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Abstract

We define probleni transforraaticHis and show that each problem

transformation induces an adnissible and mcaiotcmc heuristic on the

original problem. Furthermore we show that every adnissible and

mcxiotonic heuristic is induced ty some problem transformation. This

result generalizes and unifies several approaches for heuristic

formation reported on in the literature. We give four techniques for

generating problem transformations and we apply these techniques to

generate several heuristics found in the literature. We also introduce a

variant of the relaticxnal representation framework which has some

advantages.

K^words: Heuristic generaticxn, adnissible heuristics, problem

transformation, quotient spaces, problem representaticxn.

CRCMB3CRIES: 1.2.8, 1.2.6.

Intrc>duc±ion

If a straightforward attache c*i a problem leads to failure,

Polya [14] suggested that one should consider simpler, analogous

prchlems. Cnce these asscxriated problems were solved, the insights

gained were soroehcnw to be translated back to apply to the original

problan. Gaschnig [4] was the first to prcpose using an analogous

problan to generate a heuristic for the original problem. Gaschnig

chose to represent problems as graphs and analogcxis problems (vhich he

called transfer problems) as sipergraphs or subgr^hs. This paper

presents a general methcx3 for generating associated problems and the

transfoniBticxi between problem and associated problem. We ^cw hoir
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Q these associated probleros lead to admissible and monotonic heuristics

for the original probLem. Special cases of these techniques have be«i

D studied ty Gaschnig [4], Pearl [12], Kibler [7], and Valtorta [16].

Q Some advantages of changing the representation of a problem have
been noted in the literature. Newell and Simon [9] outlined their

"planning method" vrtiich consisted of abstracting essential relations or

H curators. Airarel [1] shewed how to transform the representaticm of a
generalized missionaries and cannibals problem. Korf [8] defined a

language for representing representations and transformations. Using

this framework he shows how large representational changes can be

achieved ty ocmposing transfomaticMis which have small effects.

Unfortunately he gives little guidance for selecting the appropriate

transformatiCMTS. In the latter papers a problem is transformed and a

solution to the transformed fffoblem provides a solution to the original

H problem. In our work, the transformed problem guides the solution
process of the original problem by providing an adnissible and monotonic

heuristic.
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We begin ty formally defining state-spaces, state-space

transformations, problems and problem transformations. Then we prove

that each problem transforraaticxi induces an adnissible eind monot<xiic

B heuristic on the original problem. Furthermore we show that every such
heuristic can be achieved ty problem transformation. Then, for

particular choices of problem representation, we define four types of

B problem transformations, namely inclusion naps, relaxation m^,
H quotient maps, and counting naps. We ^¥>ly these techniques to the



ei^t-tile puzzle, the cube slicing problem, the blocdts world, and the

nutilated checkerboard problem. Lastly we discuss the limitations and

weaknesses of the ^:proach.

Problem Trangformations

The following definiticMis fit within the framework that

NilssOT [11] provided for the A* algorithm. are also similar to

those proposed ty Georgeff [5], although he napped states and strategies

(as represented ty program schemas and their interpretaticwis) vhile we

nap states and operators.

A collection of states S and operators Op is called a state-Space

if each operator in Op is a partial function^ from S to S. A £2St

function c on a state-spaoe <S,C^> is a positive real-valued functicm on

Op. If no cost functicn is e35)licit then, by default, the state-space

has the cost function vAiich assigns aie bo each operator.

A state-space transformation (without cost) T from one state-space

into another is a mapping of states S and operators of the source

Kt.ate-space into the states S' and curators C^' of the inege

Rtatp—space such that the following diagram ooninutes:

op

S > S

II
T I , IT

I T(op) I
S' > S'

To say the diagram mnimtes means that the following equation holds, for

^A partial functioi f from Xto Y is function from a non-enpty subset
of X into y. f may be many-to-one, OTe-to-oie, into, or onto.



all states s and ^jplicable operators op:

apply (T(op) ,T(s) )=T(apply (op,s)) (equation 1)

where apply (op, s) is the new state arrived at by applying op to the

state s. Biis definition is standard in the mathematical subarea of

category theory.

A state-space transformation T with cost of <S,Op,c> into

<S',Op',c'> is a state-space transformation T of <S,Cp> into <S',Cp*>

such that c'(T(op) )ic(op) for all op in Op. If T is a state-space

transformation of <S,Op> into <S',Cp'> and c is a cost function on

<S,Op> then define the induced cost functiwi on Op' by:

if cp' is in T(Cp) then c'(op')=mnimium{c(op) viiere T(op)=op'}
else c'(cp') is any positive value.

The above definition is necessary since several operators in the source

dcmain nay map to the same operator in the image domain. Qearly if T

is a state-spaca transformation of <S,Cp> into <S',Cp'> and c is cast

functicsi on <S,Op> th^ T is a state-space transformatic»i with cost from

<S,Op,c> into <S,Op,c'> vrtiere c' is the induced cost functicai.

A problan P is a five-tuple <I,S,F,Cp,c> vdiere <S,Cp> is a

state-space, I is an element of S called the initial state, F is a

subset of S called the final states or aoal states, and c the cost

functicai. A sequence of operators <cpi,op2,...<Pn> applies to a state s

if the image of is oxintained in the domain of Such a sequence

is a solution to the problem if the image of the last operator belcjngs

to F. An npeHnum solution is c*ve %ijose ccjst is imnimiim over all

solutions, where the <30st of a soluticxi is the sum of the cost of each
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I
II operator in the sequence. With the default cost function the mininum

cost solution is the one with mininum length.

If P^<I,S,F,Op,c> is a problem (called the source problem) and T is

H a state-space transfomation of <SrC^> into <S'fOp'>, we define the
inwop problem P'=<I',S'/F',0p* rC'> by the following means. Let I' be

T(I) and F' be {T(f) where f belaigs to F}. Let c' be the induced cost
I

H function.

I
Given the above definiticHi the following observations are

inmediately apparent.

H 1. Asolution of the source problem maps into a soluticn of the
image problem.

I 2. If the image problem is unsolvable the source problem is
unsolvable.

13.Bie cost(leigth) of a solution in the image state-space is
not greater than the cost (length) of a soluticn in the source
state-space. (Ihis result depend en the definiticxi of c'.)

H 4. Uie mi niTTBim cost SolutloH in the image state-space is a lower
bound on the cost of a soluticn in the source state-space.

I 5. oiie ccnpositiai of two state-space transformations is a
state-space transformaticxi. The ccn^jositiai of two problem
transfomations is a problem transfonnatiai.

I
NilssOT [11] defir^ an adnissible search algorithm as one v^ch is

I guaranteed to find the c^)tiinum soluticm, vrtienever a solution exists. A
(numeric) heuristic is non-negative function on the set of states. We

say a heuristic h is admissible if it underestimates the cost frcm the

H node to the goal. Nilss<Mi proved that the evaliiaticMi functiai
f (n)=g(n)+h(n) r where g(n) is the curreit cost to the node n, and h is

adnissible, defines an admissible algorithm. A heuristic is mnnbt.onirr

I

I
H if foe any node nand c^ierator op, h(n)^(n')+c(op) *4iere n' is the node
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I ^
III reached ty applying to n. Monotcme heuristics are valuable because

they reduce the i^jdating required in the A* algorithm. More

® specifically, e^lying the A* algorithm to aproblem sometimes requires
j^xlating the g-value (current cost of reaching node) of a Q^ED node.

Whenever the g-value of a node is updated, one must check whether ar^

descendant of the node requires updating. Ihis is an expensive

operation within the A* algorithm. The advantage of mcMiotonic heuristics

is that they eliminate the need for updating the g-values of OjCBED

nodes.

We need cxue more definition to sinplify the statement of the next

theorem. If T is a problem transformatiai from P=<I,S,F,C^,c> to

problem P'=<I',S',F',0p',c'> then the function h defined on S ty h(s) =

cost of optimum soluition of T(s) in P* is the induced heuristic.

The following theorem ^ows how to induce nrxiotonic and adnissible

heuristics from problem transformations.

Theorem 1; If T is a problem transformaticxi from problem P
to problem P' then the induced heuristic is adnissible and
monotonic heuiristic.

Proof: The adnissibility of h follows inmediately from resuiLt 4. To

show monotonicity consider the following diagrams:
n n'

si >s2 T(sl) >T(s2)
\ I \ i

i \ I j i' \ I j'
\ I \ I ,

F T(F)=F'

si and s2 are states of S, n is the cost of the operator from si

to s2, i is h(sl), j is h(s2), and i', j', and n' are the minimum costs

between states in the image state-space. We must diow that By
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H definitiOTi i=i' and j=j'. Also n'+j'̂ ' by definition. Since n^', we
have nfj^, and monotonicity is prcvei. Q.E.D.

I

I

I

i

I

H

H

i

We call the heuristic generated by process described in the theorem

above the induced heuristic.

H nie next theorem shows that every adnissible and monotonic
heuristic can be induced by a problem transformaticxi. Biis gives a

precise ixiderstanding of the power of problem transformations.

^ Gaschnig [4] hypothesized asimilar version of the following theorem.
Theorem 2; Any adnissible and monotOTUC heuristic on a

problan can be induced by paroblem transformation.

Proof: Let h be an adnissible and mMiotonic heuristic on a problem

P=<I,S,F,Op,c>. We will define a problem ?'=<!',S'/F',C^),c'> and problem

transformation T of P into P' such that the induced heuristic h' equals

h.

Let I'=I and S'=S. For each state s in S, T(s)=s. For each s in S

^ define opg as the partial function from {s} to f vAiere f is any eleroait
of F, the final states. Let C '̂=Op#U#{opg where s belongs to S}.

Intuitively we have added a ^iort-cnot, one-step solution in the image

H domain. For each cp in Op, let T(op)=op. Obviously T is a domain

n

H
with this definition of c', T is clearly a domain transformation with

H cost. Consequently there is an induced heuristic h' <xi P.

Q We now prove that h' is id^ticed to h. Recall that, for s in S,

transformation. Let c' be the cost functicxi defined by:

if op is in Op, thei c' (c^)=c(op).
if s is in S, thai c'{opg)^(s).
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h' (s) is the minin^gn oost of solution of T(s) in S'. It suffices to ehcw

that a minimum cost soluticxi is found by s^lying the single operator

opg (v^se oost is h(s)) to s.

Hie proof breaks into two cases. Let s belong to S and let

<oPifOp2,...opj^> be the sequence of operators of C '̂ that yield a

minimum cost solution in S'.

Case 1; n=l

If n=l thei is either in Op or is opg, in vrtiich case there is

nothing to show. If is in Op then h(s)^c(op) since h is adnissible.

But then cpg is at least as cheap a solution as op^.

Case 2: n>l

If n>l then must belong to Op. But new the mcmotonicity of h

danands that h(s)lc(op2)+h(op2(s)). Hie admissibility of h implies

h(op2(s) ):^cost of solution from cp^Cs). Hence op^ is again as cheap a

solution.

In either case a minimum cost solution in S' is achieved by

applying opg i^ose cost is h(s). Hierefore h'(s), the induced

heuristics, is h(s). Q.E.D

Hie weakness in the above theorem is that it does not tell us how

to construct useful problem transformations. We now ccaisider some

specific problem representaticxi schemes and give some general techniques

for constructing problem transformations.
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raaoTOAT. SIATO-SEMCE ^SANSFQIWATICKS

Grz^iiical R^esentation

Gaschnig [4] defined a problem graph as a finite, strongly

connected graph with no multiple edges or self-loops. In this context a

problem is defined fcy a start node s and a final node f fran G. Gasdmig

defined a transfer pa:obiem as one *diich is either a subgr^h or

supergraph. He noted that a subgraph transfer problem need not induce an

acitdssible heuristic but that a supergraph transfer problem will induce

an adnissible heuristic. The result for supergraph transfer pcoblan is a

spjecial case of theorem 1, vhich also concludes that the heuristic is

monotcxiic - a point not noted ty Gaschnig. Hiis is probably the sinplest

application of theorem 1 for it follcvs once we verify that the

following diagram oomnutes, vihere G is the set of nodes of the graph and

an curator is an edge:

op

G > G

I I
i I I i

1 i(op) I
G' > G'

v^re i is the inclusion^ nap of states (nodes) and operators (edges) into

nodes and edges of the contained graph. Let us call this type of

state-space transformation an IndusiOTi map. Gaschnig applies this

technique to the 8-tile puzzle ty enhedding the gr^h in a subset of the

graph that allows sorting ty swapping a pair of values. Bus does not

lead to a very good heuristic possibly hjecause it is not intrinsic to

^An inclusicxi functicxi i from X to Y is defined ty i(x)=x.
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the problCT in the sense that no direction is given for choosing the

•richt' supergraph. Ft>r a graph with n nodes there are about

supergraphs with the same nodes. In particular for the B-puzzle there

cure around 180,000 (91/2) nodes in the graph. Therefore the number of

supergraphs (with the same nodes) is rou^ily I0l0f000,000^ Finding the

ri^t si^rgraph is a gargantuan tasic.

We now consider state-space trransforinations \irtiich are intrinsic to

the problan, i.e. thQ^ are constructed from the original problem.

RelationfQ R^res^tation

Perhaps the most widely used represeitaticnal scheme is that

described ty Pikes and Nilsscai [2] in their STRIPS ^stem. In this

approach each operator is defined ty three listrs of relations, namely

the preconditic«is list, the delete list, and the add list. In a later

work Fikes, Bart and NilsscHi [3] shewed hew to build a hierarehy of

abstracticxi spaces ty disregarding seme preconditions of eaeh operator.

The solution in the abstraction ^ce provided a skeleton soluticxi, to

be elaborated ipon in the original space. Using the same representation

scheme. Pearl [13] showed that one could generate adnissible and

roonotOTuc heuristics. If we define the "forgetful" transformatiai vhidi

is the identity cn states but forgets some of the preconditiais of

curators, we get a state-space transformation, as is readily ^parent.

All that need be shown is that the following diagram ccraiutes:
op

S > S'

I I
II
I op' I

S > S'

vhere op' is formed ty removing some of the preconditiois of op.
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I Pollcving Pearl we call such txansformaticxis, relaxation naps. Asinple
e^jplication of theorem 1 is that relaxation maps induce monotcxuc and

achdssible heuristics.I

I

I

I

I

I

H

H

N

n

n

n

Now we will consider a differeit state-space reparesentation scheme

which seems to have seme advantages over the standard S13UPS-like

approach.

Multiset Representation

In this section we first describe the nultiset representation and

then defiite two types of problem transformations.

H Vfe use multisets or bags^ of relations rather than sets of
relations to describe the states and the operators. This representaticxi

has been used ty Kibler and Morris [6] to analyze and repair plan

inefficiavcies. In particular we define a relational curator ty

specifying two nultisets of conditiCMis, cme called the preccxiditiOTis and

the other the postconditions. An curator is applicable in a given

state if each of its preccHiditions is satisfied in the state. The

preconditions of an operator are satisfied if there exists a

substitution for the variables such that the instantiated preccxiditions

are contained, as a multiset, in the state description. One applies an

applicable operator ty deleting each of the instantiated preconditions

11 from the state and adding each of the instantiated postccnditicns.

The multiset ^proach avoids the problem, discussed ky Vere [17],

fl ^A bag can be repres^ted as alist in vMch elements ney appear more

n
than once.
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of oonqposing relational operators to form a "macro-operator". Vere

showed that, in g«ieral, relational operators do not have a well defined

ccnposition and that one must augroeit their descriptiais in order that

corposition would nake sense. Multiset relaticml operators have a

well-defined conposition, in the same sense as presented ty Vere, but we

forgo the derocaistration as it is not needed for the rest of this paper.

A multiset representation allows a sinpler and more natural

descripticxi of operators. For example, in the blocks world with the

common definition of relational operator as used ty Vere or Nilsson, the

definition of the operator mDve{x,y,z) (meaning move x from y onto z)

has the pceconditicMis: clear (x),clear (z),on(x,y) ,x=/=2. Using multisets

the precondition x=/=z is superfluous since x and z cannot be bound to

the same object. Intuitively preconditions are resources rather than

assertions of truth.

Quotieit maps

A sinple useful class of state—space transformations are (guotigut

naps. These are very similar in effect to relaxaticxi maps but do not

eitail the additiaial overhead of storing ixineeded relations. A

quotient n«p simply forgets about some of the relaticxis in the source

state-space, for both cperators and states. More precisely a quotient

map Q is defined by a set S of relations as follows:

Q(state)={n| member(n,state) and not member (n,S)}
Q(operator )=newop where
preconditions (newop) =Q (precondition (op)) and
postcondition (newop) =C (postcoi^tion (cp)).

Again to diow that the map is a state-space transformation one need only

check that the appropriate diagram coninutes. Notice that if the

operators and states can be described with n relatiais, then the number
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Q of <^tieit maps is 2". Uiis includes two degenerate cases. Che where
the quotient set is empty so we reachieve the original problem and the

otiier vAiere the quotient set consists of all the relations so that the

Q initial state and the goal state become equivaleit.
Counting aaps

Jj Another class of natural transformations are counting niaps.
Rou^ily a counting map replaces a collection of relations ty the number

of instances of each type of relation. Intuitively, quotient maps

Q forget about some relations, while counting maps forget about particular
objects. More precisely, if the state-space is described ty n

relations, say r^, i2' through r^, then the counting map will map each

Q state into an n-vector of integers, v^ere the integer of the i
con^Jonent corresponds to the number of relaticxis of type in the

B state. equation 1 determines the definiUon of the image of an
operator. Again this nap is clearly a state-space tranformation. Note

that counting maps would not fit into the relational framework for

curators (without some violaice).

Q How can we know lAiich state—space transformations will be useful?
This is the most inportant mansi^ered research question. The following

gives a mild test to guarantee that the image problem will be sunpile to

Q solve. Acollection of curators is CQMnutati^e if for any
applicable sequence <c^,c^>, <<^*op]^> is applicable and yiel^ the

fl result. Note that the image operators under a counting map are
conmutative. This guarantees that the problem will be ea^ to solve for

it inpLies one can solve the goals of image problem in ary order. A

Q problem in *diich the goals can be solved in any order been called

D

I

n

11

n

H

H
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deCQBBSffiable tv Pearl [13].

Ft>r oonv^ence we denote the number of occurr^oes of a relaticm

or the multiplicity of the relation ty writing multiplicity*relatic*i.

Consequently »*ien we write the pceconditiwis of a counting operator as

n*r2^, ni*r2f etc. we mean that the operator deletes n relations of type

r^f m relations of type r2/ etc. Postconditions and states are denoted

similarly.

Notice that state-space transformations have the effect of focusing

attention on some aspect of the problem. Focusing on the wraig aspect

of a probLem leads to no insight. Focusing ai the right aspect can lead

to appropriate heuristics or a quick proof that the problem is

unsolvable.

EAMFLES

We illustrate the power of heuristic formation from problem

transfomfition in the following examples. In all of these exanples we

use the miLtiset representatJ.on to demonstrate some of its advantages.

Tile puzzle

Nilsson analyzed the ei^t-tile puzzle and defined a number of

heuristics for its soluticxi [10]. This puzzle can be defined as a

relaticxial production in the following way. Let the board size be 3X3

and label the positicxis as in the diagretm below.

position labels goal state

a b c 12 3
d e f 4 5
g h i 6 7 8

A state, such as the gocd state depicted ehove, could be described as:



I

I

I

I

I

I
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pos(a) ,po6{b)fHdj (a,b) ,a<3j (b,a) ,adj (a,d)
on(a,l),on(b,2),on{c,3),on(d,4),blank(e),on(f,5),
cxi(g,6) ,<xi{h,7) ,on(i,8),

v^ere pos stands for positiwi euid adj stcuids for adjacent. There is

cxily one relational operator, defined ty:

preconditions; adj (X,Y) ,pos(X) ,pos(y),blank (Y) ,on(X,V)
postconditions: adj (X,Y) ,pos(X) ,pos(Y),blank (X) ,on{Y,V).

A number of different quotient spaces can be constructed from this

problan. If we demand that the quotient space maintain the "on"

relation, then there are seven (2^-1) candidate quotient spaces. We

will look at three' of them.

Heuristic P(n)

If we forget about the requirement that a tile be blank, then we

get a new problem state-space with an curator defined ty:

preconditions: adj(X,Y),pos(X),pos(Y),on(X,V)
postconditions: adj{X,Y),pos(X),pos(Y),oti(Y,V).

This corresponds to a tile-puzzle vhere you are allowed to pile 15)

tiles. In this state-space it is easy to reason that the minimum number

of moves to change from one state to another is exactly the sum of the

city-blodt distances between each tile's current positicxi and its

destinaticxi. This is exactly heuristic P(n) of Nilsson [10].

Heuristic W(n)

If we forget about both the blank constraint and the cuSjacency

I constraint we get a new problem state-space with an operator vhose
preconditions are pos(V) ,pos(X) ,cn(X,Y) and whose postconditions are

pos(X) ,pos{V) ,cn(X,V). This corresponds to a tile-puzzle v^re you are

allowed bo pick i?> any tile and move it to any desired positicm. In
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I this puzzle, the mininum distance betweei two states is the number of
^•j T0P out of position. Hence the distance of the miniinum solution for

this quotient pcoblem defines the acinissible heuristic W(n) [10].I

property that they were coranutative, allowing us to easily solve the

image pcoblem.

Heuristic almost W(n)

If we forget eibout the adjacency and position constraint we get a

new operator with preconditi<*is; blank (Y),on {X,V) and postconditicwis:

blank (X),on(Y,V). This corresponds to allcving a tile to be moved into

a blank position regardless of its positicai. Hie resulting heuristic is

closely related to W(n).

H We note that the total ramber of inciiced heuristics using quotient
maps is 14 (2^-2). If we ccm^xise this with counting maps we get another

14 potential heuristics. As we have alreacfy noted, the graphical

technique gave a space of heuristics with about '0^0,000 elements.

Pearl [13] used relaxation maps to achieve results similar to the

ones abcve.

Another heuristic defined ty Nilsson is defined to be P(n)+3*S(n)

where S(n) measures the "sequenc^e score" of tile positicxi [10].

Althou^ a better heuristic than either W(n) or P(n) it is not

admissible and so cannot be found ty any state-space transformation.

Georgeff [5] has a strategy for solving this puzzle vhich generates

fewer nodes than the abcve heuristic, but finds a longer solution. Hie

search sgaoe of potential strategies seems to be infinite.

I
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H Cube Slicing
„ Since adnissible heuristics provide lower bounds on the number of

" operaUons required to fulfill a goal, they can be used to determine

Q that some pcohlenis have no solution. An instance of such a problem is
the question of whether a cube can be sliced into 27 equal cubelettes

® with only five slices. By insist one sees that it is necessary to
I slice each of the six faces of the inner cube, so the problem is

impossible.

This conclusion can also be reached ty flying state-space

I transformations. Adetailed relational description of the original
problan would be tedious. We give only the image state-space and the
corresponding operators. By ajplying quotient maps and counting

functicMTS, caie reduces the problem to one whose initial state is

{block<27>}, vrfiere the 27 refers to the volume in terms of analler

cubes. The goal state is {27*block<l>}. Ihe slicing operations

generate a collection of relational cperations. Each relational

cperator deletes a set of blocks and replaces each block of the subset

by two blocks, %Aiere the new blocks are of equal size or one is twice as

large as the other. Some of the relational operators are:

opl: delete conditicxis: {block<9>,block<6>}
conditions: {3*block<3>,block<6>}

op2: delete conditicms: {block<9>,block<6>}
add conditiOTis: {block<3>,block<6>,block<2>,block<4>}.

Without worrying about the entire search tree that would be generated,

we can reason as follows. If at each slicing the largest block is

subdivided th« following only the largest block at eadi slice %fould

I
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U give the foUwing diain.
block<27 >->block<18>->block<9>->block<6>->g ->block<3>->block<2>->block<l>.

This chain has six c^aerations in it so the original problem requires at

P least six (iterations. This exanfile indicates one of the weaknesses with
this aFprca(2h. It requires that a person see a coniputaticmlly ea^ way

I

I

of solving the transformed problem or, equivalaitly, of ccmputing h.

Blocks World

We will only sketcii the ^plication of state-space transformations

to the hlcx::ks world. Using any of the usual relational descriptions of

the blocks world [11], one can ciefine a quotieit map which forgets

about all relations but the "on" relations. The adnissible heuristic

geierated is the number of ciiffer^t "on" instances betwe^ the current

state and the goal state. Such a heuristic has the effec:t of making the

search scxnewhat similar to that generated by ST3UPS [2], in that the

search is directed towards achieving the "on" goals sequentially for

each possible ordering of the goals. Bowever, the acinissible heuristic

approach guarantees finding a solution. We note that goal ordering

fails for ST31IPS [15] bec:ause the goals only partially specify the goal

state. If the goals had been "completed" or extoicied to give a full

specification of the final state, then goal ordering would allow STRIPS

to solve all blocks worlds problems easily. In particular if we add the

goals so all the desired "on" conditions form stacks starting at the

table, then ordering the goals from the table to the top of the stack

will allow a straightforward soluticxi.
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j| HutUated cbecker board
The prohleni is: if a checkerboard has the white corners removed,

® can it be covered ty dominoes, where each domino covers two adjacent
Qj squares. We will use a state-space transformation to dicw that the

problan is ijiiossible. Below is an abbreviated relational description

B of the initial state, the single operator, and the goal state:
initial state: adj(a,b).

white(a),...
red(b),...
free{a),fre€(b),...• operator: Pre: adj(X,Y) ,red(X),v^ite(Y),free(X),free(y).

Post: adj(X,Y) ,red(X),white(Y),covered(X),covered(Y).
goal: covered(a),covered(b),...

we define a state-space tranformation into states described siii?)ly

by the number of free *Aiite(fw) and free red(fr) squares. Consequently

we have:

image initial state: 30*fw,32*fr.
inege operator: preconditiOTis: fw,fr. {deleted relations}

postconditions: enpty. {added relaticMis}
image goal: empty, {i.e. {0*fw,0*fr)}

It is easi' to check that this m^ing is a state-space transformation.

Moreover in the new space only aie operator is applicable to any state,

so one quickly sees that there is no way to reach the state {0*fw,0*fr}.

Counting maps yield simple image problans so can serve as a quick

check for possibility.

DISODSSICN

Linitations and Weaknesses

This e^proadi always generates adnissible heuristics, but not all

adnissible heuristics are useful. implied to the tower-of-hanoi

problem, the approach yields no useful heuristic. The quotient map may

I
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fail to help because it either trivializes the problem or does not

reduce the difficulty sufficiently so that the calculatiwi of the

mininLm cost solution is sinple. Biere cure two major problans to

overcome before a successful implementation can be achieved. First there

is rjo guidance as to vrtiich state-space transformation to try. Pearl [13]

has described several qualities that would make the image problem ea;^

to solve, but has not given methods for creating such problems. The

open research question is how to determine vhich state-space

transfometions are useful without searching a large space of

transformations. This problem might be amenable to both analytical or

heuristic approaches. Possibly from an analysis of the operators one

I could determine v^ich relations need to be factored out so that the
resulting quotient problem %#ould be easy (perhaps too easy) to solve.

The second problan is that the technique requires a person to optimize

the computation of h. This difficulty is unavoidable according to the

results of Valtorta [16].

Ocxiclusions

We have ^own that state-space transformations indace admissible

and monotaic heuristics. lioreover every adnissible and monotcxic

heuristic can be induced ty an appreciate problem transformation.

Since state-space transformaticxis are oocposable this technique yields a

large set of heuristics. These heuristics can be used to guide the

search for a solution or to demonstrate the impossibility of finding a

solution. Moreover, four types of state-space transformations, namely

inclusion naps, relaticxi meps, quoti&it maps, and counting maps, were

defined and shown to be equivalent to special Ceises found in the
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literature. The latter three maps are intrinsic to the original

problan, i.e. they do not require a "eureka" form of insist to

construct. While not leading to as efficient search strategies as those

proposed ty Georgeff, the automatic generatioi of adnissihle heuristics

is better developed than the automatic discovery of strategies.

Finally, by using c[uotient transformatiois we generated a number of

standard heuristics. In addition, ty con^xjsing quotient and counting

naps we proved the impossibility of solving scro problems.
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