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ABSTRACT OF THE DISSERTATION

Single-cell NF-kappaB signaling in macrophages

by

Brooks Edward Taylor Jr.

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2015

Professor Jeff Hasty, Chair

Professor Alexander Hoffmann, Co-Chair

The transcription factor NF-κB is heavily involved in innate immunity, and

shows complex dynamic patterns of nuclear translocation in response to many stimuli.

These dynamics are hypothesized to contain information about a particular stimulus.

Single cell studies of NF-κB have shown high variability across cells, raising questions

about the reliability of biochemical information encoding. Additionally, the majority of

work to date has only measured NF-κB activity in non-immune cell types, leaving the

question of how dynamics function in native contexts, like macrophage activation by

Toll-like receptor signaling. To answer these questions, I developed an automated im-

age processing algorithm to accurately track individual macrophages over 12-24 hours.

I use this algorithm to measure multiple dimensions of macrophage activation, including

NF-κB activity, in fluorescently-tagged cells.

Thousands of NF-κB responses to lipopolysaccharide in macrophages were gen-

erated with this automated process, then applied in the development of an algorithm

xii



that estimates the information transduction capacities of biochemical networks. I show

that NF-κB dynamics, as well as response dynamics in the ERK and Ca2+ systems, all

demonstrate enhanced information transmission compared to nondynamic responses.

Theoretical analysis demonstrates that dynamics play a key role in overcoming extrin-

sic noise. Experimental measurements of information transmission in the ERK network

under varying signal-to-noise levels confirm these predictions and show that signaling

dynamics mitigate extrinsic noise-induced information loss. By reducing information

loss from cell-to-cell variability, dynamic responses improve the accuracy of signaling

networks.

Finally, I present a study that couples single cell measurements with an iteratively-

developed computational model to examine the respective roles of the MyD88 and TRIF

pathways in determining dynamic responses TLR4 stimulation. I show how each path-

way encodes distinct features in NF-κB dynamics, and contributes uniquely to the high

variability observed in single-cell measurements. In one pathway, the assembly of a

macromolecular signaling platform dictates initial response timing and provides for a

reliable NF-κB signal. In the other, ligand-induced receptor translocation and endoso-

mal maturation combine to produce noisy yet sustained NF-κB signals via TRIF. Thus,

I arrive at a predictive understanding of how these molecular mechanisms provide for

ligand-dose and pathogen-specific signaling dynamics and information transduction ca-

pacities.
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Chapter 1

Introduction: context-specific NF-κB

dynamics

The transcription factor NF-κB is ubiquitous. This most obviously applies to its

presence in almost all animal cell types29, or its many roles in cellular development and

acute responses35;89;45;12, but it might also be said of biological and medicinal study

worldwide. This family of closely-related proteins has been mentioned in some 40,000

publications since 2010. NF-κB is crucial in immunity and inflammation61, and as such

plays an obvious role in infectious disease64. It is also thought to play a role in hundreds

of non-infections diseases and conditions, with cancer12 and heart disease6 prominent

among them. Understanding the context-specific behavior of NF-κB will prove essential

to advancing the treatment of inflammatory and immune disease.

The primary function of NF-κB is well-understood and straightforward: the pro-

tein, once freed from a inhibitor, translocates to the nucleus and binds certain sequences

of DNA69. It can then can be recognized by other co-factors to help activate tran-

scription65. There is dissonance, then, between that rather basic role, and the sheer

number of states that mere NF-κB activity seems to inform. That is to say, NF-κB is

certainly strongly triggered during bacterial infections47, and likewise in viral ones18.

Aberrant NF-κB activation, for too long, is typical of many cancer cells12. Activation,

1
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in one manner, shapes lymphoid organ development14, but in another, aids in rapid

B-cell expansion3. All of these states are associated with their own independent set

of gene products, decisions, and behaviors. Some of these differences are explained

by the specific roles of particular NF-κB family members91 (e.g. RelA vs cRel), and

many are explained by the co-presence or absence of other transcription factors, be they

lineage-determining (e.g. the macrophage-specific PU.143) or signal-dependent (e.g.

co-activation of IRF377). Beyond this, though, it has been hypothesized that we make a

crucial oversimplification by our use of the term ”activation”76.

The network controlling NF-κB contains of many distinct levels of negative

feedback35, all operating on separate time scales. The central activation hub, IKK,

is stimulated by a diverse set of signals, from infectious agents to warning cytokines

to ultraviolet light11. All of this gives rise to dynamic patterns: not mere steady-state

turn-on, or a transient rise and fall, but a rich family of behaviors111. We can trace

oscillations or persistence, timing and amplitude differences as we follow the nuclear

translocation and subsequent export of NF-κB . These signals are thought to encode in-

formation19 about the nature and degree of stimulus, such that a variety of states can be

encoded by the changes in NF-κB behavior over time10.

One can trace the ”dynamic encoding” hypothesis to 2002, with work show-

ing differential roles by the various IκB transcriptionally-activated negative regulators

in controlling NF-κB activity37. The authors then show differential gene regulation in

genotypes where the most crucial of these (IκBα ) is knocked out. Subsequent studies

began to suggest examples of, and mechanisms behind, stimulus specificity, particularly

between the damped oscillatory NF-κB dynamics in populations of cells exposed to

endogenous cytokine TNF, versus the persistent translocation patterns produced in cell

populations in response to the exogenous bacterial signal LPS110;22. Both works hy-

pothesized that a key distinction was the transcription and secretion of TNF in response

to LPS, which was thought to serve as a feed-forward mechanism that could ultimately

differentiate LPS responses.

In 2004, another group performed live-cell imaging on immortalized cell lines
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transfected with fluorescently-tagged p65 (an NF-κB family member) to visualize and

measure undamped NF-κB oscillations in single cells in response to TNF, showing some

measure of heterogeneity in activation. This approach was immediately challenged8 as

potentially producing results that were artifacts of overexpression of the p65 protein.

A transgenic mouse line expressing EGFP-p65 was introduced, with expression and

biochemical behavior that seemingly matched the wild type23. Single MEFs from this

mouse line were imaged soon thereafter97, and also showed sustained, undamped os-

cillations in response to TNF(though were markedly more heterogeneous in behavior),

demonstrating that the overexpression model could be a reasonable approximation to

primary cell dynamics.

Further single cell studies recapitulated the stimulus specificity observed at a

population level: though TNF, as elsewhere, induced decaying oscillations over time,

LPS induced a separate class of NF-κB activity53. None of the LPS-treated cells showed

oscillations, but rather half showed a single, roughly 1-hour window of translocation,

while the other half of cells exposed to LPS showed windows of persistent NF-κB ac-

tivity. We do note, however, that this laboratory has not been able to repeat these find-

ings: LPS (and other stimuli) caused oscillatory, not persistent, NF-κB dynamics in two

followup studies performed by the same group31;38. Other work has focused on dif-

ferential dynamics (and resultant gene expression) induced by dynamic inputs: Ashall

et al.5 demonstrated a capacity for network ”reset”, allowing high-amplitude responses

to a regular, pulsatile TNF stimulus. More recently, this phenomenon has been studied

under the context of oscillator entrainment50, which appears, in specific cases, to cause

more efficient gene transcription.

Each of these signal dynamics studies leaned heavily upon computational mod-

eling in their approach. Indeed, the mainstream rise of systems modeling not only oc-

curred simultaneously, but several among these listed are considered seminal publica-

tions in the development of that field37;66. NF-κB dynamics provided a unique and rich

source of data to parameterize accurate systems models that could easily make testable

predictions, and these models, in turn, provided a new paradigm for insight. System
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components and interactions were now to be quantitatively combined, measured and

compared113, bringing to bear network and dynamical systems analysis tools from en-

gineering and physics81;21to aid the understanding of complex mammalian responses.

The more recent availability of single cell data has reframed systems modeling

approaches. NF-κB responses are, to the best of our ability to measure them, extremely

heterogeneous and unsynchronized52 77, raising questions about the ability of biochemi-

cal networks to reliably transmit information. At the same time, we observe that popula-

tions are able to respond to stimuli in a reliable manner73. As our understanding is built

upwards from the responses of individuals, we seek to understand the interplay between

noise and predictability, variability and robustness. Theories springing from the earliest

measurements of noise sources in prokaryotic cells25 have been more recently applied

to form predictive models of fractional apoptosis93. In the NF-κB system, research to

date has focused upon stochastic elements intrinsic in receptor binding or initiation of

transcription5;99;50;113. Other work has looked more generally at the capacity of the NF-

κB system to reliably transmit input information19;79, finding that in TNF stimulation,

most of the input information loss is upstream, near the receptor, while IκB -NF-κB

signaling is comparatively reliable.

What is missing from all of this is context. NF-κB is considered to be a ”mas-

ter regulator” of innate immunity and inflammation, which means that its activity can

be far better understood in a cell such as the macrophage, whose major functions gen-

erally involve the activation of this particular transcription factor. Macrophages act as

sentinel cells and primary mediators of immunuty in multiple tissue types116;51, and

as such, are exquisitely tuned26 to activate defense responses59. Dysregulated inflam-

matory states are incredibly destructive, and are major factors in the pathogenesis of

cancer12 or metabolic disease6. Therefore, the process of sensitively encoding threats

in the dynamics of NF-κB , and the various mechanisms of decoding these responses

are all best understood in the circumstances closest to how they would occur in vivo.

This, finally, brings us to the purpose of this work. We know that individual

macrophages, with networks and activity shaped and informed by their local microen-
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vironment, initiate gene expression and behavioral changes in response to perceived

threats. This is the ”what”, and we naturally begin by defining these particulars. But

more than this, we seek to understand the ”how”: how consistency can be derived from

inescapable variation, how underlying mechanisms control this variability, how infor-

mation can best be transferred in biochemical networks, and how these cells, granted

incredible power over their surroundings, regulate the balance between defense and

destruction. The work presented here focuses on the development and application of

computational and analytical tools designed to further these goals.



Chapter 2

Automated analysis of signal dynamics

in macrophages

Introduction

A bottleneck in the field of single cell signaling, particularly in immunity, is the

measurement and analysis of high-throughput imaging data. Zeiss, Nikon, and Canon all

offer fully-automated epifluorescent or confocal platforms that allow stable cell culture

and time-lapse imaging for a period of hours to days, but the conversion of tens to

hundreds of gigabytes of imaging data, to connected trajectories of single cell behavior

is not a trivial task. Generally, the solution to this problem can be broken down into

three parts: (1) identification of nuclear (and cellular) boundaries in a given image, (2)

updating boundaries as the next image in the full sequence is updated, or else matching

a new set of boundaries to the cells identified in the prior image, and (3) appropriately

quantifying the pixels contained in each individual’s boundaries, generating a trajectory

of that cell for each frame that it appears in.

Proposed solutions to this issue vary significantly by field: laboratories special-

izing in medical imaging or computer vision frequently publish cutting-edge analysis

techniques based on advanced algorithms and machine learning63;80;120. These studies

6
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are generally extremely limited in the scope of analysis, focusing on sample image sets,

and are rarely, if ever, cited or used in an experimental context. By contrast, even the

most recent, high-profile work published in biologically-focused labs employs rudimen-

tary, often semi-manual techniques96;93;77. As a result, the total number of experimental

conditions and individuals measured per condition are often very limited.

Compounding this issue is the highly heterogeneous nature of macrophages

themselves. Prior efforts to measure single cell dynamics often relied on fibroblasts,

or a fibroblast-derived cell line (e.g. 3T3 cells)97;53;99. These cells grow in a confluent

monolayer, and as a result, individual cells move very little over the course of an experi-

ment, making frame-to-frame tracking a trivial task. Additionally, most fibroblasts have

similar sizes and thicknesses, such that simple, distance-based means of segmentation

are sufficiently accurate. By contrast, not only do macrophages present in a bewilder-

ing variety of sizes and shapes, they often undergo extreme morphological changes as

a direct consequence of stimulation (Fig. 2.1). Accurate algorithmic tracking of these

cells, then, requires code that is extremely flexible, and utilizes as much information as

possible in making assessments in where one cell ends, and another begins.

In addition to the premium placed on algorithmic flexibility in assessing what is,

and what is not, a cell, we sought to create a tool that would prove provide the maxi-

mal experimental flexibility. First, in place of relying on a whole-cell fluorescent stain,

we chose to design routines that would accurately identify cells in brightfield imaging

modalities (either phase contrast or DIC). As a result, we preserve the maximal number

of fluorescent channels for the study of other species, even if they are not uniformly

distributed in the cytoplasm. Secondly, we looked to make this tool accessible to non-

programming users. To that end, we designed visual tools that aid in tracking parameter

selection. Third, we designed the program to be maximally modular, particularly in its

handling of measurement: this allows ease of extension to different imaged conditions,

channels and species. Finally, we created a related tool that allows for rapid exploration

of tracked datasets. These sets are often messy, containing cells that may need to be

filtered, scaled, and sorted for understanding. This ”CellQuery” tool was designed to
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0 hr

7 hr

Figure 2.1: Heterogeneity and morphological changes in RAW 264.7 macrophages.
Top and bottom images show the same set of cells at 0 hrs (before stimulation), and 7
hrs after stimulation with 500ng/mL LPS. Both primary and immortalized macrophages
show large amounts of heterogeneity during activation, whether measured by motility or
morphological change.
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allow discovery and visualization of high-dimensional results. Our implemented image

processing routine consists of 6 major steps:

1. Cell identification in phase contrast or DIC images

2. Nucleus identification

3. Nucleus tracking/error correction

4. Shape-based segmentation

5. Error correction

6. NF-κB /other measurement

I. Cell identification in phase contrast or DIC images

Cell identification forms the first step in the segmentation process. The task, at

heart, typically relies on a thresholding method to distinguish foreground from back-

ground. This threshold can often be applied to the distribution of intensity values in the

image, and there are many variants on thresholding algorithms in current use85;71. In the

case of phase contrast or DIC microscopy images, however, we apply a vertical and hor-

izontal Sobel edge transformation (Fig. 2.2B): we can then threshold on edge strength.

The resultant distribution of edge values often has high outliers, which strongly skew the

results of traditional thresholding methodologies: log-compression, an oft-applied tech-

nique to help correct this issue in intensity distributions17, causes inconsistent results

when applied directly to the transformed image.

We therefore employ a custom speckle-noise-based threshold of the combined

edge magnitude image formed the basis for foreground-vs-background determination.

Noting that optimal threshold placement is generally the most lenient value possible

before accumulation of speckle noise in the image, we calculate speckle noise as a func-

tion of threshold, and directly compute this value by finding the inflection point on the

resultant curve(Fig. 2.2C-D).
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Figure 2.2: Identification of foreground in brightfield images. (A) Original image. (B)
Total magnitude of horizontal and vertical Sobel edge transformation. (C) Edge threshold is
placed at inflection point after calculating speckle noise. (D) Initial edge masking. (E) ”Do
not fill” areas are found after weak-edge calculation, and used to prevent overestimation of
cell boundaries. (F) Final cell mask overlaid on original image.
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To better identify spread cells with weak outer edges, we employ a variation

upon classic two-step Canny edge detection115: we use the preliminary masked Sobel

image to ”mark” edges in a Gaussian-smoothed image. A secondary ”weak” threshold

is additionally calculated, using the Tsai threhold103: this result is then edge-thinned,

and then unmarked edges are dropped. This smoothing and edge-finding operation is

repeated at multiple scales of the Gaussian kernel, iterating from small to large values.

We then fill gaps: marked edges are then dilated pixel-by-pixel, then skeletonized, thus

checking for possible connectedness to nearby edges. We then intelligently fill holes:

this method tends to overestimate foreground near strong edges, so we determine candi-

date ”do not fill” areas, and fill (based on size) otherwise (Fig. 2.2E). The final mask is

shown in (Fig. 2.2F).

A B

Figure 2.3: Phase-contrast halo correction. (A) Original mask in a phase contrast image.
(B) ”Walked-in” mask no longer contains halo artifact.

For phase contrast images, we implement one additional step to counteract the

bright ”halo” artifact surrounding each cell, typical of this imaging modality. The image

mask is refined, as a final step, using a stepwise, gradient-directed erosion process,

implemented similarly as a published algorithm15. This step effectively walks the outer

boundary in until the halo is no longer included, providing accurate foreground calling
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in these images (Fig. 2.3).

II. Two-stage nuclear identification

A ”seed” channel is required in this system in order to assess the number and po-

sition of cells in a given image. Nuclei are an attractive target, as their relatively homo-

geneous size and shape make separation of touching objects simple. Without this chan-

nel of information, accurate cluster separation is often difficult to achieve by an expert

human, let alone an algorithm. In most cases, cell nuclei were marked using a genetic

reporter (either a fluorophore with a nuclear localization sequence, or a fluorescently-

tagged histone). The particular technical challenge here was dealing with objects of

disparate brightness: a single threshold applied to nuclear intensity would vastly over-

estimate some objects, while entirely missing others. Additionally, fluorophore local-

ization to the nucleus is often incomplete, leading to a cytoplasmic signal in a subset of

cells that had to be discarded (Fig. 2.4A).

The search space for nuclei is constrained to foreground-identified regions from

step I. Nuclei are then identified in a two-step process: first, using the Sobel edge-

magnitude transformed image, we iteratively step candidate thresholds from high to low

values. At each step, we fill any closed shape that was formed. If a suitably-sized object

results from this process, then search in the affected local area is halted before moving

to the next threshold value (this local area is identified using a watershed transformation

on the smoothed nuclear image).

In the second stage, weaker nuclei are identified by searching and ranking all

pixels in each remaining watershed region by percentile (Fig. 2.4C) - appropriately con-

centric regions are scored, isolated, and combined with the first set of nuclei. In the final

step, we discern between ”pieces” of individual nuclei that need to be combined, versus

touching nuclei that require separated, by merging all possible combinations of touch-

ing objects, and finding the combination that minimizes both the total morphological

compactness (or ratio between object area and perimeter) and elliptical eccentricity of
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A B

C D

Figure 2.4: Identification of nuclei in fluorescently-labeled images. (A) Original nu-
clear image.(B) Primary (strong) nuclear identification, via iterative edge thresholding,
then filling closed shapes. (C) Secondary (weak) nuclear identification, via identification
of suitable concentricity, after ranking intensity of remaining pixel areas. (D) Final nuclear
label, overlaid on original image.
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each object. This procedure is motivated by existent work80, and allows assembly of in-

tact nuclei in cases where the object was inadvertently subdivided (Fig. 2.4B). Overall,

this procedure benefits from reasonably accurate estimates of minimum and maximum

nuclear size, but shows excellent performance in the range of expression levels typical

of live-cell reporters.

III. Multiframe nuclear tracking

The task of tracking cells requires linking trajectories across hundreds (or even

thousands) of frames, and making decisions about drift out of frame, division, and death.

Even a highly accurate nuclear identification technique would still be expected to have

measurable error rates of a few percent (which may be compounded by differential ex-

pression of the nuclear marker in an individual over time). We would expect trajectories

to be destroyed at a rate of 1/ε, where ε is the average error rate of the nuclear classi-

fication algorithm. Even simple object recognition tasks (such as number recognition

in cropped images), as performed by the the most current and powerful algorithms cur-

rently available, still struggle to achieve ε<0.0430, which would suggest trajectories that

get broken, on average, after 25 frames.

To maintain cell lineages, we apply a tracking algorithm across 7 frames simul-

taneously. Label matricies, or the location of all putative nuclei in a given frame, are

processed into a queue that is initially filled: all possible links are computed between

each object in frame n, and all viable candidate objects in subsequent frames (frame

n+1 to frame n+6), based on a projected drift distance between frames. These links are

then resolved into high-confidence matches based on the unique frame-to-frame matches

that minimize distance and morphological similarity (area and perimeter) of the objects.

These matches are then combined into ”blocks”, the unambiguous list of each object’s

likely location in each frame.

After the queue is filled, it is updated with every new frame: at the (new) end of

the queue, incoming objects are processed into existing or new blocks. At each iteration
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A B

C D

Figure 2.5: Tracking and error correction using voting among images in queue. (A)
A false positive in frame 1 was not found in majority of subsequent frames and so can be
ignored. (B) A falsely-joined set of nuclei in frame 2 can similarly be identified by voting.
(C-D) Frames 3 and 4 in queue, used to help correct initial nuclear identification in frames
1-2.
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of the ”update” loops, we make final decisions on the fate of blocks at the bottom of

the queue: whether a particular block should be merged with another block in the list,

whether a terminating block represents a false negative, or death (or cell drifting out-

of-frame), and whether a new block represents a division (or drift-in). In these cases,

we can use the full queue to vote on cell fate: for instance, false negatives on a single

object (multiple skipped frames) can be corrected if a high-confidence match is found

in a majority of later frames in the queue. Thus, we can correct common issues such

as spurious positives (Fig. 2.5A) or falsely combined nuclei (Fig. 2.5B-D). Once this

process is completed, we can drop the (old) bottom of the queue, and move to to the

next stage. We perform this step prior to segmentation, assuring that the most accurate

cell count and seed is handed off to that process.

IV. Shape-based object segmentation

Commonly-employed cell segmentation techniques often use distance and/or in-

tensity information to heavily segmentation results in clusters41;36, meaning they are

ill-suited to drawing boundaries between clusters of brightfield-imaged macrophages,

where edge-to-center distance is quite disparate between cells (Fig. 2.6A), and cell-

depth variability leads to inconsistent fluorescent profiles at the edges of cells. We thus

utilized cell shape information: though cell shape may vary dramatically, it is very often

the case that an inflection point marks the boundary where two cells meet107. There-

fore, to aid segmentation, we employ this shape-based approach ,which splits cells at

potential inflection points between nuclei, in an effort to achieve accurate segmentation.

As a first step, to speed computation, the image is broken into subsets, with each

subset holding precisely one cluster (i.e. an area of cell/foreground that contains more

than one nucleus), and then downsampled. The morphological skeleton of the overall

cell shape is then computed (Fig. 2.6B). The center of nuclei in the cluster is matched

to its nearest point on the resultant skeleton. This skeleton is pruned to consist solely

segments connecting all nuclei of cells within the cluster. A distance transform calcu-
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A B

C D

Figure 2.6: Shape-based object segmentation. (A) Segmentation begins using the nu-
clear and cellular boundaries identified in sections I and II. (B) The morphological skele-
ton is computed, then pruned to areas connecting each nuclei (C) We identify the local
maxima of the distance transformation along the pruned skeleton, as candidate splitting
points.(C)Final segmentation result, overlaid on original image.
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lated along these pruned-skeleton segments shows distinct local maxima (Fig. 2.6C) that

correspond to inflection points, or candidate points for the boundary between these two

cells. We break the cell cluster mask at each of these candidate points (this operation

is restricted to ”cuts” of a maximal length). The resultant mask then informs the a first

step in the segmentation decision, which is ultimately made by two iterations of the

”propagate” algorithm employed in the open-source CellProfiler41.

V. Error correction and efficacy of tracking

Following segmentation step, we have implemented a rearwards-looking correc-

tion routine, which seeks to enforce biological identity. This ”memoryCheck” algorithm

is case-based, and looks, in order, for the following specific errors: they are all but im-

possible biologically, but reasonably common in any tracking algorithm.

• Cell jump/swap: tracking error leads to improper switching of nearby cells, or

the identity of a tracked cell ”jumps” to an untracked one (Fig. 2.7A-B)

• Large area increase: cell experiences a 50% increase in total area in a single

frame (Fig. 2.7C)

• Large area decrease: cell experiences a 25% decrease in total area in a single

frame (Fig. 2.7D)

Detection of cell swapping/jumping calculates each cell’s frame-to-frame dis-

placement, then checks whether the majority of that displacement line runs across an-

other cell. If a cell nearby also experienced a jump/swap, we can resolve this error by

switching back the cells. If no swap partner is found, we can assume that the problem

was when a false negative event was paired with a nearby false positive; we therefore

destroy the latter, and create a new nucleus in its last known position, before passing it

to be resegmented.
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Figure 2.7: Automatically identified/corrected errors. (A) A swap error: typically
caused by paired movement in cells, such that cell 2’s position in frame n+1 is close to
cell 1’s position in frame n (B) A nearby, simultaneous false positive and false negative can
result in a cell jump.(C) Area increase error: sub-case where one cell may take area from a
neighboring cell is shown.(D)Area decrease error: sub-case where a spurious false positive
cell takes area from a preexisting one.
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In the case of a large area increase, we seek first to categorize the source of

the new area: it could be, in order: a false negative nucleus (i.e. what was 2 cells is

now being called 1), a segmentation error with nearby cells (i.e. ”stolen” area), or a

background/foreground assignment error, which commonly happens with inadvertent

changes in imaging conditions (e.g. bubbles on the media surface). Each of these cases

triggers its own error-handling process. Area decreases are handled in a similar manner:

the algorithm attempts to determine where the lost area went, and triggers separate error

handling routines depending on that assessment.

Error correction and forward-looking tracking turn tracking across multiple frames,

which would normally be a liability that introduces greater error, into a means for ver-

ification and validation. In the small time intervals (generally less than 10 minutes)

needed to accurately quantify signal dynamics, the changes in any given cell are slight.

Therefore, we can use simple biological realities (e.g. cells are relatively stable, and

tend neither to disappear nor appear, nor change dramatically, in a short amount of time)

to enhance the accuracy of the analysis result.

To quantify overall accuracy, we employ the commonly-used F-score, the geo-

metric ratio of precision and recall. The formulas for each of these are based on the

automated segmentation result for a given object (i.e. cell), and a ground-truth image

(i.e. that same cell, manually outlined by an expert). We can thus calculate the inter-

section of the two sets (true positives or tp), and the set of pixels contained in only one

object but not the other (false positives (fp) and false negatives (fn), respectively)

precision =
tp

tp + f p
(2.1)

recall =
tp

tp + f n
(2.2)

Fscore = 2× precision× recall
precision + recall

(2.3)

Segmentation success rates in other published algorithms, performed upon on

sample data sets, generally fall in a range of 0.80-0.90 (e.g. a median score of 0.80 in
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Figure 2.8: Verifying tracking accuracy. (A) Total F-scores from 3 different experi-
mental conditions. Images were captured on separate days. (B) F-scores, by cell, from
randomly chosen RAW 264.7 cells (at various timepoints) stimulated with E. coli (300:1
MOI).Median F-score for all cells measured is 0.89, and 70% of cells show an F-score of
over 0.86.
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macrophages84, or a total F-score of 0.87 in CHO cells63). To assess accuracy of this al-

gorithm, we delineated the boundaries for 100 cells from randomly-selected timepoints

during three different days of experimentation, in three different conditions. We then

compute F-score, as above, comparing the automatically tracked/segmented result with

this ground-truth experiment. Total F-scores (i.e. ratios over all tracked pixels contained

within indivdual cells) are shown in fig. 2.8A. Additionally, a breakdown of F-score by

cell in cells stimulated with E. coli (300:1 MOI) is shown in in fig. 2.8B. The median

F-score, in this case, is 0.89, with over 70% of cells showing an F-score of over 0.86.

We are able to achieve, then, state-of-the-art results in actual experimental results, rather

than just in the training sets of images that the algorithm was originally designed for.

VI. Measurement and of NF-κB and related quantities

In this section, we outline the novel techniques applied in service of accurate

and robust measurement in alternate fluorescent channels: while tracking offers mor-

phological and gross behavioral outputs (e.g. cell division or death), this fails to capture

many relevant aspects of the macrophage response to immune signals. In particular, this

work focuses predominantly on signaling events, particularly the translocation response

of NF-κB .

Raw nuclear intensity traces could not be used directly, as macrophages experi-

ence strong morphological changes in response to immune signals. To account for these

changes, we computed both the median value for the nucleus of each cell (Fig. 2.9A),

and a value representing the cytoplasm - we chose the upper mode of a generally bimodal

distribution, corresponding to the brighter portion of each cell, close to the nucleus. This

cytoplasmic function is insensitive to nuclear translocation events (Fig. 2.9B), but does

show pronounced changes that were assumed to be indicative of the overall morpholog-

ical shape of each cell. We used the cytoplasmic trajectory to fit the changes in nuclear

values of each cell - cells were assumed to be in an off/zero state at time t=0, and at

extremely late timepoints (t=12+ hrs), so baseline values from these two points were
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used in fitting the magnitude of the changes, such that we calculated a reliable baseline

(Fig. 2.9C) from which nuclear translocation could be measured.

Finally, it has been strongly suggested that relative, not absolute, NF-κB signal

is more informative in predicting downstream cellular responses52. We thus take the

final step of normalizing each cell’s NF-κB trajectory to its initial starting cytoplasmic

value. This same morphological and normalization methodology can be generalized to

other translocation events, and is used to track IRF3 activation in chapter 4.
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Figure 2.9: NF-κB measurement. (A) We calculate values that correspond to the nuclear
(blue, median/mode) and cytoplasmic (green, higher mode) intensity distributions, which
show identical decreasing trends over time (as a function of changing cell morphology).
(B)Raw nuclear trajectories show cells are off before stimulation, and eventually stabilizes
after a maximum 10-14 hrs. We use this information, along with the shape computed from
each cell’s cytoplasmic trajectory, to calculate a true baseline for each cell. (C) Final,
corrected and normalized nuclear trajectories can be directly compared between cells.
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User interfaces for intelligent parameter selection and data

display

While parameter-free methods are becoming more prevalent, particularly with

the rise of deep learning algorithms30 63, efficient parameter selection can often be faster

in handling changing conditions (e.g. cell type, microscope, or magnification) than gen-

erating a new training set of labeled images: in places where data acquisition is gen-

erally adapted and optimized over time, this can be advantageous. However, though

GUI-based tracking/segmentation programs (CellProfiler) often provide detailed diag-

nostic output17, they provide little or no guidance when choosing parameters, forcing

users to use a guess-and-check methodology. This furthers the disconnect between the

biologist and the programmer: in order to facilitate software learning, we seek to lower

barriers to entry wherever possible. While certain parameters are abstract, and difficult

to display directly, several parameter classes can be directly visualized:

• Noise-based thresholding search range: while the curve of speckle noise as a

function of edge magnitude threshold can be automatically searched (and varies

with image brightness), narrowing of search range can increase accuracy and

speed. Graphic display allows the user to find the characteristic curve and set

search bounds around either side (phase contrast/DIC), or the high start value in

thresholding the nuclear image(nuclear fluorescence)(Fig. 2.10A-B, left).

• Size-based parameters: particularly in nuclear identification, size proves a valu-

able tool in shape identification. Unfortunately, it is difficult to have an intuitive

feel for how object is (in pixels) in a given object. After image loading, we dis-

play objects defined by minimum and maximum radii superimposed on the im-

age, allowing direct comparison and appropriate selection. Similarly, we show

size-based hole-filling parameters on the transmitted-light image (Fig. 2.10A-B,

right).
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A

B

Figure 2.10: User interface for graphical parameter selection. (A) DIC image param-
eter selection. (Left) Choosing search range for speckle-noise algorithm in DIC (or phase)
image. (Right) Hole-filling parameters overlaid on DIC image. (B) Nuclear image parame-
ter selection. (Left) Choosing starting value for edge threshold in nucleus: though imaging
modality is different, shape of speckle noise function is similar.(Right) Setting minimum
and maximum size values for nuclei using overlaid shapes.
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These tools are finally coupled with a general-purpose suite of routines that en-

able the user to rapidly collect high-quality trajectories, smooth and statistically model

results, and display the data in a variety of ways (line plots of trajectories, heatmaps, his-

tograms, or state-space representations). Additionally, we allow allow parsing of Zeiss

metadata to collect positional information, and verification of results, overlaying nuclear

and cytoplasmic boundaries on any original image channel, above, as appropriate, the

object’s measurement over time (Fig. 2.11). In the end, we considered the problem as a

complex space, which could be studied from many angles: though we focus in this work

on the activity of the transcription factor NF-κB , this toolset was designed to be readily

extended to focus on other dynamic processes in this system.

Figure 2.11: Visualizing image and measurement output. In order to facilitate data
processing decisions, we created a tool to show a single cell’s NF-κB behavior (orange
cell; dark blue line)in the context of its neighbors (light blue) as well as all cells in the
experiment (in light gray) in addition to the tracked image output at any given point in
time.



Chapter 3

Faithful information transduction in

dynamic signaling systems

Introduction

The question at the heart of the macrophage response to innate immune stimuli

is one of information transfer. The vital function of these cells is read environmental

cues, which can trigger appropriately strong genetic and behavioral defense responses.

A century of biological research since macrophages were first discovered has carefully

described these responses, and named many of the molecular players involved. How-

ever, the past decade has made it abundantly clear that merely knowing the names and

natures of these interacting parts is not enough to gain significant understanding and

predictive power, particularly in the clinic20. One emerging shortcoming, in particular,

is that mean population-level behavior often masks individual reality: essential varia-

tion and distribution4;104. It is critical that our grasp of immune responses bridge to

the level of the fundamental decision-making unit, the cell. We seek, therefore, to find

meaningful frameworks for interpreting single cell responses, made in the context of

both external information, and internal levels of variation and noise.

The role of biological signaling networks is to reliably transmit specific informa-

27
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tion about the extracellular environment to multiple intracellular downstream effectors,

allowing the cell to adjust its physiological state to changing conditions. The stochas-

ticity of molecular interactions that underlies various forms of ”noise” in biological sys-

tems25 can interfere with signal transduction and degrade the transmitted information.

How signaling networks perform their core functions in the presence of noise is a fun-

damental question in signal transduction. Information-theoretic approaches allow esti-

mating the information transmission capacity of noisy biochemical networks78;24;118;11.

Previous applications of such methods to the analysis of signaling networks suggested

that due to noise, cells lose most of the information about the concentration of ligands

and only reliably identify the presence or absence of an activating ligand19;106. The

suggestion that noise degrades most of the information about the activating ligand was

surprising given the demonstrated ability of key signaling hubs to differentially respond

to multiple classes of ligands37;75;33, which indicates higher than binary information

transmission capacity.

Measurement of dynamics in multiple systems

The recent application of an optogentic tool to measure single cell dose re-

sponses has shown that high precision in cellular ERK response persists over multi-

ple hours101. Therefore, it is unclear to what extent noise actually limits information

transmission capacity of biochemical signaling networks. One possible resolution of

these conflicting observations is related to the types of responses used in these obser-

vations. Thus far, the information-theoretic analyses of signaling networks have been

based on scalar measurements performed at a single time point. However, the informa-

tion on activating ligands is often encoded using a dynamic signal represented by a mul-

tivariate vector that contains a single cell’s response at multiple time points37;33;75. To

test the hypothesis that dynamic vector responses contain more information than static

scalar responses, we performed dynamical single cell measurements of three key sig-

naling pathways (Fig. 3.1): ERK activity (Fig. 3.1C) as reported by the EKARev FRET
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biosensor2 in MCF10A cells in response to Epidermal Growth Factor (EGF), Ca2+ lev-

els (Fig. 3.1D) in MCF10A cells in response to ATP, and NF-κB activity (Figure 1E) as

reported by the dynamic nuclear-cytoplasmic shuttling of EYFP-p65 in RAW 264.7 cells

in response to LPS. Fully automated computational image analysis allowed us to mea-

sure the response of 910,121 live cells (see ”Methods” section). The large sample size

was instrumental for analyzing high-dimensional multivariate dynamic responses. In all

three pathways there was substantial variability within the dynamic vector (Fig. 3.1C-

E) and static scalar (Fig. 3.1F) single cell responses across multiple levels of activating

ligands.

Dynamics recover information lost to extrinsic noise

To analyze the implications of noise on information loss we utilized an information-

theoretic approach to calculate the information transmission capacity of a dynamic sig-

naling network. The information transmission capacity (also referred to as channel ca-

pacity21) is measured as the maximal mutual information between the measured re-

sponse and the activating ligand level. To calculate the mutual information between a

multivariate dynamic response (a vector) and the activating ligand (a scalar), we de-

veloped a new estimation algorithm. The algorithm uses continuous multi-dimensional

response data and a k-nearest-neighbor approach to estimate the conditional probability

density for each cell’s response.

In order to estimate information transfer in signal dynamics, we first considered

the type of experimental data that we have acquired, which guided our general approach.

In our signal transduction networks, the input signal S is defined by m discrete levels of

extracellular ligand concentration (S = [s1, s2, ..., sm]). For each input signal si we have

ni output protein trajectories (Ri = [ri1, ri2, ..., rini ]), with each trajectory occupying a

single point in continuous Euclidean space of dimension d, where d is the number of

time points in each output trajectory. Combined, we have N = ∑m
i ni trajectories in our

response R array. The general breakdown of the data is as follows:
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S =



s1

s2
...

si
...

sm


, R =



R1

R2
...

Ri
...

Rm


, si → Ri =



ri1

ri2
...

rij
...

rini


, rij = [rij,1, rij,2, . . . , rij,d]

C(R; S) = max
Q

I(R; S) { ∑m
i= 1 qi = 1
qi ≥ 0

Q = [ q1, q2, ...,qm]

5. Information transfer

f (R = rij|S = sw) = k
NwVdz(R = rij|S = sw)d

k

1. Estimate probability density (PD) using KNN estimator

f (Ri = rij|S = si)
2. Calculate conditional PDs

f (R = rij) =
m
∑

w= 1
qw f(R = rij|S = sw)

2. Calculate non-conditional PDs

Hdiff(R|S) = −
m
∑
i= 1

qi
ni

ni

∑
j= 1

log2( f(Ri = rij|S = si))

3a. Calculate conditional entropy

Hdiff(R) = −
m
∑
i= 1

qi
ni

ni

∑
j= 1

log2( f(R = rij))

3b. Calculate non-conditional entropy

I(R; S) = H(R) − H(R|S)
4. Mutual Information

Figure 3.2: General schema for estimation of information transmission.

In order to estimate the information transfer (I) between an input (S) and an

output (R) using well known formula

I(R; S) = H(R)− H(R|S). (3.1)

we need to calculate Shannon entropies H(R) and H(R|S). The general scheme of our

approach is shown in Fig. 3.2. First, given that our data is continuous, we need to define



32

how we will estimate these entropies. For a continuous probability density f (x) of some

observable X, the Shannon entropy is defined as differential entropy

Hdiff(X) = −
∫ ∞

−∞
f (x)log2( f (x))dx. (3.2)

Following change of variable of integration, Equation 3.2 becomes

Hdiff(X) = −
∫ 1

0
log2( f (x))dy. (3.3)

where y =
∫ x
−∞ f (t))dt is the cumulative probability density. We can estimate

y by the cumulative probability distribution of Nx observations using

Hdiff(X) = −
Nx

∑
j=1

δjlog2( f (xj)), (3.4)

where δj is the probability of observing xj, P(X = xj).

Using Equation 3.4 as our basis, we will now illustrate how to obtain Hdiff(R|S)

and Hdiff(R), given that our experimental data only contains conditional probabilities

of a responses.

For the conditional case, Hdiff(R|S), since all ni responses in Ri are equally

likely, δj =
1
ni

, we can estimate probability density of a single response rij directly from

all the other responses to S = si,

Hdiff(Ri|S = si) = −
ni

∑
j=1

1
ni

log2( f (Ri = rij|S = si)). (3.5)

Here f (Ri = rij|S = si) represents the probability density of response rij in

Ri given all the other responses ri (in Ri) to the signal S = si. We will explain how

to estimate f (Ri = rij|S = si) later in the derivation. With the probability of a given

signal, qi = P(S = si), we can then sum the conditional entropies of each signal to get

overall conditional entropy,

Hdiff(R|S) =
m

∑
i=1

qiHdiff(Ri|S = si) = −
m

∑
i=1

qi

ni

∑
j=1

1
ni

log2( f (Ri = rij|S = si)).

(3.6)
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The case of estimating Hdiff(R) requires special attention, since we do not have

access to non-conditional probabilities of responses. The difficulty arises from the fact

that our estimate of non-conditional density of a single response, f (R = r) is dependent

on the probability of the input signals that generated all other responses. One approach

is to estimate probability density that a given response r occurred in response to a given

input signal (sw), for each of the signals in S, by effectively placing that response into Rw

and estimating the probability density for r is if it were also a response to sw. Using total

probability, for every response r in R, we can estimate the probability density within

each set of responses Rw and sum over m such densities multiplied by the probability

qw of the signal that generated responses in Rw, as follows

f (R = r) =
m

∑
w=1

qw f (R = r|S = sw). (3.7)

Plugging 3.7 into 3.4, we get

Hdiff(R) = −
m

∑
i=1

ni

∑
j=1

δijlog2( f (R = rij)). (3.8)

The key difference between f (Ri = rij|S = si) and f (R = rij), is that the

former calculates the conditional probability density of a response among all other re-

sponses to the same signal, while the latter estimates non-conditional probability density

of the response, combining law of total probability and conditional probability density

of the response belonging to each of the subsets of responses Ri. To get δk we must ac-

count for the different probabilities associated with observing responses from different

input signals and the number of responses ni obtained for each input signal:

Hdiff(R) = −
m

∑
i=1

qi

ni

ni

∑
j=1

log2( f (R = rij)). (3.9)

Now that we have formulas for Hdiff(R) and Hdiff(R|S), we need to estimate

the probability densities f (R = r|S = si) in 3.7 and f (Ri = rij|S = si) in 3.5. This

can be accomplished with the k-nearest neighbor (KNN) estimator,

f (xj|X) =
k

NxVdz(xj|X)d
k

(3.10)
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where

Vd =
π

d
2

Γ( d
2 + 1)

(3.11)

is the the volume of a unit sphere of dimension d (also dimension of xj), Nx is the

number of xj in X, and z(xj)k is the Euclidean distance to the kth nearest neighbor in X

from xj
56.

Applying this estimator to Equations 3.5 and 3.7, we get

Hdiff(R|S) = −
m

∑
i=1

qi

ni

ni

∑
j=1

log2(
k

niVdz(rij|Ri)
d
k
). (3.12)

Hdiff(R) = −
m

∑
i=1

qi

ni

ni

∑
j=1

log2(
m

∑
w=1

qw
k

nwVdz(rij|Rw)d
k
) (3.13)

where z(rij|Ri)k is the distance from response rj in Ri to the kth nearest neighbor

in Ri, while z(rij|Rw)k is the distance from response rij in Ri to the kth nearest neighbor

in Rw (Fig. ??).

Without the knowledge of qi, we are unable to estimate the information transfer

I(R; S) using Equations 3.13 and 3.12. However, the maximum information transfer

(C) can be calculated with

C(R; S) = max
Q
{I(R; S)}, (3.14)

where Q = [q1, q2, ..., qm], such that ∑m
i=1 qi = 1 and qi ≥ 021. This corre-

sponds to the maximum possible informatin transfer between input S and output R.

Using our new algorithm we estimated the information transmission capacity

of the dynamic response and of several types of static responses. For all single time

point static scalar responses we found transmission capacity (<1 bit) similar to what

was previously reported19 106 (Fig. 3.4A). However, across all three signaling pathways,

the dynamic response had significantly higher information transmission capacity than

several possible scalar responses (Fig. 3.4B-C), p-value <0.05 for all comparisons).

The key advancement of our theory with respect to earlier work102 is that it

explicitly accounts for the differences between the information-degrading effects of in-
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rij

 

R i

R w

Figure 3.3: Using K-nearest neighbor radius to define probability distribution. Repre-
sentation of k-nearest neighbor calculation for k = 5. The blue circle radius is the distance
to the fifth closest neighbor within the same input response represented by blue points. The
green circle radius is the distance to the fifth closest neighbor to a different input response
(green points). Visualization created by Roy Wollman.

trinsic and extrinsic noise sources in the context of multivariate responses. Intrinsic

noise adds to uncertainty in all dimensions (i.e. time points) independently from one

another. In contrast, the extrinsic variability in cellular state produces fluctuations that

are constrained by the signaling network that generates the dynamics. Therefore, the

fluctuating components generated by extrinsic noise at different time points are deter-

ministically dependent on one another. As a result, intrinsic and extrinsic noise sources

have different effects on the information transmission capacity of multivariate responses.

In the case of purely intrinsic noise, additional measurements increase the information

logarithmically due to simple ensemble averaging (in accord with earlier findings in the

Levchenko laboratory19). In the case of purely extrinsic noise, a., sufficient number of
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dle time point.(C) Comparison of the multivariate vector (V) measurement to the following
scalar responses: maximum response amplitude (A), maximum response time (T), maximal
rate of response (D), ratio of maximum response amplitude to initial response amplitude
(R). Error bars are SEMs from six biological replicates for ERK and four for Ca2+, and
SDs from five jackknife iterations for NF-κB . The multivariate vector information transfer
was significantly greater than all scalar measures (p < 0.05, Student’s t test). All analysis
performed by Jangir Selimkhanov.
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dynamical measurements can provide complete information about the a priori uncer-

tain internal state of the cell and therefore lead to a substantial gain in the information

about the activating ligand. Consequently, while an infinite number of measurements

are required to completely eliminate information loss due to intrinsic noise, complete

elimination of the information loss due to extrinsic noise only requires that the effec-

tive dimension of the dynamic response (or number of linearly independent response

measurements) is higher than the number of independent uncertain parameters that de-

termine the dynamics of the signaling network. In case when a signaling network is

affected by both intrinsic and extrinsic noise, the multivariate dynamical response pro-

vides significant gain in the information transmission capacity by both ensemble averag-

ing the intrinsic noise and effective elimination of the extrinsic noise. Figure 3A shows

how an increase in response dimension allows cells to overcome the degrading effects

of intrinsic and extrinsic noise sources.

Predicting channel capacity as a function of the signal-to-

noise ratio

To test our analytical theory and demonstrate the ability of signaling dynamics

to overcome extrinsic noise we used computer simulations of ERK responses based on a

published kinetic model95. The mathematical model recapitulated the experimental data

of ERK dynamics allowing us to simulate ERK responses resulting solely from extrinsic

noise (i.e. ”cell-to-cell” variability of model parameters). Our theoretical analysis pre-

dicts that the multivariate dynamic response can completely eliminate the information

loss that results from introduction of extrinsic noise. To test this prediction, we gen-

erated sets of simulated ERK trajectories in response to an increasing number of input

levels, varying the model parameters for ERK and Mek according to a uniform distri-

bution (±20% mean value). These simulation results were used to calculate the mutual

information between ERK response and the level of the activating ligand. Our analysis
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dynamic (orange) and static (maximal response, purple) responses calculated using simu-
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contributing to cell response variability. (C Example of ERK trajectory variability for two
different inputs levels (red and blue). Variability was generated using a uniform distribution
of a single parameter, MEK values, that was varied by ±20%. (D) . Two-dimensional his-
togram (center) and marginal distributions (left and bottom) for the two input levels (shown
in red and blue) at two time points (t = 9 and 24 min) from the trajectories in (C). Because
only a single parameter was varied, the responses vary on a 1D curve. As a result, although
the univariate marginal distributions show substantial response overlap, the 2-dimensional
distribution shows completely separable response levels (inset). Model analysis and noise
decomposition performed by Roy Wollman and Lev Tsimring.
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(Fig. 3.5B) supports the analytical prediction and show that the dynamic multivariate

response can indeed transmit complete information about the activating ligand. In con-

trast, the information transmission capacity of a univariate response, based on maximal

ERK levels, was limited and therefore was unable to faithfully transmit complete in-

formation about the activating ligand. An intuitive demonstration for the limitation of

univariate response and the ability of multivariate response to overcome extrinsic noise

is shown in Fig. 3.5C-D. Superficially, the trajectories of two population of simulated

ERK pp responses to two input levels of EGF appear overlapping (Fig. 3.5C), but in fact,

they are completely separable when considering joint distributions in a procedure known

as embedding81. Plotting the distribution of ERK-pp at t=9 and t=24 minutes on a two-

dimensional plane (Fig. 3.5D) shows that the responses to a single varied parameter

input lies on a one-dimensional manifold within a two-dimensional embedding space.

The two one-dimensional manifolds for different inputs are completely separated from

each other (inset), but overlap considerably in any one- dimensional projection. This

simple example demonstrates how the extrinsic variability of a single parameter can in

principle be completely eliminated using measurements from only two time points.

The accuracy of a response can be characterized by its signal-to-noise ratio

(SNR). The mutual information and the system’s SNR are related, however this rela-

tionship is strongly affected by the noise properties (intrinsic vs. extrinsic) and the type

of the response. Our analytical theory describes mutual information as a function of

SNR for three different types of responses: (i) scalar responses that do not distinguish

between intrinsic and extrinsic noise, (ii) redundant vector responses (repeated measure-

ments) that can only reduce intrinsic noise, and (iii) dynamic responses that combine the

benefits of redundant measurements with very efficient mitigation of extrinsic variabil-

ity. Among these three, the dynamic response yields the greatest mutual information for

the same SNR.

To test our theoretical predictions of the dynamic response gain with respect to

static and redundant, we collected dynamic ERK response data at different SNR levels.

We varied the SNR in the ERK network by partial inhibition of the ERK kinase MEK-1
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trinsic and extrinsic noise. Data collected by Anna Pilko, and analysis performed by Roy
Wollman.
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using six different dosages of the inhibitor U0126 (Fig. 3.6A). At each MEK inhibition

level we measured ERK response to eight EGF levels. A total of 48 conditions were

measured in four biological replicates: at each MEK inhibitor level we calculated the

mutual information and the SNR using single cell responses. In total, Fig. 3.6 con-

tains 535,107 cell responses. As expected, for a scalar response, the formula relating the

mutual information and the overall SNR, is in very good agreement with our experimen-

tal measurements. The theoretical prediction of mutual information for the redundant

measurement case requires knowledge of the ratio of intrinsic to extrinsic noise (IER).

IER was estimated in two ways by: (i) quantifying the fluctuations in the later (quasi-

stationary) portion of the response time series of our ERK data (ii) using data and a fitted

Hill function as used previously101, where repeated measurements were performed on

single cell responses. The predicted mutual information based on redundant responses

using either IER estimates is significantly below the experimentally measured values. In

contrast, the measured mutual information values are in good agreement with the theo-

retical prediction for a dynamic response based on a computational ERK model. Overall

this analysis demonstrates that the substantial information gain from multivariate mea-

surements is indeed the direct result of the dynamic nature of ERK response.

The robustness of biological systems is epitomized by their ability to function

in the presence of large uncertainties7. A major source of uncertainty is the variability

in cellular states, e.g., protein concentration within individual cells. We showed that

signaling dynamics allow biochemical networks to mitigate this major source of ex-

trinsic noise and thereby maximize the information transmission capacity of signaling

networks. Our estimates of the information transmission capacities should be consid-

ered as lower bounds because part of what we refer to as intrinsic noise may in fact be

the result of experimental imperfections. Therefore, the intrinsic-to- extrinsic ratio may

be even lower than our estimates, which would further support our claim that dynamic

response can substantially increase the information transmission capacity. Furthermore,

information about the input ligand may be encoded in the dynamics of multiple signaling

molecules. While the theory and observations presented here focus on the information
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transmission capacity of the dynamics of a single signaling molecule, the extension of

our analysis to the case of multiple signaling molecules responding to one ligand is

straightforward. It is important to note that not all of the information contained in the

multivariate dynamical responses may actually be used by cells. Yet, because reliable

information transmission is a fundamental function of cellular signaling networks, it

is plausible that evolutionary pressures shaped the cellular machinery to maximize the

reliable decoding of multivariate dynamic signals.

Methods

Cell Culture

MCF10a cells (ATCC CRL-10317) were maintained in F12/DMEM media (Life

Technologies) supplemented with serum, insulin and hydrocortisol according to [3].

RAW 267.4 cells (ATCC TIB-71) were maintained in maintained in a DMEM (CellGro

10-013) medium supplemented with 10% fetal bovine serum, 20mM HEPES, and 1x

penicillin/streptomycin. For the analysis of the ERK pathway, MCF10a constitutively

expressed the FRET sensor EKARev-NES [1]. This sensor has been optimized for dy-

namic range [6] and indeed we say up to 200% increase on the FRET/CFP ratio. Anal-

ysis of Ca2+ pathway was done by loading cells with 1 µM Flou-4 using PowerLoad

(Life Technologies) loading solution according to manufacuer instructions.

Analysis of NF-κB was performed in RAW264.7 macrophages which were se-

quentially create a stable line with lentivirus vectors containing EYFP-RelA (driven by

the endogenous 1.4 kilobase sequence directly upstream of RelA) and H2B-mCherry.

Double-stable lines were made by successive selection, then further FACS-enriched.

Cells were used in imaging from passage 16 to passage 20, then discarded. 20 hours

prior to experiment start, cells were replated in Ibidi 8-well slide at a density of 50,000/sq.

cm. 2 hours before the experiment, 1/3 of the total media volume was drawn off and

mixed with stimulus, which was then injected into the chamber precisely at experiment
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start.

Image aquisition/processing

Analysis of information transmission of dynamic vector responses can only be

done from single live cell measurements. Furthermore, the analysis algorithm devel-

oped is this paper is based on the estimation of the probability density for each cellular

response based on its degree of similarity to the response of cells with very similar re-

sponses. While the algorithm corrects for sample size using a jackknife procedure to

eliminate possible bias, we have empirically found that robust estimation substantially

benefits from large sample sizes. Therefore, a key technical aspect of this work is the

ability to collect very large numbers of single cell responses. To that goal we have

optimized both the image acquisition and analysis to increase the sample size without

compromising on measurement accuracy. Below we outline the key steps that were

taken to allow the collection of the signaling responses of 910,121 cells overall.

MCF10a image acquisition was done in a 96-well plate format (Coaster 3094)

on a Nikon Ti microscope using a 10x 0.45NA Plan Apo objective. To increase the

number of cell images the camera that was used (Zyla 5.5, Andor) has a large sensor size

(21.8 mm). Furthermore, an additional de-magnifying 0.7x optovar was light path. The

microscope was controlled through custom software written in MATLAB that uses the

open-source micro-manager [4] as the driver layer, which controls microscope hardware.

Image acquisition was completely automated and relayed on the Nikon Perfect Focus

(PFS) to perform multi-well imaging while maintaining focus. The custom software

performed periodic checks to verify that focus is maintained. To speed acquisition and

minimize photo-damage and photo-bleaching, the acquisition rate of each channel was

determined based on need: where the fluorescence channels used for measurement were

acquired in every time point, the channels that were used for image segmentation were

acquired at 8x-slower rate. To minimize background fluorescence, and since MCF10a

cells were only imaged for a short period of time (<1 hour), cells were imaged in PBS
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supplemented with HEPES buffer.

RAW 264.7 cells were automatically imaged every 5 minutes, using Zeiss’s Zen

interface, on a Zeiss AxioVert fitted with an incubation box/stage (which was both

temperature- and CO2-controlled), a 40x oil-immersion objective, LED fluorescence

excitation, and a CoolSnap HQ2 camera. We collected DIC, mCherry, and YFP images

over 18.5 hours at 12 stage positions per experimental condition. Cells were initially

incubated for >2 hrs to allow temperature stabilization, then stage positions (X-, Y-, and

Z-position) were set immediately before the initiation of aquisition. Automated analy-

sis was performed as in chapter 2 in RAW 264.7 cells, and using similar techniques in

MCF10a cells.

ERK Model Simulations

For numerical simulations, we adopted ODE model of ERK signaling network

from Sturm et al.95. The model incorporates dynamics from RasGTP through Raf and

Mek down to ERK phosphorylation. Following the previously-described model95, we

used the input concentration of RasGTP as a proxy for extracellular EGF, varying its

value over several orders of magnitude. We found that the ERKpp dynamics generated

by the model closely matched the dynamics of FRET signal recorded in experiments

(Figure 3.7). Given these realistic trajectories, we used the model to test some of the

results predicted by the earlier discussed theory.

Simulations with extrinsic noise

To illustrate the effect of using multi-dimensional measurements to eliminate the

contribution of extrinsic noise to the information transfer of the system, we calculated

MI using model simulation trajectories of ERKpp as the response and the input Ras-

GTP. The range of input RasGTP (2500 to 22500) was chosen to minimize saturation

at both ends of response. Except for ERK and MEK, model parameter values were

kept consistent with Strum et al. for all simulations. To generate extrinsic noise we
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Figure 3.7: ERK model trajectories. Model simulation comparison to experimental ERK
FRET trajectories. (A) Mean response of ERK FRET sensor to persistent EGF input. (B)
ERKpp response trajectories from simulations of the ERK model95 for increasing amounts
of RasGTP. Modeling performed by Roy Wollman and Jangir Selimkhanov.

randomly sampled ERK and MEK values from uniform distributions (±20%) centered

around the nominal values presented in Strum et al.. The model was allowed to reach

a steady state with the chosen ERK and MEK parameters at the lowest value of Ras-

GTP (2500), before applying inducing amount of RasGTP. The model was simulated

for 30min. As the number of input levels of RasGTP within the input range increased,

we found that the multi-dimensional measurement of ERKpp (0 : 3 : 30min) resulted in

MI equivalent to the number of input levels (orange curve in Fig 3B). In stark contrast,

the scalar measurement MI shows a saturation around 2 bits (purple curve in Fig 3B),

which is consistent with theoretical prediction that at least 3 measurements are required

to completely remove extrinsic noise.

To further demonstrate the underlying principles that allow for elimination of

extrinsic noise, we plot 50 ERKpp trajectories generated from two nearby input values

of RasGTP (Fig 3C). The overlap between these trajectories might suggest that it would

be practically impossible to distinguish between the two input signal values. Further-

more, considering two different time points (vertical lines), this is exactly the case given

the overlap between ERKpp response values at those time points (left and bottom 1-D
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histograms in Fig 3D). If we consider those two points together, however, we can clearly

see a separation between the two input levels as the 2-D histogram in Fig 3D indicates.

Fitting vector MI vs SNR data

To fit dynamic ERK response experimental inhibition data in Figure 3B (green

filled circles), we applied theoretical description of mutual information and SNR (see

Section IIC: Extrinsic and intrinsic noise) to our ERK model. We calculated sensitivities

of ERK response at 10 equally spaced time points on the trajectory with respect to the

signal (Ras_GTP) and 7 model protein parameters (Mek, ERK, Raf, Phase1, Phase2,

Phase3, Phase4) near the middle induction level and nominal parameter values. Con-

structing Gram matrices with these sensitivities, we were then able to calculate MI as a

function of SNR, derived earlier83:

I =
1
2

log2

|Ĝ+ + Îσ2
ξ |

|Ĝ + Îσ2
ξ |

(3.15)

We assumed equal coefficient of variation (CV) for all parameters. Intrinsic noise was

calculated based on experimental IER ratio. Varying the number of parameters con-

tributing to the extrinsic noise in the model, we were able to fit the mean MI vs SNR

curve to the experimental data (Fig. 3.8. For a given number of parameters, we gener-

ated the mean MI vs SNR curve for all combinations of parameters. The best fit was

obtained with two parameters accounting for the extrinsic noise in the model. This

could be thought of as the number of effective system parameters contributing to extrin-

sic noise that our dynamic measurements can overcome.

Sampling dimension for vector response

To select the time points that should be part of the vector of dynamic responses

for increasing dimension of the vector in Figure 4, we used a simple strategy. For a

given time frame of the trajectory (60min for ERK, 15min for Ca2+, 5hrs for NF-κB )

and chosen dimension N, we selected N + 2 equally spaced response values throughout
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Figure 3.8: Fitting ERK model to dynamic information/SNR. Fitting ERK model to
dynamic MI vs SNR data using analytic theory approach. We used K number of parameters
and RasGTP input level as the two fitting parameters for the model. Grey MI vs SNR curves
were obtained for are all combinations of K parameters (out of 7). Colored curves (input
RasGTP level) correspond to the mean of all of those combinations of K parameters. The
black dots represent experimentally obtained values for vector MI shown in Figure 4, that
the model (colored curves) were fit to. Yellow highlighted box corresponds to the best fit
for K and RasGTP level. Fitting performed by Roy Wollman and Jangir Selimkhanov.

the given time frame, removing the first and the last values. For example, for vector of

dimension 1, we chose response value at the center of the given time frame, while for
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dimension 2, we chose values located at the one third and two thirds points of the time

frame (Fig. 3.9).
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Figure 3.9: Dimension sampling in dynamics. Dimension sampling approach for vector
dimension in Fig. 3.4B.

Experimental noise analysis

Signal-to-Noise Ratio (SNR)

To calculate ERK signal-to-noise ratio (SNR), we defined the signal magnitude

σ2
r as the variance of average responses over all m input levels of EGF:

σ2
r =

1
m

m

∑
i=1

((
1
m

m

∑
w=1

1
nw

nw

∑
j=1

rwj)−
1
ni

ni

∑
j=1

rij))
2 (3.16)

Noise magnitude was defined as the average of the variances of ni responses to

a single input level of EGF:
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σ2
n =

1
m

m

∑
i=1

(
1
ni

ni

∑
j=1

(
1
ni

ni

∑
w=1

riw − rij)
2 (3.17)

SNR is then σ2
r /σ2

n.

Autocorrelation of ERK response

We performed autocorrelation analysis on ERK trajectories to gain insight into

our sampling time sampling of the data. According to the analysis, decay of autocor-

relation function shows that on average self-correlation is lost after 11min (Fig. 3.10).

This suggests that ERK measurements taken every 10 min are, on average, independent

from one another.
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Figure 3.10: Autocorrelation in the ERK response. Mean autocorrelation of ERK re-
sponse trajectories (bars represent standard deviation). Decay of autocorrelation function
shows that on average self-correlation is lost after 11min. Analysis performed by Roy
Wollman and Jangir Selimkhanov.
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Intrinsic-to-Extrinsic Ratio (IER)

To calculate ERK intrinsic-to-extrinsic noise ratio (IER) from our data, we de-

fined intrinsic noise as combination of stochasticity inherent to biochemical reactions

in signal transduction and measurement noise, while extrinsic noise was defined by the

variability in individual cell states. To estimate the upper bound on the experimental

IER, we used the fact that our sampling of ERK response was faster than ERK dynam-

ics (based on the autocorrelation of ERK response), to calculate intrinsic noise. Using

second portion of ERK trajectory, where ERK levels did not change significantly be-

tween successive time point measurements, we estimated the intrinsic noise (σ2
ξ ) as the

variance of the differences in ERK expression between successive time points (Fig. 3.11

red). To get the extrinsic noise (σ2
e ), we estimated the total noise according to equation

3.17 (Fig. 3.11 cyan) for the second portion of ERK trajectory, and simply subtracted

the intrinsic noise from the total noise. The mean IER (σ2
ξ /σ2

e ) for all experimental

conditions was estimated to be 0.024.

While IER estimate from our data best matches our theoretical analysis, it is

limitted to our assumption about ERK dynamics. For completeness, we decided to use

previously obtained data101 to estimated an upper bound on IER. We chose ERK data

from Toettcher et al.101, who were able to measure multiple ERK responses within a

single cell. To estimate IER from their data, we used a slightly different approach.

Using Hill function fit (exponent of 2, previously shown101) for each cell, we estimated

intrinsic noise as the variance of the differences between experimental values and the

model fit (Fig. 3.11 red). Similarly, to get the total noise, we fit the same function to

all of the experimental points and calculated the variance of the differences between

experimental values and the model fit (Fig. 3.11 cyan). To get extrinsic noise, we

simply subtracted the intrinsic noise from the total noise. The mean ration of intrinsic

to extrinsic noise was estimated to be 1.14.

Chapter 3 contains material originally published as ”Accurate information trans-

mission through dynamic biochemical signaling networks”. Selimkhanov, J.*, Taylor,
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Figure 3.11: Estimating extrinsic and intrinsic noise in ERK data. (A) Using our
single cell ERK data, intrinsic noise was estimated by the mean of the mean of squared
errors between successive ERK trajectory points (red). Total noise was estimated by the
mean of squared errors (cyan) between single ERK trajectory and average of all trajectories
(green). Extrinsic ratio was obtained from the difference between total noise and intrinsic
noise. The mean ratio of intrinsic to extrinsic noise was estimated to be 0.024. (B) Using
data derived from literatucaptionre101, we fit a Hill function to the data and calculated the
mean squared error between the fit for each cell (intrinsic noise) and between the fit for all
points and each cell (total noise). The IER was estimated to be 1.14. Analysis performed
by Roy Wollman.

B.*, Yao, J., Pilko, A., Albeck, J., Hoffmann, A., Tsimring, L., and Wollman, R. Science

(2014). Copyright permission to republish here was granted by AAAS.



Chapter 4

Distinct single cell signaling

characteristics conferred by the

MyD88 and TRIF Pathways in TLR4

activation

Introduction

Toll-like receptor signaling involves a complex network of at least 12 different

TLRs engaging in physical and functional interactions with a wide variety of signal

transduction proteins68. However, all information is transduced via two signaling path-

ways: the myeloid differentiation primary response gene 88 (MyD88)-dependent, and/or

the TIR domain-containing adaptor protein-inducing interferon-Îš (TRIF)-dependent

pathways, forming a bow-tie network structure68. Among all the TLR family mem-

bers, TLR4 is the first described in mammals13 and the only one that employs both

pathways to trigger inflammation and innate immune responses47.

TLR4 recognizes bacterial lipopolysaccharide (LPS), a component of the outer

membrane of Gram-negative bacteria, and activates the pleiotropic transcription factors

52
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NF-κB and interferon response factor 3 (IRF3). Upon binding to LPS and dimerizing,

TLR4 recruits MyD88 at the plasma membrane, triggering the initial activation of the

NF-κB -controlling kinase IKK47. TLR4 also undergoes dynamin-dependent endocyto-

sis and is trafficked to the early endosome42, where it interacts with TRIF and its adapter

molecule (TRAM), initiating the TRIF-dependent pathway that leads to IRF3 activation

and a second wave of IKK activity47.

NF-κB dynamics are stimulus-specific22 and are thought to represent a signal-

ing code that determines downstream cellular responses10. Interestingly, while NF-κB

activity is oscillatory in response to tumor necrosis factor (TNF), it was reported to be

steady in fibroblasts responding to LPS due to autocrine TNF feedback22;111;53. How-

ever, in macrophages TNF does not contribute substantially to LPS signaling16, and

studies of the population average46;48 suggested that MyD88 may be responsible for an

early NF-κB peak46 and TRIF for a later phase117. But how NF-κB dynamics at the sin-

gle cell level are encoded in macrophages responding to TLR ligands remains an open

and important question.

There remains a fundamental disconnect between robust signaling and gene ex-

pression behaviors observed at a population level, and the variability that characterizes

individual cell responses4;92. This variability limits the capacity for reliable biochemical

information transduction19, a characteristic required for mounting appropriate physio-

logical responses to diverse external signals. We require, then, a better understanding

of the origins, control, and consequences of molecular network noise that drives re-

sponse variability. Preliminary modeling efforts account for experimentally measured

distribution of binary cell fates58, or have identified potential sources of noise relevant

to NF-κB signaling particularly in the expression of NF-κB feedback genes73 44. How-

ever, this variability has not been contextualized with noise sources in receptor-proximal

signaling modules, and signaling model simulations do not generally account or match

the measured variability in single cell signaling activities9.

Molecular mechanisms not only determine the dynamics of signaling, but also

harbor potential noise sources that determine cell-cell variability. In the case of the
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TLR4 network, TRIF signaling occurs from the endosome, dependent to unknown de-

grees on endosomal trafficking39, while MyD88 signaling is initiated from the plasma

membrane: these branches are both temporally and spatially separated42. MyD88 addi-

tionally contains a death domain (DD) which mediates homotypic interactions to form a

macromolecular complex (the ”Myddosome)55. These mechanisms, though identified,

have not yet been integrated into a full reaction network to understand their role in TLR4

signaling.

Here we report the iterative development of a mathematical model of the TLR4-

to-NF-κB signaling network in macrophages in the context of quantitative biochemical

and live cell imaging experimental studies. We reveal how specific molecular mecha-

nisms within the MyD88 and TRIF pathways control dynamical features of the NF-κB

response, as well as associated cell-to-cell variability, which together determine the in-

formation transduction capacity of pathogen-responsive signaling.

Roles of MyD88 and TRIF in a model of TLR4 signaling

Within the TLR4 signaling network four modules may be distinguished (Fig. 4.1A):

a TLR4 module, which transduces the presence of LPS into downstream kinases activ-

ities (IKKK and TBK1) via MyD88 and TRIF pathways; an IRF module, which trans-

duces TBK1 activity to output levels of phosphorylated nuclear IRF3; an IKK module,

which generates IKK activity profiles from activated TRIF and MyD88 inputs; and an

NF-κB module, which determines nuclear NF-κB activity as a function of input IKK

and IκB. We have previously established mathematical models for the IKK and NF-κB

modules49;111, and focused here on establishing the topology, parameters, and behavior

of the TLR4-proximal signaling module in macrophages, the primary pathogen-sensors

and effectors of the innate immune response.

We first measured IKK activation dynamics in response to 1ng/mL and 100ng/mL

LPS in populations of bone-marrow derived macrophages (BMDMs) derived from wild-

type (wt), Myd88−/−, and Trif−/− mouse strains. In Trif−/− BMDMs, IKK activ-
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Figure 4.1: Computationally modeling MyD88- and TRIF-dependent activation of
IKK/NF-κB in TLR4 signaling. (A) The TLR4 signaling network depicted as four reg-
ulatory modules. (B) Time course of active IKK in response to LPS (100ng/mL) in wt
(purple), Trif−/− (red), and Myd88−/− (blue) BMDMs. Line: model simulation. Circles:
IKK kinase assay produced with co-immunoprecipitates of NEMO. (C) Phosphorylated
nuclear IRF3 time course in response to LPS (100 ng/mL) in wt BMDMs. Line: model
simulation. Circles: nuclear immunoblots for phosphorylated IRF3. (D) Time course of ac-
tive nuclear NF-κB in response to LPS (100 ng/mL) in BMDMs. Line: model simulation.
Circles: EMSA using NF-κB -specific double-stranded oligonucleotide probe. (E) Time-
lapse images of live RAW 264.1 macrophages (expressing EYFP-p65) responding to LPS
(500ng/ml). (F) NF-κB responses to 500ng/mL LPS in five randomly selected single cells.
(G) Simulated NF-κB dynamics from 0.1ng/mL to 1µg/ml (line color from dark to bright),
in wt or single-pathway (MyD88 only, TRIF only) conditions. (H) Model-predicted nuclear
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lines indicate weak peaks (<1% of maximum peak observed). (I) Model-predicted dura-
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asssmbly and parameterization by Zhang Cheng.
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ity was induced early and transiently, reaching a peak at least 15 minutes earlier than

in Myd88−/− cells (open circles in Fig. 4.1B, Fig. 4.8). In contrast, later-activating

Myd88−/− BMDMs show more persistent signaling, well past the hour-long window

of activation in Trif−/− cells. Wild-type IKK dynamics show both early activation and

long duration characteristic of summing MyD88 and TRIF activity. We similarly quan-

tified the dynamics of downstream transcription factors NF-κB (measured by EMSA)

and IRF3 (measured by phosphorylated western blot) (open circles in Fig. 4.1C-D,

Fig. 4.8). Using these data to parameterize simple models of the TLR4 and IRF3 mod-

ules (Fig. 4.12, tables 4-4, ”Methods” section), we were unable to obtain a good fits to

EMSA-measured NF-κB activity profiles, although IKK dynamics and IRF3 dynamics

were recapitulated for all genotypes and LPS concentrations (Fig. 4.1 B-D, Fig. 4.8).

(This model did not include autocrine cytokine mechanisms as these play little role in

macrophages responding to LPS16). The key discrepancy lay in the model’s propen-

sity to produce oscillations as a result of the delayed negative feedback loop medi-

ated by IκBα (Fig. 4.1D). The fact that the population measurements did not reveal

these suggested the possibility that single cell dynamics were obscured by a high degree

of cell-to-cell variability. To resolve this discrepancy, we performed live-cell imaging

(Fig. 4.1E) in a RAW264.7 macrophage cell line stably transduced with a lentivirus con-

taining EYFP-p65 (driven by the Rela promoter). Following stimulation with LPS con-

centrations ranging from 500 pg/mL to 5 µg/ml, we tracked single cell NF-κB translo-

cation. Responses are first evident at 1ng/mL, and increasing doses revealed oscillatory

translocation patterns (Fig. 4.1F), in agreement with model simulations. These results

suggest that that oscillatory dynamics in NF-κB signaling are not stimulus-specific, but

are instead intrinsic in the NF-κB -IκB signaling module.

Using the model, we explored the pathway-specific roles in encoding NF-κB

dynamics to a range of LPS concentrations (Fig. 4.1G, dark to bright lines). As ex-

pected, NF-κB activated solely by MyD88 showed no second-phase activity. While late

dynamics remained intact in the TRIF-only condition, they showed a slowed, reduced

first phase. First-peak time in wt or MyD88-only cells, then, was 20 min. faster than
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in TRIF-only cells (Fig. 4.1H). In contrast, the control of NF-κB response duration was

entirely TRIF-dependent, with MyD88 producing only transient responses (Fig. 4.1I).

In sum, our analysis illustrated that the two TLR4-responsive pathways encode specific

aspects of NF-κB dynamics: early, transient activation of IKK by MyD88 dictates the

initial timing of the response, while slower, persistent activation of IKK by TRIF en-

codes a longer duration of NF-κB activity. This analysis provides a framework for stud-

ies of how underlying molecular mechanisms in MyD88 and TRIF activation determine

NF-κB dose-responsiveness, dynamics, and cell-to-cell variability.

Signalosome formation determines MyD88 signaling

MyD88 signaling is thought to involve the formation of a signaling complex,

the Myddosome, which is formed by 6 subunits of MyD88, 4 of IRAK4 and 4 of

IRAK155 27, prompting us to examine its implicit signaling characteristics. We mod-

eled Myddosome formation in accordance to a sequential binding proposal55 in which

the LPS-TLR4 complex (C) functions as a seed that may attract two MyD88 monomers

(M), forming CM2, which in turn functions as a building block to form C2M4 and C3M6.

The C3M6 complex constitutes a molecular platform that forms the macromolecule

Myddosome by incorporating IRAK4 and IRAK1 (Fig. 4.2A and supplemental text).

As previously hypothesized27, we found that the process was inherently cooperative,

leading us to approximate the reaction scheme by Hill kinetics (Fig. 4.10). Assuming

MyD88 subunit interaction ratios (k f /b from Fig. 4.2A) in a range of 0.1-10 resulted

in a range of fitted Hill coefficients between 1.8-3.1 (Fig. 4.2B). We then employed

our TLR4 model to study the ramifications of the range of predicted Hill coefficients

(Fig. 4.2C and D). While the Myd88−/− model predicts a slowly saturating peak re-

sponse to increasing LPS, peak NF-κB in the Trif−/− condition shows a faster switch

from off-to-on, depending on the strength of the MyD88 subunit interaction ratio. We

measured the first-peak amplitude in the single cell RAW 264.7 response (Fig. 4.2E and

F) and observed an increase from minimal to nearly-saturated peak NF-κB activation
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over a range of 1-10 ng/mL LPS. These values were used to tune the effective EC50 and

Hill coefficient of the model (supplemental text), providing a best-fit Hill coefficient of

3 (corresponding to k f /b = 6.1, red line in Fig. 4.2B-D).

A second prediction of cooperative signalosome formation regards signal du-

ration. Given a set of dose-dependent transient inputs (i.e. upstream TLR activation

at the plasma membrane, quickly turned off by receptor endocytosis), higher levels of

cooperativity cause robust switch-off behavior, saturating not only the amplitude, but

also the total amount of the signaling output (Fig. 4.2G). In a highly cooperative system

(Hill coefficient n = 3 in a Trif−/− model, Fig. 4.2G, bottom left), outputs above the

activation threshold are nearly indistinguishable from one another, resulting a saturated

dose-response curve for integrated IKK activity (Fig. 4.2G, bottom right). Integrating

measured IKK activity in Myd88−/− and Trif−/− BMDMs (Fig. 4.2H, Fig. 4.8) shows

that total MyD88-driven IKK activity saturates more quickly than TRIF-mediated IKK

activity, supporting this prediction.

Outside of a narrow dose range, MyD88 induces robust on-or-off responses.

This behavior was predicted in a cooperative model, and measured by peak NF-κB ac-

tivity. Once the on-state is reached, MyD88-mediated signaling is quickly saturated.

This dynamic behavior is partially explained by cooperative Myddosome formation, but

additionally requires a robust means of downregulation. In the case of TLR4 signaling,

rapid TLR4 endosomal internalization, which limits the duration of MyD88 signaling,

might function as such a downregulation mechanism. We thus turned to the processes

of endosome trafficking, to study how these determine the balance between the MyD88

and TRIF pathways.

Endosome translocation and maturation in signaling

Ligand-bound TLR4 first induces MyD88 signaling from the plasma membrane,

and then is endocytosed to induce TRIF signaling from the early endosome42. However,

unbound TLR4 also traffics along with recycled plasma membrane to endosomes as part
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coefficient (n) = 1 (no cooperativity, top two panels) or 3 (bottom two panels). Left: time
courses in Trif−/− model. Right: integrated IKK responses vs. LPS dose in Myd88−/− and
Trif−/− models. (H) Integrated IKK response in Myd88−/− and Trif−/− BMDMs from
quantified kinase assay. Responses in both G and H were normalized to total observed
range. Hill fitting and modeling performed by Zhang Cheng.
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of normal constitutive processes39, where it could encounter free LPS or endocytosed

CD14-LPS complexes in the endosome. We sought to measure the relative contributions

of these constitutive and ligand-induced TLR4 endocytosis to NF-κB signaling. We de-

composed endosomal signaling via flux analysis, calculating the receptor-ligand com-

plex transfer from the plasma membrane to the early endosome (activation via ligand-

induced shuttling), as well as the amount of endosomal LPS-TLR4 binding (activation

via constitutive shuttling). Overall, ligand-induced shuttling proved to be more impor-

tant at all doses of LPS (Fig. 4.3A and B). Indeed, outside of very high doses and early

timepoints (Fig. 4.3B), constitutive shuttling generally provides negative flux, partially

balancing ligand-induced traffic. These conclusions appear to be robust to a high degree

of parameter perturbation (Fig. 4.13,”Methods”).
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Predicted mechanism-specific fluxes of the endosomal ligand-TLR4 complex with 10ng/ml
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to bright lines). Flux analysis performed by Zhang Cheng.
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We additionally examined in silico whether these flux-based conclusions would

be reflected in the relative requirement of each trafficking mechanism, an isolation that

would be difficult to attain experimentally. However, when either mechanism was re-

moved from the model, total TLR-mediated NF-κB activation was actually enhanced

(Fig. 4.3C, cf. Fig. 4.1F). By decreasing transport away from the plasma membrane,

TRIF signaling is indeed lowered (and nearly eliminated in the constitutive shuttle-only

model), but MyD88 signaling is greatly enhanced in both cases, as more TLR4 per-

sists on the plasma membrane, well above the Myddosome’s threshold of activation.

Thus while ligand-induced shuttling proves essential in TRIF activation, both shuttling

modalities are critical for enforcing the transience of MyD88 activation. While endo-

somal shuttling controls simultaneous downregulation of MyD88 activity and upregu-

lation of TRIF, the maturation of early endosomes into late endosomes is associated

with the degradation of TLR4 and shutoff of the TRIF response40;60. We measured this

process in single cells by observing single-phagosome maturation in RAW 264.7 cells

exposed to E. coli conjugated to the pH-responsive dye pHrodo red (Fig. 4.4A). Fluores-

cent intensity of endosome-localized pHrodo increases over pH ranges associated with

the progress of endosome through early to late stages before eventually plateauing, on

average, after 10-12 hrs (Fig. 4.14,”Methods”).

We associated segmented pHrodo/endosome spots to single cells, and measured

the fluorescent increase of these single cell spots over time, normalized to their final

state (measured at 17.5 hrs, Fig. 4.4B). We then computed the time taken for each cell to

cross given specific maturation thresholds: depending on the threshold applied, a range

of maturation times is generated, resembling a normal distribution with a mean ranging

from 4 to 10 hrs and a standard deviation of 1-2 hrs (Fig. 4.4C). These times suggested

a distribution of delays, after which endosomal ligand-TLR4 complexes would undergo

a rapid degradation.

To determine the maturation threshold that functionally downregulates TRIF sig-

naling (Fig. 4.4D), we measured the timing of final NF-κB downregulation in single

cells (Fig. 4.4E) revealing a distribution centered at roughly 6.5-7 hrs (Fig. 4.4F). In our
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model, distributed TRIF and NF-κB shutoff times (Fig. 4.4G) were closely correlated,

and the effective delay between them was about 2-3 hrs (Fig. 4.4H, 2 red lines). The

best-fit maturation time, then, was estimated to match a normal distribution of 4.4± 1.2

hrs corresponding to a 20% maturation threshold (Fig. 4.4D in red). These results reveal

the intricate relationship between constitutive and ligand induced trafficking of TLR4 to

the endosome, as well as endosomal maturation in determining transience or duration

of NF-κB , and suggest that the measured cell-to-cell variability in these processes may

directly contribute to the cell-to-cell variability observed in single cell NF-κB signaling

studies.

Explaining NF-κB variation with extrinsic noise

Prior work has sought to explain the variability of NF-κB dynamics via intrin-

sic noise arising from the small number of molecules involved in IκBÎś transcription

initiation113;93; however, in several other systems, pre-existing cell-to-cell differences

(extrinsic noise) was found to be the dominant driver of variability in cellular responses

and decisions (as calculated in Chapter 3 and reported elsewhere)112. Measured NF-κB

dynamics are highly variable and desynchronized across individuals: we observed wide

distributions of peak timing, amplitude and duration at all doses (Fig. 4.5A). We ex-

tended our modeling work to match these behaviors by focusing on extrinsic noise that

affect rates of reactions112. In addition to the measured distribution of endosome matu-

ration delays, τmature, we identified three key receptor-proximal processes in the signal

transduction cascade that may be subject to cell-to-cell differences: TLR4 synthesis,

TRIF activation, and MyD88 activation (Fig. 4.5B). We introduced extrinsic variabil-

ity into these processes by applying a zero-mean log-normally distributed multiplier

into corresponding reaction rates (Fig. 4.5B bottom). These processes were considered

representative, with log-normal distributions being the result of multiplicative combina-

tions of multiple distributed protein species. We also considered downstream processes

such as cellular RelA concentration, but found that variability in RelA concentration was
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only weakly correlated with overall NF-κB dynamics52 (Fig. 4.16,”Methods”). A model

variant that lacks endosomal maturation distribution but incorporates the three protein

distributions predicted variance in total NF-κB activity by amplitude scaling only âĂŞ

knowing the amplitude of the 2nd peak, for instance, allows nearly perfect prediction

of total NF-κB activity (r=0.98, Fig. 4.15A,”Methods”). By contrast, a model incorpo-

rating only a variable τmature predicts modulation via duration only: for a majority of

cells, there is no correlation between 2nd-phase amplitude and total activity (Fig. 4.15B,

”Methods”). The measured correlation in single cell data between these two quantities is

positive, but weak, indicating a combination of duration and amplitude modulation (r =

0.65, Fig. 4.15C, ”Methods”D), and the full model with varied protein and degradation

delays provides a good match for this observed relationship (Fig. 4.15D,”Methods”).

The full-variation model was fit to the full range of measured single cell responses, from

0.5ng/mL to 5µg/ml LPS (Fig. 4.5A). Our earlier parameterization provided us with the

mean of each of our distributed protein levels, leaving us to fit noise levels (i.e. σ of

each log-normal distribution). To do so, we used metrics (1st/2nd peak amplitude and

total activity) to compress a large set of dynamic trajectories to univariate distributions.

Model results were then optimized to fit to measured trajectories by comparing distri-

butions of both simulated and measured metrics, minimizing the Kolmogorov-Smirnov

distance between them at all doses (Fig. 4.17, ”Methods”).

Resultant single cell simulations qualitatively matched experimentally observed

responses (Fig. 4.5C and D). At the 5ng/ml dose, nearly all cells show first-peak activity,

with a smaller subset of cells exhibiting a second-peak (Fig. 4.5C). At 5µg/ml, nearly

all of the cells show a secondary peak, with some cells continuing to oscillate for up

to 8-9 hours (Fig. 4.5D). In both cases, the values sampled from each distribution for

all of the four varied parameters are shown next to the resultant simulation trajectory.

Histograms of overlaid experimental and simulation distributions of dynamical metrics

show good agreement across the full range of tested doses (Fig. 4.5E). Finally, Fourier

analysis of single cell dynamics revealed the emergence of a distinct harmonic signature,

corresponding to 2-hour periodic activity (Fig. 4.5F). Identical analyses performed on
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500 iterations of the varied single cell model shows a similar frequency distribution:

trajectories are dominated by low-frequency information, but higher doses give rise to a

consistent, distinct harmonic peak at roughly 0.5 h-1. We note that the period encoded

in these responses appears to be characteristic of the NF-κB delayed negative feedback

system: similar periods have been reported in response to other stimuli57;38.

Dynamic specifity encoded by variation in MyD88/TRIF

The extrinsic noise single cell model recapitulated many aspects of observed be-

havior, and could now be used to examine the individual contributions of introduced

noise sources. Simulated and measured NF-κB dynamics show high amounts of overall

activation variability, particularly at late timepoints (Fig. 4.6A and B). We ranked both

quantified and simulated dynamics by total response level, then applied the same or-

dering to the generated parameter values for each simulation (Fig. 4.6C). We show that

parameters determining TRIF activation and inactivation make the largest contributions

to the response strength (correlation, r, between logkaTRIF and ranking = 0.61, and corre-

lation between ÏĎmature and ranking = 0.64), while ligand-TLR4 and MyD88 activation

play weaker roles (r=0.30 and 0.18, respectively). To examine how each noise source

affects specific dynamical features of the NF-κB response, we repeated simulations us-

ing univariate distributions (Fig. 4.6D, example trajectories shown on top). Variation in

MyD88 causes modulation of 1st-peak timing and amplitude, but fails to modulate total

activity as strongly as variation in either TRIF activation and inactivation. Additionally,

we note that MyD88 variation leads to a roughly 2-fold difference in 1st-peak amplitude,

much smaller than the 8-fold difference in 2nd-peak amplitude caused by (equivalent)

TRIF noise, or the 5-fold difference in signaling duration (nuclear NF-κB > 0.015 µM)

induced by the range of maturation delays.

Our analysis suggests that the variability of NF-κB dynamics in macrophages

is largely driven by variability in TRIF signaling. To better isolate the effects of TRIF

signaling variability, we examined IRF3 dynamics, which, unlike NF-κB , is activated
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solely by the TRIF pathway, and is therefore a more direct readout for the variability of

TRIF signaling. Indeed, simulating IRF3 activity in our full-variation model predicts a

broadly distributed range of IRF3 responses (Fig. 4.7A), with a high proportion of cells

showing little-to-no-response (relative to NF-κB activity at the same dose, 30% vs 5%).

To test this prediction, we engineered a RAW264.7 cell line expressing mVenus-IRF3

in which IRF3 nuclear translocation was signal-dependent. single cell experimental

data also revealed a range of responses that were similarly distributed. (We also note

oscillatory unexpected characteristics that warrant future study.) The lack of a robust

”on” state means that transduction via the TRIF pathway inherently involves information

loss: no matter how high of an input is applied, some cells will act indistinguishably

from non-activated ones.

To quantify this phenomenon, we applied the information theory formalism out-

lined in Chapter 3 to measure the differences in the ability of MyD88 and TRIF branches

to robustly encode stimulus inputs into transcription factor outputs. We calculated chan-

nel capacity between response distributions to an ”off” dose (0.5 ng/mL LPS) and an

”on” dose of 1, 5, 50, or 500 ng/mL LPS (Fig. 4.7B). In each case, a channel capacity

of 1 bit would indicate perfect ”off” vs. ”on” encoding, allowing perfect distinction of

the two states based on measured maximal outputs.

As expected, the ability to distinguish between off and on rises with dose, but

our model predicts that the MyD88 pathway is less noisy than its counterpart. Both

Trif−/− and wt NF-κB responses show a sharp increase in transmission capability be-

tween 1ng/mL and 5ng/mL, or at our hypothesized ”switch point” for MyD88 activa-

tion (Fig. 4.7B top). Better information transmission is achieved for all doses than ei-

ther Myd88−/− NF-κB or IRF3 responses, where activity is solely controlled by TRIF

(Fig. 4.7B top/middle). Our measured datasets (1, 5, 50, and 500ng/mL LPS for NF-

κB , and 50 and 500ng/mL for IRF3) confirm this prediction: even at very high input

doses of LPS, cell-to-cell variability leads to non-robust responses in the absence of

structurally-enforced control (Fig. 4.7B, bottom).
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Discussion

Here we have pursued an iterative approach of computational modeling and ex-

perimentation to develop a predictive understanding of how TLR4-responsive NF-κB

dynamics in single cells are encoded by MyD88 and TRIF pathways. We distinguished

between several dynamic features and mapped these to underlying regulatory network

topologies and molecular biochemical characteristics. In turn, these mechanisms deter-

mine the variability of single cell responses in the population. Having achieved a base

parameterization of the model, we added extrinsic noise to match variability observed in

single cell data. Specifically, we first experimentally measured one potential source of

noise (single cell endosome maturation). We then fitted three others, related to receptor-

proximal protein species, by comparing distributions of relevant single-dimension met-

rics. While the metric-match methodology could be applied to other systems, we were

aided in this case by the temporal separation of our two pathways: as a result, aspects of

wild-type responses map uniquely to the TRIF or the MyD88 pathway.

We found that endotoxin-responsive NF-κB dynamics in macrophages are oscil-

latory, contrary to previous population-level observations in MEFs22;110. This finding

was first predicted by a model of the TLR4 signaling module, which was parameterized

based on published quantitative data and IKK measurements. It was then confirmed in

single cell experiments, which also revealed substantial cell-to-cell variability that ex-

plained why such oscillatory dynamics were not evident in prior population level mea-

surements. Thus oscillatory dynamics may be a more profound and conserved feature of

NF-κB signaling than previously thought, being independent of the stimulus, and solely

a property of IκB feedback (previously derived theoretically57). Structural characteriza-

tion of MyD8827 revealed that it oligomerizes into a large signaling molecular complex,

or signalosome. This oligomerization has been hypothesized to generate positive co-

operativity (38, 39), and similar signalsome-based cooperativity has been suggested to

generate bistability in the apoptosis decision process (40). However, though signalsome-

forming adaptor proteins have been shown to provide high specificity by selectively
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recruiting substrates (41), their effects on the dynamics of signal transduction remain

unclear27;82. Our study suggests that MyD88-signalsome-mediated cooperativity, mod-

eled by and fitted to a Hill equation, is sufficient to explain a dose threshold in both IKK

activity and NF-κB translocation. It ensures not only the reliability of MyD88 signaling

but also its transience (Fig. 4.2G, together with the translocation module, Fig.3), while

reducing its scalability in response to different doses (Fig. 4.2H). Several other signal

transmission systems upstream of NF-κB have been shown to exhibit similar thresh-

olding behavior (mediated by either cooperativity or positive feedback), including in

the TNF receptor-R1-IKK signal transduction axis105, as well as B-cell receptor (BCR)

signaling90, where CARMA1 mediates IKK-dependent positive feedback. It is worth

noting that the positive feedback motif in BCR signaling does not ensure the transience

but rather the prolongation of NF-κB dynamics. Receptor endocytosis provides tem-

poral separation between NF-κB activation from the MyD88 and TRIF sub-pathways:

though this delay is small relative to the oscillatory period caused by IκB feedback, it is

sufficiently long to ensure that first-peak timing is largely driven by MyD88 signaling,

which thereby determines the oscillatory phase of the cell. As LPS, CD14, MD-2, and

TLR4 form stable complexes72, and LPS itself is stable, receptor trafficking serves to

determine the duration of MyD88 signaling, and endosomal maturation serves to deter-

mine the duration of TRIF signaling. Our work suggests that the process of deactivation

via endosome maturation plays a role in determining total signal duration. single cell

measurements of this process showed high variability, adding another source of noise in

encoding late NF-κB activity.

Inflammatory gene expression programs induced by TLR4 signaling reach their

maximal induction at different times34, and may differentially depend on NF-κB dy-

namics. Our study suggests that genes dependent on the first peak of NF-κB activity

may show less cell-to-cell variability than those dependent on late NF-κB activity. Con-

sistent with this suggestion, a recent single cell gene expression study noted subsets

of genes that were unimodally, universally expressed early in dendritic cells exposed

to LPS, followed by a multimodal, highly-variable distribution of inflammatory gene
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expression at late times86.

Innate immune responses must ensure both high sensitivity and tight control

that provides for appropriate responses that minimize the potentially destructive conse-

quences to surrounding tissue67. The integration of two pathways with distinct signaling

topologies and systems characteristics may enable the TLR4 network accomplish these

competing tasks. Our results suggest that in the face of high extrinsic noise associated

with macrophage and micro-environment heterogeneity the MyD88 pathway is still able

to provide for reliable first signaling response due to a signalosome topology (Fig. 4.7C

left); however, this is limited in duration and not scalable with dose, minimizing the risk

of inflammatory damage. In contrast, the TRIF pathway exploits cell-to-cell variability

to provide a prolonged response only in a fraction of cells that is scalable with dose

(Fig. 4.7C, right). By limiting the number of cells that can produce cytokine at levels at

which they potentially act systemically we speculate the network behavior also reduces

the risk of inflammatory shock while providing for scalability in systemic immune acti-

vation. Recent work delineating expression control and functions of TNF is consistent

with this view: whereas local autocrine functions of TNF only require MyD88-mediated

signaling events, TRIF-mediated signaling mechanisms are required for full expression

of TNF and its (non-local) paracrine functions16.

By combining the two pathway responses (Fig. 4.7C, bottom-middle), every cell

in a population is able to mount a minimum response to the presence of LPS to provide a

digital and reliable local response, and this response is able to scale (in subsets of cells)

with the extent of the threat, tuning systemic immune functions appropriately. Our study

thus reveals how distinct topologies of innate immune signaling pathways either mitigate

or exploit molecular network noise to provide appropriate responses at the cell, tissue or

organism level appropriate to the pathogen threat while carefully controlling the risk of

endotoxic shock.
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Methods

Biochemical Assays

Wild-type and gene-deficient C57BL/6 mice were housed at UCSD in accor-

dance with protocols authorized by the Institutional Animal Care and Use Commit-

tee. Bone Marrow-Derived Macrophages (BMDMs) were generated by culturing 6 x

106 bone marrow cells from mouse femurs in suspension in L929-conditioned DMEM

on 15cm plates for 7 days, before replating them for experiments on day 8. LPS

was sourced from Sigma (B5:055). Antibodies against RelA/p65 (sc-372) were from

Santa Cruz Biotechnology. EMSA and kinase assays were performed as previously de-

scribed88.

Computational Modeling

Model Derivation

Our modeling efforts in this paper focused largely on the TLR4 module. Model

structure and parameters were derived as follows:

Ligand capture and endocytosis

Our current understanding of the mechanism by which TLR4 senses LPS is: LPS

first binds to LBP with high affinity ( 3.5nM), and then CD14 chaperones LPS from

LBP to TLR4-MD-2100. CD14 is responsible for the uptake of LPS and also controls

endocytosis of the receptor-ligand complex in a Syk-dependent manner119. Thus, CD14

is explicitly modeled here. Early studies found that there is no enzymatic digestion of the

cell surface-bound LPS54. Thus, LPS is only degraded in the endosome compartment.

We simplified the receptor and co-receptor binding into the following processes

1. LPS concentration transformation factor. The molecular weight of LPS is esti-

mated to be 10kDa (see http://textbookofbacteriology.net/endotoxin.html). The
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Figure 4.8: Biochemical assay blots. (A-C) Blots quantified in fig. 4.1. (A) IKK ki-
nase assay blot (produced with co-immunoprecipitates with NEMO), performed on wt and
knockout cell lines for 1ng/ml and 100ng/ml LPS stimulation. (B) IRF3 nuclear phospho-
rylation western blot. (C) Nuclear NF-κB electromobility shift assay (EMSA). (D) IKK
kinase assay quantified in fig. 4.2for indicated doses in BMDMs derived from indicated
knockout strains. IKK was co-immunoprecipitated with NEMO. Vertical numbers above
each the gel is the time in minutes. Biochemical experiments performed by Diana Ourthi-
ague.
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maximum dose modeled was 10 µg/ml, which equates to 1 µM. (10µg/ml =

1µM).

2. TLR4 concentration and distribution in macrophages without stimuli. It is es-

timated that the number of TLR4 receptors per cells is close to 50,000. Total

cell volume is around 4000 µm3 (Bionumbers database ID: 103566). Thus, the

default concentration of TLR4 is expected to be near 20 nM. As we know that

the majority of TLR4 resident in the cell surface for macrophage before treat-

ment108, we assume a ratio of roughly 1/20 between surface and endosome dis-

tribution of TLR4.

3. LPS binds CD14 near the cell surface (k1, k2, k3, k4). Effective concentrations

of CD14 (including its membrane and soluble forms) are set by its synthesis

(k3) and degradation rates (k4), and the dissociation constant between CD14 and

LPS (k2/k1) is estimated to be on the order of 8-10 nMciteAkashi2003. Using

this dissociation constant as a starting point, we fit data measuring the (CD14-

dependent) LPS uptake rate of cells28 to get the values for k1, k2, k3, and k4.

The resultant model fit is shown fig. 4.9, left.

4. Captured LPS binds to TLR4/MD2 complex (k5, k6) and ligand endocytosis

(k8, k12). TLR4 is generally bound with MD2, and the binding affinity (k6/k5)

between LPS and TLR4/MD2 is about 3-5 nM1. Again, using the dissocia-

tion constant to constrain parameters, we fit remaining degrees of freedom to

a TLR4 endocytosis assay (56): in this case, both the binding and the ligand-

induced endocytosis rate constants (k5, and k12,respectively) were fit (see best

fit result in fig. 4.9, right). Finally, CD14-LPS endocytosis is assumed to match

the fitted value for CD14-dependent TLR4-LPS endocytosis, or k8 = k12 = 0.066

µM−1min−1. For this and the above fit, we employed the ”patternsearch” algo-

rithm in the MATLAB R2014a Optimization Toolbox.

5. TLR4 synthesis, degradation, and shuttling (k7, k10, k11, k15) The estimated time
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Figure 4.9: Model fitting to literature data (1). Preliminary fitting to (left) LPS uptake100

and (right) TLR4 endocytosis staining119 assays was used in conjunction with dissociation
constants gathered from literature. (Open circles = assay data. Solid lines = model predic-
tion).

scale for total receptor turnover is between 1-5 times per hour94. We therefore set

the constitutive endocytosis rate of TLR4 (k10) at 0.028 min-1. We additionally

know that at steady state, given the assumption of the membrane:endosome dis-

tribution of TLR4, (k11+k15)/k10 = [TLR4]pm/[TLR4]en = 20, and that [TLR]pm

= 20*k7/k15 ,or roughly 0.02 µM. This allows for the direct estimation of rate

constants related to TLR4 synthesis (k7), degradation (k15), and shuttling (k11).

6. Ligand recycling from early endosome to plasma membrane (k13, k9). It has

been established that endosomal recycling in eukaryotes occurs via one of two

processes: a fast process via early endosome (half-life around 5 mins), and a

slower one by Rab11-containing recycling endosomes with half-life around 15

20 mins87 98. Recently, it has been found that upon stimulation, TLR4 can be

recycled via Rab11 containing recycling endosome119. We therefore assume

that receptor-ligand complexes recycle via the slow routine with a rate constant

about 0.04 min-1 (k13) and free ligand recycle with the same rate (k9 = k13).
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Kinetic threshold generated by signalosome formation

Based on the structure and behavioral differences following site-directed muta-

genesis, Lin et al. suggested a sequential assembly model for Myddosome55. In essence,

LPS binding induces both dimerization and higher-order oligomerization of TLR427.

MyD88 is then recruited to the receptors through homotypic TIR-TIR interactions and

facilitates Myddosome assembly with IRAK4 and IRAK1 or IRAK2 through homotypic

DD-DD interactions27. According to this hypothesis, we proposed a six-step model for

Myddosome formation shown in Fig. 4.2A.

Table 4.1: MyD88 reaction schema

Step Reaction k Description

1 C0 + 2M => CM2 k f The TLR4-LPS dimer (C) recruits

two MyD88 (M) molecules forming a

complex (CM2).

2 CM2 => C + 2M kb Disassociation

3 2 CM2 => C2M4 k f Two CM2 complexes bind and form

C2M4

4 2 CM2 + C2M4 => C3M6 k f C2M4 binds to CM2 forming C3M6.

5 C3M6 => 3 C + M6 k f In the C3M6 complex, interactions of

nearby MyD88 molecules form hex-

amer (M6), releasing TLR4 dimers.

6 M6 => 6 M k f Disassociation to monomers

7 M6 =>Myddosome kcat M6 continues to form the Myddo-

some, activating TRAF6

We use singular rate constants k f to represent the rate of allforward reactions, in-

cluding binding and M6 formation, and kb as the rate constants of all backward reactions
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(disassociation). We suppose that the steps 1 to 6 are fast relative to reaction 7. So based

on the quasi-steady-state hypothesis, these reactions quickly reach equilibrium given an

initial concentration of the TLR4-LPS dimer (C0). The Myddosome formation rate in 7

then is in proportion to the corresponding steady-state level of M6 (v7=kcat*M6ss).

Relative concentrations of M6ss/M0 versus the relative input concentration C0/M0

are plotted in upper-left panel of Fig. 4.10 (circles). Parameters are k f =1, kb = 0.1

and M0 = 1. These dots can be fitted by a Hill equation with Hill constant n = 3.2

(line). Thus, the Myddosome formation or MyD88 activation rate rate can be written as

v7=kcat*M6ss = kcat*C0
n/ (C0

n + km
n)*M0. In Fig. 4.10, we varied the fraction k f /kb

by changing k f only and present the dose-response between M6ss and C0 in a heat map.

Fig. 4.2 shows best-fit Hill constants between 1.8-3.2 correspond to ratios of kf/kb ratios

from 0.1 to 10. We fitted MyD88 EC50 and Hill coefficient (k20 and k21), within this

allowable range, using error terms generated from our NF-κB and IKK data.
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Model Structure

As outlined in Fig. 4.1, our reaction schema is modular: subsets, or pathways,

could be distiguished, and idividual modules interact unidirectionally with other mod-

ules at a single discrete point. Thus, the TLR4 module activates IKK and TBK kinases

via MyD88 and TRIF. The IKK module11, in turn, transduces dynamic signals, degrad-

ing IκB to activate the NF-κB module111. This module produces nuclear NF-κB activity

as a function of IÎžB degradation and synthesis control, while a separate IRF3 module

produces nuclear IRF activity as a function of import/export mechanisms controlled by

TBK1 (which is, in turn, interfaces with the TLR4 module via TRIF). Following pa-

rameterization outlined previously, we are left with the full schema shown in Fig. 4.12,

and the full set of parameter values for our newly-parameterized models are shown in

Tables 4-4 (parameters in the NF-κB module are as described previously111.) In all ta-

bles, ”pm” refers to species on the plasma membrane, ”en” refers to species in the early

endosome, and ”n” refers to species in the nucleus.

Table 4.2: TLR4 module parameters

No. Reaction Value Unit Description
1 LPS => LPSpm 4.2 min−1 Binding LPS to CD14
2 LPSpm => LPSen 0.17 min−1 LPS translocation
3 LPSen => LPSpm 0.15 min−1 LPS export
4 LPSen => 0.07 min−1 Endosomal degrada-

tion of LPS
5 LPSpm + TLR4pm =>

TLP4LPSpm
200 µM−1min−1 Association of LPS

and TLR4
6 TLP4LPSpm => LP-

Spm + TLR4pm
0.6 min−1 Disassociation of

TLR4LPS
7 LPSen + TLR4en =>

TLR4LPSen
200 µM−1min−1 Association of LPS

and TLR4
8 TLR4LPSen =>

LPSen + TLR4en
0.6 min−1 Disassociation of

complexed TLR4-LPS
9 => TLR4pm 2.31e-5 µM−1min−1 TLR4 generation

10 TLR4en => 0.07 min−1 TLR4 depletion
11 TLR4pm => TLR4en 0.021 min−1 TLR4 internalization
12 TLR4en => TLR4pm 0.14 min−1 TLR4 recycling
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Table 4.2: TLR4 module parameters (cont.)

No. Reaction Value Unit Description
13 TLR4LPSpm =>

TLR4LPSen
0.087 min−1 TLR4-LPS cendocy-

tosis
14 TLR4LPSen =>

TLR4LPSpm
0.04 min−1 TLR4-LPS complex

recycling
15 TLR4LPSen => 0.07 min−1 Receptor complex

degradation
16 MYD88 => MYD88*

; TLR4LPSpm
21.5 µM−1min−1 MyD88 activation (by

receptor complex)
17 3 Hill coef.
18 0.022 EC50: µM
19 MYD88* => MYD88 0.987 min−1 MyD88 inactivation
20 TRIF => TRIF* ;

TLR4LPSen
10767 µM−1min−1 TRIF activation by re-

ceptor complex
21 TRIF* => TRIF 0.027 min−1 TRIF inactivation

Table 4.3: IKK module parameters

No. Reaction Value Unit Description
22 TRAF6 => TRAF6* ;

MyD88*
115 µM−1min−1 TRAF6 activation by

MyD88*
23 TRAF6 => TRAF6* ;

TRIF*
0.75 µM−1min−1 TRAF6 activation by

TRIF*
24 TRAF6* => TRAF6 0.47 min−1 TRAF6 inactivation
25 IKKK => IKKK* ;

TRAF6*
0.00098 µM−1min−1 IKKK activation by

TRAF6*
26 IKKK => IKKK* 5e-7 min−1 Basal activation
27 IKKK* => IKKK 0.25 min−1 Inactivation
28 IKK => IKK* ;

IKKK*
520 µM−1min−1 Activation

29 IKK => IKK* 0.00005 min−1 Basal activation
30 IKK* => IKK 0.02 min−1 Inactivation
31 IKK* => IKKi 0.15 min−1 Inactivation
32 IKKi => IKK 0.02 min−1 Inactivation
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Table 4.4: IRF3 module parameters

No. Reaction Value Unit Description
33 TBK1 => TBK1* ;

TRIF*
0.0057 µM−1min−1 Activation

34 TBK1* => TBK1 0.179 min−1 Inactivation
35 IRF3 => IRF3* ;

TBK1
12.8415 µM−1min−1 Activation

36 IRF3* => IRF3 0.0000010142 min−1 Inactivation
37 IRF3n => IRF3n* 0.0143 min−1 Activation
38 IRF3n* => IRF3* 0.0194 min−1 Inactivation
39 IRF3 => IRF3n 0.00091935 min−1 Translocation
40 IRF3n => IRF3 3.6871 min−1 Translocation
41 IRF3* => IRF3n* 0.0275 min−1 Translocation
42 IRF3n* => IRF3* 0.4145 min−1 Translocation
43 => IRF3 1.0546 µM−1min−1 Synthesis
44 IRF3* => 0.015 min−1 Degradation
45 IRF3n => 0.0091 min−1 Degradation
46 IRF3 => 0.0013 min−1 Degradation
47 IRF3n* => 0.0584 min−1 Degradation

Endosome flux and maturation

In order to test the parameter dependence/robustness of shuttle flux contribution,

we measured the ”relative sum of flux difference” (RSFD). We then analyzed RSFD

as a function of altered parameters involved in endocyotis/recycling (Fig. 4.13). More

positive values indicate a higher contribution of ligand-induced shuttling (LI), and more

negative values indicate a higher contribution of constitutive shuttling (CS). The formula

for RSFD is given by:

RSFD(t) =

∫ t
0 f luxLIdt−

∫ t
0 f luxCSdt

max(
∫ t

0 f luxLIdt,
∫ t

0 f luxCSdt)
(4.1)

Endosome maturation was performed as shown in Fig. 4.14. For each image

taken of the pHrodo-E. coli, we first used a high-pass filter (designed to target spacial
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features <10 pixels in diameter) to emphasize individual spots and better resolve phago-

somes that were slightly above or below the focal plane. On the first iteration of the

measurement, the algorithm would select an appropriately late frame (after >10 hrs of

stimulation) and determine an appropriate threshold to identify bright spots, using the

speckle-noise thresholding algorithm outlined in Chapter 2. All subsequent frames, af-

ter high-pass filtering, were then thresholded using this value, and individual dots were

counted, their intensities measured, and assigned to cells according to the tracking algo-

rithm’s estimate of cytoplasmic boundaries. Each cell, then, posessed a discrete set of

”dots” that increased in brightness over time before eventual saturation at roughly 10-12

hrs.

In modeling this process, we noted that much of the cell-to-cell variation was not

in the rate of brightness increase (or maturation rate), but rather the delay time before

initial maturation was noted. For this reason, we chose to model the process as a variable

discrete delay, after which degradation of bound TLR4 would rapidly increase. In our

model, this allowed partial decoupling between amplitude and duration, which was a

good match to the data that we measured (Fig. 4.15).

Modeling dynamic variation using extrinsic noise

After decoupling the morphological change in the LPS response from the sig-

naling response (described in Chapter 2), we observed little predictive effect of RelA

abundance on downstream dynamics (Fig. 4.16). Indeed, contrary to previous hypothe-

ses96;109, increased RelA was actually associated, however weakly, with decreased late

NF-κB activity. We chose, instead, to focus on modeling upstream sources of noise: re-

cent information-theoretic work has suggested that the IκB-NF-κB network contributes

only 10% of the total noise (or information loss) to the system response79. We focused,

as noted previously, on TLR4 synthesis variation (which may also be associated with

MD2), and MyD88/TRIF variation, which were held equal. These distributions were

assumed to have log-normal distributions, with previously-parameterized mean values.
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Our scan, then, was restricted to two values.

In order to match branch- and receptor-associated variation to the variation ob-

served in the measured single cell dynamics, we minimized the residuals left from a

Kolmogorov-Smirnov test performed upon a distribution of NF-κB signal responses,

which were compressed to single metrics (1st peak amplitude, 2nd peak amplitude,

and total atcivity). The average residual, of distributions at 5 different doses of LPS

spanning 0.5ng/mL to 5µg/mL LPS, was scaled from 0-1 (using the maximal and min-

imal residual observed for the search range of log-normal variabilities) to create a ”fit

score”. Individual-metric fit scores, and averaged fit scores over all metrics, are shown

in Fig. 4.17.

Chapter 4 contains material originally published as ”Distinct Dynamical Charac-

teristics Conferred by the MyD88 and TRIF Pathways in TLR4 Signaling”. Cheng, Z.*,

Taylor, B.*, Ourthiague, D., and Hoffmann, A. Science Signaling (2015 - in review).

Copyright permission to republish here was granted by AAAS.
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Figure 4.17: K-S scoring of modeled variabilities. Single cell simulations reflect quan-
titative metrics characterizing measured single cell responses. Scores between measured
dynamics (quantified using several metrics) and simulations were calculated using resid-
uals of a two-sample Kolmogorov-Smirnov test: each sample was the distribution, at a
given dose, of simulation and measured behaviors. Test residuals were summed, inverted
and normalized (such that a lower residual sum gives a score closer to 1) for all 5 doses
(0.5ng/mL - 5 µg/mL) to give a total score for each set of input standard deviations. These
scores were then combined and scaled to choose the best-fit standard deviation pair. (σTLR4
= 0.15 and σMyD88/TRIF = 0.45).



Chapter 5

Discussion and future directions

Predictive and mechanistic understanding of how individual NF-κB dynamics

are assembled into a greater whole offers exciting potential. The potential in medicine,

of moving beyond a crude, binary understanding of NF-κB activation in various forms

of disease, is tantalizing: we could diagnose conditions, for instance, based on the dy-

namic responses of cells isolated from a patient. In pharmacology, we might move

past simplistic targeting of network elements, and instead modulate dynamic responses,

minimizing deleterious side effects11. However, much work remains to be done in un-

derstanding not only how NF-κB dynamics function in specific contexts, but also the

biological basis for signal-specific responses. Below, we outline three future directions,

which build on this work and move towards these goals.

1. Application in primary cells. Though the RAW264.7 cells used in these stud-

ies better approximate true innate immune cells, they are still strongly compro-

mised. Simply put, they don’t mount strong responses to many of the things

that we know macrophages can respond to (e.g. TLR9 stimuli or TNF). Given

this, we risk strongly underestimating the nature of ”stimulus specificity”. The

lack of publications using the existing EGFP-p65 mouse23 suggests there are

technical limitations to measurement, but an improved mouse line would allow

significant progress, both by using crosses with the extensive array of knockout
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lines currently available to do sufficiency/requirement testing on network com-

ponents, and the study of dynamics in better-approximated disease models, such

as tissue-associated macrophages74, or immunomodulated macrophages62.

2. Study of co-signaling dynamics. While NF-κB has been studied in great detail,

it is almost never active in isolation. Multiple families of transcription factors,

such as AP-1, cJun, and STAT are often activated as part of the same cascade of

events that triggers NF-κB . Any study seeking to extract information from NF-

κB alone will necessarily be incomplete, as it may only be one piece in a larger,

coherent whole. Fortunately, the analytical frameworks presented here, both

for image analysis, and interpretation of data in an information context, would

readily scale to the study of cells with multiple fluorescently-tagged proteins.

3. Understanding decoding mechanisms. We recognize that all our efforts so far

only constitute one half of the information transmission puzzle. Measured single

cell dynamics can teach about the network mechanisms by which information is

encoded, but stop there: without coupling dynamics to downstream processes

(be they behavioral decisions or gene expression), we cannot link the two. Sev-

eral hypotheses have been put forward about how transcription factor dynamics

might potentially be decoded32;70, and technologies have recently become avail-

able to allow high-throughput transcriptome analysis114;86 in single cells, but

the next barrier to overcome will be gathering dynamics and results in the same

mammalian cell.
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