
UCLA
UCLA Previously Published Works

Title
Mekler’s construction and generalized stability

Permalink
https://escholarship.org/uc/item/8wj4h8p8

Journal
Israel Journal of Mathematics, 230(2)

ISSN
0021-2172

Authors
Chernikov, Artem
Hempel, Nadja

Publication Date
2019-03-01

DOI
10.1007/s11856-019-1836-z
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8wj4h8p8
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

70
8.

03
72

4v
1 

 [
m

at
h.

L
O

] 
 1

1 
A

ug
 2

01
7

MEKLER’S CONSTRUCTION AND GENERALIZED STABILITY

ARTEM CHERNIKOV AND NADJA HEMPEL

Abstract. Mekler’s construction gives an interpretation of any structure in
a finite relational language in a pure group (nilpotent of class 2 and exponent
p > 2, but not finitely generated in general). Even though this construction
is not a bi-interpretation, it is known to preserve some model-theoretic tame-
ness properties of the original structure including stability and simplicity. We
demonstrate further that k-dependence of the theory is preserved, for all k ∈ N,
and that NTP2 is preserved. We apply this result to obtain first examples of
strictly k-dependent pure groups.

1. Introduction

Mekler’s construction [11] provides a general method to interpret any structure
in a finite relational language in a pure 2-nilpotent group of finite exponent (the
resulting group is typically not finitely generated). This is not a bi-interpretation,
however it tends to preserve various model-theoretic tameness properties. First
Mekler proved that for any cardinal κ the constructed group is κ-stable if and only
if the initial structure was [11]. Afterwards, it was shown by Baudisch and Pentzel
that simplicity of the theory is preserved, and by Baudisch that, assuming stability,
CM-triviality is also preserved [2]. See [10, Section A.3] for a detailed exposition of
Mekler’s construction.

The aim of this paper is to investigate further preservation of various gener-
alized stability-theoretic properties from Shelah’s classification program [14]. We
concentrate on the classes of k-dependent and NTP2 theories.

The classes of k-dependent theories (see Definition 4.1), for each k ∈ N, were
defined by Shelah in [16], and give a generalization of the class of NIP theories
(which corresponds to the case k = 1). See [7, 9, 15] for some further results about
k-dependent groups and fields and connections to combinatorics. In Theorem 4.7
we show that Mekler’s construction preserves k-dependence. Our initial motivation
was to obtain algebraic examples that witness the strictness of the k-dependence
hierarchy. For k ≥ 2, we will say that a theory is strictly k-dependent if it is k-
dependent, but not (k−1)-dependent. The usual combinatorial example of a strictly
k-dependent theory is given by the random k-hypergraph. The first example of a
strictly 2-dependent group was given in [9] (it was also considered in [17, Example
4.1.14]):

Example 1. Let G be ⊕ωFp, where Fp is the finite field with p elements. Consider
the structure (G,Fp, 0,+, ·), where 0 is the neutral element, + is addition in G, and
· is the bilinear form (ai)i · (bi)i =

∑

i aibi from G to Fp. This group is not NIP, but
is 2-dependent. In the case p = 2, this structure is mutually interpretable with an
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2 ARTEM CHERNIKOV AND NADJA HEMPEL

extra-special p-group (see e.g. the appendix in [12]), hence providing an example
of a strictly 2-dependent pure group.

In Corollary 4.8 we use Mekler’s construction to show that for every k, there is
a strictly k-dependent pure group.

The class of NTP2 theories was defined in [13] (see Definition 5.1). It gives a
common generalization of simple and NIP theories (along with containing many new
important examples), and more recently it was studied in e.g. [3–6]. In Theorem
5.6 we show that Mekler’s construction preserves NTP2.

The paper is organized as follows. In Section 2 we review Mekler’s construction
and record some auxiliary lemmas, including the key lemma about type-definability
of partial transversals and related objects (Proposition 2.14). In Section 3 we
prove that NIP is preserved. In Section 4 we discuss indiscernible witnesses for k-
dependence and give a proof that Mekler’s construction preserves k-dependence. As
an application, for each k ≥ 2 we construct a strictly k-dependent pure group and
discuss some related open problems. Finally, in Section 5 we prove that Mekler’s
construction preserves NTP2.

2. Preliminaries on Mekler’s construction

We review Mekler’s construction from [11], following the exposition and notation
in [10, Section A.3] (to which we refer the reader for further details).

Definition 2.1. A graph (binary, symmetric relation without self-loops) is called
nice if it satisfies the following two properties:

(1) there are at least two vertices, and for any two distinct vertices a and b there
is some vertex c different from a and b such that c is joined to a but not to b;

(2) there are no triangles or squares in the graph.

For any graph C and an odd prime p, we define a 2-nilpotent group of order p
denoted by G(C) which is generated freely by the vertices of C by imposing that
two generators commute if and only if they are connected by an edge in C.

Now, let C be a nice graph and consider the group G(C). Let G be any model
of Th(G(C)). We consider the following ∅-definable equivalence relations on the
elements of G.

Definition 2.2. Let g and h be elements of G, then

• g ∼ h, if CG(g) = CG(h).
• g ≈ h if there is some natural number r and c in Z(G) such that g = hr · c.
• g ≡Z h if g · Z(G) = h · Z(G).

Note that g ≡Z h implies g ≈ h, which implies g ∼ h.

Definition 2.3. Let g be an element of G. We say that g is of type q if there are
q-many different ≈-equivalence classes in the ∼-class [g]∼ of g. Moreover, we say
that g is isolated if [g]≈ = [g]≡Z

.

All elements of G can be partitioned into four different ∅-definable classes (see
[10, Section A.3] for the details):

(1) elements of type 1 which are not isolated, also referred to as elements of type
1ν (in G(C) this class includes the elements given by the vertices of C),

(2) elements of type 1 which are isolated, also referred to as elements of type 1ι,
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(3) elements of type p, and
(4) elements of type p− 1.

The elements of the latter two types are always non-isolated.

Definition 2.4. For every element g ∈ G of type p, the elements of G which
commute with g are precisely the elements ∼-equivalent to g, and an element b of
type 1ν together with the elements ∼-equivalent to b. Such an element b is called
a handle of g, and is definable from g up to ∼-equivalence.

Note here, that the center of G as well as the quotient G/Z(G) are elementary
abelian p-groups. Hence they can be viewed as Fp-vector spaces. In the latter,
being independent over some supergroup of Z(G) refers to linear independence in
terms of the corresponding Fp-vector space.

Definition 2.5. Let G be a model of Th(G(C)). We define the following:

• A 1ν-transversal of G is a set Xν consisting of one representative for each ∼-class
of elements of type 1ν in G.

• An element is proper if it is not a product of any elements of type 1ν in G.
• A p-transversal of G is a set Xp of representatives of ∼-classes of proper elements
of type p in G which is maximal with the property that if Y is a finite subset of
Xp and all elements of Y have the same handle, then Y is independent modulo
the subgroup generated by all elements of type 1ν in G and Z(G).

• A 1ι-transversal of G is a set Xι of representatives of ∼-classes of proper elements
of type 1ι in G which is maximal independent modulo the subgroup generated
by all elements of types 1ν and p in G, together with Z(G).

• A set X ⊆ G is a transversal of G if X = Xν ⊔Xp ⊔Xι, where Xν , Xp and Xι

are some transversals of the corresponding types.

Notation 1. For a given (partial) transversal X , we denote by Xν , Xp, and Xι

the elements in X of the corresponding types.

Lemma 2.6. Let G |= Th(G(C)). Given a small tuple of variables x̄ = x̄ν⌢x̄p⌢x̄ι,
there is a partial type Φ(x̄) such that for any tuples āν , āp and āι in G, we have
that G |= Φ(āν , āp, āι) if and only if every element in āν , āp and āι is of type 1ν , p
and 1ι, respectively, and ā = āν⌢āp⌢āι can be extended to a transversal of G.

Proof. By inspecting Definition 2.5. �

Fact 2.7. [10, Corollary A.3.11] Let C be a nice graph. There is an interpretation
Γ such that for any model G of Th(G(C)), we have that Γ(G) is a model of Th(C).
More specifically, the graph Γ(G) = (V,R) is given by the set of vertices V = {g ∈
G : g is of type 1ν , g /∈ Z(G)}/ ≈ and the (well-defined) edge relation ([g]≈, [h]≈) ∈
R ⇐⇒ g, h commute.

The full set of transversal gives another important graph, a so called cover of a
nice graph, which we define below.

Definition 2.8. (1) Let C be an infinite nice graph. A graph C+ containing C as
a subgraph is called a cover of C if for every vertex b ∈ C+ \C, either there is
a unique vertex a in C that is joined to b and this vertex a has infinitely many
adjacent vertices in C, or b is joined to no vertex in C+.

(2) A cover C+ of C is a λ-cover if
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• for every vertex a in C the number of vertices in C+ \C joined to a is λ if a
is joined to infinitely many vertices in C, and zero otherwise;

• the number of new vertices in C+\C which are not joined to any other vertex
in C+ is λ.

Observe that a cover of a nice graph is generally not a nice graph.

Remark 2.9. Given a 1ν-transversal Xν of G, we identify the elements of Xν with
the set of vertices of Γ(G) by mapping x ∈ Xν to its class [x]≈. Then a set of
transversals X can be viewed as a cover of the nice graph given by the elements of
type 1ν in X , with the edge relation given by commutation.

Fact 2.10. [10, Theorem A.3.14, Corollary A.3.15] Let G be a model of Th(G(C))
and let X be a transversal of G.

(1) There is a subgroup of Z(G) which we denote by HX such that G = 〈X〉×HX .
(2) The group HX is an elementary abelian p-group, in particular Th(HX) is stable

and eliminates quantifiers.
(3) If G is saturated, then both the graph Γ(G) and the group HX are also saturated

(as |HX | = |G| and Th(HX) is uncountably categorical).
(4) If G is a saturated model of Th(G(C)), then every automorphism of Γ(G) can

be lifted to an automorphism of G (equivalently, one could work with a special
model instead of a saturated one to avoid any set-theoretic issues).

(5) 〈X〉 ∼= G(X) via an isomorphism which is the identity on the elements in X
(where X is viewed as a graph as in Remark 2.9).

The following lemma is a refinement of Fact 2.10(4) and [2, Lemma 4.12].

Lemma 2.11. Let G be a saturated model of Th(G(C)), X be a transversal, and
HX ≤ Z(G) be such that G = 〈X〉 ×HX . Let Y and Z be two small subsets of X
and let h̄1, h̄2 be two tuples in HX . Suppose that

• there is a bijection f between Y and Z which respects the 1ν-, p-, and 1ι-parts,
the handles, and tpΓ(Y

ν) = tpΓ(f(Y
ν)),

• tpHX
(h̄1) = tpHX

(h̄2).

Then there is an automorphism of G coinciding with f on Y and sending h̄ to k̄.

Proof. By Remark 2.9, we identify Γ(G) with Xν. By saturation of Γ(G), f ↾ Yν
extends to an automorphism σ of the graph Xν . As X is a |G|-cover of Xν by
saturation of G and f respects the 1ν-, p-, and 1ι-parts and the handles, σ extends
to an automorphism τ of the graph X agreeing with f . By Fact 2.10(5), we have
that 〈X〉 ∼= G(X) and τ lifts to an automorphism of the group G(X), hence to an
automorphism τ̃ of 〈X〉 extending f by construction. As HX is saturated by Fact
2.10(3), there is an automorphism ρ of HX which maps h̄1 to h̄2. We can now take
the cartesian product of τ̃ × ρ to obtain an automorphism of G which extends f
and maps h̄1 to h̄2. �

Next, we observe that in Fact 2.10 the choice of a transversal and an elementary
abelian subgroup of the center in the decomposition of G can be made entirely
independently of each other.

Lemma 2.12. Let G be any model of Th(G(C)), let X be a transversal of G. Then
we have G′ = 〈X〉′.
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Proof. Let H be a subgroup of Z(G) as in Fact 2.10, such that G = 〈X〉 × H .
It is enough to show that for all g, g′ ∈ G, we have that [g, g′] is in 〈X〉′. We
choose x1, . . . , xn, y1, . . . , ym ∈ X and h, k ∈ H such that g =

∏n

i=1 xi · h and
g′ =

∏m

j=1 yj · k. Then, using that G is 2-nilpotent, we have

[g, g′] = [

n
∏

i=1

xi · h,
m
∏

j=1

yj · k] =
n
∏

i=1

m
∏

j=1

[xi, yj ],

which is in 〈X〉′. �

Remark 2.13. This implies that in fact 〈X〉′∩Z(G) is the same for any transversal
X of G, as it coincides with G′ ∩ Z(G).

Proposition 2.14. Let G be a model of Th(G(C)), and let x̄ = x̄ν⌢x̄p⌢x̄ι and
ȳ be two small tuples of variables. Then there is a partial type π(x̄, ȳ) such that
for any tuples of pairwise distinct elements ā = āν⌢āp⌢āι and b̄ from G we have
that G |= π(ā, b̄) if and only if we can extend ā to a transversal X of G and find
a subset H ⊆ Z(G) containing b̄ which is linearly independent over G′, so that
G = 〈X〉 × 〈H〉.

Proof. Let Ψ(vi : i ∈ κ) be the partial type consisting of the formulas

∀g0, . . . , g2m





∧

α0,...,αn∈p×n+1\{0,...,0}



 vα0

i0
· . . . · vαn

in
6=

m
∏

j=1

[g2j , g2j+1]









for all m,n ∈ ω and i0, . . . , in ∈ κ. An easy inspection yields that for any tuple b̄
in Z(G), b̄ |= Ψ(ȳ) if and only if b̄ is linearly independent in the elementary abelian
p-group Z(G) over G′ (seen as an Fp-vector space). Combining this with Remark
2.13, there is a subgroup H of G containing b̄ such that for any transversal X of
G, we have that G = 〈X〉 ×H . Combining this with Lemma 2.6, we can conclude.

�

3. NIP

We begin with the simplest case demonstrating that NIP is preserved. Recall
the following basic characterization of NIP.

Fact 3.1. (see e.g. [1]) Let T be a complete first-order theory and let M |= T
be a monster model. Let κ be the regular cardinal |T |+. Then the following are
equivalent.

(1) T is NIP.
(2) For every indiscernible sequence I = (āi : i ∈ κ) of finite tuples and a finite

tuple b̄ in M, there is some α < κ such that tp(b̄āi) = tp(b̄āj) for all i, j > α.

As in Section 2, let C be a nice graph and let G(C) be the 2-nilpotent group
of order p which is freely generated by the vertices of C by imposing that two
generators commute if and only if they are connected by an edge in C.

Theorem 3.2. Th(C) is NIP if and only if Th(G(C)) is NIP.

Proof. If Th(G(C)) is NIP, then Th(C) is also NIP as C is interpretable in G(C).
Now, we want to prove the converse. Let G |= Th(G(C)) be a saturated model,

and assume that Th(G(C)) has IP but Th(C) is NIP. Fix κ to be (ℵ0)
+. Then there

is some formula φ(x̄, ȳ) ∈ LG, and a sequence I = (āi : i ∈ κ) in G shattered by
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φ(x̄, ȳ), i.e. such that for every S ⊆ κ, there is some b̄S in G satisfying G |= φ(b̄S , āi)
if and only if i ∈ S.

LetX be a transversal forG andH ⊆ Z(G) a set of elements linearly independent
over G′ and such that G = 〈X〉×〈H〉. Then for each i ∈ κ we have, slightly abusing
notation, āi = ti(x̄i, h̄i) for some LG-term ti and some finite tuples x̄i = x̄ν⌢i x̄p⌢i x̄ιi
from X where x̄νi , x̄

p
i , x̄

ι
i list all of the elements of type 1ν, p, 1ι in x̄i, respectively,

and h̄i from H . After adding some elements of type 1ν to the beginning of the
tuple and changing the term ti accordingly, we may assume that for each i ∈ κ and
j < |xpi |, the handle of the j-th element of x̄pi is the j-th element of x̄νi (there might
be some repetitions of elements of type 1ν as different elements of type p might
have the same handle). As κ > |LG| + ℵ0, passing to a cofinal subsequence and
reordering the tuples if necessary, we may assume that:

(1) ti = t ∈ LG and |x̄i| and |h̄i| are constant for all i ∈ κ,
(2) |x̄νi |, |x̄

p
i |, |x̄

ι
i| are constant for all i ∈ κ.

Consider the LG-formula φ′(x̄, ȳ′) = φ(x̄; t(ȳ1, ȳ2)) with ȳ′ := ȳ⌢1 ȳ2 and |ȳ1| =
|x̄i| and |ȳ2| = |h̄i|. Let ā′i := x̄⌢i h̄i. Then the sequence I ′ := (ā′i : i ∈ κ) is
shattered by φ′(x̄, ȳ′). Note however that I ′ is generally not indiscernible.

To fix this, let J = (x̄′i, h̄
′
i : i ∈ κ) be an LG-indiscernible sequence of tuples in

G with the same EM-type as I ′. Then we have:

(1) J is still shattered by φ′(x̄, ȳ′),
(2) for each i ∈ κ and j < |xpi |, we have that the handle of the j-th element of (x̄′i)

p

is the j-th element of (x̄′i)
ν (since being a handle is a definable condition, see

Definition 2.4, and the corresponding property was true on all elements in I ′).
(3) The set of all elements of G appearing in the sequence (x̄′i : i ∈ κ) still can be

extended to some transversal X ′ of G.
(4) The set of all elements of G appearing in the sequence (h̄′i : i ∈ κ) can be

extended to some set H ′ ⊆ Z(G) linearly independent over G′ and such that
G = 〈X ′〉 × 〈H ′〉.

The last two conditions hold as the sets of all elements appearing in the sequences
(x̄i : i ∈ κ) and (h̄i : i ∈ κ) satisfied the respective conditions, these conditions are
type-definable by Proposition 2.14 and J has the same EM-type as I ′.

Now let b̄ ∈ G be such that both sets {i ∈ κ : G |= φ′(b̄, ā′i)}, {i ∈ κ : G |=
¬φ′(b̄, ā′i)} are cofinal in κ. Then b̄ = s(z̄, k̄) for some term s ∈ LG and some
finite tuples z̄ in X ′ and k̄ in H ′. Write z̄ = z̄ν⌢z̄p⌢z̄ι, with z̄ν , z̄p, z̄ι listing the
elements of the corresponding types in z̄. In the same way as extending x̄i, we may
add elements to the tuple z̄ and assume that the handle of the j-th element of z̄p

is the j-th element of z̄ν .
Consider all of the elements in z̄ν and ((x̄′i)

ν : i ∈ κ) as elements in Γ(G) — a
saturated model of Th(C), and note that as Γ(G) is interpretable in G we have that
the sequence ((x̄′i)

ν : i ∈ κ) is also indiscernible in Γ(G). As Th(Γ(G)) is NIP, by
Fact 3.1 there is some α < κ such that tpΓ(z̄

ν(x̄′i)
ν) = tpΓ(z̄

ν(x̄′j)
ν) for all i, j > α.

Moreover, using indiscernibility of the sequence (x̄′i) and possibly throwing away
finitely many elements from the sequence, we have that

(x̄′i)
p ∩ z̄p = (x̄′j)

p ∩ z̄p, (x̄′i)
ι ∩ z̄ι = (x̄′j)

ι ∩ z̄ι (as tuples)

and x̄′i ∩ x̄
′
j is constant, for all i, j ∈ κ. Thus, for any i, j > α mapping x̄′iz̄ to x̄′j z̄

preserving the order of the elements defines a bijection σi,j such that:

(1) σi,j is equal to σi,j on (x̄′i)
ν z̄ν , hence tpΓ((x̄

′
i)

ν z̄ν) = tpΓ(σi,j((x̄
′
i)

ν z̄ν)),
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(2) the map σi,j fixes z̄,
(3) the map σi,j respects the 1

ν-, p- and 1ι-parts and the handles (since the handle
of the j-th element of x̄pi is the j-th element of x̄νi ).

Now consider k̄ and (h̄i : i ∈ κ) as tuples of elements in 〈H ′〉, which is a
model of the stable theory Th(〈H ′〉). Moreover, as (hi : i ∈ κ) is LG-indiscernible
and Th(〈H ′〉) eliminates quantifiers, (hi : i ∈ κ) is also indiscernible in the sense
of Th(〈H ′〉). Hence, by stability, there is some β ∈ κ such that tp〈H′〉(k̄h̄i) =

tp〈H′〉(k̄h̄j) for all i, j > β.

Now, Lemma 2.11 gives us an automorphism of G sending x̄ih̄iz̄k̄ to x̄j h̄j z̄k̄, so
tpG(x̄ih̄i/z̄k̄) = tpG(x̄j h̄j/z̄k̄) for all i, j > max{α, β}. This contradicts the choice
of b̄ = s(z̄, k̄). �

An alternative argument for NIP. An alternative proof can be provided relying
on the previous work of Mekler and set-theoretic absoluteness.

Recall that the stability spectrum of a complete theory T is defined as the function

fT (κ) := sup{|S1(M)| :M |= T, |M | = κ}

for all infinite cardinals κ.
For the following two facts see e.g. [8] and references there.

Fact 3.3. (Shelah) Let T be a theory in a countable language.

(1) It T is NIP, then fT (κ) ≤ (ded κ)ℵ0 for all infinite cardinals κ.
(2) If T has IP, then fT (κ) = 2κ for all infinite cardinals κ.

It is possible that in a model of ZFC, dedκ = 2κ for all infinite cardinals κ (e.g.
in a model of the Generalized Continuum Hypothesis). However, there are models
of ZFC in which these two functions are different.

Fact 3.4. (Mitchell) For every cardinal κ of uncountable cofinality, there is a car-
dinal preserving Cohen extension such that (dedκ)ℵ0 < 2κ.

In the original paper of Mekler [11] it is demonstrated that if C is a nice graph
and Th(C) is stable, then Th(G(C)) is stable. More precisely, the following result
is established (in ZFC).

Fact 3.5. Let C be a nice graph. Then fTh(G(C))(κ) = fTh(C)(κ)+ℵ0 for all infinite
cardinals κ.

Finally, note that the property “T is NIP” is a finitary formula-by-formula state-
ment, hence set-theoretically absolute. Thus in order to prove Theorem 3.2, it is
enough to prove it in some model of ZFC. Working in Mitchell’s model for some
κ of uncountable cofinality (hence (ded κ)ℵ0 + ℵ0 < 2κ), it follows immediately by
combining Facts 3.3 and 3.5.

4. Preservation of k-dependence

We are following the notation from [7], and begin by recalling some of the facts
there.

Definition 4.1. A formula ϕ (x; y0, . . . , yk−1) has the k-independence property
(with respect to a theory T ), if in some model there is a sequence (a0,i, . . . , ak−1,i)i∈ω

such that for every s ⊆ ωk there is bs such that

|= φ
(

bs; a0,i0 , . . . , ak−1,ik−1

)

⇔ (i0, . . . , ik−1) ∈ s.
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Here x, y0, . . . , yk−1 are tuples of variables. Otherwise we say that ϕ (x, y0, . . . , yk−1)
is k-dependent. A theory is k-dependent if it implies that every formula is k-
dependent.

To characterize k-dependence in a formula-free way, we have to work with a more
complicated form of indiscernibility.

Definition 4.2. Fix a language Lk
opg = {R(x0, . . . , xk−1), <, P0(x), . . . , Pk−1(x)}.

An ordered k-partite hypergraph is an Lk
opg-structure A = (A;<,R, P0, . . . , Pk−1)

such that:

(1) A is the (pairwise disjoint) union PA
0 ⊔ . . . ⊔ PA

k−1,

(2) RA is a symmetric relation so that if (a0, . . . , ak−1) ∈ RA then Pi∩{a0 . . . ak−1}
is a singleton for every i < k,

(3) <A is a linear ordering on A with P0(A) < . . . < Pk−1(A).

Fact 4.3. Let K be the class of all finite ordered k-partite hypergraphs, and let
K∗ = {A : A ⊆ B ∈ K} be the hereditary closure of K. Then K∗ is a Fräıssé
class, and its limit is called the ordered k-partite random hypergraph, which we
will denote by Gk,p. An ordered k-partite hypergraph A is a model of Th(Gk,p) if
and only if:

• (Pi(A), <) is a model of DLO for each i < k,
• for every j < k, any finite disjoint sets A0, A1 ⊂

∏

i<k,i6=j Pi(A) and b0 < b1 ∈
Pj(A), there is b0 < b < b1 such that: R(b, ā) holds for every ā ∈ A0 and ¬R(b, ā)
holds for every ā ∈ A1.

We denote byOk,p the reduct ofGk,p to the language L
k
op = {<,P0(x), . . . , Pk−1(x)}.

Definition 4.4. Let T be a theory in the language L, and let M be a monster
model of T .

(1) Let I be a structure in the language L0. We say that ā = (ai)i∈I , with ai a
tuple in M, is I-indiscernible over a set of parameters C ⊆ M if for all n ∈ ω
and all i0, . . . , in and j0, . . . , jn from I we have:

qftpL0
(i0, . . . , in) = qftpL0

(j0, . . . , jn) ⇒

tpL (ai0 , . . . , ain/C) = tpL (aj0 , . . . , ajn/C) .

For any L1 ⊆ L0, (ai)i∈I is said to be L1-indiscernible if it is (I ↾ L1)-
indiscernible.

(2) For L0-structures I and J , we say that (bi)i∈J is based on (ai)i∈I over a set of
parameters C ⊆ M if for any finite set ∆ of L(C)-formulas, and for any finite
tuple (j0, . . . , jn) from J there is a tuple (i0, . . . , in) from I such that:
• qftpL0

(j0, . . . , jn) = qftpL0
(i0, . . . , in) and

• tp∆ (bj0 , . . . , bjn) = tp∆ (ai0 , . . . , ain).

The following fact gives a method for finding Gk,p-indiscernibles using structural
Ramsey theory.

Fact 4.5. [7, Corollary 4.8] Let C ⊆ M be a small set of parameters.

(1) For any ā = (ag)g∈Ok,p
, there is some (bg)g∈Ok,p

which is Ok,p-indiscernible

over C and is based on ā over C.
(2) For any ā = (ag)g∈Gk,p

, there is some (bg)g∈Gk,p
which is Gk,p-indiscernible

over C and is based on ā over C.
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Fact 4.6. [7, Proposition 6.3] Let T be a complete theory and let M |= T be a
monster model. For any k ∈ N, the following are equivalent:

(1) T is k-dependent.
(2) For any (ag)g∈Gk,p

and b with ag, b finite tuples in M, if (ag)g∈Gn,p
is Gn,p-

indiscernible over b and Lk
op-indiscernible (over ∅), then it is Lk

op-indiscernible
over b.

We are ready to prove the main theorem of the section.

Theorem 4.7. For any k ∈ N and a nice graph C, Th(C) is k-dependent if and
only if Th(G(C)) is k-dependent.

Proof. Let G |= Th(G(C)) be a saturated model, let X be a transversal, and let H
be a set in Z(G) which is linearly independent over G′ such that G = 〈X〉 × 〈H〉.
Moreover, fix κ to be ℵ+

0 .
As in the NIP case, if Th(G(C)) is k-dependent, then Th(C) is also k-dependent

as C is interpretable in G(C).
Now suppose that Th(C) is k-dependent but Th(G(C)) has the k-independence

property witnessed by the formula ϕ (x; y0, . . . , yk−1) ∈ LG. By compactness we
can find a sequence (a0,α, . . . , ak−1,α)α∈κ

such that for any s ⊆ κk there is some bs
such that

|= φ
(

bs; a0,α0
, . . . , ak−1,αk−1

)

⇔ (α0, . . . , αk−1) ∈ s.

By the choice of X and H , for each i < k and α ∈ κ, there is some term ti,α ∈ LG

and some finite tuples x̄i,α from X and h̄i,α from H such that ai,α = ti,α(x̄i,α, h̄i,α).
As κ > |LG| + ℵ0, passing to a subsequence of length κ for each i < k we may
assume that ti,α = ti and x̄i,α = x̄ν⌢i,α x̄

p⌢
i,α x̄

ι
i,α with x̄νi,α, x̄

p
i,α, x̄

ι
i,α listing all el-

ements of the corresponding type in x̄i,α and |x̄νi,α|, |x̄
p
i,α|, |x̄

ι
i,α| constant for all

i < j and α ∈ κ. Moreover, in the same way as in the NIP case, we add
the handles of the elements in the tuple x̄pi,α to the beginning of x̄νi,α. Tak-

ing ψ(x; y′0, . . . , y
′
k−1) := φ(x; t0(y

′
0), . . . , tk−1(y

′
k−1)), we see that the sequence

(x̄0,α, h̄0,α, . . . , x̄k−1,α, h̄k−1,α : α ∈ κ) is shattered by ψ, i. e. for each A ⊂ κk there
is some b̄ such that G |= ψ(b̄; x̄⌢i0 h̄i0 , . . . , x̄

⌢
ik−1

h̄ik−1
) if and only if (i0, . . . , ik−1) ∈ A.

We define an Lop-structure on κ by interpreting each of the Pi, i < k as some count-
able disjoint subsets of κ, and choosing any ordering isomorphic to (Q, <) on each
of the Pi’s. We pass to the corresponding subsequences of (x̄i,α : α ∈ κ), namely for
each i ∈ k, we consider the sequence given by (x̄i,α : α ∈ Pi). Taking these k differ-
ent sequences together we obtain the sequence (x̄⌢g h̄g : g ∈ Ok,p) indexed by Ok,p.
This sequence is shattered in the following sense: for each A ⊂ P0 × · · · × Pk−1

there is some b̄ ∈ G such that G |= ψ(b̄; x̄⌢g0 h̄g0 , . . . , x̄
⌢
gk−1

h̄gk−1
) if and only if

(g0, . . . , gk−1) ∈ A.
By Fact 4.5(1), let (ȳ⌢g m̄g : g ∈ Ok,p) be an Ok,p-indiscernible in G based on

(x̄⌢g h̄g : g ∈ Ok,p). Observe that, using Proposition 2.14 as in the proof of Theorem
3.2, we still have:

(1) (ȳ⌢g m̄g : g ∈ Ok,p) is shattered by ψ,
(2) the handle for each jth element in the tuple ȳpg is the jth element of the tuple

ȳνg ,
(3) the set of all elements of G appearing in (ȳg : g ∈ Ok,p) is a partial transversal,

hence can be extended to a transversal Y of G,
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(4) the set of all elements of G appearing in (m̄g : g ∈ Ok,p) is still a set of
elements in Z(G) linearly independent over G′, hence can be extended to a
linearly independent set M such that G = 〈Y 〉 × 〈M〉.

We can expand Ok,p to Gk,p (see Fact 4.3). As (ȳ⌢g m̄g : g ∈ Ok,p) is shattered by

ψ, we can find an element b ∈ G such that G |= ψ(b; ȳg0 , k̄g0 , . . . , ȳgk−1
, m̄gk−1

) ⇐⇒
Gk,p |= R(g0, . . . , gk−1), for all gi ∈ Pi. We can write b = s(z̄, ℓ̄) for some term
s ∈ LG and some finite tuples z̄ = z̄ν⌢z̄p⌢z̄ι in Y and ℓ̄ in K. As usual, ex-
tending z̄ν if necessary, we may assume that z̄ is closed under handles. Taking
θ(x′; y′0, . . . , y

′
k−1) := ψ(s(x′); y′0, . . . , y

′
k−1), we still have that

G |= θ(z̄ℓ̄; ȳg0 , m̄g0 , . . . , ȳgk−1
, m̄gk−1

) ⇐⇒ Gk,p |= R(g0, . . . , gk−1)

for all gi ∈ Pi.
By Fact 4.5(2), we can find (z̄⌢g ℓ̄g : g ∈ Gk,p) which is Gk,p-indiscernible over

z̄⌢ℓ̄ and is based on (ȳ⌢g m̄g : g ∈ Gk,p) over z̄
⌢ℓ̄. Then we have:

(1) G |= θ(z̄ℓ̄; z̄g0 , ℓ̄g0 , . . . , z̄gk−1
, ℓ̄gk−1

) ⇐⇒ Gk,p |= R(g0, . . . , gk−1), for all gi ∈
Pi;

(2) for z̄g = z̄ν⌢g z̄p⌢g z̄ιg we have that:
• all of these tuples are of fixed length and list elements of the corresponding
type,

• the handle of the j-th element of z̄pg is the j-th element of z̄νg ;
(3) the set of all elements of G appearing in z̄ and (z̄g : g ∈ Gk,p) is a partial

transversal, hence can be extended to some transversal Z of G;
(4) the set of all elements of G appearing in ℓ̄ and (ℓ̄g : g ∈ Gk,p) is still a set

of elements in Z(G) linearly independent over G′, hence can be extended to a
linearly independent set L such that G = 〈Z〉 × 〈L〉;

(5) (z̄⌢g ℓ̄g : g ∈ Gk,p) is Lk
op-indiscernible over ∅ (follows since (z̄⌢g ℓ̄g : g ∈ Gk,p)

is based on (ȳ⌢g k̄g : g ∈ Gk,p), which was Lk
op-indiscernible, as in the proof of

[7, Lemma 6.2]).

Consider now all of the elements in z̄ν and (z̄νg : g ∈ Gk,p) as elements in
Γ(G), a saturated model of Th(C), and note that as Γ(G) is interpretable in G,
we have that the sequence (z̄νg : g ∈ Gk,p) is also Gk,p-indiscernible over z̄ν and

is Lk
op-indiscernible over ∅, both in Γ(G). As Th(C) is k-dependent, it follows

by Fact 4.6 that (z̄νg : g ∈ Gk,p) is Lk
op-indiscernible over z̄ν in Γ(G). Hence for

any finite tuples g0, . . . , gn, q0, . . . , qn ∈ Gk,p such that tpLk
op
(ḡ) = tpLk

op
(q̄), we

have that tpΓ(z̄
ν
g0
, . . . , z̄νgn/z̄

ν) is equal to tpΓ(z̄
ν
q0
, . . . , z̄νqn/z̄

ν). Now, using Lk
op-

indiscernibility and that z̄ is finite, for each i < k there is some finite λi ⊆ Pi such
that for all g 6= q ∈ Pi both greater than λi we have

z̄pg ∩ z̄p = z̄pq ∩ z̄p, z̄ιg ∩ z̄
ι = z̄ιq ∩ z̄

ι (as tuples)

and z̄g ∩ z̄q is constant. Thus, for any g0, . . . , gk−1, q0, . . . , qk−1 such that gi, qi > λi
and gi, qi ∈ Pi, we get that mapping z̄g0 , . . . , z̄gk−1

, z̄ to z̄q0 , . . . , z̄qk−1
, z̄ preserving

the positions of the elements in the tuples defines a bijection σḡ,q̄ such that:

(1) tpΓ(z̄
ν
g0
, . . . , z̄νgk−1

, z̄ν) = tpΓ(σḡ,q̄(z̄
ν
g0
, . . . , z̄νgk−1

, z̄ν)),

(2) the map σḡ,q̄ fixes z̄,
(3) the map σḡ,q̄ respects the 1ν-, p- and 1ι-parts and the handles.

Next we consider all of the elements in ℓ̄ and (ℓ̄g : g ∈ Gk,p) as elements in 〈L〉,
a saturated model of the stable theory Th(〈L〉). By quantifier elimination, we still
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have that (ℓ̄g : g ∈ Gk,p) is both L
k
op-indiscernible and Gk,p-indiscernible over ℓ̄ in

〈L〉. As 〈L〉 is stable, so in particular k-dependent, by Fact 4.6, (ℓ̄g : g ∈ Gk,p) is
Lk
op-indiscernible over ℓ̄.
Now let ḡ, q̄ ∈ Gk,p be such that gi, qi > λi and gi, qi ∈ Pi for all i < k, and such

that Gk,p |= R(g0, . . . , gk−1)∧¬R(q0, . . . , qk−1) holds. Then by the choice of z̄⌢ℓ̄ we
have that G |= θ(z̄ℓ̄; z̄g0 , ℓ̄g0 , . . . , z̄gk−1

, ℓ̄gk−1
) ∧ ¬θ(z̄ℓ̄; z̄q0 , ℓ̄q0 , . . . , z̄qk−1

, ℓ̄qk−1
). On

the other hand, combining the last two paragraphs and using Lemma 2.11, we find
an automorphism ofG sending (z̄g0 , ℓ̄g0 , . . . , z̄gk−1

, ℓ̄gk−1
) to (z̄q0 , ℓ̄q0 , . . . , z̄qk−1

, ℓ̄qk−1
)

and fixing z̄ℓ̄ — a contradiction.
�

Corollary 4.8. For every k ≥ 2, there is a strictly k-dependent pure group G.
Moreover, we can find such a G with a simple theory.

Proof. For each k ≥ 2, let Ak be the random k-hypergraph. It is well-known that
Th(Ak) is simple. Moreover, Ak is clearly not (k − 1)-dependent, as witnessed by
the edge relation, and it is easy to verify that Ak is k-dependent (as it eliminates
quantifiers and all relation symbols are at most k-ary, see e.g. [7, Proposition 6.5]).

Now Ak, as well as any other structure in a finite relational language, is bi-
interpretable with some nice graph Ck by [10, Theorem 5.5.1 + Exercise 5.5.9],
so Ck also has all of the aforementioned properties. Then Mekler’s construction
produces a group G(Ck) with all of the desired properties, by Theorem 4.7 and
preservation of simplicity from [2]. �

This corollary gives first examples of strictly k-dependent groups, however many
other questions about the existence of strictly k-dependent algebraic structures
remain.

Problem 4.9. (1) Are there pseudofinite strictly k-dependent groups, for k > 2?
The strictly 2-dependent group in Example 1 is pseudofinite.

(2) Are there ℵ0-categorical strictly k-dependent groups? We note that Mekler’s
construction doesn’t preserve ℵ0-categoricity in general.

(3) Are there strictly k-dependent fields, for any k ≥ 2? We conjecture that there
aren’t any with a simple theory. It is proved in [9] that any k-dependent PAC
field is separably closed, and there are no known examples of fields with a
simple theory which are not PAC.

5. Preservation of NTP2

We recall the definition of NTP2 (and refer to [4] for further details).

Definition 5.1. (1) A formula φ(x, y), with x, y tuples of variables, has TP2 if
there is an array (ai,j : i, j ∈ ω) of tuples in M |= T and some k ∈ ω such that:
(a) for all i ∈ ω, the set {φ(x, ai,j) : j ∈ ω} is k-inconsistent.
(b) for all f : ω → ω, the set {φ(x, ai,f(i)) : i ∈ ω} is consistent.

(2) A theory T is NTP2 if no formula has TP2 relatively to it.

Remark 5.2. If T is not NTP2, one can find a formula as in Definition 5.1(1) with
k = 2.

We will use the following formula-free characterization of NTP2 from [4, Section
1].
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Fact 5.3. Let T be a theory and M |= T a monster model. Let κ := |T |+. The
following are equivalent:

(1) T is NTP2.
(2) For any array (ai,j : i ∈ κ, j ∈ ω) of finite tuples with mutually indiscernible

rows (i.e. for each i ∈ κ, the sequence āi := (ai,j : j ∈ ω) is indiscernible over
{ai′,j : i′ ∈ κ \ {i}, j ∈ ω}) and a finite tuple b, there is some α ∈ κ satisfying
the following: for any i > α there is some b′ such that tp(b/ai,0) = tp(b′/ai,0)
and āi is indiscernible over b′.

The following can be proved using finitary Ramsey theorem and compactness,
see [4, Section 1] for the details.

Fact 5.4. Let (aα,i : α, i ∈ κ) be an array of tuples from M |= T . Then there is an
array (bα,i : α, i ∈ κ) with mutually indiscernible rows based on (aα,i : α, i ∈ κ), i.e.
such that for every finite set of formulas ∆, any α0, . . . , αn−1 ∈ κ and any strictly
increasing finite tuples j̄0, . . . , j̄n−1 from κ, there are some strictly increasing tuples
ī0, . . . , īn−1 from κ such that

|= ∆((bα0,i : i ∈ j̄0), . . . , (bαn−1,i : i ∈ j̄n−1)) ⇐⇒

|= ∆((aα0,i : i ∈ ī0), . . . , (aαn−1,i : i ∈ īn−1)).

Remark 5.5. If φ(x, y) and (aα,i : α, i ∈ κ) satisfy the condition in Definition
5.1(1) and (bα,i : α, i ∈ κ) is based on it, then φ(x, y) and (bα,i : α, i ∈ κ) also
satisfy the condition in Definition 5.1(1).

Theorem 5.6. For any nice graph C, we have that Th(G(C)) is NTP2 if and only
if Th(C) is NTP2.

Proof. As before, let G |= Th(G(C)) be a monster model, let X be a transversal,
and let H be a set in Z(G) which is linearly independent over G′ such that G =
〈X〉 × 〈H〉. Moreover, fix κ to be ℵ+

0 . If Th(G(C)) is NTP2 then Th(C) is also
NTP2 as C is interpretable in G(C).

Now suppose that Th(C) is NTP2, but Th(G(C)) has TP2. By compactness
and Remark 5.2 we can find some formula φ(x, y) and an array (āi,j : i, j ∈ κ) of
tuples in G witnessing TP2 as in Definition 5.1(1). Then for all i, j ∈ κ we have
āi,j = ti,j(x̄i,j , h̄i,j) for some terms ti,j ∈ LG and some finite tuples x̄i,j from X
and h̄i,j from H .

As κ > |LG|+ℵ0, passing to a subsequence of each row, and then to a subsequence
of the rows, we may assume that ti,j = t ∈ LG and x̄i,j = x̄ν⌢i,j x̄

p⌢
i,j x̄

ι
i,j with

|x̄νi,j |, |x̄
p
i,j |, |x̄

ι
i,j |, |h̄i,j | constant for all i, j ∈ κ. Again as in the NIP case, we add

the handles of the elements in the tuple x̄pi,α to the beginning of x̄νi,α for all i, j ∈ κ.

Taking ψ(x, y′) := φ(x, t(y′)) with |y′| = |x̄⌢i,j h̄i,j | and b̄i,j := x̄⌢i,j h̄i,j , we have that

ψ(x, y′) ∈ LG and the array (b̄i,j : i, j ∈ κ) still satisfy the condition in Definition
5.1(1).

By Fact 5.4, let (c̄i,j : i, j ∈ κ) with c̄i,j = ȳ⌢i,jm̄i,j be an array with mutually

indiscernible rows based on (b̄i,j : i, j ∈ κ). Then, arguing as in the proofs of Theo-
rems 3.2 and 4.7 using type-definability of the relevant properties from Proposition
2.14 and Remark 5.5, we have:

(1) ψ(x, y′) and the array (c̄i,j : i, j ∈ κ) satisfy the condition in Definition 5.1(1);
(2) For ȳi,j = ȳν⌢i,j ȳ

p⌢
i,j ȳ

ι
i,j we have that:
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• all of these tuples are of fixed length and list elements of the corresponding
type,

• the handle of the n-th element of ȳpi,j is the n-th element of ȳνi,j ;

(3) the set of all elements of G appearing in (ȳi,j : i, j ∈ κ) is a partial transversal
of G and can be extended to a transversal Y of G;

(4) the set of all elements of G appearing in (m̄i,j : i, j ∈ κ) is a set of elements in
Z(G) linearly independent over G′, hence can be extended to a set of generators
M such that G = 〈Y 〉 × 〈M〉.

Let now b̄ be a tuple in G such that G |= {ψ(b̄, c̄i,0) : i ∈ κ}. We have that
b̄ = s(ȳ, m̄) for some term s ∈ LG and some finite tuples ȳ in Y and m̄ in M . Let
ȳ = ȳν⌢ȳp⌢ȳι, each listing the elements of the corresponding type. In the same
way as for each of the ȳi,j ’s, we add the handles of the elements in the tuple ȳp to the
beginning of ȳν so that the handle of the n-th element of ȳp is the n-th element of ȳν .
Taking θ(x′, y′) := ψ(s(x′), y′), we still have that ȳ⌢m̄ |= {θ(x′, c̄i,0) : i ∈ κ} and
the set of formulas {θ(x′, c̄i,j) : j ∈ κ} is 2-inconsistent for each i ∈ κ. Moreover,
after possibly throwing away finitely many rows, we may assume that the rows are
mutually indiscernible over ȳ⌢m̄∩

⋃

{c̄i,0 : i ∈ κ} (if an element of ȳ⌢m̄ appears in
c̄i,0, then the rows of the array (c̄i′,j : i

′ ∈ κ, i′ 6= i, j ∈ κ) are mutually indiscernible
over it). This implies that if z ∈ ȳ∩ ȳi,0 for some i and z is the n-th element in the
tuple ȳi,0, then it is the n-th element in any tuple ȳj,0 with j ∈ κ.

Consider all of the elements in ȳν and (ȳνi,j : i, j ∈ κ) as elements in Γ(G), a
saturated model of Th(C), and note that as Γ(G) is interpretable in G we have that
the array (ȳνi,j : i, j ∈ κ) has mutually indiscernible rows in Γ(G). As Th(Γ(G))
is NTP2, it follows by Fact 5.3 that there is some α ∈ κ such that for each i > α
there is some tuple ȳ′ν such that tpΓ(ȳ

ν/ȳνi,0) = tpΓ(ȳ
′ν/ȳνi,0) and the sequence

(ȳνi,j : j ∈ κ) is LΓ-indiscernible over ȳ′ν , i. e. tpΓ(ȳ
ν , ȳνi,0) = tpΓ(ȳ

′ν , ȳνi,0). Let
σ0 be the bijection which maps ȳν⌢ȳi,0 to ȳ′ν⌢ȳi,0. Now we want to extend this
bijection to ȳ⌢ȳi,0 in a type and handle preserving way. To do so, we have to
choose an image for each element in ȳp

⌢

ȳι. Let z be the n-th element of ȳp and let
u be the n-th element of ȳν (i. e. the handle of z).

• If z 6∈ ȳpi,0, then choose z′ to be any element in Y p which has handle σ1(u) and

is not contained in ȳpi,0.

• If z ∈ ȳpi,0, then we have that σ1 fixes z as well as the handle u of z. In this case

let z′ be equal to z.

Now, we extend σ0 to σ by mapping z to z′ and fixing each element of ȳι. Let
ȳ′ = ȳ′ν⌢σ(ȳp)⌢ȳι. Then we have that for all y ∈ ȳ⌢ȳi,0:

(1) σ is well defined;
(2) σ fixes all elements in ȳi,0;
(3) σ respects types and handles by construction;
(4) tpΓ(ȳ

ν , ȳνi,0) = tpΓ(σ(ȳ
ν , ȳνi,0)) as σ(y) = σ0(y) for all y ∈ ȳν⌢ȳνi,0.

Now consider m̄ and (m̄i,j : i, j ∈ κ) as tuples of elements in 〈M〉, which is a
model of the stable theory Th(〈M〉). Moreover, as (m̄i,j : i, j ∈ κ) has LG-mutually
indiscernible rows and Th(〈M〉) eliminates quantifiers, (m̄i,j : i, j ∈ κ) has mutually
indiscernible rows in the sense of Th(〈M〉). Hence, by Fact 5.3 again, there is some
β ∈ κ such that for each i > β there is some τ ∈ Aut(〈M〉) fixing m̄i,0 and such
that (m̄i,j : j ∈ κ) is indiscernible over m̄′ := τ(m̄).
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Fix some i > max{α, β} and let ȳ′ and m̄′ be chosen as above. Then by Lemma
2.11 we find an automorphism of G which maps ȳm̄⌢ȳi,0m̄i,0 to ȳ′(m̄′)⌢ȳi,0m̄i,0,
hence

tpG(ȳ
′m̄′/ȳi,0k̄i,0) = tpG(ȳm̄/ȳi,0m̄i,0).

In particular, G |= θ(ȳ′m̄′, ȳi,0m̄i,0). We will show that

tpG(ȳi,0m̄i,0/ȳ
′m̄′) = tpG(ȳi,1m̄i,1/ȳ

′m̄′),

which would then contradict the assumption that {θ(x′, ȳi,j h̄i,j) : j ∈ κ} is 2-
inconsistent.

We show that sending ȳ′ȳi,0 to ȳ′ȳi,1 is a well-defined bijection f0. The only
thing to check is that if the nth element z of ȳi,0 is an element of ȳ′, then the
nth element of ȳi,1 is equal to z. This is true as by construction we have that the
sequence (ȳi,j : j ∈ κ) is indiscernible over (ȳ′ ∩

⋃

i∈κ ȳi,0). Moreover, we have the
following properties for f0:

(1) f0 fixes all elements in ȳ′ (by construction);
(2) f0 respects types and handles (by construction);
(3) tpΓ(ȳ

′ν , ȳνi,0) = tpΓ(f0(ȳ
′ν , ȳνi,0)) (since by the choice of ȳ′ν above, we have that

(ȳνi,j : j ∈ κ) is indiscernible over ȳ′ν in Γ(G)).

Similarly, by the choice of m̄′ above, the sequence (m̄i,j : j ∈ κ) is indiscernible
over m̄′, so tp〈M〉(m̄i,0, m̄

′) = tp〈M〉(m̄i,1, m̄
′)

Again, Lemma 2.11 gives us an automorphism of G sending ȳi,0m̄i,0 to ȳi,1m̄i,1

and fixing ȳ′m̄′, as wanted.
�
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