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Abstract
Filamin A (FlnA) has been associated with actin as cytoskeleton regulator. Recently its role in

the cell has come under scrutiny for FlnA’s involvement in cancer development. FlnA was

originally revealed as a cancer-promoting protein, involved in invasion and metastasis.

However, recent studies have also found that under certain conditions, it prevented tumor

formation or progression, confusing the precise function of FlnA in cancer development.

Here, we try to decipher the role of FlnA in cancer and the implications for its dual role. We

propose that differences in subcellular localization of FlnA dictate its role in cancer

development. In the cytoplasm, FlnA functions in various growth signaling pathways, such as

vascular endothelial growth factor, in addition to being involved in cell migration and

adhesion pathways, such as R-Ras and integrin signaling. Involvement in these pathways and

various others has shown a correlation between high cytoplasmic FlnA levels and invasive

cancers. However, an active cleaved form of FlnA can localize to the nucleus rather than the

cytoplasm and its interaction with transcription factors has been linked to a decrease in

invasiveness of cancers. Therefore, overexpression of FlnA has a tumor-promoting effect,

only when it is localized to the cytoplasm, whereas if FlnA undergoes proteolysis and the

resulting C-terminal fragment localizes to the nucleus, it acts to suppress tumor growth and

inhibit metastasis. Development of drugs to target FlnA and cause cleavage and subsequent

localization to the nucleus could be a new and potent field of research in treating cancer.
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Introduction
Filamin A (FlnA), also known as actin-binding protein 280

(ABP 280), was first identified as a non-muscle actin

filament cross-linking protein (Stossel & Hartwig 1975).

Subsequent reports revealed the importance of this

protein in cytoplasmic gelation, cell contraction, and

spreading (Hartwig & Stossel 1975). Since then, two other

paralogous genes, filamin B (FlnB) and filamin C (FlnC),

have been established as part of the filamin family.

Filamins largely act as scaffolding molecules, facilitating
protein–protein interactions and influencing protein

cellular localization. Studies revealed the protein

structures of the filamins and identified over 90 filamin-

binding proteins involved in cell signaling, cell migration

and adhesion, phosphorylation, proteolysis, ion channel

regulation, transcription regulation, receptor activation,

muscle development, and other important cell functions.

Mutations in these molecules have can result in a wide

range of disease phenotypes, including terminal osseous
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dysplasia, cardiovascular malformations, and neural

defects (Nakamura et al. 2011).

The filamins, in particular, FlnA, are highly suscep-

tible to proteolysis. Multiple studies showed that, while

full-length FlnA is mainly localized to the cytoplasm, it

can be cleaved to a 90-kDa fragment that can then localize

to the nucleus (Ozanne et al. 2000, Loy et al. 2003, Wang

et al. 2007, Bedolla et al. 2009). In the cytoplasm, full-

length FlnA promotes the development of metastasis

(recently reviewed in Yue et al. (2013)), whereas nuclear

FlnA was shown to be necessary for inhibition of

transcription and susceptibility to therapeutic interven-

tions (Loy et al. 2003, Wang et al. 2007). In this review, we

therefore focus on the opposing roles of FlnA in cancer

progression depending on its localization. Reports in the

literature have proposed blocking FlnA expression as a

means of cancer therapy; however, we and others showed

that completely eliminating FlnA will have serious

deleterious consequences. Here, we propose, instead, to

promote FlnA proteolysis – which was shown to have the

required cancer-suppression effect.
FlnA is important for organogenesis during
development

Early studies indicated that loss of FlnA was embryonically

lethal (Feng et al. 2006). Absence of FlnA resulted in male

lethality because of incomplete septation of the outflow

tract of the heart, which produces common arterial trunk

and midline fusion defects manifesting as sternum and

palate abnormalities (Hart et al. 2006). In addition, carrier

females exhibit misshapen pupils while a proportion

of both male and female mutant mice have other cardiac

defects including ventricular septal defect (Hart et al.

2006). However, mice that lack FlnA only in the

megakaryocyte (MK) lineage were generated by pairing

FlnAloxP mice with PF4-Cre mice and were shown to have

severe macrothrombocytopenia because of the rapid

clearance of FlnA-null platelets from circulation (Jurak

Begonja et al. 2011). Further, FlnA was important for

platelet formation because FlnAloxP PF4-Cre bone marrows

and spleens had increased megakaryopoiesis and FlnA-

null proplatelets released platelets more readily than

controls in vitro (Jurak Begonja et al. 2011).

Mutations in the FlnA gene were linked to a large

number of developmental diseases. Periventricular hetero-

topia is an X-linked dominant disorder, in which neurons

fail to migrate into the cerebral cortex, but remain as

nodules lining the ventricular surface. This disease has

been linked to various mutations in FlnA, including a
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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frameshift mutation (3045del5) in exon 21 (de Wit et al.

2009) and a cytosine-to-thymidine missense mutation

(c. C1286T) in exon 9, resulting in a threonine-to-methionine

amino acid substitution (Masruha et al. 2006). Various

other mutations in other parts of the gene, resulting in

protein misfolding, has been reported (Sheen et al. 2001,

2005, Parrini et al. 2006). Most hemizygous affected males

die early during embryogenesis, whereas heterozygous

females have normal intelligence but suffer from various

neurological and vascular conditions. FlnA mutations

have been linked to not only neurological disorders but

cardiovascular problems as well (described in details in

Zhou et al. (2007)), including familial cardiac valvular

dystrophy (Kyndt et al. 2007).

The high rate of neurological and cardiovascular

developmental disorders due to mutations in various

parts of the FlnA gene has highlighted its importance in

cell migration during development (Price et al. 1994,

de Wit et al. 2009). Axonal pathfinding during embryo-

genesis is based on the migration of nerve growth cones,

which relies strongly on f-actin, filamin, a-actinin, myosin,

tropomyosin, talin, and vinculin (Letourneau & Shattuck

1989). Shortly thereafter, it was discovered that mutations

in FlnA prevented migration of cerebral cortical neurons

that led to incomplete neurological development (Fox et al.

1998). Because of this, FlnA mutations have been linked to

a broad range of congenital malformations, affecting

craniofacial structures, skeleton, brain, viscera, and uro-

genital tract, in four X-linked human disorders: otopala-

todigital syndrome types 1 (OPD1) and 2 (OPD2),

frontometaphyseal dysplasia, and Melnick–Needles syn-

drome (Robertson et al. 2003). Interestingly, the majority

of the mutations are clustered into four regions of the gene:

the actin-binding domain (ABD) and rod domain repeats 3,

10, and 14/15 (described later) (Robertson et al. 2003).

Mutations in FlnA are also linked to an X-linked recessive

form of chronic idiopathic intestinal pseudo-obstruction

(CIIPX; Gargiulo et al. 2007) and to an X-inactivation

mosaicism in the corneal epithelia (Douvaras et al. 2012).

The varieties of disorders that are associated with

mutations in FlnA indicate its importance in cell and

organ development. High filamin expression was reported

in diverse organs including esophagus, stomach, intestine,

aorta, lung, bladder, uterus, and ovary (Brown & Binder

1993). Filamin expression is somewhat tissue specific: FlnA

and FlnB are ubiquitously expressed, while FlnC is limited

to cardiac and skeletal cells (Maestrini et al. 1993, van der

Flier & Sonnenberg 2001). Proper functioning of FlnA is

ubiquitously required for maintenance and organ

development (Zhou et al. 2010).
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FlnA regulates organogenesis by its ability to
induce cell migration through its actin-binding
properties

FlnA’s role in organogenesis likely arises from its ability to

regulate cell migration. Within the human genome, FlnA is

located on chromosome Xq28 and consists of 48 exons

spanning a little over 26 kb (Fig. 1A). The two other

paralogous Fln genes in humans, FlnB and FlnC, are

located on chromosome 3p14.3 and chromosome

7q32–35 respectively (Fig. 1A). The wide distribution of

filamins throughout the human genome points to its

high importance in development; it is likely that this

arrangement prevents complete inactivation of all filamins

due to malfunction of any one part. The FlnA gene has two

known full-length mRNA variants. The two FlnA

alternative splicing variants are very similar and only differ

in the deletion of 24 nucleotides coding for amino acids

1649–1656, skipping an entire exon (Maestrini et al. 1993).

The similarity between the two full-length FlnA transcripts

has prevented studies to distinguish the expression
FlnA on the X chromosome 

FlnB on chromosome 3 

FlnC on chromosome 7 

FlnA transcript variants 

A 

B 

1        2     4    5   6   7   8    9  10 11  12 13  15 16  17  19  20  21  23 24

chrX (q28) Xp22.2 21.3 P21.1 11.4 q12

chr3 (p14.3) p24.3 14.1 12.3p13

chr7 (q32.1) 7p21.3 21.1 15.3 p14.3 p14.1 13 11

265 4422

265 4422

Figure 1

(A) Within the human genome, FlnA is located on chromosome Xq28, while

FlnB is located on chromosome 3p14.3, and FlnC is located on chromosome

7q32–35. (B) The FlnA gene has two known full-length mRNA variants,

which only differ in the deletion of 24 nucleotides coding for amino acids
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patterns between the two variants (Maestrini et al. 1993,

Uhlen et al. 2010). In addition, FlnA-spliced variants were

identified, which could result in smaller C-terminal

fragments of FlnA (predicted protein size 120, 106, or

85 kDa fragments) (Fig. 1B; Wiemann et al. 2001).

The more common full-length transcript encodes a

280-kDa protein consisting of 2647 amino acids with

several different domains. The full-length filamin contains

an ABD at the N-terminal end followed by 24 immuno-

globulin (Ig)-like repeat domains, which are folded into

b-sheets and together form a rod structure (Ruskamo et al.

2012; Fig. 2A). The ABD of FlnA is similar to other ABDs

and contains two calponin homology (CH) domains, with

two actin-binding sites (ABS) in CH1 and one ABS in CH2

(Ruskamo & Ylanne 2009). These CH domains are

conserved in FlnB and FlnC (Fig. 2A). In both FlnA and

FlnC, there are also transmembrane domains in the ABD,

not present in FlnB. Therefore, FlnA and FlnC, but not

FlnB, are predicted to localize to the plasma membrane.

On the other hand, FlnA and FlnB both contain nuclear

localization signals (NLS) in the ABD, not present in FlnC,
  25  26 27  28  29 30 31      32  34  35 36  37  38    43 46  47 48  

Xq21.1 21.31 22.1 22.3 Xq23 Xq24 Xq25 26.3 27.3 Xq28

3q24 q26.1 q28q23 3q29

.23 7q21.11 21.3 q22.1 7q31.1 7q33 7q34 7q35 36.1

a4406 8545

b3119 8545

d3119 151

e3119 8545

c3119 8545

1649–1656 – skipping an entire exon. In addition, cDNA clones were

identified that could result in smaller C-terminal fragments of FlnA

(predicted 120, 106, or 85 kDa fragments).
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Figure 2

(A) FlnA is a 280 kDa protein consisting of 2647 amino acids with several

different domains. There is an actin-binding domain (ABD) at the

N-terminal end followed by 24 immunoglobulin (Ig)-like repeat domains,

which are folded into b-sheets and together form a rod structure. The ABD

of FlnA contains two calponin homology (CH) domains, with two actin-

binding sites (ABS) in CH1 and one ABS in CH2. FlnA also contains a

transmembrane domain in the ABD and three nuclear localization

domains, located in repeats 1, 14, and 21. While the CH domains are

conserved in FlnB and FlnC, FlnB does not contain the transmembrane

domain and has only two nuclear localizations, located in repeats 1 and 14.

FlnC does contain the transmembrane domain, but only has one nuclear

localization in repeat 14. In all three, the 24 repeat domains following the

ABD are interrupted by two hinge regions, the first (H1) is between repeats

15 and 16 and the second (H2) is between repeats 23 and 24. The repeat

domains within FlnA have high sequence similarity and there is also high

sequence similarity between the three filamin isoforms, with w70%

sequence similarity overall, and the lowest homology of only 45% at the

hinge regions. (B) The molecules homodimerize by binding at repeat 24

and the hinge domains allow the protein to bend, so that when it dimerizes

the structure is similar to a Y. (C) Dimerization allows FlnA to regulate the

structure of the cell through actin binding in multiple ways. FlnA anchors

the actin filamins at the membrane and can form them into perpendicular

or parallel strands.
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though all three isoforms have an NLS in repeat 14, and

FlnA has a third NLS in repeat 20 (Fig. 2A).

The 24 repeat domains at the C-terminal end of the

filamins are interrupted by two hinge regions, the first (H1)

between repeats 15 and 16 and the second (H2) between

repeats 23 and 24 (Fig. 2A). The repeat domains within FlnA

have high sequence similarity and there is also high

homology between the three filamin isoforms, with w70%

of sequence similarity overall, and the lowest homology of

only 45% at the hinge regions (van der Flier & Sonnenberg

2001). The molecules homodimerize through repeat 24 and

the hinge domains allow the protein tobend, so that when it

dimerizes, the structure is similar to a Y, with dimerization

occurring at the 24th repeat (Robertson 2005; Fig. 2B).

Dimerization allows FlnA to regulate the structure of

the cell through actin binding in multiple ways (Fig. 2C).

The best known function of FlnA is to crosslink actin,

providing organization and stability to actin that forms

the cytoskeleton. This function of FlnA involves forma-

tion of homodimers at the C-terminal and binding to actin

filamins with the N-terminal ABD (van der Flier &

Sonnenberg 2001). As an integral part of the cytoskeleton,

FlnA maintains cell rigidity and protein localization, and

is of particular importance in cell adhesion and migration.
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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In addition, FlnA also increases branching of actin

proteins, which is required to organize the cytoskeleton

and maintain the flexibility and rigidity of the cell (Stossel

et al. 2001). FlnA is also crucial in cell migration – it is

recruited to the sites of migration, such as filopodia and

lamellipodia, and brings other proteins involved with this

function to the cell surface to allow cell movement

(Nakamura et al. 2011). These reports indicate that the

major functions of FlnA in the cytoplasm or at the

membrane appear to be the promotion of cell adhesion,

migration, or rigidity. On the other hand, WT FlnA

overexpression also inhibited neuronal migration, thereby

indicating that an optimum levels of FlnA is required for

proper development (Sarkisian et al. 2006).
FlnA acts as a scaffolding molecule to regulate
various cell functions

FlnA has over 90 known protein-binding partners, many

of which regulate the actin cytoskeleton (Fig. 3). Many of

these proteins interact with FlnA as part of the signaling

pathways to reorganize the actin cytoskeleton as a reaction

to stress or other stimuli (Zhou et al. 2010). As FlnA is a

large molecule, it is used as scaffolding for other proteins
Published by Bioscientifica Ltd.
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Figure 3

FlnA has over 90 known protein-binding partners, many of which regulate the actin cytoskeleton. Actin binding occurs at the ABD and also between repeats

9 and 15. Most other proteins bind closer to the C-terminal domain, between repeats 16 and 24.
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to bind and regulate the response to cell signaling. Most

proteins interact with one of the Ig repeat domains of FlnA

and because of the similarity between repeats, proteins can

bind at multiple sites (Nakamura et al. 2011). In addition,

most protein binding occurs at the C-terminal end, while

the ABD is present at the N-terminal (van der Flier &

Sonnenberg 2001, Stossel et al. 2001).

b1-integrin, which binds to repeat 21 of FlnA, is of

critical importance in cell adhesion. FlnA binds to the

cytoplasmic domain of b1-integrin and promotes cell

adhesion and migration by facilitating ligand binding via

inside-out signaling. FlnA and b1-integrin maintain a

positively correlated relationship during cell spreading

and migration, when one is decreased, so is the other (Kim

et al. 2008). Disruption of this interaction by knockdown

of FlnA decreases the amount of b1-integrin present at the

cell membrane at the cell’s initial contact with the

extracellular matrix, showing the importance of FlnA in

cell adhesion (Kim & McCulloch 2011). Deregulation of

this pathway is often found in various types of cancer and

has been implicated for therapeutic targets (Barkan &

Chambers 2011).

FlnA is often found co-localized with vimentin and

both are found at sites of cell protrusions (Kim &

McCulloch 2011). Overexpression of proteins such as
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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RalA normally stimulates migration, but FlnA deficient

cells were unable to migrate, indicating the crucial role of

FlnA (Ohta et al. 1999). In addition, FlnA acts at these sites

to bring multiple proteins including PtdIns(3,4,5)P(3),

sphingosine kinase 1, and small GTPases to the sites of

lamellipodia formation to promote cell migration

(Maceyka et al. 2008, Takabayashi et al. 2010, Zhou et al.

2010). FlnA anchors the GTPases to the cell membrane,

acting as a scaffolding protein for downstream targets to

remodel the actin cytoskeleton and allow cell motility

(Zhou et al. 2010).

Tissue factor (TF), the cellular receptor and cofactor for

clotting factor VII/VIIa (FVII/VIIa), which plays a role in

fibrin formation in embryogenesis, was found to

co-localize with FlnA at the leading edge of spreading

cells (Muller et al. 1999). FlnA is considered to be a ligand

for the TF cytoplasmic domain and recruitment to TF

adhesion contacts is associated with the reorganization of

actin filaments, but these interactions are not associated

with FlnA interactions with integrins (Ott et al. 1998).

Lack of TF–FlnA interactions may result in incomplete

implantation of the embryo into the endometrium and

covering of the implantation location by a fibrin plug,

which may also contribute to embryonic lethality in FlnA-

null mice mentioned earlier (Feng et al. 2006). FlnA’s role
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in platelet adhesion also involves interaction with

glycoprotein (GP) Iba, which plays an important role in

the regulation of the membrane skeleton and stability

(Cranmer et al. 2011). The slit–diaphragm junctional

adhesion protein, nephrin, is necessary for the develop-

ment of podocyte morphology and transduces phos-

phorylation-dependent signals that regulate cytoskeletal

dynamics (Venkatareddy et al. 2011). Upon activation,

nephrin recruits and regulates a protein complex that

includes SH2 domain containing 5 0 inositol phosphatase

(Ship2), filamin, and lamellipodin (Venkatareddy et al.

2011), resulting in lamellipodia formation. Finally, FlnA is

also shown to regulate the cell cycle. Embryonic FlnA-null

mice had reduced brain size and decreased neural

progenitors, which were attributed to prolonged cell

cycle (Lian et al. 2012). Suppression of FlnA led to

prolongation of the cell cycle, principally in the

M phase, whereas the cdk1 kinase Wee1 bound FlnA,

demonstrated to show increased expression levels after

loss of FlnA function, was associated with increased

phosphorylation of cdk1 (Lian et al. 2012).
Regulation of FlnA expression and localization

A number of regulators of FlnA expression have been

identified that determine which organs would express this

molecule and at what phases of development. One protein

thatappears to regulate the functionalityof FlnA is theFlnA-

interacting protein (FILIP) that regulates cortical cell

migration out of the ventricular zone (Nagano et al. 2002).

FILIP interacts with FlnA and induces its degradation –

therefore, most ventricular zone cells that overexpress FILIP

fail to migrate in explants. FILIP siRNA results in FlnA

overexpression and promotes the development and

maintenance of a bipolar shape also in the subventricular

and intermediate zones (Nagano et al. 2004). Thus FILIP

regulates FlnA levels and determine the mode of migration

of neurons entering the cortical plate (Sato & Nagano 2005).

Another regulator of FlnA expression is the vesicle

transport ADP-ribosylation factor guanine exchange factor

2 gene (ARFGEF2). Transfection of a dominant-negative

construct of ARFGEF2 in neuroblastoma cells partially

blocked FlnA transport from the Golgi apparatus to the

cell membrane, underscoring the importance of this

protein in targeted transport of FlnA to the cell surface

within neural progenitors (Lu et al. 2006). Refilins, a unique

family of actin regulators, act as molecular switches to

convert FlnA from an actin branching protein into one that

bundles (Gay et al. 2011). The RefilinB/FlnA complex

organizes the perinuclear actin filament bundles forming
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-13-0364 Printed in Great Britain

D

an actin cap. and the nuclear shape changes during

epithelial–mesenchymal transition (EMT; Gay et al. 2011).

FlnA expression is also regulated by signal transduc-

tion pathways involving the MAP kinase pathway. MEKK4

(MAP3K4)(K/K) mice developed periventricular hetero-

topia associated with breaches in the neuroependymal

lining, which largely comprised neurons that failed to

reach the cortical plate. The expression of FlnA was

elevated in MEKK4(K/K) forebrain, most notably near

sites of failed neuronal migration while the recombinant

MKK4 protein promoted the interaction between MEKK4

and Fln-A (Sarkisian et al. 2006). A novel group of

evolutionarily conserved HECT ubiquitin ligases with an

N-terminal filamin domain (HFNs) were deemed to

regulate the filamin complex activity and cell type-specific

motility through the breakdown of filamin complexes

(Blagg et al. 2011). FlnA can also be regulated by

proteasomal degradation, which is mediated by the E3

ubiquitin ligases ASB2a and ASB2b (Heuze et al. 2008). This

regulation is of particular importance in the maturation of

dendritic cells and inhibits their mobility by causing the

degradation of FlnA (Lamsoul et al. 2013).

FlnA localization within the cell was found to be

regulated by inhibitor of kappa light polypeptide gene

enhancer in B-cells, kinase complex-associated protein

(IKBKAP), which encodes IKAP (ELP1), a protein associated

with familial dysautonomia (FD), with defective neuronal

development and maintenance (Johansen et al. 2008).

Cytosolic IKAP that co-localized with FlnA along mem-

brane ruffles, whereas downregulation of IKAP expression

resulted in decreased FlnA membrane ruffles localization

and defective actin cytoskeleton organization. Another

mitochondria-anchored protein, protein kinase C, and

casein kinase substrate in neurons protein 2 (PACSIN2)

prevent filamin localization to membrane ruffles but not

to stress fiber (Cousin et al. 2008). Thus, a family of

proteins is involved in the regulation of FlnA expression in

various parts of the cell.
Proteolysis of FlnA

One way by which FlnA can be quickly removed once it is

no longer required is by proteolysis. The hinge regions are

sites at which proteolysis occurs (van der Flier &

Sonnenberg 2001). FlnA is susceptible to cleavage by

calpain and caspase at the two hinge regions that can

produce two proteins, a 170 kDa protein that includes the

ABD and repeats 1–15 and a 110-kDa protein that is further

cleaved to a 90-kDa protein that contains repeats 16–23

(Gorlin et al. 1990, Browne et al. 2000; Fig. 4).
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Figure 4

FlnA is susceptible to proteolysis at the hinge regions. This cleavage can

occur by calpain and caspase producing two proteins, a 170 kDa protein

that includes the ABD and repeats 1–15 and a 110 kDa protein that is

further cleaved to a 90 kDa protein that contains repeats 16–23.

Susceptibility of FlnA to cleavage is regulated by its phosphorylation.

Specific phosphorylation at S2152 in the 20th repeat is of particular

importance because it is known to protect FlnA against cleavage.

FlnA can be phosphorylated at S2152 by several different kinases including

protein kinase A (cAMP-dependent protein kinase), protein kinase C,

Ca2C/calmodulin-dependent protein kinase II, and p90 ribosomal S6 kinase.

Other phosphorylation sites, including S2523, can influence location from

the cytosol to the membrane and the interaction between FlnA surface

receptors, but does not protect against cleavage.
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Susceptibility of FlnA to cleavage is regulated by its

phosphorylation. Specific phosphorylation at S2152 in

the 20th repeat is of particular importance because it is

known to protect FlnA against cleavage (Garcia et al.

2006). FlnA can be phosphorylated at S2152 by several

different kinases, including protein kinase A, protein

kinase C, Ca2C/calmodulin-dependent protein kinase II,

and p90 ribosomal S6 kinase (Wallach et al. 1978,

Kawamoto & Hidaka 1984, Chen & Stracher 1989, Ohta

& Hartwig 1996, Jay et al. 2000, Raynaud et al. 2006).

Ca2C/calmodulin-dependent protein kinase II can

phosphorylate S2523, which can result in a change of

location from the cytosol to the membrane, regulating

endothelial cell barrier function (Borbiev et al. 2001).

p56lck can also cause phosphorylation of FlnA, but does

not protect it against calpain cleavage, indicating that it

phosphorylates a site outside of S2152. p56lck regulates the

interaction between FlnA and surface receptors, including
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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b2-integrins, and can also influence actin crosslinking

(Goldmann 2002, Pal Sharma & Goldmann 2004). It

is projected that following the completion of its function

in the organ, FlnA undergoes proteolysis to prevent

further activation of its downstream targets in order to

prevent unwanted cell migration, cell adhesion, or cell

cycle progression.
FlnA’s involvement in cancer

Cancer has been described as the product of develop-

mental error leading to the acquisition of a unique cell

character (de-differentiation) (da Costa 2001). Lineage

tracing has shown that stem cells are mobilized to repair

skin wounds and that this process may contribute to skin

tumor development (Arwert et al. 2012). Tumorigenesis

and wound repair, both depend on communication

between epithelial cells, mesenchymal cells, and bone
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When FlnA is localized to the cytoplasm or plasma membrane, it has the

ability to promote tumor metastasis through interaction with signaling

molecules. If FlnA undergoes proteolysis and the proteolysed fragments

localize to the nucleus, where they regulate transcription, then they may

act to suppress tumor growth and inhibit metastasis.
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marrow-derived cells (Arwert et al. 2012). Similarly,

exposure to certain chemicals and environmental factors,

food, hormones, infectious agents, radiation, sunlight,

and tobacco may trigger certain kinds of cancers. Genetics

and propensity to obesity, diet, and physical activity

determine the risks of developing cancer. Many of these

factors may induce some type of injury to the affected

organ resulting in de-differentiation (da Costa 2001).

Regeneration, or replacement, of lost or damaged cells

involves the processes of de-differentiation, transdiffer-

entiation, and reprograming (Jopling et al. 2011), and in

many cases, cancer can be thought of as continued and

unwanted regeneration that does not know how to stop,

resulting in overexpression of certain key proteins.

Whatever the cause, FlnA was seen to be overexpressed

in multiple types of cancer, including prostate (Bedolla

et al. 2009), breast (Alper et al. 2009, Tian et al. 2013), lung

cancer (Uramoto et al. 2010), hemangiomas (Hosaka et al.

1985), colon cancer (Porter et al. 1993, Larriba et al. 2009),

melanoma (Flanagan et al. 2001), neuroblastoma

(Bachmann et al. 2006), squamous cell carcinoma

(Kamochi et al. 2008), hepatic cholangiocarcinoma

(Guedj et al. 2009), etc.

However, the puzzling factor regarding filamin over-

expression in cancer is the outcome. On one hand, cyclin

D1 interacted with FlnA to promote migration and

invasive potential of breast cancer cells (Zhong et al.

2010). On the other hand, FlnA regulated focal adhesion

disassembly and suppressed breast cancer cell migration

and invasion (Xu et al. 2010). Similarly, in prostate cancer,

FlnA binding promoted androgen receptor (AR) local-

ization to the nucleus (Ozanne et al. 2000), which is

thought to promote prostate cancer progression; however,

once in the nucleus, it inhibited the transcriptional

activity of the same transcription factor (Loy et al. 2003).

Therefore, we argue that overexpression of FlnA has a

tumor-promoting effect only when it is localized to the

cytoplasm or plasma membrane, where it has the ability to

promote tumor metastasis. On the other hand, despite

overexpression, if FlnA undergoes proteolysis and the

proteolysed fragments localize to the nucleus, where they

regulate transcription, then they may act to suppress

tumor growth and inhibit metastasis (Fig. 5). Ultimately,

the function of FlnA in the cell, whether in cancer or in

other diseases, depend on the binding partners available

for its interaction – FlnA remains as a scaffolding protein

that only act, whether in the cytoplasm or the nucleus, to

promote the interaction of these proteins to either

promote or prevent cancer.
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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FlnA promotes cancer growth and metastasis
in the cytoplasm by interacting with signaling
molecules

The development of cancer is a multistep process that

transforms a normal cell to the one that evades apoptosis,

grows uncontrollably, promotes angiogenesis to support

the tumor, and finally invades surrounding tissue and

metastasizes (Hanahan & Weinberg 2000). Through FlnA’s

involvement in multiple cellular pathways, it can be

linked as an important factor in all of these cancer-

promoting steps. FlnA’s function in the cytoplasm as a

scaffolding protein and its vital importance in cell

adhesion and migration can transform it into an

extremely potent cancer-promoting protein.

Targeting FlnA through knockdown experiments has

given investigators an insight into FlnA’s role in cancer

development and has shown its importance in cancer cell

growth and metastasis. Crossing a conditionally over-

expressed K-RAS mouse model (to induce lung tumor

formations) with a conditional knockout FlnA mouse

showed that in the absence of FlnA (albeit conditional, as

an FlnA null mouse is embryonically lethal), K-RAS over-

expression did not lead to lung tumor formation (Nallapalli

et al. 2012). Isolated mouse fibroblasts from the K-RAS(C/C)

FlnA(K/K)mouse lines showedreduced ability to proliferate

and reduced motility as well as a 25% reduction of p-ERK and

p-Akt in comparison with those expressing FlnA (Nallapalli

et al. 2012). As K-RAS is a powerful oncogenic protein, it is
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very interesting to discover that without FlnA, K-RAS-driven

lung cancer formation is halted.
Regulation of DNA damage

FlnA can be linked to an anti-apoptotic mechanism in

cancer development through its involvement in double

strand break repair (DSBR). Investigation of the role of FlnA

in DSBR was initiated after an interaction between FlnA and

BRCA2 was discovered by yeast two-hybrid screen and

subsequent co-immunoprecipitation (Yuan & Shen 2001). A

previous report showed that lack of FlnA led to susceptibility

of DNA damage and G2 arrest (Meng et al. 2004). FlnA seems

to act as a scaffolding protein for BRCA2 in the assembly of

the repair complex. When cells were treated with radiation,

lack of FlnA led to an increase of cell death, an increase in

gH2AX nuclear foci (indicating double strand break), and a

decrease inRAD51 formation onchromatin (Yue etal. 2009).

Through this mechanism FlnA promotes cell survival and

protects cancer cells against drug treatment.
Angiogenesis

Angiogenesis is another crucial part of cancer

development. Tumors give rise to new blood vessels to

continue their growth (Ricci-Vitiani et al. 2010, Wang et al.

2010). FlnA has been implicated in angiogenesis through

links with vascular endothelial growth factor (VEGF;

Uramoto et al. 2010). The expression of FlnA and VEGF
Table 1 FlnA-interacting proteins that promote or inhibit metasta

Inhibits metastasis P

AR (Wang) B
IGFBP5 (Abrass & Hansen 2010) P
RNA polymerase, POL III (Deng et al. 2012) S
ASB2 (Heuze et al. 2008, Razinia et al. 2011) B
PEBP2b (Yoshida et al. 2005) V
FoxC1/PBX1 (Berry et al. 2005) c
Klotho (Camilli et al. 2011) R
Granzyme B (Browne et al. 2000) R

C
K
c
B
C
V
M
C
T
A
P
E
P
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was analyzed by immunohistochemistry in lung tumor

samples. Positive expression of FlnA and VEGF was

detected in the cytoplasm of tumor cells in 66/137

(48.2%) and 69/137 (50.4%) patients with lung cancer,

respectively, while statistical analysis suggested that FlnA is

mediating the angiogenesis pathway and is responsible for

controlling the growth of lung tumors (Uramoto et al.

2010). In addition, studies on bone marrow angiogenesis

found that four proteins: FlnA, vimentin, a-crystallin B,

and 14-3-3z/d protein, were overexpressed in endothelial

cells present in multiple myeloma compared with normal

endothelial cells (Berardi et al. 2011). The expression of

FlnA in multiple myeloma was increased by VEGF,

fibroblast growth factor 2, and hepatocyte growth factor,

while using siRNA to knockdown their expression inhib-

ited angiogenesis-related functions, such as spreading,

migration, and tubular morphogenesis (Berardi et al. 2011).
Metastasis

Table 1 outlines a number of molecules that are shown to

regulate FlnA-mediated cell migration and metastasis and

only a few of these are outlined below. One mechanism by

which FlnA is involved in promoting cancer metastasis is

through activation of c-Met. c-Met is the only receptor for

the hepatocyte growth factor and is extremely important

in cell growth and motility and is a very potent oncogene.

An association between FlnA and c-Met was first identified

when irradiated fibroblasts expressed increased levels of
sis

romotes metastasis

1 integrin (Kim et al. 2007)
tdIns(3,4,5)P(3) (Takabayashi et al. 2010)
phingosine kinase 1 (Maceyka et al. 2008)
RCA2 (Yuan & Shen 2001)
EGF (Uramoto et al. 2010)
-Met (Zhou)
-Ras (Gawecka et al. 2010)
hoA
yclin B1 (Cukier et al. 2007)
-Ras (Nallapalli et al. 2012)
dc25C (Telles et al. 2011)
RCA1 (Velkova et al. 2010)
yclin D1/cyclin-dependent kinase 4 (Zhong et al. 2010)
imentin (MacPherson & Fagerholm 2010)
LL (De Braekeleer et al. 2009)

aveolin-1 (Ravid et al. 2008)
GF-b (Mishra & Marshall 2006)
rp2/3 (Flanagan et al. 2001)
ro-PrP (Li et al. 2010)
GFR (Sy)
73a (Ravid et al. 2008)
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both proteins (Kamochi et al. 2008). Even more impor-

tantly these cells promoted invasion and growth of

human squamous cell carcinoma cells (Kamochi et al.

2008). Investigation of the mechanism by which these

proteins interacted and promoted metastatic cancer cells

showed that when tumors cells are deficient for FlnA,

expression of c-Met was also significantly reduced and the

cells exhibited poor migration and invasion ability when

exposed to hepatocyte growth factor (HGF). In addition, AKT,

a downstream signaling molecule, is also reduced in

FlnA-deficient cells. FlnA was found to regulate c-Met exp-

ression through its interaction with Smad2 (Zhou et al. 2011).

A second mechanism by which FlnA is involved in

promoting cell migration and metastasis is through its

interaction with the small GTPases, R-Ras and RhoA.

Similar to FlnA, R-Ras also regulates cell adhesion and

migration. Using a yeast two-hybrid assay, investigators

showed that R-Ras and FlnA interact, specifically at the

third repeat of FlnA. Deletion of the third repeat of FlnA

prevented R-Ras from binding to FlnA and decreased cell

migration. Furthermore, knockdown of R-Ras inhibited

FlnA from interacting with the fibronectin matrix

assembly (Gawecka et al. 2010). In addition to R-Ras,

FlnA also interacts with RhoA and promotes migration in

head and neck squamous cell carcinoma cells. RhoA

causes modification to the cytoskeleton by phosphoryl-

ation of FlnA (Bourguignon et al. 2006). R-Ras and RhoA

are important cell signaling molecules that are often

mutated or overexpressed in cancer (Mora et al. 2007,

He et al. 2010). Through their interaction with FlnA

they can easily promote cell migration and metastasis in

cancer (Table 1).

FlnA can regulate RhoA through its interaction with

Trio, a small guanine nucleotide-exchange factor (GEF)

that activates a number of Rho GTPases by assisting the

switch from GDP for GTP (Bellanger et al. 2000). Trio has

two GEF domains (GEFD1 and GEFD2) that can activate

RhoG, Rac, and RhoA and is also important for axon

guidance and cell migration in the nervous system

(Bellanger et al. 1998, Blangy et al. 2000). A yeast two-

hybrid screen showed that the GEFD1 of Trio interacted

with the C-terminal end of FlnA, specifically on repeat

23 and 24 (Bellanger et al. 2000). GEFD1 but not GEFD2

interacted with FlnA. A previous study on 3T3 cells

showed that GEFD1 caused ruffle formation of actin fibers

that contained high levels of FlnA (Bellanger et al. 1998).

Using two human malignant melanoma cell lines, one

lacking FlnA (M2) and a subline that stably expressed FlnA

(M2A7), investigators showed that expression of GEFD1 in

M2 caused no ruffle formation, while expression of GEFD1
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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in M2A7 caused dorsal ruffles. This FlnA-dependent

formation was specific for Trio GEFD1, while over-

expression of its target proteins, RhoG and Rac, caused

ruffle formation regardless of the presence of FlnA.

Furthermore, the ruffle formation was only seen when

Trio GEFD1 and FlnA were physically linked; constructs of

GEFD1 and FlnA lacking the necessary regions for binding

prevented ruffle formation. These changes in the

cytoskeletal formation by Trio indicate its importance in

cancer development and metastasis through its link to

FlnA (Bellanger et al. 2000).

An important step in cancer metastasis is the

contraction of the cell and regulation of cell polarity.

Cells undergoing locomotion must first expand by

lamellae protrusions and then contract to induce the rest

of the cell to move. This involved complex reorganization

of the cytoskeleton is regulated by ROCK inactivation of

Rac. Investigation has shown that this regulation of Rac

and lamellae formation is mediated by the FlnA GTPase-

activating protein (FilGAP). The yeast two-hybrid assay

revealed this FlnA-binding protein, which had homolo-

gous domains to a family of RhoGAP proteins. To

determine the function of FilGAP, the GAP domain was

microinjected into Swiss 3T3 cells that where stimulated

with either epidermal growth factor (EGF) or lysopho-

sphatidic acid (LPA). FilGAP abolished filopodia formation

in EGF-stimulated cells, which involved the activation of

Cdc42 and Rac1, but not in LPA-stimulated cells which

involved the activation of RhoA. The expression of an

FlnA plasmid lacking repeat 23, where FilGAP binds,

prevented the GAP activity of FilGAP, indicating the

importance of FlnA in this pathway. SiRNA against FilGAP

showed an increase in lamellae formation, demonstrating

its importance in suppressing lamellae. ROCK was found

to phosphorylate FilGAP, which inactivates Rac. This

pathway shows both the importance of FlnA as a

scaffolding molecule and as a remodeler of the cytoskele-

ton. Both of these have a large role in tumor development

and spreading. The FilGAP pathway has been implicated

in tumor cell migration and is largely dependent on FlnA

to complete its activation (Saito et al. 2012).

Cancer is very rarely caused by the deregulation of one

growth pathway alone. FlnA likely plays a role in cancer

metastasis because of its involvement in multiple regulat-

ory pathways (Gawecka et al. 2010, Zhou et al. 2011). As a

result, overexpression of FlnA has been associated with

highly metastatic cancers including prostate cancer,

melanoma, and neuroblastoma (Bachmann et al. 2006,

Coughlin et al. 2006, Zhu et al. 2007).
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FlnA inhibits cancer growth and metastasis in
the nucleus by interacting with transcription
factors

FlnA’s role in cell biology is largely as a scaffolding molecule

that acts to bring proteins together so that they can interact.

In the cytoplasm often this results in cell migration and

proliferation. Upon interaction with transcription factors,

both in the cytoplasm and the nucleus, FlnA can regulate

their transcriptional activity. FlnA was found to interact

with PEBP2b in the cytoplasm and prevent its nuclear

localization and interaction with Runx1 (Watanabe et al.

2005, Yoshida et al. 2005). Runx1 is an important

transcription factor involved with hematopoietic cell

differentiation (Okada et al. 1998). Furthermore Runx1

activity as a transcription factor is impaired without

dimerization with PEBP2b (Niki et al. 1997). It was

previously established that PEBP2b was present in the

cytoplasm and brought into the nucleus by Runx1. FlnA

was found to retain PEBP2b in the cytoplasm and prevent its

interaction with Runx1 (Yoshida et al. 2005).

FlnA can also localize to the nucleus and this

corresponds with a repression of some cell activities.

FlnA has several nuclear localization sequences in repeats

1, 14, and 20. Ozanne et al. (2000) first showed that FlnA

was crucial in the translocalization of the AR into the

nucleus. During investigation of the mechanism by which

the AR was transported to and from the nucleus, a yeast

two-hybrid screen identified the C-terminal end of FlnA as

an AR-interacting protein. Furthermore, in the absence of

FlnA, AR was unable to enter the nucleus (Ozanne et al.

2000). FlnA’s role in the nucleus and specifically AR was

further examined by a different group (Loy et al. 2003).

They reported that the FlnA repeats 16–24 interacted with

the hinge domain of AR. Assessment of FlnA’s role on AR

transcriptional activity showed that increasing amounts of

FlnA repressed AR induction of its transcriptional target

prostate specific antigen (PSA) (Loy et al. 2003).

FlnA’s new role in the nucleus has led researchers to

evaluate the differences that arise from the localization

of the protein. Cytoplasmic FlnA is often highly over-

expressed in metastatic cancers including breast and

prostate. Specifically in metastatic prostate cancer, cyto-

plasmic FlnA is phosphorylated at S2152, which prevents

its cleavage at the hinge region to the 90 kDa fragment,

whereas in less aggressive or benign prostate tumors the

90 kDa FlnA was found in the nucleus (Bedolla et al. 2009).

Inhibition of the AR by anti-androgen hormonal therapy

is the prevalent treatment for metastatic prostate cancer;

however, patients frequently become resistant to such
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treatment in advanced disease (hormone refractory

prostate cancer, HRPC). Cytoplasmic full-length FlnA

expression was increased in HRPC, indicating that lack

of the nuclear 90 kDa FlnA could be a mechanism in which

prostate cancer progresses (Bedolla et al. 2009). Transfec-

tion of a plasmid encoding the FlnA fragment that

localizes to the nucleus caused a HRPC cell line, C4-2, to

become sensitive to anti-androgen treatment (Wang et al.

2007). In addition to regulating AR in prostate cancer,

FlnA has also been linked to other transcription factors

and transcription machinery. Work with IGFBP5 showed

that accumulation of the nuclear 90 kDa FlnA induced

migration in glomerular mesangial cell by inducing

transcription of laminin subunits (Berfield et al. 2006).

Further research showed that IGFBP5 caused depho-

sphorylation of FlnA, leading to its cleavage by calpains.

The C-terminal fragment of FlnA was attached to Smad3/4

and caused its nuclear translocation and binding to the

promoter of the IGFBP5 target genes, which induced gene

transcription (Abrass & Hansen 2010).

The 90 kDa FlnA fragment is not the only fragment

that enters the nucleus. Full-length FlnA is also known to

play a role in gene transcription in the nucleolus. It

directly binds to RNA polymerase in the nucleolus to

inhibit rRNA gene transcription (Deng et al. 2012).

Knockdown of FlnA by siRNA caused increased rRNA

expression, rDNA promoter activity, and cell proliferation.

In vitro studies to immunodeplete FlnA from nuclear

extracts caused a decrease in rDNA promoter-driven

transcription. FlnA was also coimmunoprecipitated with

several of the Pol I components; actin, TIF-IA, and RPA40,

and in the absence of FlnA these proteins were found at a

higher occupancy at the rDNA promoter (Deng et al.

2012). Full-length FlnA is also known to interact in the

nucleus with the FOXC1 transcription factor (Berry et al.

2005). High levels of nuclear full-length FlnA in A7

melanoma cells inhibited FOXC1 from activating

transcription. FOXC1 was further removed from

transcription-rich areas in the nucleus and moved to a

heterochromatin-rich region. FlnA is able to recruit PBX1

to the nucleus, which then interacted with FOXC1 and

inhibited its transcriptional activity (Berry et al. 2005).
Conclusion

The examination of FlnA in cancer development is still

underway, but already it is considered to have an

important function in cancer development and the

progression to metastasis. In the cytoplasm, FlnA binds

to actin to give structure to and remodel the cytoskeleton
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and, as importantly, acts as a scaffolding molecule,

facilitating protein interaction (Zhou et al. 2010). FlnA

has been reported to interact with over 90 proteins, which

indicates the numerous pathways that FlnA can affect and

its importance in the cell (Stossel et al. 2001). FlnA is of

particular importance in facilitating cell adhesion and

migration by directing b1 integrin to the site of cell

attachment and through its interaction with vimentin

(Kim et al. 2008, Kim & McCulloch 2011). In addition,

FlnA has been widely implicated in having an important

role in cancer development and being a possible target for

future therapies.

In regard to FlnA’s involvement in cancer development,

FlnA can cause two opposite outcomes of cancer depending

on its subcellular localization. By being present in the

cytoplasm and interacting with cell signaling molecules

FlnA can promote cell growth and metastasis; on the other

hand, when acting in the nucleus and with transcription

factors, FlnA causes inhibition of cell growth and prevents

metastasis. In the cytoplasm FlnA acts in various signaling

pathways and interacts with several significant oncogenic

proteins including K-RAS, R-Ras, VEGF, and c-Met (Gawecka

et al. 2010, Uramoto et al. 2010, Zhou et al. 2011, Nallapalli

et al. 2012). Through these interactions FlnA aids their

functions and enhances cell growth. In the nucleus, FlnA

interacts with several transcription factors including AR,

Pol III, and FOXC1 (Ozanne et al. 2000, Berry et al. 2005,

Deng et al. 2012). FlnA causes a general inhibition of their

activities at the promoter regions on the DNA, causing

growth inhibition or cell death. Targeting FlnA in the

cytoplasm through the inhibition of the phosphorylation of

S2152would result incleavage of the full-length protein into

the 90 kDa form. Subsequent localization to the nucleus

would theninhibitvarious transcriptionfactors andresult in

the inhibition of cancer growth (Wang et al. 2007). Work

toward this end is already in progress in prostate cancer.

Genistein-combined polysaccharide is a soy derivative that

can reduce phosphorylation of FlnA S2152 in prostate

cancer cells (Mooso et al. 2012). This results in trans-

localization of the 90 kDa FlnA and modification of AR

transcription. Using this therapy or others to induce

cleavage of FlnA, in other cancers, would cause subsequent

localization to the nucleus and repress various transcription

factors and induce cell quiescence or death.
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