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Summary
Motivated by various applications in microfluidics, we consider low-Reynolds-number
flow in a two-dimensional channel with different widths in the upstream and
downstream directions. The channel geometry consists of a polygonal domain with
angled edges at transition points. The polygonal nature of the geometry makes it
amenable to analysis via the Unified Transform Method, providing quasi-analytical
solutions which can be used to compute all the physical quantities of interest. We
compute the pressure drop between the ends of the expansion or constriction region
as a function of the channel width ratio and the orientation of the angled edges and
compare our results to extended lubrication theory.

1. Introduction

The study of Stokes flows in confined geometries bounded by no-slip boundaries is an
important area of fluid dynamics. Renewed interest in the theory of such flows has emerged
as new problems arise in microfluidics applications (Kirby (1)).

A variety of analytical tools exist for solving two-dimensional Stokes flows and specifically
in channel geometries. Davis (2) presented the solutions to various problems involving point
singularities in a channel using Fourier transforms. The Wiener-Hopf technique which
relies on Fourier transforms and factorization of functions into upper and lower analytic
ones can be used to analyse problems involving mixed boundary conditions. A classical
problem concerns the flow in a channel divided by a semi-infinite wall. The analysis of
the symmetric channel divider reduces to a scalar Wiener-Hopf problem; this problem
was originally solved by Buchwald & Doran (3) and Foote & Buchwald (4). Jeong (5)
also analysed the flow around the semi-infinite wall in a symmetric channel divider using
the Wiener-Hopf technique. Abrahams, Davis & Llewellyn Smith (6) considered Stokes
flow in an asymmetric channel divider. The boundary value problem was reduced to a
matrix Wiener-Hopf problem which was solved using Padé approximants. Kim & Chung
(7) analysed the flow in a channel with a finite plate parallel to the walls using a three-
part Wiener-Hopf formulation. Other techniques to solve problems in channel geometries
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2 E. Luca & S. G. Llewellyn Smith

are series expansions in rectangular regions. Phillips (8) used the method of matched
eigenfunction expansions using Papkovich-Fadle functions to study the flow in a channel
with a contraction. Motivated by biological applications, Setchi et al. (9) used Papkovich-
Fadle eigenfunctions associated with semi-strip geometries to solve for a variety of low-
Reynolds-number flows in a channel through a shunt. For more complicated geometries,
boundary integral methods have been developed and can be used to analyse the resulting
flows (Pozrikidis (10, 11)).

For flows in channels in which the ratio of the channel width to length is very small, the
solution can be approximated by lubrication theory (Howison (12), Ockendon & Ockendon
(13)). Tavakol et al. (14) have recently presented an extended lubrication theory, i.e. an
approximation to higher-order terms, to address limitations of standard lubrication theory.
They analysed low-Reynolds-number flows in channel geometries where boundaries were
described by continuous and either differentiable or piecewise differentiable mathematical
shape functions.

Although analytical methods can be used to solve problems in channel geometries with
parallel boundaries, the analysis of problems with angled boundaries remains a challenge.
Methods which rely on rectangular domain decomposition, such as the eigenfunction
expansion method, can no longer be used. Lubrication theory can be used provided the
width changes gradually enough. Otherwise numerical methods such as boundary integral
techniques or finite difference and finite element methods have been used. Our approach
gives a semi-analytical method to solve the problem of flow through channels with piecewise-
straight walls.

y
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Fig. 1: Schematic of the configuration: pressure-driven flow in a polygonal channel with
velocities U1 and U2 far upstream and downstream respectively. The transition region spans
x ∈ [l, L].

In this paper, we focus on pressure-driven Stokes flow in a two-dimensional channel
with different widths in the upstream and downstream directions (Figure 1). The problem
is analysed using the Unified Transform Method (UTM) which was proposed by Fokas
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(15, 16) and developed by Fokas and collaborators subsequently. This method provides
a generalization of the classical Fourier transform, since it involves simultaneous spectral
analysis with respect to two independent variables x and y. The UTM has been successfully
used to solve various biharmonic boundary value problems arising in the study of Stokes
flows and plane elasticity, in convex polygonal (17, 18, 19, 20, 21) and circular (22)
domains.

Having derived the solutions using the UTM, we report computed values of the pressure
drop between the ends of the expansion or constriction region as a function of the channel
width ratio and the orientation of the angled edges. Our results are compared with pressure
drop values found using extended lubrication theory (14).

2. Complex variable formulation of Stokes flow

Consider a region of incompressible fluid of viscosity µ evolving according to the Stokes
equations

∇p = µ∇2u, ∇ · u = 0, (2.1)

where u = (u, v) is the two-dimensional velocity field and p is the fluid pressure. It is
well-known (Langlois (23)) that an incompressible solution of the Stokes equations for the
velocity field (u, v) can be written in terms of a stream function ψ(x, y) with

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.2)

The stream function satisfies the biharmonic equation

∇4ψ = 0, (2.3)

where ∇2 is the two-dimensional Laplacian. The general solution of (2.3) can be written

ψ = Im[zf(z) + g(z)], (2.4)

where f(z) and g(z) are analytic functions (which can have isolated singularities) in the
fluid region and are often referred to as Goursat functions (Langlois (23)). These analytic
functions are related to physical quantities via

4f ′(z) =
p

µ
− iω, −f(z) + zf ′(z) + g′(z) = u− iv, (2.5)

where ω is the fluid vorticity. It is clear, then, that to solve a Stokes flow problem in two
dimensions, it is sufficient to determine these two analytic functions; this is done by making
use of the boundary conditions.

3. Problem formulation

Consider the two-dimensional polygonal channel shown in Figure 1 and assume that there
exists a pressure-driven flow with inlet and outlet velocities, U1 and U2 respectively, related
via the flux balance condition. The width of the channel in the upstream direction is 2h
and in the downstream 2H with H > h. The transition region x ∈ [l, L] consists of straight
edges of direction ±θ with respect to the real axis.
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The resulting flow is symmetric about y = 0; this implies that the Goursat functions f(z)
and g′(z) satisfy the following conditions

f(z) = f(z), g′(z) = g′(z), (3.1)

where the Schwarz conjugate h(z) of a function h(z) is defined by h(z) ≡ h(z). These
conditions will be used to eliminate the complex conjugate quantities that appear in the
analysis of the boundary conditions.

The upper boundary of the channel of width 2H makes an angle π−θ with the expansion
region (and similarly the lower boundary). If π − θ / 146◦, one expects the emergence
of recirculating regions in the vicinity of the corners, the so-called ‘Moffatt eddies’ (24).
Near the corner regions, the Goursat functions have local behaviour that includes complex
powers of z.

Our aim is to investigate the effect of the expansion or constriction region on the resulting
flow, as well as to compute the pressure drop between its two ends.

4. Domain splitting

The first step is to split the fluid domain into three convex polygonal domains as shown in
Figure 2 and write appropriate representations for the Goursat functions f(z) and g′(z) in
each domain.

1 2 3

Fig. 2: Domain splitting into three sub-domains.

4.1 Domain 1

The Goursat functions are represented by

f(z) = fu(z) + f1(z), g′(z) = g′u(z) + g′1(z), (4.1)

where fu(z), g′u(z) are known functions related to the pressure-driven flow of strength U1

in the far field and f1(z), g′1(z) are unknown analytic functions vanishing far upstream
which will be found using the transform method. The velocity components (u, v) for the
pressure-driven flow of strength U1 in the far field are given by

u = U1(h2 − y2), v = 0, (4.2)
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where U1 is related to the flux Q > 0 via

U1 =
3Q

4h3
> 0. (4.3)

The velocity field can equivalently be written in complex form as

u− iv =
U1z

2

4
− U1zz

2
+
U1z

2

4
+ U1h

2, (4.4)

with

fu(z) = −U1z
2

4
, g′u(z) =

U1z
2

4
+ U1h

2. (4.5)

To find (4.5), we have compared (4.4) with the velocity expression given in (2.5). Note that
there is an additive degree of freedom in the definition of the Goursat functions, since on
redefining these to be

f(z) 7→ f(z) +
Pz

4µ
, (4.6)

or

f(z) 7→ f(z) + c, g′(z) 7→ g′(z) + c, (4.7)

for P ∈ R and c ∈ C, all the physical quantities remain unchanged. Without loss of
generality, we do not add these here, but we will include them in the Goursat functions of
domain 3.

Next, we use the Unified Transform Method (16, 25) to represent the analytic function
f1(z):

f1(z) =
1

2π

[∫ ∞
0

ρ1(k)eikzdk +

∫ −∞
0

ρ2(k)eikzdk +

∫ −i∞
0

ρ3(k)eikzdk

]
, (4.8)

where the spectral functions are defined by

ρ1(k) =

∫ l−ih

−∞−ih
f1(z)e−ikzdz, ρ2(k) =

∫ −∞+ih

l+ih

f1(z)e−ikzdz,

ρ3(k) =

∫ l+ih

l−ih
f1(z)e−ikzdz.

(4.9)

The spectral functions satisfy the global relation

ρ1(k) + ρ2(k) + ρ3(k) = 0, Im[k] ≥ 0. (4.10)

Similarly, we write an integral representation for the analytic function g′1(z):

g′1(z) =
1

2π

[∫ ∞
0

ρ̂1(k)eikzdk +

∫ −∞
0

ρ̂2(k)eikzdk +

∫ −i∞
0

ρ̂3(k)eikzdk

]
, (4.11)
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where the spectral functions are defined by

ρ̂1(k) =

∫ l−ih

−∞−ih
g′1(z)e−ikzdz, ρ̂2(k) =

∫ −∞+ih

l+ih

g′1(z)e−ikzdz,

ρ̂3(k) =

∫ l+ih

l−ih
g′1(z)e−ikzdz.

(4.12)

The spectral functions satisfy the global relation

ρ̂1(k) + ρ̂2(k) + ρ̂3(k) = 0, Im[k] ≥ 0. (4.13)

4.2 Domain 2

The Goursat functions are represented by

f(z) = f2(z), g′(z) = g′2(z), (4.14)

where f2(z), g′2(z) are analytic functions which will be found using the transform method.
Although the biharmonic equation is not conformally invariant, we use a conformal

mapping to transplant the polygonal domain 2 in the z-plane to a complex parametric
η-plane. The conformal mapping

η(z) = log z (4.15)

transplants domain 2 in the z-plane to the curvilinear domain in the η-plane shown in Figure
3. The mapping (4.15) was also used by Crowdy & Brzezicki (21) who analysed the Stokes
flow generated by a point singularity near a semi-infinite wedge. Under this conformal
mapping, the angled edges in the z-plane correspond to the horizontal edges S1, S3 in the
η-plane and the vertical edges (in z-plane) to the curved sides S2, S4 (in η-plane). The
parameters a, b ∈ R are defined by

a = log
√
l2 + h2, b = log

√
L2 +H2. (4.16)

l − ih

l + ih

L+ iH

L− iH

η(z) = log z
θ

a− iθ b− iθ

b+ iθa+ iθ

z-plane η-plane

S1

S2

S3

S4
0 2

Im[η] = 0

Fig. 3: Conformal mapping from the polygonal domain 2 in the z-plane to a curvilinear
domain in the parametric η-plane.
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Introduce the composite functions

F2(η) ≡ f2(z(η)), G2(η) ≡ g′2(z(η)). (4.17)

Next, introduce the spectral functions

σj(k) =

∫
Sj

F2(η)e−ikηdη, j = 1, 2, 3, 4, (4.18)

where Sj , j = 1, 2, 3, 4, denotes side j with counterclockwise orientation as shown in Figure
3. The spectral functions satisfy the global relation

4∑
j=1

σj(k) = 0, k ∈ C. (4.19)

Similarly, we write

σ̂j(k) =

∫
Sj

G2(η)e−ikηdη, j = 1, 2, 3, 4 (4.20)

and the global relation
4∑
j=1

σ̂j(k) = 0, k ∈ C. (4.21)

Integral representations for the Goursat functions f2(z), g′2(z) will be presented in Section
6.4.

4.3 Domain 3

The Goursat functions are represented by

f(z) = fd(z) + f3(z), g′(z) = g′d(z) + g′3(z), (4.22)

where fd(z), g
′
d(z) are known functions related to the pressure-driven flow of strength U2 in

the far field with some additive constants and f3(z), g′3(z) are unknown analytic functions
vanishing downstream which will be found using the transform method. The functions
fd(z), g

′
d(z) are given by

fd(z) = −U2z
2

4
+ Pz + c, g′d(z) =

U2z
2

4
+ U2H

2 + c, (4.23)

where P ∈ R and c ∈ C are unknown constants which will be found as part of the solution.
We note that the symmetry conditions imply that c ∈ R. Using the flux balance condition,
we find that U2 is related to U1 via

U2 =

(
h

H

)3

U1. (4.24)

The analytic function f3(z) can be represented by

f3(z) =
1

2π

[∫ ∞
0

τ1(k)eikzdk +

∫ −∞
0

τ2(k)eikzdk +

∫ i∞

0

τ3(k)eikzdk

]
, (4.25)
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where spectral functions are defined by

τ1(k) =

∫ ∞−iH
L−iH

f3(z)e−ikzdz, τ2(k) =

∫ L+iH

∞+iH

f3(z)e−ikzdz,

τ3(k) =

∫ L−iH

L+iH

f3(z)e−ikzdz.

(4.26)

The spectral functions satisfy the global relation

τ1(k) + τ2(k) + τ3(k) = 0, Im[k] ≤ 0. (4.27)

Similarly, we write

g′3(z) =
1

2π

[∫ ∞
0

τ̂1(k)eikzdk +

∫ −∞
0

τ̂2(k)eikzdk +

∫ i∞

0

τ̂3(k)eikzdk

]
, (4.28)

where spectral functions are defined by

τ̂1(k) =

∫ ∞−iH
L−iH

g′3(z)e−ikzdz, τ̂2(k) =

∫ L+iH

∞+iH

g′3(z)e−ikzdz,

τ̂3(k) =

∫ L−iH

L+iH

g′3(z)e−ikzdz.

(4.29)

The spectral functions satisfy the global relation

τ̂1(k) + τ̂2(k) + τ̂3(k) = 0, Im[k] ≤ 0. (4.30)

5. Boundary conditions and spectral analysis

In this section, we will obtain more information about the spectral functions by making use
of the boundary conditions. The global relations will also be used to reduce the number of
unknown spectral functions.

5.1 Domain 1

The no-slip boundary condition on the channel boundaries can be expressed as

−f(z) + zf ′(z) + g′(z) = 0, on z = z + 2ih and z = z − 2ih. (5.1)

On substitution of (4.1) and use of the symmetry condition (3.1), we find that, on the lower
boundary z = z + 2ih,

−f1(z + 2ih) + (z + 2ih)f ′1(z) + g′1(z) = 0. (5.2)

We multiply (5.2) by e−ikz and integrate along the lower boundary:

−
∫ l−ih

−∞−ih
f1(z + 2ih)e−ikzdz +

∫ l−ih

−∞−ih
(z + 2ih)f ′1(z)e−ikzdz +

∫ l−ih

−∞−ih
g′1(z)e−ikzdz = 0.

(5.3)
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This can be written in terms of the spectral functions as

e−2khρ2(k)− ∂[kρ1(k)]

∂k
− 2khρ1(k) + ρ̂1(k) + (l + ih)f1(l − ih)e−ik(l−ih) = 0. (5.4)

Similarly, on the upper boundary z = z − 2ih, we have

−f1(z − 2ih) + (z − 2ih)f ′1(z) + g′1(z) = 0. (5.5)

We multiply (5.5) by e−ikz and integrate along the upper boundary:

−
∫ −∞+ih

l+ih

f1(z − 2ih)e−ikzdz+

∫ −∞+ih

l+ih

(z − 2ih)f ′1(z)e−ikzdz+

∫ −∞+ih

l+ih

g′1(z)e−ikzdz = 0.

(5.6)
This can be written in terms of the spectral functions as

e2khρ1(k)− ∂[kρ2(k)]

∂k
+ 2khρ2(k) + ρ̂2(k)− (l − ih)f1(l + ih)e−ik(l+ih) = 0. (5.7)

Addition of (5.4) and (5.7) and use of the global relations (4.10) gives (after rearrangement):

2[sinh(2kh)− 2kh]ρ1(k) = W1(k), Im[k] ≥ 0, (5.8)

where

W1(k) =[e−2kh + 2kh]ρ3(k)− ∂[kρ3(k)]

∂k
+ ρ̂3(k)

− (l + ih)f1(l − ih)e−ik(l−ih) + (l − ih)f1(l + ih)e−ik(l+ih).

(5.9)

5.2 Domain 2

The no-slip boundary condition on the horizontal boundaries of the curvilinear domain
in the η-plane (which correspond to the angled no-slip boundaries in the z-plane) can be
expressed as

−F2(η) + eη
∂

∂z
F2(η) +G2(η) = 0, on η = η + 2iθ and η = η − 2iθ. (5.10)

Using

z
∂

∂z
=

∂

∂η
(5.11)

and the symmetry condition (3.1) (the symmetry with respect to y = 0 in the z-plane
corresponds to symmetry with respect to Im[η] = 0 in the η-plane), we find that, on the
lower boundary η = η + 2iθ,

−F2(η + 2iθ) + e2iθF ′2(η) +G2(η) = 0. (5.12)

We multiply (5.12) by e−ikη and integrate along the lower boundary:

−
∫ b−iθ

a−iθ
F2(η + 2iθ)e−ikηdη + e2iθ

∫ b−iθ

a−iθ
F ′2(η)e−ikηdη +

∫ b−iθ

a−iθ
G2(η)e−ikηdη = 0. (5.13)
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This can be written in terms of the spectral functions as

e−2kθσ3(k)+ike2iθσ1(k)+ σ̂1(k)+e2iθ[F2(b− iθ)e−ik(b−iθ)−F2(a− iθ)e−ik(a−iθ)] = 0. (5.14)

Similarly, on the upper boundary η = η − 2iθ, we have

−F2(η − 2iθ) + e−2iθF ′2(η) +G2(η) = 0. (5.15)

We multiply (5.15) by e−ikη and integrate along the upper boundary:

−
∫ a+iθ

b+iθ

F2(η − 2iθ)e−ikηdη+ e−2iθ
∫ a+iθ

b+iθ

F ′2(η)e−ikηdη+

∫ a+iθ

b+iθ

G2(η)e−ikηdη = 0. (5.16)

This can be written in terms of the spectral functions as

e2kθσ1(k)+ike−2iθσ3(k)+σ̂3(k)+e−2iθ[F2(a+iθ)e−ik(a+iθ)−F2(b+iθ)e−ik(b+iθ)] = 0. (5.17)

Addition of (5.14) and (5.17) and use of the global relations (4.19) and (4.21) gives (after
rearrangement):

2[sinh(2kθ)− k sin(2θ)]σ1(k) = W2(k), k ∈ C, (5.18)

where

W2(k) =(e−2kθ + ike−2iθ)σ2(k) + (e−2kθ + ike−2iθ)σ4(k) + σ̂2(k) + σ̂4(k)

− e2iθ[F2(b− iθ)e−ik(b−iθ) − F2(a− iθ)e−ik(a−iθ)]

− e−2iθ[F2(a+ iθ)e−ik(a+iθ) − F2(b+ iθ)e−ik(b+iθ)].

(5.19)

5.3 Domain 3

The boundary conditions and spectral analysis are similar to those found for Domain 1.
We, therefore, omit the details and report only the final key expression

2[sinh(2kH)− 2kH]τ1(k) = W3(k), Im[k] ≤ 0, (5.20)

where

W3(k) =[e−2kH + 2kH]τ3(k)− ∂[kτ3(k)]

∂k
+ τ̂3(k)

+ (L+ iH)f3(L− iH)e−ik(L−iH) − (L− iH)f3(L+ iH)e−ik(L+iH).

(5.21)

5.4 Continuity conditions

We impose continuity of velocity, pressure and vorticity across the common edges between
domains 1 & 2 and domains 2 & 3. This is equivalent to insisting that f(z) and g′(z) are
continuous across the common edges.

Along z = l + iy, y ∈ [−h, h], we have

fu(z) + f1(z) = f2(z), g′u(z) + g′1(z) = g′2(z). (5.22)
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At the corner points z = l ± ih, we can write

fu(l − ih) + f1(l − ih) = f2(l − ih),

fu(l + ih) + f1(l + ih) = f2(l + ih).
(5.23)

Along z = L+ iy, y ∈ [−H,H], we have

f2(z) = fd(z) + f3(z), g′2(z) = g′d(z) + g′3(z). (5.24)

At the corner points z = L± iH, we can write

f2(L− iH) = fd(L− iH) + f3(L− iH),

f2(L+ iH) = fd(L+ iH) + f3(L+ iH).
(5.25)

6. Solution scheme

In the previous section, we found the following expressions:

2[sinh(2kh)− 2kh]ρ1(k) = W1(k), Im[k] ≥ 0,

2[sinh(2kθ)− k sin(2θ)]σ1(k) = W2(k), k ∈ C,
2[sinh(2kH)− 2kH]τ1(k) = W3(k), Im[k] ≤ 0.

(6.1)

Using the continuity conditions (5.22)-(5.25), W1(k) and W3(k), given by (5.9) and (5.21)
respectively, can be expressed in terms of spectral functions and corner values associated
to domain 2.

6.1 Conditions in the spectral k-plane

In this section, we show how to exploit the analyticity properties of the spectral functions
ρ1(k), σ1(k) and τ1(k) which appear in (6.1) to identify special points in the spectral k-plane
whereby information on a reduced set of unknown spectral functions is available.

The spectral function ρ1(k) is analytic in the upper half k-plane which from (6.1) means
that we must require

W1(k) = 0, for k ∈ Σ1 ≡ {k ∈ C+| sinh(2kh)− 2kh = 0}. (6.2)

In addition, as k → 0,
sinh(2kh)− 2kh = O(k3), (6.3)

which implies that W1(k) must also satisfy

W1(0) = W ′1(0) = W ′′1 (0) = 0. (6.4)

We note that k-points in the set Σ1 essentially satisfy the well-known eigenvalue condition
for the odd (with respect to reflection in the real axis) Papkovich-Fadle eigenfunctions of
the semi-strip of width 2h (Spence (26)).

The spectral function σ1(k) is entire in the k-plane which means that we must require

W2(k) = 0, for k ∈ Σ2 ≡ {k ∈ C| sinh(2kθ)− k sin(2θ) = 0}. (6.5)
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Fig. 4: Spectral k-plane and schematic of points from sets Σ1, Σ2 and Σ3 given by (6.2),
(6.5) and (6.8) respectively (parameters: h = 1, H = 2, θ = π/4).

In addition, as k → 0,
sinh(2kθ)− k sin(2θ) = O(k), (6.6)

which implies that W2(k) must also satisfy

W2(0) = 0. (6.7)

The set Σ2 coincides with the (odd) eigenrelation found by Dean & Montagnon (27) and
Moffatt (24) for the local solution near a corner of angle 2θ.

The spectral function τ1(k) is analytic in the lower half k-plane which means that we
must require

W3(k) = 0, for k ∈ Σ3 ≡ {k ∈ C−| sinh(2kH)− 2kH = 0}. (6.8)

In addition, as k → 0,
sinh(2kH)− 2kH = O(k3), (6.9)

which implies that W3(k) must also satisfy

W3(0) = W ′3(0) = W ′′3 (0) = 0. (6.10)

Again, the k-points of set Σ3 satisfy the eigenvalue condition for the odd (with respect to
reflection in the real axis) Papkovich-Fadle eigenfunctions of the semi-strip of width 2H
(Spence (26)).

A schematic of points in the k-plane from sets Σ1, Σ2 and Σ3 is given in Figure 4.

6.2 Function representation

We use Chebyshev expansions to represent the unknown boundary data along sides S2 and
S4 of the mapped curvilinear domain in the η-plane.
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Side S2 can be parametrised by

η2(s) = log(L+ iHs), s ∈ [−1, 1] (6.11)

and, on this side, we write

F2(s) ≡ F2(η2(s)) =

∞∑
m=0

amTm(s), G2(s) ≡ G2(η2(s)) =

∞∑
m=0

cmTm(s), (6.12)

where Tm(s) = cos(m cos−1(s)) is the mth Chebyshev polynomial. Similarly, side 4 can be
parametrised by

η4(s) = log(l − ihs), s ∈ [−1, 1] (6.13)

and we write

F4(s) ≡ F2(η4(s)) =

∞∑
m=0

bmTm(s), G4(s) ≡ G2(η4(s)) =

∞∑
m=0

dmTm(s). (6.14)

Using the above series expansions, it can be shown that

σ2(k) =

∞∑
m=0

am[T (k,m)], σ̂2(k) =

∞∑
m=0

cm[T (k,m)],

σ4(k) =

∞∑
m=0

bm[U(k,m)], σ̂4(k) =

∞∑
m=0

dm[U(k,m)],

(6.15)

where

T (k,m) = iH

∫ 1

−1

Tm(s)e−ikη2(s)

L+ iHs
ds, U(k,m) = −ih

∫ 1

−1

Tm(s)e−ikη4(s)

l − ihs
ds. (6.16)

Using (6.12), (6.14) and continuity conditions (5.22), (5.24), the spectral functions
ρ3(k), ρ̂3(k) and τ3(k), τ̂3(k) can be expressed as:

ρ3(k) =

∞∑
m=0

bm[P (k,m)] +
U1

4
I2(l − ih, l + ih, k),

ρ̂3(k) =

∞∑
m=0

dm[P (k,m)]− U1

4
I2(l − ih, l + ih, k)− U1h

2 I0(l − ih, l + ih, k)

(6.17)

and

τ3(k) =

∞∑
m=0

am[Q(k,m)] + P I1(L− iH,L+ iH, k)− U2

4
I2(L− iH,L+ iH, k)

+ c I0(L− iH,L+ iH, k),

τ̂3(k) =

∞∑
m=0

cm[Q(k,m)] +
U2

4
I2(L− iH,L+ iH, k) + (U2H

2 + c) I0(L− iH,L+ iH, k),

(6.18)
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where

P (k,m) = ih

∫ 1

−1
Tm(s)e−ike

η4(s)

ds, Q(k,m) = −iH

∫ 1

−1
Tm(s)e−ike

η2(s)

ds (6.19)

and the functions I0, I1 and I2 are defined by

I0(A,B, k) ≡
∫ B

A

e−ikzdz, I1(A,B, k) ≡
∫ B

A

ze−ikzdz, I2(A,B, k) ≡
∫ B

A

z2e−ikzdz.

(6.20)

6.3 Formulation of a linear system

The sums in (6.12) and (6.14) are truncated to include only terms up to m = M , and we
formulate a linear system for the unknown coefficients {am, bm, cm, dm|m = 0, ...,M} and
parameters P and c. The linear system comprises conditions (6.2), (6.5) and (6.8) evaluated
at points in the sets Σ1,Σ2,Σ3 respectively, together with conditions at k = 0, (6.4), (6.7)
and (6.10). We found that the coefficients {am, bm, cm, dm|m = 0, ...,M} decay quickly and,
therefore, we choose the truncation parameter to be M = 20.

6.4 Computation of f(z) and g′(z)

Once the coefficients {am, bm, cm, dm|m = 0, ...,M} and parameters P and c are found, f(z)
and g′(z) can be computed in the flow domain.

Polygonal domain 1: The spectral functions ρ3(k), ρ̂3(k) can be found using (6.17). The
other spectral functions, ρj(k), ρ̂j(k), j = 1, 2, can be computed from (5.4), (5.7) and
the global relations (4.10), (4.13). Once the spectral functions are found, the correction
functions f1(z), g′1(z) can be computed using (4.8) and (4.11) respectively. Finally, f(z)
and g′(z) in domain 1 follow from (4.1).

Curvilinear domain 2: Using the analyticity properties of functions F2(η) = f2(z(η)) and
G2(η) = g′2(z(η)), we extend this domain to the curvilinear domain in η-plane which is
composed of a rectangle and a curvilinear domain (Figure 5).

l − ih

l + ih

L+ iH

L− iH

η(z) = log z
θ

a− iθ b− iθ

b+ iθa+ iθ

z-plane η-plane

0 S2S4

S1

S3

Fig. 5: Extension of domain 2 in the z-plane and its corresponding in the parametric η-plane
using the analyticity properties of the Goursat functions.
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Using the analyticity of F2(η) and G2(η), it follows that∫ b+iθ

b−iθ
F2(η)e−ikηdη =

∫
S2

F2(η)e−ikηdη = σ2(k),∫ a−iθ

a+iθ

F2(η)e−ikηdη =

∫
S4

F2(η)e−ikηdη = σ4(k)

(6.21)

and ∫ b+iθ

b−iθ
G2(η)e−ikηdη =

∫
S2

G2(η)e−ikηdη = σ̂2(k),∫ a−iθ

a+iθ

G2(η)e−ikηdη =

∫
S4

G2(η)e−ikηdη = σ̂4(k).

(6.22)

Using (6.21) and (6.22), it follows that we can write the following integral representations
(16, 25) in the rectangular sub-domain a ≤ Re[η] ≤ b, −θ ≤ Im[η] ≤ θ in the η-plane:

F2(η) =
1

2π

[∫ ∞
0

σ1(k)eikηdk +

∫ −i∞
0

σ2(k)eikηdk +

∫ −∞
0

σ3(k)eikηdk +

∫ i∞

0

σ4(k)eikηdk

]
,

G2(η) =
1

2π

[∫ ∞
0

σ̂1(k)eikηdk +

∫ −i∞
0

σ̂2(k)eikηdk +

∫ −∞
0

σ̂3(k)eikηdk +

∫ i∞

0

σ̂4(k)eikηdk

]
.

(6.23)

To compute F2(η) and G2(η) in the remaining curvilinear domain bounded by S4 and
η = a+ iθs, s ∈ [−1, 1] in the η-plane (Figure 5), we construct integral representations for
these functions in the corresponding circular domain in the z-plane. Since F2(η) = f2(z(η))
and G2(η) = g′2(z(η)) can be computed along the vertical side z = l− ihs, s ∈ [−1, 1] using
(6.14), we can write (Crowdy (28)):

f2(z) =
1

2π

∫ i∞

0

υ1(k)eikzdk

+
1

2πi

[∫
L1

υ2(k)

1− e2πik
zkdk +

∫
L2

υ2(k)zkdk +

∫
L3

υ2(k)e2πik

1− e2πik
zkdk

]
,

g′2(z) =
1

2π

∫ i∞

0

υ̂1(k)eikzdk

+
1

2πi

[∫
L1

υ̂2(k)

1− e2πik
zkdk +

∫
L2

υ̂2(k)zkdk +

∫
L3

υ̂2(k)e2πik

1− e2πik
zkdk

]
,

(6.24)

where

υ1(k) =

∫ l−ih

l+ih

f2(z)e−ikzdz, υ2(k) =

∫
C

f2(z)z(−k−1)dz,

υ̂1(k) =

∫ l−ih

l+ih

g′2(z)e−ikzdz, υ̂2(k) =

∫
C

g′2(z)z(−k−1)dz

(6.25)



16 E. Luca & S. G. Llewellyn Smith

and where the set {Lj |j = 1, 2, 3} constitutes the fundamental contour for circular edges
(Crowdy (28)). The contour L1 is the union of the negative imaginary axis (−i∞,−ir],
where 0 < r < 1, and the arc of the quarter circle |k| = r in the third quadrant traversed
in a clockwise sense; the contour L2 is the real interval [−r,∞); the contour L3 is the arc
of the quarter circle |k| = r in the second quadrant traversed in a clockwise sense together
with the portion of the positive imaginary axis [ir, i∞).

Polygonal domain 3: Finally, the spectral functions τ3(k), τ̂3(k) can be computed using
(6.18). The spectral functions τj(k), τ̂j(k), j = 1, 2 follow from back substitution into
various relations and the global relations (4.27), (4.30). The correction functions f3(z),
g′3(z) can be computed using (4.25) and (4.28) respectively. Finally, the Goursat functions
f(z) and g′(z) in domain 3 can be computed using (4.22).

7. Results

Once we have computed the Goursat functions f(z) and g′(z) in each domain, physical
quantities of interest such as the velocity, pressure and vorticity follow from (2.5). We focus
on the effect of the expansion on the pressure drop between the two vertical sides of domain
2.

To compute the pressure in domain 2 which was mapped to the parametric η-plane, we
use the chain rule:

p = 4µ Re[f ′2(z)] = 4µ Re

[
F ′2(η)

z′(η)

]
, (7.1)

where dash denotes differentiation with respect to the function variable. Furthermore, to
compute the pressure along the vertical edges of domain 2 (which correspond to sides S2,
S4 in the η-plane), we can use (6.12) and (6.14) to write

p
∣∣∣
z(ηj(s))

= 4µ Re

[
F ′j(s)

z′(ηj) η′j(s)

]
, for j = 2, 4, and s ∈ [−1, 1], (7.2)

where, again, dash denotes differentiation with respect to the function variable.
The pressure drop along the channel centreline between the two ends of the

expansion/constriction region is

∆p = p
∣∣∣
l
− p
∣∣∣
L

= p
∣∣∣
z(η4(0))

− p
∣∣∣
z(η2(0))

. (7.3)

The nondimensionalised pressure drop ∆P is defined to be

∆P =
∆p H3

µq0L0
, (7.4)

where L0 = L− l is the length of the expansion/constriction and q0 = Q/2 (the total flow
rate in the channel is Q).

We aim to compare our computed values for the dimensionless pressure drop to Tavakol et
al. (14) extended lubrication theory (ELT). Details of the latter are presented in Appendix
A, where it is shown that the dimensionless pressure drop is

∆P = ∆P0 + δ2∆P2 + δ4∆P4 +O(δ6), (7.5)
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where

∆P0 =
3

2
· 1 + ν

ν2
, ∆P2 =

21

10
· (1 + ν)(1− ν)2

ν2
, ∆P4 =

159

350
· (1 + ν)(1− ν)4

ν2
, (7.6)

with ν = h/H.
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Fig. 6: Comparison of the dimensionless pressure drop between the Unified Transform
Method (UTM) and extended lubrication theory (14) (ELT) as a function of channel width
ratio ν = h/H. The sums (6.12) and (6.14) were truncated to include only terms up to
M = 20. The results are shown for angle θ = π/12. As ν → 0 (which corresponds to small
δ) extended lubrication theory provides an accurate approximation and transform method
tends to exact result form. As ν → 1, the expansion/constriction region tends to disappear
and both methods tend to the dimensionless pressure drop ∆P = 3/ν3 → 3 for a channel
of constant width h = H.

Figure 6 shows the nondimensional pressure drop ∆P between the two ends of the
expansion/constriction region along the channel centreline as a function of channel width
ratio ν = h/H, 0 < ν < 1, for fixed angle θ = π/12. The sums (6.12) and (6.14) were
truncated to include only terms up to M = 20. Our results are compared to Tavakol et
al. (14) extended lubrication theory and the two methods agree. Using the relation

tan θ = (1− ν)δ, with δ =
H

L− l , (7.7)

we observe that, as ν → 0 (which corresponds to small δ, since we have assumed that θ
is small) extended lubrication theory provides an accurate approximation and transform
method converges to that. As ν → 1, the size of the expansion/constriction region tends
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to disappear and both methods tend to the dimensionless pressure drop ∆P = 3/ν3 → 3,
corresponding to a channel of constant width h = H.

Figure 7 shows the nondimensional pressure drop ∆P between the two ends of the
expansion/constriction region along the channel centreline as a function of angle θ ∈ [0, π/3],
for fixed width ratios ν = h/H = 0.25, 0.5, 0.75. The sums (6.12) and (6.14) were again
truncated to include only terms up to M = 20. Our results are compared to extended
lubrication theory. The difference between the two methods becomes significant for angles
θ > π/6. As stated in (14), if the wall slope is too steep, the extended lubrication approach
is expected to fail. Although the nondimensional pressure drop values presented in Fig.
7 are for θ ∈ [0, π/3], our transform approach can also be used to compute the values
as θ → π/2. However, in the latter case more terms in the expansions (6.12) and (6.14)
are required, as well as an appropriate scaling of the equations to provide good numerical
conditioning.
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Fig. 7: Comparison of the dimensionless pressure drop between the unified transform
method (UTM) and extended lubrication theory (14) (ELT) as a function of angle
θ ∈ [0, π/3] for width ratio (a) ν = h/H = 0.25, (b) ν = 0.5 and (c) ν = 0.75. The
sums (6.12) and (6.14) were truncated to include only terms up to M = 20. The difference
between the two methods becomes significant for angles θ > π/6.

8. Discussion

We have examined a pressure-driven low-Reynolds-number flow in a two-dimensional
channel with a linear expansion and analysed the problem using the Unified Transform
Method. Since the transform method can be applied to convex polygonal and circular
domains, we split the polygonal channel geometry into three convex sub-domains and
analysed each of them separately to obtain relations between the so-called spectral functions.
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Then, we imposed continuity conditions across common boundaries to couple the sub-
problems. The analysis of all the relations between the spectral functions and the use of
the global relations offered information on a reduced set of unknown spectral functions at
special points in the spectral k-plane; these points encoded the geometry of the problem.
Using series expansions to represent unknown boundary data, we formulated and solved a
low-order linear system for the unknown coefficients and the two unknown parameters. All
the spectral functions followed from back-substitution into the spectral relations.

One of the main advantages of our transform approach over full numerical simulations
is that all physical quantities of interest can be computed from the solutions of low-order
linear systems. With the coefficients found from these solutions, all the spectral functions
appearing in the analytical integral representations for the correction functions fj(z), g

′
j(z),

j = 1, 2, 3 in each sub-domain can be computed. In addition, the integral expressions for
the correction functions are explicit in the variable z (or the mapped variable η), meaning
that they can be readily differentiated or integrated to compute quantities of interest. All
the aforementioned features emphasise the quasi-analytical nature of our solutions.

Our results were compared to extended lubrication theory adapting the analysis of Tavakol
et al. (14) to the channel geometry considered here. We have compared computed values
for the pressure drop between the ends of the expansion/constriction region and found that
the two methods agree for small angles θ, but differences between them become significant
for angles θ > π/6. As stated in (14), if the wall slope is too steep, the extended lubrication
approach is expected to fail.
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APPENDIX A

Extended lubrication theory

We adapt the extended lubrication theory of Tavakol et al. (14) to the channel geometry
considered here. Consider a two-dimensional pressure-driven flow in a channel with shape
y = ±h(x) = ±h0H(X), where X = x/L0, L0 is the channel length, h0 is a characteristic
channel height, H(X) is a normalised shape function and δ = h0/L0 � 1. First, we introduce
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the dimensionless variables

X =
x

L0
, Y =

y

h0
, U =

u

q0/h0
, V =

v

q0/L0
, P =

p

∆p
=

p

µq0L0/h3
0

, (A.1)

where q0 denotes the constant flow rate per unit width. The correspondence of the above parameters
to the notation used in this paper h0 = H (largest channel width), L0 = L − l (length of the
expansion/constriction) and q0 = Q/2 (Q is the total flow rate in the channel). The normalised
shape function is given by

H(X) = ν + (1− ν)X, for 0 ≤ X ≤ 1, where ν = h/h0. (A.2)

Nondimensional variables (A.1) are substituted to the Stokes equations (2.1) giving

∂U

∂X
+
∂V

∂Y
= 0,

δ2
∂2U

∂X2
+
∂2U

∂Y 2
=
∂P

∂X
,

δ4
∂2V

∂X2
+ δ2

∂2V

∂Y 2
=
∂P

∂Y
,

(A.3)

subject to the following boundary conditions

U = V = 0 at Y = ±H(X), (A.4)

∂U

∂Y
= V = 0 at Y = 0 (A.5)

and ∫ H(X)

0

U(X,Y )dY = 1. (A.6)

Next, we seek a solution of the form

U(X,Y ; δ) = U0(X,Y ) + δ2U2(X,Y ) + δ4U4(X,Y ) + · · · ,

V (X,Y ; δ) = V0(X,Y ) + δ2V2(X,Y ) + δ4V4(X,Y ) + · · · ,

P (X,Y ; δ) = P0(X,Y ) + δ2P2(X,Y ) + δ4P4(X,Y ) + · · · .

(A.7)

in (A.3) and obtain the resulting equations.
We omit all the details and report the key expressions at each order. At O(1):

U0(X,Y ) =
3

2

[
− Y 2

H(X)3
+

1

H(X)

]
,

V0(X,Y ) =
3

2
(1− ν)

[
− Y 3

H(X)4
+

Y

H(X)2

]
,

∆P0 =
3

2
· 1 + ν

ν2
.

(A.8)

At O(δ2):

U2(X,Y ) = (1− ν)2
[

3Y 4

H(X)5
− 18

5

Y 2

H(X)3
+

3

5

1

H(X)

]
,

∆P2 =
21

10
· (1 + ν)(1− ν)2

ν2
.

(A.9)
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At O(δ4):

U4(X,Y ) = (1− ν)4
[
−9

2

Y 6

H(X)7
+

57

10

Y 4

H(X)5
− 369

350

Y 2

H(X)3
− 51

350

1

H(X)

]
,

∆P4 =
159

350
· (1 + ν)(1− ν)4

ν2
.

(A.10)




