner, all cis interactions, or all trans interactions) is highly consistent across the 
genome. Top panel (a) shows the long arm of chr14 (chr14:24,406,737-104,693,368; 
hg19). Bottom panel (b) is a zoomed-in view of region boxed by dotted lines above 
(chr14:58,000,000-63,500,000; hg19). 
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Figure S2.3.  Aggregate looping interactions in each sample. Aggregate plots show 
the interaction frequencies at GM12878 HiCCUPS loops from Rao et al 2014 in each 
sample examined here. 
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Figure S2.4. 3D chromatin variation among 20 LCLs and H1-derived lineages. (a) 
Graphical representation of the shuffling scheme used to assess biological variability in 
Figure 2.1b-d, and here in panels b-e. (b)-(e) Boxplots show Pearson correlation 
coefficient between biological replicates from the same cell line (Replicates = “True”), and 
between replicates from difference cell lines (Replicates = “Shuff”; short for “shuffled”). (f) 
Dendrograms from hierarchical clustering of 40 Hi-C replicates based on one of four Hi-
C-derived phenotypes, as indicated above each dendrogram (DI, PC1, INS, or FIRE). (g) 
Principal Component Analysis of 20 LCLs using one of four Hi-C-derived phenotypes, as 
indicated above each plot.  



 
 

131 
 

 

HG
00
51
2

HG
00
51
3

HG
00
51
4

HG
00
73
1

HG
00
73
2

GM
12
87
8

GM
18
48
6

GM
18
50
5

GM
18
50
7GM

18
50
8

GM
18
51
6

GM
18
52
2

GM
19
09
9

GM
19
14
1

GM
19
19
3

GM
19
20
4

GM
19
23
8

GM
19
23
9

GM
19
24
0

PC1 (16.4%)

a

a

a

a

CHS
CEU

PUR
YRI

HG
00
51
2

HG
00
51
3

HG
00
51
4

HG
00
73
1HG

00
73
2

HG
00
73
3

GM
12
87
8

GM
18
48
6

GM
18
50
5

GM
18
50
7

GM
18
50
8

GM
18
51
6

GM
19
09
9

GM
19
14
1

GM
19
19
3

GM
19
20
4

GM
19
23
8

GM
19
23
9GM

19
24
0

PC1 (compartment A/B)DI INS FIRE

HG
00
51
2

HG
00
51
3

HG
00
51
4

HG
00
73
1

HG
00
73
2

HG
00
73
3

GM
12
87
8

GM
18
48
6

GM
18
50
5

GM
18
50
7GM

18
50
8

GM
18
51
6

GM
18
52
2

GM
19
09
9

GM
19
14
1

GM
19
19
3G
M1
92
04

GM
19
23
8

GM
19
23
9

GM
19
24
0 GM

12
87
8

GM
18
48
6

GM
18
50
5

GM
18
50
8

GM
18
51
6

GM
18
52
2

GM
19
09
9

GM
19
14
1

GM
19
19
3

GM
19
20
4

GM
19
23
8

GM
19
23
9

GM
19
24
0

HG
00
73
1

HG
00
73
2

HG
00
73
3H
G0
05
12

HG
00
51
3

HG
00
51
4

PC
2 

(1
5.

3%
)

PC1 (17.4%) PC1 (14.6%) PC1 (22.2%)

PC
2 

(1
2.

4%
)

PC
2 

(1
1.

0%
)

PC
2 

(1
1.

8%
)

g

f

Population

G
M
18
50
8_
R
ep
1

G
M
19
23
9_
R
ep
1

G
M
19
23
8_
R
ep
1

G
M
19
23
8_
R
ep
2

G
M
18
50
8_
R
ep
2

G
M
18
50
7_
R
ep
2

G
M
19
20
4_
R
ep
1

G
M
18
51
6_
R
ep
2

G
M
18
48
6_
R
ep
1

G
M
18
48
6_
R
ep
2

G
M
19
09
9_
R
ep
2

G
M
19
09
9_
R
ep
1

G
M
19
23
9_
R
ep
2 G
M
18
50
7_
R
ep
1

G
M
18
51
6_
R
ep
1

H
G
00
51
2_
R
ep
1

H
G
00
73
3_
R
ep
1

H
G
00
73
3_
R
ep
2

H
G
00
73
1_
R
ep
1

H
G
00
73
1_
R
ep
2

G
M
19
20
4_
R
ep
2

G
M
12
87
8_
R
ep
1

G
M
12
87
8_
R
ep
2

H
G
00
51
4_
R
ep
1

H
G
00
73
2_
R
ep
1

H
G
00
73
2_
R
ep
2

H
G
00
51
2_
R
ep
2

H
G
00
51
3_
R
ep
1

H
G
00
51
3_
R
ep
2

G
M
18
50
5_
R
ep
1

G
M
19
19
3_
R
ep
1

G
M
19
19
3_
R
ep
2

G
M
19
14
1_
R
ep
1

G
M
18
52
2_
R
ep
1

G
M
18
52
2_
R
ep
2

G
M
18
50
5_
R
ep
2

G
M
19
14
1_
R
ep
2

H
G
00
51
4_
R
ep
2

G
M
19
24
0_
R
ep
1

G
M
19
24
0_
R
ep
212

00
16
00

20
00

24
00

H
ei
gh
t

G
M
19
20
4_
R
ep
2

G
M
12
87
8_
R
ep
1

G
M
12
87
8_
R
ep
2

G
M
19
14
1_
R
ep
1

G
M
18
50
5_
R
ep
2

G
M
19
14
1_
R
ep
2

G
M
18
50
5_
R
ep
1

G
M
19
24
0_
R
ep
1

G
M
19
24
0_
R
ep
2

G
M
18
52
2_
R
ep
1

G
M
18
52
2_
R
ep
2

G
M
19
19
3_
R
ep
1

G
M
19
19
3_
R
ep
2

H
G
00
51
3_
R
ep
1

H
G
00
51
3_
R
ep
2

H
G
00
51
2_
R
ep
1

H
G
00
51
2_
R
ep
2

H
G
00
51
4_
R
ep
1

H
G
00
51
4_
R
ep
2

H
G
00
73
2_
R
ep
1

H
G
00
73
2_
R
ep
2

H
G
00
73
3_
R
ep
1

H
G
00
73
3_
R
ep
2

H
G
00
73
1_
R
ep
1

H
G
00
73
1_
R
ep
2

G
M
18
50
8_
R
ep
2

G
M
18
50
7_
R
ep
2

G
M
19
23
8_
R
ep
1

G
M
19
23
8_
R
ep
2

G
M
19
23
9_
R
ep
1

G
M
19
23
9_
R
ep
2

G
M
18
48
6_
R
ep
1

G
M
18
48
6_
R
ep
2

G
M
19
09
9_
R
ep
1

G
M
19
09
9_
R
ep
2

G
M
18
50
8_
R
ep
1

G
M
18
51
6_
R
ep
1

G
M
18
51
6_
R
ep
2

G
M
18
50
7_
R
ep
1

G
M
19
20
4_
R
ep
10.
8

1.
0

1.
2

1.
4

1.
6

1.
8

H
ei
gh
t

DI PC1 (compartment A/B)

G
M
18
50
5_
R
ep
1

G
M
18
50
8_
R
ep
1

G
M
18
51
6_
R
ep
1

H
G
00
51
4_
R
ep
1

H
G
00
51
4_
R
ep
2

G
M
19
14
1_
R
ep
1

G
M
18
52
2_
R
ep
1

G
M
19
24
0_
R
ep
1

G
M
19
24
0_
R
ep
2
H
G
00
73
2_
R
ep
1

H
G
00
73
2_
R
ep
2

H
G
00
51
2_
R
ep
2

H
G
00
51
3_
R
ep
1

H
G
00
51
3_
R
ep
2

G
M
12
87
8_
R
ep
1

G
M
12
87
8_
R
ep
2

G
M
19
20
4_
R
ep
2

G
M
18
52
2_
R
ep
2

G
M
18
50
5_
R
ep
2

G
M
19
14
1_
R
ep
2

G
M
19
19
3_
R
ep
1

G
M
19
19
3_
R
ep
2

G
M
18
50
7_
R
ep
1

G
M
18
50
8_
R
ep
2

G
M
18
48
6_
R
ep
1

G
M
18
48
6_
R
ep
2

G
M
19
23
8_
R
ep
1

G
M
19
23
8_
R
ep
2

G
M
18
51
6_
R
ep
2

G
M
18
50
7_
R
ep
2

G
M
19
20
4_
R
ep
1

G
M
19
23
9_
R
ep
1

G
M
19
23
9_
R
ep
2

G
M
19
09
9_
R
ep
1

G
M
19
09
9_
R
ep
2
H
G
00
51
2_
R
ep
1

H
G
00
73
3_
R
ep
1

H
G
00
73
3_
R
ep
2

H
G
00
73
1_
R
ep
1

H
G
00
73
1_
R
ep
2

10
15

20
25

30
35

H
ei
gh
t

INS

G
M
19
19
3_
R
ep
1

G
M
19
19
3_
R
ep
2

G
M
19
14
1_
R
ep
1

G
M
18
52
2_
R
ep
1

G
M
19
20
4_
R
ep
1

G
M
19
24
0_
R
ep
1

G
M
18
51
6_
R
ep
1

G
M
18
51
6_
R
ep
2

G
M
19
09
9_
R
ep
1

G
M
19
23
9_
R
ep
2

G
M
18
50
7_
R
ep
2

G
M
18
50
8_
R
ep
2

H
G
00
51
2_
R
ep
2

G
M
18
52
2_
R
ep
2

G
M
18
50
5_
R
ep
2

G
M
19
14
1_
R
ep
2

G
M
19
24
0_
R
ep
2

H
G
00
51
4_
R
ep
2

H
G
00
73
1_
R
ep
1

H
G
00
73
3_
R
ep
1

H
G
00
73
3_
R
ep
2

H
G
00
73
2_
R
ep
1

H
G
00
73
2_
R
ep
2

H
G
00
73
1_
R
ep
2

H
G
00
51
3_
R
ep
1

H
G
00
51
3_
R
ep
2

G
M
18
50
8_
R
ep
1

G
M
18
50
7_
R
ep
1

G
M
19
23
8_
R
ep
1

G
M
19
23
8_
R
ep
2

G
M
19
23
9_
R
ep
1

G
M
19
09
9_
R
ep
2

G
M
18
48
6_
R
ep
1

G
M
18
48
6_
R
ep
2
G
M
18
50
5_
R
ep
1

G
M
12
87
8_
R
ep
1

G
M
12
87
8_
R
ep
2

G
M
19
20
4_
R
ep
2

H
G
00
51
2_
R
ep
1

H
G
00
51
4_
R
ep
1

20
30

40
50

60
H
ei
gh
t

FIRE

c

0.
5

1.
0

2.42e−07 0.00026

LCL LCL H1 H1 H1+LCL
True Shuff True Shuff Shuff

Pe
ar

so
n 

co
rr

el
at

io
n

co
ef

fic
ie

nt

Cell lines:
Replicates:

0.0157 0.00154

1.
0

0.
3

LCL LCL H1 H1 H1+LCL
True Shuff True Shuff Shuff

Cell lines:
Replicates:

Pe
ar

so
n 

co
rr

el
at

io
n

co
ef

fic
ie

nt

0.
5

1.
0

3.3e−07 0.000347

Pe
ar

so
n 

co
rr

el
at

io
n

co
ef

fic
ie

nt

LCL LCL H1 H1 H1+LCL
True Shuff True Shuff Shuff

Cell lines:
Replicates:

1.63e−07 4e−04

0.
5

1.
0

Pe
ar

so
n 

co
rr

el
at

io
n

co
ef

fic
ie

nt

LCL LCL H1 H1 H1+LCL
True Shuff True Shuff Shuff

Cell lines:
Replicates:

e

b

d FIREINS

DI

PC1

a

...

True
Replicates:

Hi-C
Rep1

Hi-C
Rep2

LCL-1 LCL-2

Hi-C
Rep1

Hi-C
Rep2

LCL-20

Hi-C
Rep1

Hi-C
Rep2

Shuffled
Replicates:



 
 

132 
 

Figure S2.5. Characterization of variable regions of 3D chromatin conformation. (a) 
Same region as in Figure 2.2a (chr15:94,280,000-99,280,000), but showing reproducible 
variation in PC1, and full square matrices for contact matrix variability as opposed to the 
half-matrices shown in 2a. (b) Similar to Figure 2.2b, but with additional data columns. 
(c) Venn diagrams showing the overlap of variable regions identified using either all 20 
LCLs (“LCL20”) or only the 11 unrelated YRI LCLs (“YRI11”). (d) Venn diagrams showing 
the number of variable bins for each phenotype or combination of phenotypes. (e) Mosaic 
plots show the significance of overlaps between variable regions in a pairwise fashion.  
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Figure S2.6. Additional characterization of variable regions of 3D chromatin 
conformation. (a) Same underlying FISH data as in Figure 2.2e, but here comparing the 
distance between U and C probes to the distance between C and D probes within the 
same LCL. (b) As in Figure 2.2d, blue line shows the fraction of variable matrix cells 
distributed across a range of interaction distances. (c) Mosaic plots show the significance 
of overlap between variable regions and anchor bins of variable matrix cells.  
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Figure S2.7. Coordinated variation between 3D chromatin conformation and 
multiple molecular phenotypes. (a) Same region as in Figure 2.3a (chr6:126,280,000-
131,280,000; hg19), but showing additional individuals and additional data types as 
indicated.  (b) Representation of permutation scheme used to calculate P-values in panels 
c as well as in Figure 2.3b and Figures S2.8 and S2.9. (c) Density plots in the top left 
quadrant show Spearman correlation coefficients (SCC) between PC1 and molecular 
phenotypes as indicated in the top margin of panel. Bottom left quadrant shows SCC like 
above, but using variable regions called in only 11 individuals. Bottom right quadrant 
shows SCC using ChIP-seq data from McVicker et al.  
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Figure S2.8. Correlations between DI, INS and multiple molecular phenotypes. 
Similar schema to Figure 2.7c, but focusing on DI in (a), and INS in (b). 
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Figure S2.9. Correlations between FIRE, interaction frequency and multiple 
molecular phenotypes. Similar schema to Figure 2.7c, but focusing on FIRE in (a), and 
contact frequency (examining the anchor bins of variable matrix cells) in (b). 
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Figure S2.10. 3D chromatin QTLs. (a) QQ plots for each QTL search. In each QQ plot, 
the X-axis is the -log10 theoretical quantiles calculated from the uniform distribution. The 
Y-axis is the -log10 p-value calculated from linear mixed effects model for each type of 
QTL search. (b) Genotype trend for bins with positive DI (left), negative DI (right), and all 
QTLs (right). (c) Number of direct overlaps between QTL sets. (d)  Similar schema to 
Figure 2.4e, but showing FIRE, INS, DI score (indicated on the Y axis) as a function of 
genotype for each QTL set as indicated above each column.  
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Figure S2.11. Influence of 3D chromatin QTLs on epigenomic and disease 
phenotypes. ((a) Similar schema to Figure 2.5a, but showing DI-QTLs in positive bins 
(top) and negative DI bins (bottom). (b) Left subpanel shows the enrichment for 3D QTL 
SNPs with nominal significance in the indicated epigenetic or eQTL study calculated as 
follows: (fraction of indicated 3D QTL SNPs with nominal significance in the indicated 
molQTL study) / (fraction of SNPs tested in the indicated 3D QTL search with nominal 
significance in the indicated molQTL study). Right panel shows the proportion of 1,000 
random subsets selected from the tested SNPs with enrichment values higher than the 
indicated true QTL set. (c) QQ plot shows the results of H3K4me1 QTL search from 
Grubert et al., with all tested SNPs shown as black points, and two subsets as follows: 
SNPs also tested in our C-QTL search (light blue), and SNP called as C-QTLs or in perfect 
LD with C-QTLs in the same 40Kb bin (dark blue). 
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Chapter 3: Dynamic 3D chromatin organization during differentiation of human 

embryonic stem cells to pancreatic progenitor cells 

3.1 Abstract 

Cellular differentiation is characterized by changes in gene expression, which in 

turn are facilitated by remodeling of chromatin structure. There is emerging evidence that 

the three-dimensional (3D) architecture of genomes contributes to the regulation of cell-

specific transcription programs, yet how chromatin reorganizes and how this change 

contributes to dynamic gene expression during cell differentiation are still poorly 

understood. Here we mapped the 3D architecture of genomes using in situ Hi-C at defined 

stages during differentiation of human embryonic stem cells to pancreatic progenitor cells, 

and in human cadaveric islets. We observed dynamic 3D genome organization at multiple 

levels, including compartments, topological associated domains (TADs), and chromatin 

loops. Specifically, we identified 15,448 chromatin loops of which 5,452 are dynamic 

during differentiation. The anchors of dynamic chromatin loops are enriched with 

developmental stage-specific gene expression, chromatin modifications, and 

transcription factor (TF) binding. Furthermore, we identified chromatin interaction hubs 

that interact with multiple regions through chromatin loops. We found that a large number 

of hubs are stage-specific and harbor key developmental genes. Chromatin hubs are 

enriched for super-enhancers, active gene expression as well as binding of lineage-

determining TFs, suggesting essential roles for hubs in the establishment of stage-

specific transcriptional programs.  Altogether, our study revealed dynamic chromatin 

organization during developmental lineage progression and provided insight into how 
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higher-order chromatin structure contributes to transcriptional regulation and lineage 

specification.  
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3.2 Introduction 

The human genome is highly organized at multiple levels, ranging from 

chromosome territories that can be seen under microscopes1 to interactions between 

individual loci that can only be seen by molecular techniques2,3. Technologies based on 

chromatin conformation capture, including 5C4, ChIA-PET5, and Hi-C6 have provided 

important insights into the general principles of chromatin organization. At megabase 

scales, the genome is organized into TADs7,8. Genomic loci within the same TADs tend 

to interact more with each other than loci that located in different TADs. At a finer 

resolution, chromatin loops are evidenced by the spatial proximity of two distal genomic 

elements, for example, enhancers and promoters2,3. Despite the observation of chromatin 

loops, the mechanisms underlying loop formation remain unclear.  While emerging 

evidence supports that chromatin loops are formed by CCCTC-binding factor (CTCF) and 

cohesin through loop extrusion9, transcription factors other than CTCF/cohesion have 

also been found to be associated with chromatin loops10-12, suggesting diverse 

mechanisms for loop formation. 

At all levels, 3D genome organization appears to be associated with multiple 

cellular processes and genome functions, in particular, transcriptional regulation2. Proper 

folding of the genome is important for normal development and cellular differentiation. 

Disruption of chromatin loops linking enhancers and promoters could lead to 

dysregulation of gene expression and disease13. Thus, it is crucial to understand 

chromatin conformation and its relationship to transcriptional regulation in various 

contexts. Though chromatin conformation has been investigated in multiple studies, 

including different cell-type and human tissues14,15, how chromatin organizations change 
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during cellular differentiation is still poorly understood. Previous studies either lacked the 

sequencing depth to achieve fine resolutions that enable detection of chromatin loops or 

focused on targeted regions and failed to provide a comprehensive picture10,11,16.    

Here, we performed in situ Hi-C with deep sequencing to chart chromatin 

conformation during cellular differentiation in the context of pancreatic development. We 

showed that stage-specific chromatin loops are formed during differentiation and are 

associated with developmental gene expression and histone modification. Importantly, 

we found that TFs responsible for lineage specification are enriched at stage-specific loop 

anchors. Moreover, we identified chromatin hubs that link multiple regions through 

chromatin loops and showed chromatin hubs are enriched for super-enhancers, active 

gene expression as well as binding of lineage-determining TFs. Taken together, our study 

revealed the putative roles of pioneer TFs in loop formation and shed lights into how 

chromatin conformation contributes to transcriptional regulation during differentiation.  
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3.3 Results 

Mapping chromatin conformation during pancreatic differentiation 

To study the dynamics of chromatin conformation during cell differentiation, we 

took advantage of the stepwise differentiation of human embryonic stem cells (hESC)  

towards pancreatic lineages17,18. Specifically, we mapped chromatin interactions at four 

defined stages including hESCs, definitive endoderm (DE), primitive gut tube (GT), and 

pancreatic progenitor (PP) using in situ Hi-C (Figure 3.1a). To achieve high resolution, 

we sequenced each library to high depth (~1 billion intra-chromosomal long-range 

contacts per sample) in two biological replicates, allowing us to characterize not only 

larger-scale features of genome organization but also interactions between cis-regulatory 

elements. In addition to four defined stages, we also collected Hi-C data using the same 

protocol for human cadaveric islets from three donors and combined them with four 

stages for downstream analysis.  

Complementing the Hi-C data, we have also generated ATAC-seq for the same 

set of samples and ChIP-seq for CTCF, Rad21, and important lineage-specification TFs  

including FOXA1, FOXA2, GATA4, GATA6, and PDX1 at the stages where the TF is 

expressed (Figure 3.1a). Also, we collected datasets that are publicly available for the 

same lineages, including ChIP-seq for H3K27ac, H3K4me3, H3K4me1, H3K27me3 to 

profile histone modification and RNA-seq for gene expression17,18.  

For each sample, we defined TADs using previously described approaches based 

on direction index (DI)7 and called chromatin loops adapting the previous method based 

on the local background19. On average, we identified ~5,000 chromatin loops per sample 

(FDR < 0.01; Figure S3.1a). Notably, there are dramatically more chromatin loops in the 
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DE stage than other stages, consistent with the previous observation that the DE cell 

genome harbors the largest number of active enhancers18. Two lines of evidence support 

the high confidence of chromatin loops. First, chromatin loops that were identified in each 

stage also show high reproducibility with ~60% chromatin loops called in both replicates 

(Figure S3.1b). Second, chromatin loops called in each stage show clear enrichment 

using aggregate peak analysis (APA) (Figure 3.1c). In total, 15,448 distinct chromatin 

loops were identified across all stages. 

Linking enhancers to target genes via chromatin loops 

Enhancers are distal cis-regulatory elements that regulate cell-type-specific gene 

expression. We have previously characterized enhancers during the same differentiation 

lineages and identified a set of stage-specific enhancers18. While enhancers play crucial 

roles in shaping the transcriptional profile, it remains a challenge to identify target genes 

for enhancers as they are often far away from the target genes. We hypothesized that 

chromatin loops could be used to link enhancers to target promoters as elements at two 

loop anchors are close in three-dimensional spaces. 

To test if chromatin loops identified using Hi-C data could be used to assign 

enhancer to their target genes, we employed two independent approaches. First, we took 

advantage of our time-course data and reasoned that enhancers and promoters that are 

linked might change activity accordingly during the differentiation. As we expected, 

enhancer-promoter pairs that are linked by chromatin loops are significantly more likely 

to be correlated in terms of activity across stages comparing to random pairs (Figure 

S3.1d). Second, we compared enhancer-promoter pairs predicted by spatial proximity to 

enhancer-promoter pairs suggested by genetic evidence, in particular expression 
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quantitative trait loci (eQTL). We found that enhancers harboring pancreas eQTLs are 

significantly more likely to be in proximity with the associated genes in human islet 

samples (Figure 3.1c), suggesting enhancer-promoter pairs linked by chromatin loops 

are also consistent with genetic-based evidence.   

Rewiring of chromatin loops during pancreatic differentiation 

Cell differentiation is a highly regulated process accompanied by reshaping of 

transcriptional profiles. Specifically, previous reports observed that key developmental 

genes are expressed at certain stages17. For instance, FOXA2 plays crucial roles in 

endoderm development, and its activation at the DE stage is essential for proper lineage 

specification (Figure 3.1b). In addition to FOXA2 promoter, several enhancers 

surrounding FOXA2 gene are also activated, indicating a reshaping of the enhancer 

landscape as well. While this observation is consistent with previous studies that revealed 

a systematic change of transcription and enhancer profiles during pancreatic 

differentiation 17,18, it is not known how chromatin interactions are rewired.  

To systematically chart the changes in chromatin interactions during the 

developmental time course, we focused on the 15,448 chromatin loops identified across 

the time-course and examined dynamic changes of those loops. Interestingly, we 

observed several chromatin loops anchoring at the FOXA2 promoter that appeared at the 

DE stage when the FOXA2 gene is activated (Figure 3.1b), consistent with a potential 

role of chromatin loops in the activation of FOXA2 gene during the time course. After 

systematic characterization, we identified 5,452 chromatin loops that are dynamic during 

the differentiation while remaining 9,996 chromatin loops are static (Figure 3.1d). 
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Interestingly, we also found dynamic loops tend to have slightly smaller size compared to 

static loops (Figure 3.1e). 

Stage-specific chromatin loops are associated with developmental gene 

expression programs 

Given the 5,452 dynamic chromatin loops, we next asked how those loops change 

during the time course. K-means clustering revealed five distinct clusters of dynamic 

chromatin loops (Figure 3.2a). The majority of dynamic loops are found to peak at one 

stage. For example, loops in cluster 2 (C2) are at their maximum strength at the DE stage. 

The only exception is that cluster 3 (C3) loops, which correspond to the GT stage, display 

strong signals in multiple stages likely because GT is not a well-defined biological stage 

but an intermediate between DE and PP.  

We next sought to test if stage-specific chromatin loops are associated with 

changes in transcription. We performed gene ontology (GO) analysis for each cluster of 

loops to identify genes that are enriched at or near the anchors of the chromatin loops in 

each cluster. Surprisingly, we found that different groups of developmental genes are 

enriched for each cluster of loops. For instance, loops in the DE cluster are enriched for 

genes involved in endoderm development (Figure 3.2b). Similarly, genes enriched at 

cluster 4 (C4) loop anchors are involved in such processes as pancreatic development. 

These results suggest that stage-specific chromatin loops may contribute to regulation of 

stage-specific gene expression programs. 

Chromatin loops are believed to help regulate gene expression by bringing distal 

enhancer to the proximity of promoters. To further investigate how stage-specific 

chromatin loops coincide with stage-specific transcriptional profiles, we examined several 
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developmental regulator genes. In each case, dynamic chromatin loops are accompanied 

by gene activation at the same stage. For example, ONECUT1, an important regulator in 

pancreatic progenitor, is specifically expressed at PP stage, and a PP-specific chromatin 

loop links ONECUT1 to a PP-specific enhancer as marked by ATAC and H3K27ac. We 

also observed switching of enhancers for the same gene at different stages. For instance, 

GATA6 is expressed across multiple stages during differentiation, and it is linked to 

distinct putative enhancers at different stages by loops activated at different stages 

(Figure 3.2c). These results further support the potential roles of chromatin loops in 

activating stage-specific genes.   

While we observed enrichment of specific gene sets in distinct clusters of loops, 

the relationship between gene expression levels and loop strength is not well 

characterized. To address this question, we examined gene expression changes across 

stages for each cluster of loops and observed a similar pattern of transcription levels as 

loop strength. For instance, the C2 loops are strongest at the DE stage, and genes near 

loop anchors in the C2 cluster are most strongly expressed at the DE stage (Figure 3.2d). 

This suggests that chromatin loops may contribute to the stage-specific expression of 

developmental genes. We also examined the relationship between chromatin loops and 

other genomic features. Interestingly, we observed similar patterns for histone marks 

H3K27ac, H3K4me1, as well as RNA expression level (Figure 3.2d). Taken together, 

rewiring of chromatin loops is accompanied by changes in both transcription and histone 

modification.  

Lineage-specification TFs contribute to the formation of stage-specific loops 
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Given the observation that stage-specific chromatin loops are associated with 

stage-specific gene expression profiles, we next investigated the potential regulators of 

those dynamic chromatin loops. As TFs have been shown to be crucial in driving cell 

differentiation, we wondered if TFs also help establish dynamic chromatin loops.  To 

identify potential TFs that drive the formation of dynamic chromatin loops, we performed 

motif enrichment analysis for loop anchors of each cluster., For these analyses, we tested 

ATAC peaks within loop anchors, because loop anchors are 10Kb size and thus not 

suitable for motif search. Surprisingly, we observed significant enrichment of known 

pioneer TFs within the loop anchors. For example, FOXA1/2 are known to be pioneer TFs 

for the DE stage, and FOXA motifs are highly over-presented in the C2 loops (Figure 

3.3a).  PDX1 is TF responsible for PE formation, and we observed significant enrichment 

of PDX1 motif in the C4 loops (Figure 3.3a).  

Because the presence of motif does not necessarily mean that a TF actually binds 

a given site at a specific stage, we further validated results of motif enrichment using TF 

ChIP-seq data which could measure TF binding directly. In particular, we tested if 

selected TFs are more likely to bind to loops for one cluster using static loops as the 

background. We first tested CTCF and cohesin, which are essential to establish 

chromatin loops. Surprisingly, CTCF and cohesin are not enriched at anchors of C2 

cluster loops comparing to static loops (Figure 3.3b). However, FOXA1 and FOXA2, as 

suggested by previous motif enrichment, are significantly enriched in C2 loops comparing 

to static loops (Figure 3.3b). This suggests that FOXA1 and FOXA2 may contribute to 

the formation of C2 loops in particular. 

Chromatin loops form interaction hubs 
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Despite individual dynamic chromatin loops, we also often noticed serval inter-

connected loops at key developmental genes such as FOXA2 (Figure 3.1b). We 

hypothesized that chromatin loops might form interaction hubs via individual chromatin 

loops. To identify chromatin interaction hubs, we built chromatin interaction networks 

using chromatin loops, where nodes are 10Kb bins that are loop anchors and edges are 

chromatin loops (Figure 3.4a). After building the network, we used Kleinberg's authority 

score to calculate hubness scores for each node (Figure 3.4a). In general, loop anchors 

with more interactions and stronger interactions are more likely to have a higher hubness 

score. Hubness scores are highly reproducible between biological replicates (Figure 

S3.2a). In sum, we identified hundreds of interaction hubs at each stage (Figure S3.2b). 

K-means clustering of hubness scores for all loop anchors again revealed stage-

specific patterns (Figure 3.4b), where most genomic regions are only interaction hubs at 

one or two stages, suggesting that hubs are relatively stage-specific. In addition, stage-

specific chromatin hubs often harbor key developmental genes. For instance, the key 

regulator and marker for DE stage SOX17 are located in a DE-specific hub (Figure 3.4b). 

We then tested if interaction hubs are also associated with transcriptional regulation. 

Several lines of evidence suggest interaction hubs play key roles in driving stage-specific 

transcription profiles. First, interaction hubs are significantly enriched for enhancer and 

super-enhancers (Figure 3.4c; Figure S3.2c). Second, there are significantly more TF 

binding sites for lineage-determining TFs in interactions hubs comparing to regions that 

are not hubs (Figure 3.4d; Figure S3.2d). Third, genomic regions with transcription start 

site (TSS) are more likely to be chromatin hubs (Figure 3.4e) and more active promoters 

are located in interaction hubs (Figure 3.4f). Taken together, evidence suggests that 
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chromatin interaction hubs are not only centered for chromatin interactions but also 

centers for transcriptional regulation.  
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3.4 Discussion 

Cellular differentiation is a complex and highly regulated process involving the 

rewiring of transcriptional regulatory networks and reorganization of chromatin 

architecture. Here we characterized the dynamic chromatin interactions during pancreatic 

differentiation using a human embryonic stem cell model system and profiled 

comprehensively the dynamic landscape of chromatin organization at high resolution. In 

particular, we identified thousands of dynamic chromatin loops that are associated with 

transcription changes. These loops could be used to link distal enhancer to target genes 

and help reveal mechanisms of stage-specific gene expression.  

We also revealed that lineage-determining TFs could work as potential regulators 

of stage-specific chromatin loops. Previous reports found TFs can help establish stage- 

or cell-type-specific transcriptional programs by activating enhancers18. Our results 

provide a novel mechanism for so-called “pioneer” TFs to regulate gene expression 

repertoire. Moreover, while chromatin loops have been shown to be important in gene 

expression regulation, the formation of chromatin loops is still not well-understood. Our 

data also point to novel TFs that may help establish chromatin loops apart from CTCF 

and cohesin. While more studies are needed to reveal mechanisms of loop formation 

fully, there are likely to be two classes of chromatin loops as proposed previously16,20. 

One class is static loops that are regulated by CTCF, and another class is cell-type-

specific, which are likely to be regulated by lineage-determining TFs.  

Finally, we showed that chromatin interaction hubs are formed by multiple 

chromatin loops and are hubs for transcriptional regulation as well. Those hubs harbor 

not only essential developmental genes but also TF binding sites and enhancers. We 
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reason that activated regions in the genome are linked together to form hubs. However, 

how hubs are formed and whether hubs are essential for transcriptional programs need 

more investigation. 

In summary, our study provides a comprehensive map of chromatin organization 

during cell differentiation. With more understanding of chromatin organization and its role 

in gene regulation, we are in a great position to fully understand the mechanisms 

underlying transcriptional regulation.  
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3.5 Methods 

Cell Culture 

Cythera49 stem cells were cultured as previously described21. Briefly, 

approximately 5.5 million cells per well were seeded into 6 well plates, with full media 

changes occurring at day 0, 2, 5, and 8, and half media changes occurring on days 1, 3, 

4, 6, 7, and 9. The DE timepoint was collected on day 2, the GT timepoint was collected 

on day 5, the FG timepoint was collected on day 7, and the PE timepoint was collected 

on day 10.  

H1 stem cells were cultured as described previously22. 5.5 million cells per well 

were seeded onto into 6 well plates, with full media changes occurring on each day of 

culture. The DE timepoint was collected on day 3, the GT timepoint was collected on day 

6, the FG timepoint was collected on day 8, and the PE timepoint was collected on day 

11. 

in situ Hi-C Experiments 

The in situ Hi-C was performed according to a previously described protocal19 with 

slight modifications. Briefly, the human islets were washed with cold PBS and cut into 

small pieces. For cells, the cells were trypsinized and washed with PBS. The chromatin 

was cross-linked with 1% formaldehyde (Sigma) at ambient temperature for 10 min and 

quenched with 125mM glycine for 5 min. PBS washed tissue was homogenized with loose 

fitting douncer for 30 strokes before centrifugation to isolate the nuclei.  

Nuclei were isolated and directly applied for digestion using 4 cutter restriction 

enzyme MboI (NEB) at 37 °C o/n. The single strand overhang was filled with biotinylated-

14-ATP (Life Tech.) using Klenow DNA polymerase (NEB). Different from tradition Hi-C, 



 
 

167 
 

with in situ protocol, the ligation was performed when the nuclear membrane was still 

intact. DNA was ligated for 4h at 16 °C using T4 ligase (NEB). Protein was degraded by 

proteinase K (NEB) treatment at 55 °C for 30 min. The crosslinking was reversed with 

500 mM of NaCl and heated at 68 °C o/n. DNA was purified and sonicated to 300-700 bp 

small fragments. Biotinylated DNA was selected with Dynabeads My One T1 Streptavidin 

beads (Life Tech.). The sequencing library was prepared on beads, and intensive wash 

was performed between different reactions. Libraries were checked with Agilent 

TapeStation and quantified using Qubit (Life Tech.). Libraries were sequenced with 

illumina HiSeq 4000 100 cycles of paired-end reads.  

ChIP-seq Experiments 

For ChIP-seq, the ChIP-IT High-Sensitivity kit (Active Motif) was used according 

to the manufacturer’s instructions. Briefly, aggregates containing approximately 107 cells 

were fixed for 15 min in an 11.1% formaldehyde solution, chromatin was extracted by 

lysing cells in a Dounce homogenizer followed by shearing via sonication in a 

Bioruptor®Plus (Diagenode), on high for 3x 5 min (30 sec on, 30 sec off). For 

immunoprecipitation, 10-30 μg of the sheared chromatin was incubated with 4 μg primary 

antibody ON at 4°C on an end-to-end rotator, followed by incubation with Protein G 

agarose beads for 3 h at 4°C on the rotator. Reversal of crosslinks and DNA purification 

were performed according to the ChIP-IT High-Sensitivity instructions with incubation at 

65°C for 2 h. DNA libraries were constructed using KAPA DNA Library Preparation Kits 

for Illumina® (Kapa Biosystems) and library sequencing was performed using a HiSeq 

4000 System (Illumina®) with single-end reads of 50 bp in the Institute for Genomic 

Medicine (IGM) core research facility at the University of California at San Diego (UCSD).  
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Hi-C data processing 

Hi-C data were processed as previously described with some modifications14. 

Read pairs were aligned to the hg19 reference genome separately using BWA-MEM23 

with default parameters. Specifically, chimeric reads were processed to keep only the 5’ 

position and reads with low mapping quality (<10) were filtered out. Read pairs were then 

paired using custom scripts. Picard tools were then used to remove PCR duplicates. Bam 

files with alignments were further processed into text format as required by Juicebox 

tools24. Juicebox tools were then applied to generate hic files containing normalized 

contact matrices. All downstream analysis was based on 10Kb resolution KR normalized 

matrices.  

Chromatin loops were identified by comparing each pixel with its local background, 

as described previously19 with some modifications.  Specifically, we only compared the 

donut region around the pixel to model the expected count. Briefly, the KR-normalized 

contact matrices at 10Kb resolution were used as input for loop calling. For each pixel, 

distance-corrected contact frequencies were calculated for each surrounding bin and the 

average of all surrounding bins. The expected counts were then transformed to raw 

counts by multiplying the counts with the raw-to-KR normalization factor. Then we 

calculated the probability of observing raw expected counts using Poisson distribution. All 

pixels with p-value < 0.01 and distance less than 10Kb were selected as candidate pixels. 

Candidate pixels were then filtered to remove pixels without any neighboring candidate 

pixels since they are likely false positives. Finally, pixels within 20Kb of each other were 

collapsed and only the most significant pixel was selected. The collapsed pixels with p-

value < 1e-5 were used as the final list of chromatin loops. 
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ChIP-seq and ATAC-seq data processing 

Reads were aligned using BWA MEM with either single-end or pair-end model to 

the hg19 reference genome. Reads with low mapping quality (mapq<10) were filtered out, 

and PCR duplicates were removed using Picard tool 

(http://broadinstitute.github.io/picard/). MACS225 were then applied to call peaks and 

generate signal tracks to view in the genome browser.  

RNA-seq data processing 

Reads were aligned to the hg19 reference genome using STAR 2.4.2a26 with 

default parameters in the pair-end model. Only uniquely aligned reads were kept for 

further analysis. Cufflinks 2.2.127 was used to compute FPKM for each gene.  

Identification of chromatin interaction hubs 

A 3D interaction network was built for each chromosome by connecting 10kb 

regions based on their Hi-C contact values of chromatin loops, following normalization of 

Hi-C contact values for each stage in a 0-1 range. Nodes corresponding to 10kb regions 

were linked if their pairwise normalized contact score exceeded 0.1. For each stage, a 

measure of the centrality of each node was computed as the Kleinberg's authority score, 

hereafter referred to as hubness score, which takes into account both the degree of the 

node and the strength of edges connections. A random distribution of hubness scores 

was obtained for each stage by randomly shuffling network edges, with the number of 

permutations set to 1000. For each score, p-values were estimated as a cumulative 

probability from the corresponding null distribution. Hubs were selected with p-value < 

0.05.  
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3.6 Figures 

Figure 3.1. Characterization of three-dimension chromatin organization during 
pancreatic differentiation. (a) Schematic of the dataset generated. (b) Heatmap 
showing chromatin interactions and chromatin loops (top) and genome browser shots 
showing ATAC-seq signal for the same region (bottom). Dynamic and static chromatin 
loops are marked in blue and green arrows, respectively. (c) Pancreas eQTL and egene 
pairs are enriched in islet chromatin loops. *** p<0.001 (d) Pie chart for dynamic and static 
chromatin loops. (e) Density plot shows sizes of dynamic and static chromatin loops.  
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Figure 3.2. Dynamic chromatin loops are associated with stage-specific 
transcription regulation. (a) Heatmap showing k-means clustering of dynamic loops. (b) 
Selected enriched GO terms for C2 and C4 cluster loops. (c) Genome browser shot for 
GATA6 region, highlighting distinct enhancers for GATA6 at different stages. (d) Boxplot 
of histone modification and gene expression levels stratified by loop clusters.  
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Figure 3.3. Dynamic chromatin loops are associated with lineage-determining TFs. 
(a) Enriched motifs for C2 and C4 cluster loops. (b) Barplot showing enrichment of TF 
binding peaks comparing C2 cluster loop with static loops.  
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Figure 3.4. Identification and characterization of hubs in 3D interaction networks. 
(a) Workflow to generate 3D interaction networks and characterize the most connected 
nodes (hubs). (b) Heatmap showing normalized hubness scores for each stage. (c) 
Percentage of hubs overlapping with H3K27ac peaks or with super-enhancers, compared 
to expected overlaps. (d) Percentage of hubs overlapping with TF binding sites in DE and 
PP, compared to expected overlaps. (e) Distribution of hubness scores for hubs regions 
that include a TSS, compared to other nodes. (f) Percentage of active promoters in hubs 
of each stage. 
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3.7 Supplemental Figures 

 
Figure S3.1. Characterization of three-dimension chromatin organization during 
pancreatic differentiation.  (a) The number of chromatin loops identified in each 
biological replicate. (b) Percentage of overlapped chromatin loops between biological 
replicates for each stage. (c) Heatmap showing aggregate peak analysis of chromatin 
loops for each stage. (d) Barplot showing fraction of enhancer-promoter pairs that are 
correlated in terms of activity.    
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Figure S3.2. Quality control and characterization of hubs. (a) Correlation of hubness 
scores between replicates of Hi-C data. (b) Hubness scores for ranked network nodes, 
highlighting selected hubs corresponding to highest-scoring nodes. (c) Percentage of 
hubs overlapping with H3K4me3 peaks or with ATAC-seq peaks, compared to expected 
overlaps. (d) Percentage of hubs overlapping with TF binding sites in ES, GT or Islet, 
compared to expected overlaps. 
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