UC Irvine
ICS Technical Reports

Title
Generation of heuristics by problem transformation

Permalink
https://escholarship.org/uc/item/8wrl58fg

Author
Kibler, Dennis

Publication Date
1983-12-14

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8wr158f8
https://escholarship.org
http://www.cdlib.org/

Generation of Beuristics by Problem Ti:ansfomtim
Dennis Kibler
. University of California at Irvine

Information and Camputer Science Department

14 December 1983

Technical Report # 225

_ Frchives

z
699
C3
no, 335
c.9Y

This research was supported by the Naval Ocean Systems Center under

contract N00123-81-C-1165.



Astroct |

We define problem transformations and show that each problem
transformation induces an admissible and monotonic heuristic on the
original problem. Furthermore we show that .every admissible and
monotonic heuristic is induced by scme problem transformation. This
result generalizeé and unifies ‘several approaches for heuristic
formation reported on in the litérature. We give four techniques for
generating problem t;ansformatiohs and we apply these techniques to
generate several heuristics found in the litex.:ature. We also introduce a

variant of the relational representation framework which has some

advantages

Keywords: Heuristic generation, admissible heuristics, problem

transformation, quotient spaces, problem reéresentation.

CR CATEGORIES: I.2.8, I1.2.6.

Introduction’

If a straightforward attack on a probiem leads to failure,
Polya [14] suggested that one should consider simpler, analogous

problems. Once these associated problems were soived, the insights

gained were samehow to be translated back to apply to the original -

problem.  Gaschnig [4) was the first to propose using an analogous

problem to generate a heuristic for the origihal problem. Gaschnig

- chose to represent problené as graphs and analogous problems (which he

called transfer probléms) as supergraphs or subgraphs. ‘This paper

presents a general nethod for generating associated problems and the

transformation between problem and associated problem. We show how




these associated problems lead to admissible and monotonic heuristics
for the original problem. Special cases of these techniques have been

studied by Gaschnig [4], Pearl [12], Kibler [7], and Valtorta [16].

Some advantages of changing the representation of a problem have
been noted in the literature. Newell and Simon [9] outlined their
*planning method" which consisted of abstracting essential relations or
operators. Amarel [1] showed how to transform the representation of a
generalized missionaries and cannibals problem. Korf [8] defined a
lahguage for representing representations, and transformations. Using
this framework he shows how large representational changes can be
achieved by composing transformations which have small effects.
Unfortunately he gives little guidance for selecting the appropriate
transformations. In the latter papers a problem is transformed and a
solution to the transforméd problem provides a solution to the original
problem. In our work, the transformed problén guides the solution
process of the original prdblan by providing an admissible and monotonic

heuristic.

We |begin by formally defining state-spaces, staf_e—-space
transformations, problems and problem transformations. Then we prove
that each problem transformation induces an admissible and monotonic
heuristic onyti)e original problem. Furthermore we show that every such
heuristic can be achieved by problem transformation. Then, for
particular choices of problem representation, we define four types of
problem transformations, namely inclusion maps, relaxation maps,

quotient maps, and counting maps. We apply these techniques to the



eight-tile puzzle, the cube slicing problem, the blocks world, and the
mritilated checkerboard problem. Lastly we discuss the limitations and

weaknesses of the approach.
Problems and Problem Transformations

The following definitions fit within the framework that
Nilsson [11] provided for the A* algorithm. They are also similar to
those proposed by Georgeff [5], although he mapped states and strategies
(as represented by progfam schemas and their interpretations) while we

map states and operators.

A collection of states S and operators Op is called a gstate—space
if each operator in Op isva partial functionl from S to S. A cost
ﬂmction c on a state—space <S,0p> is a positive real-valued function an
Op. If no cost function is expiicit then, by default, the state—space

has the cost function which assigns one to each operator.

A state—space transformation (without cost) T from one state-space
into another is a mapping of states S and operators Op of the source
state-space into the states S' and operators Op' of the image

state-space such that the following diagram commutes:

op
>

S
I
| T
T(op) |
S

>

To say the diagram commites means that the following equation holds, for

1a partial function £ fram X to Y is function fram a non—empty subset
of X into Y. f may be many-to-one, one~to-one, into, or omto.



all states s and applicable operators op:

apply (T (op) ,T(s))=T (apply (0p,5))  (equation 1)

where apply(op,s) is the new state arrived at by applying op to the

state 5. This definition is standard in the mathematical subarea of

éategory theory.

A state-space transformation T with cost of <5,0p,c> into
<s',0p',c'> is a state—space transformation T of <S,0p> into <8',0p'>
such that c'(T(op))<c(op) for all op in Op. If T is a state-space
transformation of <S,0p> into <é',09'> and ¢ is a ocost function on
<s,q;$. then define the induced cost function on Op' by:
if op' is in T(Op) then c' (op' )=minumum{c(op) where T(op)=op'}

else c'(op') is any positive value.

The above definition is necessary since several operators in the source
domain may mEp to the same operator in the image domain. Clearly if T
is a state-spaoe transformation of <S;Op> into <8',0p'> and ¢ is cost
function on <S,Op> then T is a state-space transformation with cost from

<S,0p,c> into <S,0p,c'> where c' is the induced cost function.

A problem P is a five-tﬁple <,S,F,0p,c> where <S,09> is a
state-space, I is an element of S called the jinitial state, F is a
subset of S called the final states or goal states, >and c the cost
function. A sequence of operators <opj,opp,...0p,> applies to a state s
if the image of op; is contained in the domain of op;,;. Such a sequence
is a solution to the problem if the image of the last operator belongs
to F. An optimum solution is.one whose cost is minimm over all

solutions, where the cost of a polution is the sum of the cost of each



operator in the sequence. With the default cost function the minimum

cost solution is the one with minimum length.

If P=<I,S,F,0p,c> is a problem (called the gource problem) and T is
a state-space transformation of <S,0p> into <S',0p'>, we define the
image problem P'=<1',S',F',0p',c'> by the following means. Let I' be
T(I) and F' be {T(f) where f£ belongs to F}. Let c' be the induced cost

function.

"Given the above definition the following observations are

immediately apparent.

1. A solution of the source problem maps -into a solution of the
image problem.

2. If the image problem is unsolvable the source problem is
unsolvable.

3. The cost(length) of a solution in the image state-space is
not greater than the cost(length) of a solution in the source
state-space. (This result depends on the definition of c'.)

4. The minimm cost solution in the image state-space is a lower
bound on the cost of a solution in the source state—space.

5. The composition of two state-space transformations is a
state-space transformation. The composition of two problem
transformations is a problem transformation. ’

Nilsson [11] defined an admissible search algorithm as one which is
guaranteed to find the optimm solution, whenever a solution exists. A
(numeric) heuristic is non—negative function on the set of states. We
say a heuristic h is admissible if it underestimates the cost fram the
node to the goal. Nilsson proved that the evaluation function
£(n)=g(n)+h(n), where g(n) is the current cost to the node n, and h is
admissible, defines an admissible algorithm. A heuristic is monotonic

if for any node n and operator op, h(n)<h(n')+c(op) where n' is the node

:



P

reached by applying op to n. Monotone heuristics are valuable because
they reduce the updating reguired in the A* ;lgoriﬂm. More
specifically, applying the aA* algorithm to a problem sometimes requires
updating the g-value (current cost of reaching node) of a CLOSED node.
Whenever the g-value of a node is updated, one must check whether any
descendant of the node requires updating. This is an expensive
operation within the A* algorithm. The advantage of monotonic heuristi.cs
is that they eliminate the need for updatipg the g-values of QQ.OSED

nodes.

We need one more definition to simplify the statement of the next
theorem. If T is a problem transformation from P=<I,S,F,0p,c> to
problem P'=<I',S',F',0p',c'> then the function h defined on S by h(s)=

cost of optimm solution of T(s) in P' is the induced heuristic.

The following theorem shows how to induce monotonic and admissible

heuristics fram problem transformations.

Theorem 1: If T is a problem transformation fram problem P
to problem P' then the induced heuristic is admissible and

monotonic heuristic.
Proof: The admissibility of h follows immediately fram result 4. To

show monotonicity consider the following diagrams:
n n'
sl >82 T(s1l) —>T(s2)
\ | ' \ |
i\ 13 it N 13
\ \
F T(F)=F'

where sl and s2 are states of S, n is the cost of the operator fram sl
to 2, i is h(sl), j is h(s2), and i', j', and n' are the minimm costs

between states in the image state-space. We must show that n+j2i. By



definition i=i' and j=j'. Also n'+j'2i' by definition. Since ron', we

have n+j>i, and monotonicity is proven. Q.E.D.

We call the heuristic generated by process described in the theorem

above the induced heuristic.

The next theorem shows that every admissible and monotonic
heuristic can be induced by a problem transformation. This gives a
precise understanding of the power of problem transformations.

Gaschnig [4] hypothesized a similar version of the following theorem.

Theorem 2: Any admissible and monotonic beuristic on a
problem can be induced by problem transformation.

Proof: Let h be an admissible and monotonic heuristic on a problem
P=<1,S,F,0p,c>. We will Qefine a problem P'=<I1',S',F',Op,c'> and problem
transformation T of P into P' such that the induced heuristic h' equals

h.

Let I'=I and S'=S. For each state s in S, T(s)=s. For each s in §
define op, as the partial function from {s} to £ where f is any element
of F, the final states. Let Op'=Op#U#{op, where s belongs to S}.
Intuitiveiy we have added a short—cut, one-step solution in the image
domain. I-‘or‘ each op in Op, let T(op)=op. Obviously T is a damain
transformation. Let c' be the cost function defined by:

if op is in Op, then c'(op)=c(op).
if s is in S, then c'(ops)=h(s).

With this definition of ¢', T is clearly a domain transformation with

cost. Consequently there is an induced heuristic h' on P.

We now prove that h' is identical to h. Recall that, for s in S,



h'(s) is the minimm cost of solution of T(s) in S'. It suffices to show
that a minimumm cost solution is found by applying the single operator

opg (whose cost is h(s)) to s.

The proof breaks into two cases. Let s belong to S and let
<OpPy,0Pp/...0R,> be the sequence of operators of Op' that yield a
minimum cost solution in S'.

Case 1: n=1

'If n=l then opy is either in Op or is opg, in which case there is

nothing to show. If op) is in Op then h(s)<c(op) since h is admissible.

But then opg is at least as cheap a solution as op;.
Case 2: ol

If n>l1 then op; must belong to Op. But now the monotonicity of h
demands that h(s)<c(op)+h(op;(s)). The admissibility of h implies
h(op; (s))<cost of solution fram op;(s). Hence op) is again as cheap a
solution.

In eithei case a minimm cost solution in S' is achieved by
applying opg whose oost is h(s). Therefore h'(s), the induced

heuristics, is h(s). Q.E.D

The weakness in the above theorem is that it does not tell us how
to oonstruct useful problem transformations. We now consider some
specific pu:oblén representation schemes and give some general techniques

for constructing problem transformations.



GENERAL STATE-SPACE TRANSFORMATIONS
Graphical Representation

Gaschnig [4] defined a problem 'graph as a finite, strongly
connected graph with no multiple edges or self-loops. In this context a
problem is defined by a start node s and a final node f fram G. Gaschnig
defined a transfer problem as one which is either a subgrapu or
supergraph. He noted that a subgraph transfer problem need not induce an |
admissible heuristic but that a supergraph transfer problem will induce
an aduissible heuristic. The result for supergraph transfer problem is a
special case of theorem 1, which also concludes’ that the heuristic is
monotonic - a point not noted by Gaschnig. 'Ihls is probably the simplest
applicatién of theorem 1 for it follows once we verify that the
following diagram commutes, where G is the set of nodes of the graph and
an operator is an edge:

op

>

G

l

| i
i(op) |
G

[
O

>u

where i is the J‘.nclusion2 mep of states(nodes) and operators (edges) into

nodesandedgesoftheconta.i.nedgra;h.betmcallthistypeof

' state-space transformation an inclusion map. Gaschnig applies this

technique to the 8-tile puzzle by embedding the graph in a subset of the
graph that allows sorting by swapping a pair of values. This does not

lead to a very good heuristic possibly because it is pot intrinsic to

2an inclusion function i fram X to Y is defined by i(x)=x.



10

the problem in the sense that no direction is given for choosing the
"right" supergraph. For a graph with n nodes there are about 20*D
supergraphs with the same nodes. In particular for the 8-puzzle there
are around 180,000 (91/2) nodes in the graph. Therefore the rumber of
supergraphs (with the same nodes) is roughly 1010,000,000  pinging the

right supergraph is a gargantuan task.

We now consider state-space transformations which are intrinsic to

the problem, i.e. they are constructed fram the original problem.
Relational Representation

Perhaps the most widely used representational scheme is that
described by Fikes and Nilsson [2] in their STRIPS system. 1In this
approach each operator is defined by three lists of relations, namely
the preconditions list, the delete list, and the add list. 1In a later
work Fikes, Hart and Nilsson [3] showed how to build a hierarchy of
abstraction spaces by disregarding same preconditions of each operator.
The solution in the abstraction space provided a skeleton solution, to
be elaborated upon in the original space. Using the same representation
scheme, Pearl [13] showed that one could generate admissible and
monotonic heuristics. If we define the "forgetful® transformation which
is the identity on states but forgets some of the preconditions of
operators, we get a state-space transformation, as is readily émarent.

All that need be shown is that the following diagram cammutes:
op

W'

S
I
|
I

S

where op' is formed by removing same of the preconditions of op.




. ) .
. . ' .

11

Following Pearl we call such transformations, relaxation maps. A simple
application of theorem 1 is that relaxation mape induce monotonic and

admissible heuristics.

Now we will consider a different state-space representation scheme

which seems to have some advantages over the standard STRIPS-like

approach.
Multiset Representation

In this section we first describe the multiset representation and

then define two types of problem transformations.

We use multisets or bags3 of relations rather than sets of
relations to describe the states and the operators. This representation
has been used by Kibler and Morris [6] to analyze and repair plan
inefficiencies. In particular we define a relational operator by
specifying two multisets of conditions, one called the preconditions and
the other the postoonditiohs. An operator is gpplicable in a given
state if each of its preconditions is satisfied in the state. The
preconditions of. an operator are gatisfied if there exists a
substitution for the variables such that the instantiated preconditions
are contained, as a multiset, in the state description. One gpplies an
applicable operator by deleting each of the instantiated preconditions

from the state and adding each of the instantiated postconditions.

The mltiset approach avoids the problem, discussed by Vere [17],

3 bag can be represented as a list in which elements may appear more
than once.



12

of composing relational operators to form a "macro-operator". Vere
showed that, in general, relational operatbts do not have a well defined
composition and that one must augment their descriptions in order that
composition would make sense. Multiset relational operators have a
well-defined composition, in the same sense as presented by Vere, but we

forgo the demonstration as it is not needed for the rest of this paper.

A multiset representation allows a simpler and more natural
description of operators. For example, in the blocks world with the
common definition of relational operator as used by Vere or Nilsson, the
definition of the operator move(x,y,z) (meaning move x from y onto z)
has the preconditions: clear (x),clear(3) ,on’(x,y) }x=/=z. Usmg multisets
the precondition x=/=z is superfluous since x and z cannot be bound to
the same object. Intuitively preconditions are resources rather than

assertions of truth.
Quotient maps |

A simple useful class of state-space transformations are guotient
maps. These are very similar in effect to relaxation maps but do not
entail the additional overhead of storing unneeded relatians. A
quotient map simply forgets about some of the relations in the source
state-space, for both operators anF] states. More precisely a quotient

map Q is def ined by a set S of relations as follows:

Q(state)={n| member (n,state) and not member (n,S)}
Q(operator)=newop where
preconditions (newop)=Q(precondition(op)) and
postcondi tion (newop)=Q(postcondition(op)) .
Again to show that the map is a state-space transformation one need only
check that the appropriate diagram ocommutes. Notice that if the

operators and states can be described with n relations, then the number



13

of quotient maps is 27, This includes two degenerate cases. One where
the gquotient set is empty so we reachieve the original problem and the
other where the quotient set consists of all the relations so that the
initial state and the goal state become equivalent.
Counting maps

Another useful class of natural transf.ormationé are counting maps.
Roughly a counting map replaces a collection of relations by the number
of instances of each type of relation. Intuitively, guotient maps
forget about same relations, while counting maps forget about particular
objects. More precisely, if the stéte—space is described by n
rélations, say Iy, Iy, through rp, then the counting map will map each
state into an n-vector of integers, where the integer ‘of the ith
component corresponds to the number of relations of type rj in the
stat»:e.A Bquation 1 determines the definition of the image of an
operator. Again this map is clearly a state-space tranformation. Note
that ocounting maps would not fit .into the relational framework for

operators (without same violence) .

How can we know which state-space transformations will be useful?
This is the most important unanswered research question. The .follogzi.ng '
gives a mild test to guarantee t_'hat the image problem will be simple to
solve. A collection of operators Op is comutative if for any
applicable sequence <op;,opy>, <Op,0P1> is applicable and yields the
same result. Note ‘that the image operators under a counting map are
commtative. This guarantees that £he ;foblem will be easy to solve for
it implies one can solve the goals of image problem in any order. A

problem in which the goals can be solved in any order has been called




14

deconposable by Pearl [13].

For convenience we denote the mumber of occurrences of a relation
or the miltiplicity of the relation by writing nmltiplicit&*relation.
Consequently when we write the preconditions of a counting operétoz as
n*r,, m*ry, etc. we mean that the operator deletes n relations of type \
ry, m relations of type rp, etc. Postconditions and states are denoted

similarly.

Nétice that state—space transfofmations have the effect of focusing
attention on same aspect of the problem. Pocusing on the wrong aspect
of a problem leads to no insight. Focusing on the right aspect can lead
to appropriate heuristics or a quick proof that the problem is
unsolvable. |

EXAMPLES

We illustrate the power of beuristic formation from problem
transformation in the following examples. In all of these examples we
use the multiset representation to demonstrate some of its advantages.
Tile puzzle '

Nilsson analyzed the eight-tile puzzle and defined a number of
heuristics for its solution [10]. ‘This puzzle can be defined as a
relational production in the following way. Let the boa.rd size be 3X3

and label the positions as in the diagram below.

position labels .goal state
abc 123
def 4 5
ghi 678

A state, such as the goal state depig:ted above, could be described as:



15

pos(a) ,pos(b) ... ,adj(a,b) ,adj(b,a) ,adj (a,48),...

on(a,l) ,on(b,2) ,on(c;,3) ron(d,4) ,blank (e) ,on(£,5), 4

on(g,6) ,on(h,7) ,on(i,8).
where pos stands for position and adj stands for adjacent. There is
only one relational operator, defined by:

preconditions: adj(X,Y) ,pos(X) ,pos (Y) ,blank (Y) ,on(X,V)
postconditions: adj (X,Y),pos(X),pos(Y),blank (X),on(Y,V).

A number of different quotient spacés can be constructed fram this
problem, If we demand that the quotient space maintain the "on®
relation, then there are seven (23—1) -candidate quotient spaces. We

will look at three€ of them.
Beuristic P(n)

If we forget about the requirement that a tile be blank, then we

get a new problem state-space with an operator defined by:

preconditions: adj(X,Y) ,pos(X),pos(Y),on(X,V)

postconditions: adj(X,Y),pos(X),pos (Y} ,on(¥,V).

This corresponds to a tile-puzzle where you are allowed to pile uwp
tiles. In this state-space it is easy to reason that the minimum number
of moves to change from one state to another is exactly the sum of the
city-block distances between each tile's current position and its
destination. This is exactly heuristic P(n) of Nilsson [10].

Beuristic W(n)

If we forget about both the blank constraint and the adjacency
constraint we get a new problem state-space with an operator whose
preconditions are pos(V),pos(X),on(X,Y) and whose postconditions are
pos (X) ,pos(V) ,on(X,V) . This corresponds to a tile-puzzle where you are

allowed to pick up any tile and move it to any desired position. In



i

16

this puzzle, the minimum distance between two states is the number of
tiles out of position. BHence the distance of the minimum solution for

this quotient problem defines the admissible heuristic W(n) [10].

) Notice that the operators in the above two quotient spaces had the

property that they were commutative, allowing us to easily solve the

image problem.
Beuristic almost W(n)

1f ‘we forget about the adjacency and position constraint we get a
new operator with preconditions: blank(Y),on(X,V) and postconditions:
blank (X) ,on(Y,V). This corresponds to allowir1g a tile to be moved into
a blank position regardless of its position. The resulting heuristic is

closely related to W(n).

We note that the total rumber of induced heuristics using quotient
maps is 14 (24-2). If we compose this with counting maps we get another
14 potential beuristics. As we have already noted, the graphical

technique gave a space of heuristics with about 1010,000,000 &) ements.

Pearl [13] used relaxation maps to achieve results similar to the

ones above.

Another heuristic defined by Nilsson is defined to be P(n)+3*S(n)
where S(n) | measures the “sequence score® of tile position [10].
Although a better beuristic than either W(n) or P(n) it is not
admissible and so cannot be found by any state-space transformation.
Georgeff [5] has a étrategy for solving this puzzle which generates
fewer nodes than the above heuristic, but finds a longer solution. The

search space of potential strategies seems to be infinite.



17

Cube Slicing
Since admissible heuristics provide lower bounds on the mumber of

operations required to fulfill a goal, they can be used to determine
that some problems have no solution. An instance of such a problem is
the question of whether a cube can be sliced into 27 equal cubelettes
with only five slices. By insight one sees that it is necessary to
glice each of the six faces of the inner cube, 80 the problem is

impossible.

This oonclusion can also be reached by applying state—space
transformations. A detailed relational description of the original
problem would be tedious. We give only the image state-space and the
corresponding operators. By applying quotient maps and counting
functions, one reduces the problem to ane whose initial state is
{block<27>}, where the 27 refers to the volume in terms of smaller
cubes. The goal state is {27*block<1>}. 'I'ner slicing operations
generate a 6ollection of relational operations. Each relational
operator deletes a set of bloéks and replaces each block of the subset
by two blocks, where the new blocks are of egual size or one is twice as
large as the other. Same of the relational operators are:

opl: delete conditions: {block<9> ,block<6>}
add conditions: {3*block<3>,block<6>}

op2: delete conditions: {block<9> ,block<6>}

add conditions: {block<3>,block<6>,block<2> yblock<4>}.
Without worrying about the entire search tree that would be generated,
we can reason as follows. If at each slicing the largest block is

subdivided then following only the largest block at each slice would




18

give the following chain.
block<27>->block<18>->block<9>->block<6>->
->block<3>->block<2>->block<Dl>.
This chain has six operations in it so the original problem requires at
least six operations. This example indicates one of the weaknesses with
this approach. It requires that a person see a computationally easy way

of solving the transformed problem or, equivalently, of canp.:ting h.
Blocks World

We will only sketch the application of state—space transformations
to the blocks world., Using any of the usual relational descriptions of
the blocks world [11], one -can define a quotient map which forgets
about all relations but the ®on" relations. The admissible heuristic
generated is the number of different "on" instances between the current
state and the goal state. Such a heuristic has the effect of making the
search somewhat similar to that generated by STRIPS [2], in that the
search is directed towards achieving the "on" goals sequentially for
each possible ordering of the goals. BHowever, the admissible heuristic
approach guarantees finding a solution. We note that goal ordering
fails for STRIPS [15] because the goals only partially specify the goal
state. If the goals had been "completed® or extended to give a full
specification of the final state, then goal ordering would allow STRIPS
to solve all blocks worlds problems easily. In particular if we add the
goals so all the desired "on" conditions form stacks starting at the
table, then ordering the goals fram the table to the top of the stack

will allow a straightforward solution.




=
d

19

mtilated checker board

The problem is: if a checkerboard has the white corners removed,
can it be covered by dominoes, wheré each domino covers two adjacent
squares. We will use a state-space transformation to show that the

problem is impossible. Below is an abbreviated relational description

of the initial state, the single operator, and the goal state:

initial state: adj(a,b)see..
white(a) sees
red(b) ...
free(a) ,free(b),e..
operator: Pre: adj(X,Y) ,red(X) ,white(Y) ,free(X) ,free(Y).
Post: adj(X,Y),red(X) ,white(Y) ,covered(X) ,covered(Y) .

goal: covered(a) ;covered(b) jeee

We define a state-space tranformation into states described simply

by the rnumber of free white(fw) and free red(fr) squares. Consequently

we have:

image initial state: 30*fw,32*fr.

image operator: preconditions: fw,fr. {deleted relations}
postconditions: empty. {added relations}

image goal: - empty. {i.e. (0*tw,0*fr)}

It is easy to check that this mapping is a state—space transformation.

Moreover in the new space only one operator is applicable to any state,

so one quickly sees that there is no way to reach the staté {O*fw,0*fr}.

. Counting maps yield simple image problems s0 they can serve as a quick

check for possibility.
DISCUSSION
Limitations and Weaknesses
This approach always generates admnissible heuristics, but not all
admissible heuristics are useful. Applied to the tower—of-hanoi

problem, the approach yields no useful heuristic. The quotient map may



20

fail to help because it either trivializes the problem or does not
reduce the difficulty sufficiently so that the calculation of the
minimm cost solution is simple. ‘There are two major problems to
overcome before a successful implementation can be achieved. First there
is no quidance as to which state-space transformation to try. Pearl [13]
has described several qualities that would make the image problem easy
to solve, but has not given methods for creating such problems. The
open research question is how to determine which state—space
transformations are useful without searching a large space of
transformations. This problem might be amenable to both analytlcal or
heuristic approaches. Possibly from an analysis of the operators one
could determine which relations need to be_ factored out so that the
resulting quotient problem would be easy (perhaps too easy) to solve.
The second problem is that the technique requires a person to optimize
the computation of h. This difficulty is unavoidable according to the

results of Valtorta [16].
Conclusions
We have shown that state-space transformations induce admissible

and monotonic heuristics. Moreover every admissible and monotonic

heuristic can be induced by an appropriate problem transfbrmation.

' Since state-space transformations are composable this technique yields a

large set of heuristics. ‘These heuristics can be used to guide the
search for a soluti.on or to demonstrate the impossibility of finding a
solution. Moreover, four types of state-space transformations, namely
inclusion maps, ‘relation maps, quotient maps, and counting maps, were
defined and shown to be equivalent to special cases found in the




21

literature. The latter three maps are intrinsic to the originai
problem, i.e. they do mot reguire a “eureka” form of insight to
construct. While not leading to as efficient search strategies as those
proposed by Georgeff, the autamatic generation of admissible heuristics
is better developed than the autamatic discovery of strategies.
Finally, by using quotient transformations we generated a mmber of
standard heuristics. In addition, by composing quotient and counting

maps we proved the impossibility of solving some problems.




REFERENCES

1. Amarel, S. On the representations of problems of reasoning about .
actions. Machine Intelligence III, 1968.

2. Fikes, R.E., and Nilsson, N.J. STRIPS: A new approach to the
application of theorem proving to problem solving. Al 2 (1971),
189-208.

3. 'Fikes, R.E., Hart, P.E., and Nilsson, N.J. Learning and Executing
Generalized Robot Plans. AI 3, 4 (1971), 251-288.

4. Gaschnig, J. A problem similariy approach to devising heuristics.
Proceedings of LICAI 6 (1979), 301-307.

5. M.P. Georgeff. Strategies in Heuristic Search. AI 20, 4 (1983),
393-426. ‘

6. Kibler, D.F, and Morris, P.H. Plan Variants and a Plan Refinement
Algorithm. 178a, University of California, Irvine, 1982.

7. Kibler, D.F. Natural Generation of Admissible Beuristics. 188,
University of California, Irvine, 1982.

8. FKorf, R.E. Toward a Model of Representation Changes. Al 14 (1980),
41-78.

9. . Newell, A. and Simon, H. Human Problem Solving. Prentice-Ball, 1972.
10. Nilsson, N.J. ProblemSolving Methods in Artificial Intelligence.
McGraw-Hill, 1971. . :
11. Nilsson, N.J. Principles of Artificial Intelligence. Tioga, 1980.
12. Pearl, J. On the Discovery and Generation of Certain Beuristics.
UCLA-ENG-CSL-8234, Univ. of California, Los Angeles, 1982.

13. Pearl, J. On the Discovery and Generation of Certain Beuristics.
Al Magazine (1983), 23-33.

14. G. Polya. How to Solve it. Princeton University Press, 1945.

15. Sacerdoti, E.D. Planning in a hierarchy of abstraction spaces. Al
5 (1974), 115-135. _

16. Valtorta, M. A Result an the Computational Complexity of Beuristic
Estimates for the A* Algorithm. University of North Carolina, 1981.
17. Vere, S.A. Relational Production Systems. Al 8 (1977), 47-68.



APR 03 1986

Library Use Qniy





