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2005 Special Issue

Metastability, instability, and state transition in neocortex

Walter J. Freemana,*, Mark D. Holmesb

aUniversity of California at Berkeley, Berkeley, CA 94720, USA
bUniversity of Washington, Seattle, WA 98104, USA

Abstract

Mesoscopic patterns of neural activity were sought in multichannel EEGs of rabbits that were trained to respond to conditioned stimuli

(CSs) in visual, auditory and somatic modalities. Spatiotemporal patterns were sought of oscillations in the beta and gamma ranges. The

techniques required for preprocessing EEGs in search of global patterns were diametrically opposed to those needed for localization of

modular EEG signals. Frames were found in the form of intermittent spatial patterns of phase and amplitude modulation (AM and PM) of

carrier waves in beta and gamma ranges that served to classify EEG frames with respect to CSs. A model based on the intentional action–

perception cycle is proposed to complement the information processing model.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Humans observe and grasp complex events and

situations by means of expectations that have the form

of theories. A theory determines the techniques of

observation, which in turn shape what is observed and

understood. The classic case in physics is the wave–

particle duality, in which the choice of one or two slits

determines the outcome of the observation. A similar

situation holds for the classic debates among proponents

of competing theories about neocortical dynamics:

localization vs. mass action. In one view, cortex is a

collection of modules like a piano keyboard, each with its

structure, signal, and contribution to behavior. In the other

view, the neocortex is a continuous sheet of neuropil in

each cerebral hemisphere, which embeds specialized

architectures that were induced by axon tips arriving

from extracortical sources during embryological develop-

ment. Cooperative domains of varying size emerge within

each hemisphere during behavior that includes the

specialized.
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Observers of both kinds use electroencephalograms

(EEGs) and units to test their models. Localizationists

(e.g. Calvin, 1996; Houk, 2001; Llinás & Ribary, 1993;

Makeig et al., 2002; Singer & Gray, 1995) analogize the

neocortex to a cocktail party with standing speakers; each

module gives a signal that, when activated like a voice in a

room, by volume conduction occupies the whole head and

overlaps other signals. On the assumption of stationarity, the

signals can be separated by independent components

analysis (ICA) of multichannel EEG recordings. Globalists

(e.g. Amit, 1989; Basar, 1998; Freeman, 2000) analogize

neocortex to a planetary surface, the storms of which are

generated by intrinsic dynamics and modified by the

structural features of the surface.

These analogies throw into sharp relief the contrasting

assumptions and inferences on which the two theories are

based. Further, they justify the different methods by which

the EEGs are processed, so that after the processing the two

forms of the postprocessed EEG data differ dramatically,

each legitimately in support of the parent theory. This is

why any description of a brain theory should be prefaced by

a review of the methods used to get the data that supports the

theory.1
Neural Networks 18 (2005) 497–504
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1 An abbreviated version of some portions of this article appeared in

reference Freeman and Holmes (2005), as part of the IJCNN conference

proceedings, published under the IEEE copyright.
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2. Methods

Raw EEG data must be preprocessed prior to measure-

ment. Here six decisions are summarized that have to be

made by localizationists and globalists before they acquire

EEG data. The choices are diametrically opposed (Freeman,

Burke, & Holmes, 2003; Freeman & Holmes, 2005).

(i) According to localizationists, specified behaviors

require activation of selected cortical modules that

give signals at specific stages of the behaviors and are

otherwise silent. The background EEG is incompa-

tible with this expectation, so they adopt the theory

established years ago by Bullock (1969) and Elul

(1972) that background EEG is dendritic noise, which

is so smoothed by volume conduction, particularly at

the scalp, that it has no identifiable spatiotemporal

structure. They use time ensemble averaging (TEA) to

attenuate the noise in proportion to the square root of

the number of repeated stimuli that activate the

modules, and to extract the expected signals as event-

related potentials (ERPs). Globalists view the back-

ground activity as the necessary pre-condition for

execution of the specified behavior. That activity is

modified by conditioned stimuli in differing ways in

various areas of neocortex. The induced modifications

are not time-locked to triggering stimuli, so that TEA

cannot be used. Instead, spatial ensemble averaging

(SEA) is used to extract reference values for sets of

phase and amplitude values from multiple EEGs.

(ii) The sensor of choice for localization is the depth

microelectrode, because the size of the tip determines

the acuity of spatial resolution. For globalization the

spatial resolution is determined by the interelectrode

distances, so the electrode face to minimize noise

should be as large as possible without touching

neighbor electrodes.

(iii) Both observers use as many electrodes as possible.

Localizationists space their electrodes as far apart as

possible to sample from as many modules as they can.

Globalists space them closely to avoid spatial aliasing

and undersampling of spatial patterns of cortical

activity.

(iv) Localizationists sharpen the spatial focus of the

signals by high-pass spatial filters such as the

Laplacian to correct the smoothing by volume

conduction. Globalists use low-pass spatial filters to

attenuate contributions that are unique to individual

electrodes and enhance the sampling of synchronized

field potential activity.

(v) Narrow band-pass filters are favored by localiza-

tionists on the premise that modular signals are

likely to be bursts at definite frequencies such as

40 Hz. Globalists prefer broad-band filters in expec-

tation that oscillatory signals in EEGs are aperiodic

(chaotic).
(vi) Signal sources are localized to modules by fitting

equivalent dipoles to the filtered data in order to solve

the inverse problem. Global signals are not confined

to specific anatomical sites; they are localized not in

the Euclidean space of the forebrain but in multi-

dimensional N-space, where N is the number of

available electrodes. These diametrically opposed

choices in data processing lead to widely divergent

EEG data, and the data lead to theories that are skew.

The two theoretical positions are more complemen-

tary than conflicting.
3. Results
3.1. Spatial pattern analysis of intracranial EEG

We define a cortical domain of spatially coherent

oscillation in neural activity as a wave packet (Freeman,

1975; Freeman 2003a,b). This mesoscopic neural event has

a carrier wave at a characteristic frequency, fi, that is

modulated in the beta or gamma range. In any one-wave

packet, the variation in frequency seldom exceeds 5% of

mean frequency at peak power, so the spectrum of a wave

packet usually has a significant peak, but the peak frequency

varies unpredictably in sequential wave packets. The wave

packets form and end by state transitions that define their

durations, DT. Each carrier wave is modulated in space and

time by a spatial pattern of amplitude, A(t), that is expressed

by a N!1 column vector, and a spatial pattern of phase

modulation, F(t), in radians. The form that is taken by F(t)

is a right cone in the surface dimensions of cortex (Freeman,

2004a,b) giving half-power diameter, DX, of the wave

packet as the distance to cosine of fj(t)Z0.7.

The mean phase parameters of wave packets were the

peak frequency, fi, in the beta or gamma range (the temporal

phase gradient in rad/s) and the spatial phase gradient, gk, in

rad/mm of the phase, fi,j(t) (Table 1 in Freeman, 2005c).

The basic parameters calculated from the two measures

were the temporal wavelength, WT in ms/rad and spatial

wavelength, WX in mm/rad. These basic parameters served

to estimate three novel parameters: phase velocity, b in

m/sZWX/WT, duration, DT, and diameter, DX, of wave

packets (Table 2 in Freeman, 2005).

The mean amplitude parameters of wave packets were

taken from the spatial patterns of amplitude, A(t) (Fig. 1C in

Freeman, 2005), using the EEGs of the olfactory bulb and

the visual, auditory and somatic cortices in response to

conditioned stimuli with reinforcement (CSC) and without

reinforcement (CSK) after discriminative training. The

work demonstrated that spatial AM patterns that were

expressed in feature vectors, A(t), could be classified with

respect to CSs (Fig. 2A in Freeman, 2005). The

accompanying spatial patterns of phase, F(t) (Fig. 2B in
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Freeman, 2005), provided evidence that each wave packet

formed by a state transition (Freeman, 2004b).

Analysis of the temporal patterns of classification of AM

patterns with respect to CSs showed (Fig. 1) that epochs of

high likelihood of correct classification occurred intermit-

tently in the time interval between onsets of the CS and

conditioned responses (CR). They were detected by

application to sets of 40 trials of a moving window

64–128 ms in duration, which was stepped along the sets

of 6 s trials at 16 ms intervals. At each step the %correct

classification was calculated and plotted in a graph with trial

time on the abscissa. The probabilities of those %values

occurring by chance were calculated with the binomial

distribution (Barrie, Freeman, & Lenhart, 1996). As shown

by the example here in Fig. 1, peaks of high classification

occurred just after the onsets of CSs and thereafter at

varying intervals. The level of %classification declined

through the onsets of the CRs, which we inferred were due

to variation in the latencies of later classifiable wave packets

called ‘jitter’ (Tallon-Baudry, Bertrand, Peronnet, &

Pernier, 1998).
Fig. 1. Probability of %correct classification occurring by chance.
An additional dimension of structure appeared upon

analysis of the carrier frequencies in relation to %correct

classification. In all cases the multiple EEGs had to be band-

pass filtered in order to demonstrate classifiability with

respect to CSs. In preliminary studies, the optimal pass band

was 20–80 Hz (Barrie et al., 1996). More detailed analysis

of the rabbit data showed that correct classification was

optimal for wave packets within 140 ms of CS onset when

the pass band was in the gamma range (30–80 Hz), whereas

wave packets with latencies from CS onsets of 400–600 ms

had carrier frequencies in the beta band (12–30 Hz). Wave

packets with beta carrier frequencies tended to have longer

durations, DT, larger diameters, DX, and recurrence rates in

the low theta range (3–5 Hz) in contrast to gamma wave

packets having recurrence rates in the high theta band

(5–7 Hz) (Freeman, 2005).
3.2. Aperiodic phase re-setting of beta-gamma

oscillations in state transitions at theta rates

A search was instituted for a marker that could be used to

locate wave packets despite the unpredictability of their

latencies with respect to the CSs that induced them. To this

end the fine temporal structure of the state transitions was

explored with the Hilbert Transform (HT), taking advantage

of its high temporal resolution of instantaneous frequency

and phase (Freeman, 2004a,b). State transitions in broad

spatial domains gave rise to the appearance of coordinated

discontinuities in phase, which in the time series of the

multiple channels are known as ‘phase slip’ (Pikovsky,

Rosenblum, & Kurths, 2001). These jumps were phase re-

settings that were followed first by re-synchronization of

beta and gamma waves, and then by dramatic increases in

analytic amplitude of AM patterns. The optimal measure for

classification was found to be given by the mean square of

the analytic amplitude,
�
A2ðtÞ. (Freeman, 2004b). That

increase (Fig. 2A) was preceded by stabilization of the

spatial AM pattern. The stability was estimated by

calculating the Euclidean distance, DE(t), between succes-

sive points in N-space that represented the feature vectors in

64-space (Freeman, 2004a). High stability was shown by

low plateaus in the rate of change of the Euclidean distances

between feature vectors.

The most effective tool for locating the spatial AM

patterns in the CS–CR time interval was the ratio,

HEðtÞZ �
A2ðtÞ=DEðtÞ, which was named the ‘pragmatic

information’ (Freeman, 2004a). HE(t) had spikes (Fig. 2B)

that gave nearly Gaussian distributions of log HE (Fig. 3A).

Significant segments were demarcated in the EEG by setting

a threshold for HE(t) to locate time epochs of high power

and high AM pattern stability. A tuning curve was devised

for each subject and data set by systematically varying the

HE(t) threshold and re-calculating %correct values for

optimal values (Fig. 3B). Pass bands for filters were also

adjusted by classifier-directed optimization.



Fig. 2. Parameters derived from applying the Hilbert transform.
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Two examples are shown in Fig. 4 of the locations in

time of the frames with high HE(t) in 20 trials of CSC.

Similar segments were found in 20 trials of CSK. Frames in

the gamma band (A) were most likely to occur immediately

after CS onset and were relatively sparse in the pre-stimulus

period. The frames in the beta band (B) were distributed in

both pre- and post-stimulus epochs but with the greatest
Fig. 3. Use of tuning curves to loca
likelihood of occurrence later in the CS-CR interval.

The times of maximal incidence of frames corresponded

to the peaks in %correct classification found by the methods

that were illustrated in Fig. 1.

Classification in preceding studies was by the Euclidean

distance method applied to 64!1 feature vectors (rms

amplitudes of fixed-length segments) in a moving window

time-locked across all trials. Each session set was divided

into even and odd trials: a training set to calculate two

centers of gravity and a test set to calculate the distance in

N-space of each point to the two centers, then repeating with

reversal for cross-validation. Classification was judged to be

correct when the distance of a frame on a CSC trial was

shorter to the CSC center than to the CSK center. This

earlier method was limited to two clusters (Fig. 1) and gave

no visualization of the distributions of points.
3.3. Classification of wave packets located by HE(t)

An alternative method was to preprocess the feature

vectors prior to classification by non-linear mapping

(Barrie, Holcman, & Freeman, 1999; Freeman, 2005;

Sammon, 1969). The mapping worked unsupervised to

project the M points in N-space representing the whole set of

M frames into a visualization plane for display, while

preserving to a good approximation the distances between

the points. An initial plane was defined by the two

coordinate axes with largest variances of the data. The

M(MK1)/2 Euclidean distances were calculated between

the points in N-space and between the points projected into

the plane. An error function was defined by the normalized

differences between the two sets of distances. The error was

minimized by a steepest gradient.

After optimization of the display in two-space the first

three frames after CS onset (Fig. 4) were labeled in

sequential order (1, 2, 3) and by CS type, giving six sets of

20 points representing the feature vectors. These points

formed clusters owing to similarity of the spatial AM

patterns in classes. The center of gravity was calculated
te classifiable EEG segments.



Fig. 5. Feature vectors from 40 trials are represented by points after

projection from 64-space into two-space by non-linear mapping.

Fig. 4. EEG frames located by HE(t) with respect to CS onset at 0 s.
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fo each cluster. Classification of each point was by its

Euclidean distance in the 2D projection plane to the nearest

projected center of gravity. The classification was correct

when the type of the closest center in two-space

corresponded to the same type of frame in the six-way

classification. For a set of 20 trials of each type, the results

were expressed as %correct classification (Barrie et al.,

1999; Viana Di Prisco & Freeman, 1985). An example of

the output of Sammon’s algorithm is shown in Fig. 5A,

where the circles indicate the SD of the radial coordinates

within a cluster measured with respect to the center in two-

space. Pairwise classification was evaluated by assuming

linear separability of the clusters. Sammon’s method gave

flexibility in choosing the number of groups to be classified

in terms of the latencies and durations of temporal

windows. The level of significance for correct classification

was evaluated by applying the same test to the first three

feature vectors starting after 1.0 s in the pre-stimulus
control period. Classification in the test period was

considered to be significant if it exceeded the maximum

of level of %correct classification in the control period

from all subjects and sessions, which was used as an

estimate of pZ0.01.

The results of classification are summarized as follows.

The first of the three gamma frames were significantly

classified with respect to CSG, whereas the first of the three

beta frames were not. The second and third of the three

gamma frames were not significantly classified, whereas the

third beta frames were significantly classified and the

second was marginally so (p!0.05).

The parameters of the wave packets are summarized in

Fig. 6. The mean start latencies of the first test frames (66G
12 ms) were consistent with the known mean start latencies

of neocortical-evoked potentials. The latencies of the

second (254G25 ms) and third test frames (448G41 ms)

exceeded those in the control frames in the gamma range on

an average by 64 ms; there were no significant differences in

the beta range. The recurrence rates from the reciprocals of

the mean intervals were in the higher half of the theta range

for the gamma band (6.4G0.3 Hz) and in the lower half for

the beta band (4.6G0.1 Hz).

The durations, DT, of beta test frames (73G5 ms)

consistently exceeded durations of gamma test frames



Fig. 6. Summary of wave packet parameters. From Freeman (2005).
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(51G7 ms). Diameters, DX, ranged from 10 to 36 mm, with

frames in the beta range consistently exceeding those in the

gamma range. There were no significant differences

between successive frames or between CSC and CSK.

Peak power normalized with respect to the global mean of

EEG from each trial set ranged from 0.07 to 0.60 SD.

Normalized peak power in all test frames exceeded two-fold

that in all control frames in both pass bands. For test frames

but not for control frames in the gamma range peak power

decreased from the first to the second frame (p!0.05); a

comparable decrease in peak power occurred from the

second to the third frame (p!0.001) in the beta range for

both CSs, lowering power to the control level.
4. Discussion

Background EEG is notoriously opaque to interpretation

and understanding; commonly it is dismissed as noise and is

removed by ensemble averaging. Examination of the spatial

patterns of phase and amplitude that are carried in multiple

EEG signals reveals significant structure in the background

EEG that highlights two important properties of neocortex:

its instability in respect to multiple sequential state

transitions support emergence of frames of patterned

activity, and metastability by the recurrence of meaningful

patterns.

4.1. Stability, instability, and metastability

The normal neuron is bistable, being either resting or

firing. The closer it is brought to its threshold by

depolarization the more sensitive it becomes to input. The

population homologue is expressed in the asymmetric non-

linear gain function (Freeman, 2000) commonly known as

the ‘sigmoid curve’. Briefly, absolute stability is guaranteed

by an asymptotic approach to threshold on inhibition and

limitation by refractory periods on excitation, while

instability is guaranteed by the asymmetry of the curve:

the maximal gain is displaced to the excitatory side of rest.

Excitatory input increases output, and it also increases

sensitivity to further input. Sensory stimulation of a cortical

population excites some of its neurons and increases their

sensitivity. They excite each other so that when a threshold

is crossed, the entire population is destabilized. However,

when the input ends, the population returns near to its

prestimulus state. For local or isolated cortical populations

of excitatory and inhibitory neurons, the process can be

modeled with a subcritical Hopf bifurcation, so that like the

single neuron the cortical population can be regarded as

bistable. It appears likely that the large numbers of neural

populations interact through the small-world, scale-free

synaptic networks of long connections comprising the

neuropil of each cerebral hemisphere. Thereby they

maintain their background activity at self-organized

criticality (Freeman, 2000a,b).

4.2. Interpretation of EEG in terms of action–perception

We interpret our findings in terms of the action–

perception cycle of Piaget (1930) and Merleau-Ponty

(1945/1962) that expresses intentional behaviour (Freeman,

2001). Our rabbits maintained an intentional stance of

expectancy, which required selective attention with fore-

knowledge of CSs elicited by the context of the training

environment. The expectant state was adaptive and readily

updated with new sensory input, which implied that rapid

changes in the neural correlates of perception were taking

place. We propose that the pre-stimulus beta frames

embodied the expectancies in terms of an array of attractor

landscapes involving all of the sensory areas and the limbic
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system. The impact of CSs destabilized the cortical areas to

which they were directed, as manifested in gamma frames,

which were more local in space and briefer in time than beta

frames. We believe that the time lapse between gamma and

beta frames measures the interval that was required for

multisensory convergence into the limbic system, passage

through the hippocampal formation with integration into the

space-time cognitive framework of the rabbits, leading to an

up-date of expectancy that was revealed in the later beta

frames prior to CR onsets.

In this view the intentional stance is a metastable state

within which multiple state transitions occur continuously

that make it flexible. Those unstable states and their

transitions that are modality-specific are local with smaller

size, shorter duration, higher carrier frequencies, and faster

frame rates on an average, whereas those unstable cortical

states that embody multisensory percepts (Gestalts) have

larger size, longer duration, lower carrier frequencies, and

lower frame rates. The cortical output to subcortical targets

is always local, but the content of the output in the AM

patterns is in large part determined by global interactions, so

that the neural activity in every sensory area is shaped by

contributions from all other areas, as mediated by passage of

exchanges through the limbic system by way of its

neocortical gateway in the entorhinal cortex.
4.3. Significance of EEG for modeling cognitive processes

The commonly held view of the brain as an information

processor is based on the assumption that processing begins

with stimulus onset. This is schematized in Fig. 7A.

Each new packet of information, In0, carried by a

stimulus is transduced at receptors into trains of action

potentials, which carry it to the appropriate cortex through a

series of relays by which it is processed in various ways to

In1 and In2. At the point of injection of the information into
Fig. 7. Transformation of information according to two models. The star

represents the operation of averaging. The pound sign represents the

operation of the input-induced state transition with accommodation by

learning.
the cortex as In3, it is obscured by background activity. In3 is

retrieved by ensemble averaging over repeated trials,

thereby verifying that the information has in fact been

injected into the cortex albeit in modified form. The

difficulty with this view is that cortex appears to lack the

neural machinery that would be necessary for temporary

storage of multiple sequential trials, summing, and

calculation of averages. This set of operations is indicated

by the star symbol in Fig. 7. The inadequacy of evidence for

this kind of neural processing calls into question the nature

and existence of further engineering mechanisms for

comparisons of new patterns with those previously stored

in memories, Inx, so that an appropriate response might be

selected and measured in order to verify that the response

contains In3.

An alternative model that is based on the intentional

action–perception cycle is schematized in Fig. 7B. The

channels for the input of information from the senses to the

cortices are the same as for the information processing

model. The difference begins at the site of impact of the

information onto cortical dynamics as indicated by the

pound symbol, #. That symbol represents the state transition

by which input destabilizes cortex, selects a basin of

attraction in a pre-existing attractor landscape, and modifies

the basin and its attractor in a cumulative learning process.

The destabilizing input, of course, is the consequence of an

intentional act of observation and sampling the environ-

ment. The action is the cause of the stimulus, in contrast

with the information processing model in which the

stimulus is the cause of the response.

The collections of attractor basins in the forebrain are

expressions of the memories of the animals and constitute

the knowledge base. In an expectant state, the sample that is

brought up for testing is denoted KnK1 00 in Fig. 7B. That

state is not directly observable, whereas the emergent

spatiotemporal patterns of neural activity are detectable

with appropriate sensors for action potentials, EEGs, MEGs,

and other images. The observables corresponding to KnK1 00

are labeled AnK1 00. The measurements of the observables are

accumulated in sets of numbers, which constitute the

available information about the observables, InK1 00. That

numeric information is the basis for the graphs in this and

related prior reports, for statistical analyses, and for

classification of spatiotemporal patterns with respect to

CSs and CRs. However, the information is not in the brains

of the animals; it is in the statistical descriptions of the

observables and in the models based on the observations.

With the onset of an expected stimulus the receiving

cortex is destabilized, an attractor landscape is created, and

a selection is made by the CS from the available basins,

which is manifested in the AM pattern of a gamma wave

packet. The synaptic networks that have been selected for

activation in the cortical neuropil are modified by Hebbian

and non-Hebbian learning (Freeman, 2000; Kozma &

Freeman, 2001), and the selected attractor and its attendant

basin are updated, denoted Kn 00 in Fig. 7B. The information
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having done its work is then attenuated by the divergent–

convergent projections by which cortical output is

transmitted (Freeman, 2003a). This inference is based on

studies of measurements, In 00, of the observables, An.

The action–perception cycle then repeats giving KnC1 00,

AnC1 00 and InC1 00 based on the action following Kn 00.

In summary, techniques determine the information that is

derived by processing raw EEG observations. The high

temporal and spatial resolution afforded by the Hilbert

transform and high-density electrode arrays have revealed

temporal structure in the form of repetitive state transitions

and spatial structure in the forms of amplitude and phase

modulations of beta and gamma oscillations. The finding

that the AM patterns can be classified with respect to CSs

well beyond chance levels supports the theory of the action–

perception cycle, by which expectancy precedes acts of

observation and sensitizes the primary sensory cortices to

the several predicted consequences of impending actions.

Reception is followed by selection by the sensory input of

one of the possible outcomes and updating of the cortical

synaptic networks. These ongoing modifications can explain

the accommodation of EEG patterns to the environmental

conditions.
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