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ABSTRACT OF THE DISSERTATION 

 
 

Secondary Brown Carbon Formation from Nighttime Oxidation of Heterocyclic Volatile 

Organic Compounds 

 

 

by 
 

 

Kunpeng Chen 
 

 

Doctor of Philosophy, Graduate Program in Environmental Sciences 

University of California, Riverside, June 2024 

Dr. Ying-Hsuan Lin, Chairperson 

 

 

This dissertation investigates the formation of secondary brown carbon (BrC) 

from nighttime oxidation of heterocyclic volatile organic compounds (VOCs) such as 

furans and pyrroles under diverse environmental conditions. This dissertation focuses on 

clarifying the effects of different environmental factors such as nitrate radical (NO3) 

levels, pre-existing particles, and relative humidity (RH) on the optical properties of 

secondary BrC and the chemical composition of secondary organic aerosols (SOAs) 

derived from the heterocyclic VOCs.  

NO3 levels exhibit insignificantly influence on the overall composition of furan-

derived SOA, while pre-existing particles show considerable effects on its chemical 

composition. The mass absorption coefficients (MAC) revealed the divergent impacts of 

NO3 levels and pre-existing particles on BrC light absorption, suggesting NO3 facilitates 

the generation of light-absorbing compounds whereas pre-existing particles may facilitate 

gas-to-particle partitioning of non-absorbing products. The effects of RH on secondary 

BrC formation were investigated through furan and pyrrole oxidation, revealing 



 xi 

substantial effects on particulate size distribution dynamics. The pyrrole oxidation 

products exhibit higher potential in producing ultrafine particles via nucleation. The 

increase of RH leads to increased mass fractions of oxygenated compounds in both 

SOAs, indicating the enhanced gas-phase and/or multiphase oxidation processes in humid 

environments. Interestingly, higher RH leads to decreased MAC, contrasting to the trend 

observed in the secondary BrC derived from homocyclic precursors. This divergence is 

owing to the formation of non-absorbing high-molecular-weight oxygenated compounds 

and the reduced mass fractions of molecular chromophores. Furthermore, this dissertation 

highlights the crucial role of carbonyl chromophores in the light absorption of secondary 

BrC derived from a variety of heterocyclic VOCs. In particular, N-containing carbonyl 

chromophores (e.g., imides and amides) derived from pyrroles are potentially important 

chromophores in secondary BrC. The contribution of chromophores on the overall BrC 

light absorption may vary significantly across wavelengths, underscoring their distinct 

significance at different wavelength ranges. Overall, this dissertation contributes to the 

fundamental insights of secondary BrC formation in the complicated atmospheric 

environments, especially those within the wildfire smoke. All of these findings will be 

helpful for improving the evaluation of BrC's radiative forcing and its impact on climate 

change. 
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 1 

Chapter 1. Introduction 

 

1.1.Background  

1.1.1. Light-absorbing Organic Carbon in Atmosphere Aerosols 

Aerosols, the suspended particles in the atmosphere, can have direct and indirect 

radiative effects and modulate the climate system. The direct radiative effect means the 

scattering or absorption of sunlight, while the indirect radiative effect refers to the 

interactions between aerosols and clouds. The Intergovernmental Panel on Climate 

Change (IPCC) has demonstrated that aerosols and their interactions with clouds 

contribute to the largest uncertainty of the total radiative forcing. (1) In particular, the 

radiative forcing of organic carbon in aerosols was less understood. Organic carbon was 

considered a cooling factor that can solely contribute to negative radiative forcing 

(radiative forcing: −0.47 to −0.08 W m-2) in the fifth assessment report from the IPCC 

(i.e., IPCC AR5 published in 2013). (1) However, in the sixth assessment report from 

IPCC (i.e., IPCC AR6 published in 2021), (2) the radiative forcing of organic carbon was 

adjusted (radiative forcing: −0.44 to +0.02 W m-2). The adjusted value demonstrated that 

organic carbon may partially contribute to positive radiative forcing due to the light-

absorbing component. (2)   

Although this adjustment was made only recently, the role of organic carbon in 

light absorption by aerosols has been gradually recognized over the last few decades. In 

1986, a pioneering study by Mukai and Ambe reported that humic-like substances 

(HULIS), a mixture of organic materials with a brown color, may play a substantial role 



 2 

in the light absorption of ambient aerosols. (3) In 1999, Jacobson reported a variety of 

light-absorbing organic compounds (e.g., nitrated aromatics, aromatic polycarboxylic 

acids) in ambient aerosols. (4) In 2003, Pöschl proposed a systematic classification of 

carbonaceous aerosols, wherein the term “colored organic carbon” was raised to represent 

light-absorbing organic carbon. (5) Later in 2004, Kirchstetter et al. demonstrated that the 

wavelength dependency of light absorption by ambient aerosols can be greatly affected 

by organic carbon. (6) In 2006, Andreae and Gelencsér first defined light-absorbing 

organic carbon in atmospheric aerosols as “brown carbon”. (7) Since then, the area of 

brown carbon (BrC) has evolved  rapidly and emerged as a critical research topic for 

better understanding of the global climate change. (8−12)  

1.1.2. Radiative Effects of BrC 

Radiative forcing of BrC is estimated in terms of aerosol radiative effects, 

including (i) direct radiative effect, which refers to the radiative forcing corresponding to 

direct scattering and absorption of solar radiation by BrC, and (ii) indirect and semi-direct 

radiative effect, which refers to the radiative forcing related to aerosol-cloud interactions. 

Since BrC may account for 21% of the global mean concentration of organic compounds 

in the surface air, (13) accurate quantification of the radiative effects of BrC is necessary 

for reducing the uncertainty of climate forcing on the Earth. The pioneering work by Park 

et al. in 2010 estimated the direct radiative effect of BrC over East Asia as +0.05 W m-2. 

(14) Later, several studies proposed that the direct radiative effect of BrC could globally 

vary from +0.10 W m-2 to +0.14 W m-2, (13, 15, 16) while Lin et al. even estimated a 
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much higher value of +0.22 ~ +0.57 W m-2. (17) Such discrepancies may be attributed to 

different modeling parameterizations of BrC light absorption.  

The key to quantifying BrC’s direct radiative effect is the mass absorption 

coefficient (MAC). Since BrC has strong light absorption in near ultraviolet (UV, 

290−400 nm) and visible (400−760 nm), (18−20) MAC has a strong dependency on the 

wavelength of sunlight, which is empirically described by the power-law expression (eq 

(1.1)). 

𝑀𝐴𝐶𝐵𝑟𝐶(𝜆) = 𝑀𝐴𝐶𝐵𝑟𝐶(𝜆0) ∙ (
𝜆0

𝜆
 )

𝐴𝐴𝐸

                                    (1.1) 

Here, λ0 is a reference wavelength for light absorption measurements, and the 

power coefficient is the so-called absorption Ångström exponent (AAE). Previous studies 

usually picked up 550 nm as the reference wavelength (λ0 = 550 nm), (11, 18) but 

MACBrC(550) had a large range (0.09 ~ 4.1 m2g-1). (13) For AAE, Kirchstetter et al. 

reported that AAE of wood smoke particulate matter could vary from 3.0 to 7.4, with the 

average at 5.0. (21) The established climate models typically adopt fixed values for 

MACBrC(550) and AAE to estimate the direct radiative effect of BrC aerosols, (13, 16, 22) 

but the variations in MACBrC(550) and AAE suggest that BrC light absorption may be 

greatly controlled by emission sources and atmospheric conditions.  

The indirect radiative effect of BrC has been less investigated. Typically, an 

increase in the number of aerosols can enhance the cloud albedo (i.e., reflectivity) and 

increase low-level cloudiness, contributing to the Earth’s surface cooling. (23, 24) 

However, the IPCC AR5 suggested that the heating effects caused by aerosol absorption 



 4 

of solar radiation can reduce the amount of clouds. (1) Brown et al. also suggested that 

the light absorption of BrC could affect the atmospheric circulation and further reduce the 

global amount of low cloud cover. (15) These complete processes relating to cloud 

formation, albedo, and lifetime can have complex consequences on the Earth system. 

1.1.3. Sources and Fates of BrC 

Sources of BrC can be divided into primary sources and secondary sources. 

Primary sources refer to direct emissions of BrC, for example, emissions of polyaromatic 

hydrocarbons (PAHs) from incomplete combustion in biomass burning and fossil fuel 

usage. Secondary sources refer to BrC formation from secondary processing in the 

atmosphere, for example, the atmospheric oxidation of volatile organic compounds 

(VOCs) that produce light-absorbing secondary organic aerosols (SOAs). BrC directly 

emitted from primary sources is called “primary BrC,” while BrC generated from 

secondary sources is called “secondary BrC.” 

In particular, biomass burning is recognized as the predominant source of primary 

BrC; (25−27) its importance was highlighted when light-absorbing organic carbon in 

aerosols was first observed. (3) Prescribed fires and natural wildfires are the major 

biomass burning sources. Fossil fuel combustion is another important source of BrC, 

which is directly related to anthropogenic activities. (28−30) Secondary sources of BrC 

are mainly attributable to the atmospheric oxidation of VOCs. Specifically, atmospheric 

oxidation of SOA precursors in the fire plume can contribute to BrC, which is the main 

focus of this dissertation, as discussed in section 1.3. The contribution of different 

sources may vary depending on the season. For example, in central Los Angeles, biomass 
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burning could contribute to more than 50% of BrC in cold seasons, while in warm 

seasons, fossil fuel combustion and secondary sources may contribute to 38% and 30% of 

BrC, respectively. (31)  

Once released (i.e., emitted or generated) from its sources, atmospheric aging 

processes can gradually bleach BrC. (32, 33) For example, aging by atmospheric radicals 

(e.g., hydroxyl radicals) is known to play a key role in BrC evolution. Although a large 

fraction of BrC can be bleached within one day, certain fractions may persist and 

contribute to long-term light absorption. (34)  

1.1.4. BrC Chromophores 

BrC chromophores are the light-absorbing molecules in BrC aerosols, which may 

only occupy a small fraction of aerosol mass. (35) However, this “small fraction” is the 

pivot of the positive radiating forcing driven by BrC. So far, many studies have already 

managed to experimentally identify the molecular formula and tentative structures of a 

large fraction of constituents in BrC aerosols. Typical BrC chromophores include 

nitroaromatics, polycyclic aromatic hydrocarbons (PAHs), imidazoles, and light-

absorbing oligomers. Nitroaromatics can be generated by both the photooxidation and 

nighttime chemistry of aromatic VOCs. (36, 37) PAHs can be directly emitted by 

biomass burning. (33, 38, 39) Imidazoles are generated by reactions between ammonium 

cation (or amines) and carbonyls in the aqueous particles. (40−43) Light-absorbing 

oligomers are generated from the photooxidation of biogenic monoterpenes/isoprene and 

anthropogenic aromatics. (41, 44, 45) A comprehensive review of BrC chemistry is 

provided by Laskin et al. (8)  
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The most ubiquitous BrC chromophore is nitroaromatics. Jacobson proposed that 

nitroaromatic compounds in the atmosphere could contribute to 25-30% of total light 

absorption in the near-UV region over Los Angeles. (4) Bluvshtein et al. and Lin et al. 

reported that nitroaromatics are the major contributors to BrC light absorption (>50% at 

above 350 nm) in wildfire smoke. (46, 47) Many kinds of nitroaromatic chromophores 

have been identified, such as nitrophenols, nitrocatechols, nitroguaiacols, and 

nitrosyringols. (33, 38, 39, 47) Particularly, 4-nitrophenol and 4-nitrocatechol, as well as 

their derivatives, were usually identified as the dominant products in field studies. (48, 

49) Given the ubiquity and representativeness of these two compounds, previous 

experimental studies also employed them as model compounds to explore the kinetics of 

BrC evolution, including radical-driven oxidation, photobleaching, and photo-

enhancement. (50−52) All of these studies highlight the key role of nitroaromatics in BrC 

light absorption. 

1.2. Knowledge Gaps and Objectives of the Dissertation 

This dissertation focuses on addressing two knowledge gaps: (i) the impact of 

environmental conditions on secondary BrC formation, and (ii) the role of understudied 

molecular chromophores in BrC light absorption. The hypotheses are that (i) changes in 

environmental conditions can substantially influence the optical properties and chemical 

composition of secondary BrC, and (ii) the understudied molecular chromophores may 

have substantial contributions to BrC light absorption.  

Given the complicated composition of molecular chromophores in BrC, the 

uncertainty of BrC radiative effects is likely owing to insufficient understanding of the 
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compositional change of BrC aerosols during atmospheric processing. In particular, 

nighttime chemistry was recently identified as an important source of secondary BrC in 

wildfire smoke. (53) Among the wildfire emissions, heterocyclic VOCs are the second 

largest contributor to SOA precursors, (54) and may play a potentially important role in 

secondary BrC formation. (55) Due to the heteroatoms, heterocyclic VOCs may be more 

reactive compared to homocyclic VOCs such as benzene and toluene. (56) Nitro-

substituted heterocyclic products such as nitrothiophene and nitropyrrole may be the key 

chromophores. (55) Chen et al. used time-dependent density functional theory (TD-DFT) 

calculations to support the light absorption of nitrate-derivatized heterocyclic products. 

(57) However, little has been discovered related to secondary BrC formation from the 

nighttime oxidation of heterocyclic VOCs, which will be the focus of my dissertation.  

1.3. Research Aims of the Dissertation 

This dissertation aims to clarify how different environmental conditions affect 

secondary BrC formation from the nighttime oxidation of heterocyclic VOCs and provide 

a more comprehensive characterization of molecular chromophores. This dissertation 

includes three research chapters and one conclusion chapter. 

Chapter 2 focuses on the effects of nitrate radical level and pre-existing particles on 

both the light absorption properties and chemical compositions of secondary BrC from 

nighttime oxidation. Furan was used as the heterocyclic VOC in this study, since furans is 

the most abundant group of heterocyclic VOCs in wildfire plumes and furan is the 

representative backbone. (54) Chamber experiments were conducted to simulate SOA and 

secondary BrC formation under different environmental conditions. SOA composition, BrC 
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light absorption properties, and molecular chromophores under the studied environmental 

conditions were analyzed. This study aims to provide more insights about the role of nitrate 

radical level and pre-existing particles in secondary BrC formation. 

Chapter 3 focuses on the effects of relative humidity (RH) on secondary BrC from 

the nighttime oxidation. Furan and pyrrole were selected to generate secondary BrC 

samples via nighttime oxidation in the chamber experiments. The influence of RH on size 

distribution dynamics, chemical composition, and the optical properties of secondary BrC 

was studied. This study aims to provide more in-depth insights into the physicochemical 

processes associated with RH and their modulation of secondary BrC formation in wildfire 

smoke. 

Chapter 4 focuses on the role of carbonyl chromophores in secondary BrC from the 

nighttime oxidation.  Nighttime oxidation of a variety of unsaturated VOCs (i.e., pyrrole, 1-

methylpyrrole, 2-methylpyrrole, furan, and furfural) was used as the model systems for 

SOA and secondary BrC formation. Carbonyl chromophores in the SOA samples were 

thoroughly characterized by employing multiple instruments coupled with the theoretical 

calculations of UV-visible spectra. This study aims to estimate the light absorption 

contribution of carbonyl chromophores in secondary BrC. 

Chapter 5 presents the concluding remarks of this dissertation and outlines the 

directions for future BrC research. 
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Chapter 2. Effects of Nitrate Radical Levels and Pre-Existing Particles on 

Secondary Brown Carbon Formation from Nighttime Oxidation of Furan 

 

2.0. Abstract 

Furans are predominant heterocyclic volatile organic compounds (VOCs) in the 

atmosphere from both primary and secondary sources, such as direct emissions from 

wildfires and atmospheric oxidation of dienes. Formation of secondary organic aerosols 

(SOAs) from the oxidation of furans has been reported. Previous research has shown that 

furan SOA generated from nighttime oxidation contributes to brown carbon (BrC) 

formation; however, how nighttime oxidant levels (represented by nitrate radical (NO3) 

levels) and pre-existing particles influence the SOA chemical composition and BrC 

optical properties is not well constrained. In this study, we conducted chamber 

experiments to systematically investigate the role of these two environmental factors in 

furan-derived secondary BrC formation during the nighttime. Our results suggest that the 

bulk compositions of SOA measured as ion fragment families by an aerosol mass 

spectrometer (mAMS) are unaffected by changes in NO3 levels, but can be influenced by 

the presence of pre-existing ammonium sulfate particles. Based on the mass absorption 

coefficient (MAC) profiles of SOA produced under different experimental conditions, the 

BrC light absorption was enhanced by higher NO3 levels and reduced by the presence of 

pre-existing ammonium sulfate seed particles, suggesting that NO3-initiated oxidation of 

furan can promote the formation of light-absorbing products while pre-existing particles 

may facilitate the partitioning of non-absorbing organics in the aerosol 

phase. Furthermore, molecular-level compositional analysis reveals a similar pattern of 
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chromophores under various studied environmental conditions, in which highly 

oxygenated monomers (e.g., C4H4O6 and C4H3NO7), dimers, and oligomers can all 

contribute to BrC chromophores. Taken together, the NO3 levels and pre-existing 

particles can influence secondary BrC formation by altering SOA compositions, which is 

critical for assessing BrC optical properties in a complex environment. 

2.1. Introduction 

Heterocyclic volatile organic compounds (VOCs) are a class of ubiquitous but 

understudied precursors of secondary organic aerosols (SOAs) that have a substantial 

impact on air quality and the solar radiative budget of the Earth. Heterocyclic VOCs 

emitted from biomass burning (1−3) are expected to become increasingly important due 

to the combustion of fossil fuels (4, 5) and the increased wildfire episodes with global 

warming. (6−8) Because of the heteroatoms, heterocyclic VOCs with aromatic rings 

exhibit distinctive reactivity when compared to the homocyclic compounds (e.g., toluene, 

naphthalene), and thus their fates in atmospheric oxidation have gained increasing 

attention. In particular, furans are common heterocyclic VOCs that are released when 

cellulose and hemicellulose are pyrolyzed during biomass burning, (9−11) especially 

when burning wiregrass, (12) and are often observed in field measurements. (3, 13, 14) 

Furans are also secondary products of atmospheric hydroxyl radical (OH)-initiated 

oxidation of dienes (e.g., butadiene and isoprene). (15−17) Recent research suggested 

that furans may contribute to around 20-30% of SOA generated in biomass burning, (18, 

19) highlighting the crucial role of furans as SOA precursors. 
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The gas-phase oxidation pathways of furans are widely studied and have been 

incorporated into mechanistic models, (20, 21) whereas the aerosol-phase compositions 

are less well-defined. Alvarez et al. (22) reported that OH-initiated oxidation of furans 

can produce a large set of unsaturated 1,4-dicarbonyls in the aerosol phase, while Joo et 

al. (23) suggested that nitrate radical (NO3)-initiated oxidation of 3-methylfuran can not 

only generate a variety of carbonyls but also dimers and oligomers. Strollo and Ziemann 

(24) indicated that oligomerization is the key to SOA formation during 3-methylfuran 

daytime oxidation, while Jiang et al. (25) highlighted the potentially important role of 

multifunctional dihydroxyl organonitrate products in SOA formation in the furan-NOx-

NaCl system. However, our understanding of the chemical composition of reaction 

products in furan oxidations is still limited, making it difficult to evaluate the 

physicochemical properties of furan SOA. 

The optical properties of aerosols, in particular, are critical for influencing 

atmospheric radiative balance, (26) but the optical properties of furans SOA have not 

been thoroughly investigated. Grace et al. (27) suggested that furan derivatives in 

aqueous aerosols could potentially contribute to the formation of brown carbon (BrC), 

which is defined as the light-absorbing organic matter in aerosols. Jiang et al. (28) 

reported that nighttime oxidation of furan can produce secondary BrC. Even though 

furans have been shown to be a precursor of SOA and BrC, it is unclear how 

environmental conditions regulate furan SOA and BrC formation. Tsigaridis and 

Kanakidou (29) hypothesized that oxidant levels (i.e., concentration of oxidants) and pre-

existing particles are two crucial environmental factors that will influence the future SOA 
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burden in the atmosphere. Oxidant levels are anticipated to affect the oxidation products 

and, consequently, the optical properties of SOA, (30) whereas pre-existing particles may 

alter the amount of SOA constituents by facilitating gas-particle partitioning and 

heterocyclic reactions. However, the relationship between these processes and BrC 

formation has not been thoroughly investigated. Since furans can contribute to 5-37% of 

the emitted VOCs in biomass burning smoke, (3, 10) it is essential to constrain the role of 

oxidant levels and pre-existing particles in the formation of BrC from the oxidation of 

furans under various environmental conditions. 

In this study, chamber experiments were carried out to determine the effects of 

oxidant levels and the presence of pre-existing particles on the formation of SOA and 

BrC by the nighttime oxidation of furan, the representative structural backbone and most 

abundant component of furans. The oxidant levels here refer to NO3 concentrations 

(hereafter denoted as “NO3 levels”), which are controlled by the concentration ratios of 

nitrogen dioxide to ozone ([NO2]/[O3]), whereas the pre-existing particles in this study 

are ammonium sulfate particles. The compositional variation of SOA under various 

environmental conditions was investigated. Light-absorption properties of SOA and 

chromophores were characterized to determine the effects of NO3 levels and pre-existing 

particles on secondary BrC formation. 
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2.2. Methods 

2.2.1. Experimental setup 

All the experiments were conducted in a 10 m3 Teflon FEP chamber under dark 

conditions. Details of the experimental setup and procedures were introduced in our 

previous studies. (31, 32) In brief, 1500 ppb O3 and 150 ppb or 450 ppb NO2 (i.e., initial 

[NO2]/[O3] = 0.1 or 0.3, denoted as “low NO3” and “high NO3” experiments hereafter) 

were first injected into the chamber to produce NO3 radicals within 1 hour of reaction, 

followed by the injection of ~200 ppb furan. The stabilized NO3 radical concentration 

before furan injection was estimated to be ~8.0 ppb and ~22.0 ppb under the “low NO3” 

and “high NO3” experiments, respectively. (31) For experiments with pre-existing 

particles (denoted as “seeded experiments” hereafter), a constant output atomizer (TSI 

3076) with 10 mM ammonium sulfate ((NH4)2SO4, Acros Organics, 99%, extra pure) 

solution and a silica-gel diffusion dryer were used to generate ~50 μg m-3 seed particles 

(central diameter ~50 nm) in the chamber before furan injection, simulating the 

background particles in wildfire plumes. (33, 34) All the experiments were performed at 

room temperature (20-25 °C) and low relative humidity (RH< 20%). It should be noted 

that when compared to real-world plumes, the chamber conditions may introduce some 

artifacts, such as much higher NO3 radical concentrations than those reported by field 

measurements in the biomass burning plume, (35) negligible NO concentrations that may 

affect gas-phase organic peroxy radical (RO2) chemistry, and wall loss of volatile 

products from NO3-initiated reactions of furan. These artifacts may potentially influence 

the characterization of chemical composition in the experimental results. (36) 
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Nevertheless, these controlled chamber conditions are intended to systematically 

investigate the role of NO3 levels and pre-existing particles in the formation of furan-

derived secondary BrC. 

2.2.2. Compositional characterization 

A combination of online and offline approaches was employed to characterize the 

chemical composition of furan SOA. Real-time bulk composition of aerosol particles and 

in situ molecular formula of aerosol constituents were measured online by the mini-

Aerosol Mass Spectrometer coupled with a compact time-of-flight mass spectrometer 

(mAMS, Aerodyne Research Inc.) (37) and the iodide-adduct time-of-flight chemical ion 

mass spectrometry coupled with the Filter Inlet for Gases and AEROsols system 

(FIGAERO-ToF-CIMS, Aerodyne Research Inc.), (38) respectively. Offline techniques, 

including attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-

FTIR, Thermo Nicolet 6700), gas chromatography-electron ionization mass spectrometry 

(GC/EI-MS, Agilent Technologies 6890N GC System and 5975 inert XL Mass Selective 

Detector), liquid chromatography coupled with a diode array detector, an electrospray 

ionization source and a quadruple-time-of-flight mass spectrometer (LC-DAD-ESI-Q-

ToFMS, Agilent Technologies 1260 Infinity II and 6545 Q-ToF LC/MS), and an ion 

mobility spectrometry time-of-flight mass spectrometer (IMS-TOF, Tofwerk Inc.), were 

used to further characterize the functional group information and molecular compositions 

of SOA samples. Details of the instrumental setup have been introduced in previous 

studies. (31, 32, 39−41)  
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2.2.3. Optical and particulate size measurements 

In situ measurements of particulate absorption coefficients at 375 nm (βabs,375) 

were performed by a photoacoustic extinctiometer (PAX, Droplet Measurement 

Technology) at 1 Hz, (42) while the ultraviolet and visible absorbance (UV−vis) at 290-

700 nm of SOA samples were measured offline by a UV−vis spectrophotometer 

(Beckman DU-640). All SOA samples were extracted with acetonitrile (ACN), a suitable 

solvent for secondary BrC analyses given the solubility and stability of chromophores. 

(32) A Scanning Electrical Mobility Spectrometer (SEMS, Brechtel Manufacturing Inc.) 

was used to determine the number concentration and size distribution of SOA from 10 - 

800 nm with 140 bins. Online MAC at 375 nm was calculated by eq (2.1), where CSOA is 

the mass concentration of SOA in the chamber. The offline MAC profile was calculated 

by eq (2.2), where A(λ) is the absorbance along with wavelength (λ), b is the light path 

(i.e., 1 cm), and Cm is the mass concentration of SOA constituents in the ACN solution. 

𝑀𝐴𝐶𝑜𝑛𝑙𝑖𝑛𝑒(375) =
𝛽𝑎𝑏𝑠,375

𝐶𝑆𝑂𝐴
                                                        (2.1) 

𝑀𝐴𝐶𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝜆) =  𝑙𝑛10 ×
𝐴(𝜆)

𝑏 × 𝐶𝑚
                                             (2.2) 

Absorption Ångström exponents (AAE) within 290-400 nm and 400-600 nm 

(AAE290/400 and AAE400/600) representing the wavelength dependence of light absorption 

in the UV and visible ranges, respectively, were calculated by the power-law dependence 

of offline MAC on the wavelengths (eq (2.3)). 
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𝐴𝐴𝐸𝜆1/𝜆2
=  

−𝑙𝑛 (
𝑀𝐴𝐶𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝜆1)

𝑀𝐴𝐶𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝜆2)
)

𝑙𝑛 (
𝜆1

𝜆2
)

                                               (2.3) 

Particulate effective density and organic aerosol fraction of furan SOA under 

different environmental conditions are summarized in Table S2.1 for estimating CSOA and 

Cm. Details of the instrumental setup and calculations of parameters were illustrated in 

our previous studies. (31, 32)  

2.2.4. Computational details of UV−vis spectra simulations 

Time-dependent density functional theory (TD-DFT) was employed to confirm 

the light absorptivity of oxidation products with high double bond equivalence (DBE) 

identified by FIGAERO-ToF-CIMS. All the computations were performed using the 

Gaussian 16 program (revision C. 01). (43) Geometrical optimizations, excitation 

wavelengths, and oscillator strengths were computed by the B3LYP functional (44, 45) 

implemented with the 6-311++G(d,p) basis set, (46) which is suggested by previous 

studies. (47, 48) The integral equation formalism extension of the polarizable continuum 

model (IEFPCM) (49) was used to simulate the ACN environment. All the theoretical 

UV−vis spectra were generated by the GaussView 6 program. The Cartesian coordinates 

for all the geometrical structures are summarized in Table S2.2. 
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2.3. Results and Discussions 

2.3.1. The role of NO3-initiated oxidation 

In order to investigate secondary BrC formation from furan, it is essential to 

determine whether NO3-initiated reactions play a predominant role in furan SOA 

formation during the nighttime, given that O3 concentration is significantly higher than 

NO2 concentration in biomass burning plumes, where O3 and NO3 are likely to compete 

for furan oxidation. (35, 50, 51) The reaction rate constant of “furan + NO3” 

(𝑘𝑓𝑢𝑟𝑎𝑛+𝑁𝑂3
) in the gas phase is 6 orders of magnitude greater than that of “furan + O3” 

( 𝑘𝑓𝑢𝑟𝑎𝑛+𝑂3
), (52−54) indicating that NO3-initiated reactions should account for the 

majority of oxidation products; the dominance of NO3-initiated oxidation can be further 

verified by the method described by Draper et al. (55) (i.e., [𝑁𝑂2] [𝑓𝑢𝑟𝑎𝑛]⁄ >

𝑘𝑓𝑢𝑟𝑎𝑛+𝑂3
𝑘𝑂3+𝑁𝑂2

⁄ ). Here, iodide-adduct CIMS was used to measure the gas-phase 

oxidation products. The O3-only experiments (~1500 ppb O3 as the oxidant) were 

implemented as a NOx-free benchmark for comparison. Figure 2.1 shows the comparison 

of gas-phase products under low NO3 and O3-only conditions, where the m/z 200-250 

range reveals nearly identical oxidation products under both conditions, whereas the m/z 

250-310 range reveals products that are completely dissimilar. In the presence of NO2, 

despite the concentration of NO2 being much lower than that of O3, only nitrogen-

containing products were detected in the m/z 250−310 range, indicating that NO3-initiated 

oxidation significantly altered the reaction pathways. Moreover, as the NO3 levels 

increased, the mass spectra of gas-phase products remained relatively unchanged but the 

intensity-weighted average values of the oxygen-to-carbon and nitrogen-to-carbon ratios 
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(i.e., <O/C> and <N/C>) increased (Figure S2.2), implying that NO3 levels may have 

minimal effects on changing the molecular composition of oxygenated products but lead 

to a greater amount of oxidation products.  

 

Figure 2.1. Comparison of gas-phase products from nighttime oxidation of furan 

between the low-NO3 and O3-only experiments. The green area highlights the 

compositional difference under the two environmental conditions. 

 

Gas-phase products can contribute to SOA formation via new particle formation 

or gas-particle partitioning on aerosols, where heterogeneous and multiphase chemistry 

(e.g., reactive uptake of gaseous oxidants onto aerosols) can promote further reactions 

and thus generate a wider array of secondary products. However, since the mechanistic 

understanding of NO3-initiated oxidation of furan is still lacking, process-level insights 

into SOA formation in this case are very limited. Berndt et al. (56) and Zhang et al. (57) 

reported the formation mechanisms of 3H-furan-2-one and dicarbonyls (e.g., cis-
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butenedial) initiated by NO3 addition on the furan ring, whereas Jiang et al. (21) recently 

proposed a mechanistic scheme of NO3-initiated reactions with furan. Nonetheless, little 

understanding of oxidation products has been experimentally supported thus far. In this 

study, Figure 2.1 may suggest the generation of 2-peroxyl-5-nitrate-furan (C4H5NO6), 5-

nitrate-furan-2-one (C4H3NO5, the highest peak in the upper panel) and formyl nitrate 

methyl formylate (C3H3NO6) in the mechanisms proposed by Jiang et al. (21) In addition, 

nitrate-furan (C4H3NO4) was detected here, which is consistent with our previous 

findings. (28) Furthermore, our data could support field observations. For example, Palm 

et al. (14) proposed that furan oxidation may contribute to C4H4O4 and C3H4O4 observed 

in the biomass burning plume, which can be supported by Figure 2.1. 

While the characterization of gas-phase products reveals the remarkable alteration 

of oxidation pathways in the presence of NO2, SEMS measurements highlight the effect 

of NO3-initiated reactions on SOA formation kinetics. As soon as furan was injected into 

the chamber where NO2 and O3 had been reacting for 1 h, SOA was formed immediately 

(Figure 2.2A, C). In the O3-only experiments, no particles were generated within ~30 

min after furan injection (Figure 2.2E). As seed particles were added, instant generation 

of SOA occurred after furan injection (Figure 2.2B, D), whereas no rapid formation of 

SOA was observed in O3-only, seeded experiments (Figure 2.2F). These results 

demonstrate the advantage of NO3-initiated reactions in rapidly producing low volatile 

products and thus accelerating SOA formation, and consequently, NO3-initiated oxidation 

should account for the majority of furan SOA in nighttime biomass burning plumes. 
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Figure 2.2. Size and number distribution of furan SOA along with the experimental time. 

Experimental conditions: (A) [NO2]/[O3] = 0.3, non-seeded, (B) [NO2]/[O3] = 0.3, 

seeded, (C) [NO2]/[O3] = 0.1, non-seeded, (D) [NO2]/[O3] = 0.1, seeded, (E) O3-only, 

non-seeded, (F) O3-only, seeded. 
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2.3.2. SOA constituents under various environmental conditions 

Figure 2.3 depicts the characterization of SOA in bulk composition and at the 

molecular level measured by mAMS and FIGAERO-ToF-CIMS, respectively. In this 

study, pie charts were used to visualize the average relative abundance of CxHy
+, CxHyO

+, 

CxHyO>1
+, CxHyN

+, and CxHyNO+ fractions during the experiments. To show the change 

in relative abundance of fraction signals during the experiments, the average value of 

each fraction was calculated at (1) 20-30 minutes and (2) 95-115 minutes after the 

injection of furan. These time intervals were selected to represent the early and late stages 

of the experiment, and the corresponding averages are named as “early averages” and 

“late averages” (Figure S2.1). The comparison of these two timeframes allows 

differentiation between mechanisms of particle formation; the “early average” represents 

the nucleation of atmospheric particles, whereas the “late average” represents the 

condensation of oxidation products on already formed SOA. Figure S2.1 reveals that the 

two mechanisms may result in overall similar chemical compositions, meaning that the 

SOA generated from the nucleation in the non-seeded experiments may have on average 

a comparable composition to those formed from the condensation process. The 

condensation process is expected to be more atmospherically relevant due to the 

abundance of pre-existing particles in the biomass burning plume. The relative abundance 

of investigated fragments (CxHy
+, CxHyO

+, CxHyO>1
+, CxHyN

+ and CxHyNO+) is roughly 

consistent among all of the experimental conditions, where CxHyO
+ and CxHyO>1

+ 

fragments contribute to ~60-70% and CxHyN
+ plus CxHyNO+ contribute to ~8-13%, 
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suggesting the dominance of CxHyOz-containing products and a considerable amount of 

nitrogen-containing products in furan SOA.  

In addition, the ratio of NO+/NO2
+ in all experiments was higher than what is 

expected from inorganic nitrates (1.30-1.42) (58, 59) (Table S2.3), confirming that some 

of the measured nitrate by the mAMS was organic in nature. However, the ratio did not 

show significant changes with oxidation time, suggesting that the contribution of the 

organic portion of nitrate to total nitrate did not change with the extent of oxidation. More 

importantly, higher NO3 conditions did not result in significantly higher NO+/NO2
+ ratios 

for non-seeded experiments, suggesting again that the fraction of organonitrates/nitro-

organic species in total nitrate was independent of the NO3 concentration. In contrast, 

seeded, high NO3 experiments displayed higher ratios of NO+/NO2
+ compared to seeded, 

low NO3 experiments, indicating that higher NO3 levels had resulted in a higher fraction 

of organonitrate/nitro-organics in the aerosols instead of inorganic nitrate. Regardless of 

NO3 levels, the presence of seed decreased the contribution of organonitrate/nitro 

organics since significantly lower NO+/NO2
+ were observed in seeded experiments 

compared to non-seeded ones. 

The molecular compositions of SOA constituents shown in Figure 2.3 highlight 

the C4 and C8 products, which represent the monomer and dimer products of furan 

oxidation. In the non-seeded experiments, C4H2O4 is the highest peak (Figure 2.3A, B), 

but in the seeded experiments, the intensity of C4H4O3 is comparable to C4H2O4 (Figure 

2.3C) or even exceeds C4H2O4 (Figure 2.3D). Since C4H4O3 is also detected in the gas 

phase (Figure 2.1, S2.2), the C4H4O3 found in the aerosol phase should be attributed to 
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gas-particle partitioning facilitated by pre-existing particles. However, C4H2O4 is not 

observed in the gas-phase mass spectra, suggesting that rapid gas-particle partitioning 

and/or condensed-phase reactions on aerosols may contribute to this product. Notably, 

C4H2O5, a more oxidized formula compared to C4H2O4, is only detected in seeded 

experiments, implying that pre-existing particles may facilitate the generation of further 

oxidation products. Incremental addition of oxygen in other C4 monomer series (i.e., 

C4H4O3, C4H4O4 and C4H4O5; C4H6O4 and C4H6O5) is also observed in all the panels of 

Figure 2.3, indicating common pathways of CxHyOz product formation in furan SOA 

under all the environmental conditions. In addition, a series of dimers were identified in 

furan SOA (Figure 2.3). C8H4O3 is most likely phthalic anhydride, which has been 

confirmed previously as a chromophore in secondary furan BrC, (32) while C8H3NO5 

could be its nitro-substituted product. Furthermore, IMS-TOF characterization of SOA 

constituents show significant differences in isomer distribution of oxygenated products 

led by the pre-existing particles while similar isomer distribution under the “high NO3” 

and “low NO3” conditions (Figure S2.3), revealing that pre-existing particles can alter 

the reaction pathways and hence modify SOA constituents. 
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Figure 2.3. Molecular compositions of SOA measured by FIGAERO-ToF-CIMS and 

bulk compositions of SOA measured as ion fragment families by mAMS under various 

experimental conditions. (A) [NO2]/[O3] = 0.1, non-seeded; (B) [NO2]/[O3] = 0.3, non-

seeded; (C) [NO2]/[O3] = 0.1, seeded; (D) [NO2]/[O3] = 0.3, seeded. Pie charts show the 

relative abundance of the investigated fragments: CxHy
+, CxHyO

+, CxHyO>1
+, CxHyN

+ and 

CxHyNO+. 

 

Fingerprints of functional groups characterized by the ATR-FTIR can also 

provide further evidence to reveal the divergence of SOA constituents under various 

environmental conditions. Figure 2.4 highlights three wavenumber regions that illustrate 
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the compositional difference. The orange area shades the wavenumber 1600−1800 cm-1, 

which corresponds to the stretching modes of carbonyl groups (>C=O). Two peaks are 

seen at 1643 cm-1 and 1730 cm-1, respectively; the first can also be attributed to the 

stretching of aliphatic C=C double bonds, but the latter is attributable only to >C=O 

stretching. (60) Without pre-existing particles, the presence of NO2 flattens the peak at 

1643 cm-1 but raises the peak at 1730 cm-1 (Figure 2.4A), which may be attributed to the 

higher consumption of aliphatic C=C double bonds along with the enhanced generation 

of carbonyl products during NO3-initiated oxidation. This could be due to the fact that the 

NO3-initiated oxidation of furan is much faster than the O3-initiated oxidation, (52−54) 

and the “addition-elimination mechanism,” in which carbonyls are produced along with 

the loss of NO2 from the NO3 groups added to furan, is the most energetically favorable 

pathway in the NO3-initiated oxidation of furan. (57) However, the presence of pre-

existing particles inhibits the peak at 1730 cm-1 (Figure 2.4B), implying further reactions 

of carbonyl products on the seed particles. The blue-shaded area (1300−1500 cm-1) 

represents a mixture of functional group signals, with the O3-only experiment producing 

three sharp peaks in the absence of seeds, while both NO3 conditions produce only one 

peak at 1360 cm-1 (Figure 2.4A). This occurrence suggests that the presence of NO2 

together with O3 can significantly modify the SOA compositions, but SOA compositions 

are insensitive to the changes in NO3 levels. In contrast, only broad peaks were observed 

in seeded experiments (Figure 2.4B), highlighting the role of pre-existing particles in 

modifying the SOA constituents. The green-shaded area has a strong peak at 1095 cm-1 

(i.e., C-O-C stretching (61)) in the seeded experiments, which may be attributed to the 
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gas-particle partitioning of more volatile oxidation products that preserve the furan 

backbone facilitated by pre-existing particles. 

In addition, the formation of organosulfur products was observed in the presence 

of pre-existing particles (Figure S2.4), which indicates the unique condensed-phase 

chemistry supported by the sulfate-containing pre-existing particles (i.e., (NH4)2SO4). 

Overall, the compositional profiles of furan-derived SOA may be resistant to the changes 

in NO3 levels, but they can vary in the presence of pre-existing particles. 

 

 

Figure 2.4. ATR-FTIR spectra corresponding to the ACN-extracted aerosol samples 

from nighttime oxidation of furan under different environmental conditions. 

 

2.3.3. Light-absorption properties of furan BrC 

The wavelength dependent MACs are depicted in Figure 2.5. The SOA mass 

concentration and online MAC at 375 nm (MAC375) are provided in Table 2.1, followed 

by the AAE290/400 and AAE400/600. Figure 2.5 shows the elevated MACs related to the 
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increased NO3 levels. Given the consistent SOA mass concentrations under the various 

NO3 levels studied (Table 2.1), our findings indicate that higher levels of NO3-initiated 

oxidation can result in the production of more BrC constituents absorbing in the near UV 

range. Furthermore, the presence of pre-existing particles led to higher the SOA mass 

concentrations (Table 2.1) and lower MAC profiles (Figure 2.5). Because pre-existing 

particles can facilitate gas-particle partitioning and promote SOA formation by enhancing 

aerosol-phase reactions, it appears that the seed promoted the addition of non-absorbing 

products more compared to BrC chromophores. Our results may also suggest that semi-

volatile products that would not condense without the seed are not as light-absorbing 

compared to the low-volatile products that condense under both conditions. To rule out 

potential interference caused by solvent effects during extractions, (32) online MAC375 

measurements were also compared. The results show the consistency of MAC375 under 

the studied NO3 levels but a reduction by half of MAC375 in the presence of pre-existing 

particles (Table 2.1). In addition, the results of AAE290/400 and AAE400/600 may indicate 

that MAC profiles have a weaker wavelength dependence of in the presence of pre-

existing particles. 
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Figure 2.5. MAC profiles of furan BrC under the investigated conditions. The spectral 

curves are estimated by the average of three replica samples and the shared areas are 

estimated by the corresponding standard deviations of MAC at each wavelength.   

 

Table 2.1. Summary of CSOA, online MAC375, AAE290/400 and AAE400/600 under different 

environmental conditions. Results are expressed as mean ± 1 standard deviation (SD) 

from triplicate experiments. The data shown in the non-seeded experiments were from 

our previous study. (32)  

 

[NO2]/[O3]  
Pre-existing  

particles 

CSOA (µg m-3) MAC375 (m2 g-1)  AAE290/400  AAE400/600 

0.1 

No 17.73 ± 1.68 0.09 ± 0.03 5.82 ± 0.55 5.28 ± 0.85 

Yes 42.46 ± 1.80 0.04 ± 0.01 3.26 ± 1.36 3.98 ± 0.65 

0.3 

No 17.74 ± 1.65 0.08 ± 0.01 5.98 ± 1.03 4.14 ± 0.30 

Yes 40.86 ± 5.15 0.04 ± 0.01 4.11 ± 0.88 3.93 ± 0.84 
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Figure 2.6. LC-DAD heatmap of furan BrC chromophores under various environmental 

conditions.  
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Moreover, Figure 2.6 shows the LC-DAD chromatograms (absorption 

wavelength versus the chromatographic retention time), where each heatmap displays the 

relative light absorption intensity of chromophores under the corresponding experimental 

conditions. All the chromophores are distributed in the UV range, agreeing with the 

MAC profiles (Figure 2.5), in which the major absorption is below 400 nm. The 

distribution of chromophores exhibits a similar pattern in the LC-DAD chromatogram for 

all the experimental conditions, where the strongest light absorption hotspot emerges 

within the retention time between 1.5−2.0 min, while several weaker absorption hotspots 

are spread over 7.0−17.0 min. Moreover, the strongest hotspot has the highest absorption 

at ~300 nm, while those weaker hotspots are spread within the range of 300−400 nm, 

corresponding to the protruding shoulder at ~350 nm in the MAC profiles (Figure 2.5). 

2.3.4. Molecular compositions of chromophores in furan BrC 

Understanding the chromophore composition is fundamental to the process-level 

evaluation of secondary BrC formation. Since the strongest absorption hotspot in Figure 

2.6 is at around 1.7 min and 290 nm, the DAD chromatogram at 290 nm is extracted 

(Figure 2.7A) and the mass spectrum of the identified peak is analyzed (Figure 2.7B). 

The predominant peak in the mass spectrum is assigned to the deprotonated anion (i.e., 

[M-H]-) of C4H4O6, whose extracted ion chromatogram (EIC) also shows a distinct peak 

at 1.7 min (Figure 2.7C). C4H4O6 is a highly oxidized product and could be generated 

from further oxidation of C4H4O3, C4H4O4 and C4H4O5 that were identified in the 

FIGAERO-CIMS data (Figure 2.3). The measured UV−vis spectrum from LC-DAD 
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shows a similar sketch to the MAC profiles (Figure 2.5), indicating that C4H4O6 is one of 

the major chromophores in furan BrC from nighttime oxidation (Figure 2.6). 

As discussed above, the hotspots over 7.0−17.0 min from LC-DAD can contribute 

to the protruding shoulder in the MAC profiles (Figure 2.5). Compositional analysis 

reveals that these hotspots may be attributable to higher molecular weight oxidation 

products (i.e., dimers and oligomers) with high double bond equivalents (DBE). For 

example, Figure S2.5A−C shows three dimers, C8H6O4 (DBE = 6), C8H6O6 (DBE = 6) 

and C8H4O6 (DBE = 7), which may correlate to the hotspots at 9 min and 11.2 min, 

respectively. The oligomers C14H22O5 (DBE = 4), C15H21NO5 (DBE = 5) and C10H13NO5 

(DBE = 4) shown in Figure S2.5D−F may correspond to the hotspots at 11.2 min and 

13.5 min, respectively. Notably, because each hotspot shown in the heatmap may account 

for multiple chromophores (e.g., Figure S2.5B−E), it is challenging to quantify their 

contributions here without authentic standards. Nevertheless, dimers and oligomers 

appear to play an important role in BrC light absorption in furan SOA. 

Due to the smaller proportion of nitrogen-containing products in furan SOA 

compositions, the solvent selectivity or artifacts during LC analysis that may further 

impede the detection of chromophores that are sensitive to solvent attacks (e.g., 

hydrolysis or methanolysis of anhydrides by LC mobile phases). (32) In addition, not all 

the SOA components can be efficiently ionized by the ESI source. (62, 63) As a result, 

identified chromophores in this subset by LC-DAD-ESI-Q-ToFMS are limited. However, 

several unsaturated nitrogen-containing products were identified by an independent 

solvent-free approach using FIGAERO-ToF-CIMS; thus, we performed TD-DFT 
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calculations to determine whether these products could be potential chromophores. For 

instance, C4H3NO7 (DBE = 3), is a functionalized monomer which may have two light-

absorbing isomers: 2-hydroxy-3-nitro-maleic acid and 2-hydroxy-3-nitro-fumaric acid 

(Figure 2.8A). C8H3NO5 (DBE = 7) is likely nitrophthalic anhydrides that are susceptible 

to solvent attacks (Figure 2.8B). Given the strong absorptivity of these products, 

nitrogen-containing chromophores may still contribute significantly to BrC light 

absorption even though their mass fraction is small.  

 

Figure 2.7. Identification of C4H4O6 as a BrC chromophore. (A) DAD extracted 

wavelength chromatogram at 290 nm, (B) extracted mass spectrum of the shaded area in 

the DAD chromatogram, (C) EIC of the deprotonated C4H4O6, and (D) UV−vis spectrum 

from the shaded area in the DAD chromatogram.  
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Figure 2.8. Theoretical UV−vis spectra of nitrogen-containing chromophores: (A) 

C4H3NO7 and (B) C8H3NO5. 

 

2.4. Atmospheric implications  

This study investigated the secondary BrC formation from nighttime oxidation of 

furan by varying the NO3 levels and pre-existing particles. Our analysis revealed the key 

role of NO3-initiated oxidation in furan oxidation under the in-plume environment and 

highlighted the effects of oxidant levels and pre-existing particles on chemical 

compositions and optical properties. Increased NO3 levels can enhance the MAC profiles, 

but the overall bulk compositions in furan SOA measured as ion fragment families by 

mAMS are insensitive to this change. Since rapid SOA formation has been observed in 

biomass burning plumes exposed to NO2 and O3 during the nighttime but has not been 

well represented in modeling studies, (64) our work contributes to a better understanding 

of the role of nighttime oxidant levels in furan SOA formation and BrC light absorption. 

Our results also indicate that the pre-existing particles can increase the SOA mass 

concentrations but, in the meantime, decrease the MAC profiles under dry conditions 
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(RH< 20%). MAC reduction due to pre-existing particles under dry conditions may be an 

important process for evaluating BrC radiative forcing in climate models, as pre-existing 

particles have been demonstrated as a crucial factor that controls SOA formation in a 

changing climate. (65)  

Our study is pertinent to biomass burning plumes with low RH (e.g., the Williams 

Fire plume (66)) or plumes of higher RH expanded into the low RH atmospheres, such 

as those in the western United States (67, 68) and Africa during dry seasons. (69, 70) The 

molecular compositions reported here can contribute to a more comprehensive molecular 

understanding of furan oxidation. We show that under different environmental 

conditions, highly oxidized monomers, dimers, and oligomers can contribute to BrC 

chromophores. Multiple anhydride species, including maleic anhydride (or furandione), 

phthalic anhydride, and nitrophthalic anhydrides, can be potentially important 

chromophores in furan BrC under dry conditions. (32) Notably, atmospheric convection 

can vertically transport BrC into the upper troposphere, (71) where the average relative 

humidity is approximately 27% and less than 10% for subtropical regions. (72) 

Anhydride chromophores are likely to have a longer lifetime in the upper troposphere. 

Even under wet conditions where anhydrides could be hydrolyzed, the resulting products 

may still be chromophores. For example, phthalic acid (or 1,2-benzenedicarboxylic acid), 

the hydrolysis product of phthalic anhydride, has been reported as one of the most 

prevalent BrC chromophores in ambient observations. (73, 74) Nitrophthalic acid, the 

hydrolysis product of nitrophthalic anhydrides, was also identified as a chromophore in 

the aerosols produced by the combustion of biomass. (75) Since both of these hydrolysis 
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products are organic markers of SOA, (76−79) the hydrolysis of anhydrides can be used 

to track the formation and evolution of secondary BrC. Overall, our findings highlight the 

influence of NO3 levels and pre-existing particles on the chemical composition and 

optical properties of nighttime furan SOA, whereas bulk and molecular characterizations 

of SOA constituents and chromophores are necessary for better experimental constraint 

and a more complete process-level understanding of their formation. 
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2.5. Supplemental Information 

Table S2.1. Summary of particulate effective density (ρeff) and organic aerosol fraction 

(MFOA) under different environmental conditions. Results are expressed as mean ± 1 

standard deviation (SD) from triplicate experiments. The data shown in the non-seeded 

experiments were from our previous study. (32)  

 

[NO2]/[O3]  Pre-existing particles ρeff (g cm-3) MFOA (%) 

0.1 
No 1.40 ± 0.04 94.33 ± 1.25 

Yes 1.44 ± 0.10 50.00 ± 2.00 

0.3 
No 1.37 ± 0.12 94.33 ± 1.25 

Yes 1.58 ± 0.11 48.33 ± 2.49 
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Table S2.2. Cartesian coordinates for the geometrical structures in the TD-DFT 

calculations. 

 

C4H3NO7 isomer 1 

 C                 -1.84059600   -0.68744300    0.01099200 

 C                 -0.53770800    0.01431000   -0.00120000 

 C                  0.62693900   -0.73429800   -0.00571300 

 C                  2.04326600   -0.17893700   -0.10601300 

 O                 -2.96568200   -0.00873600    0.01470300 

 O                  2.57850500   -0.00780300    1.09568500 

 O                 -1.85866300   -1.91966800    0.01955500 

 O                  2.58502300   -0.04957600   -1.17028800 

 O                  0.61952100   -2.03166900    0.00849100 

 N                 -0.44411200    1.44432800   -0.00574900 

 O                 -1.49817900    2.10585900   -0.01174200 

 O                  0.66063900    1.97129600   -0.00326600 

 H                 -2.75280600    0.95596800    0.00463400 

 H                  3.49917300    0.29327800    1.00422800 

 H                 -0.35829600   -2.31896700    0.01788200  

C4H3NO7 isomer 2 

 C                 -0.47271977   -0.06114189    0.49871577 

 C                  0.62693900   -0.73429800   -0.00571300 

 C                  2.04326600   -0.17893700   -0.10601300 

 O                 -2.86544670   -0.10271093    0.90977736 

 O                  2.37089846    0.50158606    0.98457907 

 O                 -1.89545777   -1.83857240   -0.05099428 

 O                  2.75617619   -0.46086884   -1.03077766 

 O                  0.53888617   -1.92169695   -0.52123091 

 O                 -1.28756257    1.84239989    1.50358034 
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 O                  0.83350251    1.72881400    1.09510096 

 H                  3.29561354    0.79730272    0.92056818 

 H                 -0.44204654   -2.19285567   -0.46647326 

 H                 -2.15218308    1.42693133    1.46593418 

 N                 -1.80019806   -0.71276925    0.44121609 

 C                 -0.28973150    1.24356506    1.06261953  

C8H3NO5 isomer 1 

 C                  0.10643200   -0.10618300    0.00003700 

 C                  1.23560200    0.74932000    0.00000300 

 C                  1.11094400    2.13079700   -0.00001100 

 C                 -0.19023200    2.67356600    0.00001000 

 C                 -1.31177500    1.85066200    0.00004200 

 C                 -1.16819600    0.43998900    0.00005600 

 C                  0.59655200   -1.52500200    0.00004700 

 C                  2.46726100   -0.08121500   -0.00001200 

 H                  1.99102300    2.78439800   -0.00003700 

 H                 -0.31615700    3.76432400    0.00000000 

 H                 -2.32250300    2.28596700    0.00005600 

 N                 -2.39222100   -0.39496400    0.00009000 

 O                 -3.46870100    0.18144100   -0.00008500 

 O                 -2.26332700   -1.60680400   -0.00017700 

 O                  0.10391000   -2.60791000    0.00007700 

 O                  3.64108600    0.12315300   -0.00004000 

 O                  2.02624000   -1.44757200    0.00001600 

C8H3NO5 isomer 2 

 C                 -0.62918300    0.55265800   -0.00000200 

 C                 -1.03320600   -0.81325800   -0.00000800 



 45 

 C                 -0.11943800   -1.84248700   -0.00001400 

 C                  1.25502900   -1.49904600   -0.00001300 

 C                  1.64208900   -0.15846400   -0.00000500 

 C                  0.70251700    0.90699400   -0.00000100 

 C                 -1.84407400    1.40637900    0.00000600 

 C                 -2.52809300   -0.85472400   -0.00000200 

 H                 -0.42426700   -2.89514900   -0.00001900 

 H                  2.01317800   -2.29726500   -0.00001800 

 O                 -2.07626000    2.57496500    0.00001500 

 O                 -3.35473300   -1.71367100   -0.00000100 

 O                 -2.96695100    0.50582800    0.00000600 

 N                  3.08434000    0.17582100    0.00000400 

 O                  3.39998400    1.35538800   -0.00004800 

 O                  3.88656800   -0.74489900    0.00005700 

 H                  1.03799200    1.95246900    0.00000600 
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Table S2.3. Summary of NO+/NO2
+ values under different environmental conditions. 

Results are expressed as mean ± 1 SD from triplicate experiments. 

 

[NO2]/[O3]  Pre-existing particles 
NO+/NO2

+ 

Early Late 

0.1 
No 2.42 ± 0.13 2.41 ± 0.16 

Yes 2.16 ± 0.07 2.19 ± 0.04 

0.3 
No 2.58 ± 0.10 2.42 ± 0.26 

Yes 2.33 ± 0.04 2.34 ± 0.05 
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Figure S2.1. Example pie charts for comparing the early averages and the late averages 

of the fragment abundance measured by the mAMS. The experimental condition is low 

NO3 without seeds. 
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Figure S2.2. Comparison of gas-phase products from nighttime oxidation of furan 

between the “low NO3” and “high NO3” experiments (i.e., initial [NO2]/[O3] = 0.1 and 

0.3). <O/C> and <N/C> represent the intensity-weighted average values of O/C and N/C 

based on the identified products.  
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Figure S2.3. IMS-TOF characterization of isomer distribution of oxygenated products in 

furan SOA under different experimental conditions.  
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Figure S2.4. Extracted ion chromatograms (EIC) of organosulfur products.  
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Figure S2.5. EICs of tentatively light-absorbing dimers and oligomers in furan BrC. 
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Chapter 3. Relative Humidity Modulates the Physicochemical Processing of 

Secondary Brown Carbon Formation from Nighttime Oxidation of Furan and 

Pyrrole 

 

3.0. Abstract 

Light-absorbing secondary organic aerosols (SOAs), also known as secondary 

brown carbon (BrC), are major components of wildfire smoke that can have a significant 

impact on the climate system; however, how environmental factors such as relative 

humidity (RH) influence their formation is not fully understood, especially for 

heterocyclic SOA precursors. We conducted chamber experiments to investigate 

secondary BrC formation from the nighttime oxidation of furan and pyrrole, two primary 

heterocyclic SOA precursors in wildfires, in the presence of pre-existing particles at RH 

< 20% and ~50%. Our findings revealed that increasing RH significantly affected the size 

distribution dynamics of both SOAs, with pyrrole SOA showing a stronger potential to 

generate ultrafine particles via intensive nucleation processes. Higher RH led to increased 

mass fractions of oxygenated compounds in both SOAs, suggesting enhanced gas-phase 

and/or multiphase oxidation under humid conditions. Moreover, higher RH reduced the 

mass absorption coefficients of both BrC, contrasting with those from homocyclic 

precursors, due to the formation of non-absorbing high-molecular-weight oxygenated 

compounds and the decreasing mass fractions of molecular chromophores. Overall, our 

findings demonstrate the unique RH dependence of secondary BrC formation from 

heterocyclic precursors, which may critically modulate the radiative effects of wildfire 

smoke on climate change. 
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3.1. Introduction 

Light-absorbing aerosols from wildfires can affect the climate system by directly 

heating the atmosphere and indirectly altering the aerosol-boundary-layer-monsoon 

interactions. (1−3) Over the last few decades, climate change has increased the intensity 

and frequency of wildfires, (4−6) releasing a massive amount of volatile organic 

compounds (VOCs) and aerosols into the atmosphere. (7−9) However, the impact of 

unabated wildfire emissions is highly uncertain due to the less-constrained radiative 

effects of wildfire smoke, which are influenced by the composition of smoke aerosols. 

The major component of smoke aerosols is organics (>95%), (10, 11) contributing to 

~45-86% of the total aerosol light absorption. (12) A large fraction of smoke organics 

(~30−56%) accounts for secondary organic aerosols (SOAs), (13) in which the light-

absorbing component is known as secondary brown carbon (BrC). Thus, secondary BrC 

plays a critical role in moderating the climate impacts of wildfire smoke. 

The formation of secondary BrC can be sensitive to the smoke environments. (14, 

15) In particular, relative humidity (RH) is a well-known environmental factor that may 

alter SOA composition and secondary BrC light absorption. Extensive research has 

revealed that changes in RH can influence SOA formation by altering the gas-phase 

chemistry, gas-to-particle partitioning of oxidation products, phase states of aerosols, 

reactive uptake of radicals, and heterogeneous reactions of aerosol-phase constituents. 

(16−27) Prior studies also reported that higher RH increased the mass absorption 

coefficients (MAC) of secondary BrC derived from homocyclic aromatic precursors. 

(28−30) The increased MAC was associated with changes in molecular chromophores as 
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RH increased, which may alter the wavelength dependence of MAC profiles. (30) On the 

other hand, higher RH decreased the MAC of secondary BrC derived from α-pinene, (31) 

suggesting that the effect of RH on MAC may differ depending on the type of VOCs. It is 

noted that a rise in RH may result in increased liquid water content in wildfire aerosols, 

where water-soluble organics can contribute to a large portion (e.g., ~45% at 405 nm) of 

BrC light absorption. (32) Despite the extensive investigations, the effect of RH on 

secondary BrC formation remains inconclusive.  

Heterocyclic VOCs are the second largest sources of wildfire SOA precursors, 

and they are more reactive compared to homocyclic VOCs (e.g., phenolics) due to their 

hetero atoms. (33, 34) Common heterocyclic VOCs released by wildfire include furans 

and pyrroles, (34−37) which account for ~30% of nitrate radical (NO3) loss via nighttime 

chemistry in wildfire plumes. (38) Furans have greater emission factors but may generate 

less-absorbing BrC from nighttime chemistry, whereas pyrroles exhibit the opposite 

behavior. (35, 36, 39, 40) Secondary BrC formation from the nighttime chemistry of 

furans and pyrroles has been widely studied under RH conditions below 20%, (14, 15, 

39−41) a typical level in dry wildfire smokes (e.g., the Williams Fire smoke (42)) or dry 

fire areas (e.g., western United States (43, 44) and Africa in dry seasons (45, 46)). In 

addition, there have been frequent observations of humid wildfire smoke worldwide, 

particularly those at RH ~50%, in the past two decades due to climate change. (47−49) A 

prior study of secondary BrC from indole, which contains a pyrrole ring in its structure, 

highlighted that the effects of RH on the light absorption properties of secondary BrC 

from heterocyclic VOCs were complicated and greatly unconstrained. (50) Hence, there 
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was still a significant lack of process-level understanding regarding the secondary BrC 

formation from heterocyclic VOCs at various levels of RH. 

In this study, chamber experiments were conducted to investigate the effects of 

RH on the secondary BrC formation from the nighttime oxidation of furan and pyrrole, 

the backbone compounds of furans and pyrroles. For comparison, RH was controlled at 

<20% and ~50% to simulate dry and humid environments, respectively, while pre-

existing particles were introduced in both RH so that the chamber conditions would be 

closer to the ambient atmosphere. The effects of RH on particulate size distribution 

dynamics, SOA composition, BrC light absorption properties, and molecular 

chromophores were examined to better understand how RH-related physicochemical 

processing modulates the secondary BrC formation from furan and pyrrole and their 

implications in the atmosphere. These results will provide more accurate representations 

of wildfire-associated secondary BrC and aid in assessing their climate impacts. 

3.2. Methods 

3.2.1. Experimental setup 

All the experiments were carried out in a 10 m3 Teflon fluorinated ethylene 

propylene (FEP) film chamber at room temperature (20−25 °C) under dark conditions. 

The room temperature was much lower than the temperature of wildfires but comparable 

to the temperature of ambient atmosphere, (47, 49, 51) where furan and pyrrole released 

from wildfires were observed in field studies. (34, 37) Temperature and RH were 

monitored by a RH-USB sensor (Omega Engineering, Inc.) attached to the chamber. A 
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constant output atomizer (TSI 3076) was used to produce pre-existing particles using a 10 

mM ammonium sulfate ((NH4)2SO4, Acros Organics, 99%, extra pure) solution. The pre-

existing particles had a mass concentration and the central diameter of ~50 μg m-3 and 

~50 nm, respectively, to simulate the background particles in wildfire smoke. (52, 53) 

Given that higher RH can introduce liquid water or increase the amount of liquid water 

content in wildfire aerosols, (48, 54) we generated dry pre-existing particles at RH <20% 

and wet aqueous pre-existing particles at RH ~50%. Because our humid condition was 

between the efflorescence RH and deliquescence RH of ammonium sulfate, (55) dry seed 

particles were produced by passing through a silica-gel filled diffusion dryer, whereas 

wet aqueous seed particles were produced without the dryer. (56) Chamber experiments 

without pre-existing particles were also performed at both RH levels. These experiments 

serve as a benchmark for detailed discussions on the potential mechanisms involved in 

SOA formation. 

This study used furan (TCI America, >99%) and pyrrole (TCI America, >99%) as 

model compounds of heterocyclic VOCs. Each experiment involved only one VOC, in 

which ~200 ppbv of furan or pyrrole was injected into the chamber using ~15 lpm of zero 

air. The concentration of VOCs was determined based on previous studies to ensure 

appropriate SOA mass concentrations for online and offline analyses. (14, 15, 40, 41) 

After 20 minutes of mixing, a mixture of NO2 and O3 (molar concentration ratio ~3:2) 

was injected into the chamber, wherein N2O5 was generated and then decomposed to NO3 

radicals. O3 was generated by an O3 generator (A2Z Ozone 3G LAB) with pure oxygen 

(flow rate of 0.2 lpm), while NO2 was directly injected from a NO2 cylinder (4789 ppm, 
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Airgas) with a flow rate of 0.5 lpm. Similar to prior studies of SOA formation under 

humid conditions, (20, 21) the NO2−O3 ratio ensured that NO3 primarily drove the oxidation of 

pyrrole and furan in our chamber. The NO2−O3 mixture was first reacted in a glass vessel (total 

flow rate of 0.7 lpm and residence time of 206 s) before the chamber injection. The 

concentration of N2O5 produced in the glassware was estimated by modeling the 

reactions between NO2 and O3, and the initial concentration ratio of N2O5 to furan (or 

pyrrole) was approximately 2:1. While it was possible that O3 residue was also 

introduced into the chamber along with N2O5, the reaction rate constants (k) at room 

temperature and atmospheric pressure for “furan/pyrrole + NO3” (kfuran+NO3 = 1.4 × 10-12 

cm3 molecule-1 s-1; kpyrrole+NO3 = 4.9 × 10-11 cm3 molecule-1 s-1) are ~6 orders of magnitude 

higher than those of “furan/pyrrole + O3” (kfuran+O3 = 2.4 × 10-18 cm3 molecule-1 s-1; 

kpyrrole+O3 = 1.6 × 10-17 cm3 molecule-1 s-1). (57−59) Therefore, the oxidation of pyrrole 

and furan in our chamber was mostly driven by NO3-initiated oxidation.  

The injection of the NO2−O3 mixture marked the start of experiments. The 

duration of each experiment was ~2.2 hours, during which the SOA mass concentration 

reached a plateau. Following this plateau, the generated SOA samples were collected on 

polytetrafluoroethylene membrane filters (PTFE, 46.2 mm, 2.0 µm, Tisch Scientific) for 

subsequent offline analysis. The collection flowrate was 20 lpm, and the collection time 

was 1.5 hours; each filter collected the aerosols from 1.8 m3 of chamber air. The 

experimental procedure was similar to the those reported in prior studies of high-RH 

chamber experiments. (20, 21) It has been noted that the chamber wall loss of particles 

may be potentially different at different RHs. However, in this study, the first-order size-
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dependent particulate wall loss rates were comparable at both RH levels (Figure S3.1). 

Although vapor wall loss of oxidized products can be increased by higher RH, our data 

showed an increased trend of mass fractions of oxygenated composition in particle phase 

(Figure S3.2). Such evidence indicates that the chamber interference at higher RH did 

not significantly hinder the formation of highly oxidized products in SOA. (20) 

Experiments of each environmental condition were repeated for three times (n=3) to 

confirm the reproducibility of observed phenomena and determine the uncertainties 

(standard deviations) of reported values. 

3.2.2. Particulate Size Distribution and Compositional Analysis 

The number concentration and size distribution of SOA were measured 

throughout the duration of the experiments by a scanning electrical mobility spectrometer 

(SEMS, Brechtel Manufacturing Inc.) in the diameter range of 10−800 nm with 140 bins. 

The bulk composition and the in situ molecular composition were characterized by a 

mini-aerosol mass spectrometer coupled with a compact time-of-flight mass spectrometer 

(mAMS, Aerodyne Research Inc.) (60) and an iodide-adduct time-of-flight chemical ion 

mass spectrometer coupled with the filter inlet for gases and aerosols system (FIGAERO-

ToF-CIMS, Aerodyne Research Inc.), (61) respectively. Attenuated total reflectance 

Fourier-transform infrared spectrometer (ATR-FTIR, Thermo Nicolet iS50) was used to 

characterize the functional group fingerprints. The measured IR spectra were 

deconvoluted using Igor Pro 7 (WaveMetrics, Lake Oswego, OR, USA), in which the 

wavenumbers of identified peaks were determined. Gas chromatography-electron 

ionization mass spectrometry (GC/EI-MS, Agilent Technologies 6890N GC System and 
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5975 inert XL Mass Selective Detector) and liquid chromatography coupled with an 

electrospray ionization source and a quadruple-time-of-flight mass spectrometer (LC-

ESI-Q-ToFMS, Agilent Technologies 1260 Infinity II and 6545 Q-ToF LC/MS) were 

used to analyze the molecular composition of SOA samples. Details of the instrumental 

setup have been published elsewhere. (40, 41) Particulate effective density, organic mass 

fraction in aerosols, and SOA mass concentration in the chamber were calculated based 

on the methods described in our previous study (Table S3.1). (40)  

The mass fractions of molecular chromophores were semi-quantified using 

surrogate standards analyzed by LC-ESI-Q-TOFMS or GC/EI-MS. Molecular 

chromophores in furan BrC were mainly carbonyls, while in pyrrole BrC accounted for 

both carbonyls and nitroaromatics. (15, 41) Therefore, we used maleic acid (C4H4O4), 

maleimide (C4H3NO2), and nitropyrroles (C4H4N2O2, including 2-nitropyrrole and 3-

nitropyrrole) as surrogate standards for estimating chromophores in furan BrC, carbonyl 

chromophores in pyrrole BrC, and nitroaromatic chromophores in pyrrole BrC, 

respectively. C4H4O4 was quantified by LC-ESI-Q-TOFMS, while C4H3NO2 and 

C4H4N2O2 were quantified by GC/EI-MS with their authentic chemical standards. The 

mass fractions of other molecular chromophores were estimated by eq (3.1). 

𝑀𝐹𝑐ℎ𝑟𝑜𝑚𝑜𝑝ℎ𝑜𝑟𝑒 = 𝑀𝐹𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒

𝑐𝑐ℎ𝑟𝑜𝑚𝑜𝑝ℎ𝑜𝑟𝑒𝑀𝑐ℎ𝑟𝑜𝑚𝑜𝑝ℎ𝑜𝑟𝑒

𝑐𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑀𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒
 

= 𝑀𝐹𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑅𝐹
𝐴𝑐ℎ𝑟𝑜𝑚𝑜𝑝ℎ𝑜𝑟𝑒𝑀𝑐ℎ𝑟𝑜𝑚𝑜𝑝ℎ𝑜𝑟𝑒

𝐴𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑀𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒
                     (3.1) 
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Here MFchromophore is the mass fraction of the characterized molecular 

chromophore in SOA samples; MFsurrogate is the mass fraction of the surrogate standard in 

SOA samples;  cchromophore and csurrogate are the molar concentrations of the characterized 

chromophores and the surrogate standard in the SOA samples (mol L-1); Mchromophore and 

Msurrogate are the molar masses of the characterized chromophores and the surrogate 

standard in the SOA samples (g mol-1); Achromophore and Asurrogate are the peak areas of 

parent ions of the characterized chromophores and the surrogate standard in their 

extracted ion chromatograms (EICs) measured by LC-ESI-Q-TOFMS. While the 

response factor (RF) of molecular chromophores may exhibit certain variations compared 

to surrogate standards, (15) semi-quantification can still offer approximate mass fractions 

to elucidate their changes under different RH conditions.  

3.2.3. Light Absorption Properties 

The ultraviolet and visible (UV−vis) absorbance of SOA samples was measured 

by a UV−vis spectrophotometer (Beckman DU-640) in the range of 290-700 nm, with the 

reference wavelength at 700 nm. All of the SOA samples were extracted with acetonitrile 

(ACN), an aprotic polar solvent that is suitable for analyzing carbonyl-rich secondary 

BrC samples. (40) It should be noted that due to solvent selectivity, ACN may not 

completely extract the furan SOA and pyrrole SOA constituents from filters (i.e., 

extraction efficiency < 100%). (15) The MAC profiles of SOA samples are calculated by 

eq (3.2). 

𝑀𝐴𝐶(𝜆) =  𝑙𝑛10 ×
𝐴(𝜆) −𝐴(700) 

𝑏×𝐶𝑚
                                         (3.2) 
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Here, A(λ) is the wavelength (λ)-dependent absorbance, b is the light path length 

(i.e., 1 cm), and Cm is the mass concentration of SOA. Since Cm was calculated by the 

total on-filter SOA mass (online-monitored SOA mass concentration × air volume in 

filter collection) over the volume of ACN solution and given the chance that some BrC 

components were not completely extracted with ACN, this study estimated the lower-

bound limit of BrC MAC. Since SOA formation at each environmental condition was 

repeated three times, the average and standard deviation of MAC at each wavelength can 

be calculated by three replicates of SOA samples. The relative error (i.e., standard 

deviation over the average value) of the MAC value at each wavelength was ~15%, as 

estimated by 3 repeated experiments. The wavelength dependency of MAC(λ) was also 

investigated by fitting the absorption Ångström exponent (AAE), as defined by eq (3.3). 

𝐴𝐴𝐸 =  −
ln 𝑀𝐴𝐶(𝜆)− ln 𝑀𝐴𝐶(𝜆0)

ln 𝜆− ln 𝜆0
= −

ln[𝑀𝐴𝐶(𝜆)/𝑀𝐴𝐶(𝜆0)] 

ln(𝜆/𝜆0)
                    (3.3) 

Here, λ0 represents the reference wavelength. The fitted AAE would be equal to 

the slope of the linear regression of ln[MAC(λ)/MAC(λ0)] versus −ln(λ/λ0) with a zero 

intercept. Since our previous studies reported that AAE can be different in the UV 

(290−400 nm) and visible (400−600 nm) ranges, (14, 39−41) we set λ0 as 400 nm for 

fitting the AAE. However, since the AAE shown in our data can largely vary along with 

λ, we also derive the wavelength-dependent AAE in eq (3.4). 

𝐴𝐴𝐸(𝜆) =  −
𝑑 ln 𝑀𝐴𝐶(𝜆)

𝑑 ln 𝜆
=  −

𝜆

𝑀𝐴𝐶(𝜆)

𝑑 𝑀𝐴𝐶(𝜆)

𝑑 𝜆
≈ −

𝜆

𝑀𝐴𝐶(𝜆)

𝑀𝐴𝐶(𝜆+∆𝜆) − 𝑀𝐴𝐶(𝜆−∆𝜆) 

2 ∆𝜆
   (3.4) 

The stepwise wavelength (Δλ) was set as 3 nm. AAE(λ) was sketched by a 

stepwise scan to portray a more detailed wavelength dependency of MAC, while the 
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fitted AAE values reflected the overall trend. These two representations of AAE can 

complementarily highlight the distinction of MAC profiles at different RHs. 

3.2.4. Computational Methods 

Time-dependent density functional theory was employed to estimate the 

theoretical UV−vis spectra of molecular chromophores. All the computations were 

conducted using the Gaussian 16 program (revision C. 01). (62) Geometrical 

optimization and the computation of line-center wavelengths and oscillator strengths 

were performed by the B3LYP functional (63, 64) with the 6-311++G(d,p) basis set, (65) 

as suggested in previous studies. (14, 66, 67) The ACN environment was simulated by 

the integral equation formalism extension of the polarizable continuum model. (68) The 

theoretical UV−vis spectra were generated by the GaussView 6 program. The validation 

of our theoretical calculations was previously discussed in detail with similar BrC 

chromophores. (67) Cartesian coordinates for all the molecular structures are summarized 

in Table S3.2. 

3.3. Results and Discussions 

3.3.1. Size Distribution Dynamics of Furan SOA and Pyrrole SOA 

Size distribution dynamics, which encompasses the change in number and size 

distribution of particles over time, is the physical basis of SOA formation and can be 

interconnected with gas-phase and/or multiphase chemistry. (69) At RH <20%, the 

particulate size of furan SOA gradually increased over time, but at RH ~50%, the 

particulate size of furan SOA rapidly increased within 10 minutes when furan oxidation 
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started (Figure 3.1A, B). However, the particle size distribution dynamics of pyrrole 

SOA were different. If the response of pyrrole SOA to changes in RH is similar to that of 

furan SOA, then an even broader size distribution of pyrrole SOA should be observed at 

higher RH, because distinct growth in particulate size was observed at low RH (Figure 

3.1C), which indicated the greater potential of pyrrole oxidation products to contribute to 

particles with larger size. However, at higher RH, our results unexpectedly showed a 

much narrower size distribution of pyrrole SOA (Figure 3.1D). The central diameter of 

the particles was still ~50 nm, comparable to that of the pre-existing particles, reflecting 

the limited particulate growth. Correspondingly, the particle number concentration at RH 

~50% was significantly higher than that at RH <20% (Figure 3.1C, D), indicating an 

intensive new particle formation (NPF) at RH ~50%. The rapid decrease of number 

concentration in Figure 3.1D may be attributed to the chamber wall loss and coagulation 

of particles. Although the intensive NPF was observed at a specific environmental 

condition (i.e., RH ~50% with pre-existing particles), our findings can be tightly related 

to wildfire smoke because RH ~50% and pre-existing particles are frequently observed in 

wildfire smoke. (47−49) All of these characteristics demonstrated the differential RH 

responses of furan SOA and pyrrole SOA.  
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Figure 3.1. Particle size distribution dynamics of (A) furan SOA at RH <20%; (B) furan 

SOA at RH ~50%; (C) pyrrole SOA at RH <20%; (D) pyrrole SOA at RH ~50%. 

 

The intensive NPF of pyrrole SOA was unexpectedly associated with the pre-

existing particles, as revealed by our benchmark experiments. Without pre-existing 

particles, an increase in RH broadened the size distribution of both SOAs when oxidation 

started (Figure S3.3). The size distribution of pyrrole SOA at RH ~50% was much 

broader than that at RH <20% (Figure S3.3C, D), indicating that higher RH boosted 

particle growth accompanied by NPF so that the particulate size was larger but the 

particulate number concentration was lower. This phenomenon reflected that higher RH 

without pre-existing particles was capable of facilitating the condensation of gas-phase 
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products and the coagulation of ultrafine particles when pyrrole SOA was formed. These 

two processes would be promoted in the presence of pre-existing particles, which were 

expected to become the condensation sink. (70) However, intensive NPF was observed 

(Figure 3.1D), reflecting the boosted nucleation process regardless of the pre-existing 

particles. It is noted that the potential to form ultrafine particles via nucleation processes 

could be largely dependent on environmental conditions. The intensive NPF shown in 

Figure 3.1D suggests that the nighttime oxidation of pyrrole may have a stronger 

potential to induce nucleation in humid wildfire smoke. Although a thorough mechanistic 

elucidation may require further measurements of the critical nuclei composition, the 

unexpected NPF of pyrrole SOA can reflect that the nitrogen atom from the pyrrole 

backbone is the key to inducing a stronger potential for nucleation, as compared to furan 

SOA (Figure 3.1B, D). The “furan-pyrrole” comparisons highlighted the importance of 

VOC-specified physicochemical processing in wildfire-related SOA formation, which 

may influence the chemical composition. 

3.3.2. Chemical Characterization of SOA Composition 

To investigate the effects of RH on SOA composition, chemical characterization 

was conducted using multiple complementary instruments to determine the bulk and 

molecular compositions, as well as the molecular fingerprints. The bulk composition of 

SOA showed that higher RH increased the mass fraction of CxHyO>1
+ fragments but 

decreased the mass fraction of CxHy
+ fragments in both SOAs (Figure 3.2A, B). 

However, at both RH conditions, the total mass fractions of nitrogen-containing 

fragments (i.e., CxHyN
+, CxHyON+, and CxHyO>1N

+) of either furan SOA or pyrrole SOA 
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were roughly consistent (Figure 3.2A, B). It is noted that reduced nitrogen compounds 

(e.g., imidazole-type compounds) may be potentially generated from particle-phase 

reactions between organic products and the ammonium cations in the pre-existing 

particles. (71−75) Here, C2H2N
+, C2H3N

+, and C3H3N
+ (typical fragments of nitrogen-

containing organic compounds other than organonitrates measured by mAMS (29)) were 

used to quantify the mass fractions of reduced nitrogen compounds (Table S3.3). At 

higher RH, the mass fraction of C2H3N
+ was higher, but the mass fractions of C2H2N

+ 

and C3H3N
+ were lower. However, the total mass fraction of these fragments was roughly 

constant at both RH, indicating that the change in RH had a minor influence on the 

formation of reduced nitrogen. All these results indicated that the compositional change 

at higher RH mainly accounted for the generation of oxygenated products. 

Moreover, our ATR-FTIR measurements showed the difference in oxygenated 

functional group fingerprints at different RHs, including the hydroxyl group (O−H) 

stretching, the carbon−oxygen double bond (C=O) stretching, and the 

carbon−oxygen−carbon (C−O−C) stretching (Figure 3.2). Functional groups were 

assigned to the wavenumbers based on previous IR studies of SOA composition. (76)  In 

furan SOA, the wavenumber of the C−O peak shifted while both the number and 

wavenumbers of C=O peaks changed. A new O−H peak at 3391 cm-1 was observed, but 

the C−O peak at 1193 cm-1 disappeared at higher RH (Figure 3.2C). These results 

indicated that the change in RH may greatly alter the oxygenated constituents in furan 

SOA. While in pyrrole SOA, O−H and C=O peaks were similar at both RH, while at 

higher RH two new C−O−C peaks (1100 cm-1 and 1184 cm-1) were identified (Figure 
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3.2D). Since the C−O−C structure cannot be inherited from the pyrrole backbone, the 

new C−O−C peaks may be attributed to RH-modulated gas-phase and/or multiphase 

oxidation on pyrrole SOA. The observed results of functional group fingerprints from 

SOA formed at different RH levels reflected that higher RH could cause a shift in the 

distribution of wavenumbers of oxygenated functional groups suggesting a considerable 

change in the chemical composition of oxygenated compounds with RH. 

 

 

Figure 3.2. Chemical characterizations of the SOA bulk composition at RH <20% and 

~50% conditions: (A) mass fractions of compositional fragments of furan SOA; (B) mass 

fractions of compositional fragments of pyrrole SOA; (C) functional group fingerprints of 

furan SOA; (D) functional group fingerprints of pyrrole SOA. 

 

The effect of RH on the oxygenated products was further investigated through the 

molecular characterization of SOA samples. The average of the hydrogen-to-carbon 

(H/C) and the oxygen-to-carbon (O/C) ratios (i.e., <H/C> and <O/C>), weighted by 
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intensity from FIGAERO-ToF-CIMS measurements, of both SOA constituents increased 

with higher RH (Table S3.4). This suggests that higher RH levels can enhance the 

saturation and oxygenation levels of SOA constituents (Figure 3.3). The increasing 

<H/C> ratio decreased the intensity-weighted average of double bond equivalence (DBE) 

(i.e., <DBE>) (Figure 3.3). However, the nitrogen-to-carbon (N/C) ratio (i.e., <N/C>) 

decreased at higher RH in pyrrole SOA constituents while kept constant in furan SOA 

constituents (Table S3.4), indicating that the formation of nitrogen-containing products 

in pyrrole SOA characterized by FIGAERO-ToF-CIMS were more sensitive to RH 

change. In furan SOA, the highest peaks at both RH conditions were attributed to 

C4H4O3, while the presence of its oxygenated products C4H4O4 and C4H4O5 was also 

observed (Figure 3.3A). It should be noted that C4H4O5 was only observed at higher RH, 

which may account for the enhanced oxygenation of furan SOA constituents. In pyrrole 

SOA, the formation of new oxygenated products with higher H/C and O/C ratios (e.g., 

C4H6N2O6, C4H5N3O8) was observed (Figure 3.3B). The peak intensity ratios of 

C4H5NO3 to C4H5NO2 increased significantly at higher RH, contributing to the higher 

oxygenation level of pyrrole SOA constituents at higher RH. All of these findings not 

only confirmed the formation of oxygenated products at higher RH, but also 

demonstrated a higher saturation level of SOA constituents. The increased saturation and 

oxygenation levels at higher RH could be attributed to multiple processes, such as gas-

phase chemistry, reactive uptake of radicals, aerosol-phase reactions, etc. (16−27) 

Because multiple physicochemical processes interplay during SOA formation, further 

research is necessary to provide a more comprehensive understanding of the influence of 
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each individual process involved. The compositional change due to these processes may 

further affect the secondary BrC light absorption properties. 

 

Figure 3.3. Molecular characterization of oxygenated products in (A) furan SOA and (B) 

pyrrole SOA at RH <20% and ~50% conditions.  

 

3.3.3. Light Absorption Properties of Secondary BrC 

The light absorption properties of secondary BrC can be affected by SOA 

compositional changes. Our results showed that higher RH significantly reduced the 
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MAC profiles for both SOAs, wherein both SOAs can fall in the moderately absorptive 

BrC category at RH <20% and the weakly absorptive BrC category at RH ~50% (Figure 

3.4). (77) As compared with SOA derived from other precursors under various oxidation 

conditions, furan SOA was moderately absorbing at RH <20% and least absorbing at RH 

~50%, while pyrrole SOA was highly absorbing at RH <20% and less absorbing at RH 

~50% (Table S3.5). (28, 30, 50, 78) These comparisons indicated that the effects of RH on light 

absorption can be sensitive to SOA precursors and their explicit chemical formation pathways. 

The reduction in MAC profiles at higher RH cannot be not attributed to the 

aqueous chemistry between ammonium cations and SOA constituents, (72, 79, 80) as 

these reactions may actually enhance the MAC (Text S3.1; Figures S3.4, S3.5). Instead, 

the reduced MAC observed at higher RH may be linked to enhanced formation of 

oxygenated products. Our results showed that non-absorbing oxygenated compounds 

(i.e., those with DBE = 0) were detected only at RH ~50% (Figure S3.6). Some of the 

non-absorbing compounds were the major constituents in SOA samples (Figure S3.7). 

These molecules have higher molecular weights and possess at least 8 carbons and 10 

oxygens. Such high level of oxygenation only observed at higher RH suggested that 

higher RH may reduce MAC mostly via enhancing gas-phase and/or multiphase 

oxidation of SOA constituents. 
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Figure 3.4. MAC profiles of (A) furan BrC and (B) pyrrole BrC at both RH <20% and 

~50% conditions. The inset panels show the AAE changes along with wavelengths. 

 

Table 3.1. Fitted AAE and R2 in the linear regression of MAC in the UV (290−400 nm) 

and visible (400−600 nm) ranges.  

 

BrC Samples RH 
AAE R2 

UV Visible UV Visible 

Furan BrC 
<20% 3.00 3.21 1.00 1.00 

~50% 3.86 3.18 1.00 0.99 

Pyrrole BrC 
<20% 5.74 5.79 0.95 0.99 

~50% 3.88 4.07 0.99 1.00 

 

As illustrated by the AAE curves in the inset panels shown in Figure 3.4, the 

compositional change of BrC chromophores was also reflected in the changed shape of 

MAC profiles. At both RH conditions, the AAE curves of furan BrC were comparable, 

even though higher RH slightly increased the AAE in the UV range but slightly 
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decreased in the visible range (Figure 3.4A). The fitted AAE showed comparable values 

at RH <20% and ~50% in both UV and visible ranges (Table 3.1). However, the AAE 

curves of pyrrole BrC exhibited significant differences at RH <20% and ~50%; a twisting 

curve was shown at RH <20%, whereas a monotonously increased trend with a small 

bend was shown at RH ~50% (Figure 3.4B). The fitted AAE values were smaller at RH 

~50% (Table 3.1), indicating that the overall wavelength dependency of MAC profiles of 

pyrrole BrC was diminished by higher RH levels. Taken together, the reduced MAC 

profiles with altered wavelength dependency point to a change in the composition of BrC 

chromophores. 

3.3.4. Mass Fractions of BrC Chromophores in SOA 

The mass fractions of molecular chromophores observed at both RH can aid in 

understanding the effect of RH on the MAC profiles. Semi-quantification was performed 

for molecular chromophores characterized in this study (Table S3.6). Most of the 

characterized chromophores listed in Table S3.6 were also reported in our previous 

studies of furan- and pyrrole-derived secondary BrC. (14, 15, 39−41) While the mass 

fractions of some less abundant chromophores (e.g., C4H3NO3) were similar at both RH, 

most of the characterized chromophores showed lower mass fractions at higher RH. In 

Figure 3.5, two newly identified compounds (C8H5NO6 and C4H2N4O6) are presented as 

examples for detailed discussions. C8H5NO6 was characterized as 3-nitrophthalic acid 

(Figure S3.8A, C), whereas C4H2N4O6 showed two peaks (Figure 3.5B), which 

corresponded to 5,6-dinitro-4H-1,2,4-oxadiazine-3-carbaldehyde (Figure S3.8B, D) and 

2,3,4-trinitro-pyrrole (Figure S3.9). At higher RH, the mass-normalized intensity in their 
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extracted ion chromatograms (EICs) nearly disappeared (Figure 3.5). Since molecular 

chromophores have different contributions to the MAC profiles at different wavelengths, 

(15) their decreased mass fractions can reduce the MAC in specific wavelength regions. 

Because the spectral absorption of 3-nitrophthalic acid only covers the UV range (Figure 

3.5A), it contributes to the reduction of MAC of furan BrC in the UV range. The 

reduction of MAC in the visible range may be attributed to the decreased mass fractions 

of other chromophores whose spectra can extend to above 400 nm (e.g., C4H2O4). (15) 

The spectral absorption of 5,6-dinitro-4H-1,2,4-oxadiazine-3-carbaldehyde covers both 

UV and visible ranges (Figure 3.5B), with a spectral shape similar to the MAC profile of 

pyrrole BrC at low RH (Figure 3.4B). More chromophores, such as 2,3,4-trinitro-pyrrole 

(Figure S3.9A) and dinitro-pyrroles (C4H3N3O4), (41) can also contribute to the MAC 

profiles in the UV range. While it is possible that higher RH may potentially facilitate the 

production of new molecular chromophores with a red shift of light absorption towards 

longer wavelengths, (30) our findings revealed that the decrease in mass fractions of 

various molecular chromophores was mostly responsible for the altered wavelength 

dependency and lowered profiles of the MAC. The evidence together demonstrates the 

important role of molecular chromophores in bridging the change in environmental 

conditions to the light absorption properties of secondary BrC. 
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Figure 3.5. Characterization of molecular chromophores at RH <20% and ~50% 

conditions: (A) C8H5NO6 in furan SOA; (B) C4H2N4O6 in pyrrole SOA. The mass-

normalized intensity was calculated by the EIC intensity over the estimated mass of SOA 

samples, with the maximum value in each panel scaled to 1.0. The inset panels show the 

theoretical UV−vis spectra of molecular chromophores. 

 

3.4. Atmospheric implications  

This study provides evidence for the role of RH in modulating secondary BrC 

formation from heterocyclic VOCs, a significant group of SOA precursors in wildfire 

smoke, (34) through changes in size distribution dynamics, chemical composition, and 

light absorption properties. We also highlight the necessity of understanding explicit 

physicochemical pathways for evaluating the effects of RH on the climate impacts of 

wildfire smoke aerosols because multiple physicochemical processes can interplay during 

SOA formation, which can in turn alter the secondary BrC chemical composition and 

light absorption properties. The observations presented in this study demonstrate the 

intercorrelation of aerosol size distribution, chemical composition, and light absorption 
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properties. Specifically, the increased saturation and oxygenation levels of SOA 

composition at higher RH may promote the formation of non-absorbing oxygenated 

compounds, which can lead to decreased MAC profiles. Such process-level knowledge 

can aid in better understanding the effects of RH on BrC light absorption in wildfire 

smoke. 

In contrast to secondary BrC derived from homocyclic VOCs (e.g., toluene), in 

which the production of nitroaromatic chromophores can be enhanced by higher RH, (28, 

81, 82) our findings indicate that higher RH can lead to decreased mass fractions of 

nitrogen-containing chromophores (e.g., C8H5NO6 and C4H2N4O6) in furan- and pyrrole-

derived BrC. Such a difference highlights the critical role of SOA precursors and the 

molecular characteristics of chromophores in the effects of RH on secondary BrC formation. It 

should be noted that RH may exhibit a more complicated influence on secondary BrC 

light absorption (e.g., the non-monotonic RH dependency of MAC (50, 82)) or have less 

significant effects if the nitrogen content of secondary BrC is limited. (82) Given this 

complexity, understanding the explicit physicochemical processes of SOA formation 

would be the key to regulating secondary BrC formation. Our findings reveal that RH can 

greatly modulate the explicit physicochemical processing of secondary BrC formation 

and further alter the BrC-related radiative impacts of wildfire smoke. Therefore, this 

study highlights the importance of considering RH as a critical environmental factor in 

more accurate assessments of the climate effects of wildfire smoke aerosols. 

Furthermore, this study can serve as a benchmark to help understand how the 

complex atmospheric environment affects the climate impacts of smoke aerosols at the 
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process level. Our findings reveal that dry conditions can lead to strongly absorbing 

secondary BrC derived from the nighttime oxidation of heterocyclic VOCs. This route 

may partially contribute to the strong BrC light absorption in dry wildfire smoke, as 

evident from recent field studies. (12, 83) More importantly, the reduced light absorption 

and the enhanced oxygenated mass were not only found in the NO3-driven secondary 

BrC formation, but also in the aging processes of biomass-burning aerosols. (84, 85) This 

common characteristic suggests that the processing-level understanding reported in this 

study may be partially applicable to a wider range of physicochemical processes related 

to wildfire smoke. In addition, while previous studies have highlighted the importance of 

low-volatility high-molecular-weight (≥400 Da) chromophores in optical properties of 

primary combustion BrC, (77, 86−88) this study and our prior work of furan SOA and 

pyrrole SOA suggest that nighttime oxidation of heterocyclic VOCs may mainly 

contribute to BrC chromophores with low molecular weight (<400 Da) in wildfire smoke 

aerosols. (14, 15, 39−41) Further research is needed to incorporate our findings into 

climate models to better estimate the RH influence on the radiative effects of wildfire 

smoke. Overall, our study demonstrates that environmental conditions such as RH in 

wildfire smoke can modulate secondary BrC formation and hence regulate the radiative 

impacts of unabated wildfires in the context of climate change. 
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3.5. Supplemental Information 

Text S3.1. Aqueous solution experiments. 

Supplementary experiments were performed to explore the effects of aqueous 

chemistry on BrC light absorption. We dried out the ACN-extracted SOA samples (RH 

<20%) and redissolved them in a 10 mM ammonium sulfate ((NH4)2SO4) aqueous 

solution. The concentration of SOA aqueous solution was ~0.05 μg µL-1, maintaining the 

light absorbance below 1.0 in the UV−vis measurements. The organic mass was assumed 

to be roughly consistent with the initially dissolved SOA mass, similar to previous 

studies. (72, 79, 80) The UV−vis spectra were measured at 0, 2, and 24 hours after the 

SOA samples were redissolved. If higher RH decreases the MAC profiles mainly via 

aqueous chemistry, the MAC profiles of the dissolved SOA should also decrease. 

However, our results showed increased MAC profiles in both SOAs (comparing Figures 

4 and S4). A new absorption peak at ~400 nm was even observed in pyrrole BrC (Figure 

S3.4B). The aqueous chemistry promoted the formation of compounds with more 

nitrogen (Figure S3.5), which were not observed in the chamber experiments. Although 

the physicochemical characteristics of bulk solutions (e.g., ionic strengths) may not be 

identical with those in aqueous aerosols, the supplementary experiments can still support 

that aqueous chemistry may not lead to the decreased MAC of furan-derived and pyrrole-

derived secondary BrC. 
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Table S3.1. Summary of particulate effective density (ρeff), organic mass fraction in 

aerosols (MFOA), and SOA mass concentration in the chamber (CSOA). 

 

VOC RH ρeff (g cm-3) MFOA CSOA (µg m-3) 

Furan 
< 20% 1.46 ± 0.04 0.15 ± 0.03 5.41 ± 0.34 

~ 50% 1.75 ± 0.01 0.33 ± 0.04 17.28 ± 2.02 

Pyrrole 
< 20% 1.60 ± 0.02 0.85 ± 0.02 155.31 ± 26.45 

~ 50% 1.63 ± 0.12 0.71 ± 0.03 101.47 ± 9.42 
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Table S3.2. Cartesian coordinates of geometrical structures in the TD-DFT computation. 

 

C8H5NO6 (3-nitro-phthalic acid) 

 C                 -1.23950200    2.04821600    0.03346700 

 C                 -0.03776500    2.74077600    0.05294100 

 C                  1.16037900    2.03759600    0.03848300 

 C                  1.17474900    0.63771800   -0.00188100 

 C                 -0.03302300   -0.08324300   -0.00285400 

 C                 -1.21982100    0.65665700    0.01621600 

 H                 -2.18863500    2.56523300    0.04644000 

 H                 -0.03627200    3.82252800    0.08002800 

 C                  2.47882800   -0.08800100   -0.08727500 

 O                  2.59168800   -1.26136700   -0.36191500 

 O                  3.53052000    0.70948900    0.16278900 

 H                  4.34089000    0.18405100    0.06850100 

 C                 -0.04854100   -1.59589900   -0.10288700 

 O                 -0.26983300   -2.18387400   -1.13183700 

 O                  0.20398800   -2.17520100    1.07406100 

 H                  0.20352900   -3.13907600    0.95284900 

 N                 -2.52828400   -0.02766000    0.04074400 

 O                 -2.56756400   -1.17633100    0.46517900 

 O                 -3.50553800    0.59565000   -0.35282800 

 H                  2.10057800    2.57103000    0.04611000 

C4H2N4O6 (5,6-dinitro-4H-1,2,4-oxadiazine-3-carbaldehyde) 

 C                 -1.86103900   -0.59935700   -0.09161900 

 N                 -1.18142100    0.52493600   -0.54599100 

 C                  0.17529100    0.49568900   -0.33310500 

 C                  0.75173800   -0.71672500   -0.27395300 

 N                 -1.34419900   -1.76401800    0.00585300 
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 O                 -0.00265900   -1.80491100   -0.58580300 

 N                  0.82717100    1.79443500   -0.03017500 

 O                  1.40861500    2.33121500   -0.95181900 

 O                  0.67054700    2.22955700    1.09500500 

 H                 -1.69784500    1.39972500   -0.56376600 

 N                  2.09319300   -0.97354600    0.19653100 

 O                  2.43216300   -2.13824400    0.34074100 

 O                  2.80878700    0.00889800    0.39136900 

 C                 -3.28586000   -0.41999500    0.35213000 

 O                 -3.81293700    0.66083100    0.27833800 

 H                 -3.78227900   -1.32880400    0.71687000 

C4H2N4O6 (2,3,4-trinitro-pyrrole) 

 C                 -0.63365300   -1.99468200    0.00001200 

 C                 -1.11756300   -0.68965900    0.00006500 

 C                 -0.01074200    0.18566900    0.00000400 

 C                  1.11057200   -0.61498800   -0.00010000 

 N                  0.70769000   -1.92539200   -0.00021500 

 H                  1.34933100   -2.71072700   -0.00035200 

 H                 -1.16859000   -2.92925400   -0.00002000 

 N                 -2.50329100   -0.32368600   -0.00000100 

 O                 -2.76560300    0.87642700   -0.00021200 

 O                 -3.33286300   -1.22596700    0.00015400 

 N                 -0.03210300    1.65252800   -0.00002800 

 O                 -0.04192300    2.20081100   -1.08669900 

 O                 -0.04290400    2.20083800    1.08661100 

 N                  2.49086800   -0.26581600   -0.00016100 

 O                  3.30294000   -1.18766600    0.00022000 

 O                  2.76603100    0.93037000    0.00034200 
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Table S3.3. Organic mass fractions of reduced nitrogen fragments in furan SOA and 

pyrrole SOA at RH <20% and ~50%. 

 

VOC RH 
Organic mass fraction (%) 

C2H2N
+ C2H3N

+ C3H3N
+ Total 

Furan 
< 20% b.d.l. 0.85 ± 0.19 0.33 ± 0.08 1.18 ± 0.27 

~ 50% b.d.l. 1.36 ± 0.50 b.d.l. 1.36 ± 0.50 

Pyrrole 
< 20% 1.23 ± 0.04 0.72 ± 0.03 1.30 ± 0.06 3.24 ± 0.06 

~ 50% 0.82 ± 0.03 1.00 ± 0.05 0.50 ± 0.05 2.31 ± 0.01 

b.d.l.: below detection limit. 
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Table S3.4. Intensity-weighted average and standard deviation of H/C, O/C, N/C ratios 

and DBE of furan SOA and pyrrole SOA characterized by FIGAERO-ToF-CIMS at RH 

<20% and ~50%. 

 

VOC RH <H/C> <O/C> <N/C> <DBE> 

Furan 

<20% 1.0 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 3.0 ± 0.6 

~50% 1.1 ± 0.3 1.0 ± 0.3 0.1 ± 0.1 2.7 ± 0.6 

Pyrrole 

<20% 1.0 ± 0.2 0.7 ± 0.2 0.5 ± 0.2 2.0 ± 0.2 

~50% 1.2 ± 0.3 0.8 ± 0.3 0.3 ± 0.1 1.9 ± 0.6 
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Table S3.5. MAC values at 365 nm (MAC365) from this study and prior studies of 

secondary BrC at RH <20% and RH ~50%. 

 

Precursors Oxidation Type 

MAC365 (m
2g-1) 

Reference 
RH 

<20% 

RH 

~50% 

Furan Nighttime oxidation 0.527 0.071 this work 

Pyrrole Nighttime oxidation 1.589 0.259 this work 

Furfural Photooxidation 0.862 0.342 
Joo et al., 2024 

(78)  

2-Methylfuran Photooxidation 0.121 0.077 Joo et al., 2024 

3-Methylfuran Photooxidation 0.048 0.048 Joo et al., 2024 

Indole* OH-initiated oxidation 0.959 1.644 
Baboomian et al., 

2023 (50)  

Indole* O3-initiated oxidation 0.405 1.351 
Baboomian et al., 

2023 

Indole* 
NO3-initiated 

oxidation 
6.149 4.459 

Baboomian et al., 

2023 

Naphthalene* 
Photooxidation  

(low NOx) 
0.315 0.418 

Klodt et al., 2023 

(30)  

Naphthalene* 
Photooxidation  

(high NOx) 
0.359 0.473 Klodt et al., 2023 

Trimethylbenzene* Photooxidation 0.087 0.272 
Liu et al., 2016 

(28)  

Toluene* Photooxidation 0.273 0.698 Liu et al., 2016 

* The data was obtained by reading the published figures with the PlotDigitizer software. 
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Table S3.6. Quantification of mass fraction of molecular chromophores in furan SOA 

and pyrrole SOA at RH <20% and ~50%. 

 

SOA 

precursors 

Molecular  

chromophores 

Mass fraction (%) 

RH <20% RH ~50% 

Furan 

C4H2O4 2.51 ± 0.06 0.85 ± 0.02 

C4H4O4 1.44 ± 0.10 0.66 ± 0.05 

C4H4O6 5.48 ± 2.91 0.66 ± 0.35 

C8H5NO6 15.67 ± 3.76 0.50 ± 0.12 

Pyrrole 

C4H3NO2 0.96 ± 0.02 0.56 ± 0.16 

C4H3NO3 0.83 ± 0.11 0.78 ± 0.18 

C4H3NO4 0.42 ± 0.02 0.58 ± 0.20 

C4H4N2O2 0.96 ± 0.02 0.56 ± 0.16 

C4H3N3O4 47.49 ± 1.21 0.12 ± 0.03 

C4H2N4O6 14.87 ± 1.16 0.01 ± 0.00 
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Figure S3.1. First-order wall loss rate constant along with particulate diameter at both 

RH. The wall loss rate constant at each particulate diameter was determined by using the 

first-order exponential model to fit the in-chamber decay of (NH4)2SO4 particle number 

concentration within 3 hours. The red curve was reported previously. (15)  
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Figure S3.2. Time series of CxHyO>1
+ fragments and CxHy

+ fragments from (A) furan 

SOA and (B) pyrrole SOA at RH ~50% after VOC injection. 
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Figure S3.3. Particulate size distribution dynamics without pre-existing particles: (A) 

furan SOA at RH <20%; (B) furan SOA at RH ~50%; (C) pyrrole SOA at RH <20%; (D) 

pyrrole SOA at RH ~50%. 
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Figure S3.4. MAC profiles of (A) furan SOA and (B) pyrrole SOA in the ammonium 

sulfate solution experiments. 
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Figure S3.5. Newly formed products from aqueous-phase chemistry characterized by 

LC-ESI-Q-TOFMS: (A) C4H4N4O4 in furan SOA; (B) C7H6N4O8 in pyrrole SOA. 
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Figure S3.6. Extracted ion chromatograms of characterized non-absorbing oxygenated 

compounds in furan SOA and pyrrole SOA. 
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Figure S3.7. Base peak chromatograms of (A) furan SOA and C12H26O17, and (B) pyrrole 

SOA and C15H26N4O10 (RH ~50%). 
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Figure S3.8. Tandem MS spectra and proposed fragmentation schemes of 3-nitrophthalic 

acid and 5,6-dinitro-4H-1,2,4-oxadiazine-3-carbaldehyde in SOA samples by LC-ESI-Q-

TOFMS.  
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Figure S3.9. Characterization of 2,3,4-trinitro-pyrrole in pyrrole SOA by LC-ESI-Q-

TOFMS. 
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Chapter 4. Contribution of carbonyl chromophores to secondary brown carbon 

from nighttime oxidation of unsaturated heterocyclic volatile organic compounds 

 

4.0. Abstract 

The light absorption properties of brown carbon (BrC), which are linked to 

molecular chromophores, may play a significant role in the Earth’s energy budget. While 

nitroaromatic compounds have been identified as strong chromophores in wildfire-driven 

BrC, other types of chromophores remain to be investigated. As an electron-withdrawing 

group ubiquitous in the atmosphere, we characterized carbonyl chromophores in BrC 

samples from the nighttime oxidation of furan and pyrrole derivatives, which are 

important but understudied precursors of secondary organic aerosols primarily found in 

wildfire emissions. Various carbonyl chromophores were identified and quantified in BrC 

samples, and their ultraviolet−visible spectra were simulated using time-dependent 

density functional theory. Our findings suggest that chromophores with carbonyls bonded 

to nitrogen (i.e., imides and amides) derived from N-containing heterocyclic precursors 

substantially contribute to BrC light absorption. The quantified N-containing carbonyl 

chromophores contributed to over 40% of the total light absorption at wavelengths below 

350 nm and above 430 nm in pyrrole BrC. The contributions of chromophores to total 

light absorption differed significantly by wavelength, highlighting their divergent 

importance in different wavelength ranges. Overall, our findings highlight the 

significance of carbonyl chromophores in secondary BrC and underscore the need for 

further investigation. 
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4.1. Introduction 

Atmospheric brown carbon (BrC) is an important contributor to global warming, 

with a +0.10-0.55 W m-2 direct radiative effect (1−3) (~20−24% contribution) on the top-

of-atmosphere direct radiative forcing. (4, 5) The contribution of BrC absorption is 

enhanced at higher altitudes (6) and varies by both daily and seasonal cycles, (7) 

especially due to changes in air pollution and cloud coverage. (7, 8) Conversely, the light 

absorption of BrC may also indirectly reduce the global coverage of clouds and decrease 

their cooling effects. (9) The spatial and temporal variations of BrC light absorption, and 

consequently their impacts, are strongly related to the changes in chemical composition. 

(8, 10) However, parameterization pertinent to BrC constituents remains underdeveloped 

in climate models, (11) hindering accurate evaluations of BrC optical properties and 

climate change prediction. (12, 13)  

Accurate representations of BrC’s effects on climate change require a 

comprehensive process-level understanding of the formation and evolution of molecular 

chromophores, which play a key role in regulating the light absorption properties of BrC. 

Nitroaromatic chromophores, also known as nitrated aromatic compounds, have been 

recognized as significant contributors to BrC light absorption. For example, Li et al. and 

Frka et al. reported that nitroaromatic chromophores may contribute to ~17−31% light 

absorption of BrC at 365−370 nm, (14, 15) while Bluvshtein et al. and Lin et al. indicated 

an even higher ratio (i.e., 50−80%) at wavelengths above 350 nm in biomass burning 

events. (16, 17) Although nitroaromatic chromophores may not account for a large 

fraction of aerosol mass, their contribution to BrC light absorption at 365 nm can be 
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~2−10 times that of their mass contribution in BrC samples. (14, 15, 18, 19) Among a 

variety of nitroaromatic chromophores, nitrophenols and nitrocatechols have been 

identified as two major groups of nitroaromatic chromophores in ambient aerosols, (19, 

20) and they have been widely investigated to characterize the BrC formation and 

evolution due to photooxidation or photolysis. (21−26)  

While nitroaromatic chromophores have been identified as potential tracers of 

BrC in atmospheric processing due to their significant role in the light absorption of BrC 

at 365 nm, (27) the contributors to the BrC absorption spectra in the near ultraviolet (UV) 

range below 365 nm have not been fully deconvoluted. In contrast to the >50% 

contribution of light absorption above 350 nm, nitroaromatic chromophores only 

accounted for ~20% of light absorption at 300 nm in biomass burning events, according 

to studies reported by Bluvshtein et al. and Lin et al. (16, 17) The wavelength-dependent 

contributions to BrC light absorption suggest the critical role of other types of 

chromophores in UV absorption. Since the light absorption of BrC chromophores is 

induced by electronic transitions, similar to nitroaromatics, which have strongly electron-

withdrawing nitro groups attached to the aromatic rings, unsaturated organic compounds 

or conjugated systems coupled with other types of electron-withdrawing groups such as 

carbonyls could also be chromophore candidates. (13, 28) For instance, the simplest 

unsaturated carbonyl compound (i.e., acrolein) can absorb sunlight above 290 nm. (29, 

30) From field studies, it has been reported that carbonyls may contribute to a large mass 

fraction of biomass burning aerosols (31, 32) and significant light absorption in the BrC. 

(10, 33, 34) The molecular absorptivity of numerous carbonyl compounds observed in 
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ambient aerosols is comparable to the absorptivity of nitroaromatic chromophores at 

290−350 nm. (35) Therefore, it is essential to characterize carbonyl chromophores and 

constrain their roles in BrC light absorption. 

In this study, we characterized carbonyl chromophores in secondary organic 

aerosols (SOAs) from the nighttime oxidation of a series of unsaturated heterocyclic 

volatile organic compounds (VOCs), including pyrrole, 1-methylpyrrole (1-MP), 2-

methylpyrrole (2-MP), furan, and furfural, that have been widely observed in biomass 

burning events, (36−40) and may account for ~30% of the initial nitrate radical (NO3) 

reactivity in wildfire-driven nighttime chemistry. (40) Recently, these VOCs were 

reported as potentially important precursors for secondary BrC formation during 

nighttime oxidation, (41−44) in which several carbonyl chromophores were observed. 

(43) Multi-instrumental characterization along with theoretical calculations of 

ultraviolet−visible (UV−vis) spectra were employed here to elucidate the structures of 

carbonyl chromophores and their spectral light absorptivity. This study focuses on the 

light absorption contribution of carbonyl chromophores in pyrrole SOA and 2-MP SOA; 

because nitroaromatic chromophores have been identified as critical contributors to BrC 

light absorption in these systems, they can serve as a benchmark for comparisons. (42)  

4.2. Methods 

4.2.1. Experimental setup 

Experiments were performed in a 10 m3 Teflon FEP chamber at room temperature 

(20−25 °C) and low relative humidity (RH< 20%) in the dark. Details of the experimental 
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setup and SOA properties, including number and size distribution, aerosol effective 

density, and mass fraction of organics, were introduced in our previous studies. (42, 43) 

In brief, 450 ppb NO2 and 1500 ppb O3 (initial [NO2]/[O3] = 0.3) were first injected into 

the chamber and allowed to react for one hour, producing nitrate radicals (NO3). (42) To 

investigate the effects of NO3 radical levels on the light absorption contributions of BrC 

chromophores, additional experiments were carried out with 150 ppb NO2 and 1500 ppb 

O3 (initial [NO2]/[O3] = 0.1). (42) The concentrations of NO2 and O3 were monitored by a 

NOx analyzer (Teledyne Instruments) and an O3 analyzer (Advanced Pollution 

Instrumentation, Inc.), respectively. Our previous studies indicated that the nighttime 

oxidation of pyrroles and furans under both conditions was predominantly initiated by 

NO3 radicals. (42, 44) After the one-hour reaction between O3 and NO2 to produce NO3 

radicals, one of the studied heterocyclic VOCs (~200 ppb) was injected into the chamber. 

After the mass concentration reached a plateau, the generated SOA particles were 

collected on polytetrafluoroethylene (PTFE) membrane filters (46.2 mm, 2.0 µm, Tisch 

Scientific), followed by offline analysis. Although chamber experiments have some 

limitations in mimicking the real atmosphere, (45) the controlled chamber conditions can 

systematically facilitate the characterization of carbonyl chromophores and the evaluation 

of their roles in secondary BrC. 

4.2.2. Compositional Analysis 

The compositional analysis was conducted using a suite of complementary 

analytical instruments. A liquid chromatography coupled with a diode array detector, an 

electrospray ionization source (negative ion mode), and a quadruple-time-of-flight 
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tandem mass spectrometer (LC-DAD-ESI(−)-Q-TOFMS, Agilent Technologies 1260 

Infinity II, and 6545 Q-TOF LC/MS) was used to identify light-absorbing carbonyl 

products and to characterize their molecular structures. The gradient elution for the 

changing LC mobile phase composition over time is shown in Figure S4.1. A gas 

chromatography-electron ionization mass spectrometry (GC/EI-MS, Agilent 

Technologies 6890N GC System, and 5975 inert XL Mass Selective Detector) was also 

used to complementarily identify carbonyl products. An iodide-adduct time-of-flight 

chemical ion mass spectrometry coupled with the Filter Inlet for Gases and AEROsols 

system (FIGAERO-ToF-CIMS, Aerodyne Research Inc.) (46) and an ion mobility 

spectrometry time-of-flight mass spectrometer (IMS-TOF, Tofwerk Inc.) were used to 

characterize SOA composition in real time and offline, respectively. Detailed 

instrumental setups and operational parameters have been described in previous studies. 

(42, 43, 47−49)  

N-containing carbonyl chromophores were identified by LC-DAD-ESI-Q-

TOFMS and GC/EI-MS, and their mass contributions were estimated semi-quantitatively 

using maleimide (C4H3NO2) as a surrogate standard. The mass ratio of the identified N-

containing carbonyl chromophores (MRcarbonyl) (eq (4.1)), and the mass ratio of maleimide 

(MRmaleimide) in SOA samples from pyrrole and its derivatives had been previously 

determined by GC/EI-MS using a similar approach. (43)  

𝑀𝑅𝑐𝑎𝑟𝑏𝑜𝑛𝑦𝑙 = 𝑀𝑅𝑚𝑎𝑙𝑒𝑖𝑚𝑖𝑑𝑒

𝑐𝑐𝑎𝑟𝑏𝑜𝑛𝑦𝑙𝑀𝑐𝑎𝑟𝑏𝑜𝑛𝑦𝑙

𝑐𝑚𝑎𝑙𝑒𝑖𝑚𝑖𝑑𝑒𝑀𝑚𝑎𝑙𝑒𝑖𝑚𝑖𝑑𝑒
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= 𝑀𝑅𝑚𝑎𝑙𝑒𝑖𝑚𝑖𝑑𝑒𝑅𝐹

𝐴𝑐𝑎𝑟𝑏𝑜𝑛𝑦𝑙𝑀𝑐𝑎𝑟𝑏𝑜𝑛𝑦𝑙

𝐴𝑚𝑎𝑙𝑒𝑖𝑚𝑖𝑑𝑒𝑀𝑚𝑎𝑙𝑒𝑖𝑚𝑖𝑑𝑒
                  (4.1) 

Here, ccarbonyl and cmaleimide are the molar concentrations of the identified carbonyl 

chromophores and maleimide in the extracted SOA samples (mol L-1); Mcarbonyl and 

Mmaleimide are the molar masses of the identified carbonyl chromophores and maleimide in 

the extracted SOA samples (g mol-1); Acarbonyl and Amaleimide are the peak areas of parent 

ions of the identified carbonyl chromophores and maleimide in their extracted ion 

chromatograms (EICs) measured by LC-DAD-ESI-Q-TOFMS. Although response 

factors (RF) of the identified N-containing carbonyl chromophores may differ slightly 

from the surrogate standard (Figure S4.2), semi-quantification can provide approximate 

mass ratios and still support comparisons of the representation of various N-containing 

carbonyl chromophores in SOA samples. 

4.2.3. Light Absorption Measurements 

The absorbance of SOA samples (290−700 nm) was measured by a UV−vis 

spectrophotometer (Beckman DU-640). SOA samples were extracted with acetonitrile 

(ACN), which has been shown to be a suitable solvent for the analysis of secondary BrC 

due to its chemical stability (aprotic) and solubility for polar compounds. (43) The 

contribution of molecular chromophores to the total light absorption of SOA samples 

(AbsC), which can vary greatly with wavelength (λ), is estimated by eq (4.2). 

𝐴𝑏𝑠𝐶 (𝜆) =
𝐴𝑏𝑠𝑐ℎ𝑟𝑜(𝜆)

𝐴𝑏𝑠𝐵𝑟𝐶(𝜆)
                                                      (4.2) 
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AbsBrC(λ) is the total light absorbance of the BrC samples, directly measured by 

the UV−vis spectrophotometer, while Abschro(λ) is the light absorbance of the investigated 

BrC chromophores, calculated by the Beer-Lambert law (eq (4.3)). 

𝐴𝑏𝑠𝑐ℎ𝑟𝑜(𝜆) =  𝜀𝑐ℎ𝑟𝑜(𝜆) ×
𝑚𝑐ℎ𝑟𝑜

𝑀𝑐ℎ𝑟𝑜
× 𝑏                                  (4.3) 

εchro(λ) is the molecular absorptivity of the investigated BrC chromophores (L 

mol-1 cm-1), which has been reported in our previous work; (43) mchro is the mass 

concentration of molecular chromophores in the SOA solution samples (ng μL-1); Mchro is 

the molar mass of the molecular chromophores (g mol-1); and b is the instrumental light 

path (i.e., 1 cm). 

4.2.4. Computational of Theoretical UV−Vis Spectra 

The time-dependent density functional theory (TD-DFT) was used to simulate the 

wavelength-dependent light absorptivity of the identified carbonyl products, for which no 

authentic standards were available. The Gaussian 16 program (revision C. 01) (50) was 

used for all computations, with the B3LYP functional (51, 52) and the 6-311++G(d,p) 

basis set (53) as suggested in previous studies. (54, 55) The ACN environment was 

simulated by the integral equation formalism extension of the polarizable continuum 

model (IEFPCM). (56) The GaussView 6 program was used to generate the theoretical 

UV−vis spectra. All the Cartesian coordinates for geometrical structures were 

summarized in Table S4.1. 
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4.3. Results and Discussions 

4.3.1. Distribution of Chromophores in the LC-DAD Heatmaps 

The LC-DAD heatmaps provide a snapshot of BrC chromophore distributions for 

all the SOA samples (Figure 4.1, S4.3−S4.5), where the hotspots illustrate the retention 

time (RT) and wavelengths of light absorption. Figure 4.1 shows the LC-DAD heatmap 

of pyrrole SOA, which is divided into two panels, corresponding to the RT ranges of 0−2 

min and 2−21 min, respectively (Figure 4.1A, B). The light absorption of chromophores 

was normalized to the highest value of the whole LC-DAD heatmap, with each panel 

having its own color scale for a clear representation of chromophore distribution. With 

LC mobile phase changing (Figure S4.1), the separated hotspots in two unique RT zones 

represent distinct chromophores with different polarities. 

Compositional analysis revealed that the major hotspots detected at RT of 1.6−1.7 

min may be attributed to mono-nitrogen chromophores (Figure 4.1C), while those 

detected at RT of 8.7−12.3 min may be ascribed to the di-nitrogen and tri-nitrogen 

chromophores (Figure 4.1D). Notably, the analytes at RT of 1.6−1.7 min were comprised 

of many mono-nitrogen compounds, while only two products were shown at RT of 

8.7−12.3 min. The mono-nitrogen chromophores (Figure 4.1A) in pyrrole SOA 

collectively acquired much stronger light absorption compared to di-nitrogen and tri-

nitrogen chromophores (Figure 4.1B), which indicated the potential importance of the 

mono-nitrogen chromophores in BrC light absorption. The strong light absorption 

corresponding to mono-nitrogen chromophores is also observed in 1-MP SOA (Figure 

S4.3) and 2-MP SOA (Figure S4.4), wherein the mono-nitrogen chromophores led to 



 120 

much higher or similar absorption intensities compared to those of the di-nitrogen and tri-

nitrogen chromophores. In a recent study, we found di-nitrogen and tri-nitrogen 

chromophores in pyrrole SOA and 2-MP SOA as nitro- and dinitro-substituted 

chromophores. (42) As a result, the mono-nitrogen chromophores would lack nitro 

groups, and their nitrogen may be inherited from the pyrrole backbones, as evidenced by 

the structural characterization in the following section. However, in contrast to electron-

withdrawing groups such as nitro groups, the nitrogen atom on the pyrrole backbone 

cannot attract electron density toward itself and thus is unlikely to cause a red shift of 

UV−vis spectral peaks above 290 nm. The light absorption of the mono-nitrogen 

chromophores is most likely influenced by other types of electron-withdrawing groups. 

Furthermore, our previous study of furan SOA revealed that nitrogen-free products were 

the predominant contributors to the major LC-DAD hotspots, (44) whereas the major 

hotspots in furfural SOA can be attributed to both nitrogen-containing and nitrogen-free 

products (Figure S4.5). Despite this, all the LC-DAD heatmaps indicate the importance 

of different types of electron-withdrawing groups in BrC light absorption. Analysis of 

functional groups with attenuated total reflectance Fourier-transform infrared (ATR-

FTIR) spectroscopy conducted in our previous study suggested that chromophores with 

carbonyl groups may account for a significant portion of the light absorption of SOA 

samples from nighttime oxidation of heterocyclic VOCs. (43)  

Even though nitroaromatic chromophores have been identified as important 

contributors to BrC light absorption in pyrrole SOA and 2-MP SOA, (41, 42) our findings 

here suggest that mono-nitrogen chromophores could account for the majority of the light 
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absorption. This is because nitroaromatic chromophores and mono-nitrogen 

chromophores have absorption peaks at different wavelength ranges and, as a result, have 

wavelength-dependent light absorption contributions, which will be discussed further in 

the following sections. 

 

Figure 4.1. LC-DAD heatmaps of pyrrole SOA: (A) 0−2 min, and (B) 2−21 min, 

followed by the mass spectra corresponding to the major hotspots, respectively (C−D). 

 

4.3.2. Molecular Characterization of Carbonyl Chromophores 

In the current study, the molecular composition of carbonyl chromophores was 

determined by complementary analytical instrumentation, and their UV−vis spectra were 

simulated using quantum chemical approaches (Figure 4.2, 4.3). Following the 

identification of the molecular formula in Figure 4.1C, we performed tandem MS 
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experiments to elucidate their structures. Here, C4H4NO4
-, a deprotonated ion of 

C4H5NO4, is selected as an example. The LC-ESI-Q-ToFMS measurements showed a 

single peak in the EIC of this ion as well as its fragmentation pattern (Figure 4.2A), 

which can help derive the tentative molecular structures and thus support the theoretical 

computation of UV−vis spectra. The IMS-TOF measurements also confirmed the 

presence of C4H4NO4
- in ESI(−) and indicated two major isomers for this ion (Figure 

4.2B). To rule out the potential interference from solvent and LC electrospray ionization 

efficiency, (43, 44) the presence of C4H5NO4 was supplementally verified by in situ 

characterization with FIGAERO-ToF-CIMS (Figure 4.2C). Plausible fragmentation 

pathways were derived based on the tandem MS data (Figure S4.6A), wherein C4H5NO4 

can be identified as formyl carbonyl amino acetic acid and its imidic acid isomer. Both 

compounds are chain-structural carbonyl chromophores, as confirmed by the theoretical 

computation of their UV−vis spectra (Figure 4.2D). Using the same approaches, the ring-

retained carbonyl chromophores in pyrrole SOA were also identified, including 2-

hydroxy-2-pyrroline-4,5-dione (C4H3NO3), 5-hydroxy-2,3,4-pyrrolidinetrione (C4H3NO4) 

and 5-hydroxy-2,3-pyrrolidinedione (C4H5NO3) (Figure S4.7−S4.10). Similar to pyrrole, 

nighttime oxidation of furan can generate light-absorbing diones. As one of the major 

products in furan SOA, C4H2O4 was identified as 4-hydroxyfuran-2,3-dione and 5-

hydroxyfuran-2,3-dione (Figure 4.2E−G, S4.6B). (44) These products exhibit distinct 

UV−vis spectra with different line centers and peak absorptivity (Figure 4.2H).  
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Figure 4.2. Characterization of carbonyl chromophores in pyrrole SOA and furan SOA: 

(A) EICs and tandem mass spectra of C4H5NO4; (B) IMS-TOF drift grams of C4H5NO4; 

(C) FIGAERO-ToF-CIMS peak fitting and thermograms of C4H5NO4; (D) theoretical 

UV−vis spectra of isomers of C4H5NO4; (E) EICs and tandem mass spectra of C4H2O4; 

(F) IMS-TOF drift grams of C4H2O4; (G) FIGAERO-ToF-CIMS peak fitting and 

thermograms of C4H2O4; (H) theoretical UV−vis spectra of C4H2O4 isomers. 
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Figure 4.3. Characterization of carbonyl chromophores in 1-MP SOA and 2-MP SOA: 

(A) GC/EI-MS characterization of C5H5NO2 in 1-MP SOA; (B) EIC of m/z 111 from the 

N-methylmaleimide chemical standard; (C) FIGAERO-ToF-CIMS peak fitting and 

thermograms of C5H5NO2 in 1-MP SOA; (D) theoretical UV−vis spectrum of C5H5NO2 

in 1-MP SOA; (E) GC/EI-MS characterization of C5H5NO2 in 2-MP SOA; (F) IMS-TOF 

drift gram of C5H5NO2 in 2-MP SOA; (G) FIGAERO-ToF-CIMS peak fitting and 

thermograms of C5H5NO2 in 2-MP SOA; (H) theoretical UV−vis spectrum of C5H5NO2 

in 2-MP SOA.          
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Given that both LC-ESI-Q-ToFMS and IMS-TOF could only detect deprotonated 

ions (because of the nature and limitations of ESI) and may not characterize all carbonyls 

generated, GC/EI-MS was used to investigate more diverse carbonyl chromophores. 

Previous GC/EI-MS analysis of secondary BrC samples revealed a number of light-

absorbing heterocyclic diones, including maleimide (from pyrrole and its derivatives), 

maleic anhydride, and phthalic anhydride (from furan and furfural). (43) In the current 

study, N-methylmaleimide was discovered by GC/EI-MS (RT =10.5 min) in 1-MP SOA 

samples (Figure 4.3A). The presence of this compound was confirmed by its authentic 

chemical standard (Figure 4.3B) and also supported by the tentative fragmentation 

pathways (Figure S4.11A) as well as the in situ FIGAERO-ToF-CIMS measurement 

(Figure 4.3C). Also, the presence of 2-methyl-2-pyrroline-4,5-dione, an isomer of N-

methylmaleimide, in 2-MP SOA was confirmed by multi-instrumental measurements 

(Figure 4.3E−G) and the tentative fragmentation pathways (Figure S4.11B). The 

calculated UV−vis spectra showed that both diones can contribute to light absorption 

above 290 nm (Figure 4.3D, H).  

Notably, N-containing carbonyl chromophores such as imides and amides, whose 

nitrogen is retained from the N-containing heterocyclic VOC precursors (e.g., pyrrole and 

its derivatives in our study), may be important contributors to the light absorption of 

secondary BrC. The lone pair electrons from the nitrogen atom in imides and amides can 

conjugate with the unsaturated bonds (e.g., carbonyl groups), which facilitate the n−π* 

excitation of delocalized electrons and hence support the formation of BrC 

chromophores. However, different N-containing carbonyl chromophores may lead to 
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different contributions to BrC light absorption, depending on their mass ratio in SOA 

samples, spectral wavelengths, and absorptivity. For example, C4H5NO4 and C4H3NO3 

have similar mass ratios in pyrrole SOA (3.37±0.11% and 2.86±0.57%, respectively) 

based on the semi-quantification, but the UV−vis spectrum of C4H5NO4 only covers 

290−350 nm (Figure 4.2D), while the UV−vis spectrum of C4H3NO3 can extend to 500 

nm (Figure S4.7J). Although the UV−vis spectra of C4H3NO3 and C4H3NO4 cover a 

similar range of wavelengths, the latter possesses a higher mass ratio (8.86±1.11%) and a 

larger absorptivity (Figure S4.7K). Nevertheless, the total light absorption of a collection 

of N-containing carbonyl chromophores may contribute to BrC light absorption within a 

wide range of wavelengths.  

4.3.3. Light Absorption Contribution of Carbonyl and Nitroaromatic Chromophores 

The light absorption contributions of identified carbonyl and nitroaromatic 

chromophores can be estimated by integrating their LC-DAD absorbance within the 

corresponding RT ranges, which are similar to those described in the literature. (16, 17) 

Although the estimated light absorption contributions may not be rigorously accurate due 

to instrumental limitations such as incomplete detection of weak chromophores, (17) this 

approach has successfully revealed the indispensable role of nitroaromatic chromophores 

in BrC aerosols from biomass burning events. (16, 17) Similarly, the relative importance 

of carbonyl chromophores and nitroaromatic chromophores at different wavelengths can 

thus be evaluated by this approach. Here, C4 carbonyls and C4 nitroaromatics in pyrrole 

SOA, which may predominantly contribute to the major hotspots in the LC-DAD 

heatmaps (Figure 4.1), were categorized as two groups of chromophores, while other 
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chromophores, which may comprise oxidation products with higher molecular weights 

and high double bond equivalence (DBE) (Figure S4.5A, B), were classified as “others.” 

It is noted that the C4 carbonyls and C4 nitroaromatics are produced from the C4 

backbone of pyrrole; in other VOC systems, the carbon number of the lower-molecular-

weight chromophores can be different and dependent on the VOC precursors. The light 

absorption contribution of each group of chromophores was visualized along with the 

wavelengths in both percentages (Figure S4.12) and mass absorption coefficient (MAC) 

profiles (Figure 4.4). The latter was estimated by combining Figure S4.13 and the MAC 

profiles reported in our prior study. (42) 

 

Figure 4.4. Light absorption contribution of chromophores to MAC profiles: (A) C4 

carbonyls, C4 nitroaromatics and other chromophores in pyrrole SOA; (B) C5 carbonyls, 

C5 nitroaromatics and other chromophores in 2-MP SOA. 

 

Our results showed that, while C4 nitroaromatics account for the majority of light 

absorption in the 350−430 nm range, C4 carbonyls contribute significantly more below 

350 nm and above 430 nm, accounting for over 40% of the total light absorption in both 
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wavelength ranges (Figure 4.4A, S4.13A). The C5 nitroaromatics and C5 carbonyls in 2-

MP SOA revealed comparable tendencies in the wavelength dependence of light 

absorption contribution (Figure 4.4B, S4.13B). However, in the visible range, the 

contribution of C4 carbonyls to light absorption was greater than the other two categories 

in pyrrole SOA (Figure 4.4A, S4.13A), whereas the contributions of the three categories 

in 2-MP SOA were comparable (Figure 4.4B, S4.13B). The quantitative differences 

between Figure 4.4A and Figure 4.4B (also between Figure S4.13A and Figure 

S4.13B) reveal the vital role of VOC structures in regulating the relative contributions of 

carbonyl chromophores and nitroaromatic chromophores to secondary BrC light 

absorption, which could be due to the interference of diverse oxidation pathways. (42) In 

particular, the heteroatoms in heterocyclic VOCs may greatly alter the oxidation 

pathways and hence the light absorption contribution of carbonyl and nitroaromatic 

chromophores. For example, nighttime oxidation of furan tends to generate carbonyls via 

the “addition-elimination mechanism” of NO3 radicals, (57) which differs from the 

formation mechanisms of nitroaromatics in nighttime oxidation of pyrrole and 2-MP. (42) 

The relative impact of carbonyl chromophores on BrC light absorption is further 

evaluated by the ratio of their absorption cross-section emission factors (EFabsC), which 

accounts not only for the MACs but also the carbon emission factors of VOC precursors 

from burning sources and the SOA yields. (41) Details of the EFabsC calculations for 

pyrrole SOA and 2-MP SOA were described previously. (42) Taking biomass burning of 

ponderosa pine forests, which is relevant to wildfires in the western US and Canada, (58) 

as an example, C4−5 carbonyl chromophores may contribute more to BrC light absorption 
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below 350 nm and above 430 nm than C4−5 nitroaromatic chromophores (Table S4.2). 

Our previous research and the current findings suggest that the light absorption of 1-MP 

SOA, furan SOA, and furfural SOA can be primarily attributed to C4−5 carbonyls and the 

“others” category (Figure S4.14, S4.15). (42, 44) Nonaromatic nitro-substituted carbonyl 

chromophores, such as C4H3NO7 in furan SOA, (44) may contribute to BrC light 

absorption. In addition, the carbonyl chromophores contribute the most to light 

absorption in furfural SOA, which is likely related to the carbonyl functional group in 

furfural. Collectively, these findings demonstrate the significance of carbonyl 

chromophores in the light absorption of secondary BrC. 

 

Figure 4.5. Light absorption contributions of maleimide to (A) pyrrole SOA and (B) 1-

MP SOA, and phthalic anhydride to (C) furan SOA and (D) furfural SOA under low and 

high NO3 levels. The absorption contribution is estimated by the ratio of light absorption 

of molecular chromophores calculated by the Beer-Lambert law and the total light 

absorption of BrC samples. 
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Furthermore, depending on the SOA systems, the light absorption contribution of 

molecular carbonyl chromophores in secondary BrC may vary under different 

environmental conditions. The NO3 radical level has been reported as a critical 

environmental factor that affects the secondary BrC formation of pyrroles and furans. 

(42−44) As marker compounds of secondary BrC from the nighttime oxidation of several 

unsaturated heterocyclic VOC precursors, maleimide and phthalic anhydride were 

selected to investigate the influence of NO3 radical levels on their light absorption 

contribution, and their molecular light absorptivity and mass ratio in various SOA 

samples have been experimentally measured in prior studies. (43) Our results indicated 

that the light absorption contribution of maleimide in pyrrole SOA remained essentially 

constant as the NO3 radical level increased (Figure 4.5A), whereas it increased 

significantly in 1-MP SOA as the nitrate radical level increased (Figure 4.5B). The light 

absorption contribution of phthalic anhydride exhibited a divergent trend in furan SOA 

and in furfural SOA as the NO3 radical level increased; specifically, it reduced in furan 

SOA and enhanced in furfural SOA (Figure 4.5C, D). The dependence of light 

absorption contribution on the level of NO3 radicals may be attributed to the alteration of 

chemical kinetics and, consequently, the branching ratios of carbonyl chromophores 

production as the NO3 concentrations change. The effects of VOC types on the 

contribution of molecular carbonyl chromophores to light absorption should also be 

noted. Maleimide, for instance, may account for ~7% of light absorption at 290 nm in 

pyrrole SOA (Figure 4.5A), but a much lower value in 1-MP SOA (Figure 4.5B). The 

observed discrepancy could be attributed to the methyl group on 1-MP, which could 
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hinder the formation of maleimide and alternatively generate other chromophores (e.g., 

N-methylmaleimide in Figure 4.3D). Thus, the role of carbonyl chromophores in 

secondary BrC is significantly influenced by complex atmospheric conditions and VOC 

emissions. 

Overall, our results indicate the prevalence of carbonyl chromophores in SOA 

from the nighttime oxidation of heterocyclic VOCs. The UV−vis spectra of the identified 

carbonyl chromophores cover a wider range of wavelengths (i.e., ~290−500 nm) 

compared to the nitroaromatic chromophores (i.e., ~290−400 nm) identified in our 

previous studies, (42, 55) suggesting their distinct contributions to BrC light absorption at 

different wavelengths. Comparison between isomers also highlights that the spectral light 

absorptivity of carbonyl chromophores in secondary BrC can be governed by the 

structure of VOC precursors, which is consistent with our previous research on 

nitroaromatic chromophores. (42) The structural dependence of UV−vis spectra indicates 

the importance of structure-related information in the process-level prediction of 

secondary BrC formation. Moreover, the characterized carbonyl chromophores and their 

structural analogues, including heterocyclic diones and triones, have been widely 

observed in SOA systems from other VOCs, for example, those generated by 

photooxidation of a variety of aromatic hydrocarbons. (59−63) Heterocyclic diones have 

also been widely observed in field measurements of ambient aerosols from biomass 

burning plumes. (38, 64, 65) Although triones in ambient aerosols were less reported, 

(66) they have been suggested as possible contributors to BrC generated from aqueous-

phase reactions. (67, 68) The collective evidence demonstrates that carbonyl 
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chromophores are ubiquitous constituents in SOA and may play an active role in 

secondary BrC formation. 

4.4. Atmospheric implications  

Molecular chromophores are the key to BrC light absorption, connecting the 

microscopic physicochemical processes in atmospheric aerosols with the macroscopic 

radiative budget in the Earth system. The newly identified chromophores enable a more 

detailed process-level depiction of BrC formation, which is essential for improving the 

assessment of BrC’s impact in the context of climate change. Our study shows that 

carbonyl chromophores can be important constituents of secondary BrC from nighttime 

oxidation of heterocyclic VOCs, with wavelengths ranging from UV to visible. While 

research on ambient aerosols in wildfires has suggested that nitroaromatic chromophores, 

such as nitrophenols, nitrocatechols, nitroguaiacols, and nitrosyringols, may 

predominately contribute to BrC light absorption in the visible range, (16, 17) field 

studies have also provided increasing evidence indicating that carbonyl chromophores 

could be distinct contributors to BrC light absorption in the UV range. (69) It is further 

noted that the carbonyl chromophores identified in our studies are not only found in other 

SOA systems but are also commonly observed in field studies. (38, 59−65) Indeed, 

carbonyl compounds are ubiquitous in atmospheric aerosols and have long been 

recognized as the key species in tropospheric chemistry, (70, 71) the active players in the 

hygroscopicity of atmospheric particles, i.e., cloud condensation nuclei (CCN) activity, 

(72) and the critical precursors of secondary BrC formation in the aerosol phase via 

NH3/amine-driven reactions (73−76) or forming charge transfer complexes with alcohols. 
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(77, 78) Our study can complementarily provide a new perspective for evaluating the role 

of carbonyls in atmospheric aerosols based on their intrinsic light absorption.  

Furthermore, carbonyl chromophores produced by nighttime oxidation of N-

containing VOCs may represent a potentially important component in secondary BrC that 

was previously unrecognized. Our study reveals that light-absorbing imides and amides 

can be critical chromophores in the SOA of pyrrole and its derivatives. Given that 

biomass burning releases a variety of N-containing heterocyclic VOC precursors, 

(37−39) the formation of N-containing carbonyl chromophores could be a potentially 

significant contributor to the light absorption of secondary BrC. Furthermore, as widely 

observed in field studies of wildfire emissions, (33, 38, 79, 80) N-containing carbonyl 

chromophores offer another pivot in addition to the nitroaromatic chromophores for a 

more in-depth understanding of secondary BrC formation, particularly the wavelength-

dependent change of BrC light absorption as well as the diverse physicochemical 

processes. Although nitroaromatic chromophores may likely possess stronger 

absorptivity compared to carbonyl chromophores, the former are largely related to 

anthropogenic emissions of NOx, (81, 82) whereas the latter may be generated by more 

divergent atmospheric oxidation pathways, such as OH-driven oxidation of VOCs. (64) 

Broader sources of carbonyl chromophores may result in greater ubiquity in the 

atmosphere under different environmental conditions, implying more extensive effects. 

Overall, this study expands the current understanding of chromophore formation and 

provides a foundation for further investigations into the effects of secondary BrC 

formation on the Earth’s energy budget in the context of climate change.  
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4.5. Supplemental Information 

Table S4.1. Cartesian coordinates of molecular structures in the TD-DFT computation. 

C4H5NO4 isomer 1 

 N                  0.37769600   -0.12037200    0.68470500 

 C                  1.23707100    0.57167700   -0.08335400 

 C                  2.61149600   -0.09192200   -0.24502600 

 H                  3.31496300    0.50038100   -0.85437200 

 C                 -0.96995000    0.32241800    0.95603400 

 H                 -1.26590900    0.00067000    1.95592500 

 H                 -1.00090000    1.41312300    0.94042800 

 C                 -2.04598400   -0.16513400   -0.00838000 

 O                  2.89249600   -1.15821800    0.24180300 

 O                  1.01521200    1.64569100   -0.63181500 

 O                 -3.20645000    0.15201900    0.10647000 

 O                 -1.58296400   -0.97035600   -0.97302800 

 H                 -2.32696000   -1.23328000   -1.53928700 

 H                  0.69278800   -1.01361800    1.04128600 

C4H5NO4 isomer 2 

 N                  0.35641700   -0.31358700    0.72965800 

 C                  1.17729900    0.39631200    0.07841300 

 C                  2.58004700   -0.11613300   -0.19164500 

 H                  3.24519700    0.59569900   -0.71806200 

 C                 -0.97117200    0.21097800    0.99604900 

 H                 -1.31299500   -0.17357700    1.95843500 

 H                 -1.00179600    1.30565900    1.04716400 

 C                 -2.03697300   -0.18737300   -0.01626800 

 O                  2.96419200   -1.20920800    0.13192400 
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 O                  0.88729200    1.62431600   -0.41257800 

 O                 -3.22033800   -0.04988500    0.19294400 

 O                 -1.54157100   -0.67804700   -1.16113800 

 H                 -2.28422700   -0.88387200   -1.75206800 

 H                  1.64709500    2.03109500   -0.85157900 

C4H2O4 isomer 1 

 C                 -1.25766000   -0.08632000   -0.00004900 

 C                  0.03152200    0.78743900    0.00006200 

 C                  1.10963700   -0.18974300    0.00001800 

 C                  0.54040800   -1.41120900   -0.00001100 

 O                 -0.85888200   -1.39798300    0.00009800 

 O                 -2.39784900    0.25429600    0.00019900 

 O                  0.04021400    1.99554900   -0.00037700 

 O                  2.40181300    0.19378500    0.00006100 

 H                  0.97994400   -2.39648100    0.00001200 

 H                  2.99423900   -0.56969900    0.00002600 

 

C4H2O4 isomer 2 

 C                  0.80281600   -0.75963300   -0.00032200 

 C                  0.88511100    0.79902800   -0.00035400 

 C                 -0.47806400    1.22248600    0.00000200 

 C                 -1.24224900    0.09227300   -0.00010100 

 O                 -0.55745900   -1.08949400   -0.00011500 

 O                  1.65172000   -1.58694600    0.00019000 

 O                  1.94598500    1.39443300    0.00030000 

 O                 -2.53285200   -0.10488200    0.00012500 

 H                 -3.01737100    0.73537500    0.00033400 

 H                 -0.84746300    2.23481400    0.00032800 



 137 

C4H3NO3 

 C                  1.26509500    0.07750900    0.00023000 

 C                  0.50609000    1.22077200    0.00029600 

 C                 -0.86509700    0.81374200   -0.00021900 

 C                 -0.83298600   -0.76560900    0.00033900 

 N                  0.51222800   -1.08522300   -0.00006700 

 H                  0.88438500    2.23017500    0.00043000 

 O                 -1.76578900   -1.52790400   -0.00033600 

 O                  2.57096100   -0.09600800    0.00014900 

 O                 -1.91085100    1.44292500   -0.00029200 

 H                  0.90152900   -2.01842900   -0.00037900 

 H                  3.03531600    0.75423100    0.00037900 

C4H3NO4 

 C                  0.82258900    0.79892200   -0.04010400 

 C                 -0.70412200    0.84962000    0.16468700 

 C                 -1.18831900   -0.59740900    0.37162200 

 O                 -1.38984500    1.83170000    0.12907900 

 H                 -1.63678600   -0.70901800    1.36166600 

 O                 -2.09484800   -0.95215100   -0.64049900 

 H                 -2.86938600   -1.37128900   -0.24891600 

 O                  1.55938600    1.73002400   -0.20109100 

 O                  2.32794600   -1.14061500   -0.10920000 

 C                  1.20945900   -0.68552200    0.02346200 

 N                  0.05582100   -1.35726000    0.27821000 

 H                  0.05666300   -2.36420300    0.39546900 
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Table S4.2. Wavelength-dependent absorption cross-section emission factors (EFabsC) of 

C4−5 carbonyls and C4−5 nitroaromatics in pyrrole SOA and 2-MP SOA. 

 

Wavelength 

(nm) 

EFabsC (C4−5 Carbonyls) 
EFabsC (C4−5 

Nitroaromatics) EFabsC Ratio 

Pyrrole SOA 2-MP SOA Pyrrole SOA 2-MP SOA 

290 0.0268 0.0047 0.0099 0.0045 2.19 

300 0.0279 0.0046 0.0045 0.0042 3.72 

310 0.0302 0.0045 0.0066 0.0042 3.20 

320 0.0307 0.0043 0.0116 0.0048 2.13 

330 0.0266 0.0039 0.0152 0.0055 1.47 

340 0.0220 0.0034 0.0165 0.0059 1.14 

350 0.0170 0.0029 0.0167 0.0056 0.90 

360 0.0119 0.0024 0.0160 0.0048 0.68 

370 0.0083 0.0018 0.0133 0.0037 0.60 

380 0.0066 0.0014 0.0104 0.0026 0.61 

390 0.0060 0.0011 0.0076 0.0018 0.76 

400 0.0043 0.0009 0.0071 0.0013 0.62 

410 0.0032 0.0008 0.0069 0.0009 0.51 

420 0.0035 0.0007 0.0056 0.0006 0.68 

430 0.0045 0.0006 0.0038 0.0003 1.25 

440 0.0072 0.0006 0.0003 0.0002 15.04 

450 0.0068 0.0005 0.0000 0.0001 57.58 

460 0.0061 0.0004 0.0000 0.0001 65.53 

470 0.0053 0.0004 0.0000 0.0001 67.13 

480 0.0047 0.0003 0.0000 0.0001 64.43 
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Figure S4.1. Volume ratio of liquid A (water + 0.1% formic acid) and liquid B 

(acetonitrile + 0.1% formic acid) in the LC mobile phase along with the retention time for 

gradient elution. 



 140 

 

Figure S4.2. Response factors (RF) of three N-containing carbonyls (maleimide, 

pyrrolidine-2,5-dione and 3-methypyrrolidine-2,5-dione) estimated by LC-DAD-ESI-Q-

TOFMS with their commercially available standards. 
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Figure S4.3. LC-DAD heatmaps at retention times of (A) 0−2 min, (B) 2−21 min, and 

(C−D) the mass spectra of corresponding hotspots of 2-MP SOA.  
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Figure S4.4. LC-DAD heatmaps at retention times of (A) 0−2 min, (B) 2−21 min, and 

(C−D) the mass spectra of corresponding hotspots of 1-MP SOA.  
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Figure S4.5. LC-DAD heatmaps at retention times of (A) 0−2 min, (B) 2−21 min, and 

(C−D) the mass spectra of corresponding hotspots of furfural SOA.  

 



 144 

 

Figure S4.6. Tentative fragmentation pathways of (A) C4H4NO4
- and (B) C4HO4

- based 

on the tandem MS data. 
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Figure S4.7. Characterization of heterocyclic carbonyl chromophores identified in 

pyrrole SOA, involving (A−C) EICs and tandem mass spectra, (D−F) IMS-TOF drift 

grams; (G−I) FIGAERO-ToF-CIMS peak fitting and thermograms and (J−L) theoretical 

UV−vis spectra.  
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Figure S4.8. Tentative fragmentation pathways of the C4H2NO3
- ion based on the tandem 

MS data. 
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Figure S4.9. Tentative fragmentation pathways of the C4H2NO4
- ion based on the tandem 

MS data. 
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Figure S4.10. Tentative fragmentation pathways of the C4H4NO3
- ion based on the 

tandem MS data. 
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Figure S4.11. Tentative fragmentation pathways of C5H5NO2 in 1-MP SOA and 2-MP 

SOA based on the GC/EI-MS data. 
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Figure S4.12. Examples of oxidation products with higher molecular weights and high 

double bond equivalence identified in (A−B) pyrrole SOA and (C−D) 2-MP SOA. 
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Figure S4.13. Light absorption contributions of chromophores in percentages: (A) C4 

nitroaromatics, C4 carbonyls and other chromophores in pyrrole SOA; (B) C5 

nitroaromatics, C5 carbonyls and other chromophores in 2-MP SOA. 
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Figure S4.14. Light absorption contributions of chromophores in percentages: (A) C5 

carbonyls and other chromophores in 1-MP SOA; (B) C4 carbonyls and other 

chromophores in furan SOA; (C) C4−5 carbonyls and other chromophores in furfural 

SOA. 
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Figure S4.15. Light absorption contributions of chromophores to MAC profiles: (42−44) 

(A) C5 carbonyls and other chromophores in 1-MP SOA; (B) C4 carbonyls and other 

chromophores in furan SOA; (C) C4−5 carbonyls and other chromophores in furfural 

SOA. 
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Chapter 5. Conclusions and Implications 

 

Overall, this dissertation investigates secondary brown carbon (BrC) formation 

from the nighttime oxidation of heterocyclic volatile organic compounds (VOCs) under 

different environmental conditions. Environmental factors discussed in this dissertation 

include nitrate radical (NO3) levels, pre-existing particles, and relative humidity (RH). 

The NO3 level represents the nighttime oxidant level, while the pre-existing particles 

refer to the background particles in the atmosphere; both are key factors in determining 

the secodnary organic aerosol (SOA) burden in the future atmosphere. (1) RH is an 

essential factor that can regulate the physicochemical processing of SOA formation and 

secondary BrC light absorption. The crucial role of carbonyl chromophores in secondary 

BrC light absorption is particularly emphasized. The findings in this dissertation reveal 

that different combinations of environmental factors can remarkably modulate the optical 

properties and chemical composition of secondary BrC. 

The effects of NO3 levels and pre-existing particles on secondary BrC formation 

were explored by using the nighttime oxidation of furan as the studied system. A change 

in NO3 levels exhibited an insignificant impact on the overall composition of furan-

derived SOA, while the presence of pre-existing particles exerted influence on the SOA 

composition. The mass absorption coefficient (MAC) profiles showed that furan-derived 

BrC light absorption increased with higher NO3 levels but decreased in the presence of 

pre-existing particles. Such a divergent trend suggsets that NO3-initiated oxidation of 

furan can facilitate the generation of light-absorbing compounds, while pre-existing 
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particles may facilitate the gas-to-particle partitioning of non-absorbing products. 

Chemical characterization revealed consistent patterns of molecular chromophores across 

the studied environmental conditions, with highly oxygenated monomers, dimers, and 

oligomers identified as contributors to BrC light absorption. All these findings can 

provide process-level insights on how the key factors of future SOA burden can affect 

secondary BrC formation.  

The effects of RH on secondary BrC formation were explored by using the 

nighttime oxidation of furan and pyrrole as the studied systems. The increase in RH 

notably influenced the size distribution dynamics of both SOAs, with pyrrole-derived 

SOA showing a stronger potential to generate ultrafine particles through nucleation. 

Higher RH was associated with the increased mass fractions of oxygenated compounds in 

both SOAs, which may suggest enhanced gas-phase and/or multiphase oxidation in 

humid environments. Moreover, higher RH resulted in decreased MAC of both BrC, 

diverging from those originating from homocyclic precursors. This divergence can be 

attributed to the formation of non-absorbing high-molecular-weight oxygenated 

compounds and the declining mass fractions of molecular chromophores. All these 

findings highlight that RH can be a pivotal factor that modulates the size distribution 

dynamics, chemical composition, and optical properties of secondary BrC in wildfire 

smoke. 

Moreover, this dissertation further sheds light on the role of carbonyl 

chromophores in secondary BrC light absorption. A variety of carbonyl chromophores 

were charaterized in the secondary BrC derived from the nighttime oxidation of furan, 
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pyrrole, 1-methylpyrrole, 2-methylpyrrole, and furfural. Chromophores with carbonyl 

groups bonded to nitrogen, such as imides and amides, may substantially contribute to 

BrC light absorption. These N-containing carbonyl chromophores can contribute to more 

than 40% of the total light absorption in pyrrole-derived BrC at wavelengths below 350 

nm and above 430 nm. Such a wavelength dependency indicates that BrC light absorption 

may not be solely attributed to a certain type of chromophore but instead account for a 

combination of different types of chromophores with their dominant light absorption 

contribution in certain wavelength ranges. 

Taken together, this dissertation contributes to a better understanding of the role 

of NO3 levels, pre-existing particles, and RH in regulating the optical properties and 

chemical compositions of secondary BrC from the nighttime oxidation of heterocyclic 

VOCs. This dissertation also provides a new perspective on the role of atmospheric 

carbonyls by highlighting their substantial contribution to secondary BrC light 

absorption. At present, the uncertainty of BrC radiative forcing is still large due to the 

variation of chromophore composition, exacerbated by the intricate influence of 

atmospheric processing under different environmental conditions. This dissertation 

underscores the necessity for continued research on how the interplay of different 

environmental factors can affect the formation and evolution of secondary BrC 

chromophores. 

Further, this dissertation also demonstrates that secondary BrC is a potential key 

to better constraining the interconnection between atmospheric chemistry and climate 

change. As highlighted in the sixth assessment report from the Intergovernmental Panel 
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on Climate Change (IPCC), the role of the fire-climate feedback in the Earth’s energy 

budget is inconclusive since the radiative effects of wildfire smoke are highly uncertain. 

(2) This dissertation establishes the foundation for understanding how wildfire smoke 

environments influence secondary BrC formation. The findings in this dissertation can be 

incorporated into climate models for more accurate parameterization of BrC’s radiative 

forcing. Future studies should delve into a more in-depth understanding of how the 

chemical complexity of atmospheric BrC aerosols can modulate the radiative forcing of 

wildfire smoke and, consequently, future climate change.  
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