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ABSTRACT 

Spontaneous current oscillations in an electron-hole plasma in germanium 

in parallel de electric and magnetic fields are known to be the result of an 

unstable helical density wave. We find that when this instability is excited by 

an increasing electric field, there is a transition to turbulence similar to that 

observed in fluids. It is demonstrated that this turbulent behavior is chaotic; 

the observed dynamics include both period doubling .and quasiperiodic transi

tions to chaos. This represents the first clear evidence of a universal transi

tion to low-dimensional chaos in any plasma. 

A number of techniques are employed to characterize the transitions to 

chaos. Analog techniques include the measurement of power spectra and the 

generation of real-time phase portraits, return maps, and bifurcation 

diagrams. Fractal dimensions, a quantitative measure of chaos, are computed 

from digitized time series of the total plasma current. 

Following a quasiperiodic route, the resulting chaotic state is found to be 

characterized by a strange attractor of fractal dimension between 2 and 3. By 

fabricating probe contacts along the length of the crystal, we study the spatial 

structure of these instabilities, finding that these "weakly" turbulent instabili

ties correspond to temporally chaotic, yet essentially spatially coherent plasma 

density waves. 

However, when more strongly excited, these plasma density waves 
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undergo a partial loss of spatial coherence. The onset of the loss of spatial 

coherence is characterized by a sudden jump in the dimension of the attractor 

- from less than three for spatially coherent states to an indeterminately large 

value {>8) after the onset of spatial disorder. 

Experiments on the coupling of a periodic instability of frequency f1 to 

an external perturbation of frequency f2 are reported. For weak perturba

tions, the result is a quasiperiodic state. As the amplitude of the external 

excitation is increased, frequency lockings are observed. When the ratio f2/f1 

is fixed at an irrational number, a quasiperiodic transition to chaos is 

observed. This transition is approximately modeled by maps of the invariant 

circle. 

Finally, a rate-equation model, wt;;,ich includes nonlinear coupling 

between unstable and damped plasma density waves is presented. 
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CHAPTER I. INTR:ODUCTION 

Spontaneous current oscillations in an electron-hole plasma in Ge in 

parallel de electric and magnetic fields are known to be the result of an 

unstable helical density wave.1 When this instability is strongly excited by an 

increasing electric field, there is a transition to turbulence similar to that 

observed in fluids.2•3 The present work demonstrates that this turbulent 

behavior is chaotic; the observed dynamics include period doubling and 

quasiperiodic transitions to low-dimensional chaos, frequency locking, and a 

partial loss of spatial coherence, indicating the spatial breakdown of the heli

cal density wave. The possibility that plasmas could exhibit chaotic behavior 

has been discussed theoretically. 4 This work provides the first evidence of a 

period doubling and a quasiperiodic transition to chaos in any plasma. 

The first three sections of this chapter comprise a discussion of the basic 

concepts associated with chaotic dynamics. The fourth section is a review of 

the linear theory of helical instabilities in semiconductor plasmas, applicable 

prior to the onset of turbulence. 

1.1. Chaotic Dynamics 

The dynamics of a nonlin"ear physical system may appear random or 

noisy when, in fact, the system is exhibiting chaotic behavior involving only a 

few degrees of freedom. 2 The behavior of such a system is most easily dis

cussed in terms of its dynamics in some phase space. The coordinates of the 
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phase space may be any set of variables which, when taken together, uniquely 

identify the state of the system; the temporal evolution of the system thus 

corresponds to motion along a trajectory in phase space. 

A system is chaotic when it evolves in phase space along trajectories 

which satisfy the property that nearby trajectories diverge from one another 

exponentially in time. The rates at which these trajectories diverge (or con

verge), measured along some locally orthogonal axes, are known as Lyapunov 

exponents. 5 Chaotic behavior is characterized by at least one positive 

Lyapunov exponent. 

A dissipative system occupies a volume of phase space which contracts as 

a function of time; trajectories converge to a limit set referred to as an 

attractor. If the system is chaotic, then this limit set is known as a strange 

attractor.6•7 Typically, a strange attractor consists of an infinite number of 

folded surfaces contained within a bounded region of phase space. Trajec

tories constrained to move along such an attractor simultaneously diverge 

from one another and remain within a bounded volume of phase space. A 

Poincare' section (i.e., a cross section of the attractor) will often reveal the 

multiple foldings and rich structure which typify strange attractors. An 

example is shown in figure 1.1. This figure shows a cross sectional view of the 

chaotic attractor which results from solving Duffing's equation,8 an ordinary 

differential equation which is known to exhibit chaos. 

The dimension of a 'strange attractor is fractional.9 For example, an 

attractor which consists of an infinite number of 2-dimensional surfaces 
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XBB 848-5684 

Figure 1.1. Poincare' section of Duffing's equation, 

x - ax + bx3 = -gx + F coswt , 

where a= 1.0, b = 10.0, g = 0.12, F = 0.56, and w = 0.93. The vertical 
and horizontal axes refer to x and x respectively, plotted whenever 
(wt )modZlr =·a. This figure was provided by J. P. Crutchfield. 
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confined within a finite 3-dimensional volume of phase space (such as the 

attractor whose Poincare' section is shown in figure 1.1) would have a fractal 

dimension between two and three; the precise value would depend on the 

... 
density of these surfaces. The fractal dimension is an approximate measure of 

the number of degrees of freedom needed to characterize the behavior of the 

system. If the fractal dimension of an attractor is less than three, then three 

coordinates (using an appropriate set of basis vectors) will uniquely identify 

the state of the system at any instant of time. In this sense chaotic behavior 

is low-dimensional and therefore similar to regular motion (where the number 

of degrees of freedom is equal to the number of incommensurate frequencies). 

However, in contrast with regular motion, nearby trajectories confined to· 

a stra;,ge attractor will diverge exponentially in time. Therefore, any uncer-

tainty in the characterization of the system will also grow exponentially with 

time. If one could "exactly" measure three independent phase space coordi-

nates at one instant of time (still assuming an attractor of fractal dimension 

less than three) then the subsequent evolution of the system would be com-

pletely determined. However, an infinitesimal uncertainty in these three coor-

dinates will grow exponentially in time, resulting in what is often referred to 

as "sensitive dependence on initial conditions." 7 This sensitive dependence 

assures that the near recurrence of a particular state of the system (character-

ized by the three coordinates) will not result in near periodicity and, conse-

quently, the power spectra of measurable quantities will be broadband;10 any 

predictions concerning these quantities must be statistical. 
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1.2. Transitions to Chaos 

Experience indicates that the transition from regular to chaotic motion 

typically 'follows one of several "universal" routes.2•11 These include the 

period· doubling, quasiperiodic, frequency locking and intermittent routes to 

chaos. Perhaps the best known of these is the period doubling transition to 

chaos. In this scenario, an initially periodic system follows a cascade of period 

doublings to chaos as a control parameter >.. is increased. The logistic equa-

tion 

(1.1) 

is an example of a simple, iterative equation which follows a period doubling 

transition to chaos as >.. is increased. A bifurcation diagram, or plot of >.. vs. 
I 

{ Xn }, where { Xn } is the set of steady-state iterates (which comprise the 

attractor) is shown in figure 1.2. The cascade of period doublings, as well as 

noise-free periodic windows within the chaotic regime may be observed in 

such a diagram. Feigenbaum12 has shown that the value of the control 

parameter at the onset of period 2n ,>..n, scales as >-c-An oc 6-n for large n, where 

>..c is the value of the control parameter at the onset of chaos and 6 = 4.669 ... 

is a universal constant. Other universal constants are known to characterize 

spacings between successive iterates12 , spectral power density13 and the effects 

of additive noise. 14 Metropolis, Stein, and Stein 15 demonstrated that these 

windows must occur in the same, specific sequence for all !-dimensional map-

pings with a single maximum. 
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While some theoretical work has been done on the intermittent, 16•17 fre

quency locking, 18 and quasiperiodic transitions to chaos, none of these 

scenarios is understood as completely as the period doubling route. The 

quasiperiodic transition to chaos -- the emergence of two or more incommen

surate frequencies followed by the onset of chaos -- is perhaps the least well 

understood. The only detailed theoretical treatment of this transition neces

sarily assumes that the ratio of the two incommensurate frequencies is equal 

to the golden mean {::::::::1.62).19 This is seldom observed experimentally. In 

fact, experimentally, a hybrid of these universal transitions (such as a quasi

periodic bifurcation followed by a period doubling cascade of one of the 

incommensurate frequencies) is often observed. 20 

1.3. Experimental Observations of Chaos 

The recent theoretical developments in chaotic dynamics7•11 have resulted 

m the experimental observation of chaos in a wide range of physical sys-

. tems.2•21 In many instances, the physical system may be adequately modeled 

by coupled ordinary differential equations. These systems have a well-defined, 

finite number of degrees of freedom and, when such a system is chaotic, its 

evolution is confined to a strange attractor of dimension less than this total 

num her of degrees of freedom. That is, not all of the potential degrees of free

dom are "active." The Belousov-Zhabotinski chemical reaction is an example 

of such a finite-dimensional chaotic system. A number of condensed matter 

systems also fall into this category. These include: Josephson junctions,22 

~~ 
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Figure 1.2. A bifurcation diagram of the logistic map [equation (1.1)]. 
The attractor set { x0 } is plotted versus the control parameter >.. Eighty 
iterations are plotted after an initial 500 iterations for each increment of the 
control parameter. The control parameter was incremented 500 times in the 
interval shown. 
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driven p-n junctions,23 and far infrared photoconductors.24 

Hydrodynamic systems, which are described by partial differential equa

tions and therefore have (effectively) an infinite number of degrees of freedom, 

have also been shown to undergo transitions to chaotic states characterized by 

only a few active degrees of freedom.2 Rayleigh-Be'nard convection and 

Couette-Taylor flows, as well as the present work on electron-hole plasmas are 

examples of nonlinear continuum media that exhibit low-dimensional chaos. 

A number of experimental probes are useful in identifying and character

izing low-dimensional chaotic behavior. Perhaps the single feature most use

ful in characterizing a transition to chaos is the power spectrum of the time 

series of an experimentally observable variable (for example, the velocity of 

fluid flow in a hydrodynamic system). From the power spectrum one can 

detect the onsets of spontaneous oscillations, period doubling, quasiperiodi

city, and the broadband spectral "noise" characteristic of chaotic behavior. 

When a system follows one of the universal routes to chaos (for example, 

a cascade of period doublings is followed by a broadband power spectrum), 

one may strongly infer that the resulting broadband state is indeed chaotic. 

However, observation of only power spectra does not enable one to rigorously 

distinguish between deterministic chaos and stochastic noise; both result in 

broadened spectral peaks. 10 To firmly establish that the observed behavior is 

chaotic, one must examine the structure of the attractor itself. This requires 

methods of data reduction designed specifically to identify and characterize 

low-dimensional chaotic attractors. These include the construction of phase 

~I 
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portraits, Poincare sections, return maps, and bifurcation diagrams. In those 

cases where the chaotic behavior is characterized by an attractor of dimension 

greater than approximately 2.5, even these methods of analysis cannot distin

guish between chaos and stochastic noise; the fractal structure of the attractor 

becomes too dense to be discerned through visual inspection of a 2-

dimensional projection of a Poincare section. In such instances, one must cal

culate quantitative measures of chaos such as the fractal dimension, Lyapunov 

exponents, and metric entropy of the attractor. Techniques for calculating 

fractal dimensions are discussed in Chapter III; calculations of other measures 

of chaos are described elsewhere.25,2S,27 

1.4. Helical Instabilities in Semiconductor Plasmas 

The onset of spontaneous current oscillations in a Ge crystal placed in 

parallel de electric and magnetic fields was first reported by Ivanov and Ryv

kin.28 This instability, the so-called "oscillistor" effect, was subsequently 

observed in other semiconductors as well.29·30 Larrabee and Steele31•32 

reported a detailed experimental study of this instability in Ge rods. In par

ticular, they noted that the spontaneous oscillations would develop only if 

both electrons and holes were present in the crystal. Specifically, when they 

electrically injected both electrons and holes into a sample, they observed 

spontaneous oscillations in .the absence of optical illumination. However, 

when only majority carriers were injected electrically (i.e., ohmic contacts 

were formed on both ends of the sample) oscillations were only observed in 
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the presence of optical pumping (which generated the necessary minority car

riers). The oscillistor effect is observed when the applied electric and mag

netic fields are either parallel or anti parallel to within approximately 5°. 

Early reports33 suggesting that exactly parallel fields applied along a perfectly 

cylindrical sample would not exhibit these oscillations were found to be in 

error.1 It is possible that chaotic behavior was observed during some of these 

early experiments but was not recognized as such, owing to the· lack of the 

mathematical framework now available. 

Glicksman34 developed a theoretical model attributing the observed 

current oscillations to an unstable screw-shaped helical travelling wave within 

the electron-hole plasma. This model was based on a model developed by 

Kadomtsev and Nedospasov35 to explain a similar instability observed in gase

ous plasmas. An illustration of this travelling helical density wave, after Hoh 

and Lehnert,36 is . shown in figure 1.3. The helical structure within the 

cylinder corresponds to a region of enhanced electron and hole density. 

The helical nature of this instability was subsequently confirmed experi

mentally by Hurwitz and McWhorter1 and Misawa.37 Hurwitz and McWhorter 

utilized electrical probe contacts to measure variations in the plasma density 

within their crystals, whereas Misawa used microwave scattering. Both exper

iments found radial and lengthwise variations in plasma density which sup

ported the existence of a helical instability such as that depicted in figure 1.3. 

Further theoretical treatments of these instabilities were carried out by 

Hurwitz and McWhorter1 and Schulz.38 All of these treatments dealt with 

ii 
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XBL 8510-4188 

Figure 1.3. Model of helical plasma density wave in semiconductor 
cylinder, after Hoh and Lehnert.36 Electric field E0 and magnetic field 8 0 are 
applied along the z-axis. The· helix contained within the cylinder represents 
the region of enhanced electron and hole density. 
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linear perturbations of steady-state, non-oscillatory current flow. The basic 

equations governing this system, a review of the linear analysis which predicts 

instabilities such as the one depicted in figure 1.3, and a discussion of the pos

sible nonlinear interactions which must be considered in any explanation of 

the chaotic behavior which we observe are included in Appendix A of the 

present work. 

"' 
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CHAPTER II. EXPERIMENTAL APPARATUS 

AND PROCEDURES 

2.1. Sample Preparation 

16 

The samples used in these experiments were all cut from large, single cry

stals of Ge grown by E. E. Haller and W. L. Hansen at the Lawrence Berkeley 

Laboratory. The method of production is described in detail elsewhere.1 

Table 2-1 lists the dimensions, growth environment, and some physical pro

perties of our samples. Most of the experimental work was performed on 

1 x 1 x 10 mm3 samples cut from a single crystal of n-Ge with a net donor 

concentration of 3.7 x 1012 cm-3 (i.e., samples 1A- IE); these samples tended 

to exhibit the greatest wealth of nonlinear behavior. 

Our electron-hole (e-h) plasma is generated either by double injection or 

optical pumping. In those samples where double injection is utilized, a Li

diffused n+ contact and a B-implanted p+ contact were formed on opposite 

ends of the crystal. In those samples where minority carriers are generated by 

optical excitation, either n+ or p+ contacts (on n-Ge and p-Ge samples, 

respectively) were formed on both ends of the sample. In each case, a palla

dium film was evaporated onto the contacts and a gold film was sputtered 

onto the palladium. 

P-implanted n+ contacts were formed on two opposite 1 x 10 mm2 faces 

of sample lE (in addition to the current injecting contacts on the 1 x 1 mm 2 
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faces). A gold film was then sputtered onto these contacts. Using photo I-

ithography, we etched onto these two faces a pattern of eight pairs of con-

tacts, 0.5 mm wide and spaced 1 mm along the length of the sample. The 

voltage across a pair of these contacts is a measure of the local variation in 

the plasma density.2 

Mter all contacts on a given sample were formed, the sample was etched 

for approximately 30 seconds in 3:1 HN03:HF and subsequently quenched 

with methanol. Prior to etching, sample IE was etched in KI:I2 for approxi-

mately 1 minute so as to etch the pattern of probe contacts into the gold film 

covering the 1 x 10 mm2 faces. During all of the etches, the current injecting 

contacts were protected with pycine; the pattern of P-implanted contacts on 

-
sample lE was protected with photoresist. All samples were placed in dry air 

for 72 hours to allow the surfaces to passivate. Wires were indium soldered to 

the end (current injecting) contacts, and (with some difficulty) were attached 

with conducting epoxy to the P-implanted (spatial probe) contacts. 

2.2. Experimental Apparatus 

When taking data, the sample is cooled to 77K in liquid nitrogen and 

connected in series with a 1000 resistor and a variable de voltage V0, which 

generates the de electric field E0• A magnetic field B0 is applied parallel (±3°) 

to the length of the sample. The electron-hole plasma is generated by V0 , via 

double injection, in those samples with p+ and n+ contacts on opposite ends. 
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Table 2-1. Germanium Crystal Samples 

Sample Boule a Growth Growth Dislocations Impurities 
Direction Atmosphere (etch pit density) N 0 -NA 

(cm-:l (cm-3) 

'" 
IA 400-4.0 <HI> Ar 5000 3. 7 X I012 (P) 
IB 
IC 

.; 
ID 
IE 

2 112-22.5 <IOO> H2+N2 ::::::Io2 -2.3 x I014 (Ga) 

3 437-5.0 <Ill> H2 0 2 X 1010 

4 I50-5.4 <IOO> ~ 0 -2 X 1011 

5 464-4.I <100> H2 · 6 X 103 3 X 1012 (P ,As) 

Table 2-1 (continued) 

Sample Dimensions End Contacts Special 
mm x mm x mm Comments 

lA IxixlO B-Li high C, grown 
IB I X 3 X IO B-Li in graphite crucible 
IC I X I X IO Li-Li 
ID IxixlO P-Li 
IE I X I X IO B-Li IE has side contacts 

2 I X I X 10 B-Li [Ga]::::::: 3 x 1014 cm-3 
0, Si, P; :::::::8 0-cm 

r 
3 1 X I X 10 B-Li very high [Sij ~ 101G cm-3 

high purity, NA, No < 1011 em-a 

4 1 X 1 X 10 B-B [OJ, [Si] ::::::: 1014 cm-3 
high purity, NA, N0 < 1011 cm-3 

5 12.5 mm diam. B-Li low [Al] ::::::: 1010 cm-3 
x 1 em right cylinder [Ga] ::::::: 1.6 x 1010 cm-3 

[81 ::::::: 2.2 x 1011 cm-3 

""This is notation for crystals grown at LBL by W. L. Hansen and E. E. Haller. 
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A 10 mWatt Spectra-Physics He-Ne laser was used to generate minority car

riers, via optical pumping, in those samples with ohmic contacts on both ends 

(samples lC and 4). 

The applied voltage V0, the applied magnetic field B0 and the angle 

between the two fields (), comprise our control parameters; typically 

· () = 0±3°. In practice, we fix B0 and () and sweep V0, while recording the 

dynamical variables which characterize the plasma behavior. These include 

the current passing through the sample, I(t), the voltage across the sample, 

V(t), and in the case of sample IE, the voltages across the pairs of probe con

tacts Vi(t). The methods by which data are collected and examined are dis

cussed in the following sections of this chapter. An illustration of the basic 

sample configuration, with .probe contacts, is shown in figure 2.1 

In Chapter V we discuss the results of coupling the natural (spontaneous) 

plasma instabilities with an externally excited plasma mode. The external 

mode is generated through the application of a sinusoidal voltage across one 

of the pairs of probe contacts. The strongest coupling results when the probe 

pair nearest the p+ contact is driven externally. The external excitation is of 

the form V1sinwt, and, when such an excitation is present, the control param

eters include V 1 and w, as well as V0, B0, and 0. 

The samples are mounted onto a flat brass sample holder which attaches 

to the bottom of a microwave dewar insert.3 The insert is then lowered into a 

dewar, the dimensions of which are described elsewhere.4 The sample is held 

onto the sample holder with clips formed from spring wire and the sample is 
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Figure 2.1. Illustration of ba.sic experimental configuration. Ge crystal 
is in electric field E0 and magnetic field B0 at temperature T ~ 77 K. Elec
trons and holes injected from n+ and p+ contacts, respectively, generate 
pla.sma of density ~ 1013 cm-3. On increasing V0 helical pla.sma density 
waves form and become chaotic. Pla.sma monitored by current I(t), voltage 
between end contacts V(t), and voltages Vi(t) from eight pairs of n+ side 
probes, each 0.5 mm wide, spaced by 1 mm along z-axis. 
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electrically insulated from the holder with 0.25 mil mylar; the thin mylar film 

provides both good electrical insulation and adequate thermal conduction 

between the sample and the brass holder. All wires making electrical contact 

with the sample are soldered onto binding posts on the sample holder. Figure 

2.2 is a photograph of sample 1E mounted on the sample holder. Electrical 

connection between the sample holder and the outside of the dewar is made 

with shielded twisted pair cables. 

The sample is centered between the pole pieces of the split coil magnet, 

which can be rotated in the horizontal plane. The magnetic field is measured 

with a rotating coil gaussmeter and has an upper limit of 19 kGauss. Optical 

pumping is achieved through a window on the bottom of the dewar. 

2.3. Analog Data Collection 

The voltage across the sample V(t) and the current passing through the 

sample I(t) (which is proportional to the voltage across the series resistance 

VR(t) ) are the principal dynamical variables utilized in our studies of tem

poral behavior. Time series of these variables were recorded with a Biomation 

805 waveform recorder, and also with with a Tektronix (Tek) 468 digital 

storage oscilloscope. The basic periodicity (or lack of thereof) is readily 

observable by visual examination of these real time signals. However, we find 

that power spectra provide a more precise means of identifying the harmonic 

and subharmonic content of the signals and also of determining the onset of 

nonperiodic behavior. Power spectra were recorded with a Nelson Ross 
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XBB 850-8394 

Figure 2.2. Photograph of sample lE attached to sample holder. 



,., 

•• 

23 

PSA013 scanning spectrum analyzer and a Hewlett Packard (HP) 3585A scan

ning spectrum analyzer. Fast Fourier transforms of real time series taken 

with a DEC LSI-11/23 computer were also calculated. The scanning spectrum 

analyzers have the advantage that 'alias peaks do not present a problem. The 

Nelson Ross displays the power spectrum on an oscilloscope, which must then 

be photographed. The HP 3585A interfaces to our LSI-11/23 computer via an 

IEEE-488 interlace connector, allowing the power spectra to be stored digi

tally and plotted on an HP plotter. 

A plot of the phase portrait, V( t) vs. I( t ), provides a geometric visualiza

tion of the attractor. However, to see the fractal structure within the strange 

attractor, one must look at a cross-section of the phase portrait, i.e., a Poin

care section. To obtain. a Poincare section, it is necessary to consider the 

locus of points (V(tn) , I(tn) ) at some discrete set of times { tn }. Formally5,. 

these times must be chosen such that the set of points (V(tn) , I(tn) ) comprise 

a plane in phase space perpendicular to the trajectories which are followed by 

the evolving system. If the system under study were driven with an external 

oscillator, Asinwt, then { tn } could be chosen to be the set of times at which 

the phase of the oscillator, ( wt )mod 2~, equaled some particular value -- for 

example, (wt)mod 2~ = 0. Both experimental6 and theoretical7 Poincare sec

tions have been observed in this fashion. 

However, if the system is not externally driven (such as the case of most 

of our experiments), the observation of a Poincare section is more difficult. In 

those instances where a strong fundamental peak rises above the broadband 
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"noise" in the power spectrum, we have been able to strobe the system at a 

specific phase of this fundamental frequency. Specifically, we filter out fre

quencies above the fundamental frequency of I(t) and then strobe I(t) at the 

local current maxima. We then plot a return map, In+l vs. In, where { In } is 

the set of local current maxima (see Chapter III, figures 3.4 and 3.5). The 

return map is topologically equivalent to a Poincare section.8 

A block diagram of the circuitry used to generate a return map from the 

time series l(t) is shown in figure 2.3. First, the current is filtered to remove 

harmonic distortion. The filters used are Ithaco 4302 dual 24dB/octave filters 

and a Krohn-Hite 3550 band-pass filter. The filter settings are shown in figure 

2.4. Figures 3.1 and 3.2 of Chapter III show the filtered and unfiltered 

currl'nt I(t ). It is clear from these figures that the filtered signal has a single 

maxima per cycle of the fundamental frequency whereas the unfiltered signal 

has many. Thus it is essential that the derivative of the filtered signal be 

used to clock the return map circuitry. 

The differentiating circuit is shown m detail in figure 2.5. The filtered 

signal is amplified and then differentiated using Tektronix type "0" plug-in 

op-amps. These op-amps have a 25 :MHz bandwidth and the differentiated 

signal crosses zero within 0.05 J.lS of a local maxima of a 200 kHz signal. The 

differentiated signal is fed into a fast LM306 comparator, the output of which 

swings between .ground and 5 volts depending on whether the differentiated 

signal is greater or less than zero volts. The output of the LM306 is fed into 

,., 
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Figure 2.3. Block diagram of analog circuitry required to generate 
return maps, phase portraits, and bifurcation diagrams from the real time 
current I(t). Voltage signals at the points labeled (a), (b), (c), {d), (e), (g) and 
(h) are depicted in figure 2.7. Details of the filters, differentiating circuit and 
sample/hold circuit are shown in figures 2.4, 2.5 and 2.6, respectively. 
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Figure 2.4. Detail of filters of figure 2.3. The voltage signals at points 
labeled (a) and (b) are depicted in figure 2.7. 
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Figure 2.5. Detailed schematic of differentiating circuit of figure 2.3 . 
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Figure 2.6. Detailed schematic of sample/hold circuit of figure 2.3. 
The voltage signals at points labeled (d), (e), (f) and (g) are depicted in figure 
2.7. 
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a 7414 Schmidt trigger (TTL) inverter. The output of this entire circuit fol

lows a 200 kHz signal to within 2%. That is, the 7414 output swings from 0 

to 5 volts within 0.1 J.'S of a local maxima in the input signal. 

The TTL output of the differentiating circuit is used to clock the 

sample/hold circuit shown in figure 2.6.9 The filtered current I(t) is input to 

the first LM398 sample and hold amplifier (S/H #1). The output of S/H #1 

is held at the value of a local maxima, which is then fed into a second LM398 

{S/H #2). S/H #2 is clocked by the inverse of the signal which clocks S/H 

#1. Therefore, S/H #2 continues to hold the value of the local maxima, 

while S/H #1 returns to its sampling phase. This process can be extended 

another full cycle by placing two more sample and holds into the series; each 

LM398 delays the signal by a half-cycle. This process is depicted in figure 2.7. 

At any given time, the output of S/H #2 is the most recent local maxima, 

In+l' while the output of S/H #4 (delayed 360° from S/H #2) is the previous 

local maxima, In. When these signals are fed into the vertical and horizontal 

inputs of an oscilloscope, respectively (and the scope is z-modulated so that 

the CRT is illuminated only when the outputs of S/H #2 and S/H #4 have 

stabilized) a return map is projected onto the CRT. LM398 sample and hold 

amplifiers, used in conjunction with 1000 pf polystyrene hold capacitors, have 

an acquisition time to 0.1% of 4 J.'Si they produce accurate return maps for 

signals with fundamental frequencies as large as 200 kHz. Analog Devices 

AD582's (a comparably priced sample and hold) do not respond quickly 

enough to generate a return map from a 200 kHz signal. 
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Figure 2.7. Depiction of voltage signals at points labeled (a) - (h) in 
figures 2.3, 2.4 and 2.6 for a hypothetical current I( t ). This figure illustrates 
the workings of the analog circuitry of figures 2.3 - 2.6. 
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To generate bifurcation diag~ams, only slight modifications of the return 

map circuitry are required. The output of S/H #4, In, is fed into the vertical 

input of an oscilloscope, and the applied de voltage V0 (less some offset) is 

used as the horizontal input to the scope. The scope is z-modulated so that 

the CRT is illuminated when the output of S/H #4 has stabilized. Thus, for 

a fixed value of V0, a vertical series of points (each point representative of a: 

local current maxima) appear on the CRT. As V0 is increased, the series of 

points moves to the right; the number of points changes with the periodicity 

of the current I(t ), while the spacing between points changes with the relative 

heights of the local maxima, In. A bifurcation diagram is generated by taking 

a timed exposure of the CRT while sweeping V0• These diagrams (see, for 

example, Chapter III, figure 3.3) provide a good overview of the entire transi

tion from periodicity to chaos; the sequences of period doubling bifurcations, 

regions of chaos and noise-free periodic windows may all be seen in a single 

figure. 

2.4. Digital Data Collection 

Fractal dimensions, spatial correlation functions, and other quantities 

which characterize chaotic instabilities are all calculated from digitized time 

series of the dynamical variables of the chaotic system. The methods by 

which we collect digitized time series are described in this section. The 

methods of calculating fractal dimensions and spatial correlation functions 

from these time series are discussed in Chapters III and IV. The computer 
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programs used in collecting data and calculating these quantities are included 

in Appendix B. 

All of our digitized data is collected and stored with a DEC LSI-11/23 

microcomputer. The LSI-11/23 has serial ports, an IEEE-488 interface, 

analog/digital (A/D) and digital/analog (D/A) converters, and is thus capable 

of controlling other instruments (for example, HP 3585A spectrum analyzer, 

Tek 468 storage oscilloscope, and HP 7470A plotter), collecting and displaying 

digitized signals, performing simple calculations (for example, fast Fourier 

transforms and spatial correlation calculations) and transmitting data to more 

powerful computers when more extensive computations are required. A sum

mary of the modules which comprise this computer system is shown in table 

2-2. 

Calculations of fractal dimensions require a long time series (typically 

103 - 106 data points) of an independent variable of the system. Our Data 

Translation DT3382 A/D module is capable of collecting up to 98000 data 

points at 5 IJS intervals and storing the data in random access memory. It is 

also capable of writing the data directly to a Winchester disk. In this mode 

the sampling rate is 67 kHz, but time series of up to 2 x 107 data points may 

be collected in a single sweep. The DT3382 A/D has 12 bit resolution and a 

dynamic range of 20 volts. 
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Table 2-2. Components of Data Aquisition Computer System 

Slots(s) Module Function 

1 DEC KDFU-A LSI-11/23 CPU with Memory 
Management and Floating Point Unit 

.... 2 Motorola MMS1132 256 kByte.Random Access Memory 

3,4 Data Translation DT3382 250 kHz, 12-bit A/D Converter 

5 National Inst. GPIBUV-1 IEEE-488 Interface 

6 DEC DLVU-J Four Serial Ports 

7 DEC KWVll-C Timer and Counters 

8,9 Connector 

10 DSD 440 Floppy Disk Drive Controller 

11 :' ADAC 1412DA D /A Converter 

12 DEC DRVll 8-bit Parallel Port 

13,14 Data Translation DT3388 100kHz, 8 Channel Simultaneous 
12-bit A/D Converters 

15 Andromeda WDCU-DW 40 MByte Winchester 
Disk Oontroller 

16,17 Connector 

24 ,, DEC TEVll Termination Module 

.. 
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When collecting time series data we utilize two different sampling 

methods, which we refer to as commensurate and incommensurate strobing. 

When a dynamic variable has a strong fundamental frequency, it is possible to 

collect the data at some particular phase of the fundamental frequency (just 

as it is possible to construct a return map from data taken at that particular 

phase); this is commensurate strobing. In practice, the data is digitally sam

pled at each local maxima of the time series, or at some fixed time delay after 

each local maxima. The TTL pulse which instructs the computer to sample is 

the same as the signal which clocks S/H #2 and S/H #4 in the return map 

electronics discussed in the previous section. When data is collected by this 

method, we may immediately display a return map derived from the digitized 

data, and thus verify that the instrumentation is operating correctly. This is 

accomplished by sending the digitized pairs of points (In , In+1), to the 

computer's D/A module, which in turn transmits appropriately scaled output 

voltages to the x- and y-inputs of a Tek 611 storage oscilloscope. The "pulse 

trigger" of the D /A module triggers the z-input of the scop_e and the return 

map is observed on the CRT. 

When collecting data by incommensurate strobing, a computer controlled 

quartz oscillator (on the KWVll-C module) sets the data sampling frequency. 

This frequency is completely unrelated to any natural frequencies of the 

plasma. Thus, when data are collected in this fashion, all phases of the fun

damental plasma frequency are eventually sampled, if indeed such a frequency 

even exists (it . does not exist when the plasma is highly excited). 
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Incommensurate strobing samples the entire attractor, whereas commensurate 

strobing samples only a cross-section. We therefore expect (and observe) that 

the fractal dimension of the commensurately strobed data (i.e., the cross

section) will be less than the fractal dimension of the incommensurately 

strobed data (i.e., the entire attractor) by unity. The advantage of incom

mensurate data collection is that it does not require the extensive filtering, 

differentiating, and comparator circuitry of figure 2.3. Further, it does not 

require the existence of a strong fundamental frequency in the power spec

trum of the plasma instabilities. It is therefore of more general usefulness 

than the method of commensurate strobing. 

Studies of spatial coherence require the simultaneous sampling of spa

tially separated, independent variables. To calculate spatial correlation func

tions, we must record time series of the voltages across two pairs of probe 

contacts, Vi(t) and Vi(t), measured simultaneously. This is accomplished 

through two alternate methods. In the first method the data is digitized by 

the DT3382 A/D module and in the second the data is collected with the Tek 

468 storage oscilloscope. 

In the first method, the voltages across two pairs of probe contacts, Vi( t) 

and VJ(t), are each fed into Tektronix AM502 differential amplifiers. The out

put of these two differential amplifiers are passed through matching 2.3 kHz 

high-pass RC filters (to remove low frequency drifts) and then fed into 

Teledyne-Philbrick 4860 sample and hold amplifiers. The computer controlled 

clock triggers a pulse which puts both sample and holds into hold mode long 
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enough (6 JlS) for both Vi(t) and Vj(t) to be sampled by the DT3382 A/D con-

verter. In this fashion, the two voltages Vi(t) and Vj(t) may be sampled 

simultaneously at rates of up to 100 kHz. In determining spatial correlation 

functions, it is critical that the differential amplifiers as well as the sample 

and holds not introduce mismatched phase shifts into the signals '•' 

Vi(t) and Vj(t). The phase shifts of the AM502's were matched to within 1° 

up to 500 kHz; the 4860's are ultra-fast sample and hold amplifiers (16 NfHz 

bandwidth) with no measurable mismatch in phase shifts at 500 kHz. 

Further, they have a droop rate of 0.05 jJV / JlS, and are thus able to hold a 

signal for the 6 JlS necessary for both channels to be sampled. This method of 

sampling is therefore effective when collecting spatial correlation data which 

has no significant frequency components above, say, 500 kHz. Much of our 

data (the "weakly turbulent" data of Chapter III) falls into this regime. How-

ever, when highly excited by large applied fields, the plasma instabilities exhi-

bit significant frequency components in the 1 - 1.5 MHz range. 

. Spatial data is collected for highly turbulent instabilities as follows: the 

voltages across two pairs of probe contacts Vi(t) and Vj(t) are each fed into 

Tektronix AM502 differential amplifiers. The outputs of these amplifiers are 

passed through 2.3 kHz high-pass RC filters and fed into channels A and B of 

a Tek 468 storage oscilloscope. The scope samples each input at 12.5 Nlliz 

and converts the voltages to 8 bit integers, which are subsequently transmit-

ted to the LSI-11/23 computer. The oscilloscope collects 256 data points per 

channel in a single sweep and must transmit this data before performing 
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another sweep; this requires approximately 4 seconds. Thus, the collection 

of, say, 5120 pairs of data points, would consist of 20 sweeps each separated 

by approximately 4 seconds. It would clearly be desirable to instead perform 

a single, long sweep (this is not possible with the available equipment). How

ever, the two methods of collecting spatial data are observed to yield compar

able results (for low frequency instabilities), indicating that the 4 second delay 

between each sweep of 256 data points does not introduce any significant 

errors; the properties of the system do not change over this time scale . 
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CHAPTER Ill. RESULTS: 

TEMPORAL ROUTES TO CHAOS 

3.1. General Results 

We have studied the dynamics of electron-hole (e-h) plasmas in samples 

cut from five different Ge crystals, as listed in table 2-1. For four of these we 

observed spontaneous oscillations when parallel electric and magnetic fields 

were applied along the length of the crystal; in three of these cases we 

observed a transition to turbulence. As discussed in Chapter II, the e-h 

plasma may be generated either by double injection or optical excitation, the 

former requiring electron and hole injecting contacts on opposite ends of the 

sample. Injecting contacts were formed on samples 1 (except 1C), 2, 3, and 5 

(notation from table 2-1). Of these, samples 1 and 3 showed period doublings, 

quasiperiodicity, and chaos. Sample 5 exhibited spontaneous oscillations 

which became noise-like in the presence of large applied fields. We were 

unable to establish whether this noise was of stochastic or chaotic origin. We 

note that sample 5 was the only sample cut so that its width is comparable to 

its length. Waves reflected from the ends of the crystal are therefore 

significant and the standard theory of travelling helical density waves (see 

Appendix A) is no longer applicable. In sample 2 we observed neither chaos 

nor spontaneous oscillations. This is not surprising; previous studies 1 failed 

to observe oscillations in comparably doped crystals (sample 2 has a net 
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acceptor concentration two orders of magnitude larger than any of our other 

samples). According to the theory of Hurwitz and McWhorter1, samples with 

an impurity concentration greater than approximately 1012 cm-3 will have an 

ambipolar drift mobility which is large enough to inhibit the formation of 

spontaneous oscillations; unstable perturbations in the current flow are swept 

across the sample before they develop into temporal oscillations. 

Ohmic contacts were formed on samples 1C and 4. In both cases, no 

oscillations or chaotic dynamics were observed in the absence of optical gen

eration of minority carriers, regardless of the magnitude of the applied de 

fields. However, when optically pumped with a 10 m Watt He-Ne laser at 

6328 A, both samples developed coherent oscillations, and sample 1C followed 

a period doubling transition to chaos with increasing voltage V0• This indi

cates that the observed behavior is a property of the e-h plasma and not 

dependent on the specifics of carrier production; this is consistent with 

oscillistor experimerrts2•3 and theory.1·4·5 

In general, however, we find that double injection results in more stable 

and reproducible plasma dynamics. Optical access to the dewar is limited and 

precise alignment of the laser beam onto the sample is difficult. Further, radi

ation from the He-Ne laser results principally in surface carrier generation, as 

well as surface heating. These factors may account for the lack of stability 

and reproducibility which we have encountered with optically generated e-h 

plasmas. 
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The detailed studies of temporal chaos presented in the remainder of this 

chapter were performed with sample 1A. The spatial data of Chapter IV, as 

well as the studies of externally driven instabilities of Chapter Y, were taken 

with sample 1E. Much of the material in this chapter has been previously 

published elsewhere.6•7•8 

3.2. Period Doubling Route to Chaos 

In different regions of parameter space we observe different types of tran

sitions to chaos. Two paths through parameter space will be discussed in this 

chapter; first, in this sect'ion a period doubling route to chaos and, in the 

next section, a quasiperiodic route. The first sequence was taken with 

B0 = 4 kGauss as Y0 was increased from 0 to 25 volts. The overall behavior 

of I( t} was found to be as follows: For Y0 < 6 volts, I( t) has only a de com

ponent. At Y0 = 6 volts, I(t) spontaneously becomes periodic. Regions of 

chaotic dynamics occur in the inter/als 7.0 < Y0 < 7.4 volts; 

10.0 < Y0 < 10.7 volts; and 14.9 < Y0 < 18 volts; otherwise, I(t) is periodic. 

The clearest of these three chaotic sequences is shown in figures 3.1 and 

3.2. Figure 3.1 shows the unfiltered current I(t) and the unfiltered power 

spectra I I(w) I 2 for increasing Y0, while figure 3.2 shows the filtered current 

I(t), unfiltered phase portraits, V(t) vs. I(t), and the filtered power spectra 

I l(w) I 2• Starting in figures 3.1(a) and 3.2(a) at Y0 = 10.0 volts, I(t) is oscil

lating at a fundamental frequency f0 :=:::::: 118 kHz, i.e. at period 1. The power 

spectrum of figure 3.1(a), as well as the phase portrait of figure 3.2(a), shows 

/ 
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that the oscillation has small spectral components at harmonics of f0• How

ever, there is no subharmonic component, as seen in the power spectrum of 

figure 3.2(a). As Y0 is increased, I(t) shows a period doubling bifurcation; the 

data shown in figures 3.1(b) and 3.2(b) display the emergence of a spectral 

component at f0/2. At larger Y0 another period doubling bifurcation occurs 

[figures 3.1( c) and 3.2( c)] with new spectral components at 

f0/4 , 3f0/4 , 5f0/4 , ... At slightly larger Y0, I(t) becomes nonperiodic [figures 

3.1(d) and 3.2(d)] and its power spectrum enters a region of broadband 

"noise". For further increases of Y0 there appear noise-free windows of 

periods 3, 4, 5, ... , within this region of broadband noise; see figures 3.1( e) 

and 3.2(e) for period 3. The sequence ends at Y0 = 10.7 volts with a return 

to period 1 oscillations. 

Figure 3.3 is a bifurcation diagram, a plot of the local current maxima 

{ Imax } vs. Y0• The period doubling route to chaos, as well as the noise-free 

windows, can be clearly seen. A similar sequence of windows has been 

observed in chemical oscillators,9 driven p-n junctions, 10•11 and finite 

difference equations. 12 

The broadband "noise" of figures 3.1(d) and 3.2(d) is characteristic of 

chaotic behavior. The fact that this state is approached through a series of 

period doublings suggests that the spectral broadening is a result of deter

ministic nonlinear dynamics. However, to firmly establish that it is not due 

to some stochastic process, a return map of the current is recorded for the 

same parameters as figure 3.2( d) and is shown in figure 3.4(a). If the 
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Figure 3.1. Observed period doubling sequence for increasing applied 
voltage V0, (a) to (e) [see figure 3.3] for plasma wave in Ge at B0 = 4 kGauss. 
(a) Unfiltered current I(t) and power spectrum of I(t) show periodic behavior 
at f0 ~ 118 kHz. (b) Period doubling to f0 /2. (c) Period doubling to f0/ 4. 
(d) Onset of chaos. (e) Period 3 window. I( t) scales are 8 p.s/ div and 0.058 
mA/div. ' 
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Figure 3.2. Observed period doubling sequence for increasing applied 
voltage V0, (a) to (e) [same operating conditions as in figure 3.1] for plasma 
wave in Ge at B0 = 4 kGauss. (a) Current I(t), phase portrait V(t) vs. I(t), 
and power spectrum of I( t) show periodic behavior at f0 ~ 118 kHz. (b) 
Period doubling to f0/2. (c) Period doubling to f0/4. (d) Onset of chaos. (e) 
Period 3 window. I(t) scales are 8 J.ls/div and 0.05 mA/div. For time series 
and power spectra.the current was ac coupled and also filtered to remove har
monics of f0• 
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10.0 V0 (VOLTS) 10.7 

Figure 3.3. Bifurcation diagram of local current maxima Imax vs. 
applied voltage V0, for same operating conditions as in figure 3.1. Labels (1 ), 
(2), (4), (Cl) and (W3) refer to regions displayed in figures 3.1(a) to (e), 
respectively. Labels (W4), (W5) and (W6) refer to noise-free windows of 
periods 4, 5 and 6, respectively. 
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broadening of the spectral peaks were due to stochastic noise, then the height 

of one peak in I(t) would be unrelated to the next, and the return map would 

be a uniformly filled square area. That this is not the case indicates that the 

evolution of the system is indeed governed by low-dimensional nonlinear 

dynamics; i.e., it is chaotic. · Return maps of the current recorded for the 

nonperiodic regimes following the period 3, 4, and 5 noise-free windows are 

shown in figures 3.4(b), (c) and (d), respectively; we observe from the return 

maps that all of these states are also chaotic. 

3.3. Quasiperiodic Route to Chaos 

The second type of transition which we have observed is the quasi

periodic route to chaos: as Y0 is increased, the onset of a quasiperiodic state is 

followed by a transition to chaos. One such sequence of power spectra, taken 

at B0 = 11.15 kGauss, is shown starting in figure 3.5(a) with Y0 = 2.865 

volts: I(t) is spontaneously oscillating at a fundamental frequence f1 = 63.4 

kHz. At Y0 = 2.907 volts, the system becomes quasiperiodic: a second spec

tral component appears at f2 = 14 kHz, incommensurate with f1 [figure 

3.5(b )J. At Y 0 = 2.942 volts, the system is still quasiperiodic; however, the 

two modes are interacting and the nonlinear mixing gives spectral peaks at 

the combination frequencies f = mf1 + nf2, with m,n positive and negative 

integers. 

As Y0 in increased further, we observe a series of frequency lockings13
, 
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Figure 3.4. Return maps, In+I vs: In, where { In } is the set of local 
current maxima for increasing V0, (a) to (e), and same operating conditions as 
in figure 3.1. (a) Chaos following period doubling cascade [region {Cl) of 
figure 3.3]. {b) Chaos following period 3 window [region {C2) of figure 3.3]. 
(c) Chaos following period 4 window. {d) Chaos following period 5 window. 
(e) Chaos following period 6 window, just prior to return to period 1. 
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i.e., (ft/f2) = rational number, until the onset of chaos is reached, indicated· 

by a slight broadening of the spectral peaks [figure 3.5(d)]. As V0 is increased 

further, the e-h plasma exhibits increasingly turbulent behavior [figures 3.5(e) 

and (f)]. This is followed by a return to quasiperiodicity at V0 = 3.125 volts 

and, subsequently, simple periodicity at V0 = 3.442 volts. 

Figure 3.5 also shows a sequence of return maps, topologically equivalent 
. 

to Poincare sections.14 Periodic motion corresponds to a closed !-dimensional 

orbit in phase space; the Poincare section in this case is simply a point [figure 

3.5(a)]. Similarly, when the system is quasiperiodic, corresponding to motion 

on a 2-dimensional torus, the Poincare section is approximately a circle 

[figures 3.5(b) and (c)]. However, as the system becomes chaotic, we find that 

the Poincare section begins to wrinkle and to occupy an extended region. 

This does not necessarily imply that the behavior is stochastic, but rather 

that the dimension of the strange attractor (which is one greater than the 

dimension of the Poincare section) is too large to be determined by visual 

inspection of the Poincare section. For these attractors the fractal dimension 

must be calculated quantitatively, as discussed in the following section. 

3.4. Calculations of Fractal Dimensions 

The fractal dimension is a measure of the number of "active" degrees of 

freedom needed to characterize the evolution of a system (see Chapter I). If 

this evolution is described by trajectories in a G-dimensional phase space, 
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Figure 3.5. Return maps, In vs. In+l (where { In } is the set of local 
current maxima), and power spectra of the plasma current I(t) at B0 = 11.15 
kGauss with increasing V0: (a) 2.865 volts, periodic at f1 = 63.4 kHz. (b) 
2.907 volts, quasiperiodic with second frequency f2 = 14 kHz. (c) 2.942 volts, 
quasiperiodic with combination frequency components. (d) 3.016 volts, onset 
of chaos. (e) 3.033 volts, chaotic. (f) 3.058 volts, more chaotic; the fractal 
dimension of this attractor, d = 2.7, is measured in figure 3.7. 
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then the fractal dimension dr is defined as follows: 15 

d = lim log M(8) 
F 6-+0 log (1/ 8) 

(3.1) 

where the phase space has been partitioned into cubes of volume fl and M(8) 

is the number of these cubes visited by the attractor. 16 This measure is 

known variously as the capacity, Hausdorff dimension, and fractal dimension. 

Other, alternative, dimensions which characterize strange attractors have also 

been devised. These include the information dimension d1, 15 and the correla-

tion dimension dc. 17 It has been proven18 that generally dr > d1 > de. 

However, in most cases where'these dimensions have been calculated, all three 

have yielded almost identical results.l7,19,20,21 

Equation (3.1) assumes an at tractor contained within a G-dimensional 

phase space. The coordinates of the phase space may be any set of variables 

which, when taken together, uniquely identify the state of the system. For 

our experiments, these variables could be the plasma density and momentum 

measured at many different points within the crystal (provided of course that 

the number of independent probes G were greater than the fractal dimension 

d). Experimentally, this method of characterizing the system is difficult to 

realize. It is not always feasible to have an arbitrary number of probes for a 

given system and, further, it is not known how many probes will be required. 

One cannot know this until the fractal dimension dr has already been deter-

mined. 
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Fortunately, there is a method of reconstructing phase space from a sin

gle dynamical variable using a technique based on the embedding 

theorem.17•19•22•23 If { V1(t), V2(t), ... , Va(t)} is a phase space constructed 

from G independent variables, then the reconstructed phase space 

{ V1(t), V1(t+r), ... , V1(t+(D-l)r)} is conjectured to be topologically 

equivalent to the original phase space, for almost all r, provided 

D > 2G+1.22 Attractors in both the original and reconstructed phase spaces 

will be characterized by the same Lyapunov exponents and fractal dimensions. 

In our experiments, we use a reconstructed phase space derived from the 

measured current I(t). The coordinates of our phase space are thus 

{ I(t ), I(t+r), ... , I(t+(D-l)r) }, where, typically, 5 IJS < r < 15 ~JS; we find 

that the calculated fractal dimensions are independent of r. In practice, one 

calculates the fractal dimension d for increasing embedding dimension D until 

d converges with respect to D. 

Calculations of fractal dimensions using the box-counting algorithm of 

equation (3.1) tend to be computationally inefficient.24 Large regions of phase 

space are visited only rarely. Thus large numbers of data points and, conse

quently, large amounts of computer time are often required. Calculations on 

systems with d~3 can require more than a million data points. However, it is 

possible to calculate the "pointwise" fractal dimension25 (which is conjec

tured15 to be equal to the information dimension) using the following, more 

efficient algorithm.26 A D-dimensional phase space is reconstructed from a 

single dynamical variable. Next one computes the number of points on an 
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at tractor, N( E), which are contained within a D-dimensional hypershpere of 

radius E centered on a randomly selected point on the attractor. One expects 

scaling of the form: 

(3.2) 

where d is the fractal dimension of the attractor. Thus a plot of logN(E) vs. 

logE is expected to have slope d (for sufficiently small E). This procedure is 

carried out for consecutive values of D = 2, 3, 4, ... , until the slope has 

converged. This is done to insure that the em bedding dimension chosen is 

sufficiently large (important if the dimension of the phase space is not known) 

and to discriminate against high dimensional stochastic noise, not of known 

deterministic origin. 

A coru parison of equations ( 3.1) and ( 3.2) illustrates the difference 

between the fractal and pointwise dimensions. The calculation of the fractal 

dimension involves determining the fraction of phase space occupied by the 

entire attractor. On the other hand, the pointwise dimension is defined as the 

scaling of N( E) with E, for N( €) centered around a single point on the at trac

tor. The conjecture that the pointwise dimension is equal to the information 

dimension (which, like the fractal dimension, is measured globally over the 

· attractor15) implies that the scaling laws which govern the fractal structure 

are constant throughout the attractor. It is therefore sufficient to determine 

the scaling exponent at a single point on the attractor. We note that the 

pointwise dimension is conjectured to be equal to the information dimension, 
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not the fractal dimension, but, as mentioned earlier, the two are found to be 

experimentally indistinguishable. 

We have computed the pointwise dimension d for our plasma instabilities 

at various points along the quasiperiodic transition to chaos described in sec-

tion 3.3. For each of eleven values of Y0 between 2.865 volts and 3.125 volts 

(B0 = 11.15 kGauss) we recorded N (~ 98000) successive values of the 

current at 5 JLS intervals [i.e., In = I(t+nT), n = 1, ... , 98000; T = 5 JLS]. 

From each data set {11 , ••• , IN} we constructed N- D + 1 vectors 

Gn = (In, In+l' ... , In-D+l) in aD-dimensional phase space. In principle, one 

should be able to calculate the fractal dimension with equation (3.2) using 

data centered around a single point on the attractor Gn; that is, calculations 

of N( t) centered around different vectors Gi should all yield the same value of 

d. 19 Experimentally this is not actually observed, as discussed below. 

For Y0 = 3.058 volts we constructed plots of logN( t) vs. logt for N( t) 

centered on 27 randomly selected vectors Gi. The slopes of these 27 plots 

comprise 27 measurements of the fractal dimension d. A histogram of these 
• 

values of d is shown in figure 3.6(a); the result is a distribution centered 

around d = 2.4 - 2.6. However, a careful examination of the 27 plots of 

logN( t) vs. logt indicates that several of these plots yield unreliable values of 

d, for reasons discussed below. Upon elimination of these suspect points, the 

width of the histogram narrows appreciably; as shown in figure 3.6(b ). For an 

experimental system, there are at least two conditions under which one will 

not expect scaling of the form of equation (3.2) for N( t) centered around 
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Figure 3.6. Histogram of fractal dimension calculations for V0 = 3.058 
volts and B0 = 11.15 kGauss [same operating conditions as in figure 3.5(f)]. 
(a) The fractal dimension is calculated 27 times by observing the scaling of 
N(E) [equation (3.2)] around 27 randomly chosen points in reconstructed phase 
space. The vertical axis refers to the number of these calculations for which 
the fractal dimension d is found to be in each of the ranges specified on the 
horizontal axis. The distribution is centered around d = 2.4 - 2.6. (b) The 
same distribution as (a), except that those calculations yielding unphysical 
results (see text) have been removed. The distribution is still centered at 
d = 2A - 2.6, but it has narrowed appreciably. 
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certain random points on the attractor. 

:J 

First, the random point may be situated in a region of the attractor 

which is visited only rarely. Thus, even with a large number of data points 

there are not enough nearby data points to resolve the fractal structure and 

... 
thus to observe the scaling of equation (3.2). In such a case, the plot of 

logN( €) vs. log€ will have a gradually increasing slope for small €, in contrast 

with the break to a steeper, non-convergent slope for small € that is expected 

for chaotic systems in the presence of thermal noise.27 This break is expected 

because the dynamics of all physical systems are characterized by thermal 

(stochastic) processes at energies below ........,kT; these processes are character-

ized by fractal dimensions on the order of the number of particles in the sys-

tem.28 We eliminate all plots which do not show the physically expec~ed 

break to steeper slope for small €. 

A second difficulty arises when N( €) is centered in a region of the attrac-

tor where the length scales over which the structure is fractal are comparable 

to or less than those corresponding to thermal fluctuations ( ........,kT). In these 

cases the fractal structure may be "washed out" by thermal noise, resulting in 

a plot of logN( €) vs. logE which does not have a well defined (convergent) 

slope. We discard these plots as well. 

.. 
By rejecting those plots of logN(€) vs. log€ which do not exhibit physi-

cally reasonable characteristics (i.e., a well defined slope and a break to 

steeper slope for small t:), we obtain a much sharper distribution of values for 

the fractal dimension d, as seen in figure 3.6(b). However, when we plot 
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Figure 3.7. Plots of logN(€) vs. logE used to determine the fractal 
dimension d of the chaotic attractor at V0 = 3.058 volts, B0 = 11.15 kGauss, 
using method discussed in text and equation (3.2) [averaged over 25 randomly 
chosen points in reconstructed phase space]. Embedding dimension 
D = 2, 4, 6 and 8 correspond, respectively, to symbols *, x, o and +; for 
D > 6, the slope converges to d = 2.7. 
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Figure 3.8. Dependence of measured dimension d on applied voltage 
V0• B0 = 11.15 kGauss. Values d = 1 and d = 2 correspond to periodic and 
quasiperiodic orbits, respectively. All calculations were checked for conver
gence with respect to embedding dimension D and number of data points 
sampled N. All values of d represent an average over 25 randomly selected 
points in reconstructed phase space. 
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logN(E) vs. logE, where N(E) is the average over many hyperspheres, we find 

that this average slope is unchanged (±5%) by the rejection of the unphysical 

plots. This was found to be true for several cases. Thus, in most instances 

we simply plot logN(E) vs. logE for N(E) averaged over many randomly chosen 

hyperspheres. (This same procedure has also been utilized in studies of free 

surface modes of a vertically forced fluid layer29 and Couette-Taylor flows. 19 ) 

Figure 3.7 shows our results for V0 = 3.058 volts with the embedding dimen

sion D = 2,4,6, and 8; for D > 6 the slope (and thus the fractal dimension) 

has converged to 2.7. The fractal dimension for all the states shown in figure 

3.5, as well as several states not shown, are plotted in figure 3.8. 

Within the chaotic regime, the fractal dimension of the attractor varies 

between 2 and 3. This demonstrates that the observed plasma turbulence 

shown in figures 3.5( d)-(f) may be described with only a few degrees of free

dom; the behavior of the system remains largely deterministic. If the 

observed turbulence were due to thermal or stochastic processes, then a meas

urement of the fractal dimension d would not have converged for small 

embedding dimension D. The dimension of the attractor d could then have 

been on the order of the number of conduction electrons and holes in the cry

stal28 (~1010). 

.. 

' 
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CHAPTER N. RESU~TS: 

SPATIAL BEHAVIOR 

4.1. Introduction 

It is well established that the onset of turbulence in a wide range of phy

sical systems can be characterized by temporal chaos.1 That is, the evolution 

of these systems corresponds to motion in phase space along trajectories 

which are confined to a strange (fractal) attractor.2 However, the relationship 

between low-dimensional chaos and spatial complexity is less well understood. 

Both experimental3 and theoretical4 continuum systems have been shown to 

exhibit temporally chaotic, spatially coherent behavior. However, there is as 

yet no clear experimental data on a system in which the breakup of spatial 

order can be characterized by low-dimensional chaotic dynamics. In this 

chapter we present the results of experiments on the spatial and temporal 

dynamics of chaotic instabilities in an electron-hole (e-h) plasma in Ge. Much 

of the material in this chapter has been previously published elsewhere.5
·
6 

In Chapter III we established that helical e-h plasma instabilities do 

indeed exhibit chaos. We now turn out attention to the question of spatial 

coherence within the instabilities. In particular, we would like to determine. 

whether the observed chaotic states correspond to a temporally chaotic yet 

still spatially coherent helical plasma density wave or whether the onset of 

temporal chaos could also correspond to a breakup of spatial order within the 
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density wave. By placing probe contacts along the length of our sample (see 

Chapter II), we are able to monitor the local variations in plasma density. 

We have found two distinct types of behavior: (i) an essentially spatially 

coherent and temporally chaotic plasma density wave characterized by an 

attractor of measured fractal dimension d ~ 3, and (ii) a spatially incoherent 

wave with an unmeasurably large fractal dimension d > 8. Further, as the 

applied electric field E0 is increased, we observe a transition between these 

two states - characterized by a partial loss of spatial order and a jump in 

fractal dimension. While the increase in fractal dimension from d ~ 3 to 

d > 8 is somewhat abrupt (~E0/E0 ~ 0.05), the breakup of spatial order 

occurs gradually. It is physically reasonable that the onset of spatial incoher

ence (which increases the number of available degrees of freedom) would 

result in an increased fractal dimension. However, we cannot firmly establish 

that the onset of spatial disorder is coincident with the observed jump in 

fractal dimension: the possibility that these two events occur at comparable 

applied fields and yet are not directly related cannot be competely excluded. 

4.2. Transitions to "Weak" Turbulence 

In different regions of parameter space (V0, B0, B) different types of tran

sitions to turbulence are observed. For our system we make the operational 

definition that a transition to "weak" turbulence is one in which the transi

tion from periodicity to chaos is followed by a transition back to periodicity 

as V0 is increased further. All such transitions that we have observed occur 

·• 
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over a small range (i.e., ,..._, 1 volt) of V0, and in all such chaotic states there 

exists at least one fundamental peak which stands out clearly above the 

broadband "noise" level of the power spectrum. The scenarios reported in 

Chapter III, period doubling and quasiperiodic transitions to chaos, were in 

parameter space regions corresponding to transitions to weak turbulence. 

The transition to weak turbulence which we consider here (taken with B0 

- 11.15 kGauss) is periodic at V0 = 5.50 volts, quasiperiodic at V0 = 5.59 

volts, and chaotic at V0 = 5.71 volts. The power spectra and return maps 

(which are topologically equivalent to Poincar~ sections7 ) for these three 

states are shown in figure 4.1. The structure within the return map at V0 =' 

5.71 volts strongly infers that the system is in a low-dimensional chaotic 

regime, and calc~dations of the fractal dimension confirm this. Following the 

procedures of Chapter III, we find the fractal dimension d of our plasma insta

bility to be 1, 2, and 2.7 for the above periodic, quasiperiodic, and chaotic 

states, respectively. 

To determine whether or not a weakly turbulent state is spatially 

coherent, we compare fluctuations in plasma density at different points along 

the sample. We obtain a crude measure of the degree of coherence by using a 

fast two-channel Tektronix 468 digital storage oscilloscope and comparing the 

voltages Vi(t) across pairs of contacts located at different positions along the 

z-axis of the sample. If the temporal behavior of I( t) is periodic, we observe 

only a phase shift in Vi(t) along z, which indicates a coherent travelling wave. 
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Figure 4.1. Poincare sections, In vs. In+ 1 (where { In } is the set of local 
current maxima), and power spectra of the total current I(t) at B0 = 11.15 
kGauss with increasing V0 : (a) 5.50 volts, periodic at f0 = 147 kHz. (b) 
5.59 volts, quasiperiodic. (c) 5.71 volts, chaotic. I(t) is ac coupled and 
filtered to remove harmonic distortion. 
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To obtain a more quantitative measure of the degree of spatial coherence, 

applicable for nonperiodic behavior, we calculate a spatial correlation func-

tion, C( r ), defined as8 

1/2 

( 4.1) 

where Vi(t) and Vj(t) are the voltages acr?ss two pairs of contacts separated 

by a distance r, T is the sampling interval, and N is a number large enough 

that C(r) has converged, typically 20000. We find that C(r) is independent of 

T. 

. For the periodic parameters above, the correlation function C(r) for 

different spacings r between the pairs of probe contacts is plotted in figure 4.2. 

For each pair of contacts, the voltage difference Vi( t) is periodic. By noting 

the phase shift between pairs of probes as a function of distance, we estimate 

that the spatial wavelength is >. ::::::: 4.9 mm. The theoretical correlation func-

tion for a travelling wave, 

[ ]

1/2 

S(r) = ~ {sin(wt)sint(wt-211T/A)dt , (4.2) 

is also shown if figure 4.2; the periodic data points lie close to the theoretical 

curve. We believe that the observed deviations from theory are due to the 

harmonic components of the density wave, 2f0 , 3f0 , etc. {which are seen exper-

imentally [figure 4.1(a)] but are not included in equation (4.2)} and, possibly, 

to variations in probe sensitivity as well. Thus we conclude that the periodic 
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Figure 4.2. Comparison of measured values (D) of spatial correlation 
function, C(r), equation (4.1), with theoretical correlation function, S(r), equa
tion ( 4.2), computed for A = 4.9 mm (solid line). Data were taken for 
periodic state at B0 = 11.15 kGauss, V0 = 5.50 volts using voltages from 
pairs of side probes separated by distance r. C(r) is normalized such that 
C(r = 0) = S(r = 0) = 1. 
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Figure 4.3. Normalized comparison of measured values of spatial corre
lation function C(r) for three data sets at 8 0 = 11.15 kGauss: (D) periodic, 
Y0 = 5.50 volts; {.:.l) quasiperiodic, Y0 = 5.59 volts; (o) chaotic, Y0 = 5.71 
volts. The periodic, quasiperiodic, and chaotic correlation functions are each 
normalized such that C(r = 0) - 1. For each r, the ratios 
Cquas1periodic(r)/Cperiodic(r) and Cchaotic(r)/Cperiodic(r) are then plotted as ~ and 
o, respectively. The ratio Cperiodic(r)/Cperiodic(r) is plotted as 0 for reference. 
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oscillations are spatially coherent -- not surprising and consistent with previ

ous experimental work.9,10 In figure 4.3 we plot experimental correlation func

tions C(r) for the quasiperiodic (V0 = 5.59 volts) and chaotic (V0 = 5.71 

volts) states. In these plots, C( r) for the periodic data has been normalized to 

unity at each distance r, and the quasiperiodic and chaotic data have been 

scaled accordingly (see figure caption). We find that the· quasiperiodic and 

chaotic states both have correlation functions which approximately follow the 

periodic case. Therefore, we conclude that this weakly turbulent instability 

exhibits temporal chaotic behavior while remaining essentially a spatially 

coherent plasma density wave . 

. 4.3. Transitions to "Strong" Turbulence 

With sufficiently large applied electric and magnetic fields, we find that 

we can drive the plasma into a turbulent state from which it will not become 

periodic again as V0 is increased further. Instead, all of the frequency peaks 

in the power spectrum merge into a single, broad, noiselike band. We classify 

this as a transition to "strong" turbulence. Such a transition is shown in 

figure 4.4. At V0 = 10.4 volts, I(t) is simply periodic at f0 = 321 kHz, with 

higher harmonics present as well [figure 4.4(a)]. At V0 = 11.6 volts, I(t) is 

quasiperiodic and at V0 = 12.1 volts (not shown), the onset of broadband 

"noise" can be observed. At V0 = 13.8 volts [figure 4.4(b )] , only a few of the 

peaks can be seen above the noise, and when V0 = 21.8 volts [figure 4.4(c)], 

only a very broad peak remains. 

+ 
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Figure 4.4. Left, measured power spectra of I(t); right, measured vol
tages for two pairs of probe contacts separated by r = 4 mm: V3(t) and V7(t) 
correspond to probe pairs located 3 and 7 mm away from the p+ contact, 
respectively. B0 = 11.15 kGauss. (a) V0 = 10.4 volts, periodic at f0 = 321 
kHz. At V0 = 12.1 volts (not shown) temporal chaos has set in, with meas
ured fractal dimension d:::::::: 2.5, figure 4.7(a). (b) V0 = 13.8 volts, power 
spectrum has broad base and peaks; comparison of V3(t) and V7(t) shows 
beginning of spatial incoherence; measured fractal dimension d > 8. (c) 
V0 = 21.8 volts, power spectra very broad, more marked loss of spatial coher
ence, measured fractal dimension d > 8. 

·' 
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We find that this transition to strong turbulence is characterized by a 

partial loss of spatial coherence. In the right hand column of figure 4.4, we 

plot the voltage traces across two pairs of probe contacts which are separated 

by r = 4 mm, for V0 = 10.4, 13.8, and 21.8 volts. In the periodic case, the 

wave is spatially coherent with a wavelength of approximately 8 mm (i.e., a 4 

mm separation corresponds to a 180° phase shift). At V0 = 13.8 volts we are 

just beyond the onset of the break-up of spatial order -- the basic oscillatory 

pattern and the 180° phase shift are approximately maintained between the 

two traces, but changes in the shapes and spacings of the peaks can also be 

observed. For V0 = 21.8 volts, the wavelike structure of the traces, as well as 

the readily observable spatial correlation are no longer present. 

In figure 4.5 we plot C(r) for the periodic case V0 = 10.4 volts; the data 

points lie close to the theoretical line S(r) for A= 7.7 mm. However, for data 

at higher V0 we have not found a correlation function of analytic form which 

fits the data, in contrast to the weakly turbulent data of figure 4.3. Nonethe

less, we are able to draw some conclusions from the correlation function data 

at higher voltages. 

Plots of C(r = 4 mm) and C(r = 7 mm) are found to decrease monotoni

cally with V0, as shown in figure 4.6. Further, voltage traces across two pairs 

of probe contacts which are separated by r = 1 mm are found to have almost 

identical waveshapes, except for a small (and expected) phase shift, for all 

values of V0 studied. Thus, we may approximately assume that any observed 

changes in C(r = 1 mm) with V0 are due to a shift in the spatial wavelength 
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>... The observed variations in C(r = 1 mm) [from a minimum of 0.79±.05 at 

V0 = 10.4 volts to a maximum of 0.86±.05 at V0 = 16.0 volts] account for a 

change in >.. of at most 2 mm. This, in turn, implies that C(r = 4 mm) and 

C(r = 7 mm) could not fall below 0.95±.05 and 0.82±.08, respectively, if the 

wave were spatially coherent for all V 0 . Therefore, the fact that 

C(r = 4 mm) and C(r = 7 mm) have dropped to 0.71±.05 and 0.45±.05, 

respectively, at V0 = 21.7 volts provides quantitative evidence that we are 

indeed observing a (partial) loss of spatial coherence with increasing voltage_ 

We would like to determine whether this breakup of spatial order can be 

characterized by chaotic dynamics: Do the spatially uncorrelated states still 

correspond to m0tion in phase space along a low-dimensional strange attrac-

tor? We have as yet been unable to answer this question definitively. Just 
# 

prior to the breakup of spatial coherence, V0 = 12.1 volts, the total current 

I( t) of the system is characterized by a low-dimensional at tractor; measure-

ments of the fractal dimension yield d = 2.5 [figure 4.7(a)]. However, just 

after the onset of spatial disordering, V0 = 12.9 volts, the fractal dimension 

has increased to the point where we cannot calculate its value - we can only 

set a lower limit: d > 8. This is shown in figure 4.7(b) where the slope has 

not converged with respect to either embedding dimension D or number of 

data points N. Figure 4.7(b) was taken with N = 884000 and required 50 

hours of CPU time on a Sun microcomputer. For V0 = 21.8 volts, 

N = 884000 points and embedding dimension D = 18, the slope is 1-! and has 
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Figure 4.5. Comparison of measured values (D) of spatial correlation 
function, C(r), equation (4.1), with theoretical correlation function, S(r), equa
tion (4.2), computed for >. = 7.7 mm (solid line). Data were taken for 
periodic state at B0 = 11.15 kGauss, V0 = 10.4 volts using voltages from 
pairs of side probes separated by distance r. C(r) is normalized such that 
C(r = 0) = S(r = 0) = 1. 
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Figure 4.6. Plots of measured correlation functions C( r = 4 mm ) [oj 
and C( r = 7 mm ) [ Ll ] for increasing V0• B0 = 11.15 kGauss. At each vol
tage C(r) is normalized such that C(r = 0) = 1. 
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Figure 4. 7. Plots of logN( €) vs. log€ used to determine fractal dimen
sion d at 8 0 = 11.15 kGauss. (a) V0 = 12.1 volts, N = 490000 data points; 
the symbols o and ~ refer to embedding dimensions D of 4 and 8, respec
tively. Slopes have converged to 2.5 with respect to both D and N. (b) 
V0 = 12.9 volts, N = 884000; \J, o, 0 and ~ refer to D = 6, 10, 14 and 18, 
respectively. Slopes have not converged with respect to either D or N. For 
D = 18 slope is 8.7. 
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definitely not converged. 

For our fractal dimension plots of figure 4.7 we note that the curves 

become horizontal (saturate) for (i) € > €1, a hypershpere large enough to 

include all points on the attractor and for (ii) € < €2, a hypershere so small 

that only the single point at its center is within it. This behavior is to be 

expected for all fractal dimension plots, provided € is varied sufficiently; it is 

important to do this to ensure that all experimental data are examined. 

Calculations based on time series taken across different pairs of probe 

contacts VJt) yield the same fractal dimensions d as those based on total 

current I(t ), for both spatially coherent and incoherent states. Further, we 

find that for fixed values of our applied fields, the power spectrum measured 

across a pair of probe contacts I Vi(w) I 2 is essentially identical to the power 

spectrum of the total current I I(w) I 2• This suggests that the spatial 

incoherence may be due to the dispersive nature of the e-h plasma. 

This difficulty in calculating large fractal dimensions is a problem 

incurred with very chaotic systems. The number of data points required for 

convergence increases exponentially with the fractal dimension of the sys

tem.11·12 At present, although we know that our system experiences a large 

jump in dimensionality at the onset of spatial incoherence, we have not yet 

determined whether this onset is characterized by chaotic dynamics of an 

attractor of fractal dimension may orders of magnitude smaller than the 

number of degrees of freedom of the particles in the system (........., 1010
). Other 

approaches for quantitatively characterizing very chaotic states (say, d > 10) 
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will need to be developed before this intriguing question can be answered. 
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5.1. Introduction 

CHAPTER V. EXTERNALLY 

DRIVEN INSTABILITIES 

78 

Quasiperiodic transitions to chaos have been reported in Chapters III and 

IV. In these cases, the only control parameters were the de electric field E0, 

the magnetic field B0, and the angle between the applied fields 0. Increasing 

E0, we were able to clearly observe the transition from periodicity to quasi

periodicity to chaos. However, we have found that varying E0, B0, and () pro

vides little control over the ratio of the two frequencies of the quasiperiodic 

state f2/f1• On the other hand, most detailed theoretical studies of the quasi

periodic route to chaos1'2'3 assume that this ratio is a readily tunable control 

parameter. In particular, the only quantitative predictions of a universal 

quasiperiodic transition to chaos1'2 assume that f2/f1 may be fixed at a given 

irrational ratio, usually the inverse of the golden mean, 

O'g = (v's-1)/2 = 0.618 ... 

We would like to determine the extent to which these universal predic

tions are applicable to our experimental system. To this end we have 

designed the following experiment. The control parameters E0, B0, and () are 

fixed at values such that the plasma instability is simply periodic at frequency 

f1• An ac voltage V 1sin2rl2t is then applied across a pair of spatial probe con

tacts (as described in Chapter II). This ac perturbation interacts non-linearly 

.. 

.. 
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with the unstable periodic density wave and, by varying f2 and V1, we are 

able to control both the ratio f2/f1 and the degree of non-linear mixing. 

The second section of this chapter is a review of the existing theoretical 

predictions concerning the quasiperiodic transition to chaos and the third sec-

tion describes our experimental results. 

5.2. Theoretical Predictions 

Quasiperiodic behavior (simultane~ms oscillations ~t two incommensurate 

frequencies) corresponds to motion in phase space along an invariant two-

dimensional torus. A Poincare' section of this torus is topologically equivalent 

to a circle. As each point on this curve is mapped to another point on the 

same curve, it is known as an invariant circle. The transition to chaos 

corresponds to the destruction of the invariant torus, and this is reflected in 

the breakup of the invariant circle, i.e., it becomes no longer smooth. It is 

therefore reasonable to consider a non-linear mapping of the circle onto itself 

as a model for experimentally observed quasiperiodic transitions to chaos.4 

Mappings of the invariant circle (so-called "circle maps") have been stu-

died extensively. Perhaps the best known is the sine circle map 

(5.1) 

where <Pn is the angle on the circle, a specifies the nonlinearity and w is the 

frequency ratio ((df1) in the limit a= 0. For 0 < a < i the mapping is 

either frequency locked (f2/f1 = pjq; p,q integers) or quasiperiodic 
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(f2/f1 ~ pfq; p,q integers). For a fixed value of a, the range of w over which 

fdf2 = pfq for each pfq is finite (for a> 0) and. widens as the nonlinear con-

trol parameter a is increased. These frequency locked regions form horn-like 
' 

structures in the (a,w) plane known as "Arnold tongues." 1•5•6 The ratio f2/f1 

is known as the winding number p. Further, it is found5•6 that for a fixed 

value of a and increasing w, the tongue with winding number (p+p')/(q+q') is 

always observed between the tongues with winding numbers pfq and p'/q'. 

For a < 1 the map (5.1) is invertible, whereas for a > 1 it is non-

invertible. It is only in the unstable region a > 1 that chaos may be 

observed.5 Thus, for the mapping (5.1) the onset of instability is simply the 

straight line a= 1 in the (a, w) plane. For more general circle maps, the 

onset of instability is not necessarily a straight line.3 Instead, it is often a 

curve acrit(w), where a is again a measure of the non-linear coupling and w is 

defined as the ratio f2/f1 at a= 0. We refer to acrit(w) .as the critical line. 

For all such maps, the ordering of the Arnold tongues is identical to that 

observed for equation (5.1 ) . 

. ·For equation (5.1), the widths of the Arnold tongues are found to 

.increase with a. At a= 1 these locked regions form a Cantor set/ and the 

fractal dimension d of this Cantor set was found numerically3 to be 0.868 ... 

Numerical results indicate that this result is universal for maps with cubic 

inflection points.3·8 That is, the locked regions on the critical line acrit(w), for 

any map of the invariant circle with cubic inflection points, should form a 

Cantor set of fractal dimension d = 0.868 ... 
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Universal quasiperiodic transitions to chaos are predicted to occur in the 

absence of frequency locking. In particular, detailed renormalization analyses1 

predict that when f2/f1 is fixed at O'g = (Vs-1)/2 = 0.618 ... (i.e., the inverse 

of the golden mean), the transition from quasiperiodicity to chaos will occur 

in a universal fashion. Figure 5.1 shows part of the power spectrum of equa

tion (5.1) at the onset of chaos (a= 1) for p = O'g. The power spectrum of 

any circle map at the onset of chaos, for p .:...._ O'g, should have low frequency 

structure identical to that shown here. 

Figure 5.1 is the power spectrum of <Pn- np. The horizontal axis is log f 

(frequency) and the vertical axis is log (P(f)/f2); where P(f) is the spectral 

power density at frequency f. The frequency f1 has been normalized to unity. 

The scales of these axes have been chosen so as to acce11tuate the universal 

structure of the spectrum. The spectrum is divided into bands (labeled 

B0, B1, ••• ) separated by the spectral peaks ·fik = I jag-k I , where j and k 

are adjacent elements of the Fibonacci series9 (1, 1, 2, 3, 5, ... ). Peaks 

labeled 2, 3, and 4 are of the form fik = I jag-k I where j and k are adjacent 

elements of the Fibonacci series (2, 2, 4, 6, ... ), (1, 3, 4, 7, ... ), and (3, 3, 6, 

9, ... ), respectively. An infinite num her of such sequences of peaks are con

tained in the spectrum. Only the most prominent ones are shown in figure 

5.1. 

There are two striking features of this power spectrum. First, within 

each band one may obse~ve a self-similarity in the spacing between peaks. 

That is, the spaci~g between peaks within each band Bi is identical to the 
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Figure 5.1. A portion of the power spectrum of the sine circle map 
[equation (5.1)] for the parameters p = O'g ·and a= 1 (the onset of chaos). 
The spectrum computed is that of </>0 - np; the spectrum of ( 4>n)mod 1 is 
equivalent.4 P(f) is the spectral power density. The frequency f1 has been 
normalized to unity, and the bands (B0, B1, B2, ••• ) are separated by the 
principal peaks, which are at powers of O'g. All peaks are of the form 
fik = I jag-k I where j and k are adjacent elements of a Fibonacci series. All 
peaks with pairs (j,k) from a common Fibonacci series are labeled by the same 
integer (see text). The pair (j,k) for each peak fik of the first and second 
Fibonacci series is also shown. The power spectrum consists of an infinite 
number of such series of peaks, only the most prominent ones are shown here. 
This figure is from reference 4, adapted from reference 1. 
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spacing between peaks within every other band -- the lines in each band Bi 

are in a one-to-one correspondence. This is simply a consequence of the fact 

that the winding number is equal to ag and may therefore be expressed as the 

continued fraction <1, 1, 1, .. . >. This is not a consequence of the system 

being at the onset of chaos. 

The second striking feature is that all peaks fik with p:;tirs (j, k) taken 

from a common Fibonacci series are of the same height [for vertical scale 

P(f)/f2] in the limit f- 0. That is, all peaks labeled 1, 2, or 3 are the same 

height as all other peaks labeled 1, 2, or 3, in the limit of low frequency. This 

is a consequence of the system being at the onset of chaos. Just prior to the 

onset of chaos this scaling would not be present below some cross-over fre

quency.1 Above the threshold of chaos, the spectral peaks shoulc! broaden. 

Further, it has been suggested2 that the fractal dimension d of the chaotic 

time series { <Pn} should scale as 

(5.2) 

where ac is the critical value of a (at p = ag) and /3 = 0.948 ... is a universal 

exponent. 

5.3. Experimental Results 

The operating parameters for this experiment include a de voltage 

V0 = 7.00 volts and a de magnetic field B0 = 9.32 kGauss. For these fields 

the plasma instability is simply periodic at a fundamental frequency f1 = 178 



84 

kHz, with some higher harmonics present as well. As V0 is increased, the ins-

tability becomes quasiperiodic at 7.49 volts and chaotic at 7.79 volts. At 

V0 = 8.04 volts the instability undergoes an abrupt change; it becomes sim-

ply periodic at f1 = 295 kHz. This new mode exhibits hysteresis, i.e., as V0 is 

decreased from 8.04 to 7.00 volts, the instability remains periodic and f1 

decreases continuously from 295 to 271.5 kHz. This is in contrast to the 178 

kHz mode observed at V0 = 7.00 volts whenever V0 is increased from 0 to 

7.00 volts. In the experiments described below, we always set the operating 

conditions such that at V0 = 7.00 volts and B0 = 9.32 kGauss the 178 kHz 

mode is present with V1 = 0 volts. However, as will be shown below, the 

application of an ac perturbation can cause the system (in some instances) to 

shift into the 271.5 kHz mode. 

We perturb the simply periodic state (V0 = 7.00 volts, B0 = 9.32 

kGauss, f1 == 178 kHz) by applying an ac voltage V1sin211"f2t across the pair of 

probe contacts nearest the p+ end contact. We monitor the response of the 

system by observing the power spectrum of the total current. For V 1 below 

. 
--....55 mvolts, chaos is not observed for any values of f2• However, frequency 

lockings are observed and the widths of the locked .horns are observed to 

increase with increasing V 1• This behavior is shown in figure 5.2 -- a plot of 

the frequency-locked horns as a function of V 1 and f2• Only the widest horns 

are shown; stable lockings with denominators as large as 21 have been 

observed. 
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Figure 5.2. Experimental plot of frequency locked regions as a function 
of f2 and V1• Operating conditions are V0 = 7.00 volts, B0 = 9.32 kGauss, 
and a perturbation V1sin2rl2t applied across the pair of spatial probe contacts 
closest to the p+ end contact. Only the widest frequency lockings are shown 
here; stable locked states with denominators as large as 21 have been 
observed. The notation p:q (p,q integers) identifies the locked state 
f2/f 1 = p / q. All of the lockings shown in this figure (except the 1' :2' locking) 
are between the external frequency f2 and the 178 kHz instability (i.e., 
f 1 = 178 kHz at V 1 = 0 volts). The notation 1 ':2' refers to a 1:2 locking 
between the external frequency f2 and the 271.5 kHz instability (i.e., 
f1 = 271.5 kHz at V 1 = 0 volts). This locking is hysteretic and thus the 
locked region must be defined by two boundaries, the solid and dotted lines, 
as discussed in the text. 
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The sequence of observed lockings is the same as that predicted theoreti

cally5·6, with the exception of the 1':2' locking. All of the other tongues result 

from a locking between the applied excitation f2 and the 178 kHz instability. 

However, for V1 > 38 mvolts, the 271.5 kHz oscillations appear, in a 1:2 lock

ing with the perturbing mode f2• We label this 1':2'. The left side of the 

solid line defining the 1 ':2' horn was measured by sweeping from low to high 

f2 for fixed values of V1; the right side was measured by sweeping from high 

to low f2 for fixed V1• In either case, as the external frequency f2 crossed this 

solid line, the fundamental frequency f1 of the instability would abruptly shift 

from 178 kHz to 2f2 (~271 kHz). The dotted line enveloping the 1':2' horn 

defines the boundaries of the 1' :2' locking as measured from within the locked 

state. That is, if the system is already locked in the 1 ':2' state, i~: will remain 

locked for all values of V 1 and f2 contained within the region denoted by the 

dotted line; the area between the solid and dotted lines is the region of 

parameter space where the system is hysteretic. As one moves out of the 1':2' 

horn (as defined by the dotted line), the jump in the fundamental frequency f1 

- from 2f2 (~271 kHz) to 178 kHz- is abrupt. 

To determine whether these instabilities follow the predicted universal 

quasiperiodic transition to chaos, we fix the ratio f2/f1 at a g. As V 1 is 

increased, it becomes necessary to adjust f2 so as to maintain the ag ratio. 

We find that experimentally we can maintain the ratio f2/f1 = ag to approxi

mately two parts in 104 • Power spectra of the total current, recorded at 

V 1 = 13.9, 103.1, 128.4, and 154.9 mvolts are shown in figures 5.3 {a)-(d), 
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respectively. At V1 = 13.9 mvolts the system is quasiperiodic, and sums and 

differences of the form mf1 + nf2 (m, n integers) are observed. At V1 = 103.1 

mvolts, at the threshold of chaos, the strength and number of such combina

tion frequencies has increased dramatically and the fundamental peak f 1 has 

broadened slightly. At V1 = 128.4 mvolts, just above the chaotic threshold, 

the number of peaks has diminished, and those remaining have been slightly 

broadened. As V 1 is increased to 154.9 mvolts, a 1:2 locking between the 

external frequency f2 and the 271.5 kHz mode (which is pulled to 235 kHz by 

the external perturbation) is observed [figure 5.3 (d)]. This locking curtails 

the theoretically expected2 transition to higher dimensional chaos. In addition .. 

to the sharp peaks of the locked modes, a broad peak centered at 190 kHz, 

presumably due to the initial instability (f1 = 178 kHz at v1 = 0 volts), is ' 

also observed. However, this peak is 45 dB weaker than the sharp, frequency 

locked peaks; we are unable to determine whether it is broadened by stochas

tic or deterministic processes. 

Figure 5.4 shows the power spectrum of the total current at the onset of 

chaos (V1 = 103.1 mvolts), with log f plotted on the horizontal axis and 

log (P(f)/fl) plotted on the vertical axis. The self-similar band structure 

resulting from the fact that f2/f1 = O'g is readily observable. Peaks in this 

figure are labeled 1, 2, 3, and 4 following the labeling scheme of figure 5.1. At 
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Figure 5.3. Power spectra of the total current I(t) for operating condi
tions V0 = 7.00 volts, B0 = 9.32 kGauss, and a perturbation V Isin21lf2t 
applied across the pair of spatial probe contacts closest to the p+ end contact. 
The frequency f2 is adjusted so that f2/f1 = ag to approximately 2 parts in 
104 for all power spectra shown. VI is increasing, (a) to (d). For VI= 0 
volts, the frequency f1 = 178 kHz. (a) VI= 13.9 mvol~_quasiJ)eriodic. (b) 
V1 = 103.1 mvolts, onset of chaos. (c) VI= 128.4 mvolts, just beyond the 
onset of chaos. (d) VI = 154.9 mvolts, f2 is frequency locked to a 271.5 kHz 
unstable mode (see text). The ratio f2/f1 = ag is maintained between the 
external frequency f2 and the initial instability fi, which for this value of VI 
consists of a broadband peak centered at 190 kHz and 45 dB weaker than the 
frequency locked peaks at 117.5 and 235 kHz. 
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Figure 5.4. Power spectrum of the total current at the onset of chaos. 
Same spectrum as in figure 5.3(c), with log f (frequency) plotted on the hor
izontal axis and log[P(f)/f2] plotted on the vertical axis, where P(f) is the spec
tral power density. The peaks are labeled using the same notation as in figure 
5.1. 
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low frequencies, all peaks labeled with the same number are predicted to be of 

the same height. This is observed only approximately. Several possibilities 

could account for the deviations from theory. First, we may not be exactly at 

the onset of chaos. Second, in general, the theory holds only in the limit of 

low frequencies; we may not be at sufficiently low frequencies to observe the 

predicted scaling. Finally, the hysteretic nature of our system is clearly 

responsible for deviations from theory within the chaotic regime [as in figure 

5.3( d)]; it is reasonable to suspect that it may also affect the relative peak 

heights at the onset of chaos. We note that experimental studies of quasi

periodic transitions to chaos in Rayleigh-Benard convection systems4•10 have 

also been unable to clearly observe the predicted scaling of spectral peak 

heights. 

We calculate the fractal dimension d of the Cantor set of locked regions 

along the critical line acrit(w) as follows.8•11 LetS be the length of the interval 

between two locked states P 0 :P n+l and P n+l:P n+2, where P 0 , Pn.+I' and P n+2 

are successive elements of the first Fibonacci series. Further, let S1 and S2 

denote the distance between the locked state (P 0 +P n+1):(P n+1+P n+2) [located 

between P 0 :Pn+l and P0 +1:P0 +2] and the states P0 :Pn+l and Pn+1:Pn+2' 

respectively. Then, in the limit of large P 0 , one expects that 12 

(5.3) 

The definitions of S1, S2, and S (as well as 0 0 , On+t' and 0 0 +2 - which will be 

defined shortly) are illustrated in figure 5.5. 
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Figure 5.5. Illustration of the definitions of 81, 82, S, On, On+l' and 
nn+2, as used in equations (5.3) and (5.4). P n' P n+l' and P n+2 are three suc
cessive Fibonacci numbers and the frequency locked regions P n:P n+l' 

(P n+P n+ 1):(P n+l +P n+2), and P n+l :P n+2 are labeled as such. For our experi
ments, the vertical axis would be V 1 and the horizontal axis would be f2, as 
defined in figure caption 5.2. 



Applying relation (5.3) to the locked states 3:5, 5:8, and 8:13 we observe 

d ~ 0.86±.04; as compared to the predicted3 value of 0.868.. . The locked 

states 3:5, 5:8, and 8:13 were observed in the intervals 107.13- 109.98, 

112.62- 113.48, and 111.50- 111.76 MHz, respectively. It is also predicted1 

that 6, defined as 

(5.4) 

where On, On+ I' and On+2 are the widths of the locked states P n:P n+I' 

P n+1:P n+2' and (P n+P n+d:(P n+1+P n+2), respectively, is a universal constant. 

For f2/f1 = O'g, 6 is predicted1 to be 2.833 . . . Using the 3:5, 5:8, and 8:13 

lockings we measure 6 ~ 3.3±1.2, again, only approximately in agreement 

with theory. 

Serious questions remain as to exactly what effect the observed hysteresis 

has on the observed transition to chaos. If the operating parameters E0, B0, 

and () are chosen such that (in the absence of an ac excitation) the system is 

in a simply periodic, non-hysteretic13 state, then the subsequent application of 

an ac perturbation might result in a quasiperiodic transition to chaos which 

more closely follows the theoretical predictions. However, at least one such 

non-hysteretic state could not be driven to chaos by a sinusoidal perturbation; 

as the perturbation became large, it simply overwhelmed the natural fre-

quency of the plasma instability (i.e., the spectral density of the external per-

turbation became much larger than that of the natural instability). This sug-

gests that perhaps the application of periodic pulses (which allow the plasma 
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instability more degrees of freedom) would result in a transition to chaos 

which could be closely modeled by theory.14 Experiments along these lines 

are currently in progress. 
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We find that unstable helical density waves in an electron-hole plasma, 

when excited by parallel de electric and magnetic fields, will undergo transi

tions to low-dimensional chaotic turbulence. The observed behavior includes 

both period doubling and quasiperiodic transitions to chaos. While the p()ssi

bility that plasmas could exhibit chaos has been discussed theoretically, 1 this 

work provides the first evidence of a period doubling and a quasiperiodic tran

sition to chaos in any plasma. Further, this is the first successful attempt at 

understanding the noise-like behavior which often results when a semiconduc

tor plasma instability is strongly excited -- we have shown that seemingly ran

dom behavior of helical instabilities in a semiconductor plasma is in fact low

dimensional and deterministic. 

Following a quasiperiodic route, we find that the resulting chaotic state 

of the system is characterized by a strange attractor which has a fractal 

dimension of between two and three. By measuring the local variations in 

plasma density, we find that these "weakly" turbulent states correspond to 

temporally chaotic, yet essentially spatially coherent plasma density waves. 

However, when more strongly excited, these plasma density waves 

undergo a partial loss of spatial coherence. The onset of the loss of spatial 
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coherence is characterized by a sudden jump in the dimension of the attractor 

- from less than three for spatially coherent states to at least eight after the 

onset of spatial disorder. 

When we excite a periodic instability of frequency f 1 with an external ac 

perturbation V 1sin2rl2t, we find that the external mode couples to the insta

bility, resulting in a quasiperiodic state with a tunable ratio f2/f1• As the 

amplitude of the external excitation V1 is increased, the instability can 

undergo a quasiperiodic transition to chaos. Frequency lockings are observed, 

and these form Arnold tongues in the (V1, f2) plane - as expected theoreti

cally. When we fix f2/f1 = O'g (i.e., the inverse of the golden mean) and 

increase V1, we observe a transition to chaos somewhat similar to that 

expected theoretically. However, the unperturbed (periodic) instabilities 

which we have studied are hysteretic, and this appears to limit the applicabil

ity of existing theoretical models2 to our experimental results. 

6.2. Further Experiments 

In this section we discuss some experiments which would further eluci

date the structure of the chaotic plasma instabilities discussed in this thesis. 

These fall into two categories -- experiments concerning the spatia-temporal 

structure of the instabilities and further studies of externally excited instabili

ties. 

To determine whether or not a plasma density wave is spatially coherent, 
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we have relied on a comparison between experimentally measured and 

theoretically calculated spatial correlation functions. This approach has two 

limitations associated with it. First, the correlation function only indicates 

whether or not the data fit the theoretical model for a spatially coherent 

wave; there is no obvious method of determining the degree of spatial 

incoherence (see Chapter IV). Second, there is no simple method of including 

harmonic distortion in the theoretical correlation function. Thus it is difficult 

to determine the exact onset of spatial incoherence. We cannot conclusively 

state that the onset· of spatial incoherence is coincident with the observed 

jump in fractal dimension. 

Spatial Fourier transforms of the plasma density p(x, t) would provide a 

more precise measure of the degree of spatial incoherence; the broader the 

peaks in the transform, the greater the degree of spatial incoherence. The 

number of points in the Fourier transform would be equal to one-half the 

number of pairs of probe contacts, and the resolution of the transform would 

be inversely proportional to the distance between the two farthest probe con

tacts.3 If one could form contacts along the length of, say, a 300 x 1 x 1 mm3 

sample, then the resulting spatial transforms would have a resolution of 0.033 

cm-1, providing a reasonable measure of spatial coherence. A long sample has 

the further advantage that the effects of reflected waves (which are damped4
) 

would be reduced. Ideally, one would like to take long time series of the sig

nals at all of the spatial probes simultaneously . One would then be able to 

calculate the spatial Fourier transform and the fractal dimension of the 



99 

attractor from the same data set. In this fashion one could rigorously deter

mine the relationship between fractal dimension and spatial coherence. 

This approach has at least two difficulties. First, it would be difficult to 

prepare such a long sample. (Building a magnetic which produces homogene

ous 10 kGauss fields over 30 em might not be trivial either.) Second, current 

algorithms for determining quantitative measures of chaos are useful, in prac

tice, only for attractors of fractal dimension d less than, say, 8. Thus, our 

experiments of Chapter N suggest that the relationship between spatial and 

temporal order could still only be quantified just above the onset of spatial 

incoherence. However, even this would be significant. 

Further experiments on helical instabilities coupled to an external pertur

bation would also be of interest; the experiments along these lines discussed 

in Chapter V were complicated by the hysteretic nature of the instabilities. If 

a simply periodic, non-hysteretic instability (i.e., one for which only a single 

mode is ever observable for some E0 and B0 ) were coupled to a periodic per

turbation, then it is possible that a resulting quasiperiodic transition to chaos 

could be closely modeled by existing theories of the invariant circle (see 

Chapter V). Power spectra taken at the onset of chaos, as well as measure

ments of the universal exponents 5 and /3, and the fractal dimension d (see 

Chapter V) would indicate the extent to which these theories are experimen

tally applicable. We note that experiments on Rayleigh-Be'nard convection5 

(as well as our preliminary results, see Chapter V) suggest that periodic pulses 

(as opposed to a sinusoidal perturbation) should be used to excite the 
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instabilities in these experiments. 

Finally, it should be possible to excite a periodic instability at two exter

nal incommensurate frequencies. The question as to whether a quasiperiodic 

state with three or more incommensurate frequencies can undergo a transition 

to chaos is still a topic of theoretical debate.6 These experiments would pro

vide interesting experimental observations concerning the stability of three 

frequency quasiperiodic states and (if these states exist) the routes they follow 

to chaos. 

6.3. Additional Semiconductor Plasma Instabilities 

Our decision to study the nonlinear dynamics of helical instabilities in an 

electron-hole plasma was motivated by earlier work c~ these instabilities. 

Spontaneous oscillations were observed experimentally7 and a linear analysis 

of the system (see Appendix A) indicated that these oscillations were the 

result of an unstable helical density wave.4•8 However, in addition to simple 

oscillations, the observation of incoherent oscillations and noise-like behavior 

was also reported.7 This suggested that quasiperiodicity and chaos had been 

observed, but were not recognized as such due to the lack of a theoretical 

framework. 

Similarly, indications of possible transitions to chaos are found in early 

reports of other semiconductor plasma instabilities.9 These include magnetic 

pinch instabilities, 10 the Gurvich-Ioffe instability,4•11 ·12 and acousto-electric 

instabilities. 13•14 In each of these cases a transition from simply periodic 
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behavior to some sort of incoherent oscillations was reported. In the case of a 

driven acousto-electric instability, the observation of a subharmonic at one 

one-half the driving frequency was reported, 14 suggesting a possible period 

doubling transition to chaos. We would not be surprised if, upon reexamina

tion, these instabilities could also be understood in the context of chaotic 

dynamics. 

•r . 
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APPENDIX A. EQUATIONS OF MOTION 

FOR ELECTRON-HOLE PLASMA 
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For the times and distances of interest, the following partial differential 

equations describe the motion of conduction electrons and holes in the cry-

stal:1•2 

(A.1a) 

8neh 1 
--· = ±-(v·J) + 1 

8t q 
(A.1b) 

(A.1c) 

where the subscript e(h) and the upper (lower) signs refer to electrons (holes); 

n is the carrier density, J is the .current density, q is the magnitude of the 

electronic charge, JJ is the mobility, D is the diffusion constant, € is the dielec-

tric constant of the sample, 1 is the net carrier generation rate (including bulk 

recombination), and E and B are the electric and magnetic fields, respec-

tively. At surfaces perpendicular to the applied electric field, these equations 

are subject to the boundary condition Je = Jh = qsne, where s is the surface 

recombination rate. 

By expanding the carrier densities and the electric field about their equili-

brium values 

(A.2a) 

.. 
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(A.2b) 

E = E 0 - \l'I/J1(t) (A.2c) 

and substituting these exp~essions into equations (A.1 ), it has been shown2 

that the first order terms lead to a helical density wave, 

n :=::::: n - N (r) eiwt-ikz-iml/l el hl - 1 (A.3a) 

and 

(A.3b) 

where m is an integer. Beyond certain thresholds of the applied electric and 

magnetic fields, the m = 1 helical density wave becomes absolutely unstable 

[Im(w) < 0] and spontaneous oscillations occur, coincident. with the onset of 

nonlinear behavior. An illustration of this unstable helical density wave is 

shown in figure 1.3 (in Chapter I), adapted from Hoh and Lehnert.3 

To incorporate nonlinear behavior into a model which explains the 

observed chaotic dynamics, we consider a superposition of waves in which the 

time dependence is not assumed to be periodic, 

nhl :=::::: nel = ~Ckm(t) Nkm(r) e-ikz-iml/l + c.c. 
k,m 

1/J1 = ~Ckm(t) Wkm(r) e-ikz..-im¢1 + c.c 
k,m 

(A.4a) 

{A.4b) 

Substituting {A.4) into equations (A.1), and keeping only terms up to second 

order, results in a set of coupled ordinary differential equations of the form 
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where M and M' are independent of time. This equation describes a wave-

wave interaction4 in which a wave with wave vector k can couple nonlinearly 

to many different pairs of waves (k1,m1), (k2,m2). It turns out that a special 
I 

case of equation (A.5) has been considered by Wersinger et al. 5 who studied 

numerically the evolution of an undamped wave coupled bilinearly to two 

damped waves: 

(A.6a) 

(A.6b) 

For l2 = l3 and f= 112 I /It they found that cl undergoes a period dou-

bling cascade to chaos as r is increased. They also showed that the computed 

Poincare' section can be reduced to a unimodal map. 

We propose that the chaotic behavior in our system is due to a similar 

coupling, with the unstable helical density wave coupling to pairs of damped 

waves. The simplest model is again that of three coupled waves; a possible 

set of the three "most important" 6 modes follows. The obvious choice for the 

unstable mode is the traveling helical density wave (A.3) with m = 1. The 
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relationship between the wave vector of this unstable wave, which we denote 

ku, and the applied fields E0 and B0 is derived by Hurwitz and Me Whorter. 2 

The m = 1 mode is theoretically the first one to become unstable; it is also 

the only unstable wave observed experimentally.2•7 Thus, in the notation 

(k,m) we label our first mode (k = ku, m = 1 ). For the second mode we 

choose (k = o,.m = 0). If equation (A.3) -is integrated over r and ¢> for 

m :;£:. 0, the result is zero, i.e., no net current flow. Since we observe oscilla-

tions (and chaos) in the total current, we must assume that an m = 0 mode is 

indeed present. We further assume that the net current flow is constant along 

the length of the sample, i.e., k = 0. Conservation of k and m therefore 

requires that the third mode be (k = -ku, m = -1) - the reflection of the 

unstable mode. By retaining only three modes, we reduce our model [an 

infinite set of coupled differential equations of the form (A.5)) to a set of three 

coupled ordinary differential equations. Following the notation of equation 

(A.5) these are: 

(A.7a) 

(A.7b) 

.. ac 
-ku.-

1 
- M C + M' C C * 8t - -ku.-1 -ku.-1 O,ku; 0,1 0,0 ku.1 (A.7c) 

'We note that both the (k = 0, m = 0) and (k = -ku, m = -1) modes are 

damped,2 consistent with the model of Wersinger, et al. However, we also 
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note that our model is still based on conjecture; numerical solutions of ana

lytic models derived from equations (A.l) are necessary to determine whether 

or not a nonlinear coupling of these modes will result in transitions to chaos 

similar to those observed experimentally. 

Studying the bilinear coupling of one unstable wave and two damped 

waves, Wersinger, et al. observed a period doubling transition to chaos. 

However, they did not report any quasiperiodic transitions to chaos. As we 

have observed such transitions experimentally, we consider here two possible 

models which could result in a quasiperiodic transition to chaos. First, a 

second mode could become unstable. However, if we have two unstable 

modes, and the current carrying (k = 0, m = 0) mode as well, then conserva

tion of k and m requires that at least five modes8 be present for all the modes 

to be nonlinearly coupled (still assuming only bilinear coupling). The linear 

model of Hurwitz and McWhorter suggests that the initial instability would 

be the instability of lowest frequency. That is, if an additional mode became 

unstable at the onset of quasiperiodicity, it would have a higher frequency 

than the first unstable mode. This is in contrast to experimental observations 

(see Chapters III and IV). 

The second possibility9 is that the imaginary part of the constant 

M' ku..-ku; 1,_1 of equation (A.7b) becomes negative above some threshold of the 

applied fields. This would also result in quasi periodicity. In this case, the 

second frequency to emerge could be lower than the first, consistent with 

experimental observations. Again, however, we note that numerical solutions 
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are necessary to determine which (if any) of these wave-wave interactions will 

show behavior similar to that observed experimentally. 

t. 
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This program collects a time series of data from channel 00 of a Data 

Translation DT3382 A/D module. The data is initially stored in random 

access memory and subsequently transferred to a Winchester disk. Up to 

98044 data points may be collected in a single sweep, with a maximum sam-

piing rate of 240 kHz. This program is written in Fortran.N and runs on an 

LSI-11/23 computer. It must be linked with Data Translation's CPLIB and 

ADAC's ADLffi subroutine packages prior to execution. 

C TinS PROGRAM TAKES A TIME SERIES FROM CHANNEL 00 OF 
C THE DT3382 A/D BOARD, 
C PLOTS A RETURN MAP OF THE DATA ON A TEK 611 STORAGE SCOPE, 
C AND STORES THE DATA ON HARD DISKS USING CPLffi DISK ROUTINES. 
C THE SIGNAL TO SAMPLE MUST GO INTO EXT TRIG L INPUT OF THE DT3382 
C IT MAY BE SUPPLIED EXTERNALLY OR WITH THE KWVll-C CLOCK BOARD 
C THIS PROGRAM DOES NOT PUT THE CPU IN COMA MODE BEFORE TAKING 
C DATA AND CAN TAKE UP TO 98044 DATA POINTS 
C THE LINE TIME CLOCK MUST BE ON FOR THIS PROGRAM TO WORK 
C THIS PROGRAM WAS WRITTEN BY GLENN HELD** 2/17/84 

DIMENSION ICHAN(256),1DATA(2048),IFILE(3) 
VIRTUAL DATA(24576) 
REAL*8 DATA 
REAL*4 SIZE 
INTEGER*4 NMIN,NMAX 
WRITE (7,103) 

103 FORMAT(1X,'SIZE (F12.0)') 
READ (7,105) SIZE 

105 FORMAT (F12.0) 
DO 10 1=1,256 

10 ICHAN(I)=O 
IGAIN=-1 



MODE='EP' 
CALL DFCHZA(256,ICHAN,IGAIN,MODE} 
WRITE (7,15} 
READ (7,25} IU 
IU= e1*IU 
IF (IU.EQ.O} GO TO 20 
CALL CLOCKW(1,1,IU,0,"170420,"440} 
DO 94 J=1,5000 

94 CONTINUE 
20 CALL RSXVZA(SIZE,DATA} 

CALL WAITZA 
CALL CLOSZA 
CALL CLOCKW(l,0,1,0," 170420," 440} 
llMrnN=2048 . 
IMAX~2048 

NMIN=O 
NMAX=O 
IEND=INT( (SIZE+ 2047.} /2048.} 
DO 30 1=1,IEND 
RINDEX=FLOAT(I-1}*2048.+1. 
IGET=2048 
IF (I.EQ.IEND} IGET=INT(SIZE-2048.*FLOAT(I-1}} 
CALL GETMXV(IGET,RINDEX,DATA,IDATA} 
DO 30 Il=1,IGET 
IF (IDATA(Il}.GT.IMAX) NMAX=O 
IF (IDATA(Il}.LT.DMrnN} NMIN=O 
IF (IDATA(Il).GT.IMAX) IMAX=IDATA(Il} 
IF (IDATA(Il}.LT.DMrnN} .IMIN....:..IDATA(Il} 
IF (IDATA(Il}.EQ:IMAX} NMAX=NMAX+1 
IF (IDATA(Il}.EQ.IMIN} NMIN=NMIN+1 
IF (Il.EQ.IGET} GO TO 30 
CALL DAOUTP(2,IDATA(Il}} 
CALL DAOUTP(1,IDATA(Il+1}} 
ISL=ISLEEP(0,0,0,1} 

30 CONTINUE 
WRITE (7,35} IMAX,NMAX 
WRITE (7,45} IMIN,NMIN 
WRITE (7,55} 
READ (7,65} IFILE(1},IFILE(2},IFILE(3} 
NBLKS=8*1NT((SIZE+2047.}/2048.} 
CALL DFOPEN('DP1',IFILE,NBLKS,IFCHAN,NAVAIL) 
IF (NAVAIL.EQ.NBLKS) GO TO 50 
WRITE (7,17) 

17 FORMAT (1X,'DUPLICATED FILENAME OR INSUFFICIENT SPACE') 
GO TO 999 

50 DO 40 l=l,IEND 
RINDEX=2048.*FLOAT(l-1)+1. 
IGET=2048 
IF (I.EQ.IEND) IGET=INT(SIZE-2048.*FLOAT(I-1)) 
CALL GETMXV(IGET,RIND&X,DATA,IDATA) 
IF (IGET.EQ.2048) GO TO 210 
DO 200 IZ=IGET+l,2048 

200 IDATA(IZ)=O 

112 

.. 



210 CALL WMBLK(IFCHAN,8*1-7,8,IDATA) 
CALL DFW AIT(IFCHAN) 

40 CONTINUE 
CALL DFCLOS(IFCHAN,1) 

999 CALL EXIT 
15 FORMAT(1X,'NUMBER OF US BETWEEN SAMPLES (16)- 0 FOR EXT TRIG') 
25 FORMAT(I6) 
35 FORMAT(1X,'IMAX- ',17,3X,'NMAX= ',17) 
45 FORMAT(1X 'IMIN= I 17 3X 'NMIN= I 17) ' ' ' ' , 
55 FORMAT (1X,'NAME OF DATAFILE (6 CHARACTERS)') 
65 FORMAT (3A2) • 
75 FORMAT (17) , 

END 

113 



114 

Program 2. Direct to Disk Data Collection Program. 

This program collects a time series of data from channel 00 of a Data 

Translation DT3382 A/D module. The data is transferred directly from the 

A/D converter to a Winchester disk. The maximum sampling rate is 67 kHz 

and the amount of data collected in a single sweep is limited only by available 

disk space. This program is written in Fortran IV and runs on an LSI-11/23 

computer. It must be linked with Data Translation's CPLIB and ADAC's 

ADLIB subroutine packages prior to execution. 

C TinS PROGRAM TAKES A TIME SERIES FROM CHANNEL 00 
C OF THE DT3382 A/D BOARD, 
C TRANSFERS THE DATA DIRECTLY TO A HARD DISK, AND 
C THEN PLOTS A RETURN MAP OF THE DATA ON A TEK 611 STORAGE SCOPE. 
C THE SIGNAL TO SAMPLE MUST GO INTO EXT TRIG L INPUT OF THE DT3382 
C IT MAY BE SUPPLIED EXTERNALLY OR WITH THE KWV11-C CLOCK BOARD 
C TlfiS PROGRAM DOES NOT PUT THE CPU IN COMA MODE BEFORE TAKING 
C DATA. THE LINE TIME CLOCK MUST BE ON FOR TlfiS PROGRAM TO WORK 
C TlfiS PROGRAM WAS WRITTEN BY GLENN HELD** 2/17/84 

DIMENSION ICHAN{256),1DATA(2048),IFILE{3) 
REAL*4 SIZE 
INTEGER*4 NMIN,NMAX 
WRITE {7 ,103) 

103 FORMAT{1X,'NUMBER OF BLOCKS {256 DATA PTS/BLOCK- I8)') 
READ {7,105} NBLKS 

105 FORMAT {I8) 
DO 10 I=1,256 

10 ICHAN(I)~ 
IGAIN=-1 
MODE='EP' 
CALL DFCHZA(256,ICHAN,IGAIN,MODE) 
WRITE {7,55) 
READ {7,65) IFILE(1),IFILE(2),IFILE(3) 
CALL DFOPEN('DP1',IFILE,NBLKS,IFCHAN,NAVAIL) 
IF (NAVA.IL.EQ.NBLKS) GO TO 200 
WRITE(7 ,205) 

205 FORMAT (1X,'DUPLICATED FILENAME OF INSUFFICIENT SPACE ON DISK') 
GO TO 999 

200 WRITE (7,15) 



.. 

READ (7 ,25) IU 
IU= -1*IU 
IF (IU.EQ.O) GO TO 20 
CALL CLOCKW(1,1,IU,0,"170420,"440) 
DO 94 J=1,5000 

94 CONTINUE 
20 CALL RDSKZA(NBLKS,IFCHAN) 

CALL CLOCKW(1,0,1,0,"170420,"440) 
CALL DFCLOS(IFCHAN,1) 
CALL DFOPEN('DP1 ',IFILE,NBLKS,IFCHAN,NAV AIL) 
IMIN=2048 
IMAX -2048 
NMIN=O 
NMAX=O 
ICNT=1 
ffiLKS=8 

310 IF (NBLKS.LE.ffiLKS) IDLKS=NBLKS 
CALL RMBLK(IFCHAN,ICNT,ffiLKS,IDATA) 
CALL DFW AIT(IFCHAN) 
JBLKS=256*ffiLKS 
DO 30 11=1,JBLKS 
IF (IDATA(Il).GT.IMAX) NMAX=O 
IF (IDATA(Il).LT.IMIN) NMIN=O 
IF (IDATA(Il).GT.IMAX) IMAX=IDATA(Il) 
IF (IDATA(Il).LT.IMIN) IMIN=IDATA(Il) 
IF (IDATA(Il).EQ.IMAX) NMAX=NMAX+1 
IF (IDATA(Il).EQ.IMIN) NMIN=NMIN+1 
IF (Il.EQ.JBLKS) GO TO 30 
CALL DAOUTP(2,IDATA(Il)) 
CALL DAOUTP(1,1DATA(I1+1)) 
ISL=ISLEEP(0,0,0,1) 

30 CONTINUE 
ICNT=ICNT +8 
NBLKS=NBLKS-8 
IF (NBLKS.LE.O) GO TO 300 
GO TO 310 

300 WRITE (7,35) IMAX,NMAX 
WRITE (7,45) IMIN,NMIN 
WRITE (7,215) 

215 FORMAT (1X,'SAVE DATAFILE7 (I8)- 0 =NO') 
READ (7,225) ISAVE . 

225 FORMAT (18) 
CALL DFCLOS(IFCHAN ,ISA VE) 

999 CALL EXIT 
15 FOR..\1AT(1X,'NUMBER OF US BETWEEN SAMPLES (16)- 0 FOR EXT TRIG') 
25 FOR..\1AT(I6) 
35 FORMAT(lX,'IMAX= ',I7,3X,'NMAX= ',I7) 
45 FORMAT(lX,'IMIN= ',17,3X,'NMIN= ',17) 
55 FORMAT (lX,'NAME OF DATAFILE (6 CHARACTERS)') 
65 FORMAT {3A2) 
75 FOR..\1AT (17) 

END 
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Program 3. Fractal Dimension Calculation Program. 

This program calculates fractal dimensions from a time series using the 

algorithm discussed in Chapter III. It is written in Fortran-77 and has been 

run on a Sun computer. Prior to execution it must be linked with the graph-

ics subroutine package included as Program 6 or this appendix. 

PROGRAM NEWDIM2 
C THIS PROGRAM CALCULATES THE POINTWISE FRACTAL 
C DIMENSION AVERAGED OVER MULTIPLE POINTS 
C OF DATA TAKEN FROM A DATAFILE 
C THIS PROGRAM WAS WRITTEN BY GLENN HELD * 9/20/84 

DIMENSION CORR(24) 
INTEGER*2 IDATA(500000) 
CHARA.CTER*ll FILENAME,FNAME 
IDIG=O 
DO 120 1=1,24 

120 CORR(I)=O. 
30 WRITE (6,15) 

READ (5,25) !SCALE, N 
WRITE(6,105) 
READ (5,115) muo 
WRITE {6,405) 
READ (6,415) IEMIN,IEMAX,IESTEP 
WRITE(6,"(1X,'FILENAME? (10 CHARACTERS)')") 
READ (5,"(A)") FILENAME 
OPEN (UNIT=2,FILE=FILENAME,STATUS='OLD' ,ACCESS= 'DIRECT' 

x,RECL=2,FORM='UNFORMATTED') 
REWIND 2 
DO 300 1=1,N+IEMAX 

300 READ (2,REC=I) IDATA(I) 
NMA..XX=-5000 
NMINN=5000 
DO 10 1=1,N 
IF (IDATA(I).GT.NMAXX) NMAXX=IDATA(I) 
IF (IDATA(I).LT.NMINN) NMINN=IDATA(I) 

10 CONTINUE 
XSCALE=FLOAT(ISCALE)/FLOAT(NMAXX-NMINN) 
DO 12 1=1,N 

12 IDATA(I)=INT(XSCALE*FLOAT(IDATA(I))) 
FNAME( 1 :7)=FILENAME( 1 :7) 
FNAME(8:11 )='.PL T' 
CALL FRAME{24,10,FNAME) 



CALL SCALE(1.,24.,13.,3.) 
CALL PEN(1) 
DO 370 IDIM=IEMIN,IEMAX,IESTEP 
ICHOICE=1 
DO 100 13=1,ffiUD 

350 ll=IABS(m.AND(ICHOICE))/10000 
ICHOICE=ICHOICE+ 1 
IF (ll.GT.N) GO TO 350 
DO 110 12=1,N 
Rffi=O 
DO 200 IMID=1,1DIM 

200 Rffi=Rffi+(FLOAT(IDATA(Il+IMID-1)-IDATA(I2+IMID-1)))**2 
IF (RffiLT.1.42) Rffi=l.42 
ffi=INT(TLOG(Rffi)+.5) 
IF (ffi.GT.24) GO TO 130 
CORR(ffi)=CORR(ffi)+1. 
GO TO 110 

130 ffiiG=ffiiG+ 1 
UOCONTINUE 
100 CONTINUE 

DO 150 1=24,2,-1 
DO 160 11=1,1-1 

160 CORR(I)=CORR(I)+CORR(Il) 
150 CONTINUE 

RMINN AINT(TLOG(CORR(1))) 
RMAXX=AINT(TLOG( CORR(24)}+ 1) 
DO 180 1=1,24 
CALL PLOT(TLOG(CORR(l)),FLOAT(I)/2) 
CALL PENUP() 

180 CONTINUE 
WRITE(6,45) ffiiG 
WRITE(6,55) RMINN,RMAXX 
DO 360 ICLEAR=1,24 

360 CORR(ICLEAR)=O. 
ffiiG=O 

370 CONTINUE 
15 FORMAT(1X,'ISCALE, N (216)') 
25 FORMAT (216) 
35 FORMAT (1X,I5) 
45 FORMAT(1X,'ffiiG=',I8) . 
55 FORMAT(1X,'MIN=',E10.4,'MAX=',E10.4) 
85 FORMAT(I7) 
105 FORMAT (1X,'NUMBER OF SPHERES (15)') 
115 FORMAT (15) . 
405 FORMAT (1X,'EMBED DIM: MIN,MAX,STEP (315)') 
415 FORMAT (315) 

CLOSE (UNIT=2) 
STOP 
END 
FUNCTION TLOG(X) 
TLOG=ALOG(X)/0.693147 
RETURN 
END 
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Program 4. Correlation Function Calculations of Data Collected 

with a DT3382 A/D Module. 

This program collects data from channels 00 and 01 of a Data Transla-

tion A/D module. The maximum sampling rate is 120 kHz. The correlation 

· function of this data, as defined in Chapter IV, is then calculated. This pro-

gram is written in Fortran IV and runs on an LSI-11/23 computer. It must 

be linked with Data Translation's CPLIB and ADAC's ADLIB subroutine 

packages prior to execution. 

C TinS PROGRAM TAKES DATA FROM TWO CHANNELS 
C OF A DT3382 A/D MODULE AND DETERMINES THE 
C CORRELATION OF THESE TWO CHANNELS USING A VARIABLE NUMBER 
C OF POINTS. . 
C PRIOR TO EACH CALCULATION OF THE CORRELATION FUNCTION THE TWO 

- C SETS OF DATA ARE EACH ADJUSTED SO THAT THEY EACH HAVE A MEAN OF 
C ZERO AND A DIFFERENCE OF 4096 BETWEEN THEm MINIMUM AND 
C MAXIMUM VALUES 

DIMENSION ICHAN(2),IDATA(2048) 
VffiTUAL DATA(2i576) 
REAL*8 DATA 
REAL*4 SIZE,RNUM 
DOUBLE PRECISION CORR,CMEANl,CMEAN2,Dl,D2,RMEANl,RMEAN2 

X,SC,ALEl ,SCALE2 
C TAKE THE DATA 

SIZE=98044. 
ICHAN(l)=O 
ICHAN(2)=1 
IGAIN= -1 
MODE= 'ES' 

C MODE='ES' SO BOTH CHANNELS SAMPLED AFTER EACH TRIGGER PULSE 
CALL DFCHZA(2,1CHAN ,I GAIN ,MODE) 
WRITE(7,25) 
READ (5,35) IU 
IU= -1 *IU 
IF (IU.EQ.O) GO TO 20 
CALL CLOCKW(l,l,IU,O,"l70420,"440) 
DO 30 J=l,5000 

30 CONTINUE 

.. 



20 CALL RSXVZA(SIZE,DATA) 
CALL WAITZA 
CALL CLOSZA 
CALL CLOCKW(1,0,1,0,,"170420,"440) 

C CALCULATE THE CORRELATION FUNCTION 
40 WRITE(7,45) 

READ (5,55) RNUM 
CORR=O. 
CMEAN1=0. 
CMEAN2=0. 
IF (RNUM.EQ.O.) GO TO 999 
RNUM=2.*RNUM 
CALL RSCALE 

1(DATA,IDATA,1.,RNUM,IMIN1,IMAX1,IMIN2,IMAX2,RMEAN1,RMEAN2) 
WRITE(6,75) IMIN1,IMAX1,IMIN2,1MAX2 
SCALE1=4096.I(DBLE(FLOAT(IMAX1-IMIN1))) 
SCALE2=4096.I(DBLE(FLOAT(IMAX2-IMIN2))) 
IEND=INT((RNUM+2047. )12048.) 
DO 50 1=1,IEND 
RINDEX=FLOAT(I-1)*2048.+1. 
IGET=2048 
IF (I.EQ.IEND) IGET=INT(RNUM-2048.*FLOAT(I-1)) 
CALL GETMXV(IGET.,RINDEX,DATA,IDATA) 
DO 50 11=1,IGET,2 
D1=(DBLE(FLOAT(IDATA{Il))}-RMEAN1)*SCALE1 
D2=(DBLE(FLOAT(IDATA{Il+1)))-RMEAN2)*SCALE2 
CORR=CORR+(D1 *D2) 
CMEAN1=CMEAN1+D1 

50 CMEAN2=CMEAN2+D2 
CORR=DSQRT((2.IRNUM)*DABS(CORR)) 
CMEAN1=(2.IRNUM)*CMEAN1 
CMEAN2=(2.IRNUM)*CMEAN2 
WRITE(6,65) RNUMI2.,CORR,CMEAN1,CMEAN2 
GO TO 40 

999 CALL EXIT 
25 FORMAT (1X,'NUMBER OF US BETWEEN SAMPLES (16)- 0 FOR EXT TRIG') 
35 FORMAT (16) 
45 FORMAT (1X,'NUMBER OF PAIRS TO BE USED IN CALCULATION (F12.0)') 
55 FORMAT (F12.0) 
65 FORMAT (1X,'RNUM = ',F12.0 I lX,'CORR = ',E15.6I 

llX, 'CMEAN1 = ',E15.6 I 1X,'CMEAN2 = ',E15.6) 
75 FORMAT (lX,'IMINl = ',18,' IMAX1 = ',181 

11X,'IMIN2 = ',18,' IMAX2 = ',18) 
END 

llQ 

C THIS SUBROUTINE DETERMINES THE MEANS, MINIMUM AND MAXIMUM VALUES 
C OF TWO INTERLACED STREAMS OF DATA 
C CALL RSCALE(SDATA,ISDATA,Ril,RI2,IMIN1,IMA.Xl,IMIN2,IMA.X2,RMEAN1,RMEAN2) 
C WHERE SDATA IS A Vill.TUAL ARRAY CONTAINING DATA SET #1 IN THE ODD 
C INDICES AND DATA SET #2 IN THE EVEN INDICES 
C ISDATA IS TRANSFERED ONLY TO SAVE SPACE (IE, AN IDENTICAL ARRAY 
C EXISTS IN THE MAIN PROGRAM) 



C Rll IS THE MINIMUM ENTRY IN SDATA TO BE CONSIDERED 
C Rl2 IS THE MAXIMUM ENTRY IN SDATA TO BE CONSIDERED 
C NOTE THAT Rll-RI2+1 REFERS TO THE TOTAL NUMBER OF POINTS 
C CONSIDERED AND NOT THE TOTAL NUMBER OF PAIRS OF POINTS 
C ACCORDINGLY Rll MUST BE ODD AND Rl2 MUST BE EVEN 
C IMIN1 AND IMIN2 ARE THE MINIMUM VALUES OF THE TWO DATA SETS 
C BETWEEN Rl1 AND Rl2. IMAX1 AND IMAX2 ARE THE MAXIMUM VALUES 
C RMEAN1 AND RMEAN2 ARE THE MEAN VALUES OF THE TWO DATA SETS 

SUBROUTINE RSCALE 
- 1(SDATA,ISDATA,Ril,RI2,IMIN1,1MAX1,IMIN2,1MAX2,RMEAN1,RMEAN2) 

VIRTUAL SDATA{24576) 
REAL*8SDATA 
Dll\tlENSION ISDATA{2048) 
REAL*4 Rll,RI2 
INTEGER IMAXl,IMAX2,IMIN1,IMIN2 
DOUBLE PRECISION RMEAN1,RMEAN2 
REAL*4 RNUM . 
RNUM=RI2-Ril +1. 
RMEAN1=0. 
RMEAN2=0. 
IMIN1=4096 
IMIN2=4096 
IMA.Xl=-4096 
IMAX2=-4096 
IEND=INT((RNUM+2047. )/2048.) 
DO 10 1=1,IEND 
RINDEX=FLOAT(I-1)*2048. + Rll 
IGET=2048 
IF (I.EQ.IEND) IGET=INT(RI2-2048.*FLOAT(I-1)) 
CALL GETMXV(IGET,RINDEX,SDATA,ISDATA) 
DO 10 ll=l,IGET,2 
IF (ISDATA(Il).GT.IMAX1) IMAXl=ISDATA(Il) 
IF {ISDATA(Il).LT.IMINl) IMIN1=1SDATA(Il) 
IF .(ISDATA(Il+l).GT.IMAX2) IMAX2=1SDATA(I1+1) 
IF (ISDATA(Il+l).LT.IMIN2) IMIN2=1SDATA(I1+1) 
RMEAN1=RMEAN1+DBLE(FLOAT{ISDATA(Il))) 
RMEAN2=RMEAN2+DBLE(FLOAT{ISDATA(Il+l))) 

10 CONTINUE 
RMEAN1=(2./DBLE(RNUM))*RMEAN1 
RMEAN2={2./DBLE(RNUM))*RMEAN2 
RETURN 
END 
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Program 5. Correlation Function Calculations of Data Collected 

with a Tek 468 Oscilloseope. 

This program collects data from channels 1 and 2 of a Tektronix 468 

digital storage oscilloscope. The maximum sampling rate is 12.5 1\11-Iz. The 

correlation function of this data, as defined in Chapter N, is then calculated. 

This program is written in Fortran Nand runs on an LSI-11/23 computer. It 

must be linked with Data Translation's CPLffi and National Instrument's 

GPffi subroutine packages prior to execution. 

C TillS PROGRAM TAKES DATA FROM TWO CHANNELS AND DETERMINES THE 
C CORRELATION OF THESE TWO CHANNELS USING A VARIABLE NUMBER 
C OF POINTS. DATA IS TAKEN WITH TEK 468 STORAGE OSCILLOSCOPE 
C CONNECTED 'J.'O THE LSI-11 VIA IEEE-488 CONNECTOR 
C WITH ALL VARIABLES REAL (VS. DOUBLE PRECISION) THE PROGRAM WILL 
C RUN OK FOR UP TO APPROX. 200 BLOCKS OF 256 PAffiS OF DATA POINTS 
C PRIOR TO EACH CALCULATION OF THE CORRELATION FUNCTION THE TWO 
C SETS OF DATA ARE EACH ADJUSTED SO THAT THEY EACH HAVE A MEAN OF 
C ZERO AND A DIFFERENCE OF 256 BETWEEN THEm MINIMUM AND 
C MAXIMUM VALUES 

DIMENSION IOUT1(256), IOUT2(256) 
C TAKE THE DATA 

WRITE(7,5) 
READ (7,15) JNUM 
CALL DFOPEN('DD','GHPRl',JNUM,ICHANl,NAVAIL) 
IF ( JNUM.NE.NA VAIL) GO TO 999 
CALL DFOPEN('DD', 'GHPR2' ,JNUM,ICHAN2,NA VAIL) 
IF ( JNUM.NE.NA VAIL) GO TO 999 
DO 10 l=l,JNUM 
CALL GDATA(IOUTl,IOUT2) 
CALL WBLK(ICHANI,I,IOUTI) 
CALL DFW AIT(ICHANl) 
CALL WBLK(ICHAN2,I,IOUT2) 
CALL DFW AIT(ICHAN2) 

10 CONTINUE 
C CALCULATE THE CORRELATION FUNCTION 

40 WRITE(7,45) 
READ (5,55) NMIN,NMAX 
CORR=O. 



CMEAN1=0. 
CMEAN2=0. 
IF (NMAX.EQ.O) GO TO 999 
CALL RSCALE 

1(NMIN,NMAX,IMIN1,IMAX1,IMIN2,IMAX2,RMEAN1,RMEAN2,ICHAN1,ICHAN2) 
WRITE(6,75) IMIN1,IMAX1,IMIN2,IMAX2 
SCALE1=256./(FLOAT(IMAX1-IMIN1 )) 
SCALE2=256./(FLOAT(IMAX2-IMIN2)) 
DO 50 Il=NMIN,NMAX 
CALL RBLK(ICHAN1,Il,IOUT1) 
CALL DFW AIT(ICHAN1) 
CALL RBLK(ICHAN2,Il,IOUT2) 
CALL DFW AIT(ICHAN2) 
DO 50 12=1,256 
D1=(FLOAT(IOUT1(12))-RMEAN1)*SCALE1 
D2=(FLOAT(IOUT2(12))-RMEAN2)*SCALE2 
CORR=CORR+(D1 *D2) 
CMEAN1=CMEAN1+D1 

50 CMEAN2=CMEAN2+D2 
RNUM=FLOAT(NMAX-NMIN+ 1 )*256. 
CORR=SQRT(( LjRNUM)* ABS( CORR)) 
CMEAN1=(1./RNUM)*CMEAN1 
CMEAN2=(1./RNUM)*CMEAN2 
WRITE(6,65) RNUM,CORR,CMEAN1,CMEAN2 
GO TO 40 

999 CALL DFCLOS(ICHAN1,0) 
CALL DFCLOS(ICHAN2,0) 
CALL EXIT 

5 FORMAT (1X,'NuMBER OF BLOCKS OF DATA (256 PAIRS/BLOCK (16)') 
15 FORMAT (16) 
45 FORMAT (1X,'NMIN,NMAX {216)') 
55 FORMAT (216) 
65 FORMAT (1X,'RNUM = ',F12.0 I 1X,'CORR = ',E15.6/ 

11X, 'CMEAN1 = ',E15.6 I 1X,'CMEAN2 = ',E15.6) 
75 FORMAT (1X,'IMIN1 = ',18,' IMAXl = ',18/ 

11X,'IMIN2 = ',18,' IMAX2 = ',18) 
END 
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C TillS SUBROUTINE DETERMINES THE MEANS, MINIMUM AND MAXIMUM VALUES 
C CALL RSCALE(ISDATA,Il ,12,IMIN1,IMAX1,IMIN2,IMA..X2,RMEAN1 ,RMEAN2) 
C WHERE ISDATA IS A VIRTUAL (NX2) ARRAY CONTAINING DATA SET #1 
C IN ROW #1 AND DATA SET #2 IN ROW #2 
C 11 IS THE MINIMUM ENTRY IN ISDATA TO BE CONSIDERED 
C I2 IS THE MA..XIMUM ENTRY IN ISDATA TO BE CONSIDERED 
C IMIN1 AND IMIN2 ARE THE MINIMUM VALUES OF THE TWO DATA SETS 
C BETWEEN Rl1 AND Rl2. IMAX1 AND 1MAX2 ARE THE MA...'GMUM VALUES 
C RMEAN1 AND R!\1EAN2 ARE THE MEAN VALUES OF THE TWO DATA SETS 

SUBROUTINE RSCALE 
1(11 ,12,IMIN 1 ,IMA..X1 ,IMIN2,1MAX2,RMEAN 1 ,RMEAN2,ICHAN 1 ,ICHAN2) 
DIMENSION IDATA1(256),IDATA2(256) 
RNUM=FLOAT(I2-11+1)*256. 
RMEAN1=0. 
RMEAN2=0. 



... 

IMIN1=4096 
IMIN2=4096 
IMAXl=-4096 
IMAX2=-4096 
DO 10 1=11,12 
CALL RBLK(ICHANl,I,IDATAl) 
CALL DFWAIT(ICHANl) 
CALL RBLK(ICHAN2,I,IDATA2) 
CALL DFW AIT(ICHAN2) 
DO 10 IT=1,256 
IF (IDATAl(IT).GT.IMAXl) IMAXl=IDATAl(IT) 
IF (IDATAl(IT).LT.IMINl) IMINl=IDATAl(IT) 
IF (IDATA2(IT).GT.IMAX2) IMAX2=1DATA2(IT) 
IF (IDATA2(IT).LT.IMIN2) IMIN2=1DATA2(IT) 
RMEANl=RMEANl+FLOAT(IDATAl(IT)) 
RMEAN2=RMEAN2+FLOAT(IDATA2(IT)) 

10 CONTINUE 
RMEANl=RMEANl/RNUM 
RMEAN2=RMEAN2/RNUM 
RETURN 
END 

SUBROUTINE GDATA(IOUTl,IOUT2) 
DIMENSION IOUT1(256),10UT2(256) 
DIMENSION IOUT(256,2) 
LOGICAL*! INPUT(2048) 
J=GPIB(12,0) 
J=IDUP(1,2,INPUT,2000) 
Tl=SECNDS(O.) 

400 DEL TA=SECNDS(Tl) 
IF (DELTA.LT.l.) GO TO 400 
IND=1 
DO 210 IT=l,J 
IF (INPUT(IT).NE.'%') GO TO 210 
DO 230 IT1=3,258 
IO=INPUT(IT1 +IT) 
IF (IO.LT.O) 10=256+IO 
IOUT(IT1-2,1ND)=IO 

230 CONTINUE 
IND=IND+1 
IT=IT+259 

210 CONTINUE 
J=GPID(12,10) 
DO 250 1=1,256 
IOUT1(I)=IOUT(I,1) 
IOUT2(1)=10UT(l,2) 

250 CONTINUE 
RETURN 
END 
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Program 6. Graphics Subroutine Package 

This is a collection of Fortran callable subroutines which convert simple 

scaling and plotting commands into HP Graphics Language (HPGL). These 

subroutines are called by Program 3 of this appendix (which calculates fractal 

dimensions). These subroutines are written in C and have been run on a Sun 

computer. 

#include <stdio.h> 
/* this is a collection of fortran callable graphics routines for use with * / 
/* HP 7 475A plotter using HPGL * / 
/*these routines are written in C* / 
/* call these routines using the fortran "call" command*/ 
/* these routines were written by Glenn Held 4/g/84 * / 

/* frame (x,y,fname) * / 
/* int x,y; * / 
/* draw a frame with x tickmarks on the x-axis & y tickmarks on they-axis * / 
/* char fname[50] * / 
/* fname is the name of the file that all HPGL commands are stored in * / 
/* until another frame command is issued * / 
/* this command also issues an xonfxoff protocol command to the plotter*/ 

/*scale (xmin,xmax,ymin,ymax) * / 
/* float xmin,xmax,ymin,ymax; * / 
/* sets the minimum and maximum values for each axis of the graph * / 
/* this subroutine must be called prior to calling the plot subroutine * / 

/* plot(x,y) * / 
/ * float x,y; * / 
/* moves the pen over to point (x,y) and lowers the pen (if it isn't * / 
/* already lowered) * / 
/* the x & y scales must be set by the scale subroutine prior to calling plot *I 

I* pen up() *I 
I* raise the plotter pen *I 



• 

... 

>J I 

I* pen( number) *I 
I* int number; *I 
I* selects the pen in bin "number" (for number = 1 to 6) *I 
I* number=O replaces the pen in use *I 

static char filename[50); 

framejpx,py,tempname,length) 
int *px, *py,length; 
char tempname0; 

{ 

} 

double xt,yt,xi,yi; 
int x,y; 
FILE *fp, *fopen(); 
x= *px; 
y= *py; 
strcpy( filename,tempname ); 
fp=fopen( filename," a"); 
if (fp === NULL) { t · 

printf ("can't open fileO); 
return ( -1 ); 

~} 
fprintf(fp," .181;;17:0N;19:0); 
fprintf(fp, "in; ip 210,596,10290,7796;0); 
fprintf(fp,"sc 0,100,0,100; sp 1; pu; pa 0,0;0); 
fprintf(fp,"pd; pa 0,100; pa 100,100; pa 100,0; pa 0,0; pu;O); 
fprintf (fp,"tl 1;0); 
xi= 100.I(double) x; 
yi = 100.1( double) y; 
for (xt=xi; xt<100.; xt +=xi) 

fprintf(fp,"pa %16.4f, 0; xt;O,xt); 
for (yt=yi; yt< 100.; yt += yi) 

fprintf(fp,"pa 0, %16.4f; yt;O,yt); 
fclose(fp ); 
return(O); 

scale jpxmin,pxmax,pymin, pymax) 
float *pxmin, *pxmax, *pymin, *pymax; 

{ 
float xmin,xmax,ymin,ymax; 
FILE *fp, *fopen(); 
xmin= *pxmin; 
xmax= * pxmax; 

125 



} 

ymin= *pymin; 
ymax= *pymax; 
fp=fopen( filename," a"); 
if (fp == NULL) { 

printf ("can't open file 0); 
return (-1); 
} 

fprintf(fp,"sc %12.0f,%12.0f,%12.0f,%12.0f;O,xmin,xmax,ymin,ymax); 
fclose(fp ); 

penjpnum) 
int *pnum; 

{ 

} 

FILE *fp, *fopen(); 
int num; 
num= *pnum; 
fp=fopen (filename," a"); 
if (fp == NULL) { 

printf ("can't open file 0); 
return ( -1 ); 
} 

fprintf(fp,"sp %d;O,num); 
fclose(fp ); 

penupj) { 

} 

FILE *fp, *fopen(); 
fp=fopen (filename," a"); 
if (fp == NULL) { 

printf ("can't open file 0); 
return (-1); 
} 

fprintf (fp," pu;O); 
fclose(fp ); 

plotjpx,py) 
float *px, *py; 

{ 
FILE *fp, *fopen(); 
float x,y; 
x= *px; 
Y= *py; 
fp=fopen (filename," a"); 
if (fp == NULL) { 

printf ("can't open file 0); 
return (-1); 
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} 

} 
fprintf(fp,"pa %16.4f,%16.4f; pd;O,x,y); 
fclose(fp ); 
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