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Abstract

Verbal and physical aggression begin early in life and steadily decline thereafter in normal 

development. As a result, elevated aggressive behavior in adolescence may signal atypical 

development and greater vulnerability for negative mental and health outcomes. Converging 

evidence suggests that brain disturbances in regions involved in impulse control, emotional 

regulation, and sensation seeking may contribute to heightened aggression. However, little is 

known regarding the neural mechanisms underlying subtypes of aggression (i.e., proactive and 

reactive aggression) and whether they differ between males and females. Using a sample of 106 

14-year-old adolescent twins, this study found that striatal enlargement was associated with both 

proactive and reactive aggression. We also found that volumetric alterations in several frontal 

regions including smaller middle frontal and larger orbitofrontal cortex were correlated with 

higher levels of aggression in adolescent twins. In addition, cortical thickness analysis showed that 

thickness alterations in many overlapping regions including middle frontal, superior frontal, and 

anterior cingulate cortex and temporal regions were associated with aggression in adolescent 

twins. Results support the involvement of fronto-limbic-striatal circuit in the etiology of 

aggression during adolescence.
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Introduction

Aggression begins early in life and steadily declines thereafter in normal development (Coie 

& Dodge, 1998; Nagin & Tremblay, 1999). Aggressive behavior, both verbal and physical, 
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during adolescence poses greater risk for negative mental and health outcomes including 

criminal offending, low socioeconomic status, higher unemployment, and marital problems 

(Buchmann, Hohmann, Brandeis, Banaschewski, & Poustka, 2014). Aggression is also a 

prominent feature in many children with neurodevelopmental disorders including attention 

deficit/hyperactivity disorder, conduct disorder, oppositional defiant disorder, and autistic 

spectrum disorders (Matson & Cervantes, 2014; Murray, Obsuth, Zirk-Sadowski, Ribeaud, 

& Eisner, 2016). Therefore, it is of critical importance to understand the neurobiological 

underpinnings of aggression during adolescence to guide future development of targeted 

prevention and intervention.

Multiple brain regions have been implicated in aggression, with the strongest evidence to 

date pointing to the involvement of the fronto-limbic-striatal circuitry. The majority of 

existing brain imaging studies on aggression focus on adults with antisocial personality 

disorder and psychopathy, showing potential links between aggressive behavior and lower 

gray matter volumes in the orbitofrontal cortex, middle frontal cortex, and the temporal lobe 

(Boccardi et al., 2013; Boccardi et al., 2010; Dolan, Deakin, Roberts, & Anderson, 2002; 

Gregory et al., 2012; Raine, Lencz, Bihrle, LaCasse, & Colletti, 2000; Yang & Raine, 2009; 

Yang, Raine, Colletti, Toga, & Narr, 2009; Yang et al., 2005; Yang, Raine, Narr, Colletti, & 

Toga, 2009). Studies of criminal offenders also reported structural abnormalities in the 

amygdala, hippocampus, caudate, putamen, and the nucleus accumbens (Boccardi et al., 

2013; Boccardi et al., 2011; Yang, et al., 2010; Yang, et al., 2012a). However, increasing 

evidence begins to suggest that brain abnormalities observed in violent offenders may differ 

across diagnostic groups (Bertsch et al., 2013; Howner et al., 2012). Furthermore, despite 

controlling for substance abuse in most of these studies (Gregory et al., 2012), an argument 

remains that substance misuse may contribute, at least partially, to brain abnormalities 

observed in violent, antisocial individuals (Schiffer et al., 2011).

The examination of neural correlates of aggression in younger populations provides many 

advantages including limited exposure to the effects of substance abuse and the potential to 

establish a neurodevelopmental pathway to violence. However, brain imaging studies on 

aggression in young adolescents are scarce. Our understanding of neural correlates of 

aggression in adolescents largely came from studies of children with conduct disorders, in 

which aggressive behavior is one of the prominent features. Children with conduct disorders 

were found to show lower volumes and cortical thickness in the frontal cortex, cingulate, and 

insula and lower volumes in the amygdala and the hippocampus (Fahim et al., 2011; 

Fairchild et al., 2012; G. Fairchild et al., 2011; Huebner et al., 2008; Sterzer, Stadler, 

Poustka, & Kleinschmidt, 2007; Walhovd, Tamnes, Ostby, Due-Tonnessen, & Fjell, 2012). 

Two recent studies found that incarcerated male adolescents who committed homicide 

showed lower gray matter volumes in the medial and lateral temporal lobes, including the 

hippocampus and posterior insula, than non-homicide offenders (Cope et al., 2014; Kolla, 

Gregory, Attard, Blackwood, & Hodgins, 2014). Taken together with adult findings, smaller 

frontal and temporal regions and enlarged striatum are likely to contribute to impaired 

impulse control and emotional regulation, leading to the use of aggressive acts as a means to 

resolve conflict or obtain desirable outcomes.
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Despite these efforts, the knowledge regarding the neurodevelopmental underpinning of 

aggression remains limited for several reasons. First, findings from clinical samples in prior 

studies are influenced by potential confounds such as treatment status, age-of-onset, and 

comorbid psychiatric disorders. Second, most studies focused on only one brain 

morphological feature (e.g., volume, thickness, shape), making it difficult to have a more 

comprehensive understanding of how disturbances in brain architecture lead to elevated 

aggression. Third, the majority of studies on aggression to date have focused on males 

exclusively, partially attributable to large disparities between males and females in the 

prevalence of violent crimes, and the diagnosis of antisocial personality disorder and 

conduct disorders (Israel et al., 2014; Loukas, Paulos, & Robinson, 2005). Fourth, studies to 

date have largely focused on neural mechanisms underlying pathological forms of 

aggression by comparing violent to non-violent individuals. This categorical approach to the 

underlying neuropathology of aggression goes against empirical evidence indicating that 

aggression is a continuous trait present in all populations (Hudziak et al., 2003; Ligthart, 

Bartels, Hoekstra, Hudziak, & Boomsma, 2005). Last, increasing evidence supports further 

distinction between two subtypes of aggression, the controlled-instrumental subtype 

(proactive) and the impulse subtypes (reactive). However, no study to our knowledge has 

identified differences and/or overlaps in the neural correlates between these two subtypes of 

aggression in adolescents.

Using a sample of 106 14-year-old typically developing adolescent twins (49.06% females), 

the current study extends the existing literature by examining the neural underpinnings of 

both proactive and reactive aggression and identifying any potential sex specificity. Using 

two independent but complementary methods, namely tensor-based morphometry (TBM) 

and cortical thickness mapping, we conducted a thorough investigation on both cortical and 

subcortical volumes and cortical thickness to determine how variations in these features 

associate with elevated aggressive behavior in adolescents. These two methods were chosen 

because they provide complementary and comprehensive assessment of the brain structural 

integrity. Specifically, tensor-based morphometry (TBM) provides automated and relatively 

unbiased voxel-wise assessment of brain tissue-specific changes (gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF)) across the entire brain. Specifically, global and 

regional variations in brain tissue volume are estimated by applying localized deformations 

to adjust the anatomy of each individual to match a population-specific group-average 

template and then by linking these deformation fields at the voxel-level to behavioral scores. 

Cortical thickness was analyzed using FreeSurfer software package for identifying cortical 

thickness variations associated with behavioral measures across the brain surface on a 

vertex-by-vertex basis. It has been argued that gray matter volume is a combination of 

several measures including cortical thickness and surface area; however, few studies assess 

contributions of different architectural components of the brain to behavioral problems in 

adolescents. Thus, in this study, we examine potential unique and overlapping contributions 

of both volumetric and thickness disturbances to adolescent aggression.

Here, we predicted that lower volume and cortical thickness in frontal regions, particularly 

those that are involved in impulse control (e.g., dorsolateral prefrontal cortex, anterior 

cingulate cortex) and emotional regulation (e.g., orbitofrontal cortex), would be associated 
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with elevated aggression in adolescents. We also predicted that greater striatal volumes will 

be linked to higher levels of aggression in adolescents.

Methods and Materials

Subjects

The 106 14-year-old adolescent twins (54 males and 52 females) included in this study were 

drawn from participants in the University of Southern California (USC) Risk Factors for 

Antisocial Behavior Twin Study (Baker, Barton, Lozano, Raine, & Fowler, 2006; Baker et 

al., 2013). The adolescent twins and their families were originally recruited from Los 

Angeles County at ages 9–10, and were followed up at age 14 to obtain additional imaging 

and behavioral assessments. Participants were excluded if they had a history of significant 

head injury, major neurological, psychiatric illness, substance abuse, or contraindication to 

MRI (Baker et al., 2013; Yang, et al., 2012). The adolescent twins and their primary 

caregivers participated in 6–8 hours of laboratory assessment at USC including a one-hour 

scan. Both caregivers and twins gave written informed consent/assent prior to the study. The 

study was approved by the CHLA and USC Institutional Review Boards.

Behavioral Measurements

To measure aggressive behavior in adolescent twins, the child’s caregivers completed the 

Reactive and Proactive Aggression Questionnaire (RPQ) as previously reported (Baker, 

Raine, Liu, & Jacobson, 2008; Tuvblad, Raine, Zheng, & Baker, 2009). The RPQ is a 23-

item validated questionnaire designed to assess both verbal and physical aggression in young 

children and adolescents (Raine et al., 2006). The RPQ includes 11 reactive items (e.g., 

hitting others when teased, gets angry when frustrated) and 12 proactive items (e.g., 

damages things for fun, uses force to get things from others). Because of the characteristic of 

the RPQ, it is worth mentioning that the term “aggression” used throughout this article refers 

to both verbal and physical aggression. The RPQ for the item responses were computed to 

form reactive and proactive aggression subscales. The RPQ scores of the total, male, and 

female sample are described in Table 1.

MRI Acquisition and Preprocessing

All participants were scanned using a 3 Tesla Siemens Magnetom Trio whole-body scanner 

at the USC Dornsife Cognitive Neuroscience Imaging Center. 3D high-resolution T1-

weighted images were acquired with a magnetization prepared rapid gradient echo (MP-

RAGE) protocol with the following parameters: inversion time (TI)/repetition time (TR)/

echo time (TE) = 800/2530/3.09 msec, slice thickness = 1 mm without gap, matrix = 256 × 

256, and field of view (FOV) = 256 mm × 256 mm. Image preprocessing (e.g. skull-

stripping, correction of signal intensity and inhomogeneity artifacts) was conducted using 

FreeSurfer processing streams where outputs were visually inspected and manually 

corrected for accuracy (Yang, et al., 2010; Yang, et al., 2012b).

Brain tissue volume analysis—To detect local differences in brain cortical and 

subcortical structures associated with aggression scores, TBM processing streams were 

implemented using methods similar to those described in prior investigations (Yang et al., 
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2015; Yang et al., 2011). In brief, TBM relies on matching structures with similar intensity 

patterns, and measures volumetric differences in a population by analyzing the gradients of 

the non-linear deformation fields required to align individual images to an anatomical 

template specific to the population studied (Yang et al., 2015; Yang et al., 2011). TBM 

processing steps include a 9-parameter registration, the creation of an anatomical template or 

minimal deformation target (MDT) using a mutual information-based inverse-consistent 

algorithm, and the alignment of image volumes from all subjects to the MDT by nonlinearly 

deforming the anatomy of each individual image to match the anatomical template. The 

Jacobian operator was then applied to the deformation fields to produce univariate Jacobian 

determinants (i.e., Jacobian maps) that index the extent of local expansion or contraction 

required to non-linearly warp each brain to match each subject’s anatomy to the MDT. 

These 3D Jacobian maps represent relative tissue volume differences between each 

individual and the MDT, and were used to characterize local differences in brain tissue 

structure associated with the targeted behavioral measure across the sample.

Cortical thickness analysis—For each participant, cortical thickness was estimated 

using the FreeSurfer software v5.1.0 (Fischl, 2012) at each vertex over the entire cortical 

surface, a process that has been validated against postmortem histological analysis (Rosas et 

al., 2002) and manual measurements (Kuperberg et al., 2003; Salat et al., 2004). FreeSurfer 

processing streams included skull-stripping, tissue segmentation, and spatial normalization 

of each image volume (Yang, et al., 2012a; Yang, et al., 2012b). After intensity 

normalization, gray-white tissue segmentation was used to extract the pial and gray-white 

cortical surface to estimate cortical thickness. The pial and gray-white cortical surface of 

each subject was visually inspected and manually corrected to ensure accuracy (Yang, et al., 

2012a; Yang, et al., 2012b). To boost the signal to noise ratio, we applied a 25-mm full-

width at half-maximum Gaussian surface-based smoothing kernel to the estimated thickness 

values (Panizzon et al., 2009). Each individual cortical surface was then registered to an 

averaged template to allow statistical analysis across the sample.

Statistical Analysis

The R statistical package (version 2.9.2; http://www.r-project.org/) was used to compute the 

correlation between RPQ scores and 1) the TBM Jacobian determinant at each voxel across 

the entire brain and 2) the FreeSurfer thickness value at each surface point using the mixed 

effects model while controlling for sex, whole brain volume, and subject relatedness. 

Random intercepts were included for each family to account for relatedness of the subjects. 

The analysis was implemented using the ‘nlme’ library in the R statistical package. Since 

comparisons were made at thousands of voxels/vertices, results were thresholded using False 

Discovery Rate (FDR) (q-value = 0.05)(Chu, Cui, & Dinov, 2009). For descriptive purposes 

and to confirm the location of the observed effects, we further identified clusters showing 

significant structural deformations associated with aggression scores using the software 

FEAT Cluster (http://fsl.fmrib.ox.ac.uk/fsl/) for clusters with > 3000 voxels. The coordinates 

are converted from MNI (FSL) space to Talaraich using software GingerALE (https://

www.brainmap.org/) and the closest gray matter structures are identified using software 

Talaraich Daemon (http://talairach.org/). The clusters and coordinates are reported in Table 

S1 (Supplementary Material).
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Post-Hoc Analyses—To confirm that local striatal expansions observed in the TBM 

analyses reflect volumetric changes associated with aggression, gray matter volumes of left 

and right caudate nuclei, putamen and nucleus accumbens were extracted using FreeSurfer 

(Fischl et al., 2002). For these procedures, any small topographical errors in segmentation 

were corrected manually on a case-by-case basis. The same statistical models described 

above were used to identify striatal volumes that are correlated with aggression scores, and 

the results are provided in Table S2 (see the Supplementary Material).

Results

Volumetric disturbances associated with aggression

Across the entire sample, higher total aggression was correlated with larger volumes in the 

right lateral orbitofrontal cortex (OFC) and striatal regions, particularly the left caudate 

nuclei and bilateral putamen, and smaller volumes in the right middle frontal cortex (MFC) 

and bilateral occipital lobes (Figure 1, Table S1 and S2). The coordinates of effects are 

reported in Table S1 in the Supplementary Material. The post-hoc analyses on gray matter 

volumes of caudate nuclei, putamen, and nucleus accumbens correlated with aggression 

scores further confirmed the observed effects (Table S2 & Figure S1; Supplementary 

Material). Higher proactive aggression was found to correlate with larger volumes in the left 

caudate, left putamen, and the right OFC and smaller volumes in the right MFC and bilateral 

occipital lobes. On the other hand, higher reactive aggression was found to correlate with 

larger volumes in the bilateral caudate, bilateral putamen, and the right OFC and smaller 

volumes in the right MFC and bilateral occipital lobes. Although post-hoc analyses showed 

that the unique contributions of brain volumetric variations in these regions to subtypes of 

aggression did not survive FDR corrections (Figure S2, Supplementary Material), findings 

indicated that lower lateral and medial frontal volumes may contribute more strongly to 

proactive aggression, whereas increased left putamen may contribute more strongly to 

reactive aggression.

To determine whether there is sex-specific effect on the correlations between brain volumes 

and aggression, we further mapped the “sex by aggression” interaction against brain tissue 

volumes. The interaction effect was most significant in the left putamen (uncorrected p < .

05), indicating that the positive correlation between higher aggression and increased left 

putamen volume was stronger in adolescent males than females (Figure S3, Supplementary 

Material). However, the interaction effect did not survive FDR correction.

Thickness disturbances associated with aggression

Across the entire sample, higher total aggression was found to correlate with thinner frontal 

cortex and thicker temporal and parietal lobes (Figure 2). Specifically, higher total 

aggression was correlated with thinner right MFC and thicker cortices in the right superior 

temporal gyrus (STG), right middle temporal gyrus (MTG), bilateral inferior temporal gyri 

(ITG), bilateral inferior parietal lobes, right superior parietal lobe, and bilateral occipital 

lobes (Figure 2). Higher proactive aggression was found to correlate with thinner bilateral 

SFC, bilateral MFC, and left anterior cingulate cortex (ACC) and thicker left paracentral 

gyrus, left ITG and right STG. On the other hand, higher reactive aggression was correlated 

Yang et al. Page 6

Aggress Behav. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with thicker left paracentral gyrus, left precentral gyrus, right STG, right MTG, bilateral 

ITG, right inferior and superior parietal lobe, and bilateral occipital lobes (Figure 2). 

Although post-hoc analyses for unique contributions of thickness variations to subtypes of 

aggression did not survive FDR correction (Figure S4, Supplementary Material), the maps 

indicated that reduced cortical thickness across the lateral and medial frontal cortex, bilateral 

ACC, and left anterior temporal regions may contribute uniquely to proactive aggression, 

whereas increased cortical thickness in right ACC, medial frontal cortex, and inferior and 

medial temporal cortex may contribute uniquely to higher proactive aggression.

Additional analyses mapping the “sex by aggression” interaction against cortical thickness 

showed a significant interaction effect in the lateral left orbitofrontal, bilateral middle frontal 

and right posterior cingulate cortex (uncorrected p < .05), indicating that the correlations 

between higher aggression and thicker cortex in these regions were greater in adolescent 

males than females (Figure S5, Supplementary Material). However, the interaction results 

did not survive FDR correction.

Discussion

To our knowledge, this is the first study to show support for both volumetric and thickness 

disturbances underlying aggression in a typically developing population of adolescent twins. 

Specifically, we found striatal enlargement to be most strongly associated with both 

proactive and reactive aggression. We also found volumetric alterations in several frontal 

regions including smaller MFC and larger OFC to be correlated with higher aggression in 

adolescent twins. In addition to volumetric findings, cortical thickness analysis also showed 

thickness alterations in many overlapping regions including MFC, SFC, as well as ACC and 

temporal regions to be associated with aggression in adolescent twins.

One of the most prominent findings was the correlation between higher aggression and 

larger volume in the striatum, particularly the caudate nuclei, putamen, and the nucleus 

accumbens. This is consistent with previous reports showing that enlarged caudate and 

putamen are associated with: (1) aggressive behavior in children (Ducharme et al., 2012); (2) 

elevated psychopathic traits in both adults and children (Glenn, Raine, Yaralian, & Yang, 

2009; Yang et al., 2015); and (3) violent offending in adults (Schiffer et al., 2011). Larger 

caudate size has also been linked to higher levels of aggression in patients with 

schizophrenia (Hoptman et al., 2006). The present findings are supported by functional 

imaging studies showing that atypical caudate activation in response to both reward and non-

reward stimuli in children with externalizing behavioral disorders compared to healthy 

children, who showed caudate activation only to reward stimuli (Gatzke-Kopp et al., 2009). 

The striatal regions have long been associated with the mesolimbic dopamine system that 

governs the regulation of motivated behavior (Mogenson, Jones, & Yim, 1980). Animal 

research showed that mesolimbic dopamine is critical for the expression of aggression, and 

dopamine transporter (DAT) knock-out mice showed increased rates of reactivity and 

aggression following mild social contact (Rodriguiz, Chu, Caron, & Wetsel, 2004). In line 

with these findings, our study showed that enlarged striatum in adolescents may be a 

potential biomarker for elevated aggression.
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We also observed higher levels of aggression to be associated with structural variations in 

widespread areas of the frontal cortex, particularly MFC and OFC, but also IFC and SFC. 

These volumetric findings are complemented by the independent surface-based findings, 

which showed a thinner cortex in the MFC, a thicker cortex in the OFC, and an thinner 

cortex in the SFC, supporting the hypothesis that frontal lobe dysfunction is one of the key 

predispositions towards aggression (Anderson & Kiehl, 2014; Brower & Price, 2001; Fahim 

et al., 2011; Viding, Seara-Cardoso, & McCrory, 2014; Wallace et al., 2014; Yang & Raine, 

2009). Findings also support the argument that both increased and decreased regional 

volume/thickness may indicate a deviation from typical developmental trajectories and may 

reflect impaired cognitive functioning of that region (Gautam, Warner, Kan, & Sowell, 

2015). The OFC, MFC, and the SFC are interactively involved in an extensive variety of 

crucial psychosocial and cognitive functions from directing and controlling attention, 

emotion regulation, decision-making, to executive function. Thus, it is expected that, if the 

morphological development of these intertwined frontal nodes is disrupted at any given 

point, the person may be at risk of poor inhibitory control, executive deficits, impaired 

response perseveration, and social inappropriateness (Hawkins & Trobst, 2000). Thus, the 

findings of this study provide evidence that disturbances in the frontal cortex may increase 

aggressive behavior even among typically developing adolescents.

In this study, we also found evidence that thinner ACC is associated with aggression, 

particularly proactive aggression. These findings are consistent with prior studies showing 

decreased right ACC volume and abnormal ACC asymmetry to be associated with 

aggression in adolescents (Boes, Tranel, Anderson, & Nopoulos, 2008; Gorka, Norman, 

Radtke, Carre, & Hariri, 2015; Visser et al., 2014). The only study to our knowledge that 

examined the relationship between cortical thickness and aggression found a negative trend 

between cortical thickness in the right ACC and aggressive behavior (assessed using Child 

Behavior Checklist) in adolescent males, but a positive trend in the subgenual ACC in 

adolescent females (Ducharme et al., 2012). The inconsistency in these findings may be due 

to sample characteristics (e.g., age, gender distributions, levels of aggression). Nonetheless, 

it is clear that the ACC plays a crucial role in aggression. The ACC is involved in the 

regulation of emotions and social behavior including conflict monitoring and empathy, and 

is densely connected to the limbic system and the prefrontal cortex (Botvinick, 2007; 

Devinsky, Morrell, & Vogt, 1995). Studies have found increased activity in the ACC in 

aggressive adolescents with disruptive behavior disorders (Cohn et al., 2013) and thinner 

ACC in psychopathic inmates (Ly et al., 2012), although one recent study failed to find 

differences in ACC activity during social decision-making between severely antisocial 

adolescents and normal controls (van den Bos et al., 2014). Despite this, the findings may be 

supported by the argument that, while reactive aggression is impulsive in nature, proactive 

aggression is more closely associated with delinquency and psychopathic traits (Raine et al., 

2006). Therefore, findings of this study provide further evidence that ACC disturbances may 

contribute to impaired socialization and emotional dysregulation, leading to higher levels of 

proactive aggression.

We also found that a thicker cortex in the insula was correlated with higher aggression. 

Various brain architectural components of a developing brain are influenced by on-going 

myelination and pruning processes during adolescence that improve the efficiency of 
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cognitive functioning. Thicker cortices may thus reflect a delay in maturation in those brain 

regions. The insula is strongly implicated in empathy (Preston & de Waal, 2002) and is 

activated by pain and distress signals (Fehr, Achtziger, Roth, & Struber, 2014). Thus, 

delayed maturation in the insula may contribute to poorer functioning of this brain region. 

Low empathy is one of the most robust indicators for later aggression (Van der Graaff, 

Branje, De Wied, & Meeus, 2012). Previous studies of conduct disorders also reported 

reduced gray matter volume in anterior insula in adolescents (Fairchild et al., 2013), which 

may be linked to their facial emotion recognition impairment, particularly for expressions of 

disgust (Fairchild, Stobbe, van Goozen, Calder, & Goodyer, 2010).

Despite the advantage of a relatively large, homogeneously aged sample of both male and 

female adolescents, this study has a few limitations. First, the range of aggression in this 

study may be limited because it is a community-based sample of relatively healthy 

adolescents. Also, personality traits such as lack of self-control, high sensation-seeking and 

narcissism may also influence the level of aggression in adolescents. Future studies may 

further test for potential contributions of personality traits that are often comorbid with 

aggression. Second, volumetric findings from TBM whole-brain analysis were not fully 

consistent with thickness findings from cortical thickness mapping. This may simply reflect 

the nature of the assessed brain features, that they are related yet distinct brain architectural 

features that contribute to different neuropathological underpinnings of aggression. Third, as 

a cross-sectional imaging study, it is unclear whether the observed structural disturbances 

associated with aggression reflect normal variations in brain maturation among typically 

developing adolescents or are precursors to future, more severe forms of aggression. Last, 

although the findings may suggest that structural brain changes associated with aggression 

observed in this study contribute to functional impairments in those regions, future studies 

are required to clarify the structure-function relationship in the neural mechanisms 

underlying adolescent aggression. Despite these limitations, this study demonstrates that 

volumetric and thickness variations in the frontal cortex, ACC, striatum, and the temporal 

lobe are associated with elevated aggression among adolescents. Overall, these results 

advance our knowledge of the neural mechanisms underlying aggression and pave the way 

for future unraveling of the neuropathological etiology of aggression in youth.

Conclusion

Results from this study of adolescent twins suggest critical involvement of cortico-limbic-

striatal circuits in aggression during adolescence. We found initial evidence for unique brain 

structural disturbances associated with different subtypes of aggression, suggesting potential 

etiological differences between proactive and reactive aggression that require further 

investigation. Future studies incorporating longitudinal brain scans and an enriched sample 

will help further elucidate the dynamic relationship between brain maturation and the 

developmental trajectory of aggressive behavior in both male and female adolescents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Probability maps showing significant correlations between brain tissue volumes and total 

(top), proactive (middle) and reactive aggression (bottom) across the sample. The 

corresponding beta maps indicates the direction of the effects, with cold colors indicate 

negative and hot colors positive correlations.
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Figure 2. 
Probability maps showing significant correlations between cortical thickness and total (top), 

proactive (middle) and reactive aggression (bottom) across the sample. The corresponding 

beta maps indicates the direction of the effects, with cold colors indicate negative and hot 

colors positive correlations.
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