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ABSTRACT 

On-demand Mobility of the Future： 

Equity, Behavior and Policy 

By 

Ruoying Xu 

Doctor of Philosophy in City and Regional Planning 

University of California, Berkeley 

Professsor Daniel G. Chatman, Chair 

 

 

The rapid emergence and growth of transportation network companies (TNCs) such as Uber, Lyft, 

and Didi Chuxing, operating app-based on-demand ride-sourcing services, has led to a debate over 

the role of TNCs in the urban transport system. The growth of the ride-sourcing business has 

brought significant challenges for planners, engineers, and policy makers, due to the magnitude 

and uncertainty of its impacts. This dissertation focuses on several aspects of on-demand mobility, 

mostly related to equity and behavior, and answers some of the most debated questions about ride-

sourcing to provide important evidence for engineers, planners and policy makers on future ride-

sourcing related policy decisions. 

The equity analysis investigates the effects of ride-sourcing fare changes to passengers with 

different socio-economic backgrounds. Using a large GPS-based travel dataset from 2015 in 

Shanghai, I conducted panel analysis of how ride-sourcing demand was related to average property 

value, as a proxy for socioeconomic status, measured at small spatial scale at trip origins and 

destinations. I modeled the ride-sourcing demand (for pick-ups and drop-offs separately) as a 

product of several spatial and temporal characteristics, using a negative binomial regression with 

fixed effects whose functional form is appropriate for dispersed count data. The results imply that 

a decrease in ride-sourcing fares would likely benefit middle to high income travelers more than 

low-income travelers, by making ride-sourcing an economically competitive mode for those 

groups. Usage is much higher in neighborhoods with higher property values when fares are lower. 

At the same time, however, there is still significant though lower use of ride-sourcing in lower-

income neighborhoods, and usage in those locations is less responsive to the fare. I conclude that 

ride-sourcing policy which results in fare increases would likely to pose a substantial burden for 

lower-income travelers, although the number of such lower income travelers may be small 

compared to the number of middle-to-high income travelers. 
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The behavioral analysis focuses on three questions: (1) Is parking supply associated with lower 

ride-sourcing demand? (2) Does better transit access reduce or increase the use of ride-hailing? 

and (3) Does higher congestion affect ride-sourcing demand? I modeled the ride-sourcing demand 

(for pick-ups and drop-offs separately) using a generalized additive mixed model (GAMM). The 

results suggest that first, parking would not necessarily reduce the demand for ride-sourcing unless 

the parking supply is large enough. Second, whether ride-sourcing compete or complement bus 

transit depends on the coverage of bus services: they tended to compete when the density of bus 

stops is high, and complement each other when there are fewer bus stops. Third, ride-sourcing 

demand was positively correlated with congestion, except that when congestion is severe, there 

were fewer pick-ups.  

In addition to the panel study, I used Google Map API to figure out if each actual ride-sourcing 

trip has transit alternative. I found that over 90% of the actual ride-sourcing trips have transit 

alternatives, but transit compete poorly with ride-sourcing because of much longer travel time, 

need multiple transfer and longer walking. Finally, I discussed policy implication based on these 

empirical findings. 
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Chapter 1. Introduction 

The rapid emergence and growth of transportation network companies (TNCs) such as Uber, 

Lyft, and Didi Chuxing, operating app-based on-demand ride-sourcing services, has led to a 

debate over their role in the urban transport system. Ride-sourcing supporters argue that it is a 

convenient and efficient mode of travel, with the potential to reduce private auto use, decrease 

the need for parking and solve the first/last mile problem of public transit (Rayle et al. 2016; 

Shaheen et al. 2016). Other scholars and government officials are less sanguine, concerned that 

the growing popularity of ride-sourcing might undermine congestion mitigation and replace 

public transportation, eventually resulting in negative environmental and social consequences 

(Rayle et al. 2016, SFCTA 2017, Schaller, 2018). The growth of the ride-sourcing business has 

brought significant challenges for planners, engineers, and policy makers, due to the magnitude 

and uncertainty of its impacts. For example, the number of full- and part-time TNC drivers in 

Shanghai exceeded 287,700 in August 2016, a mere two years after ride-sourcing was introduced 

(Didi Chuxing 2016). In 2017 it was estimated that more than 15% of trips and 20% of vehicle 

mileage in San Francisco was produced by TNCs (SFCTA 2017).  

Despite the exponential growth of ride-sourcing worldwide, information about its 

relationship with parking, public transit, and congestion is still very limited. These are measures 

of the relative ease of driving and using transit, and might predict lower or higher use of ride-

sourcing as an alternative. Thus one might expect that ride-sourcing demand would be higher in 

places with restricted parking, at least for auto owners. One might also expect that demand 

would be higher in places with lower levels of transit access because of the significant time 

advantages it could offer there, despite ride-sourcing being more expensive than transit. 

Additionally, it is hypothesized that ride-sourcing may be positively associated with congestion 

because it may relieve travelers from driving on congested roads, or because it may in fact cause 

congestion. Also, there are no empirical evidence so far that assess the equity impact on travelers 

when ride-sourcing fare changes due to policy changes. 

This dissertation explores ride-sourcing services from the several perspectives: equity 

impact of ride-sourcing on passengers; ride-sourcing’s relation with public transportation, 

parking and congestion; and discussion of municipal policy on ride-sourcing. The third chapter 

investigates whether individual ride-sourcing trips can be replaced by public transportation by 

descriptive analysis using Google Map Direction API. The fourth chapter explores the impact on 

ride-sourcing users after price changes. The fifth chapter analyzes the relationship between ride-

sourcing and parking supply, public transportation, and congestion. The sixth chapter discusses 

the implication for policy from the empirical results of data analysis. 

 

1.1 Background of ride-sourcing 

 

There is no widely agreed-upon definition of ride-sourcing partly because of its evolving 

nature. Generally speaking, ride-sourcing services utilize information and communication 

technology (ICT) applications to spatially match ride demand and supply, and the vehicles are 



2 

 

usually privately owned (Hall and Krueger, 2015). Drivers and passengers within a region can be 

easily paired up by using the same application. These apps are provided by transportation 

network companies (TNC), such as Uber, Lyft and Didi Kuaidi. The majority of the fare, which 

is automatically billed to the passenger’s credit card after the ride, goes to the driver, and the 

remaining amount goes to the TNCs. The TNCs do not directly hire drivers. They are responsible 

for maintaining the ride-sourcing application and providing travel information. In some areas in 

the US such as California and New York City, TNC drivers are considered employers and thus 

require a minimum wage equivalent. 

Ride-sourcing services share many similarities with traditional taxis, at least from a 

passenger’s standpoint, as they both offer ride services in exchange for a fare. However, there are 

distinct differences between ride-sourcing services and taxis. Since specific characteristics of 

ride-sourcing service differ from place to place and also evolve fairly quickly, in this dissertation 

I focus on characterizing ride-sourcing in China in the present day. Table 1.1 shows the 

comparison between the features of ride-sourcing services and taxis. These two services differ in 

three major aspects: supply, fare, and ease of driver entry. The supply and cost of ride-sourcing 

services are both responsive to demand while the total price and number of taxis are heavily 

regulated. From 2003 to 2013, the total number of taxis in Shanghai fluctuated around 50,000, 

despite the fact that GDP per capita in Shanghai had grown 2.3 times larger (Ministry of 

Transport of China, 2015). This suggests that there was a huge gap between travel demand and 

taxi supply. 

Table 1.1. Comparing features of ride-sourcing and traditional taxis in China, 2015 
 Ride-sourcing Traditional Taxi 

Supply Regionally dynamic supply depending on 

demand 

Fixed supply of taxis (~50,000) 

Fare Can be demand-responsive Fixed price, subjected to heavy regulation 

Driver 

entry 

Both part-time and full-time drivers: pay 

fees to TNCs proportionately to ride services 

provided 

Full-time driver: pay fixed fee to taxi 

company 

  

There are also debates over whether ride-sourcing falls into the category of sharing 

economy. Sharing economy refers to peer-to-peer sharing of access to goods or services through 

online application (Hamari et al., 2015). A commonly-used example of sharing economy in 

transportation is ride-sharing. Ride-sharing groups travelers who have similar destinations in a 

private vehicle with the goal of reducing cost, congestion and emission (Chan and Shaheen, 

2012). It allows the sharing of idle resources, in this case vehicle occupancy, and potentially 

reduces on-road vehicles. Ride-sourcing differs from ride-sharing because the driver usually does 

not share the same destination of the passenger. Instead of the sharing of vehicle occupancy, 

ride-sourcing allows the sharing of idle mobility of the vehicle, which potentially reduces the 

need of owning additional vehicles. From this perspective, ride-sourcing still falls into the 

category of the sharing economy. Also, TNCs have introduced shared rides (carpools) as an 

option for ride-sourcing services.  

In China, ride-sourcing services first became available in 2014 (TalkingData 2014). By the 

end of 2014, two TNCs, Didi and Kuaidi, had claimed the largest market share in China. In order 

to compete with Uber locally and worldwide, the two TNCs merged, becoming Didi Chuxing in 
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February 2015. By May 2015, about 15 percent of the population in China had used TNC apps, 

and 80 percent of those had used Didi Chuxing (TalkingData 2015).  

The introduction of TNCs in Shanghai altered the transport landscape. As in other parts of 

the world, traditional taxis and TNCs in Shanghai differed in three main ways: supply of 

vehicles, fare, and ease of driver entry. The supply and cost of ride-sourcing services were at this 

time quite responsive to demand, in contrast to the number of taxis and taxi fares, both of which 

were heavily regulated. From 2003 to 2013, the number of taxis in Shanghai fluctuated around 

50,000, while its population increased from 16 to 24 million, and GDP per capita grew 2.3 times 

(Ministry of Transport of People’s Republic of China 2015). The stagnation of taxi supply over 

this decade-long period can be explained by high entry costs. Taxi vehicle licenses in Shanghai 

may cost up to￥500,000 per vehicle (around $77,000 US), and in addition drivers paid a fixed 

commission fee of ￥8,200 each month to the taxi company, which was approximately 30 to 40 

percent of the driver’s monthly income (China National Radio 2015). In contrast, the number of 

TNC drivers (both full-time and part-time) in Shanghai exceeded 287,700 in August 2016, a 

mere two years after the ride-sourcing service was introduced in September 2014 (Didi Chuxing 

2016). There was no license fee to become a TNC driver in 2015, and the only commission fee 

was a slight fraction of the fare. The growth of ride-sourcing services in China during this time 

occurred under minimal government intervention, despite boycott attempts mounted by taxi 

companies and some policy advocates. The rapid growth was also enabled by ubiquitous 

smartphone ownership, as more than 94 percent of the adult population possessed smart phones 

in 2013 (Smart Device Business Center 2013), and there were 137 smartphones in Shanghai per 

100 people in 2015 (FORWARD Business Information Co. Ltd. 2019). In comparison, 

smartphone ownership in the US was about 77% in 2018 (Pew Research Center 2018).  

Similar to other cities worldwide, the growth of TNCs and ride-sourcing in Shanghai has 

triggered great controversy among scholars and policy makers for its potential impacts on travel 

patterns, particularly road congestion and pollution, parking availability and its potential effects 

on public transit. The municipal government of Shanghai has long considered promoting public 

transit and auction for private vehicle license plate as an important part of its strategy for traffic 

mitigation (Chen and Zhao 2013). Shanghai now has the world’s largest public transit system 

(673 kilometers of metro and 1461 bus routes with more than 16,000 buses), and it has also low 

auto ownership (3.6 million cars with more than 24 million people) compared to other large 

Chinese cities (Shanghai Urban-Rural Construction and Traffic Development Academy 2015). 

Public transit, private vehicles, and walking/biking respectively accounted for about 22, 17 and 

57 percent of all person trips in 2015 (Shanghai Urban-Rural Construction and Traffic 

Development Academy 2015). Although public transit took up a larger share of person trips than 

private cars, it is likely that private cars occupy more space on the road, making a greater 

contribution to congestion, due to lower passenger occupancy per vehicle.  

What makes Shanghai a particularly interesting place to study ride-sourcing use is the fact 

that due to its license auction policy the metropolitan area has relatively low auto ownership 

given its size and relative affluence (Chen and Zhao 2013). In Shanghai, licenses typically cost 

about ￥80,000 per vehicle in 2015 (about $12,300 in US dollars). As a result of the policy, in 

Shanghai automobiles are ordinarily owned and used only by residents with medium to high 

income (Chen and Zhao 2013). In 2014, there were less than 15 private cars for every 100 

residents in Shanghai, and private cars accounted for about 17% of trips (Shanghai Urban-Rural 
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Construction and Traffic Development Academy 2015). Compared to auto ownership, ride-

sourcing is a comparatively accessible travel option, as 94.4% of the adult population in 

Shanghai owned at least one smart phone in 2013 (Smart Device Business Center 2013) and at 

least during some periods of operation, the average ride-sourcing fare was quite low at ￥1 per 

kilometer. For comparison, the average hourly wage in Shanghai was around ￥35 in 2015 

(Shanghai Bureau of Statistics 2015).  
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Chapter 2. Literature review 

To date, empirical research investigating ride-sourcing from a user perspective remains 

limited, primarily due to data availability. This literature review covers the existing literature 

from the following perspectives: ride-sourcing’s competition with public transit, equity, and ride-

sourcing’s relationship with parking and congestion. 

 

2.1 Relationship with public transit 

 

Ever since the introduction of ride-sourcing, its relationship with transit has a focal point of 

discussion; some have worried that ride-sourcing services would compete with transit, drawing 

away transit riders; on the other hand, ride-sourcing could help provide an answer to the “last 

mile problem” of transit, providing connections from transit stations to final origins and 

destinations (Shaheen and Chan 2016). 

A few studies have directly surveyed how TNC users travel along with their attitudes 

towards travel. One of the first such studies, using survey data from San Francisco in 2014, 

concluded that ride-sourcing was more a foe than a friend of transit. Analyzing 380 survey 

responses, the authors found that just 5% of ride-sourcing trips in San Francisco provided access 

to transit stations, while 33% of survey respondents said that they used ride-sourcing to replace 

transit, and an additional 6% of the ride-sourcing trips were conducted because public transit was 

not available (Rayle et al. 2016). The authors also found some additional evidence suggesting 

that TNCs might replace transit: 81% of ride-sourcing trips ended within 200 meters of a bus 

stop, and 28% of trips ended within 400 meters of a rail station. Another survey of more than 

4,000 respondents in seven major US cities found that whether ride-sourcing substitutes with or 

complements public transport is dependent on the type of transit: ride-sourcing users reported 

that they reduced bus trips and light rail trips by 3% to 6%, while increasing heavy rail use by 

3%, after they started to ride-hail (Clewlow and Mishra 2017). The same study found that “not 

enough transit stations” and “transit service is not available” were the second and third most 

important reasons why ride-sourcing users stated they preferred to use TNCs. Nevertheless, some 

transit agencies in the US believe that ride-sourcing may benefit public transit given that between 

3 and 16% of TNC trips in the US are transit access trips (Feigon and Murphy 2018). 

Three studies used panel data and econometric models to explore whether the entrance of 

ride-sourcing service into a city leads to a reduction in transit use. The results vary. One study 

applied a regression discontinuity design on 30 urbanized areas in the US and found that the 

entrance of the first TNC in the metropolitan area was associated with an increase in transit 

ridership, suggesting an initially complementary relationship, but that the entrance of the second 

TNC subsequently reduced transit ridership (Sadowsky and Nelson 2017). The authors 

speculated that this effect could have been due to a drop in TNC fares with the entrance of the 

second company, due to competition. The same study concluded that ride-sourcing is more likely 

to substitute for rail transit, and that there was no evidence of competition against bus transit. 

Another study using agency-level ridership data, and employing a difference-in-differences 
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approach with matching pre-treatment trends, showed that ride-sourcing competed with buses 

but complemented rail transit: the introduction of ride-sourcing seemed to decrease bus ridership 

by around 1%, but increased rail ridership by between 2% and 7% depending on the type of rail 

(Babar and Burtch 2017). The third study used a similar difference-in-differences approach to 

study how Uber entrance affected metropolitan-level transit ridership from 2004-2015 on 196 

metropolitan areas (Hall et al. 2018). The researchers found that Uber increased transit ridership 

for smaller transit agencies and in larger cities, and that the complementarity effect tended to be 

larger for rail than for bus ridership, possibly due to the fact that rail users are wealthier.  

Two studies used aggregated ride-sourcing trip data in New York to explore the association 

with transit. One cross-sectional analysis using 2015 Lyft and Uber data in New York City 

showed that the number of ride-sourcing pick-ups was positively associated with transit 

frequency, and the authors concluded that ride-sourcing was associated with more transit 

ridership (Mahmoudi and Zhang 2018). Another study using a fixed-effects regression model to 

explore the relationship between Uber pick-ups and the turnstile traffic at rail transit entrances 

for 156 taxis zones and for a period of about one year in New York found that each turnstile 

entrance was associated with an additional 0.005 Uber pick-ups in every 4-hour time interval in 

each zone, again indicating complementarity of transit and TNCs (Hoffmann et al. 2016).  

Since ride-sourcing is, to a certain extent, similar to traditional taxi, studies on the 

relationship between taxi and transit could shed lights on how ride-sourcing affects public transit. 

Austin and Zegras (2012) investigated the effects of transit proximity on taxi trip generation, and 

found that taxi both complements and substitutes urban rail and bus, and the substitution effect is 

stronger when the service level of nearby transit is lower. King et al. (2012) explored the patterns 

of taxi trips in New York and found that the origins and destinations of taxi trips have different, 

asymmetrical distributions, and many taxi trips are accompanied by transit trips, suggesting a 

complementary relationship between them.   

 

2.2 Equity 

 

Rayle et al. (2016) carried one of the first studies collecting socioeconomic data from ride-

sourcing users. From a pool of 380 users in San Francisco in 2014, they found that the majority 

of users were medium-high income and well educated, with very few lower-income travelers 

(Rayle et al. 2016). These findings were re-affirmed by a recent study, which found that affluent 

US travelers with college degrees made twice as many ride-sourcing trips compared to less 

educated and poorer peers from a survey of more than 4,000 respondents in seven major US 

cities (Clewlow and Mishra 2017). Another study of 394 online survey respondents across 15 US 

metros found that ride-sourcing users tended to be younger and well-educated, but that 

household income was not so significantly associated with use (Dawes 2016). A recent study 

based on an online survey in Austin, Texas of 1,840 former TNC users after the suspension of 

Uber/Lyft services there in 2016, found the majority of users were from households with income 

exceeding $100,000 (Hampshire et al. 2017).  

Thus most research has showed ride-sourcing services being used primarily by wealthier 

residents. However it is possible that in some contexts the demographic composition of ride-
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sourcing users may be similar to those of taxis, which tends to be somewhat bifurcated, either 

above average income or very poor (Pucher and Renne 2003; Renne and Bennett 2014). Across 

metropolitan areas ride-sourcing is often cheaper than taxis, and thus has the potential to improve 

the mobility of lower income households, especially those without cars. A recent study did in 

fact observe high ride-sourcing usage among lower income neighborhoods as well as 

neighborhoods with high minority population in some US cities (Feigon and Murphy 2018). 

Another recent study using data from the U.S. National Household Travel Survey 2016-2017 

showed that ride-sourcing is used disproportionately by travelers from the poorest income groups 

in smaller urban areas, possibly due to lower vehicle ownership and the lack of public transit in 

these areas (Schaller 2018).  

Two other studies, in Seattle and Atlanta respectively, analyzed the association between the 

average wait time for Uber service and Census block level socio-economic and built 

environment characteristics (Hughes and MacKenzie 2016; Wang and Mu 2018). They both 

concluded that dense areas have better access to Uber services in terms of shorter wait time 

probably due to higher supply, and it does not appear that block groups with predominantly 

lower-income households would have significant higher wait time for Uber services. These 

studies provide valuable information about spatial variation in the potential accessibility to ride-

sourcing services, but do not reveal spatial variation in trip-making that would help understand 

usage by different income levels. Another recent dissertation by Brown investigated Lyft data in 

Los Angeles found that higher ride-sourcing trips are correlated with lower neighborhood auto-

ownership, suggesting that ride-sourcing helped improve people’s mobility in zero-car 

households (Brown 2018). Brown also concluded that Lyft served higher proportion of low 

income users as well as high income users (Brown 2018). But the question of how changes in 

ride-sourcing fare may influence use by households of different income levels remains. Such 

data and analysis could be used to inform policy and regulations on ride-sourcing.  

 

2.3 Parking and congestion 

 

Researchers have speculated that the advent of ride-sourcing, as well as shared autonomous 

vehicles, would reduce the need for parking, thus generating redevelopment opportunities in 

cities (Shaheen and Cohen 2018). But empirical evidence of how parking affects ride-sourcing is 

very limited and the only empirical research available consists of surveys of user’s attitudes. 

Rayle et el. (2016) found that 18% of the 380 respondents in San Francisco reported choosing 

ride-sourcing to avoid having to park a car. Other studies have also concluded from their surveys 

that parking is one of the primary reasons why TNC users chose ride-sourcing over driving 

(Clewlow and Mishra 2017, Schaller 2018).  

Another focal point of the ride-sourcing discussion is its relationship with congestion 

(Shaheen and Cohen 2018). On one hand, ride-sourcing has been criticized by planners and city 

governments for causing congestion (SF Chronicle, 2018). On the other hand, some researchers 

believed that ride-sourcing may reduce auto use by allowing vehicles to be shared among 

multiple passengers and allowing more efficient use of vehicles (Shaheen and Cohen 2018). But 

to date, there is very little empirical evidence whether ride-sourcing increases or decreases 

congestion. A survey by Clewlow and Mishra (2017) found that the more frequent a user ride 
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hailed, the more likely she would report a likelihood of reducing auto ownership and driving less 

in a personal vehicle. A natural experiment of user behavior after the suspension of Lyft/Uber 

service in Austin, Texas showed that about 40% of ride-sourcing users switched to another TNC 

while another 40% of users chose to drive themselves, and only 9% of users chose public transit 

(Hampshire et al. 2017). The study also showed that those who chose personal vehicles made 

23% more trips than their counterparts who chose another TNC after the suspension, indicating 

that ride-sourcing may reduce total vehicle trips. We also identified one study that used a 

difference-in-differences approach to investigate whether the entrance of Uber in 87 US cities 

affected the city’s overall level of congestion, measured by travel time index, total delay and 

delay per commuter. The study concluded that Uber entrance reduced the congestion level in 

cities according to each measure (Li et al. 2016). 

All the above-mentioned studies provided valuable insights. Studies found that ride-sourcing 

users substituted trips mainly with autos but also with transit, and evidence suggests that 

increases in ride-sourcing use are associated with lower overall congestion in cities. Conflicting 

results from these studies on whether ride-sourcing is associated with a reduction in transit 

ridership, and if so by how much, indicates that more research is needed, especially taking into 

account the quality of transit access.  

However there are significant gaps in the literature. First, travel behavior within cities is not 

spatially homogenous, but most previous studies investigate ride-sourcing at the level of cities or 

metropolitan areas. Those results do not take account of the fact that ride-sourcing may cause 

decreasing transit ridership or congestion in some neighborhoods but increase the level of traffic 

in others. It is important to understand transit access and congestion at a local level because they 

directly affect local accessibility and environmental impacts. Second, the relationship between 

ride-sourcing and other travel modes are not necessarily linear. For example, the increase of an 

additional bus stop would improve transit accessibility differently when there is already 5 bus 

stops nearby compared to 0 bus stops. But so far the most reliable studies using panel data have 

adopted simple econometric models, testing only for linear relationships.  
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Chapter 3. Descriptive analysis: what proportion of 

ride-sourcing trips has transit alternatives 

3.1Introduction 

 

This chapter used ride-sourcing GPS travel data in Shanghai to investigate what proportion 

of actual ride-sourcing trips can be replaced by public transit, namely metro system and regular 

buses. The data of ride-sourcing trips includes a large sample (a total of 140,854 random samples 

used in this study, explained in the Data section) of ride-sourcing trips for a period of 10 months 

in the year of 2015. It is provided by Didi Kuaidi, the largest TNC by market share in China 

(with 90% of market share). Google Map Direction API was used to find the most convenient 

transit alternative of each ride-sourcing trip. Since having a transit alternative does not mean the 

alternative is reasonable, I set criteria for whether a specific ride-sourcing trip can be reasonably 

substituted by public transit by defining access/egress time to transit stations, wait time, number 

of transfers, and the total transit travel time compared to ride-sourcing. I then used a descriptive 

framework to explore whether ride-sourcing trips can be replaced by transit, and also the 

circumstances under which ride-sourcing is more likely to be a competitor to public transit. 

  

3.2 Data and methodology 

 

The ride-sourcing GPS dataset used in this paper was provided by Didi Chuxing. It consists 

of 250,000 trips that were randomly sampled by Didi Chuxing from their database from the first 

seven days of each month from January to October 2015 from the Didi Chuxing database. The 

data include the date, time of day, addresses and geolocations of origins and destinations of each 

trip. In order to more accurately represent the changing monthly trip volume, I randomly re-

sampled the data for each month based on data provided by the TNC on the total number of trips 

conducted in Shanghai within each month. The growth and decline of ride-sourcing trips from 

January to October, 2015 are shown in Figure 3.1. The resampling process resulted in a analysis 

subsample of 140,854 trips and did not substantially change the characteristics of the data (Table 

3.1, below). 

Although the dataset does not include the price paid for each trip, Didi Chuxing did provide 

us a detailed timeline of pricing and subsidy changes during 2015. Table 3.2 outlines the major 

events of ride-sourcing travel cost changes, including specific dates of programs such as driver 

subsidy, discount for passengers, and introduction of surge pricing. They are also noted in Figure 

3.1. It should be noted that during this period there is no official regulation on ride-sourcing and 

TNCs. 

Generally speaking, from February to June, the travel cost for ride-sourcing was decreasing, 

and from ate June to October, the cost was increasing. Total usage of the system in these data 
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correspond to the fare changes, with increasing use during the fare reduction period followed by 

a decrease in use when fares increased and driver incentives were removed (Figure 3.1). 

Table 3.1. Comparison of average travel distance and travel time before and after resampling 
 N (before resample) Mean N (after resample) Mean 

Distance (km) 250,000 5.56 140,854 5.42 

Travel time (min) 250,000 17.80 140,854 18.00 

 

Table 3.2. Major ride-sourcing pricing events by TNC in 2015 
Date (2015) Ride-sourcing pricing events 

Starting from Feb. 

17th 

￥10-15 (~$2.5) case back each trip for passengers, ￥50 ($8.5) awards 

for new drivers 

Starting from Mar. 

21st 

The TNC allocated ￥1 billion for subsidizing passengers; ￥35 ($6) cash 

back each trip for passengers 

Starting from May 

13th 

New cheap ride-sourcing services started: no initial fee for booking, and ~

￥1 (17 cents) per km each trips 

Starting from Jun. 

16th 

Introduction of surge pricing; end of passenger promotion; per km cost 

increased by 50% 

Starting from Aug. 

16th 

End of driver subsidy and incentives 

Compare with Price of Taxi, Bus and Metro in Shanghai 

Taxi price ￥14 (initial fee) + ￥2.5 per km 

Bus Price 

City Bus (operate within the outer rim of Shanghai): ￥2 flat rate 

Commute Bus (operate between outer rim of Shanghai and Suburbs): ￥2 

+ ￥0.2 per km, ￥8 cap 

Metro Price ￥3 (the first 3 kms) + ￥1 (per additional 10 kms) 

 

Figure 3.1. Growth and decline of the amounts of ride-sourcing trips each month (in relative 

number: # of trips in Jan is 1) 1 

 

1  Note that October 1st to 7th are national holidays, during when trip patterns might be different. 
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Figure 3.2 shows the average travel time (min) by each month. As I can see the monthly 

average travel time varies between 14 minutes to 22 minutes.  

 

 

Figure 3.2. Average ride-sourcing travel time (min) each month 

 

I used Google Map Direction API to collect data on transit alternatives for each individual 

ride-sourcing trip. I used the origin/destination geolocations, travel start time and date as well as 

travel mode (transit) as inputs and API returned the information on the fastest transit option. 

Results were stored in a JSON file in our local system. I extracted basic information from the 

JSON file, including walking time, waiting time, in vehicle time, number of transfer and all types 

of transit used in this travel (metro and bus). 91% of all 140,854 trips have transit alternatives 

and 9% of the total trips only requires walking as the travel mode. There are 188 trips that are 

extremely long in distance, and no transit option was found for these 188 trips.  

 

Since Google map only contains travel information for the most recent two weeks in 

Shanghai, exact travel dates and time cannot be used as inputs to the API. Instead, I found the 

most recent day of week that matches with the day of week when the trip took place. For 

example, a trip was made 19:58 at January 5th, 2015 which is a Monday. Instead of inputting 

19:58, January 5th, 2015 as the start time, I inputted 19:58, April 4th, 2016 which is the closest 

Monday to the date that I run the analysis (April 8th to 11th, 2016). I believe this compromise is 

acceptable since the data was collected 1 year ago and there is unlikely any significant change in 

transit route alternative characteristics. In addition, there might be doubts that Google Map data 

for Shanghai might not accurately represent the travel information there. I used a local Map 

provider, Gaode Map, and randomly select 20 pairs of trips and find the transit options to 

compare with the results from Google. I found that the outputs were generally the same across 

the two Map platforms. 

 

Table 3.3 shows the summary of Google Map Direction API results. The average travel time 

for transit is 52 minutes, and the average walking time is 15 minutes, which is acceptable given 

that the walking time includes access time and egress time. The average waiting time is 13 
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minutes, and the average in vehicle time is 23 minutes. Also, almost 90% of the transit 

alternatives only require one transfer at most. In addition, the time ratio between transit 

alternative travel time and ride-sourcing travel time strongly indicates the advantage of ride-

sourcing: if choosing transit, on average travelers would need to spend as 3.74 times long as ride-

sourcing would take to arrive at their destinations. Among all trips, only 21% would take less 

than twice as long by transit compared with their ride-sourcing travel time. The results meet our 

expectation and personal experience of transit services in Shanghai, and it is also similar to 

studies in San Francisco (Rayle et al., 2016). 

 

Table 3.3. Summary statistics of Google Map Direction API results 

Transit alternatives N % 

Have transit alternatives 127,636 90.6% 

Only require walking 13,030 9.3% 

No result 188 0.1% 

Total 140,854  

Transit travel time (min) 
Mean Std. Dev. 

Total transit travel time 52.03 36.32 

Walking time 15.58 8.33 

In vehicle time 23.31 26.84 

Waiting time 13.13 11.17 

Number of transfers N % 

No transfer required 86,179 61.2% 

# of transfer = 1 34,225 24.3% 

# of transfer = 2 5,907 4.2% 

Time ratio (transit travel time/ride-sourcing travel time)  

Average time ratio 3.74 

Std. Dev. of time ratio 4.51 

% of trips that are 50% longer by transit 90.8% 

% of trips that are twice as long by transit 79% 

 

Please note that having a transit alternative does not mean transit is a “viable” option for that 

specific trip. The google API returns total transit time, walking time, waiting time, and number 

of transfers for the fastest transit alternative, but that does not mean that the transit alternative is 

reasonable. In other words, there are transit alternatives that are unlikely to be taken by any 

traveler. The transit travel time might be much higher than the time spent in a car, or the walking 

distance to nearest transit station might be too long. Thus I need to identify which transit 

alternative is considered ‘viable’. The criteria for defining the “viable” competitive transit 

alternative to ride-sourcing are as follows. 
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• Walking time <= 30 min  

• Waiting time <= 20 min 

• Number of transfer <= 1 

• Transit travel time / Ride-sourcing travel time <= 2 

 

It is important that I set such criteria for “viable” transit alternative, because the transit 

network in Shanghai is so dense that the majority of trips can be matched with a transit 

alternative otherwise (as shown in Table 3.3). In 2015, There are a total 289 metro stations and 

14,575 bus stops in Shanghai. The reason why walking time threshold is 30 minutes is that this 

allows a 15-minute access time at both end of a trip, that is approximately 800-1,000 meters of 

walking distance at both ends. Setting wait time at 20-minute makes sure that transit alternatives 

with routes that have large headways are included. I set that transit travel time / ride-sourcing 

travel time should be less than 2 because the utility of time on board transit is lower than that on 

a car, but the differences should not be too large so that transit cannot compete with ride-

sourcing. 

 

Figure 3.3 shows the percentage of ride-sourcing trips that have reasonable transit 

alternative each month. As I can see from the figure, the percentage ranges from 15% to about 

35%. This percentage is quite comparable with findings from the US (Rayle et al. 2016). 

 

Figure 3.3. Percentage of ride-sourcing trips that have reasonable competing transit alternatives 

each month 

 

3.3 Descriptive results 

 

The essential question I want to address is under what conditions is ride-sourcing service 

more likely to be competing with transit. To answer this question, I made several assumptions. 

First, I assume that, when ride-sourcing price decreases, more people take ride-sourcing. This is 
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evidently shown previously (Figure 3.1). Secondly, I assume that these increasing amounts of 

ride-sourcing trips were either trips that were previously made via other modes, including transit, 

private cars, taxi, etc., or were trips that would not have been made without access to ride-

sourcing service. Transit took up a significant percentage in motorized travel in Shanghai. In 

2014, 48% of the trips in Shanghai urban area are taken by transit, and the household level auto-

ownership are 28% due to strict restriction on vehicle license (Shanghai Municipal 

Transportation Commission, 2015). Based on these statistics, I assume that if a ride-sourcing trip 

has a reasonable transit alternative, it is very likely that the traveler switches from transit to ride-

sourcing.  

There are many ways to define the kind of condition where I examine the key question. In 

this paper, I specifically focus on three aspects: the length of travel, time of travel, and the mode 

of transit. Here this chapter specifically conduct descriptive analysis from the following 

perspectives: distance of travel, pear hour vs. non-peak hour, and type of public transit. 

 

Short trip vs. Long trip 

 

Our first question is whether transit options are more competitive with ride-sourcing in 

shorter trips or longer trips. The key parameter explored in this study is the percentage of trips 

that can be reasonably replaced by transit and the fluctuation of it may its competitiveness with 

transit. However, there are many possibilities that explain the fluctuation. For example, it can be 

caused by fluctuation in trips that cannot be replaced by transit, or trips that can be, or both. So I 

need to look at the total amount of the trips (total number of ride-sourcing trips in January is 1) 

and the amount of the trips that can be reasonably replaced by transit. Figure 3.4 shows the 

comparable number of short ride-sourcing trips (ride-sourcing travel time <=20 mins, shown in 

red), and long ride-sourcing trips (travel time >20 mins, shown in orange). Shorter trips account 

for the majority of trips, and the total number of shorter trips fluctuates over time as changes in 

prices. On the contrary, the changes in longer ride-sourcing trips are much less dramatic. I can 

conclude that short ride-sourcing trips accounted for the majority of growth and decline in the 

changes of total number of ride-sourcing trips. 
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Figure 3.4. The relative amount of short ride-sourcing trips (ride-sourcing travel time <=20 

mins), and long ride-sourcing trips (travel time >20 mins) each month 

 

Figure 3.5 shows the percentage of short ride-sourcing trips with viable transit alternatives 

over the 10-month period. The percentage of short ride-sourcing trips that can be reasonably 

replaced by public transit are fairly low and stable, ranging from 5% to slightly less than 10%, 

shown by green line. Quite contrarily, from February to July, I see a sharp increase of short ride-

sourcing trips that are without viable transit alternatives, and a dramatic decrease of it after July 

(Figure 3.5 red). Such dramatic fluctuation indicates that people who made short ride-sourcing 

trips that had no reasonable transit alternative are very sensitive to price changes. Compared to 

the large variation of the number of short ride-sourcing trips without viable transit alternatives, 

the variation of the number (Figure 3.5 orange) of short ride-sourcing trips with viable transit 

alternatives is fairly small. So does the percentage (Figure 3.5 green) of this type of trip. That is 

to say, people do not necessarily make more short-distance ride-sourcing trips that can be made 

via transit, when ride-sourcing is cheap. Neither do people make less of such trips when the cost 

of doing so is high. This might be indicating that ride-sourcing is not a competitor to public 

transit when the trip is short in terms of distance. The increase of the number of short ride-

sourcing trips without transit alternative in periods when prices were low are either switching 

from travel modes other than transit (private cars, taxis, motorcycles, etc.), or induced travel 

demand by the introduction of affordable ride-sourcing. 

 

The pattern in the percentage of long ride-sourcing trips with viable transit alternatives 

(Figure 3.6) is very different from that of short ride-sourcing trips. The percentage of long ride-

sourcing trips (Figure 3.6 blue) that have viable transit alternatives are fairly high compared to 

short ride-sourcing trips, ranging between 30% to 40% (20% in October, but as I discussed 

before October 1st to 7th is a national holiday). In other words, ride-sourcing is more likely to be 

a competitor to transit at longer distance. Growths in both long ride-sourcing trips with and 

without viable transit alternatives contribute to the increases of the total long ride-sourcing trips 

from January to July (during which period the prices of taking ride-sourcing is low), and only 
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after July when prices of ride-sourcing were becoming increasingly high, the number of long 

ride-sourcing trips with transit alternatives started to decrease. Noticeably, long ride-sourcing 

trips without reasonable transit alternative increased even after travel cost increased. This may 

suggest that ride-sourcing is complementary to public transit for providing services to smaller 

and scattered activity centers. 

 

 

Figure 3.5. The percentage and relative amount of short ride-sourcing trips with viable transit 

alternatives  

 

 

Figure 3.6. The percentage and relative amount of long ride-sourcing trips with viable transit 

alternatives 
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To summarize, ride-sourcing seems to be a competitor to public transit over longer distance 

of travel. This may be due to the fact that a longer ride-sourcing trip would almost always means 

even longer travel time by transit. But another important implication is that the rise of cheap 

ride-sourcing option (due to subsidies by TNC, Didi Kuaidi) might induce travel demand for 

shorter yet transit-inaccessible trips. The mismatch between the increase in total short ride-

sourcing trips and the stagnant short ride-sourcing trips without viable transit alternatives suggest 

that these short trips must have come from other sources. Given the fact that Shanghai has low 

auto-ownership and expensive, market failed taxi services, induced travel might be a significant 

portion of these increased short ride-sourcing trips. 

 

Peak vs. Off-peak 

 

Our second question is that whether there is a distinct pattern between ride-sourcing trips 

that were made in peak hours and off-peak hours. Peak hours are between 6am to 9am, or 4pm to 

7pm Monday through Friday. Off-peak hours are other time period Monday through Friday. I 

chose to focus on weekday trips to simplify the complexity of trip patterns given that it is very 

likely people behave differently over weekends. Figure 3.7 shows that peak hour trips are 

roughly half of the volume of off-peak trips, and they have similar growth patterns over time. As 

what has been mentioned before off-peak trips only include off-peak trips during the weekdays.  

 

 

Figure 3.7. The relative amount of peak-hour ride-sourcing trips and non-peak hour ride-sourcing 

trips each month 

 

During off-peak hour, the percentage of off-peak trips with viable transit alternatives (Figure 

3.8) ranges from slightly below 10% to around 20%, and is generally increasing until August. 

The increase in the number of off-peak trips without viable transit options at low-pricing period 

(Feb. to July) is clearly shown in Figure 3.8. The number of off-peak trips with viable transit 
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alternatives also increases during this period. However, the percentage of off-peak ride-sourcing 

trips with viable transit alternatives continue to increase from July to August, due to the rapid 

decrease of the number of trips without transit alternatives. This suggests that without viable 

transit alternatives, off-peak ride-sourcing demand is more elastic given price changes. This 

might suggest that after the increase of rail-hailing price, many of these trips were switched to 

travel modes other than transit, or the travelers simply stop making the trips. The competition 

between ride-sourcing and transit is more apparent during peak hour (Figure 3.9), although the 

differences is small compared to pattern during off-peak hour. The percentage of peak hour trips 

that have viable transit alternatives are around 20% to 30% (set aside October which is holidays), 

and the variations of the percentage are more dramatic compared to those of off-peak trips. Some 

might argue that it is possible that during peak hour, transit services are at a higher frequency, 

therefore a higher percentage of ride-sourcing trips can find a “viable” transit alternative by the 

same criteria. But this doesn’t change the other factors in our criteria, such as access time and 

number of transfer. Also, our viable transit criteria sets wait time at 20-minute, which includes 

transit alternatives with less frequent routes.   

 

 

Figure 3.8. The percentage and relative amount of off-peak ride-sourcing trips with viable transit 

alternatives 
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Figure 3.9. The percentage and relative amount of peak ride-sourcing trips with viable transit 

alternatives 

 

Bus alternative vs. Metro alternative 

 

The next question I explored is whether ride-sourcing is a competitor to bus or metro. I 

select those trips that have viable transit alternatives that are composed of only bus transit, and 

compare them with trips that have viable transit alternatives that are composed of only metro. 

Figure 3.10 shows the difference between the total numbers of the two types of trips. There are 

generally more ride-sourcing trips that have bus-only alternatives than those with metro only 

alternative, and the difference is generally larger when ride-sourcing price is low. Also, ride-

sourcing trips with bus-only alternative increased faster from February to July, indicating that 

bus riders are more likely to switch to ride-sourcing than metro riders.  
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Figure 3.10. The relative amounts of ride-sourcing trips with bus-only alternative and with 

metro-only alternative 

 

If I look at this question from a percentage perspective, I found that only 5% to 10% of all 

ride-sourcing trips have a reasonable bus-only alternative (Figure 3.11), indicating that ride-

sourcing might not be a direct competitor to bus. However, trips that have metro only alternative 

are much higher in percentage, ranging from 25% to 40%, shown in Figure 3.12. The variation of 

the percentage of ride-sourcing trips that have metro-only alternative fluctuates over months, 

giving a different look compared with the percentage that have bus-only alternative. This 

indicates that ride-sourcing is more likely to be a competitor to metro. This conclusion seems to 

be totally different from what I found from Figure 3.10. One possible reason why I observed 

more bus riders switch to ride-sourcing while at the same time ride-sourcing has a much higher 

percentage of substitution by metro-only alternative, is that the service and reliability of buses 

are worse than those of metro, therefore our analysis eliminated most of the bus-only alternatives 

by setting up a high “viable transit alternative” criteria. In this case bus transit is an inferior good 

and stands minimum chances when competing with affordable ride-sourcing. 

 

However, the high percentage of substitution between ride-sourcing and its viable metro 

alternative did reveal that there were competitions between them. One possible reason why ride-

sourcing seems to compete with metro is that metro is less accessible compared to buses. I 

compared the average walking distance for two types of alternatives, and found that the walking 

time for accessing metro is significantly higher than that for bus (13 minutes compared to 8 

minutes). Additionally, Metro stations in Shanghai have security checks at most metro station 

entries, which may drive people away from taking metro.  

 

 

Figure 3.11. The percentage and relative amounts of ride-sourcing trips that have a viable bus-

only alternative 
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Figure 3.12. The percentage and relative amount of ride-sourcing trips that have a viable metro-

only alternative 

 

To summarize the findings above, ride-sourcing is more likely to compete with public transit 

for longer trips because time saving benefit are more significant in long trips compared to short 

trips. It seems to be a competitor to public transit, though by a small margin, during peak hour 

where ride-sourcing could allow travelers to avoid the crowd. Ride-sourcing is more likely to 

attract passengers from buses, and possibly due to longer walking distance and security checks, it 

also competes with metro.  

 

3.4 Summary of descriptive results 

 

Although the descriptive analysis did not track the individual behavior of switching between 

modes after the emergence of ride-sourcing, it did reveal the multi-facet of ride-sourcing travel 

behaviors. By looking at what proportion of the ride-sourcing trips can be replaced by transit, I 

discovered that ride-sourcing is more likely to compete with transit in longer travel and peak 

hour travel. It is likely that ride-sourcing is competing with both bus and metro, but bus riders 

are more likely to switch to ride-sourcing than metro riders due to low time performance of buses 

in Shanghai. Metro, on the other hand, stands a higher chance against ride-sourcing, but its 

longer access time may still push some travelers to use ride-sourcing. However, it is important to 

note that based on our criteria, the majority of the ride-sourcing trips are complementing the 

current public transit system. Based on these findings, I understand better why ride-sourcing is so 

popular: it’s affordable, time-saving, and accessible.  

We must keep in mind that these ride-sourcing trips are actual trips that took place via Didi 

app in 2015. Thus, finding transit alternatives of these trips imply that travelers chose ride-

sourcing over its public transit competitor. Despite the seemingly subjectivity of the “viable” 

transit alternative criteria in this chapter, setting such criteria is important because the transit 
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network in Shanghai is dense that the vast majority of trips, as I shown in the methodology 

section, can be matched with a transit alternative. Some of the results would certainly change if I 

alter the criteria, but it is always questionable whether transit that takes more than twice as long 

as ride-sourcing can still be competitive against ride-sourcing. It is likely that ride-sourcing 

travelers have different characteristics from transit travelers in Shanghai, or ride-sourcing might 

be used more often on time-sensitive purposes. Previous research did suggest that the travel 

purpose of ride-sourcing is different from that of public transit in the US (Shared-use Mobility 

Center, 2016), but it is used mostly on discretionary purposes. However, this is beyond the 

capability of this dataset except that I can use some machine learning techniques to 

presumptuously deduce the trip purpose.  

This analysis also suggests that during the “low cost” period of 2015, ride-sourcing enables 

travelers for longer trips and perhaps “induced” short trips. It would be very interesting to look at 

the spatial pattern of ride-sourcing trips in the future, perhaps comparing to the spatial 

distribution of other type of travel. If low-cost, large-supply ride-sourcing did induce significant 

demand during the first half of 2015 in Shanghai, on-demand ride services might change the 

landscape of our city. 
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Chapter 4. Equity implications of on-demand ride-

sourcing fare variation: A case study of Didi Chuxing, 

Shanghai, 2015 

 

4.1 Introduction 

 

The rapid emergence and growth of transportation network companies (TNCs) such as Uber, 

Lyft, and Didi Chuxing, operating app-based on-demand ride-sourcing services, has led to a 

debate over the role of TNCs in the urban transport system. Ride-sourcing supporters argue that 

it is a convenient and efficient mode of travel, particularly compared to the traditional taxi 

industry which is typically protected via regulatory limitations on market entry and is thus 

monopolistic, inefficient and not sufficiently customer-focused (Rayle et al. 2016; Shaheen et al. 

2016). Other scholars and government officials are less sanguine, concerned about disruptions to 

the livelihoods of taxi drivers, insufficient insurance protection for drivers and passengers, 

increased traffic, and competition with public transportation. City governments and regulatory 

agencies worldwide have begun to regulate ride-sourcing in different ways, including setting 

licensing criteria for drivers and vehicles, requiring minimum insurance for drivers and 

passengers, and using part of the revenue from ride-sourcing to compensate taxi drivers. By 

either increasing the cost of operations or decreasing the supply of vehicles and drivers, some of 

these regulatory interventions can be expected to lead to fare increases which would undoubtedly 

have unequal effects on those with different socio-economic backgrounds. This study focuses on 

these potential equity impacts, asking how the travel demand of users from different socio-

economic groups changes when ride-sourcing fares change.  

What makes Shanghai a particularly interesting place to study ride-sourcing use is the fact 

that due to its license auction policy the metropolitan area has relatively low auto ownership 

given its size and relative affluence (Chen and Zhao 2013). In Shanghai, licenses typically cost 

about ￥80,000 per vehicle in 2015 (about $12,300 in US dollars). As a result of the policy, in 

Shanghai automobiles are ordinarily owned and used only by residents with medium to high 

income (Chen and Zhao 2013). In 2014, there were less than 15 private cars for every 100 

residents in Shanghai, and private cars accounted for about 17% of trips (Shanghai Urban-Rural 

Construction and Traffic Development Academy 2015). Compared to auto ownership, ride-

sourcing is a comparatively accessible travel option, as 94.4% of the adult population in 

Shanghai owned at least one smart phone in 2013 (Smart Device Business Center 2013) and at 

least during some periods of operation, the average ride-sourcing fare was quite low at ￥1 per 

kilometer. For comparison, the average hourly wage in Shanghai was around ￥35 in 2015 

(Shanghai Bureau of Statistics 2015).  
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Which segments of the Shanghai population are most likely to benefit from ride-sourcing 

availability, and particularly lower-priced ride-sourcing services? Wealthy car-owning residents 

may use ride-sourcing to avoid driving in congested conditions or finding a place to park. Lower-

income travelers may use it to avoid crowded public transport vehicles or to access locations that 

are difficult to reach without a private vehicle. Fare changes thus have the potential to have 

differential impacts on different socioeconomic classes that depend on how they use and value 

the service. Using trip data from 2015 provided by Didi Chuxing, the largest TNC by market 

share in China, this paper explores how ride-sourcing demand is related temporally and spatially 

to socioeconomic status as proxied by property value.  

 

4.2 Data and methodology 

 

The ride-sourcing GPS dataset used in this paper was provided by Didi Chuxing, the same 

data used in Chapter 3. Besides the travel data from Didi, I use the average residential property 

value as a proxy measure for the average household income level of the grid cell. Property value 

has been used as a socio-economic indicator for place-based analysis, as it is highly correlated 

with socio-economic status (Coffee et al. 2013). I obtained all the listed residential properties for 

sales in 2015 and their offer prices (in￥per square meter, which is the standard practice in 

Chinese real estate market) through Metrodata Tech.2, which includes a total number of 97,811 

properties. Table 4.1 shows the descriptive statistics for offer prices of these properties. 

Table 4.1. Descriptive statistics for offer prices of listed residential properties for sale in 2015   
Offer price per m2 Mean Min. Max. 25 PCTL Median 75 PCTL SD N 
 RMB￥(2015) 35,098 95 991,277 23,331 30,288 40,427 22,101 

97,811 
 USD $ (2015) 5,571 15 157,346 3,703 4,808 6,417 3,508 

 

In order to conduct the analysis, I aggregated these data into 1-km grid cells as our basic unit 

of analysis. I deleted grid cells with no records of listed properties, leaving 1,292 grid cells, with 

128,037 ride-sourcing pick-ups and 125,970 ride-sourcing drop-offs. Figure 4.1 shows the 

number of ride-sourcing trips in each grid cell. Figure 4.2 shows the spatial pattern of average 

property value per grid cell. I can see that both pick-ups and drop-offs have similar spatial 

pattern: most of the trips were concentrated in the city center.  

 

2 More information about Metrodata Tech. can be found here: www.metrodata.cn 
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Figure 4.1. Map of ride-sourcing pick-ups (left) and drop-offs (right) in each grid cell 

 

Figure 4.2. Average property value in each grid cell 

 

In a more complete effort to control for other factors I turned to regression analysis. I 

modeled the ride-sourcing demand (for pick-ups and drop-offs separately) as a product of several 

spatial and temporal characteristics, using a negative binomial regression whose function form is 

appropriate for dispersed count data.  

𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑡 = 𝑒𝑥𝑝(β
0
 +  𝛽1𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑉𝑎𝑙𝑢𝑒𝑖 + 𝐗𝐢𝐭

′ ∙ 𝜷 + 𝛍𝐭 + 𝛽2𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑉𝑎𝑙𝑢𝑒𝑖 ∙ 𝛍𝐭 +

ε𝑖𝑡). (1) 

In this formula, 𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑡 is the dependent variable representing ride-sourcing demand in 

grid cell i in month t, measured as the number of pick-ups or drop-offs. 𝛽1𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑉𝑎𝑙𝑢𝑒𝑖 

represents the independent correlation of neighborhood property value with that dependent 

variable. Vector 𝐗𝐢𝐭 is a matrix of independent control variables measured at the grid cell 

(neighborhood) level, including population and employment density as well as activity locations 

in the neighborhood (see Table 4.2). The model treats 𝐗𝐢𝐭 as time-invariant given that these built 
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environment variables are unlikely to have changed very much over the course of the nine-month 

observation period, and if so, not systematically in such a way as to bias results. Vector 𝛍𝐭 

consists of time-period (monthly) fixed effects. Note that the dataset does not contain a price 

variable; the monthly fixed effect 𝛍𝐭 is a proxy for price change, as the ride-sourcing fares 

changed dramatically on a monthly basis due to passenger promotions (as shown previously in 

Table 3.2). Finally, I included a set of variables interacting the average property value with each 

of the fixed effect month dummies (𝛽2𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑉𝑎𝑙𝑢𝑒𝑖 ∙ 𝛍𝐭).  As constructed, the model 

allows a test of whether and how neighborhood property value influences how much variation in 

demand is associated with variation in the ride-sourcing fare, when controlling for other factors. 

Understanding this association helps understand if ride-sourcing demand is more correlated with 

property value when fare of ride-sourcing is changing.  

Note that for most fixed effect panel models, an individual fixed effect 𝛖𝐢 is added for each 

observation to represent all time-invariant characteristics. In this case, however, the independent 

variables are time constant, and therefore collinear with individual fixed effects.  Removing the 

individual fixed effect 𝛖𝐢 could result in omitted variable bias in the model, but fortunately I was 

able to include a large set of land use variables that reduce this possibility (data explained later). 

I clustered standard errors for each month to correct standard errors to reflect the hierarchical 

structure of the data. Finally, I also calculated Moran’s I for both pick-ups and drop-offs to 

determine whether spatial auto-correlation could bias analysis results. I found little evidence of 

spatial auto-correlation. The Moran’s I result for the number of pick-ups in each grid cell was 

0.0915 (with a p-value of 0), while the result for the number of drop-offs in each grid cell was 

0.0869 (with a p-value of 0).  

I estimated two sets of negative binomial models. The first set used continuous property 

value, and the second set treated property value as categorical dummy variables: below 50% 

median, 50%-100% median, 100%-150% median, and above 150% median, while property value 

below 50% median was used as base category. Both sets of models interacted property value 

with the monthly fixed effects. Within each set of models I tested two dependent variables: the 

number of pick-ups and the number of drop-offs.  

In additions to the fixed effects which rule out the unobserved spatial and temporal 

variations, other control variables are included in this study to represent other possible factors 

that influence the demand for ride-sourcing. Theory of travel demand and empirical evidence 

suggested that activity centers are likely to generate trips (Hanson & Giuliano 2004). Thus I uses 

all points of interest (POI) in Shanghai to represent all the activity centers. This POI dataset has 

over 200,000 activity locations, including all offices, shops, restaurants, convenience stores, 

recreational facilities (including theatres and cinemas), schools, hospitals, and parks. I used the 

number of each of these activity location types as control variables in the model. I also used the 

average residential property value as a proxy measure for the value of land in the grid cell, 

because previous literature showed that higher land value is associated with more travel demand 

(Hanson & Giuliano 2004). Population density and employment density at level similar to census 

tract level the US is included in the study as well since research showed that density is related to 

the demand of activity (Chatman 2008; Ewing & Cervero 2010). Average road length within 

each grid cell is also added as a control since previous research showed that road supply is 

directly associated with motorized travel (Chatman 2008). The transit dataset, property dataset 

and the points of interest dataset are all public available data in Shanghai, and the authors 

obtained these datasets through Metrodata Tech. I aggregated the data into 1-km grid cells as 
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well for our analysis. Table 4.2 shows the descriptive statistics of the variables involved in the 

analysis. Table 4.2 shows the descriptive statistics of the variables involved in the analysis. 

I first compared the average number of ride-sourcing trips per grid cell when segmented by 

the average property value in the grid cell or “neighborhood.” Ride-sourcing trips were much 

more likely to take place in neighborhoods with higher property values (Figure 4.3). Given 

changes in the average fare during the nine-month observation window, I are also able to observe 

how trips per neighborhood varied with ride-sourcing fares. Neighborhoods with higher average 

property values had greater variability with fare changes. Among neighborhoods with property 

values exceeding 150 percent of median, as fares fell, usage rose more dramatically, and as fares 

rose, usage dropped off more, when compared to neighborhoods with lower property values 

(Figure 4.3).  

 

Figure 3.3. Average number of ride-sourcing trips in each grid cell segmented by average 

residential property value 

 

Higher property value is also strongly associated with higher population density, higher 

density commercial development, more amenities, and better accessibility. Thus it is helpful to 

isolate the association between property value and number of trips over time controlling for other 

relevant factors. I begin to do this by controlling for population density within grid cells. On a 

per capita basis, ride-sourcing is still predominantly used by higher income travelers; however, 

in areas with lower property value, per capita demand increased after July despite the increase in 

fare (Figure 4.4).   
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Table 4.2. Summary statistics  

 Variable Mean Min Max SD 

# of pick-ups (per month) 9.91 0 457 26.4 

# of drop-offs (per month) 9.75 0 463 26.3 

# of listed properties 75.63 1 580 82.7 

Average property value (￥1000) 29.38 .10 216.75 17.6 

# of offices 25.14 0 477 42.5 

# of shops 57.75 0 1185 91.9 

# of restaurants 27.02 0 427 40.2 

# of recreation facilities 7.34 0 88 9.8 

# of convenience stores 3.63 0 50 6.0 

# of hotels 4.06 0 47 5.6 

# of hospitals .21 0 5 0.6 

# of schools .54 0 6 0.9 

# of colleges .25 0 14 0.9 

# of parks .11 0 2 0.3 

# of bus stops 6.55 0 35 4.9 

# of metro stations .19 0 3 0.4 

Population density (1000 per km2) 4.91 0.01 47.84 7.7 

Employment density (1000 per km2) 1.68 .003 32.59 3.5 

 

 

Figure 4.4. Average number of ride-sourcing trips per 1000 population in each grid cell 

segmented by average residential property value 

 

4.3 Results 

 

The estimation results show that controlling for other factors, wealthier ride-sourcing 

travelers were always more sensitive to ride-sourcing fare changes. Table 4.3 and Table 4.4 show 
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the outputs of models with property value, its interaction with time fixed effects, and other land 

use characteristics. Since the coefficients in the negative binomial models with fixed effects are 

hard to interpret, I also calculated and plotted incident rate ratio (IRR) of property value on ride-

sourcing demand which is the change in the value of dependent variable (demand) after the 

change of an independent variable (property value) by 1 unit. The results of IRR are shown in 

Figure 4.5 and Figure 4.6. I conducted variance inflation test (VIF) and found that all except 

three control variables have VIF smaller than 5. I decided that leave all of the control variables in 

the model because none of them are collinear with our variable of interest: average property 

value. 

If I take a look at the estimated parameters of all interaction terms of property value and 

time effects for Model 1 in Table 4.3, I can find that the estimated parameters are positive from 

February up to May, ranging from 0.001 to 0.009, while they are negative from June to October 

except for August. The results suggest that the association between property value and ride-

sourcing pick-ups is higher from January to May, and such association becomes smaller after 

July. This time frame coincides with the changes of travel subsidies and promotions by Didi as a 

result of the price battle, described above. I can conclude that ride-sourcing trips were more 

likely to originate from places with premium residential areas when fare is lower. The same 

pattern can also be found between ride-sourcing drop-offs and property value, but to a somewhat 

lesser extent (Model 2 in Table 4.3). Number of drop-offs still has stronger correlation with 

property value before June, but the magnitude of these associations seems to be weaker 

compared to those of pick-ups. This indicates that the destinations of ride-sourcing trips are also 

more likely to occur at premium residential areas when fare is lower.  

Figure 4.5 plots the marginal effect of property value on pick-ups/drop-offs each month 

using the estimated values shown in Table 4.3. The marginal effect here is defined as the change 

of ride-sourcing demand when property value changed by ￥1000 per square meter (about $13-

14 per square foot). As I can see from the figure, the IRR of property value and trip demand 

(both pick-ups and drop-offs) were generally higher before June, ranging from 1.055 to 1.065, 

meaning that a neighborhood with a property value greater by the amount of￥1,000 would be 

expected to have between 5.5 and 6.5 percent more trips (for the average neighborhood with 

mean values on the other control variables). After July the IRR became smaller, ranging from 

1.038 to 1.053, except in August. At first glance the trend of decreasing effect of property value 

on ride-sourcing trips with increasing fare is less clear in Figure 4.5, but I must keep in mind that 

our ride-sourcing dataset is a random sample of the total ride-sourcing trips, thus an increase of 

0.02 trips in the sample could represent an increase of thousands of trips. For a more intuitive 

comparison, I can see from Table 4.1 and Table 4.2 that the average trip demand for each grid 

cell is around 9 trips and the standard deviation of property value is ￥22,101. Thus if property 

value increased by one standard deviation, trip demand would rise by one third of the average 

demand with a marginal effect of 1.05.  

The results from the first set of models concludes that the association between property 

value and ride-sourcing demand (both pick-ups and drop-offs) is higher when ride-sourcing fare 

was low, while the association is lower after June when ride-sourcing fare increased due to the 

removal of promotions. This indicates that residents who lived in wealthier communities were 

more responsive to lower fares and sales promotions. I estimated another set of negative 
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binomial models, replacing continuous property value with dummy variables to capture the non-

linearity in the estimated coefficients.  The results are shown in Table 4.4.  

 

Table 4.3. Estimation results for negative binomial models with fixed effect 

  Model 1: pick-ups Model 2: drop-offs 

  Coef. Std. Err. Coef. Std. Err. 

Intercept -2.479*** 0.034 -2.494*** 0.015 

# of listed properties 0.004*** 0.00 0.004*** 0.00 

# of office 0.012*** 0.001 0.011*** 0.001 

# of recreation facilities 0.015*** 0.001 0.014*** 0.001 

# of restaurants -0.004*** 0.00 -0.003*** 0.000 

# of schools 0.125*** 0.01 0.126*** 0.009 

# of colleges 0.036*** 0.005 0.039*** 0.005 

# of shops -0.002*** 0.00 -0.002*** 0.002 

# of parks 0.161*** 0.014 0.142*** 0.039 

# of convenience stores 0.061*** 0.004 0.063*** 0.005 

# of hospitals 0.026** 0.013 0.023** 0.01 

# of hotels 0.018*** 0.002 0.019*** 0.002 

# of metro stations 0.138*** 0.015 0.125*** 0.011 

# of bus stops 0.022*** 0.003 0.023*** 0.002 

Population density (1000 per km2) 0.010*** 0.001 0.009*** 0.003 

Employment density (1000 per km2) 0.020*** 0.002 0.018*** 0.005 

Average property value (￥1000) 0.054*** 0.001 0.054*** 0.004 

Time fixed-effect     

Feb -0.293*** 0.003 -0.317*** 0.002 

Mar 0.045*** 0.004 0.160*** 0.003 

Apr 0.592*** 0.008 0.746*** 0.005 

May 0.599*** 0.008 0.735*** 0.005 

Jun 1.044*** 0.013 1.064*** 0.008 

Jul 1.552*** 0.018 1.582*** 0.011 

Aug 0.888*** 0.014 0.855*** 0.008 

Sept 1.176*** 0.017 1.156*** 0.011 

Oct 1.501*** 0.018 1.567*** 0.012 

Interact property value with fixed-effect     

Average property value (￥1000): Feb 0.000*** 0.00 0.002*** 0.00 

Average property value (￥1000): Mar 0.009*** 0.00 0.007*** 0.00 

Average property value (￥1000): Apr 0.006*** 0.00 0.002*** 0.00 

Average property value (￥1000): May 0.008*** 0.00 0.005*** 0.00 

Average property value (￥1000): Jun 0.003*** 0.00 0.004*** 0.00 

Average property value (￥1000): Jul -0.002*** 0.00 -0.003*** 0.00 

Average property value (￥1000): Aug 0.003*** 0.00 0.004*** 0.00 

Average property value (￥1000): Sept -0.007*** 0.00 -0.007*** 0.00 

Average property value (￥1000): Oct -0.013*** 0.00 -0.016*** 0.00 

Pseudo R2 0.152 0.154 

# of grid cells 1291 1291 

Note: ***: 99% significant; **: 95% significant 
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Figure 4.5. IRR of property value and number of ride-sourcing trips per grid cell (pick-ups and 

drop-offs) 

 

 

Table 4.4. Estimation results for negative binomial models with fixed effect (property value 

dummy variables) 

  Model 3: pick-ups Model 4: drop-offs 

  Coef. Std. Err. Coef. Std. Err. 

Intercept -3.557*** 0.023 -3.245*** 0.016 

# of listed properties 0.003*** 0.00 0.002*** 0.00 

# of office 0.015*** 0.00 0.014*** 0.001 

# of recreation facilities 0.010*** 0.001 0.008*** 0.001 

# of restaurants -0.003*** 0.00 -0.002*** 0.00 

# of schools 0.063*** 0.006 0.074*** 0.006 

# of colleges 0.027*** 0.005 0.036*** 0.004 

# of shops -0.002*** 0.00 -0.002*** 0.002 

# of parks 0.244*** 0.014 0.214*** 0.014 

# of convenience stores 0.034*** 0.002 0.035*** 0.003 

# of hospitals 0.008 0.01 0.004 0.008 

# of hotels 0.013*** 0.002 0.014*** 0.001 

# of metro stations 0.025* 0.014 0.010 0..01 

# of bus stops 0.031*** 0.003 0.032*** 0.002 

Population density (1000 per km2) 0.010*** 0.001 0.010*** 0.001 

Employment density (1000 per km2) 0.009*** 0.002 0.007** 0.003 

Note: ***: 99% significant; **: 95% significant; *: 90% significant 
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Table 4.4 Cont’d 

  Model 3: pick-ups Model 4: drop-offs 

  Coef. Std. Err. Coef. Std. Err. 

Time fixed-effect     

Feb 0.004*** 0.00 -0.757*** 0.001 

Mar 0.201*** 0.002 0.269*** 0.001 

Apr 1.063*** 0.003 0.944*** 0.002 

May 1.378*** 0.002 1.252*** 0.002 

Jun 2.022*** 0.001 1.714*** 0.001 

Jul 2.623*** 0.005 2.330*** 0.005 

Aug 1.851*** 0.004 1.546*** 0.001 

Sept 2.082*** 0.004 1.848*** 0.004 

Oct 2.443*** 0.008 2.189*** 0.006 

Property value dummies (<50% as base)     

50% -100% median 1.783*** 0.003 1.424*** 0.005 

100%-150% median 3.532*** 0.013 3.139*** 0.011 

>=150% median 3.904*** 0.029 3.629*** 0.021 

Interact property value with fixed-effect     

Feb: 50% -100% median -0.396*** 0.001 0.326*** 0.001 

Feb: 100%-150% median -0.430*** 0.002 0.503*** 0.002 

Feb: >=150% median -0.151*** 0.003 0.587*** 0.003 

Mar: 50% -100% median 0.156*** 0.002 0.141*** 0.002 

Mar: 100%-150% median 0.100*** 0.003 0.121*** 0.002 

Mar: >=150% median 0.267*** 0.001 0.180*** 0.001 

Apr: 50% -100% median -0.071*** 0.003 0.222*** 0.002 

Apr:100%-150% median -0.301*** 0.003 -0.082*** 0.002 

Apr:>=150% median -0.339*** 0.003 -0.255*** 0.002 

May: 50% -100% median -0.331*** 0.002 -0.073*** 0.002 

May: 100%-150% median -0.543*** 0.003 -0.363*** 0.003 

May: >=150% median -0.515*** 0.003 -0.404*** 0.002 

Jun: 50% -100% median -0.493*** 0.001 -0.152*** 0.002 

Jun: 100%-150% median -0.962*** 0.002 -0.553*** 0.002 

Jun: >=150% median -0.933*** 0.002 -0.619*** 0.002 

Jul: 50% -100% median -0.684*** 0.004 -0.357*** 0.005 

Jul: 100%-150% median -1.262*** 0.004 -0.906*** 0.005 

Jul: >=150% median -1.265*** 0.005 -0.992*** 0.005 

Aug: 50% -100% median -0.559*** 0.003 -0.256*** 0.001 

Aug: 100%-150% median -0.955*** 0.003 -0.593*** 0.002 

Aug: >=150% median -0.864*** 0.004 -0.585*** 0.002 

Sept: 50% -100% median -0.583*** 0.001 -0.413*** 0.004 

Sept: 100%-150% median -1.278*** 0.002 -1.035*** 0.004 

Sept: >=150% median -1.225*** 0.003 -1.032*** 0.005 

Oct: 50% -100% median -0.722*** 0.005 -0.488*** 0.005 

Oct: 100%-150% median -1.563*** 0.005 -1.269*** 0.005 

Oct: >=150% median -1.605*** 0.004 -1.442*** 0.005 

Pseudo R2 0.185 0.189 

# of grid cells 1291 1291 

Note: ***: 99% significant; **: 95% significant; *: 90% significant 

The results from the second set of models shows that in general the association of the ride-

sourcing fare with travel demand was much larger for richer neighborhoods, but the differences 

between neighborhoods with high and low property values decreased over time. In order to better 
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interpret the estimation results, I calculated and plotted the incident rate ratio for property value 

dummies, shown in Figure 4.6. I can see from the figure that sensitivity to ride-sourcing fares is 

most strongly associated with property value in February and March when passenger promotions 

were first launched. During this period ride-sourcing trips were about 60 times more likely to 

take place in the richest residential neighborhoods (above 150% of the median property value) 

than the poorest (below 50% of median). The decision to stop subsidizing individual trips in June 

and July does not seem to differentiate richer and poorer neighborhoods. In September and 

October, when ride-sourcing fares increased, ride-sourcing trips were still about 10 times more 

likely to take place in the richest than in the poorest neighborhoods. Interestingly, lower-income 

travelers were less sensitive to price during the entire study period (as can be seen in Figure 4.6; 

the lines for the 50% to 100% of median categories are flat).  

The estimation results did show that when passenger promotions and benefits came out in 

February, travel demand at wealthier communities increased much faster than poorer 

communities. But it is worth noticing that the differences in ride-sourcing trip generation 

between rich and poor communities reached record high in February and March, but such 

differences quickly become smaller after March for both trip pick-ups and drop-offs when ride-

sourcing fare was still cheap. I can reasonably speculate that such spikes of difference in 

February and March are due to novelty factor of ride-sourcing as a new and cheap mode, 

especially for wealthier travelers. And the spike of actual demand happened in July, not February 

or March, therefore the growth of ride-sourcing demand from March to July can be contributed 

more on factors such as land use and locations of activities, other than property value. 

 

Figure 4.6. IRR of property value categories (in terms of % median) and number of ride-sourcing 

trips per grid cell (pick-ups and drop-offs) 
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4.4 Conclusion 

 

In this chapter I estimated the association between trip demand and average property value, 

in order to investigate the relationship between ride-sourcing fare and its users. Although in 

terms of sheer number of trips, our descriptive analysis showed that ride-sourcing is still largely 

a premium mode serving places with high property value, our estimation results from our 

controlled analysis showed that travelers from/to areas with lower property value behave 

differently to travelers from/to areas with higher property value. Ride-sourcing trips are more 

likely to take place in areas with higher property value when fare is low, but when fare of ride-

sourcing increased, places with higher property value become less likely to be 

origins/destinations of ride-sourcing trips. We can therefore reasonable speculate that wealthier 

people tend to respond to low fares/promotions more compared to lower income people. That 

being said, the decrease in ride-sourcing fares would likely to benefit middle-high income 

travelers more by make ride-sourcing a competitive mode for to replace their driving trips. But 

the increase of ride-sourcing fare would make lower income travelers baring the consequences of 

increased travel cost due to their lower elasticity to ride-sourcing fare. 

Although this study is one of the first to have access to spatial data on ride-sourcing travel, it 

has its limitations. First, although property value is a reasonable proxy for the affluence of origin 

and destination neighborhoods, future study would benefit by analyzing data explicitly 

describing the income level of residents, although such dataset was not publicly available. 

Secondly, in this study I investigated trip pick-ups and drop-offs, rather than trips. If I were to 

investigate the entire trip as a whole, looking at both pickups and drop-offs, I may find similar 

travel pattern for trips that are both originated and ended at places with low average property 

value as previous research found that taxis are used by low income travelers to fulfill short 

distance travel (Renne and Bennett 2014). Thirdly, I only have data on ride-sourcing travel 

demand, thus limiting the ability to detect substitution or complementarity with other modes such 

as transit. It would be very helpful to investigate whether the lower demand of ride-sourcing by 

lower-income travelers is explicitly associated with lack of access to ride-sourcing supply in 

terms of wait time, with better availability of public transportation, and/or with lower overall 

travel demand.  

 

 



35 

 

Chapter 5. Exploring app-based, on-demand ride-

sourcing’s relationship with parking, transit access 

and congestion: empirical evidence from Didi Chuxing 

in Shanghai 

 

5.1 Introduction 

 

The rapid emergence and growth of transportation network companies (TNCs) such as Uber, 

Lyft, and Didi Chuxing, operating app-based on-demand ride-sourcing services, has led to a 

debate over their role in the urban transport system. Ride-sourcing supporters argue that it is a 

convenient and efficient mode of travel, with the potential to reduce private auto use, decrease 

the need for parking and solve the first/last mile problem of public transit (Rayle et al. 2016; 

Shaheen et al. 2016). Other scholars and government officials are less sanguine, concerned that 

the growing popularity of ride-sourcing might undermine congestion mitigation and replace 

public transportation, eventually resulting in negative environmental and social consequences 

(Rayle et al. 2016, SFCTA 2017, Schaller, 2018).  

The growth of the ride-sourcing business has brought significant challenges for planners, 

engineers, and policy makers, due to the magnitude and uncertainty of its impacts. For example, 

the number of full- and part-time TNC drivers in Shanghai exceeded 287,700 in August 2016, a 

mere two years after ride-sourcing was introduced (Didi Chuxing 2016). In 2017 it was 

estimated that more than 15% of trips and 20% of vehicle mileage in San Francisco was 

produced by TNCs (SFCTA 2017).  

Despite the exponential growth of ride-sourcing worldwide, information about its 

relationship with parking, public transit, and congestion is still very limited. These are measures 

of the relative ease of driving and using transit, and might predict lower or higher use of ride-

sourcing as an alternative. Thus one might expect that ride-sourcing demand would be higher in 

places with restricted parking, at least for auto owners. One might also expect that demand 

would be higher in places with lower levels of transit access because of the significant time 

advantages it could offer there, despite ride-sourcing being more expensive than transit. Finally, I 

hypothesized that ride-sourcing may be positively associated with congestion because it may 

relieve travelers from driving on congested roads, or because it may in fact cause congestion.  

Using a panel dataset from Didi Chuxing, the largest TNC by market share in China, this 

study investigates the following questions: (1) To what extent is parking supply associated with 

lower ride-sourcing demand? (2) Does better transit access reduce or increase the use of ride-

sourcing? and (3) Does higher congestion affect ride-sourcing demand?  
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This chapter addresses these problems by using a statistical modeling method to capture 

non-linearity using spatially precise data from Shanghai. And unlike some previous studies that 

relies on retrospective survey data, this chapter relies on disaggregate trip data which are 

consistent over time. Finally, as far as I am aware, this is the first study to empirically investigate 

parking availability with objective parking data.  

 

5.2 Data and methodology 

 

The ride-sourcing GPS dataset used in this paper was provided by Didi Chuxing. Didi 

Chuxing accounted more than 80% of the ride-sourcing market share in China, 2015 

(TalkingData, 2015). The dataset consists of 100,000 trips within the outer ring road of Shanghai 

that were randomly sampled by Didi Chuxing from their database from the first seven days of 

each month from January to April 2015 from the Didi Chuxing database. The data include the 

date, time of day, addresses and geolocations of origins and destinations of each trip. I accurately 

represent the changing monthly trip volume by assigning a weight to samples from different 

months that represent the total trip volume in that specific month. The trips contained in this 

dataset were taken on the “Kuai Che” service provided by Didi Chuxing, which is similar to 

standard Lyft and UberX service in which the driver is considered to be a TNC “subscriber” and 

is responsible for the vehicle. Table 5.1. compares the ride-sourcing travel cost with the fare of 

other travel modes in Shanghai, 2015. It should be noted that during this period there were no 

official regulations on ride-sourcing and TNCs, which means that there were little limitations on 

the supply or the demand of ride-sourcing. 

Our study area is defined as land falling within the Outer Ring Road of Shanghai. This zone 

is usually considered to be the urbanized portion of Shanghai. To simplify the analysis, I divided 

the dataset temporally into 6-hour time segments: from midnight to 6 am, 6 am to noon, noon to 

6 pm, and 6 pm to mid-night. Since our dataset is collected during the first seven days of each 

month from January to April, the number of time segments is 4 X 7 X 4 which is 112. I then 

aggregated pick-up and drop-off locations into 1-km grid cells as our basic spatial unit. There are 

709 grid cells within our study area. Figure 5.1 shows the average ride-sourcing demand in each 

grid cell time of day. I can see the demand are much higher at afternoon and evening.  Figure 

5.2 illustrates the spatial distribution of ride-sourcing demand in each grid cell. 

Table 5.1. Fare of ride-sourcing of Didi Chuxing and other travel modes in Shanghai, 2015 
Mode Fare 

Ride-sourcing before 

July, 2015 
~￥1 ($0.17) per km, with various coupons and discounts 

Taxi price ￥14 (initial fee) + ￥2.5 per km 

Bus Price 

City Bus (operate within the outer rim of Shanghai): ￥2 flat rate 

Commute Bus (operate between outer rim of Shanghai and Suburbs): 

￥2 + ￥0.2 per km, ￥8 cap 

Metro Price ￥3 (the first 6 kms) + ￥1 (per additional 10 kms) 
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Figure 5.4. Average ride-sourcing demand by time of day 

 

Figure 5.2. Map of ride-sourcing pick-ups (left) and drop-offs (right) in each grid cell 

 

Apart from ride-sourcing data, I also acquired data about road congestion and parking 

supply. Both of the two datasets I relied upon are publicly available from the Data service 

website of the Shanghai Municipal Government via http://www.datashanghai.gov.cn/. The data 

on congestion provide congestion index for 68 travel analysis zones (TAZs) within the outer ring 

highway of Shanghai (which is usually treated as the urbanized area). This index ranges from 0 

to 60, and is calculated every 10 minutes over a period of 9 months by comparing actual travel 

speed with free flow speed (Guan, 2004). The higher the congestion index, the more congested 

an area is. For our analysis, I aggregate the congestion index into 112 time-segments and 709 

grid cells (consistent with the ride-sourcing data aggregation). The parking data include the 

number of parking spaces and the addresses of all off-street parking facilities in Shanghai, as 

well as the number of on-street parking for each road segments within the outer ring highway as 

of 2013. I then geocoded the address into a map-based shapefile using Google Map API for this 
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analysis. I include the location of all bus stops and metro stations to represent the transit 

accessibility in different locations.  

In a more complete effort to control for other factors I turned to regression analysis. I 

modeled the ride-sourcing demand (for pick-ups and drop-offs separately) using a generalized 

additive mixed model (GAMM). GAMM is a variation of the generalized linear model (GLM) in 

which the linear dependent variable depends on a smooth spline function of independent 

variables. The fitted spline function would be a non-linear curve which represents the 

relationship between the dependent variable and the independent variable. GAMM also allows 

the relaxation of assumptions for linear models, and the model can also include fixed effects and 

random effects to control for unobserved factors that are associated with spatial and temporal 

variations. GAMM has recently been used in transportation research to explore the non-linear 

relationship between the use of electric vehicles and the built environment (Hu et al. 2018). 

Since our dependent variable would be the number of ride-sourcing pick-ups and drop-offs in 

each grid cell, I assume that they follow a Poisson distribution. 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑡 = 𝑒𝑥𝑝(β
0
 +𝐗𝐢𝐭

′ ∙ 𝜷 + ∑ 𝒇(𝒙𝒊) + 𝒁𝒃 + 𝛍𝐭 + ε𝑖𝑡). (1) 

In this formula, 𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑡 is the dependent variable representing ride-sourcing demand in 

grid cell i in month t, measured as the number of pick-ups or drop-offs. Vector 𝐗𝐢𝐭 is a matrix of 

independent control variables measured at the grid cell (neighborhood) level, including 

population and employment density as well as activity locations in the neighborhood (see Table 

5.2). The model treats 𝐗𝐢𝐭 as time-invariant given that these built environment variables are 

unlikely to have changed very much over the course of the nine-month observation period, and if 

so, not systematically in such a way as to bias results. The term ∑ 𝒇(𝒙𝒊) represents the spline 

function of selected variables: parking, transit access and congestion. The spline function in the 

model allows us to capture the non-linear relationship of these variables of interest. Vector 𝛍𝐭 

consists of time-period fixed effects. I included 𝒁𝒃 as random effects for each grid cells. As 

constructed, the model allows a partial control for unobserved variables associated with time and 

location by 𝛍𝐭 and 𝒁𝒃, including price of ride-sourcing and demand for other travel modes. I 

included auto-regressive models for the error terms to control for correlation in time, as our 

analysis is on panel data. Same as Hu et al. (2016), I include a smooth term for latitude and 

longitude in our GAMM to control for spatial-autocorrelation. 

In additions to the fixed effects which rule out the unobserved spatial and temporal 

variations, other control variables are included in this study to represent other possible factors 

that influence the demand for ride-sourcing. Theory of travel demand and empirical evidence 

suggested that activity centers are likely to generate trips (Hanson & Giuliano 2004). Thus I uses 

all points of interest (POI) in Shanghai to represent all the activity centers. This POI dataset has 

over 200,000 activity locations, including all offices, shops, restaurants, convenience stores, 

recreational facilities (including theatres and cinemas), schools, hospitals, and parks. I used the 

number of each of these activity location types as control variables in the model. I also used the 

average residential property value as a proxy measure for the value of land in the grid cell, 

because previous literature showed that higher land value is associated with more travel demand 

(Hanson & Giuliano 2004). Population density and employment density at level similar to census 

tract level the US is included in the study as well since research showed that density is related to 

the demand of activity (Chatman 2008; Ewing & Cervero 2010). Average road length within 

each grid cell is also added as a control since previous research showed that road supply is 
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directly associated with motorized travel (Chatman 2008). The transit dataset, property dataset 

and the points of interest dataset are all public available data in Shanghai, and the authors 

obtained these datasets through Metrodata Tech3. I aggregated the data into 1-km grid cells as 

well for our analysis. Table 5.2 shows the descriptive statistics of the variables involved in the 

analysis. 

 

Table 5.2. Summary statistics of variables 

 Variable Min Max Mean Std. Dev. 

# of pick-ups (every 6 hours) 0 160 1.68 4.69 

# of drop-offs (every 6 hours) 0 107 1.66 4.39 

# of bus stops 0 33 6.66 4.94 

# of metro stations 0 3 0.30 0.53 

Total parking 37.00 7607 1002.42 1068.13 

Congestion index 7.33 55.86 24.28 8.18 

# of offices 0 477 40.29 53.42 

# of shops 0 1185 72.47 106.14 

# of restaurants 0 427 35.77 48.70 

# of recreation facilities 0 88 9.43 11.33 

# of convenience stores 0 50 5.58 7.20 

# of hotels 0 47 4.84 6.41 

# of hospitals 0 5 .28 0.65 

# of schools 0 6 .74 1.02 

# of colleges 0 14 .39 1.15 

# of parks 0 2 .15 0.39 

Average road length (km) 0.03 4.28 0.99 0.57 

Average property value per m2 (￥1000) 0 217 29.06 23.28 

Population density (1000 per km2) 0 48 5.71 8.72 

Employment density (1000 per km2) 0  33 2.04 4.29 

 

5.3 Results 

 

The estimation results show that controlling for other factors, the amount of total parking 

supply is positively associated with ride-sourcing demand when the number of parking spots are 

lower than 4,000, but is negatively associated with ride-sourcing demand when there are more 

than 4,000 parking spots. Similarly, the number of bus stops is positively associated with ride-

sourcing demand when there are fewer bus stops nearby, and it is negatively correlated with ride-

sourcing when the number of bus stops are greater than 10. Congestion level also has a non-

linear relationship with ride-sourcing pick-ups, but it has a monotonic increasing relationship 

with ride-sourcing drop-offs. I estimated multiple models using different model types including 

 

3 Metrodata Tech. is a private technology company based in Shanghai. More information about Metrodata Tech. can be 

found here: www.metrodata.cn 
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generalized linear models, GAMM with/without spline interactions and GAMM with/without 

series correlation. By comparing the modeling results from these series of models, I believed that 

our estimation results were robust. I chose to present GAMM with spline interaction and with 

series correlation by conducting likelihood ratio tests. Additionally, I conducted variance 

inflation tests in the linear model and found that adding the control variables did not bias the 

estimation for our variables of interest (parking, transit and congestion). Table 5.3 show the 

estimation results of our best models.  

As I can see from Table 5.3, many control variables (all control variables are in linear terms) 

are insignificant because the model added time fixed effects and individual random effects. 

Among all control variables, average road length seems to have the largest impact on ride-

sourcing demand. The number of office and number of hotels are positively correlated with ride-

sourcing demand, suggesting that offices and hotels tend to attract and generate more ride-

sourcing trips. The number of shops, on the other hand, would decrease the likelihood of ride-

sourcing trips. Ride-sourcing demand are also likely to generate from areas with higher 

population density and higher property value.  

As for our variables of interest, I estimated a spline function for each one of them and 

reported an estimated degree of freedom. All estimated spline functions are statistically 

significant. The higher estimated degree of freedom indicates higher power function used for the 

smooth terms. For example, the estimated degree of freedom for the spline term of the number of 

bus stops in Model 1 is 3.85, indicating that the spline function is to the power of 3.85. In order 

to make the estimation results of the spline term more interpretable, I plotted the partial effect of 

the spline terms, shown in Figure 5.3, 5.4 and 5.5.  

Parking 

 

The GAMM model estimated degree of freedom for the best fit for its spline function, which 

is estimated by non-parametric methods. The estimated degree of freedom of the spline function 

of total parking is 7.25 for the pick-ups model (Model 1 in Table 5.3), and 7.07 for the drop-offs 

model (Model 2 in Table 5.3). This indicates that the relationship between ride-sourcing demand 

and parking is a non-linear function that has a power of above 7. Figure 5.3 shows the partial 

effect of parking on ride-sourcing demand. I can see from Figure 5.3 that ride-sourcing demand 

increases dramatically as parking supply increased from 0 to around 500. Then ride-sourcing 

demand continue to increase, but the increase is much slower, alongside with parking supply. 

After parking supply reaches 4,000 spaces, ride-sourcing demand is negatively associated with 

parking and the more parking available, the less demand for ride-sourcing. 
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Table 5.3. Estimation results of GAMM 

 Model 1: pick-ups Model 2: drop-offs 

Linear terms Coef. Std. Err. Coef. Std. Err. 

(Intercept) -3.793 *** 0.13 -4.245 *** 0.13 

# of offices 0.005 *** 0.001 0.004 ** 0.001 

# of shops -0.002 ** 0.001 -0.002 ** 0.001 

# of restaurants -0.002  0.001 0.000  0.001 

# of recreation facilities 0.005  0.01 0.004  0.01 

# of convenient stores 0.012  0.01 0.012  0.01 

# of hotels 0.022 * 0.01 0.019 * 0.01 

# of hospitals -0.036  0.07 -0.029  0.07 

# of schools 0.029  0.05 0.031  0.05 

# of colleges -0.017  0.04 -0.007  0.04 

# of parks 0.033  0.11 0.033  0.11 

Average road length (km) 6.575 *** 0.87 6.139 *** 0.86 

# of metro stations 0.029  0.09 -0.005  0.09 

Population density (1000 per km2) 0.018 *** 0.001 0.021 *** 0.001 

Employment density (1000 per km2) -0.007  0.01 -0.008  0.01 

Average property value (￥1000) 0.146 *** 0.02 0.149 *** 0.02 

Fixed effects Yes Yes 
 

      
Spline terms Estimated degree of freedom Estimated degree of freedom 

Individual random effect 617.48 ***  624.40 ***  
s(LAT, LONG) 7.6*10-8 ***  6.6*10-8 ***  
s(Total parking) 7.25 ***  7.07 ***  
s(# of bus stations) 3.81 ***  3.69 ***  
s(Congestion index) 8.16 ***  8.70 ***  
 

      
Adjusted R square 0.735 0.707 

Note: ***: 99% significant; **: 95% significant; *: 90% significant 
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Figure 5.3. Partial effect of total parking on ride-sourcing demand (95% intervals are shown in 

the grey areas) 

 

Transit 

 

The partial effect of the number of bus stops on ride-sourcing demand (shown in Figure 5.4) 

is somewhat similar to the effect of parking on ride-sourcing. The shape the spline terms for both 

pick-ups and drop-offs models are similar to a quadratic function. Ride-sourcing demand is 

positively correlated with number of bus stops when the number of bus stops is below 10 per 

grid cell, indicating a complementary relationship, but the relationship reversed when the number 

of bus stops is greater than 10 in each grid cell, suggesting that ride-sourcing demand are smaller 

in areas with good bus access. 
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Figure 5.4. Partial effect of number of bus stops on ride-sourcing demand (95% intervals are 

shown in the grey areas) 
 

I also estimated the relationship between metro access and ride-sourcing, however the 

coefficients for the number of metro stations turned out to be insignificant in all our models, 

regardless of whether I treated the number of metro stations as a linear variable or a spline 

function. The reason why the spline function of metro stations is insignificant could partly 

contribute the fact that the number of metro stations in each grid cell is very small (ranging from 

0 to 3, shown in Table 5.2). 

 

Congestion 

 

Unlike parking and transit, the partial effect of congestion on ride-sourcing demand differed 

between pick-ups and drop-offs. Ride-sourcing pick-ups is at first positively associated with 

congestion level until congestion level reached around 35, after that ride-sourcing pick-ups 

started to decrease with congestion level increased (Figure 5.5 left). Ride-sourcing drop-offs, 

however, is generally positively associated with congestion level, indicating that the higher the 

congestion level, the more ride-sourcing drop-offs (Figure 5.5 right). Note that the confidence 

intervals are wider for models of pick-ups, indicating that the may still may be similar to drop-

offs. 
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Figure 5.5. Partial effect of congestion index on ride-sourcing demand (95% intervals are shown 

in the grey areas) 
 

In addition to the spline functions for each individual variable of interest (parking, bus and 

congestion), I also explored the interaction between each pair of these three variables, and their 

estimated association with ride-sourcing demand. The GAMM model allows us to include a 

tensor product between two variables, 𝒇(𝒙𝟏)⨂𝒇(𝒙𝟐), in lieu of the regular spline function term 

of the individual variable ∑ 𝒇(𝒙𝒊). Including the tensor product enables us to estimate the non-

linear interaction between the two variables in addition to the non-linear spline functions of each 

variable by itself. I estimated GAMM models with interactions between parking and congestion, 

bus and congestion, as well as parking and bus. According to likelihood ratio tests, only the 

interaction between parking and congestion contributes to more statistical power compared to the 

models without the interaction (shown in Table 5.3). Because the GAMM model results for this 

interaction was difficult to interpret, I used an alternative way to test for the interaction by 

dividing the parking and congestion variables into low, medium and high levels based on the 

25th and 75th percentile, and then interacting each one of them to create nine dummy interaction 

variables. I added eight of them into the models in Table 5.3 (using the other one as the base 

category), and estimated the parameters. The results were consistent with the GAMM model 

results for interaction term, but were less complicated and more interpretable. I found that for 

ride-sourcing pick-ups, if I hold one of the two variables (parking and congestion) constant, the 

estimated results for the other variable would first increased and then decreased, similar to the 

patterns in Figure 5.3 and 5.5. But for ride-sourcing drop-offs, congestion is positively correlated 

with ride-sourcing drop-offs when parking supply is high. This result provides more nuanced 

interpretation for Figure 5.5, suggesting that when parking supply is in the upper quartile, ride-

sourcing drop-offs are positively correlated with congestion. This suggests that ride-sourcing 

may replace driving when there is limited parking supply and higher congestion. Note that 

adding the interaction terms does not change the estimated individual spline functions very 

much. 



45 

 

I also estimated regular mixed-effect models with the standard linear terms to represent 

parking, transit, and congestion. Although I decided not to show the estimation results of the 

regular mixed-effect models in this paper due to the space limitation and because I would like to 

focus on the GAMM model results, I briefly discuss here the estimation results from the regular 

model for comparison. All estimated coefficients for the variables of interest were statistically 

significant in the regular mixed-effect models with standard linear terms. The estimated 

parameters imply that ride-sourcing has a positive relationship with total parking (the estimated 

coefficients are 0.0035 for pick-ups and 0.0037 for drop-offs), number of bus stops (the 

estimated coefficients are 0.015 for pick-ups and 0.0145 for drop-offs), and congestion (the 

estimated coefficients are 0.077 for pick-ups and 0.072 for drop-offs). Thus, without having run 

a GAMM model I would have erroneously concluded that there are linear and positive 

relationships across the range of values. In this case the GAMM model has a clear advantage 

over the regular linear mixed-effect model in providing a more accurate understanding of the 

data. 

 

5.4 Conclusion 

 

In this study I investigated the relationship between ride-sourcing demand and parking, 

transit access and congestion using a GAMM on panel data over a four-month period in the city 

of Shanghai. The main advantage of this paper is that I observed ride-sourcing’s non-linear 

relationship with ride-sourcing and parking, bus accessibility, and congestion, with high spatial 

resolution, controlling for possible confounding factors using mixed effects and a large number 

of control variables. 

The results suggest that, first, parking supply does not reduce the demand for ride-sourcing 

in the Shanghai context unless it is sufficiently large. Second, whether ride-sourcing substitutes 

with or complements public transit depends on service coverage: ride-sourcing tends to increase 

as transit grows from below-average service levels while it decreases as transit service becomes 

denser. Third, ride-sourcing demand increases with congestion, but when congestion is at its 

most severe there are fewer pick-ups. Our methods enable us to find these varying results 

because we use a nonlinear fitted GAMM model, and we show that a conventional model yields 

erroneous results.  
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Chapter 6. Discussion of ride-sourcing behavioral and 

implication for policy 

 

6.1 Socio-economic accessibility and spatial accessibility of ride-

sourcing 

 

Comparison with taxi in terms of accessibility 

 

Previous research indicated that taxi drivers usually concentrated in areas with “perceived 

higher usage areas”, e.g. CBD, train terminals, and airports, where drivers believed they can 

match with higher demand (Austin and Zegras 2012). This concentration of taxi supply in high 

demand location was a result of lacking information between drivers and passengers, and may 

results in underserving low-income neighborhoods (Austin and Zegras 2012). Ride-sourcing on 

the other hand, match demand and supply by using an online platform. So far evidence in the US 

did not show uneven distribution against poorer neighborhoods in terms of wait time (Hughes 

and MacKenzie 2016).  

Taxi driver may refuse to serve certain people based on certain characteristics. In China, taxi 

drivers in some cities were unwilling to serve travelers that travel shorter distance because they 

believe that serving such customer would decrease earning. In some other cities this situation has 

improved since taxi companies now required drivers to serve any customer based on first come 

first serve principle. Compare to taxies, ride-sourcing have theoretical improvements because of 

better communication and feedbacks from both sides. Ride-sourcing drivers could not 

discriminate passengers based on destination, although they may still discriminate by refusing 

pick-up requests from passengers starting from low-income communities or neighborhoods of 

color. Current ride-sourcing companies would penalize drivers who successively refuse pick-ups 

request, which can prohibit the discriminatory driver behavior to a certain degree. Further study 

is needed to fully understand this issue. 

The results from chapter 4 imply that a decrease in ride-sourcing fares would likely benefit 

middle to high income travelers more than low-income travelers, by making ride-sourcing an 

economically competitive mode for those groups. Usage is much higher in neighborhoods with 

higher property values when fares are lower. At the same time, however, there is still significant 

though lower use of ride-sourcing in lower-income neighborhoods, and usage in those locations 

is less responsive to the fare. This suggests that ride-sourcing services are being used more often 

for non-discretionary trips by those in lower income neighborhoods, perhaps because of the lack 

of auto ownership and poor public transportation options for those trips.  

Thus ride-sourcing policy which results in fare increases would likely to pose a substantial 

burden for lower-income travelers, although the number of such lower income travelers may be 
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small compared to the number of middle-to-high income travelers. The consumer surplus for 

these lower income users is likely higher than the consumer surplus for higher income users, as 

lower income users are willing to pay more (as a fraction of income) to access ride-sourcing. I 

could reasonably speculate that if a restrictive policy on ride-sourcing supply, such as the one 

imposed in Shanghai after 2016, would give the fraction of ride-sourcing users who live in 

lower-income neighborhoods little alternative but to accept the higher fare. 

That said, the analysis showed that ride-sourcing is still largely a premium mode serving 

places with high property value, and there were relatively small number of users traveling 

to/from lower property price areas. When ride-sourcing fares decreased quickly due to market 

battles in the first half of 2015, at least for a short period of time, ride-sourcing fare was very 

cheap and even competitive in comparison to public transit. But wealthier people tended to take 

advantage of the cheap services, while poorer people generally seemed somewhat inelastic to 

fare changes. Given the fact that Shanghai has very high smartphone penetration rates (as 

discussed previously) and low auto ownership, there are likely additional unobserved factors that 

hinder the use of ride-sourcing by low income travelers. In the US, although lower income 

travelers can be aware of the availability of ride-sourcing, there are often still several barriers for 

using them other than cost, among them limited payment methods and low digital literacy (e.g., 

Dillahunt et al. 2017), even though ride-sourcing companies may market to lower-income 

travelers by promoting services such as shared rides. 

 

6.2 Ride-sourcing’s role in transportation system 

 

I found that ride-sourcing demand (both pick-ups and drop-offs) are positively associated 

with parking supply when parking supply is low, but negatively associated with parking supply 

when parking is high. The relationship between ride-sourcing and bus transit depended on the 

coverage of bus services. Ride-sourcing tended to negatively correlate with each transit access 

when the density of bus stops was high, and positively correlate with each other when there were 

fewer bus stops. Finally, ride-sourcing demand was positively correlated with congestion, except 

that when congestion at the pick-up location was severe, demand declined. 

 

Parking 

 

The estimation results suggest that parking does not necessarily reduce the demand for ride-

sourcing unless the parking supply is large enough, and that a lack of parking supply is not 

necessarily associated with an increase in ride-sourcing demand. Part of this fact may be due to 

local context. In Shanghai, auto-ownership is relatively low due to its license auction policy 

(Chen and Zhao 2013). In 2014, there were less than 15 private cars for every 100 residents in 

Shanghai, and private cars accounted for about 17% of trips (Shanghai Urban-Rural Construction 

and Traffic Development Academy 2015). In the Shanghai context where auto ownership is 

relatively low, ride-sourcing may not strongly compete with driving except when congestion is 

particularly high and parking is particularly scarce at the destination (see below). It is also 



48 

 

possible that auto-users and ride hailers are not the same group of travelers, consistent with some 

existing research that has showed ride-hailers in some US cities are much less likely to be car 

owners (eg. Rayle et al. 2016). The socio-economic status of ride-hailers in Shanghai is still 

unclear, given that the nature of our data; this remains an important topic for future research. 

 

Public transit 

 

The descriptive analysis using Google Map API in Chapter 3 showed that the majority of the 

ride-sourcing trips has transit alternatives. However, transit alternatives compete poorly with 

ride-sourcing in terms of travel time and convenience: on average, it would take approximately 

more than twice of the ride-sourcing travel time for a passenger to arrive at the destination if 

taking transit. It is likely that ride-sourcing is competing with both bus and metro, but bus riders 

are more likely to switch to ride-sourcing than metro riders due to low time performance of buses 

in Shanghai. Also, the descriptive analysis discovered that ride-sourcing is more likely to 

compete with transit in longer travel and peak hour travel by looking at what proportion of the 

ride-sourcing trips can be replaced by transit. 

Moreover, analysis in Chapter 5 suggested that ride-sourcing would be expected to compete 

with existing travel modes including public transit if it is inexpensive and convenient enough. 

The analysis suggests that ride-sourcing increases with density when bus access is relatively low, 

and that it drops off as bus stop density increases, suggesting it could be shunting transit riders 

away in places where transit accessibility is relatively low, while not being as competitive with 

transit when transit services are denser. The findings implied that public transit’s key 

competitiveness lies with its system performance, particularly with density and accessibility.  

 

Congestion 

 

Unlike the relationship of ride-sourcing with parking and transit, the analysis in Chapter 5 

showed a much more complex relationship with road congestion. On one hand, ride-sourcing 

pick-ups were positively associated with congestion when congestion level is low, but somewhat 

negatively correlated with congestion when congestion is severe. On the other hand, ride-

sourcing drop-offs are positively correlated with congestion regardless of the congestion level, 

and particularly so when parking is scarce and congestion is high. One possible hypothesis is that 

ride-sourcing causes congestion in cities, as many cities have claimed (eg. SF Chronicle 2018). 

Another hypothesis draws upon research on autonomous vehicles that argues congestion will 

encourage people to use AV services, because taking a ride as a passenger eases the burden of 

driving in congestion (Howard and Dai 2014; Fagnant and Kockelman 2015; Wadud et al. 2016).  

Our analysis cannot perfectly control this potential reverse causal relationship between ride-

sourcing and congestion just as any fixed effect models. Nevertheless, our analysis still has 

interesting implications for ride-sourcing and congestion. Recall that ride-sourcing pick-ups were 

positively correlated with congestion level at low congestion levels but negatively correlated 

once congestion is high enough. On the other hand, ride-sourcing drop-offs were positively 

correlated with congestion regardless of the current congestion level. Based on these findings, I 



49 

 

may speculate that the first hypothesis is more likely to be true and ride-sourcing causes 

congestion at the drop-off end. The second hypothesis that congestion would encourage people 

to ride hail (due to less burden and lower value of time, etc) is likely to be false, because if it is 

true then ride-sourcing pick-ups should also be monotonically positively correlated with 

congestion in Figure 5.5. Thus it is possible that ride-sourcing users refrained from traveling due 

to the congestion level at the origin end (due to longer wait times caused by congestion, for 

example), but ride-sourcing still contribute to the congestion level at destination end. 

But the second hypothesis could still be valid if the reason for decreasing ride-sourcing pick-

ups at higher congested areas is something other than congestion. For instance, if ride-sourcing 

users decide not to ride hail during congested hours or areas only because the wait time is higher, 

then people may still willing to take ride-sourcing regardless of the congestion level if the wait 

time is within an acceptable range. Previous research in San Francisco found that the waiting 

time for the vast majority of the actual ride-sourcing trips are below 10 minutes (Rayle et al. 

2016). Future research could potentially investigate how wait time affects people’s decision to 

ride hail. 

 

6.3 Limitation of the study 

 

There are a few limitations of this study. First, I investigated trip pick-ups and drop-offs 

separately. Previous research found that taxis are used by low income travelers to fulfill short 

distance travel (Renne & Bennett, 2014). If I investigate the entire trip as whole, there may be 

similar travel pattern for trips that are both originated and ended at places with low average 

property value. Second, I only have data on ride-sourcing travel demand, thus limiting the ability 

to detect substitution or complementarity with other modes such as transit. In future study I may 

investigate whether the low demand of ride-sourcing by lower income travelers is associated 

with lack of access to ride-sourcing supply in terms of wait time, or with the lower overall travel 

demand. Third, the impact of surge-pricing on ride-sourcing demand during peak hour is under-

studied, and due to the sparsity of data point in each day, this analysis did not assess the effect of 

surge-pricing. Additionally, there may be different ride-sourcing travel pattern by different time 

of day. Future research would focus on these aspects. 

 

 

 

 

 

 

 

 



50 

 

 

References 

Austin, D., and P. Zegras. (2012). Taxicabs as Public Transportation in Boston, 

Massachusetts. Transportation Research Record: Journal of the Transportation Research Board, 

Vol. 2277, 2012, pp. 65–74. 

Babar, Y., & Burtch, G. (2017). Examining the Impact of Ridehailing Services on Public 

Transit Use (SSRN Scholarly Paper No. ID 3042805). Retrieved from Social Science Research 

Network website: https://papers.ssrn.com/abstract=3042805 

Brown, A. E. (2018). Ridehail Revolution: Ridehail Travel and Equity in Los Angeles. 

UCLA. Retrieved from https://escholarship.org/uc/item/4r22m57k 

Chan, N. D., and S. Shaheen. (2012). Ridesharing in North America: Past, Present, and 

Future. Transport Reviews, Vol. 32, No. 1, 2012, pp. 93–112. 

Chatman, D. G. (2008). Deconstructing development density: Quality, quantity and price 

effects on household non-work travel. Transportation Research Part A: Policy and Practice, 

42(7), 1008–1030. https://doi.org/10.1016/j.tra.2008.02.003 

Chen, X., Zhao, J. (2013). Bidding to drive: Car license auction policy in Shanghai and its 

public acceptance. Transport Policy, 27, 39–52. https://doi.org/10.1016/j.tranpol.2012.11.016 

China National Radio. (2015). Taxi survey from 20 cities in China. Retrieved July 29, 2018, 

from http://news.cnr.cn/dj/20150803/t20150803_519402657.shtml 

Clewlow, R. R., Mishra, G. S. (2017). Disruptive transportation: the adoption, utilization, 

and impacts of ride-sourcing in the United States. University of California, Davis, Research 

Report UCD-ITS-RR-17-0. 

Coffee, N. T., Lockwood, T., Hugo, G., Paquet, C., Howard, N. J., Daniel, M. (2013). 

Relative residential property value as a socio-economic status indicator for health research. 

International Journal of Health Geographics, 12, 22. https://doi.org/10.1186/1476-072X-12-22 

Dawes, M. (2016). Perspectives on the Ridesourcing Revolution : surveying individual 

attitudes toward Uber and Lyft to inform urban transportation policymaking (Thesis). 

Massachusetts Institute of Technology. Retrieved from 

http://dspace.mit.edu/handle/1721.1/104994 

Didi Chuxing. (2016). Employment report in Didi Chuxing’s app-based mobile services. 

Dillahunt, T. R., Kameswaran, V., Li, L., Rosenblat, T. (2017). Uncovering the Values and 

Constraints of Real-time Ridesharing for Low-resource Populations. In Proceedings of the 2017 

CHI Conference on Human Factors in Computing Systems (pp. 2757–2769). New York, NY, 

USA: ACM. https://doi.org/10.1145/3025453.3025470 



51 

 

Ewing, R., & Cervero, R. (2010). Travel and the Built Environment. Journal of the 

American Planning Association, 76(3), 265–294. https://doi.org/10.1080/01944361003766766 

Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: 

opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and 

Practice, 77, 167–181. https://doi.org/10.1016/j.tra.2015.04.003 

Feigon, S., Murphy, C. (2018). Broadening Understanding of the Interplay Between Public 

Transit, Shared Mobility, and Personal Automobiles. Pre-publication draft of TCRP Research 

Report 195. Transportation Research Board, Washington, D.C. Retrieved from 

http://www.trb.org/Publications/Blurbs/177112.aspx 

Financial Times. (2017). Didi guts Shanghai fleet following anti-migrant rules. Retrieved 

April 12, 2017, from https://www.ft.com/content/dee63006-ded3-11e6-9d7c-be108f1c1dce 

FORWARD Business Information Co. Ltd. (2019). Report of market demand forecast and 

investment strategy planning on China smartphone industry: 2019-2024. Retrieved from 

https://bg.qianzhan.com/report/detail/ee7847658f524b0f.html 

Guan. (2004). Urban Traffic Index，Travel Index and Mathematic Mode. Journal 

of ’Transportation Systems Engineering and Information Technology, 4(1), 49–53. 

Hall, J. D., Palsson, C., & Price, J. (2018). Is Uber a substitute or complement for public 

transit? Journal of Urban Economics, 108, 36–50. https://doi.org/10.1016/j.jue.2018.09.003 

Hall, J. V., and Krueger, A. B. (2015). An Analysis of the Labor Market for Uber’s Driver-

Partners in the United States. Working Paper. 

Hamari, J., Sjöklint, M., & Ukkonen, A. (2015). The sharing economy: Why people 

participate in collaborative consumption. Journal of the Association for Information Science and 

Technology. 

Hampshire, R. C., Simek, C., Fabusuyi, T., Di, X., Chen, X. (2017). Measuring the Impact 

of an Unanticipated Suspension of Ride-Sourcing in Austin, Texas. 

Hanson, S., & Giuliano, G. (2004). The Geography of Urban Transportation. Guilford 

Press. 

Hughes, R., MacKenzie, D. (2016). Transportation network company wait times in Greater 

Seattle, and relationship to socioeconomic indicators. Journal of Transport Geography, 

56(Supplement C), 36–44. https://doi.org/10.1016/j.jtrangeo.2016.08.014 

Hoffmann, K., Ipeirotis, P., & Sundararajan, A. (2016). Ridesharing and the Use of Public 

Transportation. ICIS 2016 Proceedings. Retrieved from 

http://aisel.aisnet.org/icis2016/DataScience/Presentations/14 

Howard, D., & Dai, D. (2014). Public perceptions of self-driving cars: The case of Berkeley, 

California. Transportation Research Board 93rd Annual Meeting, 14(4502). 

Hu, S., Chen, P., Lin, H., Xie, C., & Chen, X. (2018). Promoting carsharing attractiveness 

and efficiency: An exploratory analysis. Transportation Research Part D: Transport and 

Environment, 65, 229–243. 



52 

 

King, D. A., J. R. Peters, and M. W. Daus. (2012). Taxicabs for Improved Urban Mobility: 

Are We Missing an Opportunity? Presented at the Transportation Research Board 91st Annual 

Meeting, 2012. 

Legislative Affairs Office of the State Council of China. (2015). Temporary regulation for 

app-based, on-demand ride-sourcing. Retrieved April 13, 2017, from 

http://www.chinalaw.gov.cn/article/cazjgg/201510/20151000479202.shtml 

Li, Z., Hong, Y., & Zhang, Z. (2016). An Empirical Analysis of On-Demand Ride Sharing 

and Traffic Congestion (SSRN Scholarly Paper No. ID 2843301). Retrieved from Social Science 

Research Network website: https://papers.ssrn.com/abstract=2843301 

Ministry of Transport of People’s Republic of China. (2015). Reform of taxi industry. 

Retrieved April 13, 2017, from 

http://zizhan.mot.gov.cn/zhuantizhuanlan/gonglujiaotong/chuzuqchygg/gefangguandian/201507/

t20150723_1853535.html 

Pew Research Center. (2018). Mobile Fact Sheet. Retrieved March 6, 2019, from 

http://www.pewinternet.org/fact-sheet/mobile/ 

Pucher, J., Renne, J. L. (2003). Socioeconomics Of Urban Travel: Evidence From The 2001 

NHTS. Transportation Quarterly, 57(3). Retrieved from 

https://trid.trb.org/view.aspx?id=662423 

Rayle, L., Dai, D., Chan, N., Cervero, R., Shaheen, S. (2016). Just a better taxi? A survey-

based comparison of taxis, transit, and ridesourcing services in San Francisco. Transport Policy, 

45, 168–178. https://doi.org/10.1016/j.tranpol.2015.10.004 

Renne, J. L., Bennett, P. (2014). Socioeconomics of Urban Travel: Evidence from the 2009 

National Household Travel Survey with Implications for Sustainability. World Transport Policy 

& Practice, 20(4). Retrieved from https://trid.trb.org/view/1326943 

Sadowsky, N., & Nelson, E. (2017). The Impact of Ride-sourcing Services on Public 

Transportation Use: A Discontinuity Regression Analysis. Economics Department Working 

Paper Series. Retrieved from https://digitalcommons.bowdoin.edu/econpapers/13 

San Francisco County Transportation Authority (SFCTA). (2017). TNCs Today: A Profile of 

San Francisco Transportation Network Company Activity. Retrieved from 

http://www.sfcta.org/sites/default/files/content/Planning/TNCs/TNCs_Today_112917.pdf 

Schaller, B. (2018). The New Automobility: Lyft, Uber and the Future of American Cities. 

Retrieved July 27, 2018, from http://www.schallerconsult.com/rideservices/automobility.htm 

SF Chronicle. (2018, October 16). Uber, Lyft cars clog SF streets, study says. SF Chronicle. 

Retrieved from https://www.sfchronicle.com/business/article/Uber-Lyft-cars-clog-SF-streets-

study-says-13309593.php 

Shaheen, S., & Chan, N. (2016). Mobility and the Sharing Economy: Potential to Facilitate 

the First- and Last-Mile Public Transit Connections. Built Environment, 42(4), 573–588. 

https://doi.org/10.2148/benv.42.4.573 



53 

 

Shaheen, S., Stocker, A., Bhattacharyya, A. (2016). Multimobility and Sharing Economy: 

Shaping the Future Market Through Policy and Research. Transportation Research Circular, 

(210). Retrieved from https://trid.trb.org/view/1416014 

Shanghai Bureau of Statistics. (2015). Shanghai Statistical Yearbook: 2015. 

Shanghai Municipal Transportation Commission. Shanghai app-based, on demand ride 

service regulation (2016). 

Shanghai Urban-Rural Construction and Traffic Development Academe. (2015). Main 

findings from the fifth comprehensive travel sursey in Shanghai. 

Shared-use Mobility Center. (2016). Shared Mobility and the Transformation of Public 

Transit. Prepared for American Public Transportation Association. TCRP J-11/TASK 21. March, 

2016. 

Smart Device Business Center. (2013). The 5th survey on smarphone users in China. DY 

Holding. 

TalkingData. (2014). Report of app-based ride users in 2014. 

TalkingData. (2015). Report of app-based ride users in 2015. 

Wadud, Z., MacKenzie, D., & Leiby, P. (2016). Help or hindrance? The travel, energy and 

carbon impacts of highly automated vehicles. Transportation Research Part A: Policy and 

Practice, 86, 1–18. https://doi.org/10.1016/j.tra.2015.12.001 

Wang, M., Mu, L. (2018). Spatial disparities of Uber accessibility: An exploratory analysis 

in Atlanta, USA. Computers, Environment and Urban Systems, 67(Supplement C), 169–175. 

https://doi.org/10.1016/j.compenvurbsys.2017.09.003 

 Xu, R. & Ju, Y. (2016). How app-based, on-demand ride-sourcing service area changed 

overtime: An exploratory, spatial-temporal analysis on how cost and subsidy affects the trips’ 

origins and destinations in Shanghai. Working paper. 

 




