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ABSTRACT
Background: Protein-protein interactions (PPIs) are intriguing targets for designing novel small-molecule 
inhibitors. The role of PPIs in various infectious and neurodegenerative disorders makes them potential 
therapeutic targets . Despite being portrayed as undruggable targets, due to their flat surfaces, disorderedness, 
and lack of grooves. Recent progresses in computational biology have led researchers to reconsider PPIs in 
drug discovery.
Areas covered: In this review, we introduce in-silico methods used to identify PPI interfaces and 
present an in-depth overview of various computational methodologies that are successfully applied 
to annotate the PPIs. We also discuss several successful case studies that use computational tools to 
understand PPIs modulation and their key roles in various physiological processes.
Expert opinion: Computational methods face challenges due to the inherent flexibility of proteins, 
which makes them expensive, and result in the use of rigid models. This problem becomes more 
significant in PPIs due to their flexible and flat interfaces. Computational methods like molecular 
dynamics (MD) simulation and machine learning can integrate the chemical structure data into 
biochemical and can be used for target identification and modulation. These computational methodol-
ogies have been crucial in understanding the structure of PPIs, designing PPI modulators, discovering 
new drug targets, and predicting treatment outcomes.
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1. Introduction

PPIs are involved in almost all physiological functions, includ-
ing cellular interaction, signal transduction, and metabolic 
pathway, so an in-depth understanding of PPIs is critical to 
explore their role in normal and diseased states. The PPI 
contacts, or interfaces as they are called, are highly specific 
as they are formed in defined regions of amino acids in the 
proteins, and they are meant to serve a specific function. The 
knowledge of PPIs can help us to explore not only the role of 
uncharacterized proteins but also their involvement in various 
pathophysiological states. A PPI is defined as ‘an interaction of 
two identical or non-identical proteins at their domain inter-
faces that regulates the function of the protein complex’ [1], 
and a modulator is a low-molecular-weight naturally derived 
agent with a complex structure that allows target specificity 
and strong binding affinity [1].

The human interactome [2,3], which is the sum of all 
PPIs in a cell, is expected to have about 130,000 to 650,000 

binary PPIs. This complex network contributes significantly 
to the modification and accomplishment of an array of 
physiological functions [4]. But there has been an explo-
sion of data related to the human interactome after the 
advancement in the high throughput screening techniques 
for PPIs, resulting in many unreliable and noisy data, limit-
ing the true picture of all physiological interactions in the 
cells. On the other hand, given the physiological role of 
PPIs, they have been considered as potential drug targets. 
Their modulation with small molecules has resulted in 
drugs targeting over 50 PPIs, with >27 already in Phase I, 
II, and III clinical trials, primarily involving viral, autoim-
mune diseases, and cancer [5] So far, the FDA has 
approved ~5 PPI modulators to treat cancer, dry eye syn-
drome, autoimmune diseases, and disorders that do not 
respond to other treatments [5–7]. A rundown of some PPI 
modulators currently participating in clinical trials is listed 
in Table 1.
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The traditional strategy for small molecule drug develop-
ment focuses mostly on protein-ligand interactions, i.e. ion 
channels or receptors, enzymes, due to their distinct bind-
ing sites for better interaction [11]. Targeted modulation of 
PPIs using small molecules was considered challenging for a 
very long time due to their relatively flat and featureless 
surfaces and the absence of binding grooves, hence, the 
PPIs were thought to be ‘undruggable’ targets [12,13]. Other 
reasons that make this targeted modulation challenging 
include but are not limited to the following reasons.   

(1) The interface area (1500–3000 Å2) between two pro-
teins making a PPI is relatively large than a protein-ligand 
contact area (300–1000 Å2) [14,15].

(2) The residues involved in PPIs contribute strongly to 
binding affinities, making it difficult for small molecules to 
compete [16].

(3) PPI-targeting drugs have a relatively higher molecular 
weight (>400 Dalton) as compared to the typical ligands (200– 
500 Dalton), making it hard to meet Lipinski’s rule of 5 criteria 
[17,18].

(4) Furthermore, PPIs are incredibly flexible, making it diffi-
cult to detect the binding pocket in standard X-ray crystal 
structures [19]. 

Despite these challenges, significant advancement is being 
made in identifying and targeting PPIs, owing to progress in 
computational chemistry and structural biology. For classical 
targets, computational-guided modulator design is efficient, 
as described in our previous study [22,23]. These strategies 
increase their cost-effectiveness and throughput, allowing 
them to investigate dynamic PPI interfaces and shed light 
on PPI regulation, resulting in a number of successful exam-
ples [22,24]. PPIs have received much interest in the phar-
maceutical industry in recent years. Because of the rapid 
advancements in this growing discipline, it is vital to review 
the most recent developments in the field of computational 
methodologies to guide future efforts.

In this review, a variety of in-silico strategies for designing 
PPI modulators are described. The review is focused on the 
current advances in in-silico techniques and presents a bird’s 
eye view of diverse methodologies. Following that, we give an 
overview of some published case studies to demonstrate the 
application of these methodologies to the design of targeted 
PPI modulators.

1.1. Aspects of the PPIs that are critical for modulation 
with a small molecule

Knowledge of common PPI features is essential for modulating 
PPIs and evaluating their biological effects. This includes a 
PPI’s overall structure, three-dimensional shape complemen-
tarity around the interaction area, and the physical/chemical 
components contributions to PPI stability. A recent review 
focusing on the protein features that generate favorable 
types of interactions provides a useful resource for building 
PPI modulators as well as biochemical and biophysical assays 
for discovering and evaluating them [25]. 

Based on this understanding, we can conclude that:
(1) PPIs are driven by a variety of chemical interations, 

including hydrophobic and electrostatic interactions and 
hydrogen bonding. These interactions affect the physical and 
chemical aspects needed to optimize binding 
complementarity.

(2) Most PPI interfaces couple and de-couple on a regular 
basis, resulting in intricate dynamic equilibria [26]. 
Furthermore, the difference in the Kd between μmol and pM 
determines how well a PPI can be modified. Knowing a target 
PPI’s Kd is crucial while working for its potential PPI 
modulators.

(3) The protein domain of the target PPI (or some part of it) 
might be intrinsically disordered or unfolded until it is stabi-
lized by its partner protein [27]. Such a characteristic would 
make designing synthetic ligands on the protein surface 
highly challenging using computational techniques. 
Designing biochemical and biophysical experiments would 
be difficult too since unstructured proteins are unstable in 
solution without their protein partners.

(4) The protein domain of the target PPI might be same 
as the domains of partner proteins, with ~95%-80% homol-
ogy [28]. 

In addition, some protein structures can change to utilize the same 
binding sites again, which makes them even less specific. 
ElonginB/ElonginC/VHL and ElonginB/ElonginC/SOCS2 are two 
examples that were found through X-ray crystallographic studies 
[29,30]. Therefore, it is important to know whether a protein can 
interact with multiple partners when trying to define and measure 
binding affinities of new inhibitors for its PPI modulation.

2. Approaches for hit identification of PPI 
modulators

Most ligands inhibit PPIs at hotspots and allosteric sites 
[25,31–34]. Below is a brief overview of these approaches 
that have been used to design efficient PPI modulators [35].

2.1. Hot-spots identification

As discussed earlier, the large interfacial area or contact area makes 
it hard to find a ‘shape complementary’ molecule, but the presence 
of certain residues that are mainly involved in binding makes the 
designing of drugs possible. Such residues are known as hot spots, 
which comprise key residues that are involved in PPIs and are 

Article highlights

● PPIs were considered undruggable due to their flat surfaces, irregular 
conformations, and lack of grooves.

● Rapid advances in computational biology have made PPIs a major 
research field in drug discovery.

● Reviewed different in-silico approaches to find PPI interfaces and 
methods that are successfully applied to analyze PPI interfaces.

● Reviewed examples that use computational methods to analyze PPIs 
and their impacts in diverse physiological processes.

This box summarizes key points contained in the article.
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usually present at the interfaces. Alanine scanning shows that 
tryptophan, arginine, and tyrosine are the residues that contribute 
mainly to PPIs (21%, 13.3%, and 12.3% respectively), while valine, 
lysine, or serine are the residues that are rarely involved [36]. The 
presence of hot spots in PPIs was first described in a study of a PPI 
complex of human growth hormone (hGH) and the extracellular 
domain of its receptor (gGHbd) [36]. Alanine substitution was 
conducted to explore the contribution of each residue involved 
in PPI. The results showed that only eight residues out of thirty-one 
contributed most (85%) to the total binding free energy. Today, the 
alanine-scanning technique is used in a combinatorial fashion to 
explore the binding contributions of the hot-spot residues to the 
total binding free energy of the complexes.

Hot-spot residues enable conformational changes for the 
ligand with little energy cost, which facilitates shape complemen-
tarity. This is a significant distinction between hot-spot residues 
and other residues that are located on the interfaces [37–39]. The 
chemical properties of hot-spot residues are responsible for their 
dynamical behaviors, which can be modeled by MD simulations. 
Indeed, MD simulations may provide an ensemble of probable 
conformations, revealing detailed structural and dynamical infor-
mation for the binding pockets [40,41]. This is in contrast to tradi-
tional methodologies such as X-ray crystallography mainly used for 
visualizing the binding pockets.

The per-residue decomposition energy calculated from 
the MM/PB(GB)SA technique specifically shows the contribu-
tion of residues on the binding interface to the total bind-
ing free energy of the complex. The information can be 
used to infer hot-spot residues related to binding. MD can 
also help track dynamic movements, secondary structures, 
and transient pockets in IDPs (e.g. β amyloid, κ-casein, C- 
Myc, α-synuclein, and histone), that typically do not have 
specific conformations in PPIs [42,43]. However, 3D complex 
structures are required to conduct MD simulations. The 
large gap between the predicted PPIs and experimentally 
available PPI structures is thus a major challenge. When 
experimental structures are not available, efficient in-silico 
methods must be used, such as docking approaches. These 
are summarized in Table 2 [44].

The consensus-binding site that is a subset of hot-spots is a 
druggable site that binds with numerous chemical probes [46]. 
Zerbe et al. have found that consensus sites of PPIs and hot 
spots have a close correlation and can interact with many 
small molecule inhibitors [47]. Therefore, identification of con-
sensus-binding sites gives us another way to find hot-spots. 
Also, this strategy takes into account both the strong binding 
free energy and the fact that the topology is concave [47]. The 
probe-based MD simulation is a direct analog of the above 
strategy in silico, which has the added benefit of revealing the 
dynamical process of conformational changes [48,49]. In this 
method, the protein structure is solvated in a solution with a 
variety of solvents at different concentrations. This allows the 
solvent molecules to equilibrate and interact fully with the 
surface of the receptor. After MD, probes move around on 
their own and gather around the sites that bind well, revealing 
the consensus sites [49].

FTMap is a computational fragment mapping webserver 
that uses empirical energy functions to place different small- 
molecule probes in places where they work best [50]. The 
clusters of probes are ranked by how much energy they use 
on average. This means that the regions with multiple low- 
energy clusters will interact strongly with many low molecular 
weight probes, revealing the consensus sites.

2.2. Targeting allosteric sites

Enzymes modulate their function using allosteric regulation 
[51]. A small molecule binds at one site and stimulates a 
structural change at a remote region, modifying the active 
site’s conformation. Some PPIs may also use this mechanism. 
Thus, an inhibitor that binds to an allosteric site could in- 
principal disturb the major PPI, inhibiting its contact with the 
other protein (Figure 1). Allosteric modulation has many 
advantages [34]. It could offer better PPI modulation and 
improve specificity. It may be easier than hot-spot modulation, 
as accessible binding sites (e.g. grooves) may be present at 
several spots on a protein.

Table 2. Docking methods and the webservers with scoring functions and faster computing resources.

Docking Methods AutoDock www.autodock.scripps.edu [66]
AutoDock Vina www.vina.scripps.edu [67]

Glide www.schrodinger.com/products/glide [68]
GOLD www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold [69]
Surflex www.biopharmics.com [70]

FlexAID www.biophys.umontreal.ca/nrg/resources.html [71]
DINC www.dinc.kavrakilab.org [72]

rDock www.rdock.sourceforge.net [73]
Faster Computing Sources Rosetta software suite www.rosettacommons.org/software [74]

Rosetta Design webserver www.rosettadesign.med.unc.edu [45]
Modeller www.salilab.org/modeller [75]
Robetta www.robetta.bakerlab.org [76]

ROSIE www.rosie.rosettacommons.org. [52]
FOLDX www.foldxsuite.crg.eu [77]

ABS-Scan www.proline.biochem.iisc.ernet.in/abscan [53]
DrugScorePPIs www.cpclab.uni-duesseldorf.de/dsppi [151]
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High-throughput screening, ligand binding assays, fluor-
escence-based resonance energy transfer experiments, x-ray 
crystallography, phage display paired with crystallography 
are all employed to explore the allosteric mechanisms [52]. 
In addition, researchers have developed algorithms to pre-
dict allosteric sites [19]. These studies and developments 
have facilitated the success of many efforts to develop 
allosteric modulators of PPIs [1,53–56]. The CBF (core bind-
ing factor), a heterodimeric complex, is a modulator of 
normal hematopoiesis, and its gene is the drug-target in 
many human leukemias [1]. CBF is a PPI comprising CBF- 
SMMHC and Runx1. This PPI modulates CBF function and is 
necessary for leukemogenesis; thus, it could be a potential 
drug target [41].

Bushweller and co-workers resolved CBF’s structure by 
NMR [57] and employed alanine mutagenesis to study its 
binding interface with Runx1. Their interfacial contact area 
was explored to design PPI inhibitors [55]. The 35 putative 
ligands identified through virtual screening of 70,000 drug- 
like compounds were verified by physical screening. 
However, the NMR chemical shift data indicated that the 
most active compounds did not target the hot-spots but 
bind to an allosteric site. Finally, three small molecules that 
block the interaction of Runx1 and CBFβ were identified 
(Figure 2). It was observed that these molecules stopped 
the growth of ME-1 cells that caused leukemia. The IC50 

value for these molecules was in the low μmol range. 
Their chemical properties, i.e. being low-molecular weight 
and water-soluble, present them as good candidates for 
further trials. Designing hot-spot ligands is difficult, due of 
CBFβ narrow hetero-dimerization interface. Therefore, this 
example shows how to identify PPI modulators targeting 
the allosteric mechanism.

3. Strategies for the design of PPI modulators based 
on computational approaches

Investigating the human interactome vastness takes time, 
expense, and effort. PPI studies are extremely dependent on 
dynamical and physiological circumstances, causing diffi-
culty differentiating real interactions from experimental arti-
facts and discrepancies in data, especially for transient 
interactions and IDPs. Computational methods have evolved 
as alternatives or complements to experimental procedures 
to fill in PPI gaps and give a basis for additional studies 
(Figure 3).

3.1. Molecular dynamics simulations for PPI modulation

Even with the availability of large amounts of PPI data, there is 
still a lot to explore in terms of their structures and dynamics. 
PPI development is substantially slowed down by the lack of 
3D structural data. One of the major drawbacks of crystal-
lography is its inability to detect hot spots and grooves due 
to active protein-protein interactions. MD simulations provide 
a thorough evaluation of the structure and dynamics of PPI 
models. They shed light on PPI mechanisms, which can be 
leveraged to create PPI modulators. The dynamics of biologi-
cal molecules is captured via MD simulations with starting 
structures provided by modeling tools (homology modeling 
or docking) or PPI databases. After the structural data is com-
plete, the system is setup by defining the initial positions and 
velocities. Interaction forces among atoms are calculated using 
various force fields. Solution of the Newtonian equations of 
motion allows for tracking of time-dependent motions of all 
simulated atoms [58]. MD simulations can identify hot spots, 
structural and conformational changes, binding affinities, and 
molecular-level interactions, facilitating the PPI exploration 

Figure 2. Well-known example of using allosteric modulation of PPIs to find new active molecules. 

Figure 1. Mechanism for allosteric regulation. 
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Figure 3. Computational strategies for PPI drug discovery. Diverse computational tools encompass various stages of PPI drug discovery. 

Figure 4. MD simulations have a wide range of applications in PPIs research. Several elements of PPIs can be explored using MD simulations. 
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(Figure 4). The following examples demonstrate how MD can 
help with PPI investigations.

Dixit et al. [59] used atomistic MD simulations and energy 
landscape analysis to study the function of the Hsp90 protein 
and identified significant binding regions and the hub of 
communication networks. In their study, MD simulations in 
combination with site-directed mutagenesis and Western blot-
ting were used to explore the molecular-level interactions of 
Rho GTPases, Cdc42, and Rac1, with the scaffolding protein IQ 
motif-containing GTPase-activating protein 2 (IQGAP2) to fig-
ure out the binding mechanism of Rac1 and Cdc42 with GRD. 
It was discovered that Cdc42 and Rac1 govern actin aggrega-
tion during metastasis [60]. The heat shock protein Hsp90 is a 
promising target for the creation of novel anticancer treat-
ments. Several attempts to create inhibitors against this poly-
peptide have focused on the C-terminal ATP-binding domain 
of the chaperone [61]. TRAP1 is a member of the HSP90 family 
that functions as a regulator of energy metabolism. It has 
significant effects on cancer, neurodegeneration, and ische-
mia. The Hsp90 levels and activities are higher in tumor cells. 
Selective inhibitors of TRAP1 could provide insights on its 
mechanisms of action and pave the way for the development 
of tailored drugs [62]. Several successful examples of TRAP1 
inhibitor modification include the use of small molecules to 
target TRAP1 to reverse TRAP1-dependent succinate dehydro-
genase inhibition, to inhibit the ATPase activity of Hsp90 to 
reduce tau aggregation in Alzheimer’s disease [63] to use 
allosteric TRAP1 inhibitors to inhibit tumorigenic growth of 
neoplastic cells [64], and the selective targeting of TRAP1 
activity to provide new chaperone antagonists. These kinds 
of studies help understand the allosteric complexes and their 
dynamics and facilitate the development of inhibitors. It is well 
acknowledged that the majority of proteins act as oligomers. 
In another study, the oligomerization of peptide GNNQQNY 
from the yeast prion-like protein Sup35 into amyloid fibril was 
investigated. The results showed that during aggregation, 
antiparallel dimer forms predominate, followed by new pep-
tides that can complement the parallel arrangement of assem-
bly. This was exactly in accordance with the experimental 
crystal structure of the amyloid fibril [65]. A comprehensive 
MD simulation showed interactions between Aβ1–42 oligo-
mers and full-length Amylin1–37 oligomers, revealing the 
association between type 2 diabetes and Alzheimer’s disease 
[66]. When used in conjunction with experimental screening 
techniques in PPI research, MD simulation is a critical supple-
ment to those methods because of its high accuracy, thor-
ough validation of interaction potentials, and wide availability 
of computational resources.

3.2. Free energy-based approaches

By sampling free energy landscapes, Monte Carlo (MC) [67,68] 
or Molecular Dynamics (MD) approaches capture kinetics, 
binding affinities, and mechanisms of action with a much 
higher accuracy. The difficulty in these approaches is limited 
timescales, as millisecond timescale is often required for bind-
ing events, which is not very common for current simulations. 
Despite advancements in specialized hardware [69], brute- 
force MD remains computationally infeasible for binding. 

Commonly, MD-based techniques are used as the final step 
in docking pipelines, resulting in refined models. Recent 
advancements in sophisticated sampling techniques and com-
puter performance have made it possible to investigate pep-
tide-protein interactions in novel ways.

Free energy perturbation (FEP) approaches calculate the 
free energy differences between the bound and unbound 
states and apply a path-dependent approach. The method is 
not reliable if the molecule scaffold, charge, or binding mode 
changes drastically [70–72]. The FEP success with small-sized 
systems is not yet applicable to larger systems such as protein- 
protein systems. Enhanced sampling methodologies allow 
researchers to examine peptide-peptide interactions and 
derive binding energies at a higher computational expense. 
To study peptide binding, generally there are two approaches, 
one that measures kinetics and mechanisms and the other 
that measures binding free energy.

Several peptide-protein systems [73,74] have been stu-
died using frameworks like Markov State Models [75,76], 
weighted ensemble techniques [52,77], and milestoning 
[53], which use many classical MD trajectories to figure 
out kinetic and mechanistic details. To determine bound 
conformations [78–80], advanced sampling techniques pool 
together data from experiments and generalized ensemble 
techniques [81]. These methods provide answers to ques-
tions about the validation of simulations, data reproducibil-
ity, reliability, and interpretation.

3.3. Machine learning approaches

Machine learning (ML) is becoming increasingly common in 
biomedical research but needs a large number of training 
data. At many stages, such as merging diverse heterogeneous 
datasets, evaluating predictions, forecasting probable PPIs, 
and looking into extrapolated PPI networks, statistical and 
machine learning methods were applied [82–84].

Many ML techniques have been used to predict PPIs in 
the past, including k-nearest neighbor, gradient tree boost-
ing (GTB) [85], DeepPPI [86], redundancy maximum rele-
vance (mRMR) [87], naive Bayesian, L1-regularized logistic 
regression [85], neural networks, random forest, and many 
others [83,88,89]. To train interface predictors, ML algo-
rithms leverage a collection of empirically validated PPI 
surfaces. The trained model is then used to identify hot 
spots at the PPI interface in query proteins [90]. The accu-
racy of the prediction model is highly susceptible to the 
quality of the input features utilized for training. As a result, 
figuring out the various protein properties required to train 
an ML system is critical. Models for predicting PPIs are built 
utilizing a variety of protein characteristics, either individu-
ally or in combination. PPIs cannot be predicted solely by 
one attribute.

Combining characteristics improves ML prediction. Model 
development makes use of amino acid types, protein 
expression data, solvent accessible surface area (SASA), phy-
sicochemical properties of amino acids, atomic and residue 
contacts, position-specific scoring matrices (PSSMs), residue 
energy, structural information, interface propensity, and 
evolutionary information [91,92]. Figure 5 depicts the five 
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key PPI phases. In PPI-based ML, prediction models take 
sequence or structural features as input. Most ML interface 
predictions compare structure and sequence-based techni-
ques. Several meta-based systems pool and re-compute the 
raw scores from prediction servers to enhance their perfor-
mance. A number of ML predictors for the identification of 
PPIs were reviewed in Ref [41].

PPI prediction also used unsupervised ML techniques. Deep 
learning is a new ML discipline that utilizes neural networks 
(NNs) with multiple hidden layers. Deep learning is described 
in detail in Ref [93]. It can aid in decision-making, the com-
prehension of natural language, and the recognition of images 
and voice. The bioinformatics and pharmaceutical industries 
have also utilized this approach.

Sun et al. [94] recently predicted human PPIs based on their 
sequence using deep learning. Using stacked autoencoders 
(SAEs), they investigated PPIs in humans and other species 
and with the highest results on 10-fold cross validation and 
various external datasets ranging from 87.99 to 99.21% accu-
racy were developed. ML tools can also be used to build PPI 
libraries or to assess the drug-likeness or ADME characteristics 
of first PPI hits using various filtering methods. The details for 
the PPI modulators could be found in 2P2Idb, TIMBAL, and 
iPPI-DB [95,96]. A decision tree strategy, known as PPI- 
HitProfiler [97], is based on known PPI inhibitors, and it is 
implemented in the FAF (Free ADME-Tox Filtering tool)- 
Drugs webserver [98–100]. This method uses the structure of 
PPI inhibitors together with important descriptors such as 
radial distribution function and unsaturation index. Their 
approach correctly identified 70% of the validated active and 
52% of the inactive using PPI complexes with ligand and 
bioassay data [97].

Another supported vector machine (SVM) tool (2P2IHunter) 
based on PPI modulator data from 2P2Idb [101] identified 
chemical features such as octanol-water partition coefficient, 
hydrophilicity, molecular weight, presence or absence of mul-
tiple bonds, aromaticity, H-bond donors and acceptors, and 
rotatable bonds as crucial features for PPI modulators. The 
SVM model was highly accurate with a high enrichment factor 
of 8, which is useful for removing non-PPI molecules from 
screening libraries, but unfortunately, this method had a low 
level of sensitivity.

In summary, machine learning is a promising general 
approach to predict PPIs, with the potential for better under-
standing the gigantic network of PPIs and their targeted mod-
ulation. However, there is still room for improvement in the 
prediction accuracy and computational efficiency in machine 
learning-based methods [102].

3.4. Screening approaches

In light of the labor-intensive nature of traditional experimen-
tal screening methods like high-throughput screening (HTS) 
and fragment screening, the virtual screening strategy has 
emerged as a useful alternative in the drug discovery process. 
There are two main types of virtual screening, i.e. structure- 
based virtual screening (SBVS) and ligand-based virtual screen-
ing (LBVS) [103,104]. The SBVS predicts the best interaction 
based on their binding affinity with the binding site. SBVS 
needs the 3D structure of the target to be known in order to 
predict the interaction energy. The LBVS technique compares 
the structure-activity data of potential compounds to that of 
known actives in cases where the 3D structure and/or homol-
ogy model is not available. The reference structure for this 
method is a small molecule or a ligand. Compound databases 
are then searched for ligands with similar chemical or struc-
tural properties. The LBVS uses searches for similarity and 
substructure, quantitative structure-activity relationships 
(QSAR), and matching of pharmacophores and 3D shapes 
[105]. Virtual screening can help narrow down the number of 
candidates to a reasonable number.

Recently, Beekman et al. [106,107] suggested that in silico 
peptide-directed binding is a new and cost-effective way to 
find PPI modulators that are highly selective. This method 
used covalent docking to look through organic fragment 
libraries. A part of the lead peptide was removed to make 
the binding pocket easier to reach. Carlos et al. provided yet 
another successful example in which the use of a pharmaco-
phore model derived from the conformational sampling of the 
active state of the receptor permitted large conformational 
sampling, widening the selectivity of the predicted ligands, 
and limiting the constraints commonly linked with the mod-
ulation of chemical scaffolds [108]. In addition, the great flex-
ibility of PPI interfaces highlights the importance of multi- 
conformational virtual screening, which is in combination 
with MD can explore representative conformations effectively. 
On the other hand, when multiple conformations are used, it 
takes more computing power to look through a large ligand 
library. Kumar et al. have shown how cross-docking can be 
used to make a new virtual screening pipeline [109]. Using 3D 
shape similarities between the pockets and ligands, they 
found the best shape for each ligand in the collection. This 
method gets rid of the need for each chemical to dock with all 
structures. This makes multiple-receptor docking cheaper to 
compute. Less concentrated hot spots could imply a large 
number of binding pockets distributed across a large interface. 
When many binding pockets are physically close together, 
screening algorithms may only identify a subset of druggable 

Figure 5. ML-based PPI predictions follow a set of approved guidelines. 
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sites, resulting in significantly decreased efficacy at lower 
concentrations than the peptide substrate.

The solution to this problem is the combination of virtual 
screening with rational design methodologies. The hits that 
target a certain hotspot region can begin rational drug design 
employing a structure-based drug design (SBDD) technique. 
The reactivity of hot spot residues could be tweaked by add-
ing chemical groups to establish stronger interactions with the 
binding sites, hence increasing the compound’s activity. Sun 
et al., for example, utilized MD simulations and MM-GBSA free 
energy calculations to investigate the molecular determinants 
of binding between Keap1/Nrf2 PPI and revealed five sub- 
pockets, P1 and P2 being hot-spots [110].

3.5. Docking-based approaches

In the last few years, docking methods have changed in 
response to the growing interest in peptide-based medicines. 
There have been good reviews of these methods [111,112], 
and research that gives benchmarks for judging current and 
future methods. We explain the main ideas behind these 
techniques and simulations that try to predict how proteins 
and peptides will interact with each other. Multiple search 
modes based on system knowledge are used in docking 
approaches. The binding site and mechanism of the protein- 
peptide conformation must be restored. This is a problem of 
searching and scoring. Peptide-protein position, orientation, 
and internal structure are all factors in the search problem. 
Scoring finds correctly docked structures using a docking 
structure scoring function. Success is determined by top-scor-
ing postures. Based on system knowledge, docking 
approaches reduce search space for computational efficiency. 
The peptide binds to all probable protein-receptor sites in a 
global search [113–117].

In the presence of previous data, local search narrows 
down the hot spot region resulting in a targeted search 
[118,119]. Template-based approaches circumvent this search 
by building flexibility on top of structural database models 
[120,121]. Methods can be further classified by protein recep-
tor and peptide conformational freedom. Flexibility is a diffi-
culty for protein-protein and protein-small molecule docking 
[122]. Modeling protein flexibility involves soft potentials 
[123,124], explore rotameric states [125], using various protein 
receptor structures [126,127] or refining with MD.

The difficulties in modeling peptides stem from the follow-
ing: (1)→ Peptides can take on a variety of conformations 
depending on whether they are bound or unbound. (2)→ A 
single peptide can bind proteins in multiple conformations 
[128]. (3)→ Different amino acid sequences can interact with 
the same receptor in more than one way [129].

The majority of docking techniques employ a flexible con-
formational strategy for peptides. These strategies are either 
sequence-based or conformation-based. In sequence-based 
methods, the amino acid sequence is used to create or predict 
the PDB or the secondary structure [130]. The conformation- 
based methods employ multiple initial conformations often 
acquired by the peptides, i.e. helical or beta-sheet conforma-
tion [131]. The goal of scoring functions is to figure out which 
poses are biologically significant. The underlying binding 

affinities of various poses and substances should be reflected 
in these functions [132]. Empirical fits, knowledge-based, 
machine learning, and first principles are the four types of 
scoring functions [133].

The capacity to design good and bad poses is a hurdle in 
evaluation methods. As a result, decoy sets [134] have been 
developed, which are widely utilized as training sets for new 
functionalities. They directly impact the scoring algorithms 
that are developed along with them, which frequently lead 
to biases. Strategies to detect and counteract such biases have 
been proposed [134]. New scoring approaches are also being 
developed as scoring functions suitable for smaller proteins 
are not necessarily transferable to larger systems [135].

4. Case studies

Through a vast PPI network that includes a variety of caspases, 
the inhibitors of apoptosis (IAP) family proteins control cell 
death pathways. Apoptosis evasion is caused by a rise in the 
IAP family proteins in malignancies. Because of the high mole-
cular variability of cancers, the IAP PPIs network is rewired 
differently in each individual. It is easier to choose pharmaco-
dynamic and predictive biomarkers for IAP antagonists, when 
knowing the most recent status of the IAP PPIs network in a 
clinical sample. Advances in therapy have resulted in small 
gains in 5-year survival for women with ovarian cancer during 
the previous several decades. The significant incidence of 
recurrence with traditional chemotherapy highlights the 
need for novel chemo-resistant cell therapies. Apoptosis, or 
programmed cell death, is a tightly controlled process that is 
commonly interrupted in cancer.

Apoptosis signaling has both intrinsic (mitochondrial) and 
extrinsic pathways (death receptor-ligand). Intracellular 
damage stimulates the intrinsic pathway, increasing mito-
chondrial membrane permeability and releasing cytochrome 
c and the second mitochondria-derived caspase activator 
(SMAC). The release of cytochromeC and SMAC enhances 
apoptosome production and the degradation of IAPs respec-
tively. Apoptosis pathways finally converge on a platform of 
cellular death driven by the activation of caspase-3 and 7.

4.1. The p53-mdm2/x interaction

p53 is known as the ‘guardian of the genome’ due to its tumor- 
suppressing properties. Through its various functional domains, it 
is predicted to be involved in over a thousand PPIs [136,137]. This 
paragraph will examine the association between the p53 transac-
tivation domain and the MDM2 protein, which signals p53 for 
destruction. Inhibiting the link between p53 and MDM2/X is an 
important cancer target because it allows p53 to carry out its 
functions. Despite the similarity between MDM2 and MDMX, the 
development of dual inhibitor medications continues to be an 
important area of study, with several candidates in clinical trials. 
A short intrinsically disordered epitope from p53 terminal trans- 
activation domain binds as a helix to MDM2 N-terminal domain in 
the p53-MDM2 interaction [138]. Three p53 residues are linked to a 
deep hydrophobic depression in MDM2, i.e. residue Phe19, Trp23, 
and Leu26 as shown in Figure 6.

EXPERT OPINION ON DRUG DISCOVERY 323



MDMX and MDM2 binding sites are 80 percent identical, 
leading in p53 binding along the same mode. Despite their 
resemblance, MDMX has a shallower binding site, making 
binding inhibitors harder to develop. Computational 
approaches have been used in the rational design of small 
molecules and the synthesis of peptides as potential drug 
[139,140].

To explore the complexity of the p53-MDM2 interaction, 
MD simulations and docking approach have been used. On- 
rates for p53-MDM2 are currently close to experiment in stu-
dies employing MSM methods, while off-rates are difficult to 
quantify directly [74]. These investigations also reveal binding 
mechanisms, such as the helicity required a peptide to go 
from an induced-fit to a conformational selection binding 
paradigm [23]. Some research employs the longer MDM2 
construct, which has a ‘lid’ piece that effectively lowers the 
amount of time the binding site is exposed to p53 binding. 
MD simulation approach gives precise information on the 
influence of the lid-disordered area on MDM2 binding energy 
surface when compared to p53 and other small molecule 
therapies [141].

The best scoring structure from the experimentally bound 
structure was 3.74, based on recent flexible docking simula-
tions of the p53 peptide starting from unbound conformations 
and includes the disordered tails in MDM2 [142]. Nutlin (Figure 
7) and its derivative and idasanutlin (Figure 7) are small mole-
cule drugs that bind to and inhibit MDM2 and are used to 
treat refractory acute myeloid leukemia [143]. This class of 
compounds is ineffective against MDMX [144], and similar 
kind of results are obtained for other compounds such as 
AMG-232 (Figure 7), which binds to MDMX with a much 

smaller affinity as compared to MDM2. Small molecule 
MDMX inhibitors have also failed to work in cultured cells 
[145]. These molecules are designed to mimic the three hydro-
phobic residues found in the p53 binding epitope to reduce 
toxicity. Several of these designs are currently in clinical 
trials [146].

Using a known binding motif, a new technique for dual inhibi-
tion selects peptide sequences. As a result, several linear peptide 
designs with higher affinity than the original p53 peptide have 
been discovered [147]. In peptide designs, the three hydrophobic 
residues that interact in MDM2/X are retained, resulting in longer 
helices. The Brownian Dynamics method was used to compare the 
binding kinetics of various peptide sequences. Despite their 
increased affinity for MDM2 and MDMX, linear peptides have a 
poor ADME profile: they are easily degraded and have difficulty 
crossing barriers, limiting their application as pharmaceuticals. 
They are, nonetheless, excellent beginning points for peptidomi-
metic design. Another technique employs non-standard amino 
acid backbones to boost degradation resistance while retaining 
the side chains required for robust interactions with protein recep-
tors [148]. Several of these peptides have advanced to clinical 
studies [149].

Stapled peptides are an attractive alternative to linear peptides 
because they may easily cross barriers are resistant to degradation 
and adopt stable helical conformations that enhance binding 
[150]. Tan and colleagues argued for rational design in order to 
incorporate chemical staples while preserving enthalpic interac-
tions and minimizing entropic costs. In this area, they concentrated 
on finding bound conformations utilizing integrative modeling 
approaches based on MD simulations [151]. Hence, they were 
able to predict the binding of several linear and cyclic peptides, 

Figure 6. (a) p53 (PDB code 1ycr) and (b) a stapled peptide (MELD prediction) binding MDM2. Anchoring hydrophobic residues in the peptide represented as sticks. 

Figure 7. Chemical structures. 
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as well as the qualitative relative binding free energies. Moreover, 
they discover multiple peptide binding strategies [151,152]: ATSP- 
7041 (Figure 7) is a stapled peptide that binds in a disordered state 
as a helix, whereas p53 binds in a disordered state and then folds in 
the active site.

The latter condition needs partial unbinding and rebinding 
of the stapled inhibitor due to incorrect side chain orientation. 
Because simulations have long residence durations, even par-
tial unbinding might be a slow step, resulting in slow conver-
gence. A linear peptide with strong helical inclinations can be 
shown to rearrange its side chains by partially unfolding in the 
active site. Resulting, the time-consuming unbinding step is 
skipped by a linear peptide.

4.2. The BH3-Bcl-2 interaction

Apoptosis is a process of planned cell death that is essential 
for immune system function, tissue homeostasis, and embryo-
nic development [153]. Overactive apoptosis might lead to an 
increased ischemia risk as a result of an increased burden of 
metabolic waste. The apoptotic pathway is modulated by 
complex PPI networks involving the B-cell lymphoma-2 (Bcl- 
2) family of proteins. Some members of this family are pro- 
apoptotic while others are pro-survival, and both of these 
modulate mitochondrial outer membrane permeability.

Over 20 Bcl-2 protein members have been identified. A 
sequence study shows that they share one or more Bcl-2 
homology (BH) domains that are important for function, 
since their deletion by molecular cloning influences survival/ 
apoptosis rates. The Pro-survival members, i.e. Bcl-2, Bcl-xL, 
etc., have four homology domains (BH1-4) and a 

transmembrane domain. The pro-apoptotic members include 
proteins with more than one BH domain, like the pro-apopto-
tic effectors Bax and Bak, which have four BH domains (BH1-4) 
linked to a transmembrane domain, and proteins with only 
one BH domain, like Bim, Bid, Puma, etc., whose sequences are 
very different [154]. Some BH3-only proteins such as Bim, Bid 
and to a minimal extent Puma activate the pro-apoptotic 
effector proteins directly. The remaining molecules act as 
sensitizers, binding to the pro-survival proteins and releasing 
the BH3-only activators [155] as shown in Figure 8.

Despite recent progress, the mechanism by which Bcl-2 
regulates apoptosis remains unknown. Apoptosis susceptibil-
ity is determined by the amount of pro-apoptotic and pro- 
survival proteins in a cell, as well as their ability to form 
heterodimers. By attaching to pro-apoptotic proteins, pro-sur-
vival proteins prevent apoptosis. In cell-free systems and HeLa 
cells, pro-apoptotic proteins containing the BH3 domain- 
induced apoptosis, proving this notion.

The pro-survival Bcl-2 proteins sequester pro-apoptotic 
effectors and BH3-only proteins in healthy cells, inhibiting 
apoptosis. BH3-only proteins activate pro-apoptotic effectors 
either directly or indirectly by binding to pro-survival Bcl-2 
proteins. By accumulating and activating pro-apoptotic effec-
tors, this process enhances the permeability of the mitochon-
drial outer membrane [155]. Variable family affinities, as well 
as their modification by membrane implantation, are impor-
tant factors.

Apoptotic downregulation is a vital phase in disease pro-
gression and maintenance, and BH3 domain peptide analogs 
have been identified as possible cancer therapeutics. The 
molecular pathways that regulate the intrinsic apoptotic 

Figure 8. Direct and indirect Bak/Bax activation models in apoptosis. 
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pathway have been discovered by structural investigations on 
Bcl-2 family members. The first 3D structure of human Bcl-xL 
was solved using X-ray crystallography and NMR spectroscopy 
methodology [156]. Eight alpha helices are connected to BH 
domains. Helix 8, BH3 helix 2, and BH4 helix 1 are all followed 
by BH2. The linking loop is reached by extending BH1 along 
helices 4 and 5 (Figure 9A).

The C-terminus of the protein acts as a membrane anchor 
and must be removed for structural analysis. In crystallo-
graphic structures, the broad hydrophobic groove created by 
BH1-BH3 domains corresponds to the interaction location of 
the BH3 domain. The apo structures of pro-survival Bcl-2 
members have the same topology [157]. Despite their oppo-
site responsibilities, Bak and Bax share the same structure. 
Most BH3-only proteins, except for Bid, are intrinsically 
disordered.

Currently, no heterodimer structures of the Bcl-2 family are 
available. Pro-survival Bcl-2 members interact with BH3-only 
(Bcl-2 homology 3 motif) proteins. The 3D structure of the Bcl- 
xL-Bak BH3 domain complex [158] is shown in Figure 9B. Four 
hydrophobic residues extend their side chains into the cleft, 
and the Asp83 residue makes an electrical contact with 
Arg139 in Bcl-xL, revealing a helical connection between the 
BH3 domain and a hydrophobic groove. Following that, many 
BH3 domains bound to various pro-survival Bcl-2 members 
were published in the literature, all of which shared the 
same general features as the Bcl-xL-Bak BH3 complex.

The consensus sequence is visible in the sequence align-
ment of the various BH3 domains; A1-B-XX-A2-XX-A3-B-C-A4- 
D, where An indicates the hydrophobic residue, B for residue 
with a short side chain, C is an acidic residue, D is a hydro-
philic residue and X represents any residue [159]. All pro- 
apoptotic BH3-only members have a A2 leucine residue, 
whereas the rest of An have Val/Ile/Met/Leu or an aromatic 
residue. The pattern An display assurances their division on 
the same face of a helical structure. The hot spots in the 
hydrophobic binding cleft, which has four hydrophobic pock-
ets (P1-4) and a conserved Arg residue are bound by these 
four residues and the conserved Asp residue. The pro-apopto-
tic BH3 domains have varying affinity for pro-survival proteins. 

Puma and Bim bind the pro-survival proteins in the same way. 
The Bcl-2/-xL/-w are bound by Bad and Bmf, while Mcl-1 and 
Bfl1/A1 are bound by Noxa.

The Bcl-xL/-1 and Bfl1/A1 are bound by Bid, Bik, and Hrk. 
Because of differences in their sequencing, they have varied 
binding preferences. Many structural and bioinformatics stu-
dies have been carried out to better understand the binding 
preferences of BH3 peptides and Bcl-2 family members, reveal-
ing more about the nature of these interactions [160]. 
According to computational and experimental investigations, 
BH3 peptides do not form helices in solution. Incorporating 
helix enhancer residues into the sequence, analogs with 
higher affinity can avoid negative configurational entropy 
effects. Analogs in solution had a limited helical shape as 
well. In early attempts to stabilize Bak BH3, lactam cross-links 
at locations I and i + 4 were employed. Despite their helical 
structure, none of these peptide analogs were able to connect 
to Bcl-2 due to steric hindrance. Hydrocarbon stapling worked 
out well. In this situation, α,α-di-substituted amino acids with 
olefin tethers provide the building blocks for macrocyclization 
between helix residues.

This method was utilized to successfully stabilize the Bid 
BH3 peptide [161], which was discovered to be helical, pro-
tease-resistant, and cell-permeable molecules with improved 
affinity for multidomain Bcl-2 member pockets. However, not 
all stapled BH3 helices boost bioactivity, therefore, a large 
number of modified peptides must be made and evaluated 
to identify potential candidates. Other kinds of fasteners have 
also been utilized. Recently, bisaryl cross-linkers have been 
used to reinforce peptide helices containing, for instance, 
two cysteines at positions i and i + 7. Using this approach, 
the Noxa BH3 peptide was stabilized, and it exhibited signifi-
cant cell-killing efficacy against Mcl-1-overexpressing cancer 
cells. Such process results in a molecule with greater helicity 
than the native peptide leading to improved cell permeability 
and stability. Several BH3 mimetics have been discovered by a 
hit-to-lead structure-based optimization approach in combina-
tion with computational approaches.

Gossypol was used to identify potential Bcl-2 inhibitors 
such as sabutoclax [161] and TW-37 [162]. Obatoclax, a 

Figure 9. (a) The X-ray structure of Bcl-xL. (b) Illustrate the x-ray structure of the Bcl-xL and BH3-Bak complex. The diverse elements of secondary structure have 
been labelled.
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cytotoxic inhibitor of pro-survival BCL-2 family members that 
oppose Bax or Bak, was discovered using prodigiosin as a 
starting point. At low micromolar doses, WL-276 causes apop-
tosis in PC-3 cells. The chemical WEHI-539 was enhanced 
utilizing a structure-guided method after a hit was obtained 
by HTS. This drug binds to bcl-XL with a high affinity and 
specificity, efficiently killing cells by suppressing their pro/ 
survival activity. It has the same inhibitory activity as BCl-2 
but has a higher inhibitory activity than Bcl XL [163].

Combining NMR spectroscopy-based fragment screening 
with computational studies yielded additional small-molecule 
Bcl-2 inhibitors. ABT-737 was discovered to be a potent Bcl-2 
inhibitor [164]. Although the medication is orally available, its 
pharmacokinetic profile when administered intraperitoneally 
is satisfactory. In April 2016, the US FDA authorized ABT-199 as 
a second-line treatment for chronic lymphocytic leukemia. The 
4,5-diphenyl-pyrrole-3-carboxylic acid core structure of com-
pound BM-957 inhibits cell proliferation in H1147 and H146 
small-cell lung cancer cell lines [165].

4.3. Computational approaches in tissue engineering

The application of p53 and bcl2 notions to tissue engineering 
is as simple as finding naturally existing binding modalities 
and integrin-ECM interactions. This could lead to the discovery 
of new integrin-binding peptide motifs and chemical com-
pounds. The RGD motif has been computationally and experi-
mentally explored, because it binds a variety of integrin types. 
However, discrepancies in binding and recognition were 
caused by the motif internal structure and binding mechanism 
[166,167]. A scaffold with an RGD motif may adopt conforma-
tions that are recognized by a subset of integrins. A small 
molecule antagonist (i.e. RUC-1) was created using theoretical 
and experimental methods [168]. The RUC-1 antagonist binds 
to the IIb3 integrin without changing its shape [169]. Other 
computational algorithms aim to improve the peptide epi-
topes of membrane proteins like integrins [170]. The synthesis 
of material that self-assembles to act as a scaffold for cells is a 
second focus. To localize a drug to a specific physiological site, 
self-assembling peptides that can form hydrogels after injec-
tion into a patient are commonly employed [171].

Several peptides sequence-based experimental techniques 
for molecular self-assembly have already been disclosed [171]. 
To determine their activity, self-assembling peptides must 
contain a sequence capable of self-assembly as well as a 
sequence motif accessible and identifiable by integrins; see 
in ref [161]. This is an opportunity for computational 
approaches to investigate the best sequence design for 
achieving specified mechanical qualities (such mechanical 
stiffness), as well as rational optimization for active and acces-
sible integrin-binding motif conformations. Smadbeck and 
colleagues used experimental approaches to describe small 
peptide motifs capable of self-assembly [172]. Another alter-
native is to use proteins that fold into stable structures and 
then self-assemble [173].

Despite these advances in computational design, the bulk 
of hybrid procedures still rely on experimental design followed 
by computational characterization, with molecular dynamics 

being the most common method [174,175]. Peptide secondary 
structure proclivities, protein structure and assembly predic-
tion, and design principles are all relevant to this field of 
research [176].

4.4. 14-3-3 PPIs

The 14-3-3 protein family is a particularly intriguing topic for 
PPI modulation research because it has been discovered to 
have hundreds of protein-protein interactions. PPIs play a role 
in a variety of biological processes, including cell cycle regula-
tion, signal transduction, protein trafficking, apoptosis, and 
cancer [177]. 14-3-3 proteins are also involved in phosphoryla-
tion-dependent PPIs, which regulate cell cycle progression, the 
initiation and maintenance of DNA damage checkpoints [178]. 
Besides this, 14-3-3 proteins are also involved in the progres-
sion of many neuropathological disorders [179,180], bound to 
tau-tangles and enhancing their aggregation as seen in 
Alzheimer’s patients [181]. Using small molecules to modify 
these PPIs is a crucial method for creating new drugs. The 
literature has reported a variety of natural, semi synthetic and 
synthetic compounds that perform their physiological func-
tions by stabilizing complexes of their target proteins [182]. 
Fusicoccin-A (FC-A), a metabolite generated by the fungus 
Phomopsis amygdali, is an example of a natural stabilizer 
and was the first stabilizer to be reported for 14-3-3/client 
PPIs. The plasma membrane H+-ATPase (PMA2) and 14-3-3 
complex was discovered to be stabilized by FC-A, with a 90 
times increase in the affinity [183]. It was also found to stabi-
lize 14-3-3/cystic fibrosis transmembrane conductance regula-
tor (CFTR) complex that resulted in enhanced delivery to the 
plasma membrane. By looking at the examples above and 
many more [180,184], it can be deduced that FC-A might act 
as a potential chemical tool for investigating the role of 14-3-3 
in various pathologies.

The semi-synthetic derivatives such as fusicoccin tetrahy-
drofuran (FC-THF) that bears an additional furan ring induces a 
20 times increase in the stabilization of 14-3-3/potassium 
channel TASK-3 complex [185]. Fusicoccin-derivative (ISIR- 
005) is another semi-synthetic derivative that stabilizes the 
cancer-relevant interaction of the adaptor protein 14-3-3 and 
Gab2 [186]. Similar to natural and semi-synthetic stabilizers, 
there is another class of stabilizers of 14-3-3 PPIs that include 
synthetic products. These products include but are not limited 
to pyrrolidone 1 [187], Adenosine Monophosphate (AMP) 
[188], and The Molecular Tweezer CLR01 [189] etc.

5. Expert opinion

Due to their significance in cell signaling and regulation, PPIs 
are considered as potential therapeutic targets. But there are 
still many issues to explore about their interactions and mod-
ulation to fully define these massive networks and address 
PPI-based drug discovery challenges. No doubt, modern 
experimental techniques have expanded our knowledge of 
PPIs, but unfortunately, the size of the human interactome 
makes experimental methods insufficient, demanding more 
robust and efficient computational methods. Computational 
methods facilitate the characterization of PPIs by identifying 
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their chemical structures, which in turn expedites and 
improves the design of PPI modulators. Advancement in com-
putational resources and algorithms, coupled with a molecu-
lar-level understanding of proteins’ dynamics, has made in 
silico approaches successful in PPI drug discovery.

Recent advances in computational tools for evaluating and 
identifying PPI modulators have led many enterprises to invest 
in drug discovery, resulting in numerous peptide drugs on the 
market [164]. In the development of inhibitors that target PPIs, 
computational approaches can be used in a wide variety of 
ways. Low membrane permeability, a short half-life and low 
bioavailability of biomolecules are the significant issues that 
can be solved by combining computational techniques with 
experimental findings. Computational methods such as pre-
diction and filtering tools are robust, especially for biomole-
cules with poor starting conformational data retrieved from 
experiments. In such a scenario, sequence-based methods can 
provide a useful insight into the starting structure and con-
formation of proteins that are crucial for ligand design later.

However, this information might not generate exact three- 
dimensional structures [190]. The majority of computational 
methods, such as free energy techniques, require the avail-
ability of structural data. Due to proteins’ inherent flexibility, 
approximations are often included in the algorithms when 
using these methods, but this creates biased systems; there-
fore, one must be extremely careful when choosing a compu-
tational technique for a specific problem [191]. Knowledge- 
based methods use the current structural data for proteins 
and ligands, meaning the results can be only as reliable as the 
data used to create them. Some PPI descriptors are more 
predictive than others [190]. A model built on one protein 
family or class of ligands might not accurately describe the 
properties of other protein families or ligand classes. Similarly, 
for screening methods, structural information is required, 
which makes this strategy unsuitable for unknown targets.

They provide no information about hot-spot regions or 
binding interactions. And like any other computation method, 
validation of the results is very important. However, validation 
for PPIs need more sensitive enhanced sampling methods and 
expertise owing to their disordered conformations [192]. Most 
of the biological phenomenon occur at a timescale that is 
inaccessible to most of the computational techniques. 
Achieving such timescale need a lot of GPU power which 
makes these methods computationally exhaustive. MD simula-
tions can overcome such problems to some extent using 
enhanced sampling techniques such as meta-dynamics.

Growing interest in the use of MD for exploring PPIs has also 
been augmented by advancements in hardware [169,193]. The 
role of machine learning in predicting protein structures is excep-
tional, but when tested for PPI predictions, the results show some 
limitations [194], suggesting that these methodologies are still 
insufficient to capture all the details of the binding interactions at 
a molecular level. But we believe, with the availability of high 
atomic resolution structures, these discrepancies will be met. As 
of now, the use of computational tools to differentiate between 
functional and non- functional protein interactions based on their 
structure and dynamics is still controversial [195].

It’s important to remember that the reason for discussing 
the drawbacks of the above-mentioned computational 

methods is not to disregard them but to reinforce the need 
for additional research and to improve the current tools. In 
addition, the strengths of each method can be utilized to 
combine them with other methods. In CADD endeavors, 
advanced in-silico tools together with state-of-the-art experi-
mental techniques can lead to a better understanding of PPI 
identification and modulation.
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