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Efficiently improving the performance of noisy quantum
computers
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Hammam Qassim1, Alexis Morvan3,4, David I. Santiago3,4, Irfan Siddiqi3,4,5, and
Joel J. Wallman1,2

1Keysight Technologies Canada, Kanata, ON K2K 2W5, Canada
2Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
3Quantum Nanoelectronics Laboratory, Dept. of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
4Applied Math and Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
5Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA

Using near-term quantum computers to
achieve a quantum advantage requires
efficient strategies to improve the per-
formance of the noisy quantum devices
presently available. We develop and exper-
imentally validate two efficient error miti-
gation protocols named “Noiseless Output
Extrapolation” and “Pauli Error Cancella-
tion” that can drastically enhance the per-
formance of quantum circuits composed of
noisy cycles of gates. By combining pop-
ular mitigation strategies such as proba-
bilistic error cancellation and noise am-
plification with efficient noise reconstruc-
tion methods, our protocols can mitigate
a wide range of noise processes that do
not satisfy the assumptions underlying ex-
isting mitigation protocols, including non-
local and gate-dependent processes. We
test our protocols on a four-qubit su-
perconducting processor at the Advanced
Quantum Testbed. We observe significant
improvements in the performance of both
structured and random circuits, with up
to 86% improvement in variation distance
over the unmitigated outputs. Our experi-
ments demonstrate the effectiveness of our
protocols, as well as their practicality for
current hardware platforms.
S. Ferracin and A. Hashim contributed equally.
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1 Introduction
The last few years have seen unprecedented advances in
quantum technologies, particularly in the development
of Noisy Intermediate-Scale Quantum (NISQ) devices.
These devices can already outperform their classical coun-
terparts in specific tasks [2], but suffer from significant
noise that corrupts their outputs. As fault tolerance is
not expected to become available in the immediate future
[41], understanding how to optimize the performance of
NISQ devices is of paramount importance.

In recent years, much effort has been devoted to finding
alternatives to fault tolerance that are feasible in the near
term. This paved the way for the development of a rich
set of error mitigation (EM) protocols [3, 13, 14, 20, 24–
26, 28–31, 43, 46]. Unlike fault-tolerant protocols, EM
protocols do not attempt to correct errors that occur in
noisy circuits. On the contrary, by actively amplifying
noise in a controlled way and post-processing the outputs,
they eventually extrapolate correct outputs from the noisy
ones. EM protocols require a high number of samples and
are generally inefficient in the circuit size [45]. On the
other hand, they typically have little overhead in qubits
and gates, which makes them practical for today’s devices.

Despite the promising results obtained in a large num-
ber of experimental demonstrations [3, 11, 13, 24, 26, 28,
42, 43, 51], performing EM on large circuits remains a
challenging task. Some of the leading proposals [13, 46] re-
quire reconstructing the noise afflicting multi-qubit oper-
ations using Gate-Set Tomography (GST) [5, 6, 21]. Since
GST is inefficient in the number of qubits, the noise re-
construction is typically performed by analysing individ-
ual one- and two-qubit gates while ignoring the rest of the
system. This approach severely limits the effectiveness of
EM for large circuits, where noise processes involving more
than two qubits (such as crosstalk) typically play a major
role [22, 23, 35]. For this reason, so far the EM protocols
that rely on GST have been demonstrated on circuits con-
taining up to two qubits [42, 51], where this limitation is
irrelevant. Alternative protocols [3, 8, 20, 24, 26, 30, 46]
that do not rely on noise reconstruction have been applied
to larger circuits [28], but their effectiveness has been for-
mally proven only for specific noise models, e.g. for depo-
larizing noise [3, 20, 30]. Overall, further work is required
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PEC NOX

R.time (1 − nε)−2m

σ2
m3

σ2

Bias δPEC + δrec, with δNOX + δrec, with
δPEC = O(mn2ε2) δNOX = O(m2n2ε2)

Table 1 Runtime and bias for our EM protocols,
calculated as functions of the desired standard
deviation σ of the results, the circuit depth m, and the
error rate of each cycle. (For simplicity, in this table we
assume that every cycle has an error rate equal to nε,
where n is the number of qubits in the input circuit
and ε is a constant; see theorems 1 and 2 in section 3
for a generalisation.) The quantity δrec depends on the
accuracy of the noise reconstruction, with δrec = 0 if
the noise is known exactly (cfr. lemmas 1 and 2). In
comparison, an unmitigated implementation of the
input circuit hes runtime 1/σ2 and bias O(mnε).

before EM protocols can become of use for circuits of in-
teresting sizes.

Recently, a number of protocols have been developed
that can characterize multi-qubit noise processes more ef-
ficiently than GST [18, 19, 22], under a set of realistic
(and verifiable) assumptions of the noise. Among these
is “Cycle Error Reconstruction” (CER), which can accu-
rately reconstruct Pauli channels even when they act on
more than two qubits [23]. Leveraging CER, in this paper
we develop a novel approach to EM that targets “cycles”
of gates (i.e., groups of gates applied in parallel to disjoint
subsets of qubits [48]) rather than individual gates. This
approach enables us to design two new EM protocols to ef-
ficiently mitigate noise that involves an arbitrary number
of qubits—potentially up to an entire register. By tar-
geting the noise afflicting full cycles of gates rather than
individual gates, our protocols are fully robust to complex
error processes (such as cross-talk, correlated errors, and
non-depolarizing noise) that are known to affect present
devices [22, 23, 35], and that may compromise the effec-
tiveness of existing EM protocols.

1.1 Our protocols in summary
Our protocols (which we name “Pauli Error Cancellation”,
or PEC, and “Noiseless Output Extrapolation”, or NOX)
take as input a quantum circuit and an operator O, and
return an estimator of the expectation value of O at the
end of a noiseless implementation of the input circuit.
To compute this estimator they undertake two different
approaches. In particular, PEC is built around quasi-
probabilistic error cancellation, one of the most popular
techniques in EM [13, 26, 31, 46], while NOX requires
amplifying the noise afflicting individual cycles. Despite
this difference, they require performing the same funda-
mental tasks: characterizing the noise in the input circuit
with CER, implementing a set of noisy circuits, and finally
post-processing their results.

The estimators returned by NOX and PEC have a resid-
ual bias that depends on the noise levels of the input cir-

cuit, as well as on the accuracy of the noise reconstruction
(Table 1). Crucially, if backed by an accurate noise recon-
struction, this bias is quadratic in the error rate of the
input (unmitigated) circuit. This is a significant improve-
ment over the unmitigated estimators, whose biases are
linear in the error rates.

While being able to mitigate a broader class of noise
processes than other existing EM protocols, NOX and
PEC require a similar runtime as the available protocols.
In particular, if the input circuit is afflicted by moder-
ate noise (i.e. in the notation of Table 1, if ε < 1/mn),
they remain efficient, meaning that their runtimes scale
polynomially with the desired statistical accuracy of the
results.

1.2 Our experiments in summary
We demonstrate our EM protocols on four fixed-
frequency superconducting transmon qubits (labeled Q4,
Q5, Q6, and Q7) on an eight qubit quantum processor
(AQT@LBNL Trailblazer8-v5.c2; see Fig. 1a) at the Ad-
vanced Quantum Testbed at Lawrence Berkeley National
Lab [1]. Single-qubit gates are implemented using reso-
nant Rabi-driven Xπ/2 gates and virtual phase shifts be-
tween pulses [36]. The native two-qubit gate on the device
is a controlled-Z (cZ) implemented via off-resonant drives
between neighboring qubits [38]. We apply PEC and NOX
to circuits of different size and nature. We implement each
circuit multiple times, with and without EM, and calcu-
late the average variation distance (Eq. 17) between ideal
and experimental probability distributions of the outputs.
We observe significant improvements in variation distance
under EM for every circuit (Fig. 1b).

The cZ gates are the noisiest components in our
circuits. However, the CER data show that when a cZ
gate is performed in parallel with idling spectator qubits,
the idling qubits experience higher levels of noise than the
qubits being entangled (see Appendix). In this scenario,
performing mitigation at the level of individual gates
(e.g. with the gate-centred EM protocols that rely on
GST [13, 46]) would not lead to significant improvements
in the outputs, and could in fact amplify the noise acting
on the idling qubits. On the contrary, by targeting cycles
rather than gates, NOX and PEC are able to provide the
visible improvements reported in Fig 1b.

This paper is organized as follows. In section 2 we
define our notation, list the assumptions made throughout
the paper and provide a brief overview of CER. In section 3
we describe our protocols and state their main properties.
In section 4 we describe our experiments.

2 Background
2.1 Notation and assumptions
We denote unitary gates with capital Latin letters and
Completely Positive Trace-Preserving (CPTP) maps with
calligraphic letters. We write U = {Ul}L

l=1 to indicate
that U has Kraus operators Ul. We use ◦ to indicate the
composition of maps, e.g. ◦m

j=1Uj = Um · · ·U1.

To prove our results we make the following two assump-
tions:

Accepted in Quantum 2024-06-12, click title to verify. Published under CC-BY 4.0. 2



(a)

n = 2 n = 3 n = 4 m = 4 m = 6 m = 8 κ = 0.2 κ = 0.4 κ = 0.6 m = 0.8

20

40

60

80

100

A
ve

ra
ge

im
p

ro
ve

m
en

t
in

va
ri

at
io

n
d

is
ta

n
ce

(%
)

W-state circuits Random circuits Quantum Phase Estimation

NOX vs Unmitigated

PEC vs Unmitigated

(b)

Figure 1: (a) Micrograph of the superconducting quantum processor at the Advanced Quantum Testbed (reprinted
with permission from Ref. [23]). In this work, we used the four transmon qubits (green) with independent drive lines
(blue) out of a total of eight qubits arranged in a ring geometry—the other four qubits are inactive on the device.
The qubits are coupled to nearest neighbors via coupling resonators (CR, purple), and are dispersively measured via
independent readout resonators (red) coupled to a multiplexed readout bus (MRB, cyan). (b) Average improvements
in variation distance obtained in successful implementations of NOX and PEC protocols. In our experiments we
apply PEC and NOX to four-qubit random circuits of varying depth m as well as to structured circuits, such as
circuits to prepare W states with n = 2, 3, 4 qubits (Eq. 15) and to estimate a parameter κ through the quantum
phase estimation algorithm. We compute the variation distance (VD, Eq. 17) between the ideal and experimental
probability distributions of the outputs, and we quantify the improvement in VD under EM as 1−DEM/Dunm, where
DEM (Dunm) is the VD for the mitigated (unmitigated) outputs. We observe drastic improvements in VD for both
NOX and PEC, ranging from 32% to as high as 86%.

A1. We assume that the noise is Markovian and time-
stationary, i.e., that a noisy implementation of an
operation U can be written as DUU , where DU is a
(potentially operation-dependent) CPTP map that is
fixed in time.

A2. We assume that the cycles of one-qubit gates suffer
gate-independent noise, i.e., DU = D for all the cycles
of one-qubit gates U .

These are standard assumptions in the literature on noise
characterisation and mitigation [5, 5, 6, 6, 9, 15–17, 21,
21, 22, 22, 34, 37, 37, 48, 49, 49] and can be relaxed at the
cost of more complex notation [48].

In addition to A1 and A2, we assume that every noise
process DU in our circuits is a Pauli channel, i.e., that it
maps an n-qubit state ρ into

DU (ρ) =
4n−1∑
k=0

ϵ
(U)
k Pk(ρ) . (1)

Here, the “Pauli errors” Pk ∈ {I ,X ,Y ,Z}⊗n are n-qubit

Pauli operators and the “Pauli error rates” ϵ
(U)
k are prob-

abilities (we set P0 = I⊗n for convenience). Although
not every noise process is a Pauli channel, under the
assumptions A1 and A2 every process can be efficiently
transformed into Pauli channels via Randomized Compil-
ing [23, 48], available on True-Q [4].

2.2 Cycle Error Reconstruction
CER (available on the software True-Q [4]) is a protocol
to efficiently characterise noisy cycles with high accuracy.
In more detail, let DHH be a noisy implementation of an
n-qubit Clifford cycle H with Pauli noise DH. In its sim-
plest form, CER takes as input the cycle H and a positive
integer K ≤ n. After characterizing the cycle’s noise via

Cycle Benchmarking [15] and post-processing the results
of these benchmarking circuits [23], it estimates the Pauli
error rates associated to all the errors of weight K—that
is, to all the errors that affect up to K qubits simultane-
ously.

The accuracy of these estimates depends on the nature
of the state-preparation and measurement (SPAM) errors
afflicting the device in use. If no assumption is made on
the SPAM errors, the estimates are averages over small
subsets of error rates that typically contain up to two el-
ements. On the contrary, if state-preparation errors are
negligible compared to measurement errors or vice-versa
(which is the case for many of today’s platforms [17, 32]
and is routinely assumed in related works [7, 18, 33]), CER
can estimate all the error rates individually.

Note that the total number of weight-K errors grows
as nK , hence CER is not efficient in K. However, at fixed
K, CER scales polynomially in n. This means that CER
can efficiently perform an accurate characterisation of the
noisy cycle of interest, provided that low-weight errors
encompass the majority of the probability distribution.
This is often the case on state-of-the-art devices, where
high-weight errors (K ≥ 3) occur with negligible proba-
bility—as an example, see the CER data in Fig. 10 or the
CER data reported in Ref. [23].

3 Our EM protocols
In this section we describe our EM protocols and their
overheads and biases. Without loss of generality, we con-
sider input circuits that alternate cycles of one-qubit gates
and cycles of Clifford two-qubit gates, implementing op-
erations of the form

C = Em+1HmEm · · · E2H1E1 = Em+1
(

◦m
j=1 HjEj

)
. (2)
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Here, Ej (respectively Hj) is the operation implemented
by the jth cycle of one-qubit gates (respectively by the
jth cycle of two-qubit gates). Under the assumptions A1
and A2 (section 2.1), a noisy implementation of the input
circuit performs the map

C̃ = Em+1
(

◦m
j=1 DHjHjEj

)
, (3)

where we have recompiled the gate-independent noise af-
flicting the cycles of one-qubit gates into that afflicting the
cycles of two-qubit gates and obtained the Pauli channels
DHj via Randomized Compiling. Motivated by the above
equation, for convenience we will refer to the cycles of one-
qubit gates as “noiseless under compilation” (or simply as
“noiseless”) and to all the other cycles as “noisy”.

3.1 Pauli Error Cancellation
We begin by explaining the main ideas behind quasi-
probabilistic error cancellation, one of the primary ingredi-
ents employed by our PEC protocol. Quasi-probabilistic
error cancellation is a strategy to compute an unbiased
estimator by sampling from a distribution of biased es-
timators [31, 46]. Formally, let U be a desired, noise-

less operation, and let {Ũl}L
l=1 be a set of noisy opera-

tions that can be implemented experimentally. The task
of quasi-probabilistic error cancellation is to calculate a
set of probabilities ql, a set of signs sl ∈ {−1,+1} and
a number Ctot > 0 (called the “cost”) such that for any
state ρin and operator O,

Ctot

L∑
l=1

slqlTr
[
OŨl(ρin)

]
= Tr

[
OU(ρin)

]
+ δ , (4)

where δ ≈ 0 represents a residual bias and captures the
effectiveness of the EM protocol. All the EM protocols
based on quasi-probabilistic error cancellation guarantee

a negligible bias δ ≈ 0, provided that the noisy maps Ũl

can be accurately characterised.
We can now present our PEC protocol, which is for-

mally described in section I of the Supplementary Mate-
rial. PEC takes as input the circuit C (Eq. 2), the Pauli

error rates {ϵ(Hj )
k } of all the noisy cycles Hj in C (which

are computed in advance with CER), an n-qubit state ρin,
an operator O such that the spectral norm ||O||∞ ∼ 1,
and a number σ ∈ (0, 1) representing the desired standard
deviation of the results. It uses quasi-probabilistic error
cancellation to suppress the noise afflicting the noisy cy-
cles Hj , and eventually it returns an estimator ÊPEC(O)
of Tr

[
OC

(
ρin

)]
. To calculate ÊPEC(O), PEC requires run-

ning N = (Ctot/σ)2 circuits in total, with cost given by

Ctot =
m∏

j=1

1(
ϵ

(Hj )
0

)2 −
∑4n

k=1

(
ϵ

(Hj )
k

)2 . (5)

Each of these circuits is obtained by appending randomly
chosen Pauli gates to the noiseless cycles. Specifically,
every circuit in PEC implements an operation of the type

C(PEC)(P1, . . . ,Pm) = Em+1
(

◦m
j=1 PjHjEj

)
, (6)

where Pj ∈ {I ,X ,Y ,Z}⊗n is chosen at random with

probability ϵ
(Hj )
kj

.Together with the N circuits, PEC also

initialises a list of signs s1, . . . , sN , where sk = 1 if circuit

k contains an even number of random Pauli cycles Pj that
are different from the identity and sk = −1 otherwise.

After initializing circuits and signs, PEC applies Ran-
domized Compiling to every circuit, runs the circuits and
stores the results r1, . . . , rN . Finally, it computes the es-
timator ÊPEC(O) as

ÊPEC(O) = Ctot

N∑
k=1

skrk

N
. (7)

The following theorem states the standard deviation and
bias of ÊPEC(O), under the simplifying assumption that
the Pauli error rates of every noisy cycle are known ex-
actly:

Theorem 1. (Proof in section I of Supplementary Mate-
rial). Let the Pauli error rates of every noisy cycle Hj be
known exactly. Under the assumptions A1 and A2 (section
2.1), the number ÊPEC(O) returned by our PEC protocol
is an estimator of E(O) with standard deviation O(σ) and
bias

δPEC = O

(
Ctot

m∑
j=1

(1 − ϵ
(Hj )
0 )2

)
. (8)

Assuming perfect knowledge of the Pauli error rates
is unrealistic for two reasons (more details in section 2):
Firstly, estimating all the 4n error rates of an n-qubit
cycle is impractical even for few-qubit cycles, so we can
only learn a few of them (e.g. the largest ones). Secondly,
the estimates returned by CER are subject to statistical
fluctuations. To relax this assumption, we show that our
PEC protocol is robust to inaccuracies in the estimates
of the Pauli error rates, provided that they are suitably
small. Formally:

Lemma 1. (Proof in section III of Supplementary Mate-
rial). Let ϵ(Hj )

l be the Pauli error rates of the noisy cycle
Hj and let ϵ̂(Hj )

l be the estimates computed with CER. Un-
der the assumptions A1 and A2, the estimator ÊPEC(O)
returned by our PEC protocol has bias δ′

PEC = δPEC +δrec,
where δPEC is the bias in theorem 1 and

δrec = O

( m∑
j=1

4n−1∑
l=0

∣∣ϵ(Hj )
l − ϵ̂

(Hj )
l

∣∣) . (9)

To better quantify the bias of PEC, let us assume for
simplicity that the error probability is the same for every

noisy cycle, i.e., 1 − ϵ
(Hj )
0 = ε for all j ∈ {1, . . . ,m}. In

this case, the bias δPEC in theorem 1 grows quadratically
in ε as δPEC = O(mε2). Hence, if the Pauli error rates are
known perfectly, PEC can successfully improve the per-
formance of circuits with depth m ≲ ε−2. More generally,
if we assume a fixed relative precision of the Pauli error

rates, i.e.
∣∣ϵ(Hj )

l − ϵ̂
(Hj )
l

∣∣/ϵ(Hj )
l = β for β ≪ 1, we get

δrec = O(mβϵ). CER inherently provides Pauli error rates
with multiplicative precision, and the relative uncertainty
β can be brought closer to zero by improving the quality
of the characterization data set (e.g. by increasing the
number of CER circuits and the number of shots). Over-
all, performing an accurate characterization is vital since
a high relative uncertainty on the Pauli error rates might
negatively impact the residual bias δ′

PEC.
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To conclude the section we analyse the complexity of
PEC. To achieve a fixed standard deviation O(σ), PEC
requires implementing C2

tot/σ
2 circuits, where Ctot typi-

cally grows exponentially with m. For example, when all
the noisy cycles have the same error probability ε, we have
Ctot = O((1 − ε)−2m). Thus, in general PEC (as well as
all the other protocols based on quasi-probabilistic can-
cellation [45]) is inefficient due to the exponential scaling
of the cost with the circuit depth. Nevertheless, if applied
to circuits with depth m ≲ ε−2, PEC remains an efficient
and practical solution.

3.2 Noiseless Output Extrapolation
NOX relies on the ability to amplify the noise afflicting in-
dividual noisy cycles in the input circuit. Specifically, it re-
quires replacing the noisy operations DHjHj with Dα

Hj
Hj

for integers α > 1. We begin this subsection by explaining
how this amplification may be performed, then we describe
NOX.

The traditional method to amplify the noise is the so-
called “Identity Insertion” [24], which consists of replac-
ing a noisy cycle Hj with Hj(HjH−1

j )α. This method
is efficient and is used by a number of other EM proto-
cols [3, 20, 24, 28, 30], but it is accurate only if two con-
ditions are satisfied: Firstly, if Hj and H−1

j are afflicted
by identical noise. Secondly, if the noise and the cycle
commute, i.e., DHjHj = HjDHj . The first condition is

trivially satisfied by cycles for which Hj = H−1
j , for ex-

ample, by cycles containing a combination of cZ and cX
gates. The second condition is satisfied by specific noise
processes, e.g. by the n-qubit depolarising channel, but
not in general [28]. Importantly, CER allows checking
if these two conditions are satisfied and to evaluate the
accuracy of Identity Insertion before employing it in an
experiment.

While we do not attempt to improve Identity Insertion,
we propose an alternative method that can correctly am-
plify arbitrary noise processes. Our method (which we
call “Append Errors”) takes as input the circuit C, a label

j ∈ {1, . . . ,m}, the Pauli error rates ϵ
(Hj )
k of the jth noisy

cycle and the amplification factor α > 1. It returns the
circuit

C′(j; k1, . . . , kα−1) = (10)

Em+1
(

◦m
k=j+1 HkEk

)
Qkα−1 · · ·Qk1HjEj

(
◦j−1

k=1 HkEk

)
,

where each Qkl ∈ {I ,X ,Y ,Z}⊗n is an n-qubit Pauli op-

erator chosen at random with probability ϵ
(Hj )
kl

. Since∑4n−1
k=0 ϵ

(Hj )
k Qk = DHj , on average a noisy implementa-

tion of C′(j; k1, . . . , kα−1) performs the operation

C̃′
Hj ,α =

∑
k1,...,kα−1

ϵ
(Hj )
kα−1

· · · ϵ(Hj )
k1

C′(j; k1, . . . , kα−1) (11)

= Em+1DHmHmEm · · ·
(
DHj

)α Hj · · ·H1E1 .

This corresponds to the operation C̃ implemented by the
noisy circuit except for the noise on the jth noisy cycle,
which is amplified by a factor α.

We can now move onto presenting NOX. NOX (formally
described section II of Supplementary Material) takes as
input the circuit C, an n-qubit state ρin, an operator O
such that ||O||∞ ∼ 1, a number σ ∈ (0, 1) representing the

desired standard deviation of the results, an integer α > 1
and a Boolean id insert ∈ {True,False}. It requires running
m+1 circuits in total. The first of these circuits is identical
to the input circuit, while the other m circuits contain
one noisy cycle with noise amplified by a factor α. If
id insert = True, the noise amplification is performed with
Identity Insertion, otherwise it is performed with Append
Errors. Each circuit is implemented m2/(α− 1)2σ2 times
and yields a noisy estimator of E(O). We denote with

Ẽin(O) the noisy estimator returned by the circuit that is

identical to the input one, and by ẼHj ,α(O) that returned
by the circuit with amplified noise on the jth noisy cycle.
After running all the m + 1 circuits, NOX returns the
quantity

ÊNOX(O) = Ẽin(O) +
m∑

j=1

Ẽin(O) − ẼHj ,α(O)
α− 1 . (12)

This quantity is yet another estimator of E(O), but it
is significantly more accurate than the noisy estimators.
The following theorem states its standard deviation and
bias, under the assumption that the noise amplification is
performed exactly:

Theorem 2. (Proof in section II of Supplementary Ma-
terial). Let us assume that the noise of every noisy cycle
Hj in the input circuit can be amplified exactly by a factor
α > 1. Under the assumptions A1 and A2 (section 2.1),
the number ÊNOX(O) returned by our NOX protocol is an
estimator of E(O) with standard deviation O(σ) and bias

δNOX = O

(
α

m∑
j=1

(1 − ϵ
(Hj )
0 )

m∑
l=j

(1 − ϵ
(Hl)
0 )

)
. (13)

Overall, while the biases of the noisy estimators Ẽin(O)
and ẼHj ,α(O) grow linearly with the cycles’ error rates,

the bias of ÊNOX(O) only grows quadratically. Note that
the bias δNOX also grows linearly with α. Thus, choosing
small values of α leads to better performance for NOX.

Assuming that the noise can be amplified exactly is un-
realistic, both for Identity Insertion (since the noise may
commute approximately but not exactly) and for Append
Errors (since inevitable inaccuracies in the estimation of
the Pauli error rates may lead to an imperfect amplifica-
tion). To relax this assumption we prove the following
lemma:

Lemma 2. (Proof in section III of Supplementary Mate-
rial). Let Dα

Hj
Hj be a noisy implementation of Hj with

noise amplified exactly by a factor α, and let R̃HjDHjHj

be an implementation of Hj with noise amplified imper-
fectly. Under assumptions A1 and A2, the estimator
ÊNOX(O) returned by our NOX protocol has bias δ′

NOX =
δNOX + δrec, where δNOX is the bias in theorem 2 and

δrec = O

( m∑
j=1

||R̃Hj − Dα−1
Hj

||⋄
)
. (14)

The above lemma is analogous to lemma 1 for NOX, as
it proves that an accurate but imperfect (i.e. a realistic)
noise amplification can still guarantee a high performance
of our PEC protocol. Overall, if the noise is amplified
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perfectly, the bias of NOX grows quadratically in the cy-
cles’ error rate ε as δNOX = O(m2ε2), where for simplicity
we assume that every cycle has the same error probabil-
ity ε. If the noise is amplified imperfectly, we can expect
δrec to grow linearly in ε as δrec = O(γmε), where γ is
proportional to the inaccuracy in the noise amplification.
Therefore, performing an accurate noise amplification is
vital to ensure that the residual bias δ′

NOX remains as low
as possible.

Unlike PEC, NOX requires running a number of circuits
that does not depend on the cycles’ error rate. In partic-
ular, to achieve the desired standard deviation, NOX re-
quires initialising m+ 1 circuits and running each of them
O(m2) times. Thus, NOX has runtime O(m3) and is effi-
cient in m. This result may seem to contradict Ref. [45],
which shows that the EM protocols are fundamentally in-
efficient in the circuit depth. However, Ref. [45] only con-
siders protocols that have a fixed bias, independent of the
circuit depth, while the bias of NOX grows quadratically
with m.

We conclude this section by clarifying the differences
between NOX and the existing protocols based on noise
amplification. NOX can be seen as a noise-aware generali-
sation of the “Random Identity Insertion Method” (RIIM)
presented in Ref.s [24], which is built around Identity In-
sertion. Even though NOX and RIIM undertake similar
approaches, crucial differences exist between the two pro-
tocols. In particular, RIIM targets individual cX gates af-
flicted by local depolarising noise. Being a noise-agnostic
technique, by construction it is unable to correctly am-
plify (and therefore to suppress) noise processes that do
not commute with the cX gates [28]. On the contrary,
NOX targets entire cycles afflicted by a broad class of noise
processes, including non-local and non-depolarising pro-
cesses. By using Randomized Compiling in combination
with CER, NOX can evaluate the the ability of Identity
Insertion to correctly amplify the noise, and potentially
use Append Errors to ensure a more precise amplification.
This makes NOX more reliable than RIIM as well as more
widely applicable.

4 Our experiments
We begin this section by discussing our strategy for test-
ing NOX and PEC. Next, we present the results of our
experiments.

4.1 Our testing strategy
We conduct both numerical and experimental testing of
PEC and NOX. The numerical testing allows us to evalu-
ate the performance of our protocols in an ideal scenario
in which the Pauli error rates of every cycle are known
exactly and the assumptions A1 and A2 apply. In ev-
ery simulation we model the cycles’ noise based on the
CER data collected in the corresponding experiment, and
for simplicity we consider noiseless state preparation and
measurements. On the other hand, with the experimental
testing we investigate the performance of our protocols in
a real-world setting, where the noise is known approxi-
mately but not exactly and slight deviations from A1 and
A2 are to be expected—for example, non-Markovian er-
rors have been previously observed on the chip that we

|0⟩1 · · ·

|0⟩2 · · ·

|0⟩3 · · ·

· · · · · ·
|0⟩n−1 · · ·

|0⟩n · · ·

X

Gn

Gn−1

G2

Figure 2: Circuit to generate an n-qubit W state [10].
The gates Gt are defined in Eq. 16.

|0⟩1 · · ·

|0⟩2 · · ·

...
...

...

|0⟩t
. . .

|ψ⟩ · · ·

H

QFT †
H

H

U2t−1
U2t−2

U20

Figure 3: Circuit to perform the QPE algorithm. In our
tests we set U = RZ(κ), where RZ(κ) is defined in
Eq. 18, and run the algorithm for different values of κ.

use for our experiments [27].

We begin every experiment by characterizing the noise
with CER. This typically takes around twenty minutes per
noisy cycle. Next, we run the input circuit several times,
with and without EM, in order to gather statistics for the
final estimators. In addition to PEC and NOX we em-
ploy standard readout error mitigation (REM) protocols
to mitigate measurement errors [7]. The runtimes per rep-
etition are usually within the hour. For example, for the
three-qubit quantum phase estimation circuits (which con-
tain m = 11 noisy cycles), for σ = 2% we require around
one minute to compute an estimator for the unmitigated
circuit, around ten minutes for the NOX estimator and
around twenty minutes for the PEC estimator. We note
that the errors afflicting idling qubits are the dominant
type of error in our device (Fig. 10 in Appendix 6.1). As
these errors commute with the noisy cycles in our circuits,
to amplify the noise in NOX we use Identity Insertion with
α = 3.

4.2 W-state circuits
In our first test we implement our protocols on circuits
that generate W states. W states are a special type of
multipartite entangled states that play a central role in
quantum communication, memories and networks [12, 50].
An n-qubit W state can be written as an equal superpo-
sition of all the weight-one basis states, namely as

|Wn⟩ = |0 . . . 01⟩ + |0 . . . 10⟩ + |1 . . . 00⟩√
n

. (15)

Fig. 2 shows a circuit to produce n-qubit W states in a
linear architecture with nearest-neighbouring connectiv-
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V1,1 V1,2 V1,m V1,m+1

V2,1 V2,2 V2,m V2,m+1

V3,1 V3,2 V3,m V3,m+1

V4,1 V4,2 V4,m V4,m+1

Figure 4: Four-qubit pseudo-random circuits of the type
implemented in our third test. Each gate Vi,j is a ran-
dom one-qubit gate.

ity [10]. This circuit contains n − 1 controlled gates im-
plementing the operation |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗Gt, where

Gt =

 √
1
t

−
√

1 − 1
t√

1 − 1
t

√
1
t

 . (16)

Each one of these gates is followed by a cX gate. After
recompiling the entangling gates into our native set (cZ
gates between nearest neighbours), the resulting circuit
contains 3(n − 1) noisy cycles, each one comprising one
cZ gate and two identity gates.

In our tests we generate W states with n = 2, 3 and
4 qubits. By measuring these states in the computa-
tional basis we estimate the probability associated with
each one of the possible outputs. Formally, we compute
the quantity pest(s̄) =Tr

[
Os̄|Wn⟩⟨Wn|

]
for every projector

Os̄ ∈ {|s̄⟩⟨s̄| : s̄ ∈ (0, 1)⊗n}. Fig. 5 shows the estimates
for the most frequent outputs obtained in the simulations
(Fig. 5a) and in the experiment (Fig. 5b). As it can be
seen, all the estimates returned by NOX and PEC concen-
trate around (or very close to) their ideal value, whereas
the unmitigated estimates are generally inaccurate. To
better quantify the improvement provided by our EM pro-
tocols we calculate the variation distance

VD := 1
2

∑
s̄

∣∣pid(s̄) − pest(s̄)
∣∣ (17)

between {pest(s̄)} and the ideal probability distribution
of the outputs {pid(s̄)}. As shown in Fig.s 5c and 5d,
the variation distances of the mitigated outputs are sig-
nificantly smaller than those of the unmitigated outputs,
with average improvements between 47% and 66% for the
experimental outputs (Fig. 1b).

4.3 Quantum Phase Estimation algorithm
In our second test we run a quantum phase estima-
tion (QPE) experiment. QPE is an important primitive
required by many quantum algorithms, including Shor’s
factoring algorithm [39]. Given a gate U , a “target” state
|ψ⟩ and a (potentially unknown) number κ ∈ [0, 1) such
that U |ψ⟩ = exp(2iκπ) |ψ⟩, the task of QPE is to pro-
duce an estimate κ̂ of κ. To do so, QPE requires initial-
ising t ≥ 1 ancillae, entangling each of them with |ψ⟩ and
eventually performing the inverse Quantum Fourier Trans-
form (QFT), as shown in Fig. 3. By measuring the ancillae
and post-processing the outputs, QPE returns an estimate
κ̂ ∈ {p/2t : p ∈ {0, . . . , 2t − 1}} such that |κ − κ̂| ≤ 2−t

with high probability.

Setting t = 2 and |ψ⟩ = |1⟩, we estimate the parameter
κ for a series of gates that perform rotations of the type

RZ(κ) = diag(1, exp(2iκπ)) . (18)

Decomposed into our native gateset, our QPE circuits con-
tain n = 3 qubits and m = 11 noisy cycles. As with the
W-state circuits, we measure all the qubits (target and
ancillae) in the computational basis and reconstruct the
probability distribution of the outputs. Fig. 6 shows the
variation distances between ideal and estimated probabil-
ity distributions of the outputs obtained in the simulations
(Fig. 6a) and in the experiments (Fig. 6b). In both cases
the mitigated outputs are significantly more accurate than
the unmitigated ones, with average improvements between
42% and 86% in variation distance for the experimental
outputs (Fig. 1b).

The better accuracy of the outputs under EM natu-
rally improves the precision of the QPE algorithm. To
see this, by post-processing the estimated probability dis-
tributions of the outputs of the ancillae we calculate
the probability qest(κ̂|κ) that the QPE algorithm returns
κ̂ ∈ {0.00, 0.25, 0.50, 0.75} when κ is the parameter being
estimated. Fig. 6c shows the probabilities qest(κ̂|κ) calcu-
lated in the various experiments (solid bars), along with
the ideal probabilities qid(κ̂|κ) calculated with a noiseless
simulation (striped bars). The probabilities qest(κ̂|κ) ob-
tained in the experiments with PEC and NOX are gen-
erally closer to the ideal ones than those obtained in the
experiments without EM. To quantify the improvement,
we calculate the variation distances

VD(κ)
QPE := 1

2
∑

κ̂

∣∣qid(κ̂|κ) − qest(κ̂|κ)
∣∣ (19)

between the ideal and estimated probability distributions
of the outcomes of QPE for the values of κ chosen in our
experiments. As shown in Table 2, NOX and PEC dras-
tically improve the precision of the QPE algorithm in all
the cases considered.

We repeat the above experiment with t = 3 ancillae,
setting |ψ⟩ and κ = 0.5. Decomposed into our native
gateset, the resulting QPE circuit contains n = 4 qubits
and m = 25 noisy cycles. As opposed to the experiments
with t = 2 ancillae, both NOX and PEC return less accu-
rate outputs than the unmitigated circuit and visibly de-
crease the precision of the QPE algorithm (Fig. 6d). We
attribute this unsuccessful result to a series of noise pro-
cesses (unmodeled non-Markovian errors [27], drift, errors
due to an inaccurate amplification of the noise, etc.) that
are not mitigated by our protocols. These unmitigated
noise processes accumulate along the circuit, resulting in
a bias that grows linearly in m and that becomes non-
negligible in deep circuits. This failed test shows us that
when the noise processes that are not encompassed by our
assumption become dominant, they have the potential to
disrupt the performance of our EM protocols.

4.4 Pseudo-random circuits
In our third test we target pseudo-random circuits of vary-
ing depth of the type shown in Fig. 4. These circuits
alternate between cycles containing either one or two cZ
gates and cycles containing random one-qubit gates. Fig. 7
shows the variation distances between ideal and estimated
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κ NOX+REM PEC+REM REM

0.2 0.6% (↑ 96.2%) 3.1% (↑ 80.6%) 16.1%

0.4 3.8% (↑ 80.2%) 2.8% (↑ 85.6%) 19.2%

0.6 2.8% (↑ 74.1%) 3.3% (↑ 69.4%) 10.8%

0.8 1.3% (↑ 74.0%) 3.7% (↑ 26.0%) 5.0%

Table 2 Values of VD(κ)
QPE (Eq. 19) calculated for the

experiments with NOX+REM, PEC+REM and REM.
The values in parenthesis correspond to the
improvement over the corresponding REM value.

probability distributions of the outputs obtained numer-
ically (Fig. 7a) and experimentally (Fig. 7b). As in our
previous tests, the mitigated outputs are visibly more ac-
curate than the unmitigated ones, with average improve-
ments between 32% and 56% in variation distance for the
experimental outputs (Fig. 1b).

4.5 Relation between input the parameter σ
and the standard deviation of the estimators.
In addition to suppressing the bias of the final estimators,
our protocols provide guarantees about their statistical
fluctuations. In particular, choosing a specific value for
the input σ guarantees O(σ) standard deviation for every
estimator, at the cost of running a number N = O(σ−2)
of circuits. To verify the relation between the input σ
and the standard deviation, we test numerically the per-
formance of NOX on a two-qubit W-state circuit for dif-
ferent values of σ. As shown in Fig. 8a, smaller values of
σ lead to estimators that are statistically more accurate,
which confirms the expected relation between σ and the
standard deviation under ideal experimental conditions.

In a real-world setting, a number of uncontrollable fac-
tors (such as drift in the noise afflicting the device in use)
may inevitably prompt fluctuations in the estimators, lim-
iting our ability to attain the desired statistical accuracy.
To see how this may affect our protocols, we repeat our
two-qubit test experimentally (Fig. 8b). We find that for
σ ≳ 2% the standard deviation of the results decreases
with σ as expected, whereas for σ ≲ 2% the standard
deviation remains approximately constant. Due to the in-
herent fluctuations of the noise afflicting the device in use,
implementing NOX with σ < 2% requires running more
circuits than with σ = 2%, but it does not improve the
statistical accuracy of the estimators. In other words, our
EM protocols cannot provide performance guarantees be-
low the noise floor of the device. Overall, the results shown
in Fig. 8b highlight the importance of the assumption A1
in the context of EM and call for methods to suppress
drifts.

5 Conclusions
While fault-tolerance remains a long-term goal, under-
standing how to improve the performance of the existing
noisy quantum computers is of timely importance. By
leveraging cutting-edge protocols for noise reconstruction,
we have developed PEC and NOX and experimentally

tested their effectiveness and practicality on a four-qubit
superconducting chip. The results of our tests demon-
strate that both of our protocols can significantly en-
hance the performance of the noisy quantum circuits im-
plemented on existing hardware platforms.

The previous EM protocols based on noise reconstruc-
tion are centered around GST [13, 46]. Since GST is inef-
ficient in the number of qubits, these protocols have been
tested on circuits containing up to two qubits [42, 51].
Implementation on larger circuits required enhancing the
noise-reconstruction process with machine learning tools,
at the price of increased complexity and runtime [43]. On
the contrary, being robust to all the main noise processes
that naturally occur in multi-qubit systems, our protocols
provide the tools to increase the performance of platforms
with an arbitrary number of qubits, provided that they
suffer moderate levels of noise.

Going forward, it is important to study how EM can
help bridge the gap between today’s noisy devices and
tomorrow’s fault-tolerant quantum computers (FTQC).
Recent works showed how EM can reduce various types of
logical errors in FTQCs, such as errors due to insufficient
code distances [40] or imperfect magic-state distillation
[40, 44]. Due to their ability to suppress multi-qubit
errors, we anticipate that our EM protocols may be
helpful to suppress multi-qubit physical errors that have
a higher weight than the code corrects, and consequently
to reduce the errors at the logical level. We leave this
point open for future works.

Note added. While editing the final version of this
manuscript, we became aware of related work that also
employs efficient methods for noise reconstruction to
enhance error cancellation [47]. Our protocols have been
developed independently and around the same time as
that in Ref. [47].
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6 Appendix
6.1 Further details about noise reconstruction.
In this Appendix we discuss the noise-reconstruction

data obtained in our experiments. We begin with the
CER data, then we discuss the readout calibration
(RCAL) data.

Accepted in Quantum 2024-06-12, click title to verify. Published under CC-BY 4.0. 8



CER data. Fig. 10 shows the data obtained in two differ-
ent implementations of CER. We note that in both figures,
the errors afflicting the idling qubits dominate the prob-
ability distributions. This is due to the nature of the cZ
gates employed in this work, which utilized off-resonant
drives to implement tunable ZZ interaction between two
fixed-frequency transmon qubits [38]. These off-resonant
drives can induce phase errors on spectator qubits if the
driving tones are far off-resonant, or induce partial Rabi
driving on spectator qubits (i.e.X- or Y -type errors) if the
driving tones are near-resonant. The cZ gates also contain
signals (with equal amplitude but opposite phase) which
attempt to null any conditional errors on the neighbor-
ing spectator qubits, but if the nulling of these crosstalk
terms is imperfect (as we see in Fig. 10), then errors on
the idling qubit can dominate the CER results.

We do not observe significant fluctuations of the
cycles’ error rates over periods of several hours. Thus, to
minimize the runtime, we avoid taking new CER data
in between different repetitions of the same circuit. See
the Supplemental Material for Ref. [23] for further details
about CER and errors on this device.

RCAL data. To obtain the RCAL data, we implement
circuits of two different types. Firstly, we implement cir-
cuits with an identity on every qubit. Secondly, circuits
with a Pauli-X on every qubit. We use the relative fre-
quency of the outputs 0 and 1 on every qubit to estimate
state-dependent measurement errors. Fig. 9 shows RCAL
data taken on September 7, 2021. As it can be seen, the
probability that an outcome 0 is flipped to 1 is below 1%
for every qubit, while the probability that an outcome 1
is flipped to a 0 is around 2% on average (Fig. 9).

We collect the RCAL data at the beginning of each
experiment, and we avoid taking new RCAL data while
running the experiment in order to minimise the runtime.
We use the RCAL data to mitigate the readout noise via
REM [7]. By applying REM we observe a visible improve-
ment of the results for W-state (Fig.s 11a). On the con-
trary, when we apply REM to circuits with a higher two-
qubit gate count (Fig.s 11b and 11c), we obtain outputs
that are equal to the unmitigated ones within error bars.
This remarks the fact that mitigating both cycles’ and
readout errors can be significantly more beneficial than
mitigating readout errors alone, especially for circuits that
contain a large number of two-qubit gates.

Accepted in Quantum 2024-06-12, click title to verify. Published under CC-BY 4.0. 9



01 10 001 010 100 0001 0010 0100 1000
Output strings

44

46

48

50

52

54

56

E
st

im
at

ed
P

ro
b

ab
il
it

ie
s

(%
)

54

52

50

48

46

44

37.3

35.3

33.3

31.3

29.3

27.3

29

27

25

23

21

19

SIMULATION
n = 2, m = 3

σ = 2%

SIMULATION
n = 3, m = 6
σ = 2.5%

SIMULATION
n = 4, m = 9

σ = 3%

NOX

PEC

Unmitigated

(a) Numerical testing, measured estimators for the most frequent outputs.
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(c) Numerical testing, variation distances.
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Figure 5: Summary of the results obtained for the W-state circuits. Figs. (a) and (b) show the estimated probabilities
for the most frequent outputs obtained in the simulations and experiments, respectively. Figs. (c) and (d) show the
variation distances between ideal and estimated probability distributions. In every figure the dots correspond to the
actual data, the squares represent their means, the bars their standard deviations, and the dashed lines their ideal
values. Note that for every n, the numerical estimates for the unmitigated circuit in (a) concentrate around similar
values, which are close to the ideal value for n = 2 and below the ideal value for n = 3, 4. Instead, the corresponding
experimental estimates in (b) are subject to larger fluctuations, and in some cases they are above the ideal value
(see, for example, the estimates for the output 01). This is due to the presence of coherent errors in the experimental
implementation of the unmitigated circuit. These coherent errors are tailored by Randomized Compiling and reported
by CER in the form of stochastic Pauli errors. As a result, our simulations (which model the noise based on CER
data) do not capture the full impact of these coherent errors.
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(c) Estimated probability of the parameters κest returned by the QPE algorithm in the various experiments
with t = 2 ancillae.
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(d) Estimated probability of the parameters κest returned by the QPE algorithm with t = 3 ancillae and κ = 0.5.

Figure 6: Summary of the results for the QPE circuits. Figs. (a) and (b) show the variation distances between ideal
and estimated probability distributions of the outputs obtained in the simulations and in the experiments for our
QPE experiments with t = 2 ancillae. The dots correspond to the actual data, the squares represent their means
and the bars their standard deviations. Fig. (c) shows the estimated probabilities that the QPE algorithm with t = 2
ancillae returns a given parameter κ̂est—the striped bars are calculated with noiseless simulations, the solid bars are
calculated by averaging over the experimental outputs. Fig. (d) shows the estimated probabilities that the QPE
algorithm with t = 3 returns a given parameter κ̂est.
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Figure 7: Summary of the results for the pseudo-random circuits. Figs. (a) and (b) show the variation distances
between the ideal and estimated probability distributions of the outputs obtained in the simulations and experiments,
respectively. The dots correspond to the actual data, the squares represent their means and the bars their standard
deviations.
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Figure 8: Summary of the results obtained by applying NOX on a two-qubit W-state circuit at different values of σ.
Figs. (a) and (b) show the variation distances between ideal and estimated probability distributions of the outputs
obtained numerically and experimentally, respectively. The dots correspond to the actual data, the squares represent
their means and the bars their standard deviations (which are reported in detail in the white boxes).

Figure 9: Readout calibration (RCAL) estimates obtained on September 7, 2021 by running around 10,000 calibration
circuits. The l.h.s. column contains qubit labels, the r.h.s. column contains estimates of the probabilities of no
error—specifically, for i ∈ {0, 1}, P(i|i) represents the conditional probability that a measurement returns i, given
that i is expected outcome.
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(a) CER data taken on June 16, 2021.

(b) CER data taken on September 7, 2021.

Figure 10: A map of the Pauli error rates (Eq. 1) for different four-qubit cycles performed by the chip in Fig. 1a, each
containing either one or two cZ gates. The errors on the l.h.s. correspond to the Pauli errors afflicting the cycles,
the colormap indicates the estimated probabilities for the Pauli errors in the plot, and the gradient across each cell
defines the 90% confidence interval of each estimate. All the errors with negligible probabilities are truncated and
are not displayed. The first row of subplots shows the weight-one errors acting on the idling qubits. The second row
shows the weight-one and weight-two errors on the idling qubits. The third row shows the weight-one and weight-two
errors on the non-idling qubits. The fourth and fifth rows show correlated errors afflicting more than two qubits.
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(a) W-state circuits.
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(b) Three-qubit QPE circuits.
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(c) Random circuits.

Figure 11: Summary of the results obtained in the various experiments by applying NOX+REM, by applying REM
alone and by applying no mitigation. As it can be seen, REM improved the outputs of our W-state (Fig. a), but it
did not significantly improve the outputs of our QPE and random circuits (Fig.s b, c).
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Supplementary Material

I. Formal description of PEC and proof of theorem 1

In this section we provide a formal description of our PEC protocol, then we show a proof of theorem 1. The box
below shows the algorithm implemented by PEC:

Box 1. Pauli Error Cancellation (PEC)

Inputs.

An n-qubit quantum circuit C = Em+1HmEm · · ·H1E1, the Pauli error rates {ϵ
(Hj)
l } of

the noisy cycles Hj , an n-qubit state ρin, an operator O such that the spectral norm
||O||∞ ∼ 1 and a number σ ∈ (0, 1).

Routine.
1. Calculate Ctot (Eq. 5) and N = (Ctot/σ)2.

2. For k ∈ {1, . . . , N}:

2.1 For j ∈ {1, . . . , m}:

Choose P (k)
j ∈ {I ,X ,Y ,Z}⊗n at random with probability ϵ

(Hj)
lj

. Next, initialise

the circuit C(PEC)(P (k)
1 , . . . ,P (k)

m ) as in Eq. 6.

2.2 If an even number of Pauli operators P (k)
1 , . . . ,P (k)

m is equal to the identity, ini-
tialise sk = 1. Otherwise, initialise sk = −1.

3. For k ∈ {1, . . . , N}:

Apply Randomized Compiling to C(PEC)(P (k)
1 , . . . ,P (k)

m ). Apply the resulting circuit
to the state ρin, measure O and save the result as rk.

Outputs.

The number ÊPEC(O) = Ctot

N∑
k=1

skrk/N .

We can now prove theorem 1.

Proof. (Theorem 1). To prove that ÊPEC(O) has standard deviation O(σ) we use the same arguments as in [46].
Specifically, we begin by noting that each measurement outcome rk is an estimator of Ê(O) with standard deviation
O(1), hence Ctotskrk has standard deviation O(Ctot). Therefore, ÊPEC(O) has standard deviation O(Ctot/N

1/2), which
is O(σ) for N = (Ctot/σ)2.

To calculate the bias of ÊPEC(O), for simplicity we begin by considering the case m = 1 and we generalize afterwards.
For m = 1, an ideal implementation of the input circuit performs the operation C = E2H1E1. Averaging over all the
random Pauli operators appended to the input circuit (both in step 2.1 for error cancellation and in step 3 for Randomized
Compiling), the number ÊPEC(O) equals

ÊPEC(O) = Ctot

4n−1∑
l=0

slϵ
(H1)
l Tr

[
OE2PlDH1H1E1(ρin)

]
, (20)

where DH1 (·) =
∑4n−1

t=0 ϵ
(H1)
t Pt(·)Pt is a Pauli channel with error rates ϵ(H1)

l , s0 = 1 and sl = −1 for all l ̸= 0. The r.h.s.
of the equation above can be rewritten as

ÊPEC(O) =Ctot

4n−1∑
l,t=0

slϵ
(H1)
l ϵ

(H1)
t Tr

[
OE2PlPtH1E1(ρin)

]
(21)

=Ctot

( 4n−1∑
l=0

sl

(
ϵ

(H1)
l

)2 Tr
[
OE2H1E1(ρin)

]
+

∑
l,t ̸=l

slϵ
(H1)
l ϵ

(H1)
t Tr

[
OE2PlPtH1E1(ρin)

])
(22)

=Tr
[
OC(ρin)

]
+ Ctot

∑
l,t ̸=l

slϵ
(H1)
l ϵ

(H1)
t Tr

[
OE2PlPtH1E1(ρin)

]
, (23)
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where in the last line we used
∑4n−1

l=0 sl

(
ϵ

(H1)
l

)2 = C−1
tot . Thus,

δPEC =
∣∣∣∣ÊPEC(O) − Tr

[
OC(ρin)

]∣∣∣∣ (24)

=Ctot

∣∣∣∣ ∑
l,t ̸=l

sl ϵ
(H1)
l ϵ

(H1)
t Tr

[
OE2PlPtH1E1(ρin)

]∣∣∣∣ (25)

=Ctot

∣∣∣∣ ∑
l ̸=0,t̸=0,l

ϵ
(H1)
l ϵ

(H1)
t Tr

[
OE2PlPtH1E1(ρin)

]∣∣∣∣ (26)

≤Ctot
∑

l ̸=0,t ̸=0,l

ϵ
(H1)
l ϵ

(H1)
t ∥O∥∞∥E2PlPtH1E1(ρin)∥1 (Triangle and Hölder’s inequalities)

=O
(
Ctot

∑
l ̸=0,t ̸=0,l

ϵ
(H1)
l ϵ

(H1)
t

)
. (27)

Using ∑
l ̸=0

t ̸=0,l

ϵ
(H1)
l ϵ

(H1)
t ≤

∑
l ̸=0
t̸=0

ϵ
(H1)
l ϵ

(H1)
t =

( ∑
l ̸=0

ϵ
(H1)
l

)2

=
(
1 − ϵ

(H1)
0

)2
, (28)

we find δPEC = O
(
Ctot

(
1 − ϵ

(H1)
0

)2)
, which proves the theorem for m = 1.

The generalisation to m > 1 follows easily by linearity. Averaged over all the random Pauli operators, for m > 1 the
quantity ÊPEC(O) returned by PEC equals

ÊPEC(O) = Ctot
∑

l1,...,lm

sl1 · · · slmϵ
(H1)
l1

· · · ϵ(Hm)
lm

Tr
[
OEm+1PlmDHmHmEm · · ·Pl1DH1H1E1(ρin)

]
, (29)

where slj = 1 if lj = 0 and slj = −1 otherwise. Following the same arguments as for m = 1 we find

δPEC =
∣∣∣∣ÊPEC(O) − Tr

[
OC(ρin)

]∣∣∣∣ (30)

≈
∣∣∣∣ m∑

j=1

CHj

∑
lj ̸=0,tj ̸=0,lj

ϵ
(Hj )
lj

ϵ
(Hj )
tj

Tr
[
OEm+1HmEm · · ·PljPtjHjEj · · ·H1E1(ρin)

]∣∣∣∣ , (31)

where we omitted terms that are of higher order in the Pauli error rates and we defined CHj = 1/
( ∑

lj
slj

(
ϵ

(Hj )
lj

)2)
.

Using CHj ≤ Ctot, Eq. 28 and the triangle inequality we finally find δPEC = O
(
Ctot

∑m

j=1

(
1 − ϵ

(Hj )
0

)2)
.
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II. Formal description of NOX and proof of theorem 2

We now provide a formal description of our NOX protocol, then we show a proof of theorem 2. The formal description
of NOX is given in the following box:

Box 2. Noiseless Output Extrapolation (NOX).

Inputs.
An n-qubit quantum circuit C = Em+1HmEm · · ·H1E1, an n-qubit state ρin, an operator
O such that the spectral norm ||O||∞ ∼ 1, a number σ ∈ (0, 1), an integer α > 1 and a
Boolean id insert ∈ {True, False}.

Routine.
1. Initialise the number N = m2/(α − 1)2σ2.

2. If id insert is True:

2.1 Apply the circuit C to ρin a total of N times with Randomized Compiling. Estimate
the expectation value Ẽin(O) of O at the end of the circuit.

2.2 Initialise a circuit C ′
Hj ,α by replacing Hj with Hj(HjH−1

j )α−1 in C. Apply the

circuit C ′
Hj ,α to ρin a total of N times with Randomized Compiling. Estimate the

expectation value ẼHj ,α(O) of O at the end of the circuit.

2. Else:

2.1 Apply the circuit C to ρin a total of N times with Randomized Compiling. Estimate
the expectation value Ẽin(O) of O at the end of the circuit.

2.2 Initialise a circuit C ′
Hj ,α as in Eq. 10. Apply the circuit C ′

Hj ,α to ρin a total of N

times with Randomized Compiling. Estimate the expectation value ẼHj ,α(O) of O
at the end of the circuit.

Outputs.

The quantity ÊNOX(O) = Ẽin(O) α−1+m
α−1 −

∑m
j=1

ẼHj ,α(O)
α−1 .

We now prove theorem 2.

Proof. (Theorem 2). We begin by proving that ÊNOX(O) has standard deviation O(σ). Since all the noisy estimators
Ẽin(O) and ẼHj ,α(O) are calculated independently by running each circuit N = m2/(α− 1)2σ2 times, they all have the
same standard deviation σ = O(N−1/2). Using the formula for propagation of errors, we find that the standard deviation
of ÊNOX(O) is

O

(√
1
N

√(
α− 1 +m

α− 1

)2

+m

(
1

α− 1

)2)
= O

(√
(α− 1)2σ2

m2

√
m2

(α− 1)2

)
= O(σ) . (32)

To calculate the bias, let us first define the maps δHj = DHj − I for j ∈ {1, . . . ,m}. Note that δHj = (1 − ϵ
(Hj )
0 )(Qj − I)

for some Pauli channel Qj . Hence, if the probability of error 1 − ϵ
(Hj )
0 is sufficiently small (as is the case for the noisy

cycles in state-of-the-art platforms) we have ||δ2
Hj

||⋄ ≪ ||δHj ||⋄, where || · ||⋄ represents the diamond norm.
Defining δHj allows us to write Ẽin(O) − E(O) as (see lemma 3 for a proof)

Ẽin(O) − E(O) =
m∑

j=1

Aj , (33)

where

Aj = Tr
[
OEm+1

(
◦m

k=j+1 HkEk

)
δHjHjEj

(
◦j−1

k=1 DHk
HkEk

)
(ρin)

]
. (34)
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For every j, the quantity Aj is a multiple of ẼHj ,α(O) − Ẽin(O), modulo terms that are second order in δHj . Indeed,
since Dα

Hj
= (I + δHj )α = I + αδHj + α(α− 1)δ2

Hj
/2 +O(δ3

Hj
) we have

ẼHj ,α(O) − Ẽin(O) = (α− 1) Tr
[
OEm+1

(
◦m

k=j+1 DHk
HkEk

)
δHjHjEj

(
◦j−1

k=1 DHk
HkEk

)
(ρin)

]
(35)

= (α− 1)
(
Aj +Bj + Cj

)
, (36)

where

Bj =
m∑

l=j+1

Tr
[
OEm+1

(
◦m

k=l+1 HkEk

)
δHl

HlEl

(
◦l−1

k=j+1 HkEk

)
δHjHjEj

(
◦j−1

k=1 DHk
HkEk

)
(ρin)

]
(37)

+ α

2 Tr
[
OEm+1

(
◦m

k=j+1 HkEk

)
δ2
Hj

HjEj

(
◦j−1

k=1 DHk
HkEk

)
(ρin)

]
=O

(
α(1 − ϵ

Hj

0 )
m∑

l=j

(1 − ϵ
Hl
0 )

)
(38)

is quadratic in the δs and Cj is cubic. Thus, combining Eq.s 33 and 35 we find

E(O) = Ẽin(O) −
m∑

j=1

ẼHj ,α(O) − Ẽin(O)
α− 1 +O

(
α

m∑
j=1

(1 − ϵ
Hj

0 )
m∑

l=j

(1 − ϵ
Hl
0 )

)
(39)

= ÊNOX(O) +O

(
α

m∑
j=1

(1 − ϵ
Hj

0 )
m∑

l=j

(1 − ϵ
Hl
0 )

)
(40)

and finally

δNOX(O) =
∣∣E(O) − ÊNOX(O)

∣∣ = O

(
α

m∑
j=1

(1 − ϵ
Hj

0 )
m∑

l=j

(1 − ϵ
Hl
0 )

)
. (41)

We end the section by proving the following lemma, which we use to derive Eq. 33.

Lemma 3. Let Φm = ◦m
j=1Uj, Φ̃m = ◦m

j=1DjUj and Dj = I + δj for all j ∈ {1, . . . ,m}. The following equality holds:

Φ̃m = Φm +
m∑

j=1

(
◦m

k=j+1 Uk

)
δjUj

(
◦j−1

k=1 DkUk

)
. (42)

Proof. (Lemma 3). We prove the lemma using induction. Eq. 42 holds trivially for m = 1, since the l.h.s equals D1U1
and the r.h.s. equals U1 + δ1U1 = D1U1. To complete the induction we now assume that Eq. 42 holds for a given m > 1
and we prove the equality for m+ 1. For m+ 1 the r.h.s. of Eq. 42 can be rewritten as

Φm+1 +
m+1∑
j=1

(
◦m

k=j+1 Uk

)
δjUj

(
◦j−1

k=1 DkUk

)

=Φm+1 + δm+1Um+1

(
◦m

k=1 DkUk

)
+ Um+1

m∑
j=1

(
◦m

k=j+1 Uk

)
δjUj

(
◦j−1

k=1 DkUk

)
(43)

=Φm+1 + δm+1Um+1Φ̃m + Um+1Φ̃m − Um+1Φm (44)

=δm+1Um+1Φ̃m + Um+1Φ̃m (45)

=Dm+1Um+1Φ̃m . (46)

Since Dm+1Um+1Φ̃m = Φ̃m+1, the equalities above show that if Eq. 42 holds for a given m, then it also holds for m+ 1.
This proves the lemma.

III. Proof of Lemmas 1 and 2

In this section we prove our lemmas 1 and 2. We begin by proving lemma 1.
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Proof. (Lemma 1) We begin by analysing the performance of PEC. To do so, let us denote as

U = CtotEm+1

(
◦m

j=1 RHjDHjHjEj

)
(47)

the map implemented on average by the PEC circuits when the Pauli error rates are known exactly, with RHj =∑4n−1
l=0 slϵ

(Hj )
l Pl. Similarly, let us denote as

U ′ = CtotEm+1

(
◦m

j=1 R′
Hj

DHjHjEj

)
(48)

the map implemented on average by the PEC circuits when the noise reconstruction is inaccurate, with R′
Hj

=∑4n−1
l=0 slϵ̂

(Hj )
l Pl. The estimator ÊPEC(O) returned by PEC can be rewritten as

ÊPEC(O) = Tr
[
OU ′(ρin)

]
(49)

= Tr
[
OU(ρin)

]
+ Tr

[
O(U ′ − U)(ρin)

]
(50)

≤ Tr
[
OU(ρin)

]
+ ∥O∥∞∥(U ′ − U)(ρin)∥1 (Hölder’s inequality)

≤ Tr
[
OU(ρin)

]
+ ∥O∥∞||U − U ′||⋄ , (51)

where || · ||⋄ denotes the diamond norm. Using the same arguments as in theorem 2 in Ref. [48], we find

||U − U ′||⋄ ≤ Ctot

m∑
j=1

||RHj − R′
Hj

||⋄ ≤ Ctot

m∑
j=1

∑
l

∣∣ϵ(Hj )
l − ϵ̂

(Hj )
l

∣∣ , (52)

which together with theorem 1 proves the lemma.

We can now prove lemma 2.

Proof. (Lemma 2) Let
UHj ,α = Em+1DHmHmEm · · ·Dα

Hj
Hj · · · E2H1E1 (53)

be the map implemented by a circuit with noise on the jth noisy cycle amplified perfectly, and let

U ′
Hj ,α = Em+1DHmHmEm · · · R̃HjDHjHj · · · E2H1E1 (54)

be the map implemented by a circuit with noise on the jth noisy cycle amplified imperfectly. The estimator ÊNOX(O)
returned by NOX can be written as

ÊNOX(O) = Ẽin(O)α− 1 +m

α− 1 − 1
α− 1

m∑
j=1

Tr
[
OU ′

Hj ,α(ρin)
]

(55)

= Ẽin(O)α− 1 +m

α− 1 − 1
α− 1

m∑
j=1

Tr
[
OUHj ,α(ρin)

]
− 1
α− 1

m∑
j=1

Tr
[
O(U ′

Hj ,α − UHj ,α)(ρin)
]

(56)

≤ Ẽin(O)α− 1 +m

α− 1 − 1
α− 1

m∑
j=1

ẼHj (O) + 1
α− 1

m∑
j=1

∥O∥∞∥(U ′
Hj ,α − UHj ,α)(ρin)∥1, (Hölder’s inequality)

≤ Ẽin(O)α− 1 +m

α− 1 − 1
α− 1

m∑
j=1

ẼHj (O) + ∥O∥∞

α− 1

m∑
j=1

||R̃Hj − Dα−1
Hj

||⋄ , (57)

which together with theorem 2 proves the lemma.
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