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Parametric model identification
of axisymmetric MEMS resonators

Stephen Schein and Robert M’Closkey

Abstract—This paper proposes a technique for developing
parametric models of modally degenerate resonators from
stimulus-response data. The technique complements traditional
empirical frequency response estimates that are commonly used
for testing MEMS resonators, however, the parametric models
have distinct advantages when the modal frequency differences
are close enough to frustrate estimates of quality factors, natural
frequencies and mode orientations. The proposed technique
also completely rejects parasitic coupling between the stimulus
and pick-off electrodes. It is shown how a modification of
the algorithm using demodulated measurement signals greatly
reduces storage and computational requirements.

I. INTRODUCTION

Identifying the modal properties of axisymmetric resonators
presents unique challenges as a consequence of nearly identi-
cal modal frequencies appearing within clusters of degenerate
modes. This paper presents a testing and modeling technique
to identify parametric models of resonators from which modal
frequencies, time constants and mode orientations can be
determined. The proposed technique is particularly suited for
studying modally degenerate resonators because the multi-
input/multi-output stimulus-response data that are required for
accurately identifying degenerate modes is effortlessly handled
within the proposed modeling framework. Although knowl-
edge of modal frequencies and time constants is typically
the objective of MEMS resonator testing, mode orientations
are also of interest because they feature in various “tuning”
algorithms that attempt to eliminate frequency differences in
degenerate mode resonators. For example, tuning algorithms
for generic thin ring resonators using mass deposition are
proposed in [1–3]. Identification of the mode orientations
was central to successful tuning in these references. These
algorithms were adapted for practical application in an axisym-
metric MEMS resonator to permanently eliminate detuning
in the “wine glass” pair of modes [4, 5]. The proposed
modeling technique also rejects parasitic, or feedthrough,
coupling between the electrodes used to stimulate the resonator
and the electrodes used as signal pick-offs. Thus, the transfer
function that is produced only models the electromechanical
components contributing to resonator motion.

Non-parametric frequency response methods based on FFT
processing of input-output data records are undoubtedly the
workhorse modeling tools in MEMS resonator testing. Many
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instruments and analyzers feature built-in functions that au-
tomate the data collection and signal processing to produce
empirical frequency response estimates. Modal frequencies
and damping (quality factor) can be directly estimated from
graphical representations or, alternatively, parametric models
can be fit to the frequency response data using curve fitting
techniques and then the modal parameters can be extracted
from the models, e.g., [6] is an early reference describing
an iterative least squares algorithm to fit a rational transfer
function to empirical frequency response data; [7] describes
an implementation in a modern signal analyzer. With regard to
modeling MEMS, [8] considers a parametric model consisting
of a resonator in series with a capacitor that is fit to frequency
response data in order to identify motional and parasitic com-
ponents, and [9] demonstrates a technique for estimating the
frequency response of a single degree-of-freedom resonator by
fitting a sinusoidal time function to the periodic response under
periodic pulse forcing –the pulse couples to the measurements
due to parasitics but the corrupted segments are removed from
the time-domain data prior to fitting the sinusoid. Second
order models parameterized by mass, stiffness, and damping
matrices are fit to multi-input/multi-output frequency response
data in [10, 11] for modeling two degree-of-freedom (2-DOF)
resonators.

Alternative signal processing techniques can be directly ap-
plied to the measurement data. Principal component analysis is
used to analyze correlations of free response measurements ob-
tained from a 2-DOF resonator to estimate stiffness anisotropy
in [12]. Non-parametric spectral estimation is applied to
resonator thermal noise measurements in [13] to determine
modal frequencies and quality factors with reduced biases
compared what is typically achieved with windowed data
records. An adaptive filter for cancelling parasitic feedthrough
is proposed in [14]; the frequency response of the resonator
is subsequently identified from the feedthrough-compensated
data. Auto-regressive models are fit to input-output data from a
2-DOF resonator in [15] in order to extract mode orientations.

High quality factor resonators can present challenges for
traditional frequency response testing techniques due to the
high dynamic range of the resonator response as a function
of frequency, frequency resolution (grid spacing), and settling
times. Thus, measurements from transient “ring-down” data
have gained prominence for estimating modal frequencies and
time constants, the latter of which can be determined from
the transient decay envelope, e.g., [16–20]. Transient response
measurements are robust and straightforward to implement
when modes are sufficiently separated, however, care is re-
quired when the modes are nearly degenerate (small detuning)
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because it is difficult to selectively excite only one mode in
this case. Thus, the precise positioning or blending of pick-
offs, often performed iteratively, is necessary to isolate the
response of a single resonant mode.

The proposed modeling technique is complementary to
the aforementioned methods and yields detailed information
on a resonator’s model properties even when the frequency
detuning is effectively zero. The only requirement is that there
are enough excitation and pick-off electrodes to couple to each
mode of interest. Although this requirement appears to rely
on knowledge of the mode shapes, it is possible to define an
electrode layout that will achieve the desired coupling in all
circumstances and, hence, a priori knowledge of the modes,
other than their general location in frequency, is not necessary.
The proposed technique, which can be viewed as an extension
of transient ring-down modeling, produces a linear model.
This is no different than the majority of methods reviewed
above because they either implicitly or explicitly assume a
linear system is generating the data, i.e. Lorentzian frequency
response magnitude, exponential decay envelopes and so forth.

The paper is organized as follows. Sec. II briefly reviews the
Ho-Kalman algorithm for identifying linear models from pulse
response data. Sec. III adapts the Ho-Kalman algorithm for
identifying the n = 1, 2, 3 pairs of modes in an axisymmetric
MEMS resonator. The modeling results are presented and dis-
cussed in Secs. IV and V. A “zoom” variation of the proposed
method is presented in Sec. VI. The zoom method yields
the same modal parameter identification results, however, the
computation requirements are significantly reduced. Section
VII concludes the paper.

II. HO-KALMAN PRODEDURE

Consider a system modeled by a linear difference equation

~xk+1 = A~xk +B~uk

~yk = C~xk
(1)

where ~y represents the pick-off measurements in response to
the applied stimulus ~u. The integer subscript k represents the
sample number for the state and input and output variables.
It is assumed that the sample period, denoted ts, is uniform.
There are ni input channels, no output channels, and state
dimension ns. Such models arise when testing linear systems
according to the block diagram in Fig. 1, where Hs, Ha
and Hsys represent smoothing filters, anti-alias filters, and the
system under test, respectively. The DAC implements a zero-
order hold on the discrete-time signal ~u and the ADC samples
the continuous-time signals to yield the discrete-time signal ~y.
If all dynamic elements in the block diagram are linear, then a
discrete-time model of the form (1) describes the relationship
between the input-output samples and the state variable ~x,
e.g., [21]. The state variables include those of the system,
smoothing filters and anti-alias filters. The models are often
denoted with the triplet {A,B,C}.

The foundation of the identification method proposed in
this paper is the Ho-Kalman algorithm [22]. The Ho-Kalman
algorithm estimates {A,B,C} based on the pulse response of
the system. The pulse response is the matrix-valued sequence

~u - @
�

DAC/
ZOH

- Hs - Hsys - Ha -�
@

-ADC ~y

Fig. 1: Block diagram for generating test data. The system under test, anti-
alias filter, and smoothing filter are denoted Hsys, Ha, and Hs, respectively.

{Yk}, Yk ∈ Rno×ni , where Y0 = 0, Yk = CAk−1B, k > 0.
R denotes the field of real numbers. The pulse response is
generated by stimulating the system, starting from a state of
rest (~x0 = 0), to unit pulses that are sequentially applied to
each of the ni input channels. In other words, the lth column
of the pulse response represents the sequence of output vectors
that are obtained when the lth input channel is a unit pulse and
all other input channels are zero. A realization of the system
is obtained by analyzing the following block-Hankel matrices
formed from the pulse response data,

H0 =


Y1 Y2 · · · Ync

Y2 Y3 · · · Ync+1

Y3 Y4

...
...

...
. . .

...
Ynr

Ynr+1 · · · Ynr+nc−1



H1 =


Y2 Y3 · · · Ync+1

Y3 Y4 · · · Ync+2

Y4 Y5

...
...

...
. . .

...
Ynr+1 Ynr+2 · · · Ynr+nc

 ,
(2)

where H0,H1 ∈ Rnonr×ninc . The column and row dimensions
use nc and nr pulse response samples, respectively. The
number of samples that are used to create these matrices is
based on the expected model order as well as the need to
accurately capture time constants associated with the decay
rates. Based on the model generating the pulse response data,
H0 is factored as a product,

H0 = OC, (3)

where O and C are the observability and controllability ma-
trices associated with the realization,

O =


C
CA
CA2

...
CAnr−1

 ∈ Rnonr×ns ,

C =
[
B AB A2B · · · Anc−1B

]
∈ Rns×ninc .

(4)

If (1) is minimal, then the factorization shows that rankH0 =
rankO = rank C = ns (the state dimension) when a suf-
ficiently large number of pulse response points are used in
forming H0 (typically, nonr >> ns and ninc >> ns). In
this manner C and B are obtained from O and C, and since
H1 = OA C, A is computed

A = O†H1C†, (5)

where O† and C† represent left and right inverses of O and
C, respectively, i.e. O†O = I and CC† = I , where I denotes
the identity matrix.



3

In practice, a model of a to-be-determined order is extracted
from pulse response measurements obtained in an experiment.
In this case, H0 and H1 are still formed from the samples
of the transient response. The measurement samples include
buffer noise and effects of disturbances and consequently H0

is typically full rank, however, there are often a handful
of dominant singular values that can be used to closely
approximate H0 with a lower rank matrix that is then factored
according to (3). Thus, the first step in analyzing H0 is to
compute its singular values where the number of dominant
singular values provides insight into an adequate model order.
Suppose UΣV T is a singular value decomposition (SVD) of
H0 , where U and V are orthogonal matrices, and (·)T denotes
transpose. If the first r singular values of H0 are dominant, i.e.
σr >> σr+1, then H0 can be approximated by a rank r matrix
H0,r = UrΣrV

T
r where Ur is a sub-matrix of U formed from

its first r columns, Vr is a sub-matrix of V formed from its
first r columns, and Σr is a diagonal matrix with diagonal
elements {σ1, σ2, . . . , σr} (the first r singular values). Thus,
H0 is replaced by a lower rank approximation which retains
the dominant singular values and the corresponding left and
right singular vectors. This approach was first proposed in [23]
as a variant of the basic Ho-Kalman algorithm. The results
in this paper demonstrate that this approximation of H0

works quite well when the signal-to-noise ratio associated with
the measurements is high. The factorization of H0,r is not
unique, however, other factorizations correspond to different
coordinate representations of an r-state realization with the
same input-output behavior. One choice of factorization based
on the SVD is O = UrΣ

1
2
r and C = Σ

1
2
r V Tr . The state space C

matrix is defined as the first no rows of O, and B is defined
as the first ni columns of C. The left and right inverses of
the factors are O† = Σ

− 1
2

r UTr and C† = VrΣ
− 1

2
r and the

computation of A is given by (5).

III. APPLICATION TO RESONATORS

A. Resonator description

The modeling approach proposed in this section can be
applied to any MEMS resonator, however, the Ho-Kalman
procedure will be adapted for determining models of the res-
onator schematic shown in Fig. 2. This resonator has features
that are generic to modally degenerate resonators commonly
proposed for MEMS Coriolis vibratory gyros. Details on its
design, fabrication, and modal properties are given in [4]. The
pick-off electrodes are denoted S1 through S8 and the input
electrodes are denoted D1 and D2 in Fig. 2. Thus, the input
and output electrode arrangement defines a 2-input, 8-output
system (no = 8 and ni = 2 in (1)). A potential, denoted Vbias,
is applied to the “Bias” electrodes to perturb the dynamics of
the resonator in certain experiments. The resonator is tested
in a vacuum bell jar at an approximate pressure of 100µTorr.
There is no thermal regulation of the resonator. Some heating
of the resonator occurs because the electrode buffer board
is colocated with the resonator inside the vacuum chamber.
A thirty minute warm-up period is allotted for the pressure
and temperature to roughly stabilize. The resonator die is
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Fig. 2: Ring resonator used in tests. The resonator is 1 cm in diameter with 24
peripheral electrodes (only those electrodes used in the tests are shown). Two
electrodes, denoted D1 and D2, are configured as input channels, and eight
electrodes, denoted S1 through S8, are configured as pickoffs. The electrodes
labeled “Bias” are used to perturb the resonator dynamics by applying a
potential Vbias relative to the resonator bias voltage. Unused electrodes (not
shown) are grounded.

suspended from wire bonds which are attached to the buffer
board and to the die’s bond pads.

The axisymmetry of the resonator imparts modal degeneracy
to the n = 1, 2, 3 pairs of modes where the “nth” pair indicates
the two modes whose radial displacements are expressed to
first order as α cosnθ+β sinnθ, for some α, β, where θ is the
angle parameter in the figure. Although the relative orientation
of the modes within the nth pair very closely subtend 90◦/n
for ring-type resonators [2], their absolute orientations with
respect to the excitation and pick-off electrodes are not a
priori known. Thus, multiple inputs and pick-offs are generally
required to guarantee coupling to each mode with the rela-
tive orientation of the modes dictating the optimal electrode
arrangement. The excitation electrode arrangement in Fig. 2
is ideal for exciting the n = 2 pair, however, these electrodes
also collectively couple to the n = 1, 3 pairs. Furthermore, the
pick-off electrode arrangement not only (collectively) detects
each mode in the n = 1, 2, 3 pairs, it also has enough spatial
resolution to accurately determine the orientation of the modes.

The frequency response derived from a broadband stimulus
of the resonator is shown in Fig. 3 and serves to illustrate the
general location of the n = 1, 2, 3 pairs of modes near 6 kHz,
14 kHz and 24 kHz, respectively. Although it is a relatively
simple task to locate the modal frequencies to within a few
Hz, this paper shows how to extract detailed information on
the modal frequencies, damping and mode orientations even
when the frequencies within a given pair are essentially equal.

B. Transient Response Data

Models are separately developed for each pair of modes.
The Ho-Kalman procedure is applied to measurements of
the resonator’s transient, unforced response. The input is not
impulsive, however, because the energy density of a pulse is
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Fig. 3: Broadband frequency response of the resonator obtained from one
stimulus-pick-off electrode pair. The n = 1, 2, 3 pairs of modes are evident.

too small to evoke a measurable response due to physical limits
on the pulse amplitude. Although it is possible to estimate
the pulse response of a system using persistent excitation
signals (for example, wideband random inputs), this approach
may not be desirable in MEMS resonator applications. First,
coupling between the excitation and pick-off electrodes can
easily obscure the resonator’s motional response, eg. [14], and
the use of persistent signals will always include effects of
coupling due to the signal processing that is used to derive
the pulse response estimate. Second, the smoothing required
to recover the pulse response from input-output data generated
with persistent input signals is generally associated with long
testing times in order to obtain accurate estimates of mean-
square spectra or correlation functions. It is important that
the resonator dynamics be time invariant during such tests,
however, this may be difficult to achieve in some cases,
eg. modal frequency drift due to small changes in resonator
temperature.

The proposed testing technique employs a periodic burst
chirp signal applied to each input channel. The burst energy
is constrained to be in a neighborhood of a pair of degenerate
modes and, thus, produces a strong response from these
modes. One period of the scalar-valued periodic burst chirp
excitation signal v, written as a continuous-time function, is

v(t) =

{
0, t ∈ [0, τp − τb)
a cos

(
2πfch(t)(t− τp + τb)

)
, t ∈ [τp − τb, τp)

(6)

The time-dependent frequency of the burst is given by

fch(t) =
1

2τb
(fhi − flow)(t− τp + τb) + flow. (7)

The duration of the burst is τb seconds, τp is the signal period
(τp > τb), and a is the amplitude of the burst. This signal
concentrates its energy in the frequency band [flow, fhi] Hz.
The burst duration, amplitude and the frequency band where its
energy is concentrated are easily adjusted using parameters in
the time-domain description of the function. The phase of burst
is chosen so that the burst occurs at the end of the period. Both
input channels are stimulated with the periodic burst chirp (6),

Fig. 4: Burst chirp input (8) applied to the electrodes D1 and D2. The signals
in each input channel are periodic (τp = 10 seconds) and have identical bursts
of duration τb = 1 second, however, there is a 5 second delay (τp/2) between
the input channels. The interval between bursts generates input-free transient
data from which the resonator model is developed.

however, a time delay equivalent to half a period is introduced
between the bursts appearing in each channel, in other words,
the resonator input is defined

~u(t) =

[
v(t)

v(t− τp/2)

]
(8)

where τp/2 > τb so that there is an input-free transient period
between bursts. Discrete-time versions of these signals are
defined as vk = v(kts) and ~uk = ~u(kts),

vk = 0, k ∈ [0, Np −Nb − 1]

and
vk =a cos

(
2πfch,k(k −Np +Nb)ts

)
k ∈ [Np −Nb, Np − 1],

where fch,k = fch(kts) is an appropriate update of the
frequency function in (7). The signal processing equipment
implements the discrete-time signals such that there are Np
samples in one period and Nb samples in the burst portion of
the signal (Npts = τp and Nbts = τb). It is also assumed that
the number of points in one period is even (this simplifies
notation in the analysis to follow and can be relaxed). The
signal (8) is implemented as the input for all tests reported in
this paper. The period and chirp frequency range are adjusted
to suit the testing of a specific pair of modes. An example of ~u
is shown in Fig. 4 where τb = 1 second and τp = 10 seconds.
The chirp frequency range is chosen to excite either the n = 1,
n = 2 or n = 3 pair of modes, however, the sinusoidal
oscillation of the chirp cannot be resolved on the displayed
time scale. It is necessary to stagger the bursts as shown
in (8) because simultaneously applying the same stimulus to
each input channel is equivalent to exciting the resonator with
a single “virtual” electrode –such a test may not adequately
excite both modes in a degenerate pair (for example, the virtual
electrode may be located near a radial node of the mode shape
and therefore will weakly couple to that mode).



5

C. Defining the Hankel matrices

The transient data between bursts is used to form the block-
Hankel matrices (2). Since ~u = 0 in these intervals, there
is no parasitic input-output coupling and so the resonator
model built from this data will not feature this coupling. An
example of measurements when the bursts are designed to
excite the n = 1 pair are shown in Fig. 5. The data segment
corresponding to t ∈ [0, 3] (highlighted red) is used in lieu
of the first column of the resonator’s pulse response, and the
data segment corresponding to t ∈ [5, 8] (also highlighted red)
is substituted for the second column of the resonator’s pulse
response. Since ts = 1/70000 second, there are over 200k data
points recorded from each each pick-off for each transient data
segment. The data used for modeling the resonator is acquired
in a time interval that is less than one period of the input and
in essence provides a “snapshot” of the resonator dynamics
that is less susceptible to temperature-induced drift.

In contrast to the traditional Ho-Kalman procedure, this
analysis does not directly yield the state-space B matrix but
instead identifies “initial conditions” for the model’s state
vector at the start of the two data segments (at t = 0
and t = 5 in Fig. 5). Let ~x0,1, ~x0,2 ∈ Rns correspond to
the model state at t = 0 and t = 5, respectively. Define
X =

[
~x0,1 ~x0,2

]
. The transient responses are assumed to

be generated by Yk = CAkX ∈ R8×2, k ≥ 0, where the
index value k = 0 refers to the first data sample in both data
segments. The Hankel matrices for this scenario are slightly
modified with a shift in indices,

H0 =

Y0 Y1 · · ·
Y1 Y2 · · ·
...

...
. . .

 , H1 =

Y1 Y2 · · ·
Y2 Y3 · · ·
...

...
. . .

 . (9)

Note that
H0 = OCX , H1 = OACX , (10)

where O is given in (4) and CX

CX =
[
X AX A2X · · · Anc−1X

]
∈ Rns×ninc .

Thus, analysis of H0 and H1 yield A, C and X for the pair
of modes under consideration.

The number of block-columns and block-rows in the Hankel
matrices are denoted nc and nr. In general, one dimension
must be large enough to accurately capture the time constants
of the modes. A lower bound for the number of transient data
points required in the analysis can be estimated. Suppose a
resonant mode has modal frequency f Hz and time constant
τ seconds. For standard sampling of the resonator transient
response at least four samples per period of oscillation is
desirable so fs > 4f , where fs is the sampling rate in
Hz (fs = 1/ts, for sample period ts seconds). An accurate
measurement of the resonator time constant requires a data
record of minimum length, for example, τ seconds (one time
constant). Thus, the number of points in the transient data
record that is used to form the Hankel matrices must be
at least fsτ > 4fτ ≈ Q, where Q is the quality factor
associated with the mode. For high quality factor resonators,
the data sets can become quite large and although storage is

typically not an issue, the analysis of large Hankel matrices
can require significant computation. The “zoom” technique
proposed in Sec. VI significantly reduces the burden of storing
and processing large data sets.

D. Modal frequencies, damping, and orientation

The A and C matrices can be analyzed for modal frequen-
cies, damping and mode orientation. Since the identified model
is obtained by sampling a continuous-time system with sample
period ts, a mode with exponential decay rate σ (units of s−1)
and modal frequency ωn (units of rad/s) will be associated with
eigenvalues of the form e(−σ±jωn)ts , where j =

√
−1. Thus,

analysis of the eigenvalues of A yield the modal frequencies
and time constants.

The mode orientation can be determined from the eigenvec-
tors of A. First, referring to the pick-off electrode arrangement
in Fig. 2, the angular reference bisects the S1 pick-off elec-
trode and establishes the origin for angle measurements and
hence the orientation of a mode shape. The position of S1 with
respect to the angle origin is denoted θ1 = 0◦, the position of
S2 with respect to the angle origin is denoted θ2 = 15◦ and so
forth through S8 with θ8 = 315◦. Although the mode shapes
for the resonator in Fig. 2 do contain higher-order harmonics
in θ, eg. [5], they are very small in amplitude compared to the
dominant terms. Thus, it is assumed a mode shape is defined
by a cos(2n(θ−φ)), where φ is the orientation, for a mode in
the nth pair of degenerate modes. The amplitude of the mode
shape as measured by the pick-off electrodes is proportional
to 

a cos(2n(θ1 − φ))
a cos(2n(θ2 − φ))

...
a cos(2n(θ8 − φ))

 =


cos(2nθ1) sin(2nθ1)
cos(2nθ2) sin(2nθ2)

...
cos(2nθ8) sin(2nθ8)


︸ ︷︷ ︸

Θ

[
α
β

]

where α = a cos(2nφ) and β = a sin(2nφ), and Θ is defined
as indicated. The objective is to determine α and β from
analysis of the identified model. Let ~w be an eigenvector
of A corresponding to eigenvalue e(−σ+jωn)ts and consider
the unforced response of the resonator with initial condition
~x0 = 1

2 (~w + ~w∗), where ∗ denotes complex-conjugate. This
initial condition only involves one mode. The transient re-
sponse, as measured by the pick-offs, would be

yk = CAk
1

2
(~w + ~w∗)

= e−σkts cos(ωnkts)Re(C ~w),

where Re(C ~w) ∈ R8 denotes the real part of C ~w. Alter-
natively, the imaginary part of C ~w can be used since this
corresponds to replacing cos with sin in the transient response.
Assuming the anti-alias filters are identical, an element of
Re(C ~w) represents the amplitude of the mode shape expressed
at the electrode of the corresponding measurement channel.
Thus, α and β are determined from the following least squares
problem,

arg min
α,β

∥∥∥∥Θ

[
α
β

]
− Re(C ~w)

∥∥∥∥ ,
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TABLE I: Burst chirp input parameters

Pair flow (Hz) fhi (Hz) a (V) τp (s) τb (s)

n = 1 6525 6625 9 10 1
n = 2 13500 13600 9 10 1
n = 3 23825 23925 9 10 1

where ‖ · ‖ denotes the Euclidean norm. The orientation φ of
the mode with respect to the angle reference is computed from
α and β.

E. Complete resonator model

The B matrix in the resonator model can be determined
once A and X have been extracted from the Hankel matrix
analysis. The relationship between the columns of B, denoted
~b1,~b2 ∈ Rns , and X is[

~x0,1

~x0,2

]
=

[
I ANp/2

ANp/2 I

][
Γ~b1
Γ~b2

]
, (11)

where

Γ = (I −ANp)−1

Np−1∑
k=0

ANp−1−kvk

 ∈ Rns×ns .

The resonator is asymptotically stable due to the fact that there
is always some energy dissipation so det

(
I −ANp

)
6= 0.

Therefore, Γ is always well-defined. The determinant of the
matrix in (11) is equal to det

(
I −ANp−2Nb

)
and is similarly

non-zero. Although the details are not provided here, (11) is
easily established by simulating the model from the identified
initial conditions and knowledge of the burst chirp signal, vk.
This analysis assumes the resonator has settled into its periodic
response to the periodic input ~u.

IV. IDENTIFICATION RESULTS

The modeling results for the n = 1, 2, 3 pairs of modes
are presented in this section. The period of the input is
10 seconds in all cases, however, the burst chirp frequency
parameters are tailored to a given pair based on the modal
frequencies estimated from Fig. 3. The input signal parameters
are reported in Table I. The chirp frequency span is 100 Hz.
The burst amplitude is 9 volts and its duration is 1 second
(ts = 1/70000 second, Np = 700 k and Nb = 70 k). The
block-Hankel matrices have the same dimension nr = 5 for all
cases, however, nc = 210000 for n = 1, 2, and nc = 105000
for n = 3. These choices correspond to using 3 seconds
and 1.5 seconds of transient data in the formation of H0 and
H1 –this is adequate to accurately identify the time constants
associated with the modes.

The five largest singular values of H0 for each case (Vbias =
0) are given in Table II. Since σ4 exceeds σ5 by at least
two orders of magnitude in all cases, H0 is approximated
by a rank 4 matrix. Thus, ns = 4 and A, C and X are
obtained from analysis of H0,4 and H1. The quality of the
models can be assessed by simulating the model from the
identified initial conditions: CAk~x0,1, k ≥ 0, is compared
to the transient response measurements starting at t = 0;

TABLE II: Five largest singular values of H0

Pair σ1 σ2 σ3 σ4 σ5 σ4/σ5

n = 1 338 315 226 212 0.12 1841
n = 2 154 147 124 118 0.09 1332
n = 3 15.9 12.6 12.1 9.6 0.12 81

similarly CAk~x0,2, k ≥ 0, is compared to the transient
response measurements starting at t = 5. Residuals are formed
from the difference between the simulations and measurements
(over the same 3 second data segment used in forming the
Hankel matrices), thus, there is a residual associated with
~x0,1 and with ~x0,2. Since each residual has eight “channels”
corresponding to the eight pick-offs, the power spectrum of
each channel is computed and then summed to scalar-valued
functions of frequency –the square roots are graphed and
compared the measured baseline noise spectrum. The baseline
noise spectrum is same for all tests. In a similar manner,
the power in the transient signals are computed for the time
intervals starting at t = 0 and t = 5 (although the transient
response of the resonator is not a stationary signal the PSD
computation still quantifies its power distributed as a function
of frequency over the 3-second interval). In order to have
a reasonable degree of smoothing for the relatively short
duration data sets, the frequency resolution is only 100 Hz. The
power in transient should be much larger than the power in
the residual in a neighborhood of the pair of modes under test
if the model is accurately reproducing the transient response.

The frequency response of the models is also compared to
non-parametric frequency response estimates. The columns of
the model’s B matrix are determined according to Sec. III-E
and then the discrete-time frequency response is computed
via C

(
ejωts −A

)−1
B, where ω is the frequency variable in

units of rad/s and B =
[
~b1 ~b2

]
. The non-parametric frequency

response is estimated from single-input-at-a-time tests using a
periodic band-limited chirp excitation signal. The ratio of the
discrete Fourier transform (DFT) of one period of a pick-off
measurement to the DFT of one period of the input (applied
to either D1 or D2) yields the empirical frequency response
estimate for the corresponding input-output channel. The non-
parametric method includes the effects of input-to-pick-off,
or “feedthrough”, coupling. The parametric models, however,
completely reject any feedthrough and only show components
associated with resonator motion.

The feedthrough is largely associated with capacitive cou-
pling between electrodes, and since the input electrodes are
driven by buffered voltage sources, the currents picked up
by the pick-off electrodes generally increase with increas-
ing frequency. This creates the trend in Fig. 3 up to the
bandwidth of the pick-off buffers which is approximately
30 kHz. The feedthrough can be estimated using the models
and measurement data: 1) the model is simulated over the time
window that the burst is active; 2) this result is subtracted
from the contemporaneous measurement data to produce a
short (about τb second) record of data that has had the
resonator motional component removed; 3) the non-parametric
frequency response estimate is applied to this short segment
along with the corresponding segment of burst chirp signal.
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Fig. 5: Response of n = 1 modes to the input in Fig. 4. Only a subset of
the pick-offs are shown (four, out of eight, pick-offs). The data highlighted
in red is used to form the Hankel matrices after detrending to remove offsets.
The model state x0,1 is associated with t = 0, while x0,2 is associated with
t = 5.

TABLE III: n = 1 modal properties extracted from model

f1 (Hz) f2 (Hz) τ1 (s) τ2 (s) φ1 (deg) φ2 (deg)

6559.17 6604.80 4.66 2.45 7.3 -82.3

Although the short data records do not give high frequency
resolution, this is typically not necessary since the feedthrough
is nearly constant in a small neighborhood of the modes. The
feedthrough is significant for the n = 2, 3 modes and so it is
estimated for these cases.

A. Results for the n = 1 modes

The periodic response of the resonator is shown in Fig. 5 for
a subset of pick-offs. The power spectra of the transient, the
residual and pick-off noise are shown in Fig. 6. An interesting
feature in the spectra in Fig. 6 is the presence of the second
harmonic near 13 kHz. This harmonic is not captured by
the linear resonator model and so the power in the residual
and transient data PSDs are equal in a neighborhood of this
harmonic. The modal properties extracted from the identified
model are given in Table III and the frequency response of the
model and a non-parametric estimate are compared in Fig. 7.

Fig. 6: (Left) Spectra associated with the transient data used for model
development (the two traces correspond to the transients starting at t = 0
and t = 5). The n = 1 modes are near 6.6 kHz. A second harmonic is also
evident. The dashed vertical line is located at the n = 2 modal frequencies.
(Right) Spectra of the residuals (red, blue) compared to the noise floor (dashed,
black). The model has removed significant power from the transient data at
the n = 1 modal frequencies. The model is linear and does not capture the
harmonic distortion near 13 kHz.

Fig. 7: Non-parametric frequency response magnitude (blue) is compared to
the model frequency response (red) for the n = 1 pair of modes. The “◦” are
derived from analysis of the model’s eigenvectors –see Sec. V.

B. Results for the n = 2 modes

The n = 2 pair of modes is an interesting case because this
pair has been “tuned” using the algorithm introduced in [5]
and deposition technique from [4]. The modal frequencies
are very nearly equal and separate resonances cannot be
distinguished in frequency response plots. Nevertheless, the
modeling technique is able to clearly identify two modes and,
importantly, their mode orientations. The periodic response of
the resonator is shown in Fig. 8 for a subset of the pick-offs
when Vbias = 0.

As a further demonstration of power of the proposed mod-
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Fig. 8: Response of n = 2 modes to the input in Fig. 4 when Vbias = 0.
Only a subset of the pick-offs are shown (four, out of eight, pick-offs). The
data highlighted in red are used to form the Hankel matrices after detrending
to remove offsets.

TABLE IV: n = 2 modal properties determined from model

Vbias (V)

0 15 30 45

f1 (Hz) 13548.95 13548.89 13548.87 13548.79

f2 (Hz) 13549.04 13548.96 13548.90 13548.85

f2 − f1 0.09 0.07 0.03 0.06

τ1 (s) 1.08 1.08 1.08 1.08

τ2 (s) 1.08 1.08 1.08 1.08

φ1 (deg) -3.7 -2.3 5.5 31.0

φ2 (deg) 41.4 42.8 50.5 75.8

|φ2 − φ1| 45.1 45.1 45.0 44.8

eling technique, the n = 2 modes are perturbed by applying
Vbias 6= 0. The perturbed modes exhibit small changes in modal
frequencies, however, it is shown that the mode orientations
are quite sensitive to Vbias. A summary of the modal properties
are given in Table IV. Fig. 9 compares the PSD of the residual
to the PSD of the transient data when Vbias = 0. The frequency
response of the model versus a non-parametric estimate is
shown in Fig. 10. Significant feedthrough is evident in certain
input-output channels.

Fig. 9: (Left) Spectra associated with the transient data used for model
development (the two traces correspond to the transients starting at t = 0
and t = 5). The modes are near 13.5 kHz. (Right) Spectra of the residuals
compared to the noise floor (dashed, black). The residual spectra are essen-
tially equal to the noise spectrum.

Fig. 10: Frequency response magnitudes showing the n = 2 pair of modes.
The non-parametric estimate (blue) has significant feedthrough coupling
(black line) in some input-output channels. The model frequency response
(red) is not afflicted by the coupling.

C. Results for the n = 3 modes

The response of the resonator to the periodic burst chirp
input adapted to excite the n = 3 pair of modes is shown in
Fig. 11. The feedthrough coupling is quite evident in the time
response. The five largest singular values of H0 are reported
in Table II. A summary of the modal frequencies and mode
orientations extracted from the 4-state model are given in
Table V. The power spectrum of the residual and transient
are shown in Fig. 12. Finally, Fig. 13 compares the frequency
responses of the model and non-parametric estimate.
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Fig. 11: Response of n = 3 modes to the input in Fig. 4 when Vbias = 0.
Only a subset of the pick-offs are shown (four, out of eight, pick-offs).
The data highlighted in red is used to form the Hankel matrices. The
feedthrough coupling is a significant issue for these modes as evidenced by
the measurement values at the times the burst is active, cf. Fig. 4.

TABLE V: n = 3 modal properties determined from model

f1 (Hz) f2 (Hz) τ1 (s) τ2 (s) φ1 (deg) φ2 (deg)

23867.31 23901.07 0.43 0.43 15.5 -14.5

Fig. 12: (Left) Spectra associated with the transient data used for model
development (the two traces correspond to the transients starting at t = 0
and t = 5). The modes are near 24 kHz. (Right) Spectra of the residuals
compared to the noise floor (dashed, black).

Fig. 13: Non-parametric (blue) and model (red) frequency response magnitude
for the n = 3 modes. The estimated feedthrough coupling is also shown
(black). The “◦” are derived from analysis of the model’s eigenvectors –see
Sec. V.

V. DISCUSSION

The veracity of the identified models is confirmed in
several ways. First, comparing model and non-parametric
frequency responses shows very close agreement between
the resonant frequencies and peak magnitude at these fre-
quencies. The model and non-parametric frequency responses
differ away from the resonant frequencies, though, because
of the feedthrough coupling. Although not shown here, if the
feedthrough estimate is summed with the model frequency
response, the non-parametric frequency response is recovered.

The mode orientations can also be estimated from the
magnitudes of the frequency responses at a given resonant
frequency –mapping the magnitudes to the electrode locations
gives insight into orientation of the mode under consider-
ation. This approach can only be applied when the modal
frequencies are significantly detuned because the two modes
respond in an essentially decoupled manner. The model yields
mode orientations that are consistent with the non-parametric
frequency responses in the n = 1, 3 cases. For these cases the
elements of Re(C ~w) are graphed in the frequency response
plots at the modal frequency corresponding to the eigenvector
~w. Since all elements can be scaled by the same factor without
changing the mode shape, the scaling is employed to match
one element in Re(C ~w) to the frequency response magnitude.
Figs. 7 and 13 show the scaled elements of Re(C ~w) for both
modes as the “◦” points –note how all of these amplitude
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estimates using the eigenvector coincide with the frequency
response magnitudes at the resonant frequencies. This confirms
that mode orientations derived from the models are consistent
with those derived from the frequency response plots.

The spectra of the residuals compared to the noise floor and
spectra of the transient data is a measure of how well the model
captures the transient response measurements. The residual in
the n = 2, 3 cases is indistinguishable from the noise floor
measurement. In other words, the model has removed any trace
of the transient response from the residual. The n = 1 residual
still shows some power at the modal frequencies but the RMS
value of the residual is more than two orders of magnitude
smaller than the transient response RMS value. Also note that
the model identifies poorly matched time constants for these
modes. The time constant mismatch is not readily apparent
from the time domain data because both modes are mixed into
each output channel. Although the source of the mismatched
time constants has not been identified with certainty, the fact
that the n = 1 modes are not isolated from the substrate makes
them very susceptible to the boundary conditions/mounting
method of the die (in contrast, the n = 2, 3 pairs are nominally
isolated from the substrate). It was mentioned in Sec. III-A
that the resonator die is suspended from wire bonds. This
mounting method reduces interaction between the die and its
supporting substrate when testing the n = 1 modes. Although
this mounting method produces the longest time constants for
the n = 1 modes, the time constants are still sensitive to how
the wire bonds are attached to the buffer board, e.g., removing
and reattaching the die will change the n = 1 time constants.
The sensitivity of the n = 1 modes to its boundary conditions,
and the fact that they are very susceptible to vibration imposed
on the die, make them unsuitable for exploitation in vibratory
gyros, however, they are included here to demonstrate the
generality of the proposed modeling method.

Finally, the mode orientations obtained from the models
should conform to known properties of modally degenerate
ring-type resonators. The mode orientations determined from
analysis of the models satisfy |φ1−φ2| ≈ 90◦/n with at most
a 0.5◦ deviation for all of the cases considered in Sec. IV,
including the n = 2 modes for different values of Vbias.
This result is consistent with the modal properties of slightly
perturbed ring resonators. It is important to note that the model
was in no way constrained to enforce a relationship between
the orientations of the modes in a given pair –this observation
lends considerable credibility to the modeling approach. Fur-
ther investigation of the n = 2 modes yields additional insight.
The modal frequencies are weakly perturbed by Vbias as shown
in Table IV yet the mode orientations are very sensitive
to Vbias. This behavior is well-known in structural systems
with nearly equal eigenvalues: although the eigenvalues are
continuous functions of the perturbation parameter (in this
case the “stiffness” created by the electrostatic force gradient
when Vbias 6= 0), the eigenvectors are generally not continuous
functions of the perturbation parameter so it is no surprise that
the mode orientations display sensitivity to Vbias.

The foregoing discussion addresses the ability of the model
to provide accurate modal information for degenerate mode
resonators. One outstanding issue is why the first four singular

values ofH0 are orders of magnitude larger than the remaining
singular values. This fact implies that a model order of four
(ns = 4) can accurately represent the transient data. The antic-
ipated minimum model order is four because this corresponds
to the two oscillator model that is necessary to capture both
modes in a degenerate pair, however, the testing block diagram
in Fig. 1 shows that the smoothing and anti-alias filters filters
are part of the signal chain that includes the resonator and,
thus, their effects are present in the measurements. There are
a total of 76 states associated with these filters –each of the
eight pick-offs is filtered by an 8-pole anti-alias filter and each
of the two resonator inputs is preceded by a 6-pole smoothing
filter. Despite the large number of states in these filters, the
analysis in Sec. IV shows that a 4-state model can very
accurately reproduce the transient measurement data. Although
this appears contradictory, the truncation of H0 to a rank 4
matrix preserves the dynamic features that produce the highest
energy in the pick-off measurements. These high energy modes
are actually the resonator’s modes due to their relatively long
time constants when compared to the time constants of the
anti-alias and smoothing filters. Nevertheless, the filters do
contribute gain and phase shifts to the measurement data and,
therefore, must be reflected in some manner in the 4-state
models.

Presenting the details of this analysis would deviate too
far from the main point of the paper, however, a brief ex-
planation is provided. It was shown in [24] that as modal
damping goes to zero, balanced coordinates coincide with
modal coordinates in a state-space representation of a system.
Since the Hankel matrix modeling technique produces models
that are equivalent to models based on balanced truncation
(using finite-time gramians), a realization of the system that
includes the four resonator states and the filter dynamics
can be transformed into block modal form. Truncating all of
the states except the resonator states yields an “A” matrix
whose eigenvalues match those of the resonator, however, the
magnitude and phase shifts produced by the smoothing and
anti-alias filters in a neighborhood of the resonator modal
frequencies are embedded into the B and C matrices of
the truncated realization. Thus, the Hankel matrix analysis
produces a model in which the resonator modes are faithfully
captured, however, the identified B and C matrices include
the effects of the input and output filters.

VI. ZOOM ANALYSIS

The Hankel matrices analyzed in Sec. IV have dimension up
to 40 × 420000 (nr = 5, no = 8, nc = 120000 and ni = 2).
The column dimension must be large in order to faithfully
capture the modal time constants. Although an “economy”
SVD can efficiently produce the necessary factorization for
modeling, it is possible to greatly reduce both the size of the
test data sets and dimension of the Hankel matrices without
compromising the integrity of the models. The proposed
approach is termed “zoom analysis” given its similarity to the
signal processing used in “zoom-FFT” spectral analysis [25].

Since the transient response of a pair of degenerate modes is
a narrow-band phenomenon, it is possible to downsample the
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~yk - i×?e
j2πf0kts

- LPF - ↓ D - ~yc,k + j~ys,k

Fig. 14: Block diagram for zoom analysis. The demodulated signals ~yc,k and
~ys,k are used to form the Hankel matrices, however, the decimation operation
greatly reduces the size of the data sets and, thus, the dimensions of the Hankel
matrices.

response using demodulation frequency f0 in a neighborhood
of the pair of modes under study. Fig. 14 illustrates how
the sampled resonator output ~yk is manipulated –it is the
same block diagram that is used for standard zoom spectral
analysis, however, the downsampled data sequences, denoted
~yc,k and ~ys,k are now used to form H0 and H1. The sample
period associated with ~yc,k and ~ys,k is tD = Dts, where
the positive integer D is the decimation factor, and “LPF”
denotes unity DC gain low-pass filters that remove the high
frequency products. The lower data rate associated with the
demodulated signals is where the savings is realized. Since
~yk is a vector-valued signal, the operations in Fig. 14 are
performed element-wise. Note that the storage requirements
are reduced by a factor of D/2 because the number of output
channels is effectively doubled.

Non-parametric zoom-FFT techniques use the spectrum
of the demodulated signals to recover the spectrum of the
original signals in a neighborhood of ω0. In the Hankel matrix
analysis, though, it is necessary to convert the properties of the
identified “baseband” model into properties of the resonator.
In view of the modeling results in Sec. IV it can be assumed
that the model generating the transient data is composed of
m oscillators and is given by ~yk = CAk~x0, k ≥ 0, where
A ∈ R2m×2m, so ns = 2m (m = 2 for the resonator analyzed
in this paper). The analysis proceeds by representing A in a
special basis. Since the system is composed of m oscillators,
the eigenvalues of A are given by e(−σl±jωl)ts , ωl > 0,
l = 1, 2, . . . ,m, where the exponential decay rate and modal
frequency for the lth mode are given by σl and ωl, respectively.
Even if there are some repeated eigenvalues, it is assumed
that A is non-defective and so A is diagonalizable. Let the
columns of T+ ∈ Cns×m span the A-invariant subspace
associated with the eigenvalues e(−σl+jωl)ts , l = 1, 2, . . . ,m.
The complex-conjugate of T+ is denoted T−. The columns
of T− span the A-invariant subspace associated with the
eigenvalues e(−σl−jωl)ts . Since these invariant subspaces only
intersect at 0, the matrix T =

[
T+ T−

]
∈ Cns×ns is

invertible. The change of basis yields a block diagonal format,

T−1AT =

[
A+ 0
0 A−

]
where A+ ∈ Cm×m has eigenvalues e(−σl+jωl)ts , l =
1, 2, . . . ,m, and A− is the complex conjugate of A+ with
eigenvalues {e(−σl−jωl)ts}. The measurement sequence from
a transient response with initial condition ~x0 ∈ Rns is

~yk = CAk~x0

= CT

[
(A+)k 0

0 (A−)k

]
T−1~x0.

An expression for the demodulated components of ~yk is de-
rived. The demodulating sinusoid is assumed to be cos(ω0kts),
ω0 = 2πf0 > 0. In general, the phase of the demodulating
sinusoid should be an arbitrary parameter since it is not
possible to control the phase relative to the data that is used for
forming the Hankel matrices. Including a phase parameter only
complicates the analysis without changing the fundamental
result, thus, the phase is assumed to be zero as shown.
Multiplying ~yk by the sinusoid yields,

cos(ω0kts)~yk

=
1

2
CT

[
(A+)kejω0kts 0

0 (A−)kejω0kts

]
T−1~x0

+
1

2
CT

[
(A+)ke−jω0kts 0

0 (A−)ke−jω0kts

]
T−1~x0.

(12)

The demodulation frequency ω0 is selected to be near the set
of frequencies {ω1, ω2, . . . , ωm}. It is possible for ω0 to be
greater than these frequencies, less than these frequencies,
or in the midst of this set. The examples shown below
demonstrate that identified modal properties are robust to the
choice of ω0. The low-pass filter is designed so that its corner
frequency is greater than |ωl − ω0|, l = 1, 2, . . . ,m, so that
contributions from all oscillators are preserved in the demodu-
lated signal. Furthermore, D is selected to avoid aliasing. This
permits the truncation of the blocks in (12) that generate the
terms with approximate frequencies ±2ω0 (the eigenvalues of
A+ejω0ts and A−e−jω0ts ). The decimation operation simply
replaces k with Dk in the right-hand side terms. The sample
period of the downsampled data is tD = Dts. Thus,

~yc,k =
1

2
CΦk~x0, (13)

where

Φ := T

[
(A+)De−jω0tD 0

0 (A−)Dejω0tD

]
T−1 ∈ Rns×ns .

It can be shown that Φ is real if A is real.
Application of the Hankel matrix analysis technique to

the demodulated signal ~yc,k will yield estimates for C, Φ
and ~x0. Although C and ~x0 are associated with the original
system, it is not possible to recover the modal frequencies
ωl, l = 1, . . . ,m, from analysis of Φ alone because the
eigenvalues of Φ are the set {e(−σl±j(ωl−ω0))tD} and it is not
a priori known if the beat frequency |ωl−ω0| corresponds to a
mode whose natural frequency is greater than, or less than, the
demodulation frequency ω0. The ambiguity can be eliminated
by considering the demodulated signal ~ys,k in addition to ~yc,k.

The expression for ~ys,k is

~ys,k =
1

2
CT

[
j(A+)Dke−jω0ktD 0

0 −j(A−)Dkejω0ktD

]
T−1~x0

=
1

2
CM︸︷︷︸
Cs

Φk~x0,

where
M = T

[
jI 0
0 −jI

]
T−1 ∈ Rns×ns ,

and the matrix Cs ∈ Rn0×ns is defined as indicated. It is
important to express ~ys,k and ~yc,k with the same dynamics
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matrix Φ because the Hankel matrix analysis is applied to the
base-band system with augmented outputs. The definition of
Yk is updated to

Yk =
1

2

[
C
Cs

]
ΦkX, k ≥ 0

where X is the matrix of initial conditions associated with the
transients starting at t = 0 and t = 5 as shown in Fig. 15.
Analysis of the Hankel matrices formed from the demodulated
data yield C, Cs, Φ and X .

The modal frequency and damping terms associated with
the oscillators are determined as follows. Only a single output
is necessary to describe the process so it can be assumed ~y,
and, hence, ~yc,k and ~ys,k, are scalar-valued. Let ~w ∈ Cns

be an eigenvector of Φ whose corresponding eigenvalue is
e(−σ+jω̃)tD , where the eigenvalue is chosen so that ω̃ > 0.
There are two cases to consider. Suppose the “baseband”
frequency ω̃ is associated with an oscillator whose frequency
is greater than ω0. In other words, ω̃ = ωl − ω0 for some
l ∈ [1, . . . ,m]. In this case the eigenvector ~w may be expressed
as ~w = T+~z for some unique ~z ∈ Cm, ~z 6= 0. The output
matrix associated with the ~yc,k “channel” is C and C ~w ∈ C
is its product with the eigenvector (since a single output is
assumed for this argument). Without loss of generality, it is
assumed C ~w 6= 0 otherwise the pick-off associated with this
output is located at a node of the mode and so no response is
observed (another output channel must be selected). Represent
C ~w = α+jβ, α, β ∈ R. Now, consider the product of ~w with
the output matrix associated with ~ys,k,

Cs ~w = CMT+~z

= jCT+~z

= −β + jα

Define the matrix S ∈ R2×2

S =

[
Re(C ~w) Im(C ~w)
Re(Cs ~w) Im(Cs ~w)

]
. (14)

For the case considered above, namely ωl > ω0,

detS = det

[
α β
−β α

]
= α2 + β2 > 0

The second case to consider is when ω̃ = ω0 − ωl > 0, for
some l ∈ [1, . . . , n]. In this case, the demodulation frequency
is greater than the oscillator frequency and the eigenvector ~w
can be represented ~w = T−~z, for some unique ~z ∈ Cm, ~z 6= 0.
As before, suppose C ~w = α + jβ for a new set of {α, β}.
Consider,

Cs ~w = CMT−~z

= −jCT−~z
= β − jα

In this case, detS = −(α2 +β2) < 0. Thus, the sign of detS
determines whether the modal frequency is less than or greater
than the demodulation frequency.

In summary, each output channel is demodulated to produce
the baseband signals ~yc,k and ~ys,k. A linear model is fit to
the baseband data and yields C, Cs, Φ and x0. Consider an
eigenvalue/vector pair of Φ: e(−σ+jω̃)tD and ~w, for which ω̃ >

Fig. 15: An example of the S6 electrode measurement of the n = 1 test
from Fig. 5 demodulated with f0 = 6560Hz into components ~yc,k (top)
and ~ys,k (bottom). The highlighted segments (red) are used to construct the
Hankel matrices. The decimation factor is D = 100 so the sample period is
tD = Dts = 1/700 second.

0 (since the eigenvalues of Φ appear in conjugate-pairs, m
eigenvalues can be chosen to satisfy this constraint). Selecting
the same row in C and Cs, S is computed and the modal
frequency of the oscillator is recovered from

ω0 + ω̃ sgn (detS) , (15)

where sgn is the signum, or sign, function. This calculation can
be performed for each output channel to check consistency of
frequency estimates. The exponential decay rate σ is preserved
in the demodulated data and so can be directly obtained from
the eigenvalue e(−σ+jω̃)tD .

A. Zoom analysis applied to resonator

The zoom technique is applied to the n = 1, 2, 3 resonator
modes in order to determine modal frequencies, time con-
stants, and mode orientations. In order to assess consistency
with the results presented in Sec. IV, the same data sets are
used for the zoom analysis since these data are stored and
can be processed according to the zoom method. The low-
pass filters are 4-pole Butterworth filters with 200 Hz corner
frequencies and D = 100. The only parameter that is changed
is ω0 since that is dependent on the which pair of degenerate
modes is to be analyzed (ω0 is reported as f0, with unit Hz, in
the tables). As in the prior analysis, two 3-second transient data
segments are used to form the Hankel matrices for n = 1, 2,
so nr = 5 and nc = 2100, however, no = 16 because
demodulation of ~yk into ~yc,k and ~ys,k doubles the number of
output channels. The dimensions of the Hankel matrices are
now 80× 4200. For n = 3, 1.5 seconds of data are used. An
example of the demodulated S6 pick-off for n = 1 is shown
in Fig. 15 (compare to Fig. 5). The singular values of H0

are presented in Table VI for three demodulation frequencies
applied to each pair of modes. Although the singular values
are different from the non-zoom analysis, σ4 remains more
than two orders of magnitude larger than σ5 so ns = 4 is
still a reasonable choice for the model order (demodulation
reduces the signal power and this is reflected in the new
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TABLE VI: Singular values of H0 for zoom analysis

Pair f0 (Hz) σ1 σ2 σ3 σ4 σ5 σ4/σ5

n = 1

6550 46.0 45.8 30.8 30.7 0.0093 3291
6580 46.0 45.8 30.9 30.6 0.0095 3233
6610 45.9 45.9 30.9 30.6 0.0093 3280

n = 2

13540 21.4 21.1 17.2 17.0 0.0071 2381
13550 22.7 19.8 18.3 15.8 0.0072 2186
13560 21.4 21.1 17.2 17.0 0.0072 2348

n = 3

23860 2.01 1.98 1.58 1.53 0.0079 193
23880 2.04 1.94 1.60 1.51 0.0079 191
23910 2.03 1.96 1.56 1.55 0.0081 192

singular values). Analysis of the Hankel matrices yields Φ,
C, Cs and X for each demodulation frequency. The mode
orientations can be determined using the process described
in Sec. III-D with the eigenvectors of Φ without modification.
The modal properties determined from the zoom analyses yield
the same values as quoted in Tables III, IV and V so no
separate summaries for the zoom analyses are required. Note
that the modal properties are independent of the choice of f0.

VII. CONCLUSION

The proposed parametric modeling technique yields ac-
curate frequency, damping, and mode orientation estimates
for degenerate pairs of modes. Test results are reported for
n = 1, 2, 3 pairs of modes in an axisymmetric MEMS ring
resonator. The technique rejects parasitic coupling between
the input and output electrodes because the dynamic model
is developed from transient, input-free data. The proposed
technique is complementary to the non-parametric frequency
response estimation methods that are ubiquitous in MEMS
resonator testing. Parametric models have some distinct ad-
vantages when the difference between modal frequencies is
sufficiently small such that individual quality factors and even
modal frequencies are difficult to discriminate from frequency
response graphs or ring-down data. The proposed modeling
technique also yields mode orientations in these challeng-
ing cases. The relative mode orientations extracted from the
identified models are consistent with the known properties
of modally degenerate structures like rings. The model-based
orientation estimates also agree with the empirical frequency
response graphs when the modes were sufficiently separated
in frequency. A “zoom” variation of the modeling technique
based on fitting models to demodulated data greatly reduces
the storage and signal processing requirements compared to
the standard algorithm. Analysis of the models derived with
zoom technique yielded identical modal property estimates for
the various pairs of modes in the test resonator.

REFERENCES

[1] T. Charnley and R. Perrin, “Perturbation Studies with a
Thin Circular Ring,” Acta Acustica, vol. 28, no. 3, pp.
139–146, 1973.

[2] C. H. J. Fox, “A simple theory for the analysis and
correction of frequency splitting in slightly imperfect
rings,” J. Sound Vib., vol. 142, no. 2, pp. 227–243, 1990.

[3] A. K. Rourke, S. Mcwilliam, and C. H. Fox, “Multi-mode
trimming of imperfect rings,” J. Sound Vib., 2001.

[4] D. Schwartz, D. Kim, P. Stupar, J. DeNatale, and R. T.
M’Closkey, “Modal parameter tuning of an axisymmetric
resonator via mass perturbation,” J. Microelectromech.
Sys., vol. 24, no. 3, pp. 545–555, 2015.

[5] A. H. Behbahani, D. Kim, P. Stupar, J. Denatale, and
R. T. M’Closkey, “Tailored etch profiles for wafer-level
frequency tuning of axisymmetric resonators,” J. Micro-
electromech. Sys., vol. 26, no. 2, pp. 333–343, 2017.

[6] C. Sanathanan and J. Koerner, “Transfer function synthe-
sis as a ratio of two complex polynomials,” IEEE Trans.
Autom. Control, vol. 8, no. 1, pp. 56–58, January 1963.

[7] J. L. Adcock, “Curve fitter for pole-zero analysis,”
Hewlett-Packard Journal, vol. 38, no. 1, pp. 33–36, 1987.

[8] J. E.-Y. Lee and A. A. Seshia, “Direct parameter ex-
traction in feedthrough-embedded capacitive mems res-
onators,” Sens. Actuator A Phys., vol. 167, no. 2, pp.
237–244, 2011.

[9] A. Brenes, J. Juillard, F. V. Dos Santos, and A. Bonnoit,
“Characterization of mems resonators via feedthrough
de-embedding of pulsed-mode response,” Procedia Eng.,
vol. 87, pp. 823–826, 2014.

[10] A. S. Phani and A. Seshia, “Identification of anisoelastic-
ity and nonproportional damping in mems gyroscopes,”
in NSTI-Nanotech, vol. 2, 2004, pp. 343–346.

[11] D. Kim and R. T. M’Closkey, “A systematic method
for tuning the dynamics of electrostatically actuated
vibratory gyros,” IEEE Trans. Control Syst. Technol.,
vol. 14, no. 1, pp. 69–81, January 2006.

[12] C. C. Painter and A. M. Shkel, “Active structural error
suppression in mems vibratory rate integrating gyro-
scopes,” IEEE Sens. J., vol. 3, no. 5, pp. 595–606, 2003.

[13] O. Kuter-Arnebeck, A. Labuda, S. Joshi, K. Das,
and S. Vengallatore, “Estimating damping in microres-
onators by measuring thermomechanical noise using
laser doppler vibrometry,” J. Microelectromech. Sys.,
vol. 23, no. 3, pp. 592–599, 2014.

[14] H. H. Ge, A. H. Behbahani, J. S. Gibson, and R. T.
M’Closkey, “Adaptive cancellation of parasitic coupling,”
J. Microelectromech. Sys., vol. 27, no. 5, pp. 844–853,
2018.

[15] R. T. M’Closkey, S. Gibson, and J. Hui, “System Iden-
tification of a MEMS Gyroscope ,” J. Dyn. Syst. Meas.
Control, vol. 123, no. 2, pp. 201–210, 06 1999.

[16] P. Shao, V. Tavassoli, C.-S. Liu, L. Sorenson, and
F. Ayazi, “Electrical characterization of ald-coated silicon
dioxide micro-hemispherical shell resonators,” in 27th
MEMS. IEEE, 2014, pp. 612–615.

[17] D. Saito, C. Yang, A. Heidari, H. Najar, L. Lin, and D. A.
Horsley, “Batch-fabricated high q-factor microcrystalline
diamond cylindrical resonator,” in 28th MEMS. IEEE,
2015, pp. 801–804.

[18] P. M. Polunin, Y. Yang, M. I. Dykman, T. W. Kenny,
and S. W. Shaw, “Characterization of mems resonator
nonlinearities using the ringdown response,” J. Micro-
electromech. Sys., vol. 25, no. 2, pp. 297–303, 2016.

[19] T. Nagourney, J. Y. Cho, B. Shiari, A. Darvishian, and



14

K. Najafi, “259 second ring-down time and 4.45 million
quality factor in 5.5 khz fused silica birdbath shell
resonator,” in 19th TRANSDUCERS. IEEE, 2017, pp.
790–793.

[20] J. Giner, D. Maeda, K. Ono, A. M. Shkel, and
T. Sekiguchi, “Mems gyroscope with concentrated
springs suspensions demonstrating single digit frequency
split and temperature robustness,” J. Microelectromech.
Sys., vol. 28, no. 1, pp. 25–35, 2018.
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