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PREFACE

It’s hard to write down everything you need to know in order to do this experiment,

because so much information comes from so many different sources. In this thesis, I’ve

attempted to include as much “original” knowledge as I can—things that I’ve discovered

along the way that are unique to this experiment—while calling your attention to the

many amazing theses, books, and papers that have guided me along the way. If a section

seems lacking in detail, it’s (hopefully) because I found that the references cited there are

sufficient to explain further. One of the most important of these is Simon Stellmer’s thesis

[1], which covers the basics of strontium and its cooling. A second important resource is

Dan Steck’s quantum optics notes [2], from which I learned most of the theory; chapters

1-6 are essential reading! Finally, for very basic or standard AMO techniques, like MOTs

or power-broadening, I recommend Foot [3] and Demtroeder [4].
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Chapter 1

Introduction

1.1 Quantum emulation

It’s easy to forget that we, as a species, have figured out a lot about the world 1.

For instance, we rarely consider the small, rectangular, glass-metal bricks in our pockets,

which talk to each other using invisible waves, and which make sounds at us when someone

miles away—or tens of miles, or thousands of miles—wants to talk to us. Such everyday

miracles just don’t register; we only care about the relayed message, rarely considering

the medium itself. I won’t dispute this perspective, since starry-eyed wonder never paid

anybody’s rent. But when the news is particularly troubling and the future looks bleak, I

find it helpful to put things in perspective by considering how far we’ve come as a species.

Nobody has given us a manual to the universe; nobody told us everything is made of

“atoms,” or that invisible waves can interact with those atoms and make them obey our

will. These are our own accomplishments—made over thousands of years by millions of

scientists—and to me, that should give us great pride and hope for an even better future.

But it should also come as no surprise that there is much we don’t yet understand.

The laws governing our universe as we currently understand them [5] are frequently

confounding: although we know (many of) the game’s rules, that doesn’t mean we can

1At the time of writing, the English version of Wikipedia.org has 6,436,632 articles with over 4 billion
words.
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always predict the game’s outcome. Nowhere is this more evident than in the realm of the

very small. “Quantum mechanics” governs the interactions between atoms, and while that

theory has been essentially unchanged since Schrödinger put forth his equation in 1926

[6], the interactions between more than a few tens of atoms cannot be exactly predicted.

To do so at least in principle, one must keep track of all possible configurations of a

system—but this number grows exponentially with number of atoms. Even setting aside

the requisite computational time, memory becomes a real problem. To figure out the

dynamics of N = 40 interacting spin-1/2 particles requires 4 TB of memory [7], or about

1% of the capability of a modern supercomputer. Doubling the number of particles would

require a thousand trillion times that: 1012 TB, far exceeding what classical computers are

ever likely to achieve. Considering that interacting physical systems have on the order of

N = 1023 atoms, the amount of needed classical computing power becomes unimaginable.

We could throw up our hands at the sheer complexity of this “many-body” problem,

but generations of physicists since Schrödinger have made progress. The field is replete with

ingenious approximation schemes, such as perturbation theory, density functional theory,

mean field theories, Monte Carlo methods, and Green’s functions [8–10]. But they are all

approximations, to be applied within certain limits—and it is at those limits we frequently

find ourselves when trying to understand problems like high-temperature superconductivity

[11], non-equilibrium dynamics [12], frustrated spin systems [13], topological materials

[14, 15], and many others.

Enter quantum simulation. In popular culture, this might be colloquially referred

to as ‘quantum computing,’ but it is important to distinguish the two. A quantum

computer is a more general device, built to solve particular problems for which it has

a “quantum advantage” over classical computers [16]—i.e., that the benefit of using a

quantum computer is so profound that it justifies the incredible cost and effort required

to make one. In contrast, quantum simulators [17] are more-specialized devices, built to

learn about hard physics problems, some of which I mentioned earlier. To be concrete, the
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definition of a quantum simulator is a “controllable quantum system[s] that can be used

to simulate other quantum systems;” [18] or to put it another way: using atoms which we

can control, to emulate the behavior of atoms we can’t—and in so doing, learn about the

problem in question.

There are myriad approaches to quantum simulation; the platform of this work is

cold neutral atoms, but other possible mediums include trapped ions, superconducting

qubits, photons and others, and I refer the interested reader to [7]. For the remainder of

this work, I will focus on the lab’s effort to build a quantum simulator using cold atoms,

specifically with the element strontium.

1.2 Alkaline-Earth atoms

Among the numerous atoms that have been brought to quantum degeneracy (see §

1.3), why did we choose strontium? This is a sharp question, considering that ready-made,

tabletop BEC machines are available for purchase, with options for rubidium, cesium and

potassium2. These well-studied elements are used at many of the world’s top emulation

labs, including those at NIST, Munich, and JILA. The quantum emulation of many-body

systems does not explicitly depend on the particular atom; indeed, that is the point! Yet

the choice of element is more than just what is convenient, but what experiments are

enabled by the particular element.

Alkaline-earth like atoms (AEAs)—of which Sr, Yb, and Ca have been brought to

degeneracy—all share a two-electron valence structure. Their outer two spin-1/2 electrons

can occupy either the antisymmetric singlet state, labeled 1S0 (one electron spin-up, and

the other spin-down) or the symmetric triplet configuration 3P , which is further split

by the fine structure interaction into 3 sublevels, 3P0,
3P1,

3P2. The dipole selection rule

∆s = 0 [3] forbids transitions between states with differing spin quantum number, so we

would expect the 1S0 and 3P energy manifolds to be isolated. However, due to effects of

2See, e.g., www.coldquanta.com
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spin-orbit coupling, these states can be thought of as superpositions which include 1P1

[19], allowing a decay channel to 1S0 and thus providing “intercombination” transitions

between singlet and triplet states. I show in Fig. 1.1 all Sr transitions relevant to this

work.

The dipole-forbidden transitions listed in Fig. 1.1 have narrow linewidths, from

kHz down to mHz, providing a main selling point of AEAs. These narrow linewidths are

leveraged to make the world’s best optical atomic clocks, achieving fractional frequency

uncertainty at the 10−18 level [20, 21], two orders of magnitude better than contemporary

microwave cesium clocks [22]. One reason we care about ultra-precise clock transitions is

because they allow the measurement of anything that can perturb them with commensurate

precision. There are thus many applications, including to many-body physics, and I refer

the interested reader to [23]. Of particular interest to this experiment, the narrow 1S0 → 3P1

transition enables our µK MOT discussed in Chapter 2, and free-space spin-orbit coupling

scheme, discussed in Chapter 5.

1.3 Laser cooling

First and foremost, cold atom simulation requires that your atoms be just that:

cold. Very, very cold. Roughly speaking, any atom simulation experiment shows quantum

behavior only when their average kinetic energy is comparable to (or, preferably, much

lower than) the energy shifts (forces) you are exerting. And the colder the better; since

the first sodium atoms were laser cooled in the 1980s [24], there has been a constant drive

to reach ever lower temperatures. Cooling bosons to their ground state, in a Bose-Einstein

condensate, was first achieved with 87Rb in 1995 [25], followed by the first degenerate

Fermi gas of 40K four years later [26]. In some sense, these landmark experiments enabled

the field of cold atom simulation, and in the past 20 years much progress has been made

in achieving quantum degeneracy in other elements [27]; see Table 1.1 for a complete list.
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Figure 1.1. Atomic energy level diagram for fermionic strontium, showing all transitions
used in this thesis, including the laser beams used in the experiment (colored and labeled).

This thesis would not be possible without the combined 40+ year effort made by the entire

community, enabling us to cool strontium to degeneracy and perform experiments.

Put simply, laser cooling involves exposing atoms to light at very particular fre-

quencies in order to make them stop moving so much. At room temperature, atoms and

molecules floating around in the air move surprisingly fast. If you measure the velocities

of a random number of these atoms, you will find that none of them are moving in

exactly the same way; but if you did this measurement many thousands of times, and

then plotted the squares of the measured velocities against the probability of finding the
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Table 1.1. Single elements made into a Bose-Einstein condensate, as of January 2022. A
star indicates a Fermi gas has also been achieved. In the adjacent references, BEC creation
is listed first, and DFG second. Note that the first Sr BECs were achieved simultaneously
by the Innsbruck and Rice groups.

Note Species

Not laser cooled H [28]
Alkalis Rb [25], Na [29], Li* [30] [31], K* [32][26], Cs [33]
Noble gas He* [34][35]
Highly magnetic Cr [36], Dy* [37],[38], Er* [39][40], Tm [41]
Alkaline-Earth like Yb* [42][43], Ca [44], Sr* [45, 46][47]

atom at those velocities, you’d start to notice they follow a very particular distribution.

This is the Maxwell-Boltzmann probability distribution, and the most probable speed is

v =
√

3kBT/m where kB is Boltzmann’s constant, T is the temperature, and m is the

particle’s mass [48].

That parameter, T , is of primary importance in cold atom work. While we are

all familiar with the colloquial notion of temperature, we must have a more precise

understanding in order to meaningfully distinguish −459.6667◦ F and −459.6668◦ F.

Indeed, one can define T rigorously in terms of thermodynamic quantities [48], but the

operational definition that always made the most sense to me, and the one I’ve found

most useful, is that it is simply the parameter that tells you how wide the atomic velocity

distribution is. The smaller the temperature, the narrower the range of possible velocities

an atom is likely to have. It is the business of laser cooling to make that distribution as

narrow as possible.

While the exact mechanics of the cooling process depend on the involved species, all

neutral atom experiments operate some kind of magneto-optical trap (MOT), a standard

tool of atomic physics—I refer the reader to [3] for more details. But to make a simple

mechanical analogy, we can think of MOT action as simply attaching an atom to six

orthogonal springs, each of which damps motion along its axis, pulling a moving atom back

to the center. A MOT cannot cool indefinitely, however. When the atoms have cooled
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such that their velocity spread is within the driving transition’s linewidth, cooling ceases,

and the atoms are then simply making a random walk in momentum space [4]. For a MOT

driven with a transition linewidth Γ, a first limit is imposed by the Doppler temperature,

kBTD = ℏΓ/2. A second limit—typically much smaller, but more fundamental—relates

the amount of momentum acquired when the atom absorbs a single photon. This is the

recoil temperature, kBTr = (ℏk)2/2m, where k = 2π/λ is the wavevector of the MOT light

and m is the atomic mass.

In the context of trapping atomic Sr, both of these limits are relevant. The

maximum MOT capture velocity vc ∼
√
TD. In order to capture the (relatively) hot

atoms out of an atomic oven, first-stage cooling takes places in the “blue” MOT (bMOT),

which operates on the 1S0 → 1P1 transition at 461 nm, with linewidth Γ = 2π × 30 MHz

(TD = 1 mK). To cool further, we then transfer those atoms to the “red” MOT (rMOT)

which operates on the intercombination line 1S0 → 3P1 at 689 nm, with Γ = 2π × 7.4 kHz

(TD = 1µK), approaching the recoil temperature Tr = 0.46 µK. Much has been written

about the narrow-line red MOTs of Sr. I encourage the reader to take a close read of the

fundamentals [49], the experimental overview [1], and our specific implementation, which

takes elements from [50]. I discuss details of our implementation in Section 4.1.2.

1.4 Quantum degeneracy

Cooling to the recoil temperature is not sufficient to perform most quantum

simulation. The ultimate limit is achieving quantum degeneracy, where the atoms are so

cold their wavefunctions begin to overlap, as in the cartoon depiction of Fig. 1.2. It is in

this regime where their (in)distinguishability becomes relevant, revealing their bosonic

or fermionic nature. Generally speaking, quantum effects become important when the

atomic density approaches the de Broglie volume, or n ≈ m/λ3T = m(h/p)−3, where p is

the atomic momentum and h is Planck’s constant. For most species cooled so far, the
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onset of degeneracy occurs around temperatures of a few tens of nK. Another way of

quantifying the onset of degeneracy is when the phase-space density approaches 1. The

phase-space density can be expressed as

ρ = nλ3T =

(
2πℏ2

mkBT

)3/2

= N

(
hν̄

kBT

)3

(1.1)

where the right-most equality holds for a harmonic trap[51] with mean geometric trap

frequency ν̄ and atom number N . Whether the gas is classical or quantum-degenerate is

then a matter of determining whether ρ≪ 1 or ρ ≈ 1, respectively.

Depending on whether the atom in question obeys bosonic or fermionic statistics,

two kinds of degeneracy can be achieved: Bose-Einstein condensation (BEC) for the former,

or a degenerate Fermi gas (DFG) for the latter. In this experiment we have achieved both,

and I will briefly describe the properties of each.

1.4.1 Thermal gases

To appreciate the nature of quantum gases, it is helpful to first understand the

behavior of harmonically trapped thermal gases. In the limit of high temperatures—ρ≪ 1,

as described above—quantum statistics are unimportant, and the atoms obey the Maxwell-

Boltzmann distribution. This says that the probability a particle will occupy a state with

energy El is

f(El) = e
−El−µ

kBT (1.2)

where µ is the chemical potential, the energy required to add (or remove) a particle from

the system. In the Thomas-Fermi (TF) or semi-classical approximation, we regard each

atom as occupying a position in phase space (r,p), with density of states (2πℏ)−3 [52, 53].

We replace El with the system Hamiltonian
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H(r,p) = p2/2m+ V (r) (1.3)

where V (r) = 1/2 mω2r2 represents the always-present harmonic trap, m is the particle

mass, and ω is the trap frequency. We can then determine the momentum distribution by

multiplying by the density of states and integrating over r:

n(p) =
1

(2πℏ)3

∫
drf(H(r,p)) =

N

(2πℏ)3/2σ3
e−p

2/2σ2

(1.4)

with σ = mkBT defining the standard deviation of the resulting Gaussian. The position

distribution can be found by a similar integration over p and is likewise Gaussian (with

standard deviation σr = kBT/mω
2).

1.4.2 Degenerate Fermi gases

If the phase-space density ρ ≈ 1, the quantum statistics of the atoms become

important. An excellent in-depth treatment of degenerate Fermi gases (DFGs) is given in

Brian DeMarco’s thesis [53]; I summarize only key results here. Fermions (such as 87Sr)

obey the Fermi-Dirac distribution with chemical potential µ:

f(El) =
1

e
El−µ

kBT + 1
(1.5)

In the limit of T ≫ ℏω, with ω given in Eqn. 1.3, the density of states of a 3D harmonic

oscillator is [52]

g(El) =
E2
l

2(ℏω)3
(1.6)

As T → 0, this distribution becomes a step function with a discontinuity at the Fermi

energy EF , which is the energy below which all states are occupied. The Fermi energy can
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be found indirectly by determining the total number of particles at T = 0:

N =

∫ EF

0

g(ϵ)f(ϵ)|T=0dϵ→ EF = ℏω(6N)1/3 (1.7)

In benchmarking DFG’s, we typically consider the ratio T/TF , with TF ≡ EF/kB

being the Fermi temperature. Most Fermi gas experiments readily reach T/TF ≈ 0.2− 0.3,

and with serious effort, very deeply degenerate gases below 0.1 can be achieved; one

noteworthy example includes a 6Li system reporting T/TF = 0.059(5) [54]. With 87Sr,

the best on record include Stellmer reporting 0.10(1) with a 10-state mixture [55], and

more recently, Jun Ye’s group at JILA reporting 0.07 [56]. At such temperatures, one can

find the Pauli exclusion principle in action: atoms occupying states far below the Fermi

surface cannot be excited by light, because higher-momentum states are already filled—as

recently observed in three landmark experiments [57].

The momentum distribution of a DFG is found by making the same Thomas-Fermi

approximation that led to Eqn. 1.4. Integrating the Fermi-Dirac distribution Eqn. 1.5,

one finds [53]:

n(p) = − 1

(2π)3/2ℏ3

(
kBT

mω2

)3/2

Li3/2

(
− ζ exp

(
−p2

2mkBT

))
(1.8)

where Lis refers to the polylogarithm function of order s, and ζ = eµ/kBT is the fugacity. It is

important to point out that real experimental images are acquired by integrating along the

direction of an absorption imaging beam, after the atoms have been released and undergo

some “time of flight.” We can reconstruct the in-situ momentum distribution, however:

after time t of free expansion, each dimension i is simply rescaled as pi = pi,0
√

1 + (ωit)2

[58]. At long time of flight (ωit) ≫ 1, the gas appears isotropic3. At earlier times, the

aspect ratio reflects any asymmetry in the trapping strengths along the three trapping

3Even at long TOF, the aspect ratio may in fact differ from unity due to the presence of interactions;
see for example [56].
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Figure 1.2. The difference between a “normal” gas and a quantum gas, in cartoon form.
A quantum gas is so dense the individual wavefunctions begin to overlap.

dimensions, with the most-tightly-trapped dimension expanding fastest—a fact nicely

explained by the uncertainty principle (small ∆x→ large ∆p) [58].

Integrating along the imaging direction (taken to be z) entails expanding the

polylog series and integrating term-by-term. For the purposes of fitting, it is actually more

convenient to operate with with a density n(r), so that one does not need to know the

conversion from pixel-to-momentum (which must be calibrated through some physical

process), while the pixel-to-distance conversion is determined by the magnification and

pixel size, both of which are usually known. The result is

n(x, y) = − m(kBT )
2

(2π)3/2ℏ3
√

(1 + (ωxt)2)(1 + (ωyt)2)
Li2

(
− ζ exp

(
− x2

rx(t)2
− y2

ry(t)2

))
(1.9)

with rx,y(t) =
√

1 + (ωx,yt)2. In the limit of small fugacity ζ ≪ 1, this distribution reduces

to the Gaussian distribution described in Eqn. 1.4. In reality, the deviation from a

Gaussian is never large; trying a naive fit of a Gaussian to DFG with T/TF ∼ 0.3 merely

results in a slight overfit at the peak [45, 46]. This overfit results from Pauli blocking

limiting the number of atoms that can occupy the velocity class p ≈ 0.

Since Eqn. 1.9 is a bit cumbersome to work with, I fit instead with the following
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expression, following DeMarco’s approach [53]4, with fit parameters A, ζ:

OD(r) = A Li2

(
− ζ exp (−r2/a2)

)
(1.10)

where OD is the measured optical density. This equation can be applied to radially-

averaged, time-of-flight absorption images with p = 0 atoms aligned on r = 0. The

fugacity, ζ, is the “shape factor” which determines the degree of deviation from a Gaussian

and, thus, the degree of degeneracy, through the implicit relation

Li3(ζ) = − 1

6(T/TF )3
(1.11)

which can be numerically solved for T/TF . ζ < 1 is the classical region, and ζ ≫ 1 is

degenerate, rapidly approaching infinity as T/TF → 0.

4Li2 is usable in Python from the scipy library as “scipy.spence”
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Chapter 2

Light-matter interaction

All our experiments require firing lasers at atoms, so it is imperative we understand

the basic physical processes underlying their interaction. This would be most accurately

described by quantizing the electromagnetic field into operators; see, for instance, [59].

But in the most cold atom experiments, this approach is overkill,1 and we are justified in

approaching these problems “semiclassically:” the electric field is described classically as a

plane wave, but the atom is described quantum-mechanically. Following the treatment

of [2], I give a brief overview of the processes occurring in the experiment, followed by a

description of the quantum Hall physics we are attempting to engineer in the experiment.

2.1 Two-level atoms

The basis for understanding most atom-laser problems is the humble two-level

system. Consider an atom that has ground and excited states labeled |g⟩ and |e⟩. Let the

ground-state have zero energy, and the upper-state have energy ℏω0. Expose this atom

to a monochromatic laser beam; in the long-wavelength limit—λ ≫ a0, where a0 is the

atom’s Bohr radius—we can ignore the light’s spatial dependence.2 We describe the light

1It becomes important when the number of photons is comparable to the number of particles, such as
in quantum cavity experiments.

2Note that standing waves, and Raman coupling, have an important spatial component which we will
get to later.
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field as a plane wave polarized along direction ϵ̂:

E = ϵ̂E0 cos(ωt) = ϵ̂
E0

2

(
e−iωt + eiωt

)
(2.1)

The semiclassical Hamiltonian describing the system is then

H = HA +HAF (2.2)

where HA = ℏω0|e⟩⟨e| is the free atomic Hamiltonian and HAF = −d · E is the atom-field

interaction in the dipole approximation. Explicitly, d = −er, with position operator r.

The dipole operator is purely off-diagonal in the {|g⟩, |e⟩} basis due to parity considerations

[2]; inserting the identity (with the usual lowering operator notation a ≡ |g⟩⟨e|) we expand

HAF as

HAF =− d · E =
〈
g|d|e

〉(
a+ a†

)
· ϵ̂E0

2

(
e−iωt + eiωt

)
=− E0

2

〈
g|d · ϵ̂|e

〉(
aeiωt + a†e−iωt + a†eiωt + ae−iωt

) (2.3)

The first two terms in parenthesis correspond, respectively, to photon emission with

transition to |g⟩, and photon absorption with transition to |e⟩ [59]. These are the “energy

conserving” terms. The last two terms describe photon emission with transition to |e⟩,

and photon absorption with transition to |g⟩—these are processes one expects to be highly

suppressed when the radiation is near-resonant.3 Dropping these last two is called the

rotating wave approximation (see Appendix E). And so, we have

HAF =
ℏΩ
2

(
aeiωt + a†e−iωt

)
(2.4)

3These term identifications are by no means obvious; they come from considering the quantized nature
of the field. The positively (negatively) signed component of E is associated with the photon annihilation
(creation) operator. [2]
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where I have introduced the Rabi frequency, Ω ≡ −E0/ℏ⟨g|d · ϵ̂|e
〉
.

To remove the time-dependence, it is customary to move into a frame rotating

around the quantization axis by applying the unitary transformation U = eiωt|e⟩⟨e| to Eqn.

2.4 with the replacement rule H̃ → UHU † + iℏ∂tU :

H = −ℏ∆|e⟩⟨e|+ ℏΩ
2

(
a+ a†

)
= −ℏ∆

2
1+

ℏ∆
2
σz +

ℏΩ
2
σx (2.5)

where we have defined the detuning from resonance ∆ ≡ ω−ω0, and on the right-hand side

written the equation in terms of the usual Pauli matrices. From here, we can uncover the

two-level dynamics; for the case of resonant light, ∆ = 0, and we write the time-dependent

Shrödinger equation iℏ∂tΨ = HΨ in terms of the amplitudes cg, ce:

∂tcg = −iΩ
2
ce

∂tce = −iΩ
2
cg

(2.6)

We can solve these coupled equations analytically by differentiating one and plugging

it into the other. The result, for an initially unexcited atom (cg(t = 0) = 1, ce(t = 0) = 0)

show Rabi oscillations between ground and excited states:

Pg(t) = |cg|2 = cos2(Ωt/2)

Pe(t) = |ce|2 = sin2(Ωt/2)

(2.7)

These Rabi oscillations occur in stimulated Raman/spin-orbit coupling experiments, and

are an important way of measuring the coupling strengths Ω, as we shall see in Chapter 5.

The last important detail is the realization that the states |g⟩, |e⟩ are no longer

eigenstates of this system—the Hamintonian is not diagonal in this basis, due to the

15



presence of coupling. Diagonalizing this Hamiltonian, the new eigenenergies of the system

are

E± = −ℏ∆
2

± ℏΩ
2

(2.8)

with corresponding eigenvectors

|+⟩ = sin(θ)|g⟩+ cos(θ)|e⟩,

|−⟩ = cos(θ)|g⟩ − sin(θ)|e⟩
(2.9)

with tan(2θ) = −Ω/∆. These are the so-called dressed states, which are superpositions

of the original eigenstates. This dressed-state picture is important in spin-orbit coupling,

which we shall soon discuss.

2.2 Stimulated Raman effect

The two-level Hamiltonian Eqn. 2.5 provides a useful conceptual framework we

can build on to describe nominally-more-complicated setups—for example, the one in Fig.

2.1(a), describing two detuned fields interacting with a three-level “Λ-system.” It turns

out that if the fields cause minimal spontaneous emission, the Hamiltonian reduces to the

familiar two-level form.

The free atomic Hamiltonian is analogous to the two-level case, but I drop the

at-rest assumption and have

HA =
p2

2m
1− ℏω1|g1⟩⟨g1| − ℏω2|g2⟩⟨g2| (2.10)
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Figure 2.1. The Raman process responsible for spin-orbit coupling of neutral atoms,
and which underlies our spin-momentum lattice. (a) Two beams couple two spin states
to a shared upper state, with each beam detuned from single-photon resonance by ∆.
(b, top) The real-space geometry of a spin exposed to two counter-propagating beams at
t = 0. (b, bottom) After a π-pulse, the spin is flipped, and the atom acquires a momentum
equal to the difference momentum of the two photons. Spin is therefore coupled to the
motion—spin-orbit coupling.

Spatial dependence is now relevant, so I preserve it in writing the electric field:

E = ϵ̂1
E01

2

(
ek1·r−iω1t + e−k1·r+iω1t

)
+ ϵ̂2

E02

2

(
ek2·r−iω2t + e−k2·r+iω2t

)
(2.11)

The atom-field interaction HAF = −d ·E is again written in the RWA, and I define the

lowering operators as aα ≡ |gα⟩⟨e|:

HAF = −ℏΩ1

2

(
a1e

−ik1·reiω1t + c.c.
)
− ℏΩ2

2

(
a2e

−ik2·reiω2t + c.c.
)

(2.12)

where c.c. indicates the complex conjugate and the Rabi frequencies are defined as before,

Ωα ≡ −E0/ℏ⟨gα|d · ϵ̂α|e
〉
. To remove the time dependence, move into the rotating frame

with the unitary transformation U = eiω1t|e⟩⟨e| + eiω2t|e⟩⟨e|; the full Hamiltonian becomes
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H = HA +HAF

=
p2

2m
1+ ℏ∆1|g1⟩⟨g1|+ ℏ∆2|g2⟩⟨g2| −

ℏΩ1

2

(
a1e

−ik1·r + c.c.
)
− ℏΩ2

2

(
a2e

−ik2·r + c.c.
)

(2.13)

For the wavefunction, we make the ansatz |Ψ⟩ = ψg1 |g1⟩+ ψg2|g2⟩+ ψe|e⟩. Before

we plug this into the Shrödinger equation iℏ∂t|Ψ⟩ = H|Ψ⟩, let’s make one further ap-

proximation under the assumption that the lasers are tuned far from resonance, i.e. that

∆α ≫ Γ, where 1/Γ is the lifetime of the excited state. Then the upper state |e⟩ is never

significantly populated, so we can set ∂tψe = 0; this is called the adiabatic elimination of

the upper state.4 We then find the equations of motion

iℏ∂tψg1 =
p2

2m
ψg1 + (

ℏδ
2

+ ωAC1 )ψg1 +
ℏΩR

2
ei(k2−k1)ψg2 ,

iℏ∂tψg2 =
p2

2m
ψg2 + (−ℏδ

2
+ ωAC2 )ψg2 +

ℏΩR

2
ei(k1−k2)ψg1

(2.14)

These equations are formally equivalent to the two-level atom, with δ ≡ ∆1 −∆2, ∆ ≡

1/2(∆1 +∆2), ω
AC
i ≡ Ω2

i /4∆, and Raman Rabi frequency

ΩR ≡ Ω1Ω
∗
2

2∆
(2.15)

Defining q ≡ k1 − k2, the effective Hamiltonian generating these equations is [62]

4If this step seems unjustified, I note that it is not strictly necessary and the same result is derived
through more rigorous means in [60]... But for the busy working physicist, I’d recommend [61] for a
more-readable and physical explanation.
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HEff =
p2

2m
1+

ℏ
2

δ + ωAC
1 ΩRe

iq·r

Ω∗
Re

−iq·r −δ + ωAC
2


=

p2

2m
1+

ℏΩR

2

(
cos(q · r)σx − sin(q · r)σy

)
+

ℏδ′

2
σz

(2.16)

where in the last line I expand in terms of the Pauli matrices, and define δ′ ≡ δ + ωAC

(under the assumption that the ac Stark shifts are approximately equal). In the literature,

especially in the context of spin-orbit coupling, you will sometimes see this form, which

describes a lattice with primitive vector 2π/|q|. Note that the exponentials exp(±iq · r)

in Eqn. 2.16 are the momentum shift operators [63] which act on a momentum state

as exp(±iq · r)|p⟩ = |p ± ℏq⟩. Thus, the off-diagonals connect a state |g1,p = 0⟩ to

|g2,p = ℏq⟩. When the atom hops, it absorbs a photon from k1 and emits a photon

(of energy cℏk2) in the k2 direction, recoiling along k1 − k2 when it does so, as in Fig.

2.1(b). A final form seen in the literature follows from reducing to the 1D case and

counter-propagating beams, so that q · r = 2ℏkR; then, we make contact with [64]:

HEff =
p2

2m
1+

ℏΩR

2
(F+e

ikRx + F−e
−ikRx) (2.17)

where I invoke the usual raising/lowering operators F+, F−.

2.3 Spin-orbit coupling

2.3.1 History

The Raman Hamiltonian Eqn. 2.16 describes an artificial spin-orbit (SO) coupling

field, which I will show in this section. Artificial SO coupling in ultracold atoms was first

implemented by Spielman’s group with a Rb BEC [65], followed quickly by Jing Zhang’s

group with a K Fermi gas [66]. The one-dimensional version has since been extensively
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studied in experiments with different atomic species, including the fermionic isotopes of Li

[67], Yb [68], Dy [69], and even in a 87Sr atomic clock [70, 71]. Two-dimensional spin-orbit

coupling has also been implemented in Rb [72–74] and very recently, 87Sr [75]. For an

overview of the field, I recommend [76] and the excellent thesis by K. J. Garcia [77] for

properties of spin-orbit coupled Hamiltonians. A more recent review can be found at [78].

2.3.2 SO coupling: physical origin

From an atomic physics perspective, SO coupling is the process that gives rise to

fine structure, which is responsible for the J in the familiar 3PJ triplet levels of strontium.

In that context, SO coupling is the interaction between the electron’s spin and its orbital

angular momentum. This can be written HSO = −µ ·B, where µ = eS/(2m), S is the spin

operator, and B = −v/c2 × E is the (Maxwell equation describing the) effective magnetic

field the electron feels as it orbits the nucleus with velocity v [63]. This is also called the

LS-coupling scheme.

But here we are in the business of quantum emulation, and when we refer to

“SO coupling” we generally have in mind the closely-related physics that occur in solid-

state materials. Consider a material in which exists a static electric field E = E0ẑ.

From the Lorentz-invariant Maxwell equations, a charged particle moving through this

field in the xy-plane with velocity v = p/m = ℏk/m experiences a magnetic field

BSO = −v/c2 × E = 1
c2

(ℏk
m

× E
)
= E0ℏ

mc2

(
kxŷ − kyx̂

)
. The resulting momentum-dependent

Zeeman interaction −µB ≈ σxky − σykx is known as Rashba SOC. A similar type of SOC

that can emerge in some crystals is Dresselhaus SOC with −µB ≈ σxkx − σyky [76].

2.3.3 SO coupling in ultracold gases

We can implement SOC with neutral atoms with the help of Raman coupling.

Actually, a kind of SO coupling is already in Eqn. 2.16. Apply the unitary transformation

U = exp(i(q · r/ℏ)σz) to the Hamiltonian with the usual rule H ′ = ÛHÛ † and we arrive at
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HEff =
(p1− q · rσz)2

2m
+
δ′

2
σz +

ΩR

2
σx (2.18)

which describes a particle in an equal-parts Rashba and Dresselhaus spin-orbit coupling

field [65]. This is a 1D artificial spin-orbit coupling; achieving the fully 2D version requires

a third ground state with additional beams, but follows a very similar theory nicely

described in [79]. 2D spin-orbit coupling is key to our pursuit of topological matter, and

we implement it in the experiment that follows.

2.4 Quantum Hall systems

We have seen that we can generate artificial spin-orbit coupling (SOC) fields in

neutral atoms. This allows for the simulation/emulation of various solid-state phenomena;

but SOC can also be used as a tool for the creation of more complex band structures,

specifically those endowed with topology. The goal of this thesis is to engineer a cold

atom ensemble which exhibits quantum Hall characteristics. I briefly review these systems

below, and explain the SOC connection which is pivotal to our results.

2.4.1 Classical

The Hall effect is a classically-understood process describing the transverse voltage

developed across a conductor placed in a magnetic field. The simple Drude model is

sufficient to explain this: electrons traveling along the conductor’s length experience a

Lorentz force, F = −eE− ev ×B, which deflects their motion towards the conductor’s

boundary. Charge then builds up at one edge, and in the steady-state establishes a voltage

with respect to the opposite edge. Materials can be then characterized by their Hall

coefficient, RH = ρxy/B, where ρxy is the resistivity matrix element which characterizes a

resistance along y due to a current along x [80].
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2.4.2 Integer quantum Hall effect

In a 1980 experiment [81], it was discovered that—for a certain class of materials

under very large magnetic fields—the Hall resistance is quantized in integer steps. It was

found to be RH = h
e2

1
ν
where ν ∈ Z, leading to a directly-measureable, highly-precise

definition of the fine structure constant. This is a purely quantum effect which can be

understood without considering electron-electron interactions; the explanation came a

year later by Laughlin [82]. This integer quantum Hall effect (IQHE) has a few subtleties,

and a comprehensive guide can be found in David Tong’s lectures on the subject [80]. I

will describe here only a few key concepts which will be useful to understand the available

cold atom literature.

An electron in an electric and magnetic field is subject to the Hamiltonian H =

(p+eA)2/2m+eϕ, where A (ϕ) is the vector (electric) potential. This is the classic Landau

level problem, which can be exactly solved [80] in your favorite gauge. What emerges from

the solution are quantized, degenerate energy levels, each of which can accommodate a

large (but finite) number of electrons. The number of filled Landau levels corresponds to

the integer in the Hall coefficient; the electron density required to fill a given Landau level

is n = B/ϕ, where B the magnetic field and ϕ0 = h/e, the flux quantum.

In actual quantum Hall data, we observe the Hall coefficient on “plateaus”—a

range of magnetic fields at which only the center satisfies B = nϕ0/ν. So what happens at

other values? The origin of the plateau is material disorder; impurities cause a smearing

of the density of states, which are normally δ functions. The states which arise tend to be

extended over the entire sample, rather than localized [80]; extended states are the only

ones which can carry current, and are guaranteed to be found at the edges. So, as the

magnetic field decreases, each Landau level can accommodate fewer electrons; but before

jumping to the next Landau level, electrons instead start to fill localized states, which

cannot carry current, and thus do not contribute to nor change the conductivity. Hence,
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we observe plateaus.

2.4.3 Role of topology

Two years after the discovery of the integer quantum Hall effect, a deep connection

to topology was revealed [83]. Materials within the same topological class share “universal”

features, regardless of the particular geometry, atom, or impurities present. The classic

(mathematical) example is the transformation of a coffee cup to a doughnut: one can

be continuously deformed into the other, a relationship encapsulated mathematically by

some topological invariant, a quantity which is the same for both. In 2D materials, this

invariant is the Chern number, and describes how the wavefunction twists in momentum

space; in systems with band structure, a separate Chern number can be assigned for each

band, and is given generally by an integration over the first Brillouin zone (BZ):

C =
1

2π

∫
BZ

iϵij∂qi⟨uq|∂qj |uq⟩d2q (2.19)

where uq is the periodic part of the Bloch wavefunction with quasimomentum q; this is

simply the flux of the Berry curvature over the “surface” of the first BZ. The system in

which the integer quantum Hall effect was first observed is topological: the total number

of filled bands quantized the Hall conductance; that integer can be proven to be the Chern

number! These days, systems for which a quantized conductance can associated with a

Chern number are said to be “integer quantum Hall” systems. Any band insulator will

exhibit the integer quantum Hall effect if the total Chern number of the bands is nonzero.

One way to engineer a topological cold atom system is with an optical lattice

that breaks time-reversal symmetry (TRS); breaking TRS is required for Eqn. 2.19 to

be nonzero. TRS can be broken if the magnetic flux is a significant fraction of the flux

quantum, h/e.5 Since the lattice inter-atomic spacing is so small, this would require

5We have often heard that the Maxwell equations obey TRS, including the magnetic field. But that’s
true under the global operations B → −B, J → −J, and v → −v. If we’re treating the atoms and lattice
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Figure 2.2. Aharanov-Bohm effect and artificial magnetic field generation. (a) An

electron beam split in two paths interferes after traversing a region with B⃗ = 0, A⃗ ̸= 0,
which can be generated by a solenoid with current I. Despite the absence of a magnetic
field in the region of electron travel, the electrons still feel the Aharanov-Bohm phase shift
due to the vector potential A⃗, which is proportional to the enclosed magnetic flux ΦB. (b)
To generate an artificial magnetic field in a lattice potential, it is sufficient to ensure that
an atom encircling a plaquette 1 → 2 → 3 → 1 acquires a net non-zero phase shift that is
comparable to the flux quantum e/ℏ.

impractically large magnetic fields. Instead, experimenters have turned to artificial gauge

fields [84], which create an SOC that endows an Aharanov-Bohm phase to atoms hopping

around a plaquette. This was first implemented in a Harper-Hofstader Hamiltonian [85].

Generally speaking, if one can engineer the plaquettes such that an atom picks

up a net phase as it encircles one, a large magnetic field will be present, breaking TRS;

see Fig. 2.2(b). The bands can then be topological. For a recent, comprehensive, and

readable review of topology in cold atom systems, see [15].

2.4.4 Fractional Chern insulators

The fractional quantum Hall (FQH) effect describes the quantization of the Hall

conductance in rational, instead of integer, steps. The microscopic origin of these states

is fundamentally due to electron-electron interaction, unlike the IQHE which is due to

Landau level physics alone. Its description is well beyond the scope of this work; I refer the

alone as our system, an external magnetic field breaks time reversal symmetry if we don’t simultaneously
reverse the (micro)current that originates B when we reverse t. Sakurai [63] explains this pretty well.
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reader to [80] for further details. However, I can say that one key ingredient to the FQH

story is the Laughlin wavefunction, describing filling fractions 1/m for integer m, and has

good overlap with the ground state of some dozen or so interacting particles. Although

by itself it breaks down at the macoscopic number of electrons in a real system, it is

a good starting point which represents a “universality class” from which more-accurate

wavefunctions might be built. More precisely, the Laughlin wavefunctions possess the same

topological order as the true wavefunction, and shows the same fractional excitations.

Fractional Chern insulators (FCIs) are the lattice analogues of the FQH states.

There is considerable interest in adapting the topological order already established in

many cold atom systems by adding the strong correlations necessary to realize FCIs

[86–88]. The proposal we are following is given in [89], which engineers flat bands using

a spin-momentum-space lattice created by Raman couplings. This is a class of lattices

called optical flux lattices [90], which generate a large magnetic field via Aharanov-Bohm

phase [91]. They can more generally described as artificial gauge fields [84].

To implement the scheme in [89], the experimental setup is shown in Fig. 2.3. Part

(a) shows all present optical and magnetic fields. Three states are coupled together as in

part (b), and, when enough links are provided, a lattice is formed in a spin-momentum

space; we call this a spin-momentum lattice (SML). Each Zeeman spin state (labeled by

the shorthand notation X, Y, Z) is connected to every other spin state with a two-photon

Raman transition. The physics behind Raman transitions is discussed in Chapter 2.2,

but the main idea is that when an atom hops from one site to another, it changes spin

and picks up momentum equal to ℏkR = ℏ(k1 − k2). We simply apply sufficiently many

beams such that a lattice is formed in momentum space. If the phases are properly set

(as denoted by the α, β, γ in part (c)), the atom experiences an effective Aharanov-Bohm

magnetic field as in Fig. 2.2; the system is topological; and, if we can muster enough

spin-spin contact interactions, FQH states are predicted to be formed. We present the

results of this experiment in Chapter 5.

25



Figure 2.3. SM lattice and coupling details. (a) The DFG is exposed to cyclic Raman
couplings between three internal spin states. A beam ωLift provides a nonlinear energy
splitting between the states. (b) States X, Y, Z are connected among themselves through
spin-momentum exchange in units of ℏδkij = ℏ(ki−kj). With a single set of beams, no net
phase pickup is possible, denoted by the 0. (c) The couplings form a lattice in momentum
space. Atoms encircling plaquettes labeled by α, β, γ can pick up a net phase. The link
color indicates the frequency set in (d) to which the beams belong. (d) Details of the
resonant couplings between the three internal states labeled X, Y, and Z, which represent
the nuclear angular momentum projections mF = −9/2,−7/2,−5/2, respectively, in the
1S0(F = 9/2) ground state. We circularly exchange the roles of the frequencies colored
red (ωi) in the blue (ω′

i) and green (ω′′
i ) coupling sets.
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Chapter 3

Experimental setup

Experiments with neutral-atom SOC described in the previous chapter requires a

machine which can produce a quantum gas; making a quantum gas is hard. It requires a

wide variety of sometimes-elaborate, always-expensive range of specialty equipment. This

chapter aims to describe all the necessary components required for the experiment.

3.1 Lab conditions

The lab where one attempts to make a quantum gas is of vital importance. Although

the atoms themselves reside in a vacuum chamber, everything that talks to them is subject

to the (in)stability of the ambient temperature. In an experiment with many hundreds

of mirrors directing beams all over the place, drifts in temperature on the order of a few

degrees can wreck your day: finite coefficients of thermal expansion will cause all your

fiber couplings to drift slightly, your AOM efficiencies to change, and cause beams that

were perfectly aligned on your atoms to now deviate by a few precious microns. A swing

of more than 5 degrees is cause enough to just go home and wait for the temperature to

(hopefully) stabilize.

The humidity requirements are less drastic, but changes on the order of 10% cause

our strontium lamp setpoint to drift by a few MHz, which can throw off the blue MOT. If

it reaches above 70%, the lasers will start to notice and have serious trouble maintaining
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lock, owing to increased scattering off water vapor. A humidity swing above 90% is a

cause for panic, since condensation in the lasers can be fatal for the doubling crystals,

which are extremely hygroscopic.

When I started my PhD, we worked in a lab in Mayer Hall with very poor

temperature control. Swings above 5 degrees F were common, and the humidity was poorly

controlled, at times producing sauna-like conditions. Turning on too much equipment

generated enough heat to throw the AC out of whack. Thankfully, the university noticed,

and built us a new lab space in Urey Hall; these facilities are quite amazing. Running

24/7/365, the lab is kept on a tightly-controlled temperature regulation loop of ±0.1

degrees F at all times at the tables themselves (with the surrounding table doors closed),

with a relative humidity set at 37% and swinging within 5%. This results in very good

beam pointing and extremely reliable day-to-day operation.

3.2 Vacuum chamber

All ultracold gas experiments take place in vacuum chambers, in order to eliminate

collisions with background gases which would otherwise unacceptably limit the duration

of experiments. To reach many-second lifetimes—necessary for successful evaporative

cooling—ultra-high vacuum (UHV) pressures of lower than 10−10 torr must be achieved,

preferably around 10−11 torr. Reaching these pressures is extremely difficult. Confounding

this goal is that elemental strontium is a crumbly, glossy rock, which must be heated to

around 500 K to appreciably evaporate [1]. High temperatures are inherently bad for

low-pressure work, because that heat is inevitably transferred to the surrounding chamber

walls, which exponentially increases outgassing rates [92] and raises the pressure by orders

of magnitude.

Several generations of experiments, from MIT [93], Zurich [94], to JILA [95, 96]

utilize similar steel vacuum chambers, which are designed to present large pumping
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conductance1 at the atoms, while also providing excellent optical access. We use a modified

version of this chamber.

3.2.1 Chamber design

Our chamber design is most heavily influenced by the UHV Sr chambers built in

Jun Ye’s lab [19, 95, 96]. We made a few design changes from [96]; namely, we include more

windows in the xy-plane, including four dedicated 1064 nm-coated ODT windows; separate

windows for red and blue horizontal MOT beams; a permanently-attached residual gas

analyzer (RGA) to aid with the bake; a discrete NEG (SAES Capacitorr C 2000) in lieu of

a chamber NEG coating2; and finally, we don’t use a titanium sublimation pump, opting

instead for a 150 L/s ion pump (Agilent Slim Body 150 L/s StarCell).

A render of the experiment is shown in Fig. 3.1, highlighting some of its key

features. The entire apparatus is less than 5 feet long, and consists of a commercial

atomic beam package from AOsense, which houses a small ion pump and getter to combat

the outgassing resulting from the oven’s high temperature. It furthermore includes an

integrated 2D MOT and Zeeman slower, which is aligned at an angle to the atomic beam

direction, minimizing Sr buildup in the science chamber.

The AOsense is attached to the science chamber via a narrow tube, through which

streams Sr atoms azimuthally cooled to about 1 mK. Two recessed viewports (“bucket

windows”) allow proximal atom access: there is only 4 mm of separation from the vacuum-

side glass surface to chamber center! This allows the design of compact electromagnets and

the eventual placement of a high NA objective. The complete science chamber drawing is

given in the Appendix A, with the recessed viewport schematics and their anti-reflection

coatings in Appendix B.

1A vacuum term analogous to resistivity: higher is better, and almost all chambers are designed simply
to maximize this number.

2The getter coating of [96] started flaking off after some years of use, dirtying their bucket window.
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Figure 3.1. Render of the experimental chamber.

3.2.2 Chamber bake

Reaching UHV is at once both an art and science. An excellent, practical guide to all

things vacuum-related can be found in the appendix of [97]. I won’t repeat the techniques

described there, except to distill three key points that apply to all UHV endeavors:

• Cleanliness is paramount.

• Lots of conductance is best.

• Bake until everything is gone; do this a few times.

Having provided by design “lots” of conductance to the atoms in our chamber

(hundreds of L/s), and promising ourselves to wear gloves and change them frequently, we

simply baked our chamber, and that was that! Haha.

In reality, this was a 6 month ordeal. The largest stumbling block was finding

that our conflat viewports, purchased from Lesker and sent to TAKOS for anti-reflection

coating, were leaking very badly: TAKOS neglected to mask the conflat knife-edge when

they did their coating runs, so the windows never properly sealed. We were unable to

remove the coating from the edge, so our entire run of conflat windows had to be replaced.
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I cannot recommend this company for any future business. Our second set of viewports

was made and coated by MPF Products, and these were excellent. I measured 0.4% (0.6%)

loss at 461 nm (689 nm), meeting their specification of 0.25% (0.4%) per surface. Most

importantly, they didn’t leak.

Bake strategy and technique

The main idea of a bake is to bring the system temperature as hot as possible to

drive out water—which is adsorbed onto the steel walls, and is the principal source of

pressure in an otherwise-clean steel chamber, limiting the achievable pressure to 10−6−10−8

torr. Chambers containing glasses or mechanical valves are extremely sensitive not only to

over-heating, but also to temperature gradients, which can crack windows or cause valves

to leak. So, we adhere to “backed potato” method described to us by our friends Ruwan,

Shankari, and Zach at David Weld’s lab. We loosely wrap everything in a layer of UHV

foil3, apply strip heaters over surfaces and band heaters surrounding the window conflats,

then wrap everything again in several more layers of foil. We then slowly, carefully raise

the temperature of the entire system, striving to keep the temperatures even and rising at

a rate far below 1 deg C/s. We aim for 20 degrees below the maximum temperature of the

lowest-rated part, which for us was the windows, rated to 200 C.

How long do you bake once you hit setpoint temperature?4 That’s where our

permanent RGA (SRS RGA100) comes in, which monitors the partial pressures of elements

with 1-100 amu (see Fig. 3.3(f)). The idea is to continuously measure mass spectra until

the water peak (at 18 amu) and any other junk disappears, except for hydrogen, which is

emitted continuously by the steel walls and cannot be depleted entirely. This provides a

quantitative measure of vacuum cleanliness, much better than a simple pressure gauge.

For $4000 USD, the RGA also doubles as an inexpensive, effective helium leak checker,

3Also following Weld lab advice, we put steel mesh gratings in front of all our viewports before wrapping
with foil, to avoid the foil potentially touching the glass and transferring heat to it.

4“Google, how long do I bake my NEG?” - G.K., 2018
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which run more than $20k: it has a mode where it monitors a single element, so if you

configure it to look for He (4 amu) you can spray helium around your chamber and look

for a peak. We placed the RGA close to the atoms in order to attain higher sensitivity:

this proved crucial to understanding the bake progress, since its sensitivity was 2x higher

than another RGA we also had at the turbo pump (Agilent TwissTorr 304).

Bake control equipment

We use simple tape and band heaters from Omega as heating elements. For

temperature control, we pulse-width modulate (PWM) some solid-state relays (SSRs,

Crydom CL240D10RC) using a few 16-channel PWM devices from adafruit (id 815, based

on PCA9685). The PWM driver is super useful: you talk to it with a microcontroller

(we use BeagleBone Black’s) and set a duty cycle; it will output a corresponding square

wave, with enough drive current capability to toggle the SSR. I had to slightly modify

the adafruit breakout board, since the default PWM clock speed is much too fast to be

useful (we need Hz or sub-Hz duty cycles). I gave it a (BeagleBone-supplied) external

clock, which I soldered to the EXTCLK pin.

For thermocouple readout, we use the MAX31855 (on a breakout board, adafruit

269), which communicates to a microcontroller via SPI, connected to CAT5 cables going

to a central rack. These chips work well enough on their own, but when you need to

connect many (> 20) on the same SPI bus, I started to have serious problems with the

chips reporting nonsense temperatures. These effects were mitigated by soldering 0.1 uF

capacitors across VDD and GND, providing some stability to the power supply. I also

had to limit the SPI bus speed to 50 kHz when using long (15 foot) CAT cables. We

noticed that these chips are particularly sensitive to RF interference, as we observed a

particularly-noisy RF amplifier impacting the chip readouts; this effect has been noticed

in various online communities as well, and the only solution is to move the sensors away

from sources of RF noise (we used a handheld RF meter to aid us).
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High temperature bake

When we first received the chamber, we put on only the valve (DN40 VAT Series 54,

all-metal angle valve) and RGA. We bought a set of blank conflats from Lesker, cleaning

them in an ultrasonic bath (Elmasonic S900H)5 with Alconox and water, then isopropynol,

and then finally with methanol6. As shown in Fig. 3.3(a), we then blanked off every port

and did a “high-temperature” bake to ≈ 230 C for two weeks to clean out the chamber,

which is too large to sonicate.

The perils of baking were on full display, even in this relatively-low risk setting

without windows. We discovered how easy it was to overheat the system; wrapped with

a lot of insulation, the temperature rose long after we stopped increasing the heaters,

reaching > 280 C at the top, which (since heat rises) is always the hottest part of a

bake. Thus we learned to increase the temperature more slowly, waiting for the system to

stabilize before attempting to further increase. I also caused the VAT valve to leak, either

through overheating or heating it too fast.

Final bake(s)

We baked the system for two weeks stretches, taking about 2 days for ramp up and

ramp down. Special care was taken to optimize our NEG usage: it presents a lot of surface

area, so atoms coming off the walls can potentially be adsorbed onto the NEG, wasting its

capacity. Thus, during the bake, we kept it in “conditioning” mode, which ran enough

current through its heater to keep it much hotter than its surroundings. We gratefully

acknowledge assistance from Yevgeniy Lushtakat from SAES for help in determining the

optimal bake procedure.

5Viewports cannot be cleaned in an ultrasonic bath, since the solvent can etch away the glass-metal
seals; valves and bellows also cannot be cleaned, due to their many small crevices which would trap
sediment or erode parts.

6Methanol is flammable and toxic, and it is a bad idea to fill a 90L bath with it. So, we put our parts
in appropriately-sized glass beakers containing the minimum volume of methanol needed to submerge the
part(s). The beakers are then placed in the water bath with a shrink wrap cap to minimize evaporation.
Regardless of the precautions, this is inherently dangerous and must be closely monitored.
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Figure 3.2. Mass spectra evolution of our first bake. This bake reached low 10−10 torr.
The hydrogen spike on May 18 (June 2) is from NEG conditioning (activation).

Once the water peak reached low 10−10 torr (see Fig. 3.2) we started to cool down.

When temperatures reached around 100 C, we cycled the ion pump (degassing it) three

times for 30 seconds each, and degassed the other gauges including the RGA (which was

already mostly clean, having been on throughout the bake). At this point, the NEG was

placed into activation mode for two hours.7 After letting it cool for 3 hours, we turned on

the ion pump, and closed the turbo pump valve at a few hours later, isolating the chamber

with temperatures mostly near 70-80 C. The first time we did this, we (heartbreakingly)

reached only the low 10−10 torr—evidently, our water load was still too high!8 So we

powered the bake back up and did it all again for another 2 weeks. This time, we reached

7We were careful not to turn on the ion pump while the NEG was in activation mode: it releases tons
of hydrogen, which can quickly saturate the ion pump.

8It’s important to note the role of the filament current in our pressure gauge, the Agilent UHV-24P.
The default controller current, 0.8 mA, read out 1.5× 10−10, but when I increased it to 5 mA, the pressure
fell to 0.5 × 10−10 torr. We had two identical UHV-24P’s attached to our chamber in different areas,
and both exhibited this behavior. The explanation is simply that the increased current provides a better
signal: more filament current→more ionization→more readout current, which is in the pico-amp range
and so is extremely challenging for the controller to transduce. The manual specifies 10 mA for pressures
below 10−10 torr.

34



3× 10−11 torr, see Fig. 3.3(e). Corroborating this result is our ion pump: the controller

reads “Low Pressure,” indicating operation below 2× 10−11 torr.

Chamber leak rate

On Yev’s advice, we performed a rate-of-rise test monitoring for Argon permeation.

The atmosphere is composed of 1% argon and it is not absorbed by the NEG, so turning

off the ion pump and monitoring the partial pressure rise of amu 40 is an excellent measure

of the total leak rate of the system. We observed a rise of 4 × 10−10 torr over 1 hour,

which, for our ≈ 30L chamber, is a leak rate of about 3.3× 10−12 torr l/s, consistent with

the MPF window leak rate.

With this leak rate, the system has maintained the same pressure for five years,

even after jostling our experiment to a different building in 2019. We shut off the gauges

in 2021 to minimize the heat buildup (near the gauge, the chamber walls reach about 60

C), trusting in the ion pump to let us know of any serious problems.

3.3 Strontium source

Building an atomic oven is a difficult, years-long endeavor; so, as at the JILA

experiment [96], we purchased a complete commercial atomic beam solution from AOsense.

This includes the oven, integrated Zeeman slower, vacuum-side 2D MOT optics, and was

shipped to us ready-to-go at UHV pressures. Just plug and play!9

Oven clog and ablation attempt

After about a year of operation at 460 C, we began to notice that our flux had

decreased. We discovered that strontium was gradually occluding the atomic oven,

collecting on one of the heat shields after the collimating tubes. This is an issue known to

AOsense, and they said they fixed it in later designs. You can see the problem quite clearly

9It also included a window for transverse cooling, but its proximity to the oven quickly coated it with
Sr, rendering it unusable. But it did not improve loading rates by more than 10%.
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(a)

(b)

(c)

(e)

(d)

Figure 3.3. (a) The science chamber blanked off and wrapped with heaters and foil for a
high-temperature bake. (b) The heaters were controlled by solid-state relays (SSRs), driven
by small PWM chips from adafruit. All thermocouples were connected to home-built rack
a few feet away, connected to a BeagleBone microcontroller. (c) I wrote a Python GUI for
the bake (still in use today in our lab, with some improvements thanks to Grady!). (d)
RGA scan over a two-week bake period, showing the gradual pump-out of water and other
elements. (e) The final pressure readout after cooling down to room temperature.
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(a) (b) (c)

Figure 3.4. A view of the oven nozzle showing a clog, as seen through the Zeeman slower
window. (a) Strontium deposited directly in front of the collimation tubes onto one of the
heat shields, gradually blocking the atomic beam, which propagates directly out of the
page. (b) Our first attempt at using laser ablation to try to clear the clog; promising... (c)
We have regrets.

in Fig. 3.4(a). Because breaking vacuum is painful, we tried renting a very powerful,

ns-pulsed 532 nm laser (Quantel Qsmart 450/850) to attempt to ablate the strontium and

clear the blockage. However, as you can see in Fig. 3.4(c), this was a mistake: although

it was powerful enough to melt the strontium, much of it melted back onto the tubes

themselves, exacerbating the issue. Even worse, the laser put a small burn mark on our

Zeeman slower window.10 We eventually did break vacuum to try to manually clear the

blockage, but the ablated Sr was too difficult to remove.

We ended up purchasing a new oven. This was more complicated than simply

swapping out the old oven, since they implemented design changes aimed at eliminating

the clog issue that made the oven physically longer. This required a replacement back-half

of our AOsense beamline; quite an invasive change!

Oven replacement

Strontium is highly reactive in air, quickly forming white, flaky oxide compounds.

So the time the oven is spent in atmosphere must be kept to a minimum, or one risks

10Prof. Rick Averitt suggested next time we try femtosecond lasers, as those apparently ablate more
cleanly; but we are unlikely to repeat this exercise!
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ruining their new oven. For the replacement, we were extremely paranoid and tried to

keep everything under an argon atmosphere (UHP, 5.0 grade) at all times.

In our lab, to vent anything to atmospheric pressure while avoiding a sudden inrush

of air and water vapor, we perform an argon purging procedure, as follows. We first

connect the part to a turbo pump and pump down the atmosphere-side for a few days. We

have an RGA attached somewhere to monitor the water load, and we also have a valved-off

molecular sieve (Lesker TSR4MS150QF) which sits in front of a high-purity argon line,

which cleans the argon of any residual water (even in high-purity argon, the connections

are inherently leaky11). Once we are ready to vent, we open the sieve valve and flood

the system with argon to a slight over-pressure12. Many groups do this by flooding argon

through the turbopump itself, but since the turbo blades are particularly sensitive to

vibrations, we opt to do it independent of the turbo, valving it off entirely from the purge

process.

After flooding with argon, we enclosed the entire oven container in a flexible bag

with hands (Sigma Aldrich AtmosBag Z53020413), taping the bag as tight as we could

over the oven port on the AOsense beam line. All tools and fasteners were cleaned and

already inside the bag so that we didn’t need to open it. The bag was inflated/deflated at

least 3 times with argon before we opened any part to the local Ar atmosphere, at which

point we tried to work as quickly as we could to re-seal everything.

After the install, we only baked the oven itself and the newly-installed NEG. With

the oven at 250C, slower window at 200C, and the NEG at 2A, after only 2 hours the

water peak reached 5e-9 torr, dropping to 1e-9 torr after 2 hours more. Overnight it got

below 1e-10 torr. We then ran the oven at 24 hours at 400C, putting it to 500C for 1 hour

11The sieve, in turn, needs baking in order to re-activate it, if it’s been sitting out for a while.
12No vacuum components are rated for over-pressure, so this can be a risky process—windows are

especially vulnerable to leaks caused by too much positive pressure. We carefully watched a high-pressure-
capable capacitance gauge, Inficon CDG020D.

13Gloves were worn at all times, because these bags make your hands very sweaty, which can make
working in them impossible.
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(with the slower window at 370C) and observed no visible water peak on an RGA attached

to our turbo, indicating that our procedure was a success!

New oven testing

After the oven replacement in April 2019, I measured the absorption through the

center of the windows next to the oven, which benchmarks the atom flux. I used a Schafter

und Kirchoff 60FC-4-M5-16 collimator (giving a beam 2w ≈ 0.9 mm) with 11 µW of

power, making I/Isat ≈ 0.08, measuring with a Thorlabs PDA100A photodiode with 30

dB gain. The off-resonance frequency used for reference was 921.7148 nm (several GHz

away) and the on-resonance frequency was locked with the Sr lamp at 921.72438(3) nm14.

At 465 C I got 60% absorption with its ion pump reading 2.6e-6 torr; at 500 C, I got 91%

absorption, ion pump reading 6.7e-6 torr.

After two years of use, this oven has also begun to decline. First, its thermocouple

readings one day became unreliable, jumping around 100’s of C. I had to resort to open-loop

DC control of the oven current, operating it at 19 V, which was 460 C at our lab’s ambient

temperature. By February 2021, the oven absorption at 460 C was down to half of its

former value, to 27%, and that decline has continued. As of this writing in 2022, we are

unsure if there is another slow clog, but that seems likely. We currently operate it around

20 V, which is approximately 480 C.

3.4 Laser systems

As shown in Fig. 1.1, strontium has two transitions from its ground state: 1S0 → 1P1

at 461 nm, and 1S0 → 3P1 at 689 nm. These are necessary to make the mK blue MOT

(bMOT) and µK red MOT (rMOT). There are a few other blue frequencies needed to

operate the atomic oven, and for a successful red MOT, we also need a repumping laser

14These are our wavemeter numbers, but our wavemeter is calibrated to the 689.4 nm transition; so the
absolute frequencies listed here are expected to be accurate only up to a few hundred MHz.
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Figure 3.5. Simplified 461 nm setup (“to nanotraps” indicates the beam continues to the
nanotrap experiment, omitted here), with AOM frequencies in MHz. All beamsplitters are
polarizing; half-waveplates are in front of all fibers, which are polarization-maintaining.

at 481 nm. For evaporation, we need 1064 nm, and the SM lattice / OSG beams require

some 689 nm light. This section will describe the optical layouts of these setups.

3.4.1 461 nm laser setup

The transition 1S0 → 1P1 is driven by 461 nm light, and our AOM plan is shown

in Table 3.1. We generate 461 nm light using a 532 nm pump laser (Lighthouse Photonics

Sprout, 15W) paired with a Ti:Sapph (M Squared SolsTis) to produce 921 nm, which is

then frequency-doubled (with an M Sqsuared ECD-X) to 461 nm. The total usable output

of the system is about 700 mW when the Sprout is operated at 12 W.

The blue laser setup is on a different table from the experiment and is shown in Fig.

3.5. The AOMs are all from Gooch&Housego15, with polarizing beam splitters (PBSs)

15Models: 3080-120, 3110-120, 3200-125, 3350-192.
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Table 3.1. Blue AOM frequency table; units in MHz.

Isotope Isotope shift Spec. AOM Overall shift
84Sr -270.8 405.4 -610.8
87Sr -124.8 332.4 -391.6
88Sr -51.6 295.8 -340

from Lens Optics GmbH16. All beams are fiber coupled using polarization-maintaining

APC patch cables (Thorlabs P3-405BPM) coupled via adjustable collimators from Schafter

und Kirchoff (60FC-4-M5-33).

The laser sources have had their share of issues over the years. On initial install,

the Msquared ECD-X had issues locking due to the lab humidity. The first doubling

crystal burned due to this, although we weren’t sure of the cause at the time. We installed

a new doubling cystal but couldn’t get it working; after a few months of back-and-forth

with MSquared, we were sent a lid which contained a desiccant, solving the issues. They

are now shipping desiccants as standard options on their laser cavities.

The SolsTis is a “black box”, and we were not allowed to open it ourselves; so when

internal components drifted significantly, we observed a gradual power decline resulting in

eventual loss of ability to run the cavity lock. We had our SolsTis sent back to Scotland

once for repair, which took a few months. After two years, it began to lose power again,

and we replaced it with another SolsTis.

The Sprout has been mostly reliable; it wasn’t until year 5 of operation, around

40,000 hours of use, that we noticed stability problems and gradual power decline. We

replaced it in 2021.

16We operate above the damage threshold on many of these PBSs, but the resulting degradation is still
better than the transmission of Thorlabs PBSs at 461 nm.
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Spectroscopy

Although the SolsTis has etalon and cavity locks that stabilize the frequency, there

still exists a slow drift on the order of a few MHz/minute, as observed on our wavemeter

(HighFinesse WSU-8). We spectroscopically correct the drift with a hollow-cathode lamp

(Hamamatsu L2783-38NE-SR17), which is a small glass cell which contains strontium sealed

in with an Ne buffer gas. We perform polarization spectroscopy following the setup of [98].

I leave the details to the reference; in short, we use a strong circularly-polarized “pump”

beam to saturate the 1S0(mJ = 0) → 1P1(mJ+1) transition of 88Sr. A counter-propagating

probe beam18 tuned near resonance then experiences birefringence, rotating its polarization

as it passes through the Sr experiencing the pump light. When scanned through resonance,

this produces a nearly-linear error signal on a difference photodiode, which we then lock

to using PI control. We use probe and probe beam diameters 2w = 120µm, and typical

probe (pump) powers are 140 µW (1.0 mW).

There are a few practical details to note. The rated lamp lifetime is 5000 mA-h,

and we have operated at the minimum current 8 mA. We are well over the lifetime by now,

and have noticed a gradual drop in Sr signal, but the lamp remains usable. Second, any

polarization drift will cause a drift in the error signal. Thus, while we do use polarization

clean-ups like Wollaston prisms and PBS’s, the lock is especially sensitive to temperature

and humidity changes, which modulate the glass’ indices of refraction. Opening the doors

surrounding the optical table easily leads to a few-MHz drift, and on the rare days when

the AC is malfunctioning, it is better to not even try running experiments. Finally, since

we do not lock to the precise zero of the dispersion-like lock curve, the lock point is very

sensitive to intensity changes, so this must be actively stabilized as well or the lock point

will drift. Satisfying these requirements, we use RedPitaya’s (see Section 3.7.4) to feed a

17Unfortunately, these are no longer sold by Hamamatsu, nor by any other vendor I know of.
18Since we use a D-mirror to introduce the pump beam, it is not perfectly counter-propagating, but at

an angle of about 10 mRad.
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slow correction voltage to the cavity lock on the SolsTis, since we have no need to narrow

the (≈ 100 kHz) laser linewidth.

Zeeman slower

Figure 3.6. Simplified AOsense optics setup; the 2D MOTs are at left, Zeeman slower at
right. The dashed boxes indicate that these optics are on the under-side of the breadboard;
only the last mirrors are top-side, with the beams coming up through large cuts in the
tables. The 50/250 mm lenses are cylindrical, with the arrows indicating focusing along ŷ,
and encircled-dot along ẑ.

The Zeeman slower is one of the most important beams in the experiment, and

generally determines the loading rate into the 3D MOT. The slope of loading rate vs.

power dependence is very linear, until you hit about 60 mW as measured at the slower

window, at which point it starts saturating. This is where we typically operate.

The beam is brought to the experiment via SM-maintaining fiber and is shown in

Fig. 3.6. It is detuned from the transition by -540MHz, and its diameter at the slower

window is 2ω = 6.5 mm. Most of its optics are on the underside of the experimental

breadboard, and consist very simply of a cleanup PBS, half- and quarter-waveplates, a

pick-off, and the shaping telescope, respectively. The polarization of this beam is left-

handed circular, as viewed from the polarimeter’s perspective (from the perspective of the
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beam’s k-vector, that makes it right-hand circular).

2D MOTs

These beams propagate almost entirely on the underside of the breadboards, which

was quite difficult to align, and reach the top through large holes in the breadboard. We

use cylindrical lenses to shape the beam to 2w = 30mm× 5mm, with the short axis along

gravity. We use independent sets of half- and quarter-waveplates in each path, because

waveplates at this size are quite pricey. The power we use at each window depends on

the available 461 nm power, but is typically on the order of 6-9 mW total per beam.

The polarization for each beam is left-handed circular as viewed from the polarimeter’s

perspective (from the perspective of each beam’s k-vector, that makes them right-hand

circular). See Fig. 3.6 for the layout.

3D MOT

Similar to our 2D MOT beams, the horizontal blue 3D MOTs are shaped on

the underside of the breadboards, reaching the experiment via holes at the window

positions. The beams are about 2w ≈ 10 mm in the horizontal plane, and 6 mm in the

vertical direction. The horizontal beams at the experiment are shown in Fig. 3.10. The

vertical-going beams are shown in Fig. 3.8.

3.4.2 689 nm laser setup

The laser setup for the 1S0 → 3P1 transition at 689.4 nm is shown in Fig. 3.4.2,

and Table 3.2 shows the needed frequencies. The laser source is a littrow-stabilized diode

from Toptica operating at 25 mW, amplified by a tapered amplifier (TA pro). These

TAs are (evidently) hard to make at this wavelength: our first TA was rated for 400 mW

output, but that quickly degraded, and we replaced it when it reached 90 mW about 4

years later. The replacement outputs only 170 mW at best.
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Table 3.2. Red AOM frequency table; the units are in MHz.

Isotope Shift from 88Sr Laser detuning Needed frequency
88Sr 0 -160 2× 80
87Sr (F=9/2) 221.699 -381.699 2× 190.85
87Sr (F=11/2) -1241.451 1081.451 4×−270.363
84Sr (removed) -351.49 191.49 2× 95.745

As with the blue setup, we use Schafter und Kirchoff (60FC-4-M5-16) collimators

on the laser table, here opting for AOMs from IntraAction19. The setup is configured to

allow operation with either 87Sr or 88Sr. In the past, when we were testing BECs, we also

had an AOM path dedicated to 84Sr, but that has since been removed for lack of use.

I did have to replace the diode once at the 1754 hour mark, when I could no longer

reach 689.4 nm. But otherwise, the setup has been relatively robust, aside from the gradual

TA degradation. The TA beam pointing needs to be corrected for every couple of weeks,

as we observe slow drifts in our fiber-coupling efficiency. Most fiber coupling efficiencies

are above 60%. The largest source of loss is the quad-pass needed for the fermion (see

Table 3.2), which eats 50 mW of power to give only about 9 mW at the experiment.

At the experiment

Fig. 3.10 shows the xy plane of the 689 laser setup at the experiment; the vertical

MOT section is shown separately in Fig. 3.8. The stirring beam is split off both to power

the SM lattice experiment, and to function as a pump beam resonant with the transition

1S0(mF , F = 9/2) → 3P1(mF , F = 9/2). This pump beam is useful for kicking out specific

mF states, and is directed onto the camera through achromatic lenses to do red imaging.

The 689 MOT and stirring beam intensities are listed in Table 4.1.

19Models: ATM-3001A1.12 (cavity); ATM-2901A1.12/ATM-2701A1.12 (quad-pass); ATM-801A1.12
(spec-cell and 88-Sr); ATM-1702DA.1 (stirring/SM lattice).
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Figure 3.7. Simplified 689 nm laser setup, with AOM frequencies in MHz. All beamsplit-
ters are polarizing, and half-waveplates are in front of all fibers, which are polarization-
maintaining. After using it to find the narrow 689 nm transition, the SAS setup has
not been used for several years; the SLS cavity has proven stable enough to render it
superfluous.

Electronically switchable gain photodiode amplifier

Servo control of the laser intensity is important in many places in the experiment

(for a general description of how we do this, see Section 3.7.4), especially when trying to

reach single-digit µK temperatures in the red MOT. On the one hand, the Doppler cooling

limit TD scales with the natural linewidth as kBTD = ℏΓeff/2, so any power broadening

will scale the achievable MOT temperature as
√
1 + I/Isat, where Isat = 3µW/cm2. On

the other hand, at the beginning of the MOT when the atoms are hot, we need large

capture velocities, necessitating I ≫ Isat. In practice, this means we must ramp the lasers

from a few mW to a few tens of µW. Ensuring that the monitoring photodiode doesn’t

saturate on the high end means it’s not going to be able to detect anything on the low-end;

in other words, its dynamic range is very limited. Ideally, we would have some way to

electronically switch the photodiode gain in-sequence, with low gain at the beginning of
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Figure 3.8. Simplified top-most and bottom-most breadboard optical layouts, showing
the vertical MOTs and vertical imaging (vImg) beam paths. I did some brief work with
the clock transition, hence the path for an 813 nm lattice and 698 nm clock beam.

the rMOT sequence, and higher gain towards the end. Commercial solutions simply do

not exist as of 2022; variable-gain photodiodes all have manual (hand) switches.

Enter my switchable-gain transimpedance amplifier, the schematic of which is given

in Fig. 3.9, and PCB design in Appendix G. It is based on the Hamamatsu S3072 biased

at -12 V (although any photodiode with a similar pinout will work). The design is very

simple: it uses a fast op-amp (OPA65720) in a transimpedance configuration on a 2-layer

PCB. In the feedback loop are two separate gain paths, set by resistors differing by 30×.

Control over which path is taken is provided by a high-speed, single-pole double-throw

switch (ADG1219).

I isolate the circuit from the rest of the timing hardware with a simple optocoupler

(PS2501-1-A), finding it is especially important to avoid ground loops that drive 60 Hz

signals on the circuit. The measured bandwidth, which scales like 1/
√
RF , is 1 MHz at

high-gain (RF = 500kΩ), and 8 MHz at low-gain (RF = 16kΩ), more than sufficient for

20Although the OPA847 is a much faster part in the same family, it is harder to make it stable, and
frankly more finicky than it’s worth.
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our purposes. 3 uW of incident power produces ∼ 380 mV, so we have plenty of range at

the low-end!

Some care must be taken when the gain switches, because for a brief time (≪ 5µs)

the op-amp has no feedback and starts to “rail,” or drive its output high or low. So there

is a discontinuity and slight power jump at the atoms due until the op-amp recovers; for a

MOT, this doesn’t matter and the atoms don’t notice. For more sensitive applications,

the simplest solution would a simple design change, pointed out to me by an engineer at

AOsense: simply put the RF switch in series with the small resistor, in parallel with the

big resistor, so that the op-amp always has some feedback!

I have two ‘fun’ anecdotes about the design/troubleshooting of this circuit. In the

first version, the RF switch had a 20% chance to literally catch on fire when I plugged it

in. This was...troubling. It turned out to be the long (10 ft) cables I was using to plug it

in, which had live 15 V on them going directly to the RF switch. You might not think this

is a problem (indeed, I didn’t), but those cables have significant inductance. This means

energy is stored in the magnetic field, which gets released when plugged in, causing a large

(transient) voltage overshoot at the switch itself. This overshoot reached upwards of 20V

(I measured it!), which exceeded the switch’s breakdown voltage, causing a complete short

and subsequent smoldering blaze. I simply added some series resistors to dampen the

overshoot, and that worked.

What was less fun was troubleshooting a non-functioning voltage regulator. Re-

ferring to the schematic, U3 was initially a +5V regulator, the LDL1117S50R. But it

was not turning on when the negative supply (sourced by U4, the LT1175) came online

first—apparently, enough capacitatively-coupled negative voltage got present on the traces

to inhibit proper operation. Having no patience for this, I simply replaced it with the

less-elegant but more-robust regulator, LM7805CT. The schematic has been updated to

reflect this change, but note that the PCB drawing hasn’t yet, since I haven’t had need of

more boards.
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Figure 3.9. Electronically-switchable-gain transimpedance amplifier.
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Optical cavity

Owing to its narrow linewidth Γ/2π = 7.4 kHz, the 1S0 → 3P1 transition at 689

nm has much stiffer requirements than the 461 nm transition (Γ/2π = 30 MHz). With

significant effort (and expense), a free-running diode or Ti:Sapph laser can achieve 100

kHz linewidth (as measured over some period of time, usually 5 µs). This is not even close

to good enough for narrow-line spectroscopy: most of the power will be detuned by 10s of

kHz, rendering the MOT ineffective and any spectroscopy hopelessly power-broadened

and light shifted21.

The most common approach to narrow a laser’s linewidth is to use a high-finesse

optical cavity to provide feedback to the laser current (which controls the frequency); this

is called the Pound-Drever-Hall (PDH) technique [99]. We use such an approach here,

with a complete solution provided by Stable Laser Systems (SLS). The cavity itself is

dual-coated for operation at 689 nm and 698 nm, with a preference on the latter. The

specified linewidth at 698 nm is < 1 Hz at 1 s measuring time, and at <1 kHz at 1 s at

689 nm.

It certainly had its share of problems on install. On the 689 nm side of things,

the fiber polarization axis was not aligned with the incoming light, leading to intensity

modulation of the laser; I consequently observed a lot of DC drift in the PDH error

voltage on thermal timescales. I thus incorporated intensity-stabilization with an AOM,

and corrected the polarization alignment. I also observed a lot of 120 Hz noise in their

frequency-shifter circuit, so I removed it.

On the 698 side, I had to do a lot of work stabilizing the fiber-noise cancellation

interferometer, which kept getting misaligned. I added some waveplates to correct for its

polarization drift as well, but did not incorporate intensity stabilization as I did with the

689 path. The 698 fiber was butt-coupled to EOM fiber, which led to a poor polarization

21We note that red MOT operation would still be possible, as in David Weld’s lab, albeit at somewhat
higher temperatures
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matching, so I added a couple collimators and a half-waveplate to achieve better matching.

With these minor changes, the SLS cavity has performed with exceptional reliability over

the years. I used the 698 nm clock transition to measure its linear drift rate of 4.48± 0.06

Hz/min, or about 6.45 kHz/day.

3.4.3 SM lattice setup

All beams for the spin-momentum (SM) lattice experiment are sourced from the

cavity-stabilized stirring beam, which propagates on the experiment table; see Fig. 3.10

for the layout. At the atoms, these beams are detuned from the F=9/2 transition by a net

shift of ∆/2π = 210 MHz (-290 MHz + 80 MHz). Initially, we were using 80 MHz AOM’s

to provide a net -160 MHz shift, but to our dismay found that significant amounts of 0th

order light was scattered by the first AOM’s crystal22 and caused noticeable heating of

the atoms. We were unsuccessful in our attempts to spatially filter out this light with a

pinhole, instead swapping out the 80 MHz AOM with one at 290 MHz, which has a much

larger diffraction angle that naturally separates the crystal-scattered light. This resolved

the issue.

The ex-situ measured waists of the SM-lattice beams k1, k2, k3 ≈ 170, 190, 190 µm,

respectively; these are in good agreement with in-situ Raman coupling strength measure-

ments. The beams are picked off and monitored with photodiodes (Thorlabs PDA100A2);

since the experiment requires multiple RF tones in each AOM, interfering signals around

100 kHz naturally appear, which must be filtered out to measure the DC light level. I use

elliptical RC low-pass filters on these photodiodes, with -3dB corners of around 20-50 kHz

(Thorlabs EF12423).

22This light was due to optical imperfections in the crystal, not due to any residual RF power.
23Not that you would... but don’t even try opening these filters. Thorlabs used a thread-locker on the

BNCs, preventing the metal shell from easily opening. While it can be forced, it rips the BNC connector
off the PCB.
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Figure 3.10. Simplified optical layout at the experiment in the xy-plane, without ODT
or AOsense optics (see Fig. 3.12, Fig. 3.6).
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Figure 3.11. The subtle differences between multi- and single-mode operation of the 481
nm diode are sometimes only visible in the wavemeter interferometer displays.

3.4.4 481 nm laser

Atoms in the bMOT have a 1:50000 chance of decaying from 1P1 into 3P2, which is

metastable and magnetically-trappable. We take advantage of this fact by accumulating

atoms in that state during the MOT loading stage, and then “repump” them back down

to the ground state. Most strontium experiments use a combination of 679 nm and 707

nm to do this repumping, but Killian’s group used a single solution at 481 nm [100, 101],

which we adopt.

We use a grating-stabilized diode (Toptica DL 100) which outputs about 16 mW

of light. We need only a few mW at the experiment. For 88Sr, we keep the vacuum

wavelength fixed at 481.322 nm and it works very well. The fermionic isotope has ten

spin states, all of which need to be addressed; so, we frequency-modulate the light using

the integrated piezo at ≈ 2 kHz (on the SC 110 piezo module, this corresponds to ”8”

on the frequency range, and “2” on the amplitude knob)24. This light is sent directly to

the experiment through a single-mode fiber, expanded to a ≈ 4 mm waist; the (relatively

simple) optical layout is shown in Fig. 3.10. We use a laser shutter to gate the light at

the atoms, which has been so remarkably repeatable we haven’t had the need to do any

AOM switching.

24Killian’s group modulates the current instead, but we had no success doing that—it just caused lots
of mode-hops.
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Figure 3.12. The 1064 nm ODT setup. Focal lengths are in mm; the 75 mm (250
mm) lenses are cylindrical lenses focusing along the ŷ (ẑ) direction. No beam blocks are
water-cooled.

This 481 nm diode itself has performed without power drops for years. But, as

with most diode lasers, some care must be taken to ensure its operation is single-mode at

the wavelength of interest. Evidence of multi-mode operation can be seen directly in the

wavemeter; see Fig. 3.11.

3.4.5 1064 nm dipole trap

In order to reach quantum degeneracy, evaporative cooling occurs in an optical

dipole trap (ODT) [102]. The laser source here is an NKT Koheras BASIK Y10 seed laser

operating at 1064 nm, which is fiber coupled and provides 10 mW of power at an amazing

10 kHz linewidth, making it attractive for dual use as a lattice. This seed light is amplified

up to 15 W with an NKT BOOSTIK amplifier25. This laser has been extremely reliable

over the years, and the amplifier output is also fiber coupled, providing excellent pointing

stability. The setup is shown in Fig. 3.12 (which is not to scale). We do not water cool

any beam blocks, but take care to keep them from fibers or other sensitive components,

reflecting the to-dump beams across the table about 1 m away26.

Two acoustic deflectors (IntraAction ATD-1202DA6) act as fast optical switches

25In practice, we do not use more than 4 A drive current, providing about 4 W.
26It is very important to physically separate heat sources (such as oscilloscopes or beam dumps) from the

output fiber; I have observed beam misalignment (as evidenced by atom loss) as a result of heat-induced
drift, although in all cases the alignment returns when the heat source is removed.
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and allow intensity control. They shift in opposite directions to avoid interference effects

at the atoms. In the same vein, the two beams have orthogonal polarization—although in

practice, this latter measure was overkill and didn’t seem to matter. These deflectors were

chosen to allow the use of center position modulation (CPM) [103] to dynamically shape

the optical trap and improve the evaporation efficiency. However, our early experiments

with this were unsuccessful, as we noticed high-frequency noise that caused atom loss.

We didn’t spend too much time on it, however, and intend to return to this point in the

future. For now, we focus the beams onto the atoms statically, with ex-situ measured

waists wxy, wz ≈ 50, 15µm. From the trap frequency measurements in Fig. 4.5, the waists

are actually closer to 45, 20µm.

ODT intensity control

Evaporation requires a smoothly-changing intensity profile, fiercely guarded against

any noise present at multiples of the trap frequency, which parametrically shakes the atoms

out of the trap. In practice, this means intensity noise below 1 kHz must be suppressed,

and higher-frequency noise is less important.

We observe the beam power on Thorlabs PDA100A2 photodiodes (bandwidth 10

MHz)27, using pick-off mirrors (Thorlabs BSF20-C) in front of the beam dumps at a small

angle (an angle made as small as possible, in order to minimize polarization dependence).

The signal is conditioned with a difference circuit (see Fig. 3.13), which subtracts the

ADWin’s analog setpoint with the photodiode voltage. Keeping this difference at 0 V is

the job of the PID controller, here a RedPitaya. This approach affords enormous flexibility

in programming arbitrary intensity ramps, and greatly enhances the RedPitaya’s very

limited dynamic range28. To protect the RedPitaya from over-voltage, I used a couple of

27We have heard tell of silicon photodiodes reacting overly-slowly to 1064 nm light, owing to its smaller
photon energy; GaAs photodiodes have been recommended in some theses, such as Ruwan’s; but we
haven’t noticed problems yet

28For example, an ODT set power of ≈ 2 W would produce 6 V output from the photodiode—but the
RedPitaya front-end can handle only ±1 V on its low-gain setting.
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Figure 3.13. Signal conditioning circuit for ODT intensity control. (a) Schematic; a
precision op-amp, the AD8421, is configured as a differential amplifier that subtracts an
analog setpoint (SP) and the photodiode signal, which is then sent to a RedPitaya for
PID control. (b) What it really looks like, soldered onto a handy high-speed demo board
from Digikey (TI DEM-OPA-SO-1B). (c) Since we have two ODT beams to control, I
made two of the circuits in (b) and put them in a box.

Zener diodes with a beefy 1% series resistor to, in turn, protect the Zeners.

3.4.6 Optical Stern-Gerlach

Inspired by Stellmer’s implementation of the optical Stern-Gerlach effect [104], we

built our own version, with a few experimental differences. Since cavity-locked 689 nm

power is at a premium and there is no narrow-linewidth requirement to do OSG, we use

instead another SolsTis laser pumped by a 532 nm, 15 W MSquared Equinox. This beam

goes through a +170 MHz AOM for fast switching and is fiber coupled at the experiment.

We have implemented two versions of the OSG beam, one horizontal (hOSG) and one
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Figure 3.14. Simplified setup of the vertical optical Stern-Gerlach (vOSG) beam, omitting
waveplates and shutters. Two lenses are cylindrical; the arrow beneath the -50 mm lens
indicates the focusing direction is x̂, and the encircled dot on the 200 mm lens indicates
focusing along ẑ. M20 refers to the launch collimator (Schafter und Kirchoff 60FC-4-M20-
10).

vertical (vOSG). The setup of the vOSG is shown in Fig. 3.14, and the resulting atom

images are exemplified in Fig. 3.15.

The hOSG beam offers better spatial resolution, since it propagates orthogonally

to the quantization axis and is horizontally-polarized—and can thus drive σ+ as well as

σ− transitions. Since we have power to spare, we chose to make a large cylindrical beam,

with 1/e2 diameters 2ωz, ωx = 120, 480µm at the atoms, requiring 30 mW at 434.827970

THz in a ≈ 7 G bias field29. The beam’s pancake shape minimizes the gradient force along

the x-direction, largely preserving the momentum distribution and producing nicer images

than in [104].

We also implement the vOSG, with the original intention to observe dynamics

in the plane of the optical table—but now it’s used simply because the horizontal path

was co-opted by the Raman lift beam (see Section 5.1.3). The vOSG images are less

resolved, since it can drive only σ+ transitions30. This beam is also elliptical, with waists

2ωx, ωy = 120, 430µm, requiring about 100 mW to operate in a 9 G bias field.

The OSG has proven instrumental to this work, providing instant feedback on

spin-polarization optimization, and for spectroscopy. While one can do narrow-line imaging

29On our wavemeter, this reads 434.827800 THz, since it is picked off before the AOM.
30Its polarization is fixed, since it is introduced with a PBS along the upward-going MOT path.
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as in [104], and indeed I do this where appropriate, such imaging has poor signal-to-noise

ratio owing to the small saturation intensity.

We have had enormous difficulty obtaining stable lasing from the MSquared Equinox.

Originally based on a fiber laser design, their laser was a new product which proved quite

unstable; I had issues with it overheating and high-frequency oscillation. Their controllers

also had overheating issues, and we had to be issued new ones at several points. Eventually,

the Equinox completely failed to turn on; to date, we’ve had 2 complete replacements

of the Equinox. The last unit was installed on 2020-12-14; this one seems to have had

all its bugs worked out, operating well at the time of writing (May 2022)31. Despite the

challenges, their customer service has been absolutely stellar, and their willingness to send

us free replacement lasers certainly wins them points.

3.4.7 Lift beam laser

In order to lift the degeneracy of the ground 1S0(mF ) states for the purposes of

the flux lattice project, one cannot rely on magnetic field. We require ≈ 100 kHz shifts;

given the the nuclear state splitting of 185 Hz/G [19], this would require experimentally-

impractical fields of 500-1000 G. Furthermore, the energy levels split in this way would be

uniformly spaced; we explicitly require nonuniform spacing.

So, we turned to light shifts and create a “lift” beam, inspired by the Yb spin-orbit

coupling experiments [105, 106]; see Section 5.1.3 for more details. Given that we already

had a vOSG powered by a several-Watt Ti:Sapph, we co-opted the hOSG path for this.

The lift beam focuses ≈ 180 mW at beam waists (ωx, ωz) = (350, 330)µm, which is much

greater than the ≈ 30µm in-situ DFG size. The beam’s polarization is vertical, and aligned

to the vertical axis with a Glan-Taylor prism.

31But we are still leary of ramping it all the way off, for fear that it won’t ramp back on!
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Figure 3.15. Typical single-shot images demonstrating optical Stern-Gerlach (OSG)
separation of a DFG (≈ 50− 70 nK), with the traces at right showing the row average of
the image. We have two setups for this: the ‘vertical’ OSG (vOSG, left) beam propagates
against gravity and along the quantization axis. The ‘horizontal’ OSG (hOSG, right) beam
propagates orthogonal to gravity. Neither beam is retro-reflected. The hOSG can drive
both σ+/σ− transitions, so all mF states are resolvable. In contrast, the vOSG beam is
right-hand circularly polarized and can drive only σ+ transitions, so it exerts a significant
force only on atoms with mF < 0.

3.4.8 Laser shutters

Optical shutters are needed in many places, owing to the finite extinction ratios

of AOMs. In particular, the DFG must be shielded from any 461 nm stray light. We

build our own shutters using off-the-shelf parts, control them with a custom PCB, and

communicate with them via a UART protocol driven by our timing system. Although this

is more complex than other solutions32, this approach offers better repeatability and very

fast (few-ms) rise times. As measured with a photodiode and the shutter’s approximately

2 in. arm, the close time (90% to 10%) is 1.7 ms, and the fastest optical pulse that can be

driven with the shutter itself is about 5 ms. This is competitive with commercial solutions,

and is in fact much better than the shutters offered by Thorlabs (the SH05R or SH1),

32For example, in David Weld’s lab they have small Arduino chips waiting on a trigger.
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which offer 8 ms close time at best33 at a fraction of the price: the stepper motor, driver,

and associated hardware cost about $30 USD, vs. the $1500 USD cost of the Thorlabs

solution.

Hardware

The shutter actuator is a 0.5A/10V stepper motor (Pololu 1208), with an aluminum

mounting hub (Pololu 1203) attached to its shaft. This holds a bolted-on anodized

aluminum sheet, which acts as the beam block. I used a sheet metal press to cut out 2 in

x 0.5 in arms. Their light weight makes it easy for the stepper to swing, while being rigid

enough for repeatable movements. The shutter base is epoxied to 1 in. optical posts, with

0.25 in. of vibration-damping sorbothane directly between it and the post body, which in

turn is on a square sheet metal cutout to provide structural stability. See Fig. 3.16.

Driver and PCB

The steppers are driven by the Allegro A4988, mounted on a breakout board (Pololu

2986). These chips make it extremely easy to drive the shutter and keep them asleep when

they are not used, which is important because the idle power draw can heat them up to

180 F, which would disturb nearby optics. The protocol is simple: a few ms before the

intended movement, wake up the shutter with a digital high on the sleep line; then send a

series of digital, 1-ms wide pulses. The stepper takes a clockwise (or counter-clockwise,

depending on the direction bit) step at every pulse.

I made a PCB (see Appendix F.1 for schematic) to mount 12 of these stepper

motor drivers. All connect to a BeagleBone Green (a Black works also), which coordinates

sleep and direction settings. The board connects to the individual shutters through CAT5

cabling, with each cable containing the power and control lines for two independent

33Strictly speaking, this comparison is unfair because their geometry differs in that it’s an iris-like
shutter. However, I’d argue that geometry is less useful: almost every beam diameter in the actual
experiment is about 1 mm or less, and the few that are bigger are easily accommodated with bigger
shutter arms.
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Figure 3.16. Our lab’s laser shutters (top left). We use simple stepper motors with
some clamped-on anodized aluminum sheet metal as a beam block; sorbothane padding
mounted on sheet metal base mitigates vibrations. The shutters are controlled by stepper
motor drivers on a custom PCB I made (top right), which attaches to a Beaglebone
microcontroller. The PCB mounts onto a BNC-breakout front-panel (bottom). The CAT5
cables carry the driver current to the motors around the lab. Our ADwin timing system
communicates with the microcontroller through the UART serial protocol.

shutters.

UART design and software

We need to be able to tell the A4988 when to turn on the shutters, when to

put them to sleep, and when to switch direction. But our timing system, the ADwin,

communicates only via programmable digital (and analog) channels. In order to interface

the ADwin with a microcontroller, such as a BeagleBone, we utilize the UART (universal

asynchronous reciever/transmitter) protocol34. UART is a serial protocol which can be

used to send messages digitally. It is similar to SPI and I2c, except that it requires only

Rx (receive) and Tx (transmit) lines. If you only need your device to receive, you need

34While we could, in principle, dedicate a sleep and direction line for each of the 12 shutters, this would
result in the use of 2× 12 digital channels; we are limited to 48 total digital channels, so this is not an
efficient approach.
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only Rx and GND - no clock is needed, unlike SPI.

It works because both sender and receiver agree beforehand on a clock speed at

which the data line will be sampled. The receiver samples the line at this pre-agreed rate,

and when it finds digital high (say, 3.3 V), it interprets that as a 1; when it finds digital low

(typically < 0.2V), it interprets a 035. What we do is dedicate a single digital IO channel

from the ADWin to send commands to the BeagleBone in the form of a binary string,

which nearly-simultaneously configures the sleep and direction states of all 12 attached

shutters.

In order to optimize this for speed and reliability, I coded the microcontroller server

in C, which interfaces directly with the Beaglebone’s Linux kernel. The code is listed

in Appendix F.2. Although it looks complicated, the program essentially just receives

the UART message and maps the received 0’s and 1’s onto the output GPIO pins that

correspond to each shutter’s sleep and direction bits.

3.5 Magnetic field control

Atom manipulation requires careful control of the magnetic field, both to control

the energy splittings and to set a well-defined spin quantization axis. In order to run the

461 nm bMOT, field gradients of approximately 60 G/cm must be generated, requiring on

the order of 50-100 A from an anti-Helmholz coil. On the other hand, to zero the Earth’s

magnetic field requires only a few amps in a Helmholtz coil. We have two different coils

for these two jobs.

3.5.1 MOT coils (Bitter coils)

We implement a Bitter-coil type electromagnet design, heavily influenced by Cheng

Chin’s design in [107], making a few modifications and improvements.

35Aside from the obvious advantage of only needing two wires, it is fast - up to 3.7Mbits/s - and better
still, the BBB can be controlled via the UART port. It cannot easily be slaved in SPI, and not at all in
i2c.
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Bitter coil design

As gasket material, we use 15 mil thick, high-temperature silicone rubber sheets

of hardness durometer 20 (McMaster-Carr 86435K43, actually Marian HT6220.015-6x6).

These were laser-cut for us by a local company (RMS Laser), after our campus machine

shop failed at producing reasonable cuts with a water-jet process. The gasket material

shrinks when the plastic liner is removed, which can lead to shorts—so the gaskets all had

to be oversized (in all dimensions) by about 2.0%.

The gasket material can relax transversely over time. After construction, I tightened

all bolts with 1.0 N-m of torque, using a torque wrench36 in a star-pattern, similar to how

vacuum windows are installed. When I first measured the resistance of the completed

coils, they were about 22 mΩ each, as measured using a 4-wire technique on a 7.5 digit

multimeter (Keithly DMM7510). This resistance doubled after a month! I re-tightened to

1.0 N-m and this seemed to fix the issue.

Our initial version, pictured in Fig. 3.17(a, right), used a brass water distribution

block. This was too complicated and unwieldy, so after it leaked when I left it on all night

without water cooling (oops!), we decided to make a 3D printed water block using the

VeroWhite material. The print was manufactured by Fictiv (fictiv.com). This block uses

internal channels to route the water. When we received it from Fictiv, a lot of printer

material was blocking the internal channels; this was inevitable, due to the layer-by-layer

nature of the 3D printing process. The channels had to be cleared by hand, which was

tedious but manageable. Zip-ties were the tool of choice: they were at once strong enough

clear the blockage, and flexible enough to worm into the internal channels. I relied on the

chiller’s water pressure to clear the last bits. In the final version of our coils, the connector

(McMaster-Carr 5508K171) is epoxied (a two-part boat epoxy from Marine) into a fitted

slot on the water block. The VeroWhite has held up well to water pressure. In testing,

36Take some care here; the failure torque, at which point the 8-32 rods will snap, is about 2.5 N-m.
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(a)

(b) (c)

Figure 3.17. Construction (and evolution) of our Bitter coils. (a) Each of the 33 copper
turns must be very carefully laid out, with the gasket material neatly flattened. Each
subsequent layer is rotated clockwise by 1/8 of a turn; see inset for an exploded view.
Water flows along the rods, and along the gasket openings. Our initial (impractical) water
cooling design is shown at right, replaced in favor of a 3D printed water block. (b) Coil
with a printed VeroWhite water distribution block. This version eventually leaked at the
connector. (c) Render of the final version—running in the experiment for 3 years without
issue—using epoxied connectors. The cutaway shows some internal water channels.

it has gone up to 30 PSI without leaking. In daily use, we have both coils connected

in parallel, and supply ≈ 17 PSI, which gets us about 0.7-0.8 L/s flow total, which is

sufficient for our needs.

Coil control

The current in the coils must be controlled to a precision of about 10 mA (out of

50 A). We were inspired by some coil control circuitry from Alan Stummer at University

of Toronto (physics.utoronto.ca/∼astummer) called ‘Mag-o-Matic’; the circuit design
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we use here is in Fig. 3.18. Our beefy power supply is a rated at 15V/400 A (Delta

Elektronika SM15-400), and is operated in constant-voltage mode at 6.60 V. We use two

parallel insulated-gate bipolar transistors (IGBTs), keeping their gates in the linear regime,

essentially turning them into variable resistors. We use a Hall effect sensor (LEM IT-200S)

to replicate the coil current, which avoids dissipating energy with a “sense” resistor. We

convert this mirror current (ratio 1:1000) to voltage with a precision, temperature-stable

resistor (200 Ohms, ±0.1%, 25 ppm/C, 0.4 W)37. Similar to the ODT circuit (see Fig.

3.13), we subtract this transduced voltage from the analog waveform generated by the

ADwin. The RedPitaya’s job is to keep that difference at 0 V at all times, operating a

PI control loop38 with feedback sent to the IGBT gate. The IGBT’s themselves (IXYS

IXYN50N170CV1) are rated for 1700 V / 120 A continuous-duty operation, and sit on

large heatsinks cooled passively by some DC fans. An additional (and necessary) feature of

our circuit is the ability to switch from anti-Helmholtz (MOT configuration) to Helmholtz,

using some solid-state relays (Crydom DC100D100) in an H-bridge configuration.

3.5.2 Shim coils

To offset the Earth’s magnetic and move the red MOT around to co-locate it

with the dipole trap, we use ‘shim coils,’ wraps of wire satisfying (very-approximately)

the Helmholtz condition. Initially, we had some nice plastic mounts machined for them

connected rigidly with cross bars, using square wire that fit pretty well (MWS Microsquare

M151241). However, when our first-try Bitter coil leaked and we had to remove them, we

also had to remove the shim coils—undoing the painful, week-long process of wrapping

the chamber with the square wire. We eventually did a quick-and-dirty wrap job with lots

37From this, we can work out the best achievable regulation: the LEM peak-to-peak noise voltage is 4
mV. That’s 4mV/200Ω× 1000 = 20 mA on the primary, which, for a current-to-field conversion of 3 G/A,
works out to 60 mG.

38The output voltage of the RP is scaled with an analog circuit, which maps the (-1,1) V output to
(5,7) V.
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Figure 3.18. Bitter coil current control circuit.
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of tape, but I haven’t had any problems with them so far39.

The current through these coils is controlled by linear power supplies (GW Instek

GPS-1830D) operating in constant-current mode, slaved to an external analog voltage

(from the ADWin) in order to allow changing the bias fields in-sequence. The measured

supply noise is pretty good; 1µA at 4 Hz, and about 100µA at frequencies above 270 Hz.

Given the approximately 1 mG/mA conversion ratio for the three coils, the ultimate noise

limit is about 0.2 mG.

To zero out the Earth’s magnetic field at the atoms, I used narrow-line imaging

following JILA’s example [96]. After 4 s of evaporation40, I took absorption images (with

pulse lengths of 50 µs) at 2 ms TOF at various shim coil currents41, getting the magnetic

field from a power-broadened Lorentzian fit to the spacings of the mF states. The magnetic

field component Bi is then fit to the functional form Bi =
√
B2
i + (α(I − I0))2, where α is

the coil’s current-to-field ratio and I0 is the current which minimizes the field along that

axis. The results are plotted in Fig. 3.19; we use these currents for all experiments in this

work.

3.6 RF generation

Many frequencies are required to address the atoms. Lasers output only a single

frequency; and in fact, we go to great lengths to make them do so in a very narrow band!

To generate any needed nearby frequencies, we use acousto-optic modulators (AOMs),

which take an RF signal and add (subtract) its energy to (from) the light passing through

it. This section describes the generation and amplification of these RF signals.

39But I wouldn’t run more than a few amps through them. A quick test of 20 A for 1 s showed the wire
strongly contracting, making a jerking movement. The wire also heated up at an alarming rate

40The power supplies provide positive voltage only. In order to reverse the coil current direction, I had
to build a (temporary, and now-removed) H-bridge, similar to the one built for the MOT coil control in
Fig. 3.18.

41The coil currents during the red MOT stage were always the same, because the ODT/MOT overlap is
crucial and changing the shim coils changes that overlap. Only after loading into the ODT did I ramp the
coil currents.
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Figure 3.19. Magnetic field calibration of the shim coils using narrow-line spectroscopy
on the 1S0 → 3P1(F = 9/2) transition. These measurements were performed after 4
s of evaporation. The fitted x, y, and z shim coil coefficients are, respectively, 0.877 ±
0.001, 0.446±0.002, 1.377±0.003 G/A. The background magnetic fields at the zero-currents
are 0.309± 5, 0.329± 4, 0.1± 0.1 G, with the large uncertainty in the z-shim calibration
arising from lack of mF -state resolution at those fields.

3.6.1 RF sources

With the exception of the flux lattice experiment, which uses an arbitrary waveform

generator, all of our frequencies are generated by direct digital synthesizers (DDS’s),

which produce sine waves with very low phase noise. We use the Analog Devices AD9914,

AD9915, and AD9959. The former two are single-channel, and are used for frequencies

> 200 MHz; the 4-channel AD9959 produces all needed lower-frequency waveforms.

All DDS’s require a low-noise clock. For this we use relatively low-cost signal

sources from RF Consultant (rf-consultant.com), specifically the TPI Synthesizer based on

the Analog Devices ADF4351. These are (in turn) phase-locked to a 10 MHz Rb reference

(SRS FS725). The advantage of the Rb reference is the low drift; all oscillators, left to

themselves, drift over time, which is a problem in atom experiments where we care a lot

about the absolute frequency. The reference utilizes Rb for its source generation, providing

a very stable locking reference for all signal sources in our lab.
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Figure 3.20. One of two DDS-controlling Beaglebones installed in the experiment, with
a custom PCB mounted on top.

DDS control

I control all DDS’s with two BeagleBones, which have custom PCBs mounted to

them; see Fig. 3.20, and the schematics in Appendix C. This is a 4-layer board made using

“best-practice” high speed design techniques [108], and it can control up to 6 DDS boards.

It buffers the Beaglebone output pins, protecting them from over-current conditions and

allows the driving of long-ish transmission lines. With a change of a jumper setting, it can

be be used to drive the (slow) SPI bus, or it can be used for the programmable real-time

unit for faster control projects. In daily practice, I only used it for the SPI bus.

The board has a couple of digital input trigger BNCs, to which you may program

it to react. This is extremely useful when doing automated frequency sweeps—so long as

you keep in mind the ‘reaction time’ of the board and associated SPI delay is about 300

ms from the time you issue the DDS command.
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3.6.2 Amplifiers

The RF sources in the previous section must be amplified to drive AOMs. The

source amplitude is typically -10 dBm to -6 dBm; to be useful, AOMs require on the

order of +30 dBm, about 1 W. One of my first projects in the lab was modifying an RF

amplifier design from Florian Schreck’s lab42 to drive all of our AOMs. It is advantageous

and economical to build our own RF amps, because the alternative approach is expensive,

bulky, and less-featured Mini-Circuits blocks. Our RF amps ended up costing about $500

each, including part and assembly fees.

I made some simple design changes (updating a few parts), and we had the PCB’s

manufactured and soldered by Advanced Circuits, which did a run of 25 amplifiers for us.

These power all of our AOMs; in 2019, lab-mate Khang Ton made some really cool tweaks

and improvements, including an on-board RF switch, nanosecond attenuator, and general

speed improvements to the analog control path.

3.7 Experiment control

The production of quantum gases requires exposing the atoms to different fields—

both optical and magnetic—at very precise times, in a repeatable way. This involves the

movements of shutters, the ramping up and down of optical and magnetic intensities, and

myriad digital signals that switch all these things on and off. All of this must be done

with µs precision, and better-than-µs repeatability; essentially, we require a very precise

conductor for a very picky electronic orchestra.

3.7.1 ADwin hardware

In our lab, the timing system is the ADwin real-time unit (ADwin Pro II, running

the T11 processor). It is “real-time” in the sense that it will, with nanosecond precision

42As of 2022, their schematics are still available on strontiumbec.com.
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and accuracy, output a signal when you tell it to. This is in contrast to almost all other

computers that exist, which run on regular CPUs; to synch a program to real-world events,

you can kind-of use software hacks like python’s delay() functions, but you are never

guaranteed a response within a certain time interval. If the CPU is otherwise busy, it

will triage your request after it e.g. renders the cute cat GIF43 you’re looking at while

waiting for the sequence to finish. It is vital in AMO experiments that things happen

exactly when you want them to, with precision much faster than the characteristic atomic

motion; in most cases, that is milliseconds, so the timing system had better be at least

102× faster. This level of accuracy is not possible without dedicated real-time processors.

The ADwin version we bought has 64 digital and 24 analog (±10 V) outputs, any

of which can be toggled at any time. The smallest-allowable pulse time for any channel

is 4µs, sufficient for most purposes44. Our ADwin does not have any inputs, nor can it

directly control other devices, necessitating some clever protocols for driving e.g. shutters

(see Section F.2).

3.7.2 Qcontrol

While the ADwin does have its own programming language, it is a pain to work

with; thankfully, we interface with it using Qcontrol, a python-based program developed

at the Max Planck Institute for Quantum Optics. We use a fork of the version from 2013,

which I have (minimally) maintained since then. The version we use requires python2,

an increasingly onerous requirement since python2 reached end-of-life in 2020; all major

Linux distros have removed it. Porting the software is frankly not worth the effort, so I

have it frozen in a virtual environment running an old version of Fedora.

Qcontrol is extremely easy to use. Its documentation is sufficient to explain its

detailed use; here I will give only a brief overview. Each channel on the ADwin, analog or

43Pronounced “GIF,” as in “good”.
44Although this is a bit of a pain when trying to do, e.g., Kapitza-Dirac diffraction or electron shelving;

in either case, closer to 1 µs would be nice.
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digital, is associated with a named object; for example, you might choose to name one of its

digital outputs “SwODT1”, referring to an RF switch controlling one of the ODT beams.

To turn this on at in-sequence time 500.000 ms, you simply write SwODT1(500*ms,1) ; to

turn it off 5 ms later, call SwODT1(505*ms,0) . In addition to the real-time capabilities, you

also enjoy the other features of the language, such as numpy array handling, function calls,

and classes. That is it in a nutshell! The entire experiment consists of many such calls,

telling what channels to turn on when, for how long, and with what amplitude.

Qcontrol bugs and caveats

There are some bugs that are important to be aware of. First, there is a memory

leak that becomes apparent after a few hundred runs during iteration. I haven’t tracked

this down, but if you are not careful, somewhere around your 400th iteration run, the

OS will kill the timing system and you may not be aware! Secondly, there can be issues

with priorities. Even if two channels are not in direct conflict, sometimes the program

will obliquely alert you of ’CONFLICTS!’— but will still allow you to upload the script

to the ADwin. And then, in the actual experiment, some channel calls will get silently

dropped! This can be maddening to diagnose, and typically occurs with calls to shutters

in sub-sequences. It is easily worked-around by including keyword priority=m , where m

is any integer less than -10 (see the docs for more info). This essentially ups the priority

and allows the call to proceed.

Finally, the GUI, although excellent, sometimes experiences rendering errors. For

reasons I haven’t been able to pin down, sometimes when you change the timing, the

drawing that represents a channel’s activity prior to the update doesn’t get deleted, and

the new timing gets drawn over it. This can get very confusing, and the only solution is

restarting the GUI. Also, if you weren’t using a channel at all, and then decide to use

it, the GUI dictionaries get confused, resulting in uncaught exceptions when you try to

plot the new channel. I try to keep all channels I might use activated somewhere, at least
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setting them to 0V at some point in the Initialization.pys script, to avoid these kinds of

errors.

The only major change I made to Qcontrol, aside from maintenance operations

that correct syntax-warnings-cum-errors over the years, was modifying the GUI to show

the channel names, and not the internal channel number. In my opinion, it is objectively

more useful to display the channel name, instead of e.g. “DIO2.DIO29.”

3.7.3 Digital buffers

The ADwin is very expensive, costing upwards of $30k USD. It would be a shame

if any of its channels were damaged through any of the day-to-day accidents that occur

in a busy lab, such as accidental shorts to ground. It would be furthermore beneficial to

augment its current-driving capability, and provide an isolated ground in case of high-

voltage accidents which could zap the entire unit. For these reasons, and inspired by

Alan Stummer’s digital buffers (physics.utoronto.ca/∼astummer), I designed a 4-layer

digital buffer breakout board to which the digital outputs of the ADwin connect. We

use the (now-obsolete) quad-channel ADUM1400CRWZ buffers, using proper high-speed

design techniques [108] which completely isolate the ADwin ground from the outputs. The

buffered signals go into the line drivers SN64BCT25244, which can drive loads up to 80

mA. The full schematics are given in Appendix D.

3.7.4 Laser intensity control

All laser intensity control in the experiment is handled by the credit-card sized,

low-cost, FPGA-based RedPitaya.

Hardware

The RedPitaya has 4 analog channels, 2 inputs and 2 outputs—and since it is an

FPGA, can be programmed to perform fast modulation of the outputs based on the analog

73



inputs. Although the rated bandwidth is 50 MHz, it has an internal delay of about 130 ns

from in-to-out, which limits the achievable servo bandwidth to about 500 kHz (see [109]

for a good characterization). But this is fast enough for our purposes.

Software

The software that comes with the Red Pitaya is terrible (don’t even try it!) and

has lately become micro-monetized. We instead use the excellent, open-source PyRPL

(pyrpl.readthedocs.io), developed at the quantum optics lab Laboratoire Kastler Brossel

in Paris, France. This software has been modified in our lab by nanotraps-experimenter

Grady Kestler in order to incorporate an absolutely essential feature: it allows the PID

controller to accept an analog waveform as a setpoint. This affords enormous flexibility

to the experiment, because the ADwin timing system has an analog arbitrary waveform

generator. We can thus make the laser intensity follow any profile we want.

Caveats

There are a few important practical notes regarding their use. First, I have noticed

serious switching noise induced on the analog inputs, apparently caused by the cheap

power supplies shipped with the units. I therefore always use linear power supplies with

them (5V, capable of at least 2 A). Secondly, ground-loops are especially problematic and

must be avoided, since 60 Hz noise on either input will get written onto the laser—a fatal

situation for an ODT, which has end-stage trap frequencies on the order of 40-100 Hz. To

ameliorate ground issues, we plug all RedPitaya’s to the lab’s orange outlets, which is the

‘sensitive’ lab ground, separate from the main ground of the lab which can have heavy

equipment attached to it. This isn’t always enough: even with shielded cables, sometimes

one must simply move them away from noise sources. I had to physically move and even

shape my ODT-controlling cable, in such a way as to empirically minimize coupled 60 Hz
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noise! 45

45I did this as you might imagine: as I watched the FFT of the input, I moved the cable around to
minimize the peaks at 60 Hz and multiples thereof, then taped it in place. Not a perfect solution, but
time is always limited in real experiments.
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Chapter 4

Achieving quantum degeneracy

Having described the necessary equipment and laser setups, this chapter will explain

the process for cooling atoms to quantum degeneracy. This is the initial condition of the

SM-lattice experiment.

4.1 From 700 K to 2 µK

Since the vapor pressure of strontium is negligible at room temperature, we have

to first heat it up to about 750 K (900 F). These hot atoms propagate through thin

micro-tubules which create a “collimated” hot atom beam. We then impose several MOT

cooling stages operating on the 461 nm/689 nm transitions. The blue MOT takes us down

to a few mK, and the red MOT down to a few µK, reaching the temperatures of the

associated Doppler recoil limits (as discussed in Section 1.3).

A list of nominal MOT intensities is given in Table 4.1.

4.1.1 Blue MOTs: 700 K to mK

After the 700 K atoms make it through the AOsense micro-tubules, the atoms are

hit with 2D MOT and Zeeman slower light. From measurements provided by Tom Loftus,

the atoms are radially slowed to 0.6 m/s, and longitudinally to 40 m/s (90 MPH!). This is

what enters our chamber.

Cooling the boson or fermion in the 3D blue MOT is relatively straightforward,
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since the fermion’s more-complicated 1P1 hyperfine structure is not resolved due to the

broad transition linewidth of Γ/2π = 30 MHz. The procedure for all species is very simple:

after setting the appropriate isotopic frequency shifts, we apply a 47 G/cm magnetic field

gradient and illuminate with the 3D MOT beams for some load time tload. During the

loading period, atoms have a 1:50000 chance to decay to the metastable state 3P2 (see Fig.

1.1), which acts as a reservoir for atom accumulation. This is strictly superior than using

a blue MOT by itself, which has a very limited lifetime owing to light-assisted collisional

losses [110].

At 82% natural abundance, the boson 88Sr is the fastest to load into the reservoir;

the fermion, at 7.0%, needs commensurately longer time to achieve similar atom counts.

Depending on the oven’s health, I have loaded the boson with tload = 1 s at 460 C, but

that has lately gone up to 3 seconds. For the fermion, as of March 2022, I use tload = 7 s

at 480 C.

Repumping

To get the atoms out of the metastable state so that we can transfer them to the

red MOT, we use a repumper. This is a 481 nm laser (see Section 3.4.4 for details), which

is mechanically shuttered. At the end of the loading time tload, the 481 is flashed onto the

atoms by simply opening the shutter. It is not important when this beam turns off (if

ever), since it is low power and far from any ground-state resonances; however, the relative

timing between when the Bitter coil current falls (in order to load the red MOT) and

the repumper opens is critical, since the reservoir atoms are magnetically-trapped and

free-fall as soon as the field drops. If they’re not immediately recaptured by the red MOT,

they are lost. Considering this, the shutters have been remarkably repeatable, although I

suspect more-optimal results could be obtained using an AOM as an optical shutter, which

would allow much better than millisecond timing precision. However, I haven’t found it

necessary.
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As described in Section 3.4.4, when loading the boson, the repumper wavelength is

set statically at 481.3223 nm; for the fermion, the laser is scanned a few GHz to cover the

hyperfine structure. This scanning is necessary, and more than triples the resulting red

MOT atom count.

4.1.2 Red MOT: mK to µK

We transfer atoms from the reservoir to the red MOT (rMOT) by simply overlapping

the rMOT beams at the reservoir location. The beams operate on the intercombination

line 1S0(F = 9/2) → 3P1(F = 11/2), which has a narrow linewidth of Γ689/2π = 7.4 kHz.

Since the reservoir-trapped atoms are at a few mK, the resulting Doppler-broadening is

on the order of a few MHz, reducing the MOT force F ∼ Γ689/∆ ≈ 0 for most velocity

classes, where ∆ is the Doppler detuning from resonance. People typical work around

this problem by artificially broadening the laser linewidth during a ‘capture’ stage of the

rMOT [49, 104], driving the laser in a triangle wave in frequency space that simultaneously

addresses numerous velocity classes. More recently, another approach, based on a sawtooth

wave profile (SWAP MOT), has emerged [50, 111], and this is what we use.

The fermion MOT timing diagram is shown in Fig. 4.1, showing the action of

the coils, blue MOT shutter, repumper, rMOT and ODT beams1. The gray dashed line

on the repumper shutter indicates the approximate time at which the 481 light is open

to the atoms, within a 1 ms window. The inset shows that the rMOT operates on a

sawtooth-wave profile, with the indicated frequency sweep reaching -1.5 MHz (120 kHz)

below (above) resonance. The power of the MOT beam is decreased gradually, which

lowers the temperature as time proceeds.

The SWAP MOT ends abruptly after about 200 ms from the repump, and we

continue cooling with single-frequency light in order to get the lowest temperatures. The

stirring beam turns on in the single-frequency stage, which is necessary only for the fermion.

1The boson timing is very similar.
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Figure 4.1. Timing diagram of the red and blue MOTs for 87Sr. rMOT powers indicate
the total power seen by the atoms; ODT power is per-beam. Only the rMOT beams are
frequency-broadened in a sawtooth pattern, as indicated by the blurred line; the scan
width is indicated.
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This beam, operating on the 1S0(F = 9/2) → 3P1(F = 9/2) transition, “stirs” the mF

states, randomizing the population [112]. This is needed because MOT operation on the

F=11/2 transition alone is unstable, owing to the large spread of gF factors among the mF

states. This would cause many atoms to be anti-trapped, reducing the achievable atom

count by a factor of 20 or so.

The switchable-gain photodiode (see Section 3.4.2) changes gain midway into the

single-frequency stage, allowing us to reduce the rMOT power to tens of µW and achieve

temperatures close to 2 µK2. The ODT turns on during the single-frequency stage, with

the timing rationale being to limit its (harmful) ac Stark shift effects on the rMOT; but in

practice, it doesn’t seem to matter when it turns on.

The in-situ MOT cooling process for the fermions is pictured in Fig. 4.2, with

a 461 nm absorption images taken orthogonal to gravity. This data was taken at an

oven temperature of 460 C in October 2019, when the oven was relatively healthy, so the

loading time here was only 3 s (now 7 s). We can see the MOT density increase as the

atoms cool, with the MOT action forcing the atoms into a smaller volume. During the

single-frequency stage, the atoms collapse into more of a pancake shape, resembling the

bosonic case. Atoms crossing the dipole trap get trapped by it and are removed from the

cooling process, owing to its large (> 100 kHz) differential ac Stark shift.

MOT alignment

It is sometimes necessary to adjust the rMOT, either due to accidental misalign-

ment, beam drift, or changes to the oven characteristics. Unforunately, the fermions are

extremely sensitive to beam alignment; a blue MOT will be present under just about any

circumstances, but the transfer from blue to red is nontrivial since the two are on different

2ODT-trapped atoms are typically hotter by a few µK as compared with atoms in the rMOT alone.
This is because atoms entering the ODT are abruptly light-shifted out of the cooling process. One might
think to just turn on the ODT later—but that idea is thwarted by the finite hold time in the rMOT:
reaching the lowest temperatures requires lowering the MOT powers (and thus MOT force) below that
which could hold the atoms against gravity. There are clever ideas which get around this limitation,
specifically by using a transparency beam; see [56] for further details.
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Figure 4.2. In-situ time evolution of the red MOT cooling process, starting from the
repumped atoms at few-mK and ending at few-µK. The units are optical density; note the
scale changes as time evolves. The dipole trap presents as a horizontal line of dense atoms.
I omit the stirring beam diagram here, but note that it is the same as in Fig. 4.1.

beam paths. Depending on the degree of misalignment, one might find the rMOT not

present at all. What follows are some general problem-solving steps I have developed over

the years, ordered in severity. The following guidelines are mostly for the fermion, but it’s

applicable to the boson also (but the boson should be pretty robust).

1. “rMOT count down < 10%.” Day-to-day drifts and decreases in laser power are

frequently at fault; check that the bMOT and rMOT powers, as measured at the

windows, are consistent with established values (see Table 4.1 for one example).

Next, check the 689 laser lock: if the diode is in a “bad” place, the cavity can’t lock

it as well, so the linewidth will be broad. Finally, keep a log of the OD over time; if

you notice a trend that can’t be explained by power drifts, it could very well be the

oven health declining.
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2. “rMOT down > 50% or more.” Are any beams obstructed? Is the stirring beam on?

It could be severely misaligned. Try iteratively walking each rMOT arm, starting

from the vertical. Walk it like you would a laser into a fiber: run the sequence in a

loop (removing the ODT code to speed things up) and make tweaks to the steering

mirrors, watching the resulting OD at -140 ms. Do this for each arm.

3. “rMOT is gone.” Are you sure the frequencies are correct, and lasers locked? Surely

you checked this already. Ok, are you sure it’s gone? Check “back in time”: check

some of the earlier times, as shown in Fig. 4.2. If you do see atoms at some time

and they disappear before the cooling sequence concludes, try sitting at the latest of

these visible times and perform the walking as described above.

4. “No, the rMOT is really gone! Halp.” Worse comes to worst, if you need a starting

point you can always align with 88Sr. This isotope is fairly robust. Retro-reflect each

MOT beam as best you can, and it should easily produce an rMOT. Don’t expect

to then go to the fermion and have it be perfect, however; it’s just a starting point.

But hopefully, at some time shortly after repumping, a workable signal will appear.

4.1.3 MOT benchmark

The laser intensities necessary to run the experiment are given in Table 4.1. These

numbers are not intended to be rigidly matched, and certainly evolve over time depending

on laser and oven health, but serve as a rough guide to future experimenters. With these

intensities—and a relatively healthy oven—in mid 2021, I loaded the fermion for 7 s, at an

oven temperature of 470C/19.1 V, producing a red MOT OD 2.6 at -140 ms sequence-time;

see Fig. 4.1 for the timing. The resulting peak OD after 12.5 s evaporation, at 20 ms

TOF, was 0.55.
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Table 4.1. Peak MOT beam intensities measured at the chamber windows. The resulting
red MOT OD was 2.6; see text for details. Refer to Fig. 3.10 for the beam locations:
bMOT 1 is nearest to OFL k1; bMOT 2 is nearest to OFL k3. rMOT 1’s retro is nearest
the lift beam; rMOT 2 copropogates with OFL k2. Ditto with the stirring beams, which
copropogate with the rMOT beams. 2D MOT 1 is closest to the oven. -z means the beam
propagates against gravity.

Beam Peak power (mW) 1/e2 diameter (mm)
481 nm repumper 3 4(0.5)
2D MOT 1 31 30× 5
2D MOT 2 2.5 30× 5
Zeeman slower 60 6.5
bMOT 1 4.2 10(0.2)
bMOT 2 6.3 9.2(0.2)
bMOT, -z 2.9 6(0.1)
rMOT 1 0.79 11(1)
rMOT 2 0.79 9.1(5)
rMOT,-z 1.08 7(0.5)× 8(0.2)
rStir 1 0.25 10(0.2)
rStir 2 0.26 10(0.2)
rStir, -z 0.48 7(0.5)× 8(0.2)

1 The 2D MOT powers are measured with a power sensor with a 10 mm diameter, so this indicates peak
power only, not total power.
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4.2 Evaporative cooling: from µK to nK

Making quantum-degenerate gases requires evaporative cooling. RF evaporation

is one older method of doing so, which uses an RF antenna to push hotter atoms into

anti-trapped mF states; but most experiments today use optical dipole traps (details on

the laser setup can be found in Section 3.4.5), which is required for Sr due to its weak

magnetic moment. Far off-resonant dipole traps (FORTs) [102] provide a strong scalar

light shift on the atomic ground states, holding them against gravity with almost no

spontaneous emission. The idea is to put the MOT-cooled atoms into the dipole trap, and

then gradually lower the trap depth. Hotter atoms escape, taking with them their kinetic

energy; the remaining atoms collide with each other and rethermalize, becoming cooler as

time proceeds. It’s just like a hot coffee set out to cool.

4.2.1 Scattering considerations

The success of evaporative cooling depends on favorable scattering lengths, which

in turn depend on the atom, the specific isotope, and even the involved quantum state. For

example, evaporation of the boson 88Sr with itself does not work, because its self-scattering

length of −1a0 is too low. That scattering length is much larger in the magnetically-

trappable 3P2 state, opening up the intriguing idea of magnetic evaporation; but large

two-body collisional losses exceed the trap depth [55]. In practice, a BEC of 88Sr can be

achieved only with a mix of another species present to aid thermalization, in a process

called ‘sympathetic cooling.’

Only two Sr isotopes can be cooled to degeneracy by themselves: the boson 84Sr,

and the fermion 87Sr. In the former case, its scattering length is neither too large nor too

small at 124a0; a BEC is easily achieved for any reasonable evaporation sequence. For

the fermion, evaporation proceeds with an important caveat: identical spin states do not

84



Figure 4.3. The evaporation trajectory used in experiments, the functional form of which
is given. The typical endpoint is highlighted. In the all-spin, N = 10 case, this reaches a
degeneracy of T/TF = 0.2. The waveform for ODT2 is identical, with a slightly lower peak
power of 348 mW. Omitted here is the spin polarization ODT ramp, which is optional
and discussed later.

scatter with each other at low temperatures, so fermionic degeneracy can be achieved only

with a mix of at least two spin states. At the end of the red MOT, we naturally have an

even mix of N = 10 spin mF states, with which routine degeneracies of T/TF = 0.2 can be

achieved. With two-spin evaporation, however, the achievable degeneracy worsens, rising

to about 0.3-0.4 [55], although recent progress has been made on that front at JILA [56].

If a completely spin-polarized Fermi gas is required, one does the spin-polarization right

after the red MOT, keeping at least two states; at the end of evaporation, we can take

advantage of the narrow-line transitions to kick out the undesired state.

4.2.2 Evaporative cooling guidelines

A natural question to ask is, if evaporative cooling is required, why bother going

through the other cooling stages, especially the red MOT? mK trap depths are achievable

with enough laser power! While that is true enough, there are scaling laws governing

the evaporative cooling process [51]. The nominal requirement for reaching the quantum
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Figure 4.4. Azimuthally-averaged momentum profile of a DFG, averaged over 25 shots
and taken at 22 ms TOF. Pauli blocking manifests as a small deviation from a naive
Gaussian fit (black, dashed), which over-fits at the peak because the low-momentum states
are mostly all occupied. The red line is a fit to the Thomas-Fermi profile, which matches
the data well with degeneracy parameter T/TF = 0.24.

regime is to reach a phase-space density of 1, where we recall that ρ = N(hν)3/(kT )3 for a

harmonic trap, with ν the geometric mean trap frequency. With the dimensionless ratios

η = U/kT and η′ = η + (η − 5)/(η − 4), where U is the trap depth, the ratio of final to

initial phase space density is:

(
ρ

ρi

)
=

(
Ni

N

)η′−4

(4.1)

One important consequence of this relation is that if Ṅ = 0, the phase space density

remains constant, emphasizing the crucial role of atom loss in the cooling process. To put

some numbers to this, for a typical η = 10 with ρi = 0.003, lowering the well depth by

84× will reach ρ = 1. If we instead started 103× hotter at a few mK, then ρi → 10−9/2ρi,

assuming we can trap the same number of atoms and scale the trap depth as U → 103U ,

with the trap frequency scaling ν → 103/2ν. Then the well depth would need to scale down
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224300×, which is eminently impractical. Thus, we use MOTs, which are by their nature

not-conservative, carrying away energy and allowing us to reach the necessarily-large

starting phase-space density.

4.2.3 Bose-Einstein condensation

Early in the lab’s construction (mid-2018), we benchmarked our system by cooling

the boson 84Sr to BEC3. We loaded for 20 s into the metastable reservoir, accumulating

in the rMOT about 5 million atoms at 1.3µK. Our starting dipole trap frequencies were

116, 107, 587 Hz, with the latter the vertical direction. The evaporation waveform was

described by P (t)/P0 =
(
1 + t

τ

)−β
with β = 1.5, τ = 0.4; the BEC transition occurred

around t = 2τ .

4.2.4 Degenerate Fermi gas

For the DFG, the evaporation waveform follows the functional form suggested in

[47, 51] and is shown explicitly in Fig. 4.3. Since the scattering rate decreases with atom

count, I slow the evaporation ramp-down rate significantly after 14 s in order to allow

sufficient time for the atoms to thermalize. I’ve tweaked this waveform only a little over

the years, but there is certainly room for improvement in light of [56].

The resulting unpolarized Fermi gas is shown in Fig. 4.4 (the fits are described

in Section 1.4.2). Producing such a Fermi gas is now a daily part of our experiments.

If the red MOT OD is above 2.0 at -140 ms (with respect to the end of the red MOT

sequence), one can expect to achieve similar or better results, with the atom count in the

DFG depending linearly on the red MOT density.

I note that the overlap of the crossed ODT beams is critical, since the waists in

the vertical direction are around 20 um. Slight misalignment due to tiny bumps to any

elements on the path can spoil the evaporation ramp and cause severe atom loss—but

3The ODT (and entire optical setup) has undergone quite an evolution since then; indeed, we have
since repurposed the 84Sr rMOT optics.
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Figure 4.5. Post-evaporation dipole trap frequency measurements along the directions of
ODT1 (2π×35 Hz), ODT2 (2π× 52 Hz), and along gravity (2π×211 Hz), respectively. The
beam power of ODT1 (ODT2) was 12.5 mW (15.6 mW), corresponding to voltage setpoint
35 mV (45 mV). The 1/e decay timescales are 96 ms, 64 ms, and 14 ms, respectively.

fixing this usually only requires micro-adjustments to the vertical knobs on the last Polaris

mirrors4. I also note that any 461 nm or IR stray light can spoil the DFG by heating the

atoms, and any vibrations that are close to the trap frequencies (or multiples thereof)

must be avoided and/or moved far away from the ODT mirrors.

Trap frequencies

Although one can measure the ex-situ ODT beam waists, the actual intensity

experienced by the atoms depends on the alignment and focal lens positioning, which

cannot be directly measured. Fortunately, we can easily get at these values—and the

corresponding motional timescales—by inducing dipole oscillations in the ODT: push the

atoms and, like a ball on a spring, watch them oscillate. The frequency of these oscillations

is the trap frequency. Although the trap is nominally harmonic and thus conservative, we

do observe damping on 10 ms timescales (depending on the push direction); this indicates

the presence of trap anharmonicity, which is to be expected since the traps are only locally

4You’ll want to use an Allen wrench, not your fingers on the knobs; sweep back and forth in steps of
much less than 1 degree, as larger changes are likely to overshoot the ‘sweet spot.’
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harmonic.

To measure the trap frequency in the direction of gravity, I ramp the ODT beams

completely off in 1 ms, before ramping them back on in 100µs5. The beams are intensity-

servo’d the entire time. This quench and rapid return generates a nice center-of-mass

oscillation along the vertical direction. I let the atoms bounce for a varying time before

letting them go, imaging them at 10 ms TOF, with spacing of 0.3 ms per shot. The result is

the right-most image in Fig. 4.5; clearly, the vertical direction is the most tightly-confined.

For the longitudinal trap frequencies—along the direction of the ODT beams—I

suddenly shift (by 500 kHz) one of the ODT AOMs; the atoms then oscillate along the

direction of the unperturbed ODT beam6. I’ve verified that shifting a beam and then

shifting it back to center gives about the same frequency as simply leaving it shifted. The

data in Fig. 4.5, left and center, is for shifting the beam and leaving it there, and we

observe trap frequencies along the ODT1, ODT2 directions of 35 and 52 Hz, respectively,

at beam powers 12.5 mW and 15.6 mW.

5Diabatically switching the beams on and off also works, but the resulting oscillations are too wild,
preventing a clear measurement of the center of mass motion.

6Since Gaussian beams confine more strongly in the radial direction, and much more weakly along
their propagation direction.
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Chapter 5

Spin-momentum lattices

Having built the instrument, it’s time to do something with it! This chapter details

the realization of an atomic spin-momentum lattice using the fermion, 87Sr. This is a step

along the way to the creation of optical flux lattices (OFLs) for the study of fractional

quantum Hall (FQH) physics.

Part of what follows is the manuscript of our results, to be published in Physical

Review Letters [113]. This work is Copyright 2022 by the American Physical Society.

5.1 SM lattice preparation

To prepare for the experiment as diagrammed in Fig. 2.3, several challenges had

to be overcome. Firstly, the fermion has N = 10 degenerate Zeeman spin states, which

populate evenly after evaporation. But the experiment calls for the use of 3 non-degenerate

states all linked together, which must furthermore be spaced nonuniformly in energy.

Procedurally, then, we need to accomplish the following:

1. Polarize the spins: we’ve got to push 10 spins into 1, in a manner which minimizes

loss

2. Align the lasers onto the atoms

3. Lift the spin state degeneracy in a nonuniform way
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4. Link the spins together with a coherent Raman process, and measure the strength

of those links

5. Measure the spin populations.

We have already developed one important tool: an optical Stern-Gerlach (OSG) beam,

which spatially separates the spins as demonstrated in Fig. 3.15. But since this destroys

the momentum-space information, we need another way of imaging to satisfy point 5. We

tackle each of these issues in turn.

5.1.1 Spin polarization

The first problem we face is the efficient transfer of population into the desired

spin state, while depopulating the undesired ones. While one might initially think to use a

coherent process—such as Raman transfer, or adiabatic rapid passage—it is fundamentally

impossible to employ unitary dynamics to spin-polarize a sample, based on simple entropy

considerations alone [114]: spin polarization reduces the system’s entropy, which cannot

happen in a unitary (reversible) process. For instance, applying Raman pulses would

simply swap two spin populations, not transfer them. Spontaneous emission must be

involved, with the spontaneously-emitted photons carrying away the excess entropy.

Spin polarization of strontium is discussed by Stellmer [104] and Killian’s lab [115].

Essentially, it involves using the narrow-linewidth 689 nm transitions to selectively pump

atoms out of some spin states and in to others. This optical pumping must occur during

the early stages of evaporation to avoid significantly heating (and ruining) a DFG. The

transition’s narrow linewidth is necessary in order to selectively excite individual mF

states.

The process is described in Fig. 5.1. Light sourced from the stirring beam and

resonant with the transition 1S0(F = 9/2,mF ) → 3P1(F = 9/2,mF − 1)1 propagates

1Since this process is done in the dipole trap, these transitions experience a considerable ac Stark shift
as compared to the free-space values resonance values.
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Figure 5.1. Fermion spin polarization in a 9 G field. (a) The atoms are exposed to
9 consecutive resonant σ− pulses. Atoms spontaneously decay from the upper states;
the targeted states are (eventually) depleted, and the spin population is driven towards
negative mF values. (b) OSG results, after a few “cleanup” pulses done after evaporation.
(c) Polarization purity optimization; light resonant with mF = −1/2 is also resonant for
mF = −5/2 if the light has any σ+ component. The grey line indicates the waveplate
angle before this optimization.

downward onto the atoms. The pulse length is determined by T = t0/tmF
, where t0 = 1.8 ms

and tmF
refers to the squared branching ratio of the particular transition. Atoms in statemF

are pumped to the excited state with mF−1, and then spontaneously decay; some return to

mF as well asmF−1, but the pulse is kept on long enough that eventuallymF is depopulated.

A sequence of 9 such pulses fully polarizes the sample; however, it must be emphasized

that Fermi degeneracy cannot be achieved with a single spin state: at least two must be

present at the start of evaporation. So, the 9th spin pumping pulse is partially applied. In

the end, I evaporate with the ratios N−5/2/N,N−7/2/N,N−9/2/N = 7%, 23%, 47%, with

the rest in the higher mF states. Further purification occurs approximately 500 ms before

the experiment begins. Depending on the desired resulting configuration, this sequence

consists of an additional series of σ− pulses applied with t0 = 0.5 ms. These beams are

sufficiently far-detuned in the 9 G field that no heating is observed in the remaining atoms.

There were a few problems with our original spin-pol implementation. The first

was polarization impurity: any σ+ light simultaneously pumps mF and mF−2, sabotaging

our spin-pol scheme and making it harder to apply targeted blasts. I optimized this away

in Fig. 5.1(c): by applying post-evaporative spin blasts on mF = −1/2, I used the OSG
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Figure 5.2. Beam alignment onto the atoms. A detuned laser is pulsed on the atoms just
as they are dropped, followed by 4 ms TOF; each frame is a different realization of the
experiment with the beam at a different position, given in each frame by the horizontal
“step” of the Picomotor.

to monitor the relative spin population of mF = −5/2, minimizing its loss as a function of

waveplate angle. The starting waveplate position is shown as a gray line—off from optimal

by about 5 degrees. It is interesting to note that the red MOT was relatively unaffected in

either waveplate position.

The second issue had to do with retaining atoms after the pumping process. We

achieved good pump-out results, but weren’t seeing a simultaneous population increase in

the desired states. So, operating on the theory that the trap couldn’t contain the photon

recoil, my idea was to simply increase the dipole trap frequency to more-tightly contain the

atoms. After initially trapping the atoms in the ODT and before we apply spin blasts, we

linearly ramp the ODT trap frequencies over 300 ms to (313 Hz, 397 Hz, 2.16 kHz) along

the two horizontal and vertical dimensions, respectively, before ramping it back down and

proceeding with evaporation. I configured the ramp time to minimize atom loss, and since

the compression is mostly adiabatic, don’t notice a change in the resulting degeneracy.
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5.1.2 Beam alignment

Lasers need to be aligned onto the atoms; this can be a hard problem. For 10 mm

diameter MOT beams, it’s pretty easy: simple geometric alignment with the windows is

enough. Focused beams are another story. After evaporation, the atoms occupy an oblate

spheroid 30-50 µm in diameter, and the nearest chamber windows are 200-400 mm away.

Working with beams focused to finer than 1 mm is, as you might imagine, like finding a

needle in a haystack. There are different approaches to this problem. In the case of the

vOSG beam (see Fig. 3.14), I used the camera: first, I located the atoms on the camera,

and then configured the software to image the laser by itself; overlapping the two gives a

great starting point2. If you don’t have a camera (or one won’t fit), it can be a lot harder,

and you have to rely on the dipole force imparted to the atoms as the beam gets close.

The dipole-pushing strategy consists first of rough-aligning the beam such that

entrance and exit spots hit the center of the chamber windows, which are by design centered

on the atom location. Next, note that the optical dipole force is F = −α(ω)∇I(r), where

α(ω) is the wavelength-dependant polarizability, and ∇I(r) is the gradient of the beam

intensity. A red- (blue-)-detuned beam pulls (pushes) the atoms towards (away from) the

beam, predominantly in the radial direction—since Gaussian beams have their strongest

gradient in the direction transverse to their k-vector. You then scan a 2D grid around the

atoms until you see the laser push them.

I used Newport Picomotors on the SM lattice beams, which allowed me to scan the

beam positions from the control computer. Even so, this can be a tedious process given

the 20 s experimental repetition rate. Reasonable step sizes must be used or the process

can take days; empirically, 100-200 steps are good step sizes for 10 mW beams focused to

200µm by lenses positioned 400 mm from the atoms. One then looks for the effect of a

push/pull on the atoms in time-of-flight, after diabatically pulsing the beam in-situ for

2Assuming your imaging path has minimal chromatic aberration, or that the imaging and pushing
lights are similar in wavelength. Our imaging path uses achromats, so it’s not a problem.
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some time, typically 1-10 ms.

If it is particularly difficult, one can also use a ‘guide’ beam, which I used on

one troublesome arm of the SM lattice. The source was a Ti:Sapph for which I had

(essentially) infinite power, and the frequency control to make its effects more dramatic.

I show an example of one such experiment in Fig. 5.2. Each frame shows a Fermi

gas after being exposed to a 2 mW pulse of light at 434.827632 THz, close to the

1S0(F = 9/2) → 3P1(F = 11/2) hyperfine transition. At step 0, the beam is approximately

centered on the atoms; the (red-detuned) beam is then moved left, pulling the atoms with

it, an effect which becomes quite pronounced. When it gets far enough away, its effects

lessen, disappearing by step 725. Note that around step 400 it pulls the atoms down as

well as left, indicating that the initial position was a bit low from center (or, that there is

some cross-coupling in the Picomotor knob!). The key takeaway is that it is often hard to

tell when a detuned beam is well-aligned with the atoms—because when it’s well-aligned,

no effect is observable3. It is an unfortunate fact that one must disturb the alignment to

check it. To verify that you’re exactly centered, you need to sweep the beam position left,

right, up, and down.

5.1.3 Energy level shifting

The ground states are degenerate; we have to break this degeneracy, and in a

nonuniform manner. Firstly, what magnitude shift do we need? To resolve lattice

dynamics, we require Rabi coupling strengths Ω on the order of the temperature of the

atoms, or Ω ∼ cκ, where ℏκ is the initial spread in atomic momentum of the DFG. On the

other hand, to enable a unique correspondence between pairs of Raman beams ki,kj and

three spin states (see Fig. 2.3) requires a nonuniformity ϵ in their energy spacing such that

ϵ≫ Ω. In alkali-like atoms, such shifts could be easily provided by magnetic bias fields. In

alkaline-earth-like elements, the ground states are relatively insensitive to magnetic field.

3Except perhaps a decrease in the sample lifetime, owing to spontaneous emission.
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Figure 5.3. The design of the ac Stark shift “lift” beam. Left: Energy level nonuniformity
as a function of beam power and detuning. Beam detuning is given relative to the
1S0(F = 9/2) → 3P1(F = 9/2) transition. Contours of constant scattering rate are
given in orange, in units of Hz. Right: Energy level nonuniformity and scattering against
detuning, for a fixed power I = 95 W/cm2. Grey dashed lines indicate hyperfine resonances.

The Zeeman shift coefficient of 87Sr is only 185 Hz/G and lacks any significant quadratic

component [19], which could provide the nonuniformity.

We instead turn to an ac Stark shift beam called ωLift, detuned by ∆ from the

hyperfine resonance line 1S0(F = 9/2) → 3P1(F = 9/2). This beam produces a tensor

light shift [2] with coefficient αt proportional to the detuning from the three hyperfine

levels in 3P1 as:

αt(F, ω) =
∑
Fe

(−1)F+Fe

√
40F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)
×

1 1 2

F F Fe

 |⟨F ||d||Fe⟩|2

2ℏ∆Fe

(5.1)

where the sum runs over the hyperfine levels Fe = {7/2, 9/2, 11/2}, F = 9/2 is the

ground-state total angular momentum, ∆Fe is the detuning from the hyperfine resonance,

the curly-braces indicate the Wigner-6j symbol, and |⟨F ||d||Fe⟩| is the hyperfine dipole
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matrix element given by

|⟨F ||d||Fe⟩| = |⟨J ||d||Je⟩|(−1)Fe+J+1+I ×
√

(2Fe + 1)(2J + 1)

 J Je 1

Fe F I

 (5.2)

with J = 0, Je = 1, nuclear spin I = 9/2, and |⟨J ||d||Je⟩|2 = Γ689
2Je+1
2J+1

3ϵ0ℏc3
ω3
0

is the

fine-structure dipole matrix element at 689.4 nm. The tensor ac Stark shift ∆ν on an atom

in state |F,mF ⟩ due to a beam with intensity Il, polarized linearly along the quantization

axis, is given by h∆ν = −αt(F, ω)Il((3m2
F − F (F + 1))/F (2F − 1).

The design criteria of this beam was twofold: we wanted as much nonuniformity

as possible, while minimizing unwanted spontaneous emission. These contraints are

exemplified in Fig. 5.3 (left), where I analyze a range of possible detunings vs. beam

powers, with contours showing the spontaneous emission rates. On the right are the energy

level nonuniformity and scattering rates as functions of beam detuning, for a fixed intensity

I = 95 W/cm2.

We ended up choosing absolute frequency 434.829943(5) THz, with detuning

∆ = 2π × 700 MHz. The beam’s ex-situ measured waists are (ωx, ωz) = (350, 330)µm,

much larger than the in-situ cloud size of ≈ 30µm. This laser (linewidth 100 kHz) is

fiber-coupled at the experiment to improve pointing stability. Its polarization is linear

and aligned with the bias magnetic field. For an experimental power of 182 mW and the

measured beam waists, we expect energy splittings ∆νXY = 171 kHz and ∆νY Z = 130

kHz.

We verify the energy levels using Raman spectroscopy, as shown in Fig. 5.4.

Starting from a DFG polarized mostly into mF = −9/2, we flash on the Raman beams

k1,k2,k3 for varying times, with two beams probing a particular transition and the third

beam detuned (but still providing its light shift). The frequency at which the population

transfer is maximized determines the splitting [106]. The data is fit with a Rabi-like

97



model with temperature and pulse time as fixed parameters, varying center and Rabi

frequency. After compensating for the recoil shift 4ER/h = 14.49kHz, we find the energy

differences δνXY = 170.1 ± 0.1kHz and δνZX = 303.2 ± 0.1kHz, in excellent agreement

with the expected light shift values.

Figure 5.4. Calibration of the ac Stark shift induced by the lift beam with a Fermi
gas spin-polarized into mF = −9/2. The beams were flashed on for 50µs (75µs) when
transferring into the -7/2 (-5/2) state giving fit center 155.6 kHz (288.7 kHz); compensating
for the recoil energy, this is 170.1 kHz (303.2 kHz). Insets show exemplary spin-momentum-
resolved time-of-flight data, with the crosshairs indicating the location of p = 0. The solid
red arrows indicate the involved beams, and the broken red arrows indicate a beam that is
far-detuned from Raman resonance but providing its ac Stark shift.

5.1.4 Raman coupling

The three states X(−9/2), Y (−7/2), Z(−5/2) are coherently coupled with Raman

transitions (see Section 2.2). Here I discuss some details of the design choices, measurements

of the coupling strengths, and some unique effects relating to the beam polarization which

cause Raman interference.
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Single photon detuning

For the scheme to work, spontaneous emission must be minimized: the couplings

must be coherent, so single-photon uptake (and the associated spontaneous emission) must

be suppressed. We are fortunate in this case to work with narrow linewidth transitions,

and choose specifically 3P1(F = 9/2) as our upper state. We are then assured that coupling

to the other fine structure levels, such as 3P0, is negligible: the single-photon scattering

rate Γsc ∼ (Γ/∆)2; but in this case Γ ∼ 10 kHz and ∆ ∼ 6 THz, so (Γ/∆)2 ≈ 0. This is

not to be taken for granted; other species don’t have this luxury. 87Rb, for instance, has

similar fine structure spacing but 1000 times the linewidth, with the resulting destructive

interference severely limiting detuning choice and sample lifetime [78].

That being said, we must still choose a reasonable detuning given our available laser

power. With the scattering rate Γsc ∼ I(Γ/∆)2 and the coupling strength Ω ∼ I(Γ/∆), we

always win by increasing the detuning—if we can afford the intensity increase necessary to

keep the same Rabi frequency. As a compromise between these two goals (and overlapping

that compromise with our available AOMs) we chose ∆/2π = −210 MHz, although in

retrospect, -400 MHz would have been a better choice in terms of lifetime.

Coupling strengths

By observing Rabi oscillations between pairs of coupling beams, we calibrate the

coupling strengths Ωi and quantify the degree to which the SM lattice is limited to the

spin projections mF = −5/2,−7/2,−9/2. The Rabi measurement protocol differs from

the main experiment, due to our dual use of the Ti:Sapph laser as both lift beam and as a

source of optical Stern-Gerlach (OSG) pulses, which are separated by several GHz. While

we could bridge the difference with a series of AOMs, we instead apply an open-loop drive

voltage to the laser’s cavity lock in order to change the laser’s function from lift to OSG,

as follows.

After applying a Raman pulse of varying duration, both Raman and lift beams are
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snapped off while the ODT is kept on. In the next 50 ms, we ramp the laser frequency

from the lift beam frequency 434.829943(5) THz to the OSG frequency 434.828370(30)

THz. The larger frequency uncertainty induced by the open-loop control translates to

small positional variations of the atomic spin populations from shot-to-shot. We account

for this in the data analysis by binning the spin locations relative to the location of the

locally-maximum atom cloud, which is unambiguously the “spin-up” population since the

transfer efficiency is never larger than 0.5 (see Fig. 5.5). Empirically, the 50 ms ramp time

dampens the Raman-kicked atomic motion sufficiently that the OSG pulse separates the

mF states along the ŷ direction only.

Figure 5.5. Coupling strength calibration and lattice closure measurement from OSG
data. (a) Beam setup. For each probed transition, two beams at a time were tuned
on-resonance, with the third beam off-resonance but providing its ac Stark shift. (b) Rabi
oscillations due to a pulse resonant with (top) −5/2 → −7/2, (bottom left )−7/2 → −9/2,

(bottom right) −5/2 → −9/2. Insets show total atom count in the triplet Σ
−5/2,−7/2,−9/2
i Ni

at each pulse length τp. Triplet losses due to coupling to adjacent mF states (such as
−1/2,−3/2) would present as atom loss, bounded here to < 10%.
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We summarize these measurements in Fig. 5.5. Atoms with quasimomentum q

predominantly populate the “spin up” state |↑= −5/2,q⟩ in (a) and (c), or |↑= −7/2,q⟩

in (b). A light pulse of varying length is shone onto the tensor-shifted atoms, the OSG

beam is fired as described above, and then all coupling and trapping beams are snapped

off. This results in Rabi oscillations between bare states |↑,q⟩ and |↓,q+
√
3ℏkL⟩. We fit

to the spin-down population with a model [69, 116]

P↓ = A

∫ v0

−v0
dvPe(−

√
3kLv,Ω, t)Gv(σ) +N↓,0 (5.3)

where A is the amplitude, t is the pulse length, Pe(δ,Ω, t) =
Ω2

Ω2+δ2
sin2( t

2

√
Ω2 + δ2), Gv(σ)

is the Gaussian velocity distribution with standard deviation σ =
√

2kBT/m, and N↓,0 is

the fixed amount of atoms populating |↓⟩ at t = 0. With only two fit parameters, Ω and

A, we find good agreement with the model, observing the decoherence characteristic of

finite-temperature SO-coupled fermions [66, 68]. The Rabi coupling strengths between

each link in the spin-momentum lattice are obtained by scaling the Rabi frequencies

obtained in Fig. 5.5. The scaling considers both the respective branching ratios of each

transition, and also the small measured differences in power between each tone in the

driving AOMs. The strengths are listed in Table 5.1, with a total uncertainty considering

the involved beam waists (measured through Fig. 5.5), polarization angle uncertainty of

1◦, and the measured power uncertainty in each tone, which we take to be 5%.

The insets of Fig. 5.5 indicate the total atom number in all three spin states X, Y, Z.

Since the timescale of spontaneous emission is small compared to the pulse durations,

atom loss is due to atoms coupling to the adjacent dipole-allowed states mF = −1/2,−3/2,

which are not counted in the OSG images. The loss into these external states is expected

to scale with the Rabi coupling strength and here is at most 10%, showing that the

spin-momentum lattice experiment is closed to the spin states −9/2,−7/2,−5/2.
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Table 5.1. Experimental two-photon coupling strengths Ωmn in units of ER/ℏ. Some
transitions are associated with two coupling strengths, which interfere with relative phase
angle χ = 2π/3; see text for details.

X → Y Y → Z Z → X
k1 − k2 0.61(10)e−iχ+ 0.70(11)e−iχ+ 0.45(7)

0.47(7) 0.50(8)
k2 − k3 0.61(10)eiχ+ 0.65(10)eiχ+ 0.43(7)

0.47(7)e−iχ 0.46(7)e−iχ

k3 − k1 0.63(10)+ 0.58(9)+ 0.42(6)
0.49(8)eiχ 0.42(6)eiχ

Raman interference

In describing the net effective Rabi strengths ΩEff which form each link in the lattice,

we must carefully consider the polarizations. Because each beam ki can drive σ+, σ−,

and π transitions, “double-Λ” type couplings [117] are realized between the links X ↔ Y

and Y ↔ Z; see Fig. 5.6 for the specific coupling between X(−9/2) and Y (−7/2). The

coupling frequencies may cause a πσ− or σ+π transition, since the upper-state detunings

in each case satisfy ∆/∆′ ≈ 1 and thus have similar coupling strengths (in contrast, the

couplings X ↔ Z may proceed only via σσ due to dipole selection rules). For such links,

we define a net effective coupling strength ΩEff = Ω1 + eiχΩ2, where χ is the relative phase

and Ωi is the two-photon Rabi frequency associated with a specific polarization scheme,

as in [72, 73]. In our experiment, the phase between π- and σ-components is fixed, unlike

experiments in Refs. [72] and [73], which modify this phase using a tunable path length

difference or electro-optic modulator, respectively. As we show, our phases χ are fixed by

the beam intersection angle.

Consider ω1 inside beam k1, propagating along the −ŷ direction as in Fig. 5.6(a),

with polarization angle θ = 33◦ with respect to the xy-plane. The electric field, with real

amplitude E10, including a possible phase ψ, which can vary from shot to shot, is

E1 = E10(cos(θ)x̂+ sin(θ)ẑ)eik1·reiψ (5.4)
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Figure 5.6. The effect of Raman interference in a double-Λ level structure. (a) Two
beams incident on a spin with wavevectors k1, k2 in the xy-plane, whose polarization
vectors are tilted at angle (π/2− θ) with respect to the z-axis. The beams cross at angle
χ. (b) Both beams have components π, σ+, σ−, and the upper-state detunings ∆ are
approximately equal. Thus, Raman transitions can proceed along two equivalent paths
with differing coupling strengths Ω1 and eiχΩ2. This interference must be considered when
computing an effective Rabi frequency ΩEff .

Similarly, the electric field describing ω2 in k2 is

E2 = E20(− sin(ϕ) cos(θ)x̂+ cos(ϕ) cos(θ)ŷ + sin(θ)ẑ)eik2·r (5.5)

with ϕ = 30◦ being the acute angle between k̂2 and the x-axis. These two fields drive

a Raman transition X ↔ Y when their frequency differences are close to the energy

splittings. As shown in Fig. 5.6(b), there are two ways an atom can make the jump,

with respective two-photon Rabi frequencies Ω1,Ω2 proportional to Eπ∗
1 Eσ−

2 ,Eσ+∗
1 Eπ

2 . The

π-components of the fields are those along the êz direction, and the σ± components are

those along the directions ê± = ∓1/
√
2(x̂± iŷ). We also note that the geometric scaling

factor resulting from the branching ratio associated with Ω1 is −7
√
2/99 = exp(iπ)7

√
2/99

(associated with Ω2 is
√
2/11). We then find

Ω1 ∝ Eπ∗
1 Eσ−

2 = E10E20/
√
2 sin(θ) cos(θ)e−iψ × ei(k2−k1)·rei(−ϕ−π/2)

Ω2 ∝ Eσ+∗
1 Eπ

2 = E10E20/
√
2 sin(θ) cos(θ)e−iψ × ei(k2−k1)·r

We find the total phase difference χ = −ϕ− π/2 = −2π/3 between these two paths; we
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furthermore see that any phase fluctuation in ψ is common-mode and so does not affect

ΩEff .

To evaluate the impact of the Raman interference phases on the flux lattice scheme,

we sum the phases around the plaquette drawn in Fig. 2.3(b), in which an atom makes a

complete cycle X→Y→Z→X. We write the total Rabi strength of transition mn, where

mn = {XY, Y Z, ZX}, as Ωmn(χmn) = Ωmn,1 + eiχmnΩmn,2 = Amne
iΦmn , with

Amn =
√

Ω2
mn,1 + Ω2

mn,2 + 2 cos(χmn)Ωmn,1Ωmn,2

tan(Φmn) =
sin(χmn)Ωmn,2

Ωmn,1 + cos(χmn)Ωmn,2

(5.6)

Adopting the coordinate system of Eqn. 5.4 and Eqn. 5.5, we note that electric field of

k3 is E3 = E30(− sin(ϕ) cos(θ)x̂− cos(ϕ) cos(θ)ŷ + sin(θ)ẑ)eik3·r. We then find the phases

χmn to be

χXY = −ϕ− π/2,

χY Z = ϕ+ π/2,

χZX = 2π

(5.7)

With no AOM phases set, an atom encircling the plaquette experiences a phase pickup

exp(i(ΦXY + ΦY Z + ΦZX)). Using Eqn. 5.6, we find

Φ =ΦXY + ΦY Z + ΦZX

=arctan
( − cos(ϕ)ΩXY,1

ΩXY,1 − sin(ϕ)ΩXY,2

)
+ arctan

( cos(ϕ)ΩY Z,1

ΩY Z,1 − sin(ϕ)ΩY Z,2

) (5.8)

For equal coupling strength ratios ΩXY,2/ΩXY,1 = ΩY Z,2/ΩY Z,1, we see that Φ = 0.
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Figure 5.7. Spin-resolved imaging process. (a) Spin-blast Rabi frequency calibrated by
electron shelving of the mF = −7/2 (Y) state. The fitted single-photon Rabi frequency
is Ω = 335(1) kHz. (b) Averaged atom shot of the SM lattice at sweep time 8ER. (c)
Spin-blast beam resonant with mF = −7/2 applied to the SM lattice. (d) Subtraction of
images (b) and (c), removing the common-mode background and revealing the locations
of mF = −7/2 atoms. A negative-OD region forms at the locations of the blast-scattered
atoms.

5.1.5 Spin-resolved imaging

Atoms released from the SM lattice naturally spatially resolve according to their spin

and momentum; however, in cases where the starting state is not pure or for verification

purposes, it is necessary to have a means to resolve the spins. Directly imaging the

spins using narrow-line absorption imaging [104] is impractical due to the low scattering

cross-section and relatively low atom density of Fermi gases. Furthermore, since the atoms

are moving after they are released from the SM lattice, the use of optical Stern-Gerlach

separation is not desirable because it will (necessarily) disturb the momentum distribution.

We instead visualize the spin dynamics with blast pulses [68], propagating in the

xy plane, resonant with the narrow 1S0(F = 9/2,mF ) → 3P1(F = 9/2,mF ) transition at

689 nm. To be effective, the blast beam strength needs to be similar to the worst-case

atomic Doppler shifts in the SM lattice ΩDoppler ≈ n× 2π × 4ER = n× 91 kHz, where n

is the number of photons absorbed in the SM lattice. Simultaneously, to avoid exciting

neighboringmF states, the blast strength must be smaller than the typical Zeeman splitting

of the upper 3P1(F = 9/2) states, here 2π × 790 kHz.

The beams are calibrated as in Fig. 5.7(a) with electron-shelving [101]: atoms
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are excited into 3P1 with a resonant 689 nm pulse for a time t, after which we apply a

4 µs pulse of 461 nm MOT light to blow away all remaining ground-state atoms. Atoms

so “shelved” in the 3P1 state do not interact with the 461 nm light; instead, the fraction

projected onto the ground state is measured with absorption imaging after a brief 2 ms

time of flight. The overall decay curve matches the 3P1 natural lifetime of 22 µs. The SM

lattice in Fig. 5.7(b) is subjected to this beam in Fig. 5.7(c), yielding the spin-resolved

picture in Fig. 5.7(d) after subtracting the two images.

Since the blast process relies on spontaneous emission, an atom can scatter (at

most) a few photons before decaying to an adjacent mF state, which is then transparent

to the narrow-linewidth blast beam. This means the momentum acquired by the targeted

atoms is comparable to the momentum of the atoms in the SM lattice, so some overlap is

inevitable—as the negative optical density region in Fig. 5.7(d) shows. This effect can be

particularly noticeable if the scattered atoms have strong geometric overlap with a region

of interest, as seen in the X Fig. 5.8, particularly the 8ER panel, which entirely masks

the cloud at p = −3ℏkLŷ.

Furthermore, although the beam strengths are chosen to be comparable to the

Doppler shifts, the efficiency of these single-tone blast pulses still decreases with increasing

SM lattice photon absorption. To overcome this, a larger bias magnetic field would enable

the use of stronger blast pulses. To overcome the geometric overlap issue, tilting the blast

pulses out-of-plane would push targeted atoms out of the imaging focus region, more

effectively removing them from the images.

5.2 Filling the lattice

Having set up the necessary tools and configured the atomic energy levels to our

liking, we must now ask ourselves (a) how we can visualize and measure a momentum-space

lattice, and (b) how we can populate that lattice.

106



5.2.1 Visualization

In general, real-space cold-atom lattices are visualized indirectly: one typically

does not have the imaging resolution to visualize atoms spaced on the order of the beam’s

wavelength, typically ≈ 500 nm or less. Instead, we measure the atomic momentum

distribution, which is dramatically altered by the presence of a periodic potential (and

is generally well-described by Bloch wavefunctions). In practice, this means turning off

the lattice beams and allowing the atoms to freely expand under gravity—this is called a

“time of flight” (TOF) measurement. Adiabatically ramping down the lattice is called a

band mapping procedure [118], which smoothly deforms the tight-binding (flat) bands into

the free-particle parabolas. In such a ramp down, quasimomentum is preserved and the

Brillouin zone may be directly mapped.

Another method is simply diabatically turning off the periodic potential. Since

the atoms are described by Bloch waves, rapidly turning off the potential amounts to a

plane-wave decomposition of the Bloch states. An excellent overview of these two methods

is given in [119]. In our experiment, we diabatically turn off the potential; after 12 ms

TOF, the atoms are absorption-imaged, and the physical positions of the atoms map

directly onto real momentum, reflecting the in-situ momentum distribution.

5.2.2 Population and atomic motion

We need a way of populating the different lattice sites. Atoms starting at p ≈ 0 do

not have the kinetic energy necessary to tunnel to different lattice sites, which are spaced

by
√
3ℏkL: they must be given a “push.” This is accomplished by continuously ramping

the frequencies of a triplet of beams. In the experiment, we ramp k1, although we could

just as well have ramped either of the other two triplets. In so doing, the atoms move

preferentially along the k1 direction, because ∂t(ω1, ω
′
1, ω

′′
1)>0.

The direction of atomic motion can be explained by a conservation of energy
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argument. Consider the state |X, p⃗ = 0⟩; the transition |X, p⃗ = 0⟩ → |Y, p⃗ =
√
3ℏkL(k̂3 −

k̂1)⟩ via the blue beams ω′
3, ω

′
1 is increasingly off-resonant with increasing ω′

1. To see this,

we note that the effective detuning from Raman resonance δ (for stationary atoms) is

given by [61]:

δ = (ω′
3 − ω′

1)− (∆ωXY + (ℏ(k3 − k1))
2/2m) (5.9)

where ∆ωXY > 0 is the Zeeman energy splitting between spin states X and Y , and

(ℏ(k3−k1))
2/2m = 4ER/ℏ is the recoil energy. In the experiment, at t = 0 we set the laser

frequency difference to match the energy splitting (ω′
3 −ω′

1 = ∆ωXY ) so that δ = −4ER/ℏ.

If ∂tω
′
1 > 0, δ becomes more negative, and the Raman process is further suppressed. The

upward motion is only favorable if ∂tω
′
1 < 0, in which case δ → 0 as ω′

3 − ω′
1 → 4ER/ℏ. A

similar argument can be applied to the upward blue transition X → Z.

Thus, atoms hopping in the downward direction are increasingly Doppler-shifted

due to their acquired momentum; these shifts are (imperfectly) compensated by the

continuous ramping of the beam k1, which propels them further downward. A relatively

small number of atoms do venture upward, owing to the finite fermion temperature; those

atoms moving away from the beam at t = 0 are the ones most likely to make an upward

transition.

5.2.3 Model

In order to predict the dynamics, we solve the TDSE. First we define the wave

vectors as

k1 = −kLûy, k2 =
kL
2
(
√
3ûx + ûy), k3 =

kL
2
(−

√
3ûx + ûy) (5.10)

where kL = 2π/λ. Note that although these beams do not have the same frequency, the

difference between wavenumbers is negligible. Since the transitions induced by these
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lasers involve two-photon processes, the corresponding momentum transfer is related to

differences between k1,k2,k3. We define the single-photon recoil vector kR = 2π/λ sin(θ/2)

where θ = 120◦ is the angle between any two beams. The recoil vector becomes kR =
√
3π/λ =

√
3kL/2, so the wavevectors become

k1 = − 2√
3
kRûy, k2 =

kR√
3
(
√
3ûx + ûy), k3 =

kR√
3
(−

√
3ûx + ûy) (5.11)

The relative momentum qi is defined as

q1 = k1−k2 = kR(−ûx−
√
3ûy), q2 = k2−k3 = 2kRûx, q3 = k3−k1 = kR(−ûx+

√
3ûy)

(5.12)

All magnitudes are 2kR, consistent with the motivation of defining the single-photon

recoil vector. For convenience, we also define

ωY→X = ω1 − ω2 = ω′′
2 − ω′′

3 = ω′
3 − ω′

1,

ωX→Z = ω′′
1(t)− ω′′

2 = ω′
2 − ω′

3 = ω3 − ω1,

ωZ→Y = ω′′
1 − ω′′

2 = ω′
2 − ω′

3 = ω3 − ω1(t)

(5.13)

The time dependence only shows up in ω1, ω
′
1, ω

′′
1 since only the frequencies in beam k1

are swept during the experiment.

To simulate the quantum dynamics in the spin-momentum (SM) lattice, we first

set up the Hamiltonian in the Bloch basis, ψq,α(r) = eiq·ruq,α(r) where q is the crystal

momentum, α is the spin species and uq is a periodic function. The corresponding

Schrödinger equation can be expressed as

(
(p̂+ ℏq)2

2m
+ ϵα + Ω(r̂, t)

)
uq,α(r, t) = iℏ

∂

∂t
eiq·ruq,α(r, t) (5.14)

Note that ϵα labels the energy of the internal state. Due to the periodicity of the uq,α(r,t),
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we can decompose uq,α(r,t) into its Fourier components,

uq,α(r, t) =
∑
K

cK,α(q, t)e
iK·r (5.15)

where K = n1q1 + n2q2 is the reciprocal lattice vector, described by integers n1, n2. The

Schrödinger equation becomes

∑
K

eiK·r
(
ℏ2(q+K)2

2m
+ ϵα + Ω(r̂, t)

)
cK,α(q, t) =

∑
K

eiKiℏ
∂

∂t
cK,α(q, t) (5.16)

Next, we formulate the coupling term with frequency sweep velocity v as

Ω(r̂, t) =
∑
n

∑
α ̸=β

Ωαβe
iqn·r−i(δn,1−δn,3)vt2e−iωβ→αt |α⟩ ⟨β|

=
∑
n

∑
α ̸=β

Ωα′β′eiqn·r−i(δn,1−δn,3)vt2 |α′⟩ ⟨β′|
(5.17)

where δm,n is the Kronecker delta, and the last equation comes from using the rotating

frame to absorb the usual oscillation term.

In our simulation, we use a radial grid of 832 points in momentum space and use

the LSODA differential equation solver [120] to predict the dynamics at each point, time-

evolving a Gaussian distribution which closely matches the initial momentum spread. We

fix the 9 coupling strengths according to Table 5.1, the values there obtained experimentally.

We have empirically found that these coupling strengths are approximately 20% too large to

account for the observed dynamics, and thus uniformly scale all Rabi strengths accordingly.

5.3 Experimental realization

What follows is the manuscript of our results, submitted and accepted to Physical

Review Letters [113]. The figure fonts have been modified to be consistent with the other

figures in this thesis.
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5.3.1 Introduction

Ultracold atoms in optical lattices have been established as an important tool for

the quantum emulation of condensed matter models [121], especially those with topological

features [15, 122]. The inherent tunability afforded by optical lattices provides access to

a variety of parameter regimes, which has proved essential in the seminal realizations of

topological phases in ultracold matter [85, 123–125]. Since then, efforts to study topology

in other systems have led to the exploration of synthetic dimensions [64, 126], which

provide internal degrees of freedom beyond those afforded by the trapping geometry and

have enabled a new generation of experiments [127].

Several approaches to synthetic dimensions have been experimentally realized.

Real-space lattices augmented with spin-orbit coupling (SOC) connect spin “lattice” sites

via momentum exchange, creating Hall cylinders pierced by magnetic flux in a synthetic

position-spin space [105, 128–134], or creating Hall ribbons in optical clock experiments [70,

71, 135, 136]. Real-space lattices are not always needed; SOC itself can provide synthetic

degrees of freedom, which can act as a potent generator of Berry curvature [137–142] or

provide control parameters for Hamiltonian engineering [74, 143]. Synthetic lattices entirely

in momentum-space [144, 145] have been realized, and, with carefully engineered hopping

schemes, have proven topological [146–149]. Recently, a synthetic lattice of Rydberg states

has been employed for the study of a Su–Schrieffer–Heeger model [150], and a synthetic

dimension of trap states created with patterned light [151].

Lattices composed of spin and momentum states, or spin-momentum (SM) lattices,

have been proposed [91] as a platform to exhibit topological features, with some schemes

potentially realizing the Laughlin state of the fractional quantum Hall effect [89, 152]. As

a step towards this, we realize a fermionic spin-momentum lattice using SOC and three

atomic Zeeman spin states. Previous experiments using spin-momentum lattices utilized

bosons in a single-dimension [153, 154], and used a real-space lattice with lattice-band
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pseudospins [155]. Recently, a two-spin bosonic SM lattice has been implemented in an

optical cavity [156]. Here, by providing sufficient links between three spin sites, we build

a lattice of fermions in a 2D spin-momentum space, without a traditional scalar optical

lattice. This platform increases the flexibility of the synthetic dimension approach. In

particular, the use of three spin states in two spatial dimensions allows the simulation

of synthetic magnetic fields of high spatial uniformity, which lead to ultra-narrow Chern

bands that support robust fractional quantum Hall states [89, 157].

5.3.2 Implementation

The synthetic lattice is composed of three Zeeman spin states in the 1S0(F = 9/2)

ground state of 87Sr, labeled X ≡ |mF = −9/2⟩, Y ≡ |mF = −7/2⟩, Z ≡ |mF = −5/2⟩.

In a momentum-dependent manner, the spins are cyclically coupled by up to 9 Raman

lasers intersecting at 120◦. In the rotating-wave approximation, we describe the atom-laser

coupling as

V̂ = Ωmne
i(kR·r+φi−φj)|m⟩⟨n|+H.c. (5.18)

where m ̸= n runs over the states X, Y, Z, |kR| = |ki − kj| = kL sin
2 θ
2
is the magnitude of

the single-photon recoil wavevector with i ̸= j denoting the beams driving a particular

m-n coupling, Ωmn is the coupling strength, and θ = 120◦ is the angle between any pair of

beams. The single-photon recoil energy is ER = (ℏkR)2/2m = ℏ× 22.7 kHz. The phase

differences φi − φj are set to zero in the experiment, but we note that setting nonzero

phases is at the heart of the ultra-narrow-band optical flux lattice experiment [89].

The setup implementing the optical couplings in Eqn. (1) is shown in Fig. 1(a). Up

to three running-wave triplets of beams are incident on a degenerate Fermi gas (DFG) spin-

polarized mostly into state |X⟩ with T/TF = 0.36(5), where TF is the Fermi temperature.

Each beam k̂i contains up to three frequencies ωi, ω
′
i, ω

′′
i , such that the energy difference

between any two frequencies ωi(
′(′′))−ωj(

′(′′)) matches an energy difference in the X, Y, Z
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manifold. These beams provide a Raman coupling between states, as in Fig 1(b). The

quantization axis is defined by a ẑ-oriented magnetic field B ≈ 9.3 G, along which we align

the linear polarization of a beam ωLift [105, 106, 158] providing a strong ac Stark shift that

lifts the degeneracy of the states X, Y, Z. The coupling beam polarizations are linear and

angled at 33(1)◦ with respect to the xy-plane, projecting approximately equal intensity

among the possible Raman transition types π, σ±. When using all nine frequencies, the

beams form an infinite lattice in spin-momentum space, as in Fig. 1(c). Since the average

starting atomic momentum ⟨p⟩ ≪ 4ℏkR, the fermions initially occupy only a small spread

of states |X/Y/Z,q ≈ 0⟩, where q is the quasimomentum. After engaging the coupling

beams, atoms with differing spin or q occupy adjacent spin-momentum lattices, shifted by

their corresponding quantum numbers. These lattices are not tight-binding, in the sense

that in-situ motion is constrained only by the overall harmonic trap, allowing particles

of different spin and q to mix. Unlike a square lattice—which does not readily allow for

nonzero Chern number—this triangular lattice naturally breaks inversion symmetry and

allows for magnetic flux. We note that nonzero gauge flux is possible only on the upward-

pointing triangles, corresponding to momentum transfers involving all three frequency

sets.

As shown in Fig. 1(d), the coupling beams utilize the dipole-forbidden transition

1S0(F = 9/2) → 3P1(F = 9/2), detuned below resonance by ∆/2π = 210 MHz. The

transition’s narrow linewidth Γ/2π = 7.4 kHz allows coherent manipulation with minimal

spontaneous emission, and no significant destructive interference [78, 159] arises from the

THz-separated fine structure states 3P0 and 3P2. In order to make each triplet unique, the

upper-state detunings of the blue and green couplings are shifted by ∓37 ER/ℏ, larger

than the ≈ 7.5 ER/ℏ energy splittings. The role of the frequency ωi in beam ki is circularly

rotated amongst the three triplets, such that all frequencies resonantly couple all spin

states.

In order to realize the lattice, careful attention must be paid to the energy levels of
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X, Y, Z, which are naturally degenerate. Since the ground states have J=0—rendering

Zeeman shifts insignificant at our bias field—we use an ac Stark shift approach. Further

leveraging the narrow-line intercombination transition, the lift beam ωLift is operated

at 434.829943(5) THz, midway between the hyperfine resonance lines 1S0(F = 9/2) →
3P1(F = 7/2) and 1S0(F = 9/2) → 3P1(F = 9/2). This light was designed to produce a

strong tensor shift ϵ = 1.76ER/ℏ of the X state, allowing each pair of Raman beams to

uniquely couple two spin-momentum states. A necessary condition of the spin-momentum

lattice model is that the coupling strengths Ω ≪ ϵ. The coupling strengths here are

Ω ≈ 0.5ER/ℏ.

5.3.3 Sequence

In our newly-built apparatus, we source 87Sr from a commercial atomic oven

from AOSense, which includes an integrated Zeeman slower and 2D MOT optics. After

two MOT loading and cooling stages lasting 7s [1, 50], the atoms are loaded into a

crossed 1064 nm optical dipole trap (ODT) with an initial temperature of ≈ 2 µK. The

vertical (horizontal) trapping frequency is ramped up to 2.160(5) kHz (313(1), 397(2) Hz),

at which point we spin-polarize the sample with a series of pulses resonant with the

different mF states via the 1S0(F = 9/2) → 3P1(F = 9/2) transition [115, 160]. The

ODT frequencies are then lowered back to ≈ 1 kHz vertically, and forced evaporation

proceeds over the next 10 s, finally reaching a quantum-degenerate sample. Without

spin-polarization, we routinely achieve T/TF = 0.20, where TF is the Fermi temperature,

rising to T/TF = 0.36(5) when spin-polarized. Evaporation ends at mean geometric trap

frequency ω = (ωxωyωz)
1
3 = 71.4(1) Hz, yielding a 50 nK Fermi gas. Immediately following

evaporation, the sample is spin-polarized in the state X(80±7%), and the ac Stark shifting

beam ωLift is ramped on in 0.5 ms. Via optical Stern-Gerlach imaging [104], we verify that

this timescale does not alter the spin polarization. We then introduce the coupling beams

with a turn-on time of <1µs.
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Figure 5.8. Demonstration of the spin-momentum lattice, see text for details. The sweep
progress is indicated in units of recoil energy ER. The top row shows spin-unresolved
momentum-space images, the second row the predicted dynamics, and subsequent rows
show spin-resolved images. As a guide to the eye, the links are also drawn across all rows
with colors corresponding to Fig. 2.3. Each image is an average of ≈ 100 experimental
runs taken at 12 ms time of flight.

We demonstrate the spin-momentum lattice in Fig. 5.8. In order to fill more

sites, we emulate motion along a single dimension by subjecting the atoms to an inertial

force [133] along k̂1, ramping all three of that beam’s frequencies at a rate ℏ∂t(ω1, ω
′
1, ω

′′
1) =

16.607 ER/ms4. Hopping to neighboring sites is made favorable when the frequency

difference between two coupling beams matches the energy and recoil shifts between states,

providing enhanced state transfer between initial state |X,q⟩ and |X,q − K⟩, |Y,q −

K⟩, |Z,q−K⟩ for some reciprocal lattice vectors K = n1q1 + n2q2 with integers n1, n2.

After a varying sweep time, all optical fields are quenched off, releasing the atoms from the

harmonic trap. Atoms that have tunneled to different lattice sites acquire a concomitant

increase in momentum, in discrete units of the two-photon Raman momentum ℏkR =

4We do not expect this sweep rate to be adiabatic with respect to the current Rabi coupling strengths.
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Figure 5.9. Building the spin-momentum lattice; all images taken at a common sweep
time of 12ER. Each removed frequency corresponds to a missing link in the full lattice
setup, allowing the exploration of quasi-1D SOC in the first column, to 2D SOC in the
second column, culminating in the full lattice shown in the last column. The multiply-
colored links in the last two columns indicate two SM lattices simultaneously overlaid: a
two-state configuration, in which the experiment began with equal populations of X, Y .

√
3/2ℏkL. The lattice sites become spatially resolved after 12 ms time of flight, since the

starting momentum distribution’s full-width half-max width is 1.05(1)ℏkL and external

heating by spontaneous emission from 3P1 is minimal. The atoms are then absorption-

imaged in the xy plane using the 1S0 → 1P1 transition at 461 nm (Γ461/2π = 30MHz),

which images all spins with approximately equal efficiency [161]. The bias magnetic field

is kept on at all times, in order to maintain the spin quantization axis.

The individual columns of Fig. 5.8 demonstrate spin- and momentum-resolved

imaging at various quench times. Sweep time is indicated by the final frequency deviation

of the swept beam, in units of ER. Intuitively, one would not expect stationary atoms

(⟨p⟩ ≈ 0) to tunnel before at least overcoming the recoil shift 4ER, and we observe
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this in the experiment. Denoting transferred momentum by ℏδkij = ℏ(|ki − kj|), and

referring to beam triplets by their colors in Fig. 1(d), when the sweep reaches 4ER

we see beams ω1, ω2 from the red triplet driving the corresponding Raman transition

|X, 0⟩ → |Y, ℏδk12⟩; similarly, the green beams ω′
1, ω

′
3 allow |X, 0⟩ → |Z, ℏδk13⟩. By 8ER,

atoms have firmly populated sites |Y, ℏδk12⟩, |Z, ℏδk13⟩, with initially-faster-moving atoms

beginning to populate the site |X, p = −3ℏkL⟩, completing a traversal of the first Brillouin

zone. By 12ER, more atoms have tunneled through the Brillouin zone, and the momentum

center-of-mass proceeds downward at 16ER; imaging becomes increasingly difficult due to

the lower atom density, so we terminate here. As a consistency check, we also demonstrate

spin-resolved imaging using spin blasts [68] in order to verify that sites on the SM lattice

are of the expected spin projection, mF . We observe good consistency with the SM lattice

model as drawn in Fig. 1(d), although mechanical effects of the spin-blasts can mask

some lattice sites; notably, the X-site at p = −3ℏkLŷ. Our model shows qualitative

agreement with the data for a scaled value of the measured Rabi coupling strengths.

Some disagreement is evident, especially at the lattice sites with momenta p =
√
3/2ℏkL,

which are predicted to have a stronger amplitude than is observed. We attribute these

mismatches to off-resonant effects not included in our effective Hamiltonian.

The lattice scheme presented here is readily tunable. Although the full spin-

momentum lattice is composed of nine frequencies, we can remove links between lattice

sites at will. We explore this flexibility in Fig. 5.9, where we show the driven dynamics

experiment of Fig. 5.8, but now with all images taken at a common sweep time 12ER.

In the two-beam scheme, composed of a single frequency in each of two beams k̂1, k̂2, we

have reduced the system to a 1D SOC model between an effective spin up |↑⟩ = |X,q⟩

and spin down |↓⟩ = |Y,q⟩ [66, 68]. In the 3-beam case, with a single frequency in each

of the k̂1, k̂2, k̂3 beams, we have a 2D spin-orbit coupling [79, 139, 162] cyclically linking

the three states X, Y, Z. The 6-beam case consists of beams k̂1, k̂2, k̂3 each possessing

two frequencies, labeled by their colors red and blue as labeled in Fig. 2.3. In the last
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two columns, we explore the dynamics starting from an even spin mix of states X and

Y , which, in the 9-beam experiment, can be visualized as two SM lattices overlapped on

p = 0.

Figure 5.10. Impact of too-small triplet frequency separation. An earlier version of
this experiment separated the triplets by only ±525 kHz (now ±850 kHz), resulting in
the strong population of positive-momentum lattice sites, a result not expected from the
direction of the frequency sweep.

5.3.4 Conclusion and outlook

We have demonstrated a two-dimensional fermionic spin-momentum lattice without

the use of standing waves. This adds to the wealth of cold atom synthetic dimension

platforms available to study topological materials. The system’s 15 ms lifetime exceeds

our current experimental duration by a factor of 10, and could be further improved with

increased Raman detuning ∆. The current lift beam strength imposes a 30 ms limit, which

can be relaxed under appropriate conditions. The number of visible lattice sites can be

increased with larger Rabi coupling strengths, or by slowing the sweep rate, which would

couple more atoms out of the p ≈ 0 momentum class. The spin-resolved imaging presented

here could be improved by using stronger blast pulses to overcome the Doppler shifts

among the lattice’s numerous momentum states. This work launches a novel platform for

exploring topological physics with optical flux lattices. The natural extension of this work

would be to load the atoms adiabatically into the lowest band and set nonzero coupling

phases such that a gauge flux appears on the plaquettes labeled α, β, γ in Fig. 2.3. The

topology of the band structure could then be probed using established anomalous velocity
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Figure 5.11. Comparison of the 9-beam SM lattice data from Fig. 5.8 (left column) with
the model (middle column), showing the difference image (right column). The coupling
strengths used are given in Table 5.1, all of which are uniformly scaled down by 20%. We
apply to the model images a small Gaussian blur (std. dev. = 2 pixels) commensurate
with the imaging resolution of ≈ 1.5 pixels = 0.1ℏkL. The units are optical density.

techniques [85, 133, 163], which involve accelerating the dressed atoms in the same manner

as done here. Demonstrating this topology would enable the exploration of many-body

fractional Hall states [89]. In the present experiment, spin-contact interactions are not

expected to play a significant role; but these interactions may be increased through the

use of a vertical real-space lattice, as detailed further in [89] for 87Rb, which we note has

the same scattering length ≈100a0 as 87Sr.

Some disagreement with the model persist, as can be seen in Fig. 5.11. The model

under-predicts the upward-going atomic motion, an effect responsible for the over-predicted

population with p ≈ 0 at later evolution times. These effects were especially noticeable

in an earlier version of the experiment, in which we had a smaller triplet separation;
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compare with Fig. 5.10, which shows significant population in modes with p > 0 due to

cross-coupling between triplet beams.

We attribute the discrepancy to both the lingering effects of inter-triplet interference,

and to off-resonant Raman couplings in the SM lattice—i.e., couplings which reverse the

notion of which beam is considered ‘pump’ and which is considered ‘Stokes.’ By increasing

the tensor shift and separation between frequency triplets (currently ±850 kHz), such

effects can be further suppressed.
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Appendix A

Science chamber schematics

Below is the drawing describing the science chamber, exactly as sent to Sharon

Vacuum. For the most part, they did an excellent job, with two minor quips; the first time

they sent it to us, they rotated port 1a incorrectly, which we had to send to them to fix.

We also noticed they missed threading one hole on port 13. Neither turned out to be a

big deal, and we commend their professionalism and quality of construction.
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Appendix B

Recessed viewports

Our “bucket windows” are constructed by the UK Atomic Energy Authority, with

much help from Tim Darby (contact Tim.Darby(at)ccfe.ac.uk). These took about 3 months

to construct, after which they were then sent to LaserOptik GmbH in Germany for the

application of an anti-reflection coating (contact Heiko Haensel, hhaensel(at)laseroptik.de).

Our ’top’ bucket window is flat, while its partner is angled at 2 degrees to avoid etalon

effects. The damage threshold for the coating for CW use is “about 1-2 kW per mm beam

radius.”
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Appendix C

DDS Driver

I designed a custom PCB which can drive any DDS that uses a standard SPI

configuration—specifically, one that uses only SCLOCK, MOSI, IOUPDATE, chip select,

and RESET. It mounts on top of a BeagleBone Black or Beaglebone Green, as in Fig.

3.20.
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Appendix D

Digital buffer schematic

The digital buffers have performed without fail since 2015, with the minor issue of

the fuse F1 failing a few times. It seemed to fail at random, so I removed it entirely and

jumped that connection.
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Appendix E

Rotating wave approximation

I made the rotating-wave approximation (RWA) in Eqn. 2.4 when describing the

dynamics of the 2-level system. It is insightful to consider an alternative derivation that

explicitly demonstrates the geometry behind the name, following [59]. I write the dipole

approximation as HAF = −d · E = −d · ϵ̂E0 cos(ωt). Then, as in Eqn. 2.5 but before

taking the RWA, I take the two parts of the Hamiltonian HA and HAF in terms of Pauli

matrices as

HA =
−ℏω
2

1+
ℏω0

2
σz

HAF = ℏΩcos(ωLt)σx

(E.1)

The Hamiltonian H = HA + HAF may be thought of as describing a spin-1/2 particle

interacting with a crossed magnetic field, with components B0 = ẑℏω0/2 and B1 =

x̂ℏΩcosωLt as in Fig. E.1(a). The field B1 can be decomposed into two components

rotating in opposite directions around the ẑ-axis. The counter-clockwise component of B1

rotates in the direction of the Larmor spin precession and so can act efficiently on it; the

clockwise component rotates at relative frequency −2ωL, too rapid to have appreciable

effect. Dropping this frequency is precisely the rotating-wave approximation.

Taking this a step further, I move into a frame rotating at ωL as in Fig. E.1(b); we
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see that B1 has become time-independent, with amplitude reduced by 1/2. The axial field

B0 sees its field reduced as well, because the Larmor spin precession about ẑ′ is reduced

from ω0 to ω0 − ωL. Thus, in the rotating frame the spin-1/2 particle experiences a net

effective magnetic field BEff about which it precesses at frequency

ΩEff =
√
Ω2 + δ2 (E.2)

which is otherwise known as the generalized Rabi frequency for some laser detuning

δ ≡ ω0 − ωL.

Figure E.1. The rotating wave approximation.
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Appendix F

Optical shutters

F.1 Shutter PCB

The shutters are controlled by the PCB in this section; for more details, see Section

3.4.8.
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F.2 Shutters UART server code

The following has been tested to work on the now-ancient Debian 7.9, using kernel

3.8.13-bone79. My brief attempt at using later kernels and Debian 8.6 was unsuccessful -

the UART wasn’t working, but I suspect pinmuxing issues with the overlay that might

warrant investigation. It is doable, but I haven’t found the need (or time) to upgrade.

The core of the uartserver is written in C, and essentially just waits (using a kernel

event handler) for a UART command, which then updates theh memory-mapped GPIO

registers. Sending 24 bits (corresponding to 12 servos’ sleep and direction bits) to the

controlling Beaglebone sets the state of 12 shutters within < 0.5 ms from the end of

the UART command. Much credit to [164], chapter 8 in particular, for illuminating the

BeagleBone’s internals. The GPIO states are accessible via the kernel’s memory space. By

directly accessing this memory, you can toggle the GPIOs very quickly—much faster than

accessing them through sysfs (the method of e.g. the adafruit python library). You simply

need to know the locations in memory of the various GPIOs. Refer to Table 2-3 in the

AM335x Technical Reference Manual for the base addresses, and Table 25-5 for the offsets.

In the code, the ‘front panel’ refers to the shutter front panel, as described in Fig.

F.1.
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/* uartserver.h

* Below defines a mapping between the shutters ’ front panel numbering

and

* the GPIO NO. to which sleep and direction correspond on the

beaglebone.

*

* For example ,

*

* #define SLP7 5

*

* Means the sleep pin of Shutter #7 (as marked on the front panel)

corresponds to GPIO 5

* in the sysfs file mapping - e.g. you’d find the device value file at

*

* /sys/class/gpio/gpio5/value

*

* into which you could echo a 0 or 1 to raise the pin high or low.

*

* gpioX[Y]: X specifies the GPIO bank , of which there are 4, which is

needed to find the correct register.

* Y specifies the actual bit location in the register which

corresponds to the specific GPIO.

*

* The correspondance table can be found from Derek Molloy ’s work online

, the P8/P9 header tables.

*/

#define DIR1 "112" /* P9_30 , gpio3 [16]*/

#define SLP1 "110" /* P9_31 , gpio3 [14]*/

#define DIR2 "111" /* P9_29 , gpio3 [15]*/

#define SLP2 "115" /* P9_27 , gpio3 [19]*/

#define DIR3 "117" /* P9_25 , gpio3 [21]*/

#define SLP3 "49" /* P9_23 , gpio1 [17]*/
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#define DIR4 "3" /* P9_21 , gpio0 [3] */

#define SLP4 "4" /* P9_18 , gpio0 [4] NOTE: on the pcb , soldered is

P9_19 which is not usable , jump it to P9_18 */

#define DIR5 "5" /* P9_17 , gpio0 [5] */

#define SLP5 "48" /* P9_15 , gpio1 [16]*/

#define DIR6 "50" /* P9_14 , gpio1 [18]*/

#define SLP6 "60" /* P9_12 , gpio1 [28]*/

#define DIR7 "76" /* P8_39 , gpio2 [12]*/

#define SLP7 "74" /* P8_41 , gpio2 [10]*/

#define DIR8 "80" /* P8_36 , gpio2 [16]*/

#define SLP8 "79" /* P8_38 , gpio2 [15]*/

#define DIR9 "11" /* P8_32 , gpio0 [11]*/

#define SLP9 "81" /* P8_34 , gpio2 [17]*/

#define DIR10 "88" /* P8_28 , gpio2 [24]*/

#define SLP10 "89" /* P8_30 , gpio2 [25]*/

#define DIR11 "33" /* P8_24 , gpio1 [1] */

#define SLP11 "61" /* P8_26 , gpio1 [29]*/

#define DIR12 "63" /* P8_20 , gpio1 [31]*/

#define SLP12 "37" /* P8_22 , gpio1 [5] */

/* Bitmasks for the sent Adwin command. D is direction , S is sleep.

*

* A command is a 24-bit number. (command >> DX )&1 gets the

* direction of shutter X, and (command >> SX)&1 gets the sleep

* Status of shutter X.

*

* No suffix , e.g. D1, denotes the location of the bit

* in the AdWin UART command.

*

* _r denotes the register location of the GPIO.

*

*/
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#define D6 0

#define D6_r 18

#define S6 1

#define S6_r 28

#define D5 2

#define D5_r 5

#define S5 3

#define S5_r 16

#define D4 4

#define D4_r 3

#define S4 5

#define S4_r 4

#define D3 6

#define D3_r 21

#define S3 7

#define S3_r 17

#define D2 8

#define D2_r 15

#define S2 9

#define S2_r 19

#define D1 10

#define D1_r 16

#define S1 11

#define S1_r 14

#define D12 12

#define D12_r 31

#define S12 13

#define S12_r 5

#define D11 14

#define D11_r 1

#define S11 15
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#define S11_r 29

#define D10 16

#define D10_r 24

#define S10 17

#define S10_r 25

#define D9 18

#define D9_r 11

#define S9 19

#define S9_r 17

#define D8 20

#define D8_r 16

#define S8 21

#define S8_r 15

#define D7 22

#define D7_r 12

#define S7 23

#define S7_r 10

/* Register base addresses for each GPIO bank. */

/* See the AM335x Technical Reference Manual , Table 2-3. */

#define GPIO0 0x44E07000

#define GPIO1 0x4804C000

#define GPIO2 0x481AC000

#define GPIO3 0x481AE000

/* Register offsets to set and clear bits.

* See AM335x TRM reference Table 25-5. */

#define CLEAR 0x190

#define SET 0x194

/* Each GPIO bank is exactly 4kBytes == 0xFFF */
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#define MAP_SIZE 0xFFF

/* This is the fastest rate the adwin can support.

* It correponds to 1/115200 ~ 8.6uS pulses */

#define BAUDRATE B115200

/* UART 1 on P9_26 */

#define TTY "/dev/ttyO1"

#define GPIO_EXPORT_PATH "/sys/class/gpio/export"

#define GPIO_UNEXPORT_PATH "/sys/class/gpio/unexport"

#define GPIO_PATH "/sys/class/gpio/gpio"

#define MAX_PATH_SIZE 10000

#define FATAL do { fprintf(stderr , "Error at line %d, file %s (%d) [%s]\

n", \

__LINE__ , __FILE__ , errno , strerror(errno)); exit (1); } while (0)

#define UART_COMMAND_BYTES 3

/* The below definitions are just used for setting up the GPIOs

* in sysfs */

char * GPIOs[] = { DIR1 , SLP1 ,

DIR2 , SLP2 ,

DIR3 , SLP3 ,

DIR4 , SLP4 ,

DIR5 , SLP5 ,

DIR6 , SLP6 ,
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DIR7 , SLP7 ,

DIR8 , SLP8 ,

DIR9 , SLP9 ,

DIR10 ,SLP10 ,

DIR11 ,SLP11 ,

DIR12 ,SLP12};

/* File handles to sleep and direction pins - these are unused

* in the latest versions of uart -interrupt , since I use registers

* instead , but keep this for backwards compat. for debugging. */

int fD1 , fS1;

int fD2 , fS2;

int fD3 , fS3;

int fD4 , fS4;

int fD5 , fS5;

int fD6 , fS6;

int fD7 , fS7;

int fD8 , fS8;

int fD9 , fS9;

int fD10 ,fS10;

int fD11 ,fS11;

int fD12 ,fS12;

int *fileHandles [] = { &fD1 , &fS1 ,

&fD2 , &fS2 ,

&fD3 , &fS3 ,

&fD4 , &fS4 ,

&fD5 , &fS5 ,

&fD6 , &fS6 ,

&fD7 , &fS7 ,

&fD8 , &fS8 ,

&fD9 , &fS9 ,

157



&fD10 ,&fS10 ,

&fD11 ,&fS11 ,

&fD12 ,&fS12};

/* Pointers to the register banks and clr/set registers */

void *gpio0 , *gpio0_clr , *gpio0_set;

void *gpio1 , *gpio1_clr , *gpio1_set;

void *gpio2 , *gpio2_clr , *gpio2_set;

void *gpio3 , *gpio3_clr , *gpio3_set;

static volatile int keepRunning = 1;

void UART_command_received (int status);

int unexport_gpio(char * gpio_num);

int export_gpio(char * gpio_num);

void intHandler(int dummy);

void printBinary(int num);

int memfd;

unsigned long read_result , writeval;

int fd;

/* uartserver.c

*

* The main UART server. Reacts to serial UART commands , which set the

shutter sleep and

* direction pins.

* Sets up all sysfs files for all the GPIOs used on shutter box.

* On receipt of UART1 signal , toggles GPIOs according to the UART

command ,

* using direct memory access to the BeagleBone ’s CPU (AM335x) registers

. */
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#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <fcntl.h>

#include <sys/signal.h>

#include <errno.h>

#include <termios.h>

#include <signal.h>

#include <sys/types.h>

#include <sys/mman.h>

#include <limits.h>

#include "uart -interrupt.h"

// Uncommend the below #define to enter debug mode , in which

// the UART commands are printed to the terminal for inspection.

// Note this adds a LOT of latency. Don’t use in experiments.

/* #define DEBUG 0 */

/* Handle CTRL+C quitting gracefully */

void intHandler(int dummy) {

printf("Caught CTRLC , terminating. \n");

/* Not strictly necessary , as memory is unmapped on termination */

//close(fd);

/* if(munmap(gpio0 , MAP_SIZE) == -1) FATAL; */

/* if(munmap(gpio1 , MAP_SIZE) == -1) FATAL; */
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/* if(munmap(gpio2 , MAP_SIZE) == -1) FATAL; */

/* if(munmap(gpio3 , MAP_SIZE) == -1) FATAL; */

/* close(memfd); */

int i;

/* Unexport all gpios , close all opened file handles. */

for(i=0; i < sizeof(GPIOs)/sizeof(GPIOs [0]); i++)

{

unexport_gpio(GPIOs[i]);

close(* fileHandles[i]);

}

keepRunning = 0;

exit (0);

}

/* Just to aid in debugging */

void printBinary(int n)

{

int c, k;

for (c = 31; c >= 0; c--)

{

k = n >> c;

if (k & 1)

printf("1");

else

printf("0");

if(c%4==0)

printf(" ");

}
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printf("\n");

}

int export_gpio(char * gpio_num)

{

int fd_export ,fd_dir , writeresult;

/* First export the GPIO */

if ( (fd_export = open(GPIO_EXPORT_PATH , O_WRONLY)) <0) {

perror("Failed to open GPIO export file , wtf?");

printf("%s \n",gpio_num);

exit (1);

}

if(( writeresult = write(fd_export , gpio_num , sizeof(gpio_num))) <0) {

perror("Failed to write to output");

printf("%s \n",gpio_num);

}

else {

printf("Successfully exported GPIO %s \n", gpio_num);

}

close(fd_export);

/* Now set it to output -mode */

char dirpath[MAX_PATH_SIZE] = {0};

snprintf(dirpath ,sizeof(dirpath),"%s%s/direction",GPIO_PATH , gpio_num)

;

printf("configured dirpath = %s \n",dirpath);

fd_dir = open(dirpath ,O_WRONLY);
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char * direction = "high";

write(fd_dir , direction , sizeof(direction));

close(fd_dir);

/* have a handle to ’value’ open at all times */

char gpiopath[MAX_PATH_SIZE] = {0};

snprintf(gpiopath ,sizeof(gpiopath),"%s%s/value",GPIO_PATH , gpio_num);

printf("configured giopath = %s \n",gpiopath);

return open(gpiopath ,O_WRONLY); // return an open file handle for

later use

}

int unexport_gpio(char * gpio_num) {

/* Unexports the GPIO */

int fd_unexport , res;

if ( (fd_unexport = open(GPIO_UNEXPORT_PATH , O_WRONLY)) <0) {

perror("Failed to open GPIO unexport file , wtf?");

printf("%s \n",gpio_num);

exit (1);

}

if ( (res = write(fd_unexport , gpio_num , sizeof(gpio_num))) <0) {

perror("Failed to unexport GPIO:");

printf("Failed unxporting GPIO #%s \n",gpio_num);

}

}

int main(int argc , char *argv [])

{
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/* Catch CTRL+C */

signal(SIGINT , intHandler);

/* Open file handles to all the GPIOs we’re going to

be using. */

size_t i;

for(i=0; i < sizeof(GPIOs)/sizeof(GPIOs [0]); i++)

{

printf("GPIOs[i] = %s \n", GPIOs[i]);

*fileHandles[i] = export_gpio(GPIOs[i]);

}

/* Open the system ’s memory table */

if((memfd = open("/dev/mem", O_RDWR | O_SYNC)) == -1) FATAL;

printf("/dev/mem opened .\n");

fflush(stdout);

/* Map GPIO address spaces */

gpio0 = mmap(0, MAP_SIZE , PROT_READ | PROT_WRITE , MAP_SHARED , memfd ,

GPIO0);

gpio1 = mmap(0, MAP_SIZE , PROT_READ | PROT_WRITE , MAP_SHARED , memfd ,

GPIO1);

gpio2 = mmap(0, MAP_SIZE , PROT_READ | PROT_WRITE , MAP_SHARED , memfd ,

GPIO2);

gpio3 = mmap(0, MAP_SIZE , PROT_READ | PROT_WRITE , MAP_SHARED , memfd ,

GPIO3);

if(gpio0 == (void *) -1) FATAL;

if(gpio1 == (void *) -1) FATAL;

if(gpio2 == (void *) -1) FATAL;

if(gpio3 == (void *) -1) FATAL;

fflush(stdout);
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/* Compute the memory locations of the clear and set registers */

gpio0_clr = gpio0 + CLEAR;

gpio0_set = gpio0 + SET;

gpio1_clr = gpio1 + CLEAR;

gpio1_set = gpio1 + SET;

gpio2_clr = gpio2 + CLEAR;

gpio2_set = gpio2 + SET;

gpio3_clr = gpio3 + CLEAR;

gpio3_set = gpio3 + SET;

/* Open the UART Rx port - we use UART1 on the BeagleBone , Rx is pin

P9_26 */

fd = open(TTY , O_RDONLY | O_NOCTTY);

if (fd == -1)

{

perror("open_port: Unable to open /dev/ttyO1\n");

exit (1);

}

/* Configure some default serial port settings. */

struct termios termAttr;

struct sigaction saio;

saio.sa_handler = UART_command_received; // This function is called

when a UART signal is rec’d

saio.sa_flags = 0;

saio.sa_restorer = NULL;

sigaction(SIGIO ,&saio ,NULL);

fcntl(fd, F_SETFL , FASYNC);

fcntl(fd, F_SETOWN , getpid ());

tcgetattr(fd ,& termAttr);

cfsetispeed (&termAttr ,BAUDRATE);
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cfsetospeed (&termAttr ,BAUDRATE);

// termAttr.c_cc[VMIN]= sizeof(int);

termAttr.c_cc[VMIN]= UART_COMMAND_BYTES; // minimum number of bytes per

read() - will block until satisfied

termAttr.c_cc[VTIME ]=1;// time to wait in deciseconds , 0 = infinite

termAttr.c_cflag &= ~PARENB; // disable parity check

termAttr.c_cflag &= ~CSTOPB; // one stop bit

termAttr.c_cflag &= ~CSIZE;

termAttr.c_cflag |= CS8;

termAttr.c_cflag |= (CLOCAL | CREAD); // ignore modem control lines ,

enable receiver

termAttr.c_lflag &= ~( ICANON | ECHO | ECHOE | ISIG); // noncanonical

mode

termAttr.c_iflag &= ~(IXON | IXOFF | IXANY);

termAttr.c_oflag &= ~OPOST;

tcsetattr(fd,TCSANOW ,& termAttr);

printf("UART1 configured. Server is running .\n");

while(keepRunning == 1){/* Loop forever until CTRL+C */}

printf("Terminating ...\n");

}

int UART_command;

size_t szCommand = sizeof(UART_command);

/* Event handler called when a UART string is received.

* */

void UART_command_received (int status)

{
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#ifdef DEBUG

printf("UART command received; waiting on read() ....\n");

#endif

/* This sysfs read() adds ~40 us measured latency - negligble at AdWin

’s baud rate. */

/* read(fd ,& UART_command ,szCommand); // TODO: can we replace szCommand

with UART_COMMAND_BYTES? */

read(fd ,& UART_command ,UART_COMMAND_BYTES);

#ifdef DEBUG

printf("Command is: 0x%x, dec %d\n",UART_command ,UART_command);

printf("Command in binary: ");

printBinary(UART_command);

#endif

/* Parse the UART_command: get the relevant bits from the UART command

* and set the corresponding registers.

*

* See uart -interrupt.h for details.

*

* The 0xFFFFFF ^... in the various *gpioX_clr inverts the sent command

,

* because you counter -intuitively write a 1 to actually clear the bit

(see the AM335x TRM) */

*(( unsigned long *) gpio0_clr) = (((((0 xFFFFFF^UART_command)>>D4)&1)

<< D4_r) +

((((0 xFFFFFF^UART_command)>>S4)&1) << S4_r) +

((((0 xFFFFFF^UART_command)>>D5)&1) << D5_r) +

((((0 xFFFFFF^UART_command)>>D9)&1) << D9_r));

*(( unsigned long *) gpio0_set) = (((( UART_command >>D4)&1) << D4_r) +
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((( UART_command >>S4)&1) << S4_r) +

((( UART_command >>D5)&1) << D5_r) +

((( UART_command >>D9)&1) << D9_r));

#ifdef DEBUG

int cmd = (((( UART_command >>D4)&1) << D4_r) +

((( UART_command >>S4)&1) << S4_r) +

((( UART_command >>D5)&1) << D5_r) +

((( UART_command >>D9)&1) << D9_r));

printf("gpio0 hex: %x\n",cmd);

printBinary(cmd);

#endif

*(( unsigned long *) gpio1_clr) = (((((0 xFFFFFF^UART_command)>>S3)&1)

<< S3_r) +

((((0 xFFFFFF^UART_command)>>S5)&1) << S5_r) +

((((0 xFFFFFF^UART_command)>>D6)&1) << D6_r) +

((((0 xFFFFFF^UART_command)>>S6)&1) << S6_r) +

((((0 xFFFFFF^UART_command)>>D11)&1) << D11_r) +

((((0 xFFFFFF^UART_command)>>S11)&1) << S11_r) +

((((0 xFFFFFF^UART_command)>>D12)&1) << D12_r) +

((((0 xFFFFFF^UART_command)>>S12)&1) << S12_r));

*(( unsigned long *) gpio1_set) = (((( UART_command >>S3)&1) << S3_r) +

((( UART_command >>S5)&1) << S5_r) +

((( UART_command >>D6)&1) << D6_r) +

((( UART_command >>S6)&1) << S6_r) +

((( UART_command >>D11)&1) << D11_r) +

((( UART_command >>S11)&1) << S11_r) +

((( UART_command >>D12)&1) << D12_r) +

((( UART_command >>S12)&1) << S12_r));

#ifdef DEBUG

cmd = (((( UART_command >>S3)&1) << S3_r) +

((( UART_command >>S5)&1) << S5_r) +

((( UART_command >>D6)&1) << D6_r) +
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((( UART_command >>S6)&1) << S6_r) +

((( UART_command >>D11)&1) << D11_r) +

((( UART_command >>S11)&1) << S11_r) +

((( UART_command >>D12)&1) << D12_r) +

((( UART_command >>S12)&1) << S12_r));

printf("gpio1: %x\n", cmd);

printBinary(cmd);

#endif

*(( unsigned long *) gpio2_clr) = (((((0 xFFFFFF^UART_command)>>D9)&1)

<< D9_r) +

((((0 xFFFFFF^UART_command)>>S9)&1) << S9_r) +

((((0 xFFFFFF^UART_command)>>S10)&1) << S10_r) +

((((0 xFFFFFF^UART_command)>>D10)&1) << D10_r) +

((((0 xFFFFFF^UART_command)>>D7)&1) << D7_r) +

((((0 xFFFFFF^UART_command)>>S7)&1) << S7_r) +

((((0 xFFFFFF^UART_command)>>D8)&1) << D8_r) +

((((0 xFFFFFF^UART_command)>>S8)&1) << S8_r));

*(( unsigned long *) gpio2_set) = (((( UART_command >>D9)&1) << D9_r) +

((( UART_command >>S9)&1) << S9_r) +

((( UART_command >>S10)&1) << S10_r) +

((( UART_command >>D10)&1) << D10_r) +

((( UART_command >>D7)&1) << D7_r) +

((( UART_command >>S7)&1) << S7_r) +

((( UART_command >>D8)&1) << D8_r) +

((( UART_command >>S8)&1) << S8_r));

#ifdef DEBUG

cmd = (((( UART_command >>D9)&1) << D9_r) +

((( UART_command >>S9)&1) << S9_r) +

((( UART_command >>S10)&1) << S10_r) +

((( UART_command >>D10)&1) << D10_r) +

((( UART_command >>D7)&1) << D7_r) +
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((( UART_command >>S7)&1) << S7_r) +

((( UART_command >>D8)&1) << D8_r) +

((( UART_command >>S8)&1) << S8_r));

printf("gpio2: %x\n", cmd);

printBinary(cmd);

#endif

*(( unsigned long *) gpio3_clr) = (((((0 xFFFFFF^UART_command)>>D1)&1)

<< D1_r) +

((((0 xFFFFFF^UART_command)>>S1)&1) << S1_r) +

((((0 xFFFFFF^UART_command)>>D2)&1) << D2_r) +

((((0 xFFFFFF^UART_command)>>S2)&1) << S2_r) +

((((0 xFFFFFF^UART_command)>>D3)&1) << D3_r));

*(( unsigned long *) gpio3_set) = (((( UART_command >>D1)&1) << D1_r) +

((( UART_command >>S1)&1) << S1_r) +

((( UART_command >>D2)&1) << D2_r) +

((( UART_command >>S2)&1) << S2_r) +

((( UART_command >>D3)&1) << D3_r));

#ifdef DEBUG

cmd = (((( UART_command >>D1)&1) << D1_r) +

((( UART_command >>S1)&1) << S1_r) +

((( UART_command >>D2)&1) << D2_r) +

((( UART_command >>S2)&1) << S2_r) +

((( UART_command >>D3)&1) << D3_r));

printf("gpio3: %x\n", cmd);

printBinary(cmd);

printf("------------------\n");

#endif

}
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Appendix G

Switchable gain transimpedance am-
plifier PCB

Below is the 2-layer PCB art of the electronically-switchable-gain amplifier, whose

description and schematic is in Section 3.4.2.
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