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ABSTRACT

In this paper we introduce Echidna, a hybrid schematic/
text-based language for describing PCB circuit schematics.
Echidna allows designers to use high-level programming con-
structs to describe schematics, supports modular, reusable
design components with well-defined interfaces, and provides
for complex parameterization of those modules. Echidna
deeply integrates a high-level programming language into
a schematic-based design flow. The designer can describe
schematics in code, as a schematic, or as a seamless com-
bination of the two. We demonstrate its usefulness with
several case studies.

1. INTRODUCTION

Recent years have seen great progress in raising the ab-
straction level of designing electronic systems. The rise of
user-friendly platforms such as Arduino [1] and Raspberry
Pi [2] have opened up embedded systems to a huge audience.
High-level synthesis tools have made it easier than ever to
program FPGAs and design integrated circuits. These tools
hide complexities through familiar, programming-based in-
terfaces and allow novice designers to produce reliable de-
signs quickly.

The design methodology for printed circuit boards (PCBs)
has lagged behind these other areas, however. Most design-
ers use schematic capture to specify the functionality a PCB
implements, and while schematics offer an intuitive means
for describing electrical connections, they suffer from signif-
icant draw backs. To name just three: Even modestly-sized
schematics are hard to navigate, verify, and modify; the
lack of sophisticated tools for parameterizing design mod-
ules, such as IP blocks, limits designers’ ability to reuse or
generalize frequently-used components; and there is no gen-
eral mechanism for specifying (or verifying) complex rela-
tionships between different components.

As a result, designing circuit schematics is complex, time
consuming, and error-prone. This discourages all but the
most motivated novice designers, students, and “makers”
from building custom PCBs, and wastes the time of experi-
enced circuit designers, since they must re-implement similar
circuits over and over.

This paper presents Echidna, a hybrid schematic/text-
based language for specifying PCB circuits. Echidna sup-
ports hierarchical, reusable design by allowing the designer
to break the circuit into parameterized modules that have
well-defined interfaces. Designers can specify the structure
of their circuits using schematics and use Python code to
specify and enforce complex relationships between compo-

nents, or they can specify circuits in pure Python. These
programmable schematics enable the construction of libraries
of reusable components such as power supplies, amplifiers,
and microcontrollers that can significantly reduce design
complexity.
To evaluate Echidna we use it to implement a range of

circuits and circuit components including an ARM-FPGA
hybrid system, an Arduino-class microcontroller, a family
of multi-rotor aircraft (i.e., “quadcopters”), and a library of
discrete components (i.e., resistors, capacitors, etc.) that
automates part selection based on circuit requirements. We
find that adding a high-level programming language makes
schematics more expressive and flexible while improving their
readability. We also find that a library of Echidna modules
can replace up to 91% of the discrete components in some
designs.
The remainder of this paper is organized as follows. Sec-

tion 2 discusses current PCB circuit design methodology and
its shortcomings. Section 3 provide an overview of Echidna.
Section 4 discusses implementation details and trade-offs of
Echidna Section 5 provides case studies of using Echidna.
Section 6 places Echidna in context with related tools and
projects, and Section 7 concludes.

2. SCHEMATIC SHORTCOMINGS

Schematics excel at specifying the connections and struc-
ture of electrical circuits. However, they fall short in express-
ing the complex relationships between components which are
often the most challenging aspects of a design. They also do
not provide a robust mechanism to parameterize or reuse
portions of a circuit.
Figure 1 illustrates the kinds of relationships PCB design-

ers must enforce between components and the challenges
they create. The figure reproduces three partial schematics
for the datasheet for a lithium-ion polymer (LiPo) battery
charger [3]. The data sheet also contains extensive documen-
tation on how the designer should select the discrete compo-
nents that surround the central integrated circuit (IC). For
instance:

• Resistor RISET sets the charging current, ICH, accord-
ing to this formula: ICH = 1800 V /RISET.

• RISET should be a precisely calibrated (i.e., 1%) metal
film resistor.

• Resistor Rx sets the charging voltage, Vbat to 4.2 +
3.04× 10−6

∗ Rx.



Figure 1: The reference schematics from the
datasheet for a lithium polymer battery charger [3]
provide only partial documentation for configuring
the device and leave the designer to perform tedious
and error-prone calculations.

• The capacitive load on the ISET pin can limit the
acceptable value of RISET: RISET < 1/(6.28×2×105×
C). An RC filter (the 10 K resistor and Cfilter it lower
right) can shield the RISET pin from this interference.

The values of other components (e.g., current carrying
capabilities and M1 and D1) are not discussed. Likewise,
the datasheet provides no guidance on the value of Cfilter.

Faced with this fragmentary and incomplete documenta-
tion, the designer is left with a series of puzzles they must
solve. While none of them are particularly difficult for an
experienced designer, they all take time and open the door
for errors. For a novice engineer, they present a serious ob-
stacle.

Figure 2 illustrates how the lack of modularity and sup-
port for design reuse complicate schematic design. The fig-
ure shows the schematic for a simple Arduino-based, re-
mote controlled “quadcopter.” The circuit comprises sev-
eral mostly-independent components: the microcontroller,
the accelerometer and gyroscope, the power supply, the four
motor controllers, and various programming and debugging
interfaces.

Several aspects of this schematic make it more difficult
than necessary to create, modify, and maintain. None of
the components in the design are novel – many other de-
signs contain similar or identical circuits. Indeed, several
parts of this schematic were copied from open-source hard-
ware designs in an ad hoc manner, since there is no way to
cleanly reuse parts of other designs. Others were transcribed
from data sheet schematics similar to those in Figure 1. In
both cases, the design inherits all the bugs from the orig-
inal, is subject to errors during manual copying, and does
not benefit from any improvements (or bug fixes) made to
the originals.

Second, the design contains four identical motor drivers.
If the designer wishes to make a change to this part of the
design, she will need to apply those changes four times, in-
creasing the opportunity for error.
Echidna attempts to solve these problems by extending

schematic-based PCB circuit design to support modularity,
parameterization, and reuse and to allow the designer to
specify complex relationships between components.

3. Echidna
Echidna is a hybrid schematic/text-based design represen-

tation for describing PCB circuits that solves the problems
described in Section 2. Echidna lets designers use schemat-
ics to specify a circuit’s structure and Python code to spec-
ify complex relationships between components. It encour-
ages and enables design reuse by providing first-class sup-
port for hierarchical design, modularity, and parameterized,
programmable modules.
Below we describe the functionality and key features of

Echidna with two simple examples: An LED circuit and a
band-pass filter.

3.1 Programmable Schematics
The core building block of a Echidna design is a module.

Echidna modules are self-contained, reusable, programmable
circuit fragments. The designer can describe a module using
schematic, the Echidna Python library, or a combination of
the two. Modules have well-defined interfaces that allow de-
signers to assemble them into more complex designs without
needing to understand their internal implementation.
Figures 3 and 4 illustrate the correspondence between

schematics and code in Echidna. Both figures describe MyLED,
a module that contains an LED and a current-limiting re-
sistor. In the schematic version (Figure 3) the code in pink
gives the module’s definition. This includes the module’s
name, its parameters, and its electrical interfaces. Param-
eters let the designer control how Echidna will instantiate
the module. MyLED has one parameter named voltage that
specifies the supply voltage the circuit will use. The default
value of voltage is 5 V. The module definition also describes
its electrical interfaces. MyLED has two electrical interfaces:
POS and NEG connect to the nets NET_P and NET_N in the
circuit.
The code in blue configures the module according to the

value of voltage. In particular, the code calculates the ap-
propriate resistance for the resistor, depending on voltage

and given the voltage drop of the LED (2.2 V) and its typi-
cal current draw (40 mA). More generally, designers can use
arbitrary Python code to specify the module’s behavior.
Figure 4 describes the same circuit using the Echidna

Python library. The code in the figure illustrates three key
features of the Echidna library. First, Echidna modules cor-
respond to subclasses of the Python class Echidna.Module.
Second, the instantiate_schematic() builds Echidna mod-
ules and connects with nets using add_part() and add_net().
And configure() sets the resistor value. The Echidna li-
brary also includes facilities for removing components and
nets from the module. For schematic-based modules (e.g.,
Figure 3), Echidna generates this code internally from the
schematic.

3.2 Hierarchical Design and Parameterization
Echidna describes a circuit as a tree of modules. The
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Figure 2: This schematic for a remote controlled “quadcopter” illustrates how traditional schematics ex-

cel at describing the structure of as circuit. However, they cannot express complex relationships between

components or break the circuit into independent, parameterizable modules.

Figure 3: Echidna allows the designer to parameter-

ized circuits and define relationships between com-

ponents. In this case, the code in blue sets the re-

sistance of R1 based on the voltage parameter.

import Echidna
from GenericParts import LED, Resistor

class MyLED(Echidna.Module):

def __init__(self):
super(MyLED, self).__init__()
self.add_interface(["POS", "NEG"])
self.add_parameter({"voltage":5.0})

def instantiate_schematic(self):
self.add_part("D1", LED())
self.D1.SIZE = "5mm"
self.add_part("R1", Resistor())
self.add_net("NET_P").connect(self.POS, self.D1.anode)
self.add_net("N1").connect(self.D1.cathode, self.R1.t1)
self.add_net("NET_N").connect(self.NEG, self.R2.t2)

def configure(self):
self.R1.value = (self.voltage - 2.2) / 0.04

Figure 4: The Echidna Python library can create

circuits without a schematic. This code is equivalent

to the programmable schematic in Figure 3.

module at the root of the tree represents the entire design.
Parent modules connect their children using nets and can
control the behavior of a child module by setting the child’s
parameters (e.g., voltage in MyLED).
When Echidna processes a design, it first instantiates the

root module, executing instantiate_schematic() to trans-
late the schematic into Echidna objects and configure() to
execute any code embedded in the schematic. Then, it recur-
sively instantiates each of its children using the parameters
those two functions set. As it traverses the tree, Echidna
builds an representation of the entire circuit. When it is
done, it generates a schematic file that the designer can load
into an existing PCB design tool flow to complete the design
process. Currently, Echidna uses the Eagle [4] file format to
read and write schematics.
Figures 5 and 6 illustrate how a designer can combine

Echidna’s module hierarchy with programmability. Figure 5
shows a first-order low-pass filter module. The parameters
gain and freq specify the gain and cut-off frequency of the
filter, respectively, and the module’s code uses them to com-
pute the values for the resistor and capacitor. Figure 6 com-
bines the low pass filter with a high pass filter (schematic
not shown) to build a band pass filter using a combination
of schematic and code. Figure 7 builds the same bandpass
filter using pure Python code. The hybrid version is clearer
because it uses schematic elements to specify structure and
code to perform the configuration. The code-only version
is more difficult to follow because specifying connectivity in
code is cumbersome.
This example also illustrates the benefits of modular and

hierarchical design. First, modules allow the designer to de-
compose their design into smaller, independent, more man-
ageable pieces. This makes the design easier to understand,
especially if another designer needs to modify the design in
the future.
Second, well-engineered module interfaces can facilitate

design reuse and hide implementation details from the de-



Figure 5: The Echidna schematic for a first-

order, low-pass filter uses Python code to cal-

culate circuit values based on the gain and freq

parameters.

Figure 6: Example schematic of combining a

low-pass filter and a high-pass filter to get a

band-pass filter.

import CircuitsByCode
import AnalogFilters

class BandPassFilter(CircuitsByCode.Module):

def __init__(self):
super(BandPassFilter, self).__init__()
self.add_interface(["IN", "OUT", "VCC", "VSS", "GND"])
self.add_parameter({"gain":10.0, "cutoff_low":10000.0,

"cutoff_high":20000.0})

def configure(self):
self.add_part("M1", AnalogFilters.LowPassFilter())
self.add_part("M2", AnalogFilters.HighPassFilter())
self.M1.cutoff_freq = self.cutoff_low
self.M2.cutoff_freq = self.cutoff_high
self.M1.gain = self.M2.gain = self.gain ** 0.5
self.net("IN").connect([self.IN, self.M1.IN])
self.net("N1").connect([self.M1.OUT, self.M2.IN])
self.net("OUT").connect([self.M2.OUT, self.OUT])
self.net("VCC").connect([self.VCC, self.M1.VCC, self.M2.VCC])
self.net("VSS").connect([self.VSS, self.M1.VSS, self.M2.VSS])
self.net("GND").connect([self.GND, self.M1.GND, self.M2.GND])

Figure 7: Example code of combining a low-pass

filter and a high-pass filter to get a band-pass filter.

signer. For instance, to build a higher-quality band-pass

filter, the designer could reuse the schematic in Figure 6,

and just replace the first-order filter modules with a second-

or third-order filter modules.

Third, modularity allows the construction of a library of

reusable, parameterized modules that designers can use to

quickly assemble complex designs. The high-pass and low-

pass filters are good examples, but they are only the begin-

ning. Section 5 illustrates how such a library can reduce

design complexity across many designs.

4. Echidna IMPLEMENTATION

Echidna’s implementation includes a set of Python classes

that represent Echidna modules and the connections be-

tween them as well as a suite of tools that operate on those

data structures.

Below, we describe the key Echidna classes and the Echidna

tool flow.

EAGLE Translator

PADS Translator CircuitByCode Executer

EAGLE
Schematic Generator

PADS
Schematic Generator

EAGLE Design
*.sch EAGLE Schematic

.sch

PADS Schematic
.sch

PADS Design
*.sch

Python Design
*.py

......
......

Figure 8: Echidna toolchain contains a tool-

independent executer, as well as tool-dependent

translator and schematic generator that converts be-

tween Echidna Python representation and schematic

used for schematic capturing tools.

4.1 Echidna Execution Model

Echidna represents a design as a tree of modules that con-

tain both schematic fragments and code that can modify and

configure those fragments to meet the needs of the design.

After the designer has assembled the modules her design

requires, Echidna processes the design convert the hierar-

chical design into a complete schematic. This processing

proceeds in three stages.

Translation.

Echidna converts the hand-drawn schematics into Python

code that produces the equivalent Python objects. This code

constitutes the module’s instantiate_schematic()method.

Execution.

To assemble the complete design, Echidna performs a depth-

first traversal of the module tree starting at its root. Al-

gorithm 1 contains pseudo-code for the Echidna execution

model. The execution stage effectively executes finalize()

on the root of the module tree.

The execution model involves four methods that each mod-

ule provides. The first is the module’s constructor. The con-

structor for a module creates the module’s parameters and

interfaces, but does not create the module’s sub-modules or

the connections between them. A module in this states is

instantiated.

The second function, instantiate_schematic(), instan-

tiates the module’s sub-modules included in the module’s

schematic and makes the connections that the schematic

specifies. The translation phase automatically creates this



Algorithm 1 The Echidna execution model

1: procedure Finalize(CurrentModule)
2: CurrentModule.instantiate_schematic()
3: CurrentModule.configure()
4: for each submodule m do

5: if not m.isFinalized() then
6: Finalize(m)
7: end if

8: end for

9: end procedure

method, so Echidna developers do not need to implement or
modify it.

The third function, configure(), is the most important.
It is responsible for configuring the module to behave as the
designer intends it to. Depending on the needs of the mod-
ule, this method can instantiate modules, change parameters
on modules, connect modules to one another, delete module,
etc.

The last function is finalize() (shown in Algorithm 1).
finalize() converts an instantiated module into a finalized

module. By definition, all of the sub-modules in a final-
ized module are also finalized. Finalized modules are also
immutable.

By default, finalize() finalizes all of the module’s sub-
modules after configuration. However, configure() can call
finalize() explicitly. This is necessary instances where one
sub-module’s configuration depends on aspects of another
sub-module that are not known until after the sub-module
is finalized. The example in Section 5 will illustrate how this
can become necessary.

Schematic generation.
Echidna flattens the finalized tree of modules into a single

schematic so that the designer can use other design tools to
complete the design (e.g., board layout and manufacturing).
To the extent possible, the schematic generator reuses the
hand-drawn schematics that are part of the modules. How-
ever, configure() may have added or removed sub-modules
and/or connections. The generator uses some simple heuris-
tics to layout new portions of the schematic.

4.2 Echidna Modules
Echidna modules are the basic building blocks of the Echidna

designs. A module can include sub-modules and the elec-
trical connections between (i.e., a schematic) along with
Python code (i.e., in its configure() method) that can add
and remove sub-modules, modify the connections between
them, and configure sub-modules as needed.

During execution, modules move through a well-defined
two-stage life-cycle. First, the module is instantiated as a
child of its parent module. The parent module can connect
instantiated modules together and it can set set parameters
on instantiated modules.

The interface for an instantiated module includes elec-
trical interfaces and parameters. Electrical interfaces repre-
sent the electrical connections the module can make to other
modules. Each interface has a unique name. The schematic
for a Echidna module defines electrical connections between
sub-modules by connecting the interfaces on two modules.

Parameters are input data values that affect how a mod-
ule will configure itself. Parameters can be arbitrary Python

objects and are available to configure(). For example, an
generic power supply module might take parameters to con-
trol its output voltage and maximum output current. The
LED example in Figure 3 takes a voltage parameter.
The configure() can set attributes on the module. At-

tributes are only available to the parent module after final-
ization and they are immutable once the module is finalized.
Attributes can be arbitrary Python objects.
Electrical interfaces, parameters, and attributes provide

a flexible interface to modules, while hiding most details of
their implementation. In particular, the only information
about a finalized module that is visible to the parent are
the attribute values. This provides an effective information
hiding mechanism that makes it easier to replace one sub-
module with another.
Well-engineered modules use these three mechanisms to

facilitate design partitioning, enable module reuse, and hide
implementation details from the designer. For example, a
generic 5 V power regulation module might have three elec-
trical interfaces: power input, power output, and ground.
It might takes a minimal output current requirement and
safe operating input range as parameters. After configuring
itself, it will report the actual operating range, maximum
current, and output ripple as attributes. A designer using
such a module will not need to worry about the internal
implementation of the power supply and, if multiple power
supply modules (e.g., one optimized for cost and one suitable
for adverse environmental conditions) provided the same in-
terface, replacing one with the other would be very easy.
After the finalize process, Echidna will exploit its ex-

tension mechanism perform customized tasks. At the end,
Echidna executer will dump the result to Echidna Python
representation.

4.3 Echidna and Other PCB Design Tools
Echidna does focuses on simplifying the creation of PCB

schematics. It is intended to leverage existing design tools
for schematic capture, creation and authoring of PCB part
libraries, board design and layout, and CAM file generation.
The only portions of Echidna that depend on these other

tools are the translation and schematic synthesis stages. The
execution stage and the code embedded in the design (i.e.,
configure()) all operate on tool-agnostic data structures.
Echidna currently inter-operates with Cadsoft EAGLE [4].

EAGLE is freely available, has an active user community,
and has an open, XML-based file format that facilitates easy
translation and schematic creation. However, there is noth-
ing EAGLE-specific in Echidna’s design and, if we had access
to the documentation for their file formats Echidna would
work just as well with PADS [5], Altium [6], OrCAD [7].
Echidna uses the Swoop [8] library to read and write EA-
GLE files.

4.4 Echidna and Python
The Echidna translator can convert both schematics and

PCB libraries into Echidna Python code. By default, a
schematic corresponds to a single Echidna module with the
same name. However, the user can define multiple modules
in a single schematic by placing the modules on separate
schematic sheets and providing an interface declaration (as
we saw in Figure 3) on each sheet.
For PCB libraries, Echidna creates a Python library that

contains modules that correspond to each of the parts the
PCB library. Which libraries Echidna uses depends on the



underlying PCB tools it is interacting with. For EAGLE,
Echidna searches the paths in EAGLE’s “libraries” configu-
ration variable and automatically converts the libraries (i.e.,
“.lbr” files) into Python libraries.

This convention allows designers to refer to parts in the
library using familiar Python syntax. For example, in Fig-
ure 7 the module’s configure() method creates an instance
of AnalogFilters.LowPassFilter that corresponds to Low-

PassFilter device in AnalogFilters.lbr (the EAGLE li-
brary).

4.5 Extending Echidna
Echidna provides a simple extension mechanism that al-

lows designers to add new features. The extension mecha-
nism uses the visitor design pattern. To use it, the designer
provide call back functions that the framework invokes for
each module during a depth-first traversal of the module
tree.

Echidna includes two extensions as examples. The first
generates a bill of materials (BOM) by collecting the names
and attributes of all leaf modules (which correspond to phys-
ical electrical components).

The second is an I2C validation pass that performs checks
to ensure that I2C busses are wired correctly (i.e., that all
I2C devices connect the SCL and SDA lines to the correct in-
terfaces and that there is only one master per bus). To par-
ticipate, modules with I2C connections must provide a func-
tion called report_i2c() that provides information about
the module’s I2C connection, including whether it is a mas-
ter or slave device.

5. CASE STUDIES AND EXAMPLES
We have found Echidna to be useful in designing schemat-

ics for many different PCBs and that it makes the PCB
design process easier and less error prone. This section de-
scribes five different use cases for Echidna that illustrate its
power and flexibility. The designs include a library of mod-
ules to automate part selection, a generic, flexible LED mod-
ule, a configurable multi-rotor design, a re-implementation
of the Arduino Uno in Echidna, and a complex design that
combines an FPGA with an ARM-based microcontroller.

5.1 Automatic Part Selection
Selecting which components to use in a PCB can confront

the designer with a vast number of choices. For instance, if
a design calls for a 10 KOhm resistor or a 22 µF capacitor
Digikey provides 473 and 1467 options, respectively. Alter-
natives include package types, different sizes, and tempera-
ture ranges.

Echidna provides a library of modules, called Generic-

Parts, that represent common electrical components, in-
cluding resistors, capacitors, diodes, LEDs, N-type MOS-
FETs, P-type MOSFETs, and resonators. The module for
each type of device has parameters that let the designer
specify requirements for a particular instance of the module.
For instance, the resistor’s parameters include resistance,
power dissipation, how precise the resistance value needs to
be, and package type (e.g., through-hole, 0805, or 0603).
The designer can also specify upper and/or lower bounds
for the parameters and specify part selection priorities. For
instance, the designer can specify that the module should
select a resistor with a resistance within 10% of 332.4 Ohms
with a preference for cheaper, through-hole components.

Electrical Interfaces

PWR Power source
GND Ground
CTRL Control pin

Parameters

color LED color
size LED size

brightness LED brightness
ctrl_vh CTRL pin high voltage

ctrl_polarity CTRL pin polarity
ctrl_max_i CTRL pin max current

pwr_v PWR pin voltage
pwr_max_i PWR pin max current

Table 1: Interface and parameters of LED.

When a design instantiates a module from GenericParts,
the code in each module searches through a database of
available parts and finds the best match based on the re-
quirements and priorities. That part will appear in the final
schematic. The module also stores additional information
about the part (e.g., manufacture, part number, distributor,
price, and technical information about the part) it chose and
exposes it as attributes.
GenericParts leverages several of Echidna’s advanced fea-

tures like parameterization and feedback, and relies on sev-
eral of Python’s standard libraries to load and query its part
databases. It comprises 7300 lines of Python.
We use GenericParts in all of the designs we build with

Echidna, and we consider it part of the Echidna “standard
library.”

5.2 A Generic LED Module
LEDs are common on PCBs and different designs require

LEDs in different colors and of different brightnesses. It is
often possible to drive the LED directly from a microcon-
troller’s digital IO pin, but if the current requirement of the
LED exceeds the capability of the IO pin, a more complex
design is necessary.
We built a generic, reusable LED module called LED that

automatically shifts from one design to the other as needed.
LED lets the designer specify the color and brightness of the
LED along with information about the available power sup-
plies. The schematic then selects the correct implementa-
tion strategy and uses GenericParts to select the necessary
components.
Table 1 summarizes LED’s electrical interfaces and parame-

ters. In its configure() function, LED sets the color, size,
and brightness parameters on the LED and finalizes it,
triggering GenericParts part selection code. Once finalized,
the LED’s attributes provide its maximum current draw and
its forward voltage drop.
Based on those values, the module determines whether the

CTRL pin can provide sufficient power by examining ctrl_vh

and ctrl_max_i. If CTRL can provide enough power, LED
computes the resistance necessary to limit the current through
the LED and sets the parameters on the resistor, and Gener-

icParts will choose a suitable resistor. It then connects the
LED to the resistor and the CTRL net.

If CTRL cannot power the LED, LED examines pwr_v and
pwr_max_i to see if PWR will work instead. If it will, LED
instantiates a P-MOSFET or N-MOSFET (depending on
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ICSP Header 1 1 1 2 2 2
DC Input Socket 4 1 1 1 1

LED Circuit 3 1 2 4 4 6 2 4
Oscillator 1 1 1 2 2 3 1

Power Convertor 2 1 1 2 2 1 1 1
USB Interface 1 1 1 1 2 1 1

Arduino Shield Connector 1 1 1 1 1 1
Microcontroller 1 1 1 1 1 1 1 1

AVR USB Programmer 1 1 1
Other Modules 1 1 2 2 8 1

Reusbale Module Coverage (%) 90 83 69 91 91 90 83 88
Part Count Reduction (%) 76 77 52 81 84 82 68 71

Table 2: There are many opportunities for reuse

across Arduino designs. The high values for

“Reusable Module Coverage” and “Part Count Re-

duction” show that re-implementing these designs in

Echidna would significantly reduce design complex-

ity.

the value of ctrl_polarity), attaches CTRL to the gate and
uses the MOSFET to power the LED. If PWR is insufficient
to power the LED, the module signals failure and notifies
the designer.
LED’s implementation requires just 77 lines of Python and,

for most designs, makes adding an LED as easy as specifying
its color and brightness.

5.3 A Configurable Multirotor Aircraft
Figure 9(a) shows a generalized Echidna version of the

Arduino-based quadcopter design in Figure 2. The design
replaces most of the discrete components with Echidna mod-
ules that are common to many Arduino designs (for example,
the power supply, the programming pins, and the debugging
interface), and uses GenericParts for the rest. It also fac-
tors out the motor driver circuit into a separate module,
and then uses Python code to instantiate a variable number
of BrushMotor (b) modules, depending on the value of the
n_rotor. As a result, the same Echidna schematic can serve
as the basis for 4-, 6-, and 8-rotor aircraft.

5.4 Redesigning Arduinos
Arduino [1] is a family of microcontroller-based develop-

ment boards that use a common set of libraries that facilitate
embedded software development. There are many variants
(for example, Arduino Uno, Arduino Due, Arduino Pro, Ar-
duino Mini, Arduino Nano) but they share many parts of
their design in common: For instance, they all uses similar
power supply circuits, and many of them include the same
programming and debugging interfaces.

Figure 10 shows the module hierarchy of the Echidna ver-
sion of Arduino Uno. The root modules contains just four
modules: the power supply subsystem, the USB program-
mer subsystem, the microcontroller, and the USB connec-
tor. The simplicity of the top-level design protects the de-
signer from significant complexity: In all, the designer only
explictly instantiates seven sub-modules. All of these are
common across multiple Arduino designs and many of them
are good candidates for inclusion in a standard library of
Echidna modules.

To quantify the opportunities for reuse with Echidna, we
surveyed eight different Arduino variants to identify simi-
lar or identical components across multiple designs. Table 2

summarizes the results and identifies nine candidate mod-
ules. They range from simple to complex. One of the sim-
plest is the in-circuit serial programming (ICSP) program-
ming header. It only contains a 6-pin header. While this
does not reduce the complexity of the top-level schematic, it
would eliminate potential bugs. An ICSP module could have
meaningful names for each electrical connection rather than
relying on the designer to organize the nets correctly on the
header’s pins. The most complex reusable component is the
USB programmer. It contains a dedicated AVR microcon-
troller, 18 electronic components, and 20 nets. This circuit
appears in the Arduino Uno, the Arduino Mega, and the
Arduino Due schematics and accounts for much of the com-
plexity in those designs. Factoring it into a module reduces
complexity and allows all three of those designs to share in
improvements and bug fixes.
The bottom two rows of Table 2 quantify how much Echidna

can reduce the complexity of the designs. The left hand col-
umn lists the modules. The “Other Modules” row includes
several modules used in one or two designs. The numbers
in the table are the number of instances of that module in a
particular design. “Coverage” is the fraction of total electri-
cal components in the final design that are part of a reusable
component. “Reduction”measures the reduction in modules
or parts in the top-level schematic. Both are proxies for the
reduction in complexity that Echidna allows. Coverage val-
ues range from 69% to 91% and reduction values range from
52% to 84%.

5.5 ARM-FPGA Development Board
Echidna is useful on larger and more complicated designs

as well. In this section we use Echidna to re-implement an
open source development board called the iCore3 [9] that
hosts an STMicro ARMCortex-M4 processor (STM32F407IG)
and a Altera Cyclone IV FPGA (EP4CE10F17C8N).
Figure 11 shows the organization of iCore3. The ARM

processor connects to the Cyclone IV FPGA via a flexible
static memory controller (FSMC) interface that allows the
ARM processor can access FPGA directly via load and store
instructions. The ARM processor connects to several ex-
ternal peripherals, including a USB controller, an Ethernet
controller, and an SD card reader. A synchronous DRAM
(SDRAM) connects to the FPGA.
Figuer 12 shows the key modules in the Echidna version

of the same design. The“Top”module (at left) clearly shows
the overall structure of the design (i.e., that it is an FPGA
connected to an ARM combined with some headers). The
FPGA and microcontroller subsystems (center and right)
likewise make the structure of those portions of the circuit
clear by hiding the internals of the peripherals.
The reduction in complexity is striking. At the top level,

the number of connection between components is drasti-
cally reduced: The original iCore3 schematic described 359
nets connecting 1193 pins on 183 components. Top level
schematic and the schematics for the FPGA and ARM sub-
systems contain just 16 modules, 33 nets, and 82 connections
(only counting schematic connections, not counting the con-
nections described in the CSV file). Seven groups, 516 con-
nections in total are created with Echidna code (see below).
We describe the key modules of the design in more detail

below.

5.5.1 The FPGA Module

Our FPGA Echidna module simplifies the task of inte-



(a) (b)

Figure 9: In the Echidna schematic for configurable multirotor aircraft, the top-level module (a) instantiates
n_rotor copies of the BrushMotor module (b). The whole design contains over 60 discrete components, but
only a fraction are visible at the top level, providing a clearer picture of the circuit’s structure.
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grating it into the design. The FPGA has 256 pins. Of
these, 172 are IO pins that will connect to other devices
(i.e., ARM processor, the SDRAM, etc.), 65 are power and
ground pins, and 19 are devoted to functions such as config-
uration, a JTAG interface, and clock generation.
In most cases the designer is most concerned with the IO

pins, since these (or the configurable fabric they connect to)
are why she decided to include FPGA in the design. She will
want control over how those pins connect to other devices
and the voltage level that each bank of IO pins operates
at. The other pins (i.e., power, ground, and configuration)
and the components they connect to represent design effort
that is only indirectly related to what the designer wants to
achieve.
Our FPGA module (Figure 13) reflects this distinction. It

hides the programming and power supply circuitry inside the
module and exposes the IO pins. This allows the designer
to focus on the interesting parts of the design.
Since all those components are hidden inside the module,

the module’s interface is much simpler. It includes eight
banks of IO lines, clocks, configuration interface, power,
ground, and status lines. It exposes the configuration in-
terface so that its user can choose to implement an external
configuration mechanism, or use use the embedded default
configuration circuit. The figure also lists the module’s pa-
rameters. They include the voltage levels for each of the
IO banks, the target frequency for the FPGA’s clock input,
and whether to enable internal configuration circuit. Based
on those parameters, the module instantiates the required
clock generation, JTAG, and configuration circuits.
The module is also able to make extensive optimizations

to the power supply components. Each IO bank can operate
at different voltage, so in the worst case the FPGA module
would require eight separate voltage regulators. However, if
some of the banks operate at the same voltage, they could
share a regulator, but that regulator would need to provide
more current. Based on the IO level parameters for each
bank, module creates the minimum number of voltage regu-
lators required. Then, based on the efficiency attributes for
those regulators, it calculates its input current and voltage
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Figure 12: The Echidnaversion of the iCore3 [9] development board. The top-level design (a) contains the
FPGA subsystem (b) and the ARM subsystem (c). The FPGA subsystem uses the FPGA module (detailed
in Figure 13) to instantiate the FPGA and its supporting circuitry. The ARM subsystems uses a Echidna
module for the ARM microcontroller for the same purpose. Echidna simplifies the design further by loading
connection information from CSV file using the Python standard library’s CSV API.
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Figure 13: The FPGA module. We embed com-
mon supporting circuit of FPGA inside a wrapper
and use parameters to customize them. This FPGA
module hides trivial but necessary circuit from its
user. It has much clearer interfaces, and is reusable
in various designs.

requirements and, in turn exposes those as attributes on it-
self, so that the parent module can connect the power input
of the FPGA module correctly.

5.5.2 The ARM Module

The ARM module (not shown) is simpler than FPGA
module, since the ARM processor is less configurable. Like
the FPGA, the microcontroller has some electrical interfaces
that likely of great importance to the designer (e.g., the
FSMC bus, the ethernet, USB, and other peripheral inter-
faces) and some that are required for the operation of micro-
controller (e.g., clock generation, programming, and debug
interfaces). The microcontroller module exposes former and
hides the latter by integrate the components that connect
to them.

5.5.3 The ARM and FPGA Subsystems

Figure 12 (b) and (c) combine the ARM and FPGA mod-
ules with peripheral modules. For the ARM subsystem this
includes the IO interfaces for the board (i.e., Ethernet, USB,
and a card reader). For the FPGA, it includes the memory
and the configuration logic.

5.5.4 Connecting the Modules

Both the ARM and FPGA have numerous of pins. Besides
the 32-wire FSMC bus connecting ARM and FPGA, most of
the other pins from these two chips are connected to headers
so users of the board can use them as they like. Connect-
ing these pins correctly and documenting the connections is
tedious, error prone, and makes reading and modifying the
schematic difficult.
Echidna allows the designer to solve this problem by creat-

ing these connections in software. One solution would be to
store the interface connection information in a CSV (comma
separated values) file and use Python’s built-in CSV parsing
support to load the file and make the connections. Building
such tables to describe pin assignments is a common design
practice, and using the table directly eliminates the possi-
bility of transcription errors.

6. RELATED WORK

Several other systems have tried to improve circuit design
for PCBs, but none of them resolve all the challenges that
Echidna addresses. Some PCB tool flows allow for design
reuse, but none of their mechanisms provides parameter-
ization or programmability. Specialized languages for de-
scribing PCB schematics showed effectiveness of expressing
circuits in text-based programming, but they sacrifice the in-
tuitive aspects of schematic capture. Hardware description
languages for digital design (i.e., FPGA and ASIC design)
apply similar ideas, but they do not address the specific
challenges of PCB design.
Some PCB tool flows allow for design reuse or hierarchical

design. For instance, Altium Designer [6] supports “snip-
pets” which allow sub-circuit reuse and Cadsoft EAGLE [4]
supports “modules,” but neither of these mechanisms pro-
vides parameterization or programmability.
In addition, some PCB design software provides script-

ing functionality. For example, PADS [5] provides “automa-



tion server” that allows scripts to emulate GUI operations
to manipulate the design, Altium Designer offers program
functionality through “Altium Designer scripting system,”
EAGLE user can extends its functionality using its propri-
etary “User Language Program” (ULP) and scripting mech-
anisms. All these programming interfaces suffer from seri-
ous deficiencies. PADS’ automation server, Altium’s script-
ing system, and EAGLE’s scripts are tied to GUI oper-
ations rather than treating the design as first-class data
structure. EAGLE ULP interface is read-only. For ex-
ample, in PADS a designer must write ActiveDocument.

ActiveSheet.Components("U1").Pins.Count to access the
pin counts of the component U1 in current sheet rather than
refer to the component itself. This makes the scripts brittle,
interferes with composition and reuse, and makes it diffi-
cult to describe well-defined interfaces for sub-components.
On the other hand, Echidna embeds the scripts (user func-
tions) in the module, so that the scripts becomes part of the
module’s design. It also creates a private namespace for the
module, exposes abstract electrical and programming inter-
face to its user.

PHDL [10] is an specialized hardware description language
models text-based schematics for PCB circuits, whose source
can be compiled into a netlist that can be imported into
layout tools. PHDL offers hierarchical and reusable design,
but it sacrifices the intuitiveness of schematics, does not offer
parameterization, and lacks native programming support.

Several other tools provide APIs for modifying schematics.
PyEagle [11] wraps EAGLE’s ULP functions in Python, but
ULP cannot modify schematics. Swoop [8] and eaglepy [12]
offer Python class bindings for EAGLE file structure. Both
of them allows manipulation on low-level elements in EA-
GLE format such as line segments, but they do not of-
fer hierarchical design, first-class module, and design reuse.
Echidna uses Swoop to manipulate EAGLE files.

EDAsolver [13] is a declarative language that lets users
specify the types of components in a device and will then
automatically select component and connect pins. It hides
components and connections decision from the designer, but
it is not programmable beyond a limited predefined set of
operations.

Hardware description languages (HDLs) like Verilog and
VHDL describe the structure, behavior, and design of digi-
tal circuits and are commonplace digital IC design. Widely-
used HDLs provide limited (and cumbersome) parameteri-
zation support. Some recent research projects attempt to
remedy and combine general programming languages with
hardware description languages to improve programmability
and parameterization. Chisel [14] brings in object orienta-
tion, functional programming, parameterized types and type
inference to digital logic design. MyHDL [15] attempts to
model digital logic systems with Python functions. Genesis
2 [16] uses SystemVerilog as an underlying hardware descrip-
tion language, but integrate Perl scripting to provide more
flexible parameterization and elaboration. Echidna is simi-
lar in some respects to these tools, but focuses specifically
on PCB design. In particular it provide support for part
selection and more detailed control over circuit implementa-
tion, tasks usually handled by the “backend” of conventional
digital logic design tools.

7. CONCLUSION

We have described Echidna, a hybrid schematic/code-based

language for specifying PCB schematics. Echidna allows de-
signers to use schematic capture to specify the structure of
the circuit and then augment it with programmability to
enable sophisticated parameterization and design reuse. We
find that Echidna has the potential to reduce the complex-
ity of PCB circuit designs, accelerate the design process, and
prevent many common bugs.
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