UCLA

Posters

Title

SIP1: Acoustic Source and Wireless Sensor Node Localizations

Permalink

https://escholarship.org/uc/item/8wr1w9hh

Authors

A. Ali S. Asgari C.E. Chen <u>et al.</u>

Publication Date 2005

Center for Embedded Networked Sensing

Acoustic Source and Wireless Sensor Node Localizations

A. Ali, S. Asgari, C.E. Chen, B.H. Cheng, R.E. Hudson, F. Lorenzelli, E. Tacinroglu, L. Vandenberghe, and K. Yao

Introduction: Finding the locations of an emitting acoustic source as well as those of wireless sensor nodes are needed in many sensor networking applications

Acoustic Source Localization Algorithms

Maximum-Likelihood (ML) DOA Estimation

- ML-based DOA estimation is near optimum for high SNR
- Modified ML critieron narrowband array to perform DOA for wideband acoustic sources; cross-bearing of est. DOAs yields source localization
- Source signal is transformed using FFT onto frequency domain and dominant subbands are used under the Aproximate ML (AML) criterion
- AML for Reverberant and Impulsive Source DOA Est. Exp.
 - Conducted controlled reverberance experiment using "virtual array" method
 - Conducted field measurement of impulsive source for DOA estimation
- **Distributed Sensor Node Localization Algorithms**
 - Localization Based on Neighborhood Ranging Information Ranging measurement d_{ii} between node *i* and node *j* if the distance is less than the radio range R.
 - Anchor nodes a_k with known location.

Distributed Algorithms

- Each node updates its own location using Gauss-Newton (GN) method
- Use only local information and transmit to the neighboring nodes
- Reduce computation complexity from $O(n^3)$ to O(n)
- **Reduced communication cost**

Problem Description: Some details on source and sensor node localization algorithms

AML-based DOA Estimation

· Controlled reverberant scenario having only two perpendicular walls, one subarray with known location, to estimate one source with unknown location

- · Using "virtual array" model and AML estimation, only one consistent ray from each virtual subarray passes through the location of the source
- · Upon hammering a solid plate on the ground, short impulsive acoustic and sesmic waves were generated
- · Localization of plate obtained using AML DOAs est, of whitened data

Gauss-Newton Distributed Estimation

$$F(x) = \sum_{i,j} \left\| \left\| x_i - x_j \right\|^2 - d_{ij}^2 \right\|^2 + \sum_{i,k} \left\| \left\| x_i - a_k \right\|^2 - d_{ik}^2 \right\|^2 \quad \text{Global Cost Function}$$

$$F_i^{(i)}(x_i) = \sum_{j \to i} \left\| \left\| x_i - x_j^{(i)} \right\|^2 - d_{ij}^2 \right\|^2 + \sum_{k \to i} \left\| \left\| x_i - a_k \right\|^2 - d_{ik}^2 \right\|^2 \quad \text{Local Cost Function at the } i \cdot th \text{ new } i \cdot t$$

• Given $x_i^{(t)}$ minimizing the local cost function over x_i using GN method

- Transmit the updated estimation $x_i^{(t+1)}$ to the neighboring nodes
- · Non-increasing value of the global cost function

Proposed Solution: AML DOA and Gauss-Newton distributed algorithms for localizations

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced