
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
DKF-SLAM: Distributed Kalman Filtering for Multi-Robot SLAM

Permalink
https://escholarship.org/uc/item/8wr5c2cz

Author
Shreedharan, Sriram

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8wr5c2cz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

DKF-SLAM: Distributed Kalman Filtering for Multi-Robot SLAM

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Electrical Engineering (Intelligent Systems, Robotics, and Control)

by

Sriram Shreedharan

Committee in charge:

Professor Nikolay A. Atanasov, Chair
Professor Dinesh Bharadia
Professor Florian Meyer

2023

Copyright

Sriram Shreedharan, 2023

All rights reserved.

The thesis of Sriram Shreedharan is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii

TABLE OF CONTENTS

Thesis Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Abstract of the Thesis . ix

Chapter 1 Introduction . 1
1.1 Perception for Robots . 1
1.2 Simultaneous Localization and Mapping . 2

1.2.1 Bayes Filter . 3
1.3 Towards Multi-agent Systems . 5
1.4 Chapter Organization . 6

Chapter 2 Related Work and Background . 7
2.1 Distributed Consensus Optimization . 11
2.2 Optimization Methods . 11

2.2.1 Distributed Subgradient . 11
2.2.2 Decomposition . 12
2.2.3 Alternating Direction Method of Multipliers . 15

2.3 Gaussian Variational Inference . 16

Chapter 3 Methodology . 17
3.1 Overview . 17
3.2 Problem Statement . 17
3.3 Mapping only . 18

3.3.1 Single-Robot Case . 19
3.3.2 Multi-robot case . 24

3.4 Distributed Kalman Filter . 29

Chapter 4 Experiment and Results . 36
4.1 Application to Multi-Robot SLAM . 36

4.1.1 Feature Tracking . 38
4.2 Evaluation . 39

4.2.1 Metrics . 39
4.2.2 Simulation Data . 40
4.2.3 KITTI Data . 42

iv

Chapter 5 Conclusion . 49
5.1 Contributions . 49
5.2 Future Work . 50

Bibliography . 51

v

LIST OF FIGURES

Figure 1.1. Markov Process Representation of the SLAM problem. 3

Figure 1.2. Multi-Robot Approaches . 6

Figure 4.1. ORB Feature Matching . 40

Figure 4.2. Simulation Environment of 3 Robots and Landmarks in 2D 41

Figure 4.3. Kalman Filter in Simulation Data . 42

Figure 4.4. Distributed Kalman Filter in Simulation Data . 42

Figure 4.5. Translation Error Comparison across Time in Simulation Data 43

Figure 4.6. xyz Drift Comparison across Time in Simulation Data 44

Figure 4.7. KITTI Sequence 00 split for 3 Robots with Semantic Landmarks and
Geometric Landmarks in 2D . 44

Figure 4.8. Kalman Filter in KITTI Data with Semantic Landmarks 45

Figure 4.9. Distributed Kalman Filter in KITTI Data with Semantic Landmarks 45

Figure 4.10. Translation Error Comparison across Time in KITTI Data with Semantic
Landmarks . 46

Figure 4.11. xyz Drift Comparison across Time in KITTI Data with Semantic Landmarks 46

Figure 4.12. Translation Error Comparison across Time in KITTI Data with Semantic
Landmarks and Geometric Landmarks . 47

Figure 4.13. xyz Drift Comparison across Time in KITTI Data with Semantic Land-
marks and Geometric Landmarks . 48

vi

LIST OF TABLES

Table 4.1. Error Comparison in Simulation Data . 41

Table 4.2. Error Comparison in KITTI Data with Semantic Landmarks 45

Table 4.3. Error Comparison in KITTI Data with Semantic Landmarks and Geometric
Landmarks . 47

vii

ACKNOWLEDGEMENTS

I am extremely grateful to have worked with Professor Nikolay Atanasov during my

master’s, whose constant support and guidance made this thesis possible.

I would like to thank the committee members, Professor Dinesh Bharadia and Professor

Florian Meyer, for their expertise and feedback on my research.

I also want to thank my group members from the Existential Robotics Lab, Hanwen Cao,

Shrey Kansal, Shubham Kumar, and Kishore Nukala, for their invaluable insights throughout the

research.

All the Chapters, in part, are currently being prepared for submission for publication of

the material. Cao, Hanwen; Shreedharan, Sriram; Kansal, Shrey; Kumar, Shubham; Nukala,

Kishore; Atanasov, Nikolay. The thesis author was one of the researchers/authors of this paper.

Section 3.3 in Chapter 3 is co-authored with Hanwen Cao. The thesis author was the

primary author of this chapter.

viii

ABSTRACT OF THE THESIS

DKF-SLAM: Distributed Kalman Filtering for Multi-Robot SLAM

by

Sriram Shreedharan

Master of Science in Electrical Engineering (Intelligent Systems, Robotics, and Control)

University of California San Diego, 2023

Professor Nikolay A. Atanasov, Chair

The simultaneous Localization and Mapping (SLAM) problem for single robot systems

has been a topic of intense research for many years. However, in scenarios where a single robot

is not sufficient to explore and reconstruct a large or complex environment, multi-robot SLAM

can prove to be a promising solution. By working and communicating together, multiple robots

can cover larger areas and improve the accuracy of localization and mapping.

A traditional approach for multi-robot SLAM includes using a central server, which

communicates with each robot to exchange information and updates. However, this approach

is not ideal for real-time scenarios, as it can cause delays and render the computation power of

each agent futile. Moreover, if the central server fails, the whole system will break down.

ix

The main aim of this thesis is to propose a distributed filtering algorithm to build

an accurate sparse global map by leveraging the computation power of multiple robots and

minimizing communication across them. The approach involves each robot estimating its state

locally and sharing its observations with its neighbors. The robots must agree upon an estimate

of the common observations, which is achieved through consensus optimization. The algorithm

is inspired by the distributed stochastic mirror descent approach to solve a constrained variational

inference problem that can be decomposed. The optimization algorithm ensures consistency

among agents and their measurements and is systematically evaluated in both simulation and

real-time datasets.

x

Chapter 1

Introduction

1.1 Perception for Robots

All living things are equipped with some form of perceptual system to understand and

interact with the world surrounding them. One of the common perceptual systems is the visual

system, which enables people to navigate their environment. With the advent of imaging sensors

in the 20th century, robots could finally see and interpret the world around them, giving rise

to the fascinating field of Computer Vision. Over the past few decades, this technology has

captured the attention of many researchers and enthusiasts alike, paving the way for exciting

advancements in robotics and artificial intelligence.

The imaging sensor allows for the capture of 3D world points as 2D image points using a

camera observation model. While it is easy to solve for the 2D image points given the 3D world

points and camera location, the inverse problem of finding the camera trajectory when it moves

through space and takes multiple images is more complex due to random sensor noise. This noise

prevents an accurate estimate of the camera position. Additionally, knowing only the camera

trajectory does not provide information about the environment or the robot’s location within

it. This is where localization comes in. However, a map is required to localize oneself in an

environment, as we can say where we are only with reference to the map. For instance, imagine

a completely dark and empty room; without any reference, it is impossible to say the location

of where we are in the room. Assume there is a small lamp in the room. Then we can localize

1

ourselves with respect to the lamp. The lamp would serve as a map (or landmark). However, in

real-life conditions, when a robot is exploring an unknown environment, it will not know if there

will be objects or what kind of objects there will be, so it must create a map of the environment

while keeping track of its location in the map. This is known as the simultaneous localization

and mapping problem, and accurate localization and mapping is crucial for the robots to navigate

and explore the environment safely.

1.2 Simultaneous Localization and Mapping

In recent years, the Simultaneous Localization and Mapping (SLAM) problem has gained

much attention due to its wide range of applications, such as indoor robots and autonomous

vehicles. The main objective of this problem is to estimate the robot’s pose in an environment

while simultaneously constructing a map of the surroundings. This might seem like a chicken and

egg problem, as we need the map to locate the robot, and we need the robot’s location to create

the map. To solve this, we leverage various sensors that can track the robot’s motion and obtain

information about the environment. When the robot is equipped with only visual sensors such

as a camera, this approach is called Visual SLAM. Visual-Inertial SLAM is another approach

that combines visual sensors with inertial sensors, such as IMU, which provides information

about the robot’s motion. The data from the sensors is combined to estimate the robot and map

state, and this can be done in two ways: smoothing or filtering. Smoothing involves estimating

the entire trajectory and map state by combining all control inputs and observations. This is

done by formulating the SLAM problem as a non-linear least squares problem and minimizing

the error using iterative non-linear optimization techniques such as Levenberg-Marquardt or

Gauss-Newton. On the other hand, filtering is a recursive technique for real-time systems where

the current state is estimated based on the previous states and current observations. This thesis

will focus on the filtering approach rather than smoothing.

2

1.2.1 Bayes Filter

Bayes filter is a general probabilistic inference technique commonly used in the SLAM

paradigm for estimating the robot and map states by combining information about the control

inputs and observations made by the robot of the environment. This approach models the robot

states and the map as a Markov process where each state is only dependent on the previous state

and the control input at that state, as shown in Fig. 1.1.

Figure 1.1. Markov Process Representation of the SLAM problem.

Markov Assumptions [2]:

1. The robot state xt+1 at time t +1 only depends on the previous state xt and control input ut

at time t. It is independent of the history of states and inputs from time 0, ..., t −1

2. The map state mt+1 at time t +1 only depends on the previous map state mt at time t.

3. The observations zt at time t only depend on the robot state xt and map state mt at time t.

4. The robot state and map state might also affect each other’s motion.

Given a motion model and observation model of the robot,

xt+1 = f (xt ,ut ,wt)

zt = h(xt ,mt ,vt),

(1.1)

3

where xt and xt+1 are the robot states at time t and t +1 respectively, ut is the control input, wt is

the motion noise, mt is the map state, and vt is the observation noise at time t.

The Bayes filter is a recursive estimation approach where the posterior (or updated)

probability density function (pdf) of a state at time t +1 is computed using the posterior pdf at

time t. The pdf is determined by combining the Markov assumptions with the Bayes rule.

Marginal Distribution: p(x) =
∫

p(x|y)dy.

Joint Distribution: p(x,y) = p(y|x)p(x).

Bayes Rule: p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x)∫

p(y|x)p(x)dx .

The posterior pdf is computed in two steps. First, the control input is incorporated

in the previous state which gives the predicted pdf p(xt+1|z0:t ,u0:t), where (z0:t ,u0:t) denotes

(z0,z1, ...,zt ,u0,u1, ...,ut). Then the measurements or observations at that state is used to get the

updated pdf p(xt+1|z0:t+1,u0:t).

The posterior pdf (updated pdf) at time t +1 can be factorized as follows [2]:

p(xt+1|z0:t+1,u0:t)

=
1

p(zt+1|z0:t ,u0:t)
p(zt+1|xt+1,z0;t ,u0:t) p(xt+1|z0:t ,u0:t) (Bayes Rule)

=
1

p(zt+1|z0:t ,u0:t)
p(zt+1|xt+1) p(xt+1|z0:t ,u0:t) (Markov Assumption)

=
1

p(zt+1|z0:t ,u0:t)
p(zt+1|xt+1)

∫
p(xt+1,xt |z0:t ,u0:t)dxt (Marginal Dist.)

=
1

p(zt+1|z0:t ,u0:t)
p(zt+1|xt+1)

∫
p(xt+1|z0:t ,u0:t ,xt) p(xt |z0:t ,u0:t)dxt (Joint Dist.)

=
1

p(zt+1|z0:t ,u0:t)
p(zt+1|xt+1)

∫
p(xt+1|xt ,ut) p(xt |z0:t ,u0:t−1)︸ ︷︷ ︸

updated pdf at time t

dxt

︸ ︷︷ ︸
predicted pdf p(xt+1|z0:t ,u0:t)

(Markov Assumption)

(1.2)

A special case of the Bayesian Recursive Estimation approach is the Kalman filter, where

the pdf of the robot and map states are assumed to be Gaussian distributed random variables, and

4

the motion and observation models are assumed to be linear.

1.3 Towards Multi-agent Systems

When a single-agent system can no longer solve or takes too much time to solve a

problem or perform a task, multiple agents can be used to solve the problem. By leveraging the

computation power from multiple agents, the problem can be solved in a distributed manner where

each agent solves a smaller sub-problem. On top of this, multi-agent systems are fault-tolerant.

If one agent fails, the task can still be divided among all the other agents. These advantages

also apply to multi-robot systems where multiple robots can achieve certain objectives more

efficiently than a single-robot system. This includes faster and more accurate mapping of a large

area while localizing the robot in the environment.

There are mainly two approaches for multi-robot systems:

Centralized: In this approach, the robots communicate their states and observations to a central

server or node, as shown in Fig. 1.2a, which builds a global map and sends commands to

the robots. Due to the heavy computational load, this method is not feasible for large-scale

real-time systems.

Decentralized: Instead, another approach is the decentralized / distributed approach, as shown

in Fig. 1.2b, where the robots maintain their own local trajectories and local map while

sharing data with their neighbors when they are in communication range. The information

from these neighboring robots helps to locally optimize their state and the map of the

environment.

This thesis introduces a distributed Kalman filter for multi-robot systems, by extending

the single-robot Kalman filter with a consensus on the common landmarks observed across all

robots. The algorithm is simple and efficient and builds an accurate sparse global map by sharing

the information of the landmark states maintained by each robot with its neighbors.

5

(a) Centralized (b) Decentralized

Figure 1.2. Multi-Robot Approaches

1.4 Chapter Organization

The remainder of the thesis is organized as follows. Chapter 2 discusses the related

work in single and multi-robot SLAM and the background in distributed consensus optimization.

Chapter 3 presents the distributed Kalman filter algorithm. Chapter 4 discusses the application of

the algorithm to multi-robot SLAM and evaluates its performance on a simulation and real-time

dataset. Chapter 5 concludes this thesis and discusses future work.

All the Chapters, in part, are currently being prepared for submission for publication of

the material. Cao, Hanwen; Shreedharan, Sriram; Kansal, Shrey; Kumar, Shubham; Nukala,

Kishore; Atanasov, Nikolay. The thesis author was one of the researchers/authors of this paper.

6

Chapter 2

Related Work and Background

Single Robot SLAM

Single-robot SLAM has been extensively studied in recent years, and the most commonly

used approaches are Visual and Visual-Inertial SLAM. ORB SLAM [28], [29] and OpenVINS

[20] are popular real-time SLAM systems for visual and visual-inertial setup. SLAM is also

mainly categorized into two based on the type of map generation: sparse SLAM and dense

SLAM. Sparse maps are commonly represented by point clouds and landmarks, while dense

maps are represented by occupancy grid, signed-distance field, and mesh.

Popular algorithms for sparse SLAM include the Kalman filter for linear motion and

observation models, the extended Kalman filter (EKF), and the unscented Kalman filter (UKF)

for non-linear motion and observation models, which models the robot state and landmarks

as Gaussian random variables [5]. The Rao-Blackwellized Particle Filter [14] uses particles

to approximate the robot state, while the landmarks are considered to be Gaussian distributed.

There is also Factor Graph SLAM [13], which represents the robot states and landmarks as

variables, and the pose constraints and observations are added as factors to the graph. Then

a non-linear solver such as Levenberg-Marquardt is used to solve the non-linear least squares

problem over all the states, which makes this a smoothing approach.

Some algorithms for Dense SLAM include FAST SLAM [27], where an occupancy map

is created, and the particle filter is leveraged for accurate localization of the robot state. Kinect

Fusion [31] and Voxblox [32], [37] use truncated signed distance field functions to create a

7

continuous or dense representation of the observed environment.

Multi-Robot SLAM

Extending single-robot SLAM to multiple robots has been a key challenge in this area

and has gained less popularity than single-robot SLAM. The need for multi-robot comes from

the shortcomings of single-robot SLAM when exploring large spaces. The exploration time

can be significantly reduced by employing multiple robots in the environment. On top of this,

multi-robot localization and mapping can help improve the overall localization accuracy of

the robots and the mapping of the environment. However, these advantages also pose some

challenges that need to be solved, such as,

1. How do these multiple robots need to explore the environment? If multiple robots explore

the same space, the exploration time will increase.

2. What kind of information do the robots need to share with the others? The whole trajectory

and map cannot be shared, as communicating such massive data in real-time is not possible.

3. What kind of communication system should be set up between the robots? Communication

with a central server from all the robots is not possible for real-time systems; therefore, a

decentralized approach would be better.

4. How to perform data association between robots? When multiple robots observe the same

region of the environment, then the common features must be assigned the same global id

across robots.

These challenges give rise to different areas of focus within the multi-robot or distributed

SLAM problem. The papers [9], [10] deal with optimizing multi-robot exploration. The key

problem is to find appropriate target points for individual robots so they can explore different

regions of the environment simultaneously. This is done by calculating a common cost combining

the reachability of the target point and the utility of the target point. A robot is assigned to a

8

target point based on least cost, and once a target point is assigned to a robot, the utility of the

target point is reduced for the other robots. In this way, different target points are assigned for

individual robots to explore, leading to faster exploration.

Another paper [17] proposes a collaborative method for improving only the localization

accuracy by updating the robot’s beliefs when one robot detects another. The idea here is that

when one robot can find the relative pose of the other robot with respect to itself, then both robots

can synchronize their beliefs and improve localization accuracy. Moreover, some robots can be

equipped with high-cost (high accuracy) sensors and others with low-cost sensors. When the

information is shared across multiple robots, the high-accuracy sensor data can be leveraged,

thus improving the overall performance with fewer high-cost sensors.

In the papers [12], [15], [22], the authors propose different methods to merge the maps

from multiple robots. [12] focuses on map matching based on landmarks from different sensors

on multiple robots. A topologically correct single map is generated based on the commonly

observed features by the individual robots. The algorithm finds a relative transformation from

one robot to another by matching the landmarks observed from the environment and takes the

transform that gives the highest matches. This transform is then used to merge the map. In [15],

the relative positions between the robots are assumed to be known, and the feature estimates

from all the robots are combined along with the robot’s states as one state and updated as a whole.

[22] uses 3D line features for matching across multiple robots. Each robot runs its own EKF

SLAM and extracts line-based features from the environment. These features are then shared

and matched when the robots are in communication range, and an initial guess of the relative

pose is generated, which is used to do a rendezvous event to visually confirm the relative pose.

Once a good estimate of the relative pose is determined, ICP is used to perform map merging

and generate a global map.

An early popular work in multi-robot SLAM was by [16]. A real-time system was created

for efficient exploration and mapping even when the initial robot poses were unknown. The

data from the individual robots were combined into shared maps to coordinate exploration more

9

efficiently, and when combining the individual maps, the relative poses between the robots were

consistently verified by the rendezvous method. The system was robust and produced identical

maps on every run when tested on real-world conditions. However, this method fails to scale

for a larger number of robots, as communicating and maintaining a shared map between many

robots is not possible. Recently, Kimera-Multi [41] and DOOR-SLAM [25] were developed,

which consider the states of multiple robots as variables of a factor graph. Each robot maintains

individual factor graphs, and when they communicate, the relative pose is estimated along

with loop closures, and the robot trajectories are updated in a distributed manner. Based on

this globally optimized trajectory, the local maps maintained by the robots are updated, thus

improving the accuracy of the trajectory estimate and map. These systems, too, however, fail to

address the scalability to a larger number of robots.

Proposed Work

This thesis proposes an algorithm to improve localization and mapping accuracy by

leveraging the common map or environment observations across the robots and imposing a

consensus constraint on the same. Usually, this method has been used only for static networks

[4], [35], [36] where the agents collectively try to minimize a common function, as discussed in

the following sections, and this thesis aims to adapt this idea to a SLAM setting by deriving a

distributed Kalman filter for multiple robots. Even though a centralized Kalman filter would work

well for multiple robots, it is computationally expensive and may not be suitable for real-time

applications. The aim of the distributed Kalman filter is for each robot to solve for its own

local poses and map while also communicating its observations to its neighbors. By adding

the consensus constraint, the robots agree upon the estimate of the common observations and a

sparse global map is created with minimum communication while optimizing the robot’s local

poses. Furthermore, the distributed Kalman filter is fault-tolerant as the robots could still map

the environment even if one of the robots failed. Overall, our algorithm improves the accuracy,

scalability, and robustness while minimizing the computation and communication overheads.

10

2.1 Distributed Consensus Optimization

Given a connected graph G := (V,E) with nodes V representing the agents and edges

E representing the communication between the agents, in a distributed optimization problem,

instead of minimizing a global function F(x) centrally, the task is split into a sum of local

functions F(x) := ∑
n
i=1 fi(xi) for each agent who collaboratively works to minimize the global

function by exchanging information only with their neighbors Ni. In this way, the computation

is distributed between multiple agents leading to faster convergence. In the case of SLAM, each

robot can maintain a pdf of their own poses and map, but all robots will have to agree upon a

common pdf of the map. This imposes a consensus constraint on the distributed optimization

problem leading to a constrained optimization problem: min
xi

∑
n
i=1 fi(xi) such that xi = x j, ∀i, j ∈

A where A is the adjacency matrix. The distributed consensus optimization problem can be

solved in multiple ways, like subgradient descent, double decomposition, and ADMM [21].

2.2 Optimization Methods

2.2.1 Distributed Subgradient

From [30], the optimization step in the distributed sub-gradient method is as follows:

xi(k+1) = ∑
j∈Ni

ai j(k)x j(k)−αi(k)
∼
∇ fi(xi(k)) (2.1)

where ai j(k) are the weights corresponding to each neighbor, αi(k) is the step size and
∼
∇ fi(xi(k))

is the subgradient of fi at x(k)i .

11

The consensus optimization problem can be reformulated as follows:

min
xi

n

∑
i=1

fi(xi),

subject to ∑
j∈Ni

Ai j

2
∥x j − xi∥2

2 ≤ 0,

Ai j > 0, ∀ j ∈ Ni.

(2.2)

The distributed subgradient method for this consensus optimization now follows the same

update rule as shown in Eq. 2.1 but can be written in two steps : consensus step where the agent

mixes its own information with its neighbors, and a local optimization step in the subgradient

direction.

The consensus step is given as,

wi(k+1) = ∑
j∈Ni

Ai jx j(k). (2.3)

The local gradient step is given by,

xi(k+1) = wi(k+1)−αi(k)
∼
∇ fi(wi(k+1)). (2.4)

This method converges to the global optimum [30].

2.2.2 Decomposition

In optimization, when there’s a separable problem

min f (x) = f1(x1)+ f2(x2),

subject to x1 ∈ C, x2 ∈ C.
(2.5)

x1 and x2 can be solved separately in parallel. Decomposition method is splitting the given

problem into sub problems that can be solved independently of each other.

12

Primal Decomposition

The direct method of decomposition is Primal Decomposition [8] where the primal

variables are manipulated. Consider the minimization problem,

min f (x1,x2,y) = f1(x1,y)+ f2(x2,y), (2.6)

where y is called the coupling or complicating variable (primal variable) and when it’s fixed,

x1 and x2 can be solved separately by solving the two sub problems:

φ1(y) = min
x1

f1(x1,y)

φ2(y) = min
x2

f2(x2,y)
(2.7)

φ(y) = φ1(y)+φ2(y) (2.8)

This is called the master problem, and the original optimization problem is rewritten in

terms of this dual problem,

min f (x1,x2,y) = max
y

φ(y) (2.9)

The master problem can then be solved using subgradient method or other convex

optimization methods.

Dual Decomposition

The dual decomposition method solves the dual problem instead of the primal problem.

The dual problem is considered because it is either unconstrained or has simple constraints [8].

Let’s consider an equality constrained optimization problem,

min f (x),

subject to Ax = b.
(2.10)

13

The Lagrangian of the function is given by,

L(x,λ) = f (x)+λ
T (Ax−b). (2.11)

Then the dual function and dual problem is given by,

g(λ) = inf
x

L(x,λ),

max
λ

g(λ).
(2.12)

Finally, x can be determined by,

x∗ = argmin
x

L(x,λ ∗). (2.13)

Now say the optimization function is separable, then we can introduce local coupling

variables y1, y2 and the problem can be reformulated as,

min f (x1,x2,y1,y2) = f1(x1,y1)+ f2(x2,y2),

subject to y1 = y2,

(2.14)

where y1 = y2 is the consensus constraint.

The Lagrangian can now be written as,

L(x1,x2,y1,y2,λ) = f1(x1,y1)+ f2(x2,y2)+λ
T (y1 − y2). (2.15)

14

This leads to the dual problem as the function is separable,

g1(λ) = inf
x1,y1

f1(x1,y1)+λ
T y1,

g2(λ) = inf
x2,y2

f2(x2,y2)+λ
T y2,

max g(λ) = g1(λ)+g2(λ).

(2.16)

These dual subproblems can now be solved in parallel.

2.2.3 Alternating Direction Method of Multipliers

To robustify ascent of dual problem, the augmented lagrangian is considered which

converges faster [8].

The objective function is rewritten as,

min f (x)+g(z),

subject to Ax+Bz = 0.
(2.17)

The augmented Lagrangian is given by,

Lρ(x,z,λ) = f (x)+g(z)+λ
T (Ax+Bz)+

ρ

2
∥Ax+Bz∥2

2. (2.18)

The ADMM update is then performed as follows,

xk+1 = argmin
x

Lρ(x,zk,λ k) (Fix z and λ and minimize x),

zk+1 = argmin
x

Lρ(xk+1,z,λ k) (Fix x and λ and minimize z),

λ
k+1 = λ

k +ρ(Axk+1 +Bzk+1) (Fix x and z and update dual variable λ).

(2.19)

15

2.3 Gaussian Variational Inference

Variational Inference is a method used to approximate the posterior probability distri-

bution of an unknown variable given its prior and a set of measurements. If the approximation

is determined using only Gaussian distribution, it is known as Gaussian Variational Inference

[6]. One of the most common variational inference problems is minimizing the Kullback-Leibler

(KL) divergence between the approximated and true posterior distributions. Let the true poste-

rior be denoted by p(x|z) where x is the unknown state we are trying to estimate and z is the

measurement. Let q(x) =N (µ,Σ) be the approximation of the posterior distribution.

The KL divergence between the true posterior and approximation is given by,

KL(q||p) =
∫

∞

−∞

q(x) ln
p(x|z)
q(x)

dx

= Eq[log(q(x))− log(p(x|z))],
(2.20)

where Eq is the expectation over the probability distribution of q.

KL(q||p) = Eq[− log(p(x,z))]− 1
2

log((2π exp)N |Σ|)︸ ︷︷ ︸
Gaussian entropy

+ log(p(z))︸ ︷︷ ︸
constant

. (2.21)

From this, the function to be minimized is given by,

V (q) = Eq[φ(x)]+
1
2

log(|Σ|−1), (2.22)

where φ(x) =− log(p(x,z)).

It can also be seen that V (q) is the negative of the Evidence Lower Bound (ELBO) [23]

and by minimizing V (q), ELBO is maximized.

All the Chapters, in part, are currently being prepared for submission for publication of

the material. Cao, Hanwen; Shreedharan, Sriram; Kansal, Shrey; Kumar, Shubham; Nukala,

Kishore; Atanasov, Nikolay. The thesis author was one of the researchers/authors of this paper.

16

Chapter 3

Methodology

3.1 Overview

This chapter focuses on deriving a distributed Kalman filter using consensus optimization

and is inspired from [4], [35], [36]. The overall idea is to form a centralized objective that

can be decomposed and solved by individual robots. Further, to enable consensus among the

robots about the common landmark states y, we consider the KL divergence between the robot’s

distribution and its neighbor’s distribution. The derivation is mainly divided into two sections.

In the first section, the posterior pdf parameters are approximated by considering the robots to

be static, and only the common landmark states are observed. The second section presents the

distributed filtering algorithm by considering the joint probability of both the robots and the

common landmark states along with the consensus constraint.

3.2 Problem Statement

Consider the simultaneous localization and mapping problem where each robot’s motion

is described by the linear motion model given by,

xi,t+1 = Ai xi,t +Bi ui,t +wi,t wi, t ∼N (0,Wi), (3.1)

17

where xi,t and xi,t+1 are the states of the robot i at time t and t +1 respectively, ui,t is the control

input for robot i at time t, and wi,t is the zero-mean Gaussian motion noise of robot i with

covariance Wi at time t.

The robot obtains observations of the common landmarks y at each time step through the

following observation model,

zi,t =
[
Ci,y Ci,x

][y
xi,t

]
+vi,t vi, t ∼N (0,Vi), (3.2)

where zi,t is the observation obtained by the robot i at time t, and vi,t is the zero-mean Gaussian

measurement noise of robot i with covariance Vi at time t.

The aim is to estimate the states of the individual robots xi while also collectively

estimating the common landmark states y, in other words, estimate the parameters that maximize

the joint probability of the robot and landmark states given the control inputs and measurements

p
xi,ymax

(xi,0:t ,y|u0:t−1,z0:t). The communication between the robots is modeled as a graph G

with the robots as the nodes V and the connection between them as edges E . The graph is

represented as an adjacency matrix A. If nodes i and j are connected, that is, if robots i and j can

communicate, then Ai j > 0, else Ai j = 0.

3.3 Mapping only

First, let us ignore the motion model and consider only the observation model for the

common landmark states y. The observation model is now defined as,

z = C y+v v ∼N (0,V). (3.3)

Now, the problem is reduced to estimating only the common parameter y based on the

robot’s own observations and the estimates from its neighbors.

18

3.3.1 Single-Robot Case

Before moving onto multiple robots, the objective function of a single robot is considered

which is the same as discussed in Section 2.3.

min
q

V (q)

= min
q

Eq[− log p(y,z)]+
1
2

log(|ΣΣΣ−1|).
(3.4)

The posterior distribution of y conditioned on observation z is given by Bayes rule,

p(y|z) = p(z|y)p(y)
p(z)

∝ p(z|y)p(y). (3.5)

Taking the logarithm of Eq. 3.5,

log p(y|z) ∝− 1
2
(z−Cy)⊤V−1(z−Cy)

− 1
2
(y− µ̌µµ)⊤Σ̌ΣΣ

−1
(y− µ̌µµ),

(3.6)

where µ̌µµ and Σ̌ΣΣ are the mean and covariance of the prior distribution p(y).

Stochastic Mirror Descent (SMD) Formulation

The SMD algorithm is a generalization of the Stochastic Gradient Descent (SMD)

where the Bregman divergence operator is introduced for iterative minimization of a convex

optimization problem [8], [35].

Considering an optimization problem given by,

min
x

E[f (x;y)]≈ 1
T

T

∑
t=1

f (x;yt). (3.7)

The gradient ∇ f is computed at time t and the iterative optimization is performed as

follows,

xt+1 = argmin
x

{
⟨αt∇ f (xt ,yt),x⟩+Dψ(x,xt)

}
, (3.8)

19

where ⟨(., .)⟩ is the inner product and Dψ is a Bregman divergence between x and xt .

The objective function in Eq. 3.4 is a stochastic optimization problem and can be

rewritten in terms of the SMD algorithm with constant step size α = 1.

q∗ ∈ argmin
q

V (q)

= argmin
q

Eq[− log p(y,z)]+
1
2

log(|ΣΣΣ−1|)

= argmin
q

Eq[− log p(z|y)− log p(y)]+Eq[logq(y)]

= argmin
q

Eq[− log p(z|y)]+Eq[logq(y)]−Eq[log p(y)]

= argmin
q

Eq[− log p(z|y)]+KL(q(y)||p(y)).

(3.9)

This minimization problem is similar to the SMD algorithm in Eq. 3.8 and is defined over

the space of probability density functions. Therefore the standard inner product is the Expectation

⟨ f1, f2⟩=
∫

f1 f2 and Bregman divergence reduces to KL divergence. This optimization problem

has a closed form solution given by [36],

q∗ ∝ p(z|y) p(y). (3.10)

Proof [36]. This is an equality constrained problem with the constraint being
∫

q = 1. Relaxing

the constraint with Lagrangian multiplier, leads to,

L(q,λ) = Eq[− log p(z|y)]+KL(q(y)||p(y))+λ (E1[q]−1). (3.11)

The derivative of the right hand side with respect to q is given by,

∂L
∂q

=− log p(z|y)+(1+ logq(y)− log p(y))+λ . (3.12)

20

Setting this equal to 0,

logq(y) = log p(z|y)+ log p(y)−1−λ ,

q(y) = exp(−1−λ + log p(z|y)) p(y).
(3.13)

The constraint
∫

q = 1 can be used to solve for λ .

exp(−1−λ)
∫

exp(log p(z|y)) p(y)︸ ︷︷ ︸
Γ

= 1,

exp(−1−λ) =
1
Γ
.

(3.14)

Substituting Eq. 3.14 in Eq. 3.13 leads to,

q(y) =
1
Γ

p(z|y) p(y). (3.15)

In this case, the posterior distribution is approximated by a Gaussian and the correspond-

ing optimal parameters is given by the following equations,

logq(y) ∝ log p(z|y)+ log p(y). (3.16)

logq(y) ∝ −1
2
(y−µ

∗)T
ΣΣΣ
∗−1

(y−µ
∗)

∝ −1
2
(yT

ΣΣΣ
∗−1

y)+(yT
ΣΣΣ
∗−1

µµµ
∗)− 1

2
(µµµ∗T

ΣΣΣ
∗−1

µµµ
∗).

(3.17)

21

log p(z|y)+ log p(y) ∝ −1
2
(z−Cy)T V−1(z−Cy)

− 1
2
(y− µ̌µµ)T

Σ̌ΣΣ
−1
(y− µ̌µµ)

∝ −1
2
(zT V−1z)+(yT CT V−1z)− 1

2
(yT CT V−1Cy)

− 1
2
(yT

Σ̌ΣΣ
−1y)+(yT

Σ̌ΣΣ
−1

µ̌µµ)− 1
2
(µ̌µµT

Σ̌ΣΣ
−1

µ̌µµ)

∝ −1
2

yT (Σ̌ΣΣ
−1

+CT V−1C)y+yT (Σ̌ΣΣ
−1

µ̌µµ +CT V−1z)

− 1
2
(zT V−1z+ µ̌µµ

T
Σ̌ΣΣ
−1

µ̌µµ).

(3.18)

Comparing Eq. 3.17 and 3.18, we get,

ΣΣΣ
∗−1

= Σ̌ΣΣ
−1

+C⊤V−1C,

ΣΣΣ
∗−1

µµµ
∗ = Σ̌ΣΣ

−1
µ̌µµ +C⊤V−1z,

(3.19)

which then leads to the Kalman filter update equation [5].

Alternative Formulation

The posterior distribution parameters can also be approximated using the method de-

scribed in [6]. Let φ(y) =− log p(y,z), the derivatives of the objective function with respect to

the Gaussian parameters µµµ and ΣΣΣ is determined using Stein’s lemma [40] and from [34]. Stein’s

lemma says that, if y is a normally distributed random variable, and f is a differentiable function,

then we have,

Eq[(y−µµµ) f (y)] = ΣΣΣEq[
∂ f (y)
∂y⊤

]. (3.20)

22

This leads to the following set of derivatives,

∂V (q)
∂ µµµ⊤ = Eq[

∂φ(y)
∂yT] = ΣΣΣ

−1Eq[(y−µµµ)φ(y)], (3.21a)

∂ 2V (q)
∂ µµµ⊤∂ µµµ

= ΣΣΣ
−1Eq[(y−µµµ)(y−µµµ)⊤φ(y)]ΣΣΣ−1 (3.21b)

−ΣΣΣ
−1Eq[φ(y)], (3.21b)

∂V (q)
∂ΣΣΣ

−1 =−1
2
Eq[(y−µµµ)(y−µµµ)⊤φ(y)] (3.21c)

+
1
2

ΣΣΣEq[φ(y)]+
1
2

Σ. (3.21c)

Comparing Eq. 3.21b and 3.21c,

∂ 2V (q)
∂ µµµ⊤∂ µµµ

= ΣΣΣ
−1 −2ΣΣΣ

−1 ∂V (q)
∂ΣΣΣ

−1 ΣΣΣ
−1. (3.22)

Using Eq. 3.20 along with the fact,

p(y,z) = p(y|z)p(z) ∝ p(y|z), (3.23)

we get,
∂V (q)
∂ µµµ⊤ = Eq[

∂φ(y)
∂y⊤

]

= Eq[Σ̌ΣΣ
−1
(y− µ̌µµ)−C⊤V−1(z−Cy)]

= Σ̌ΣΣ
−1
(µµµ − µ̌µµ)−C⊤V−1(z−Cµµµ).

(3.24)

The second derivative with respect to µ is then given by,

∂ 2V (q)
∂ µµµ⊤∂ µµµ

= Σ̌ΣΣ
−1

+C⊤V−1C. (3.25)

23

By setting ∂V (q)
∂Σ−1 = 0 and using Eq. 3.22,

ΣΣΣ
−1 =

∂ 2V (q)
∂ µµµ⊤∂ µµµ

= Σ̌ΣΣ
−1

+C⊤V−1C. (3.26)

Substitute the above equation to Eq. 3.24 and setting ∂V (q)
∂ µµµ⊤ = 0,

ΣΣΣ
−1

µµµ = Σ̌ΣΣ
−1

µ̌µµ +C⊤V−1z. (3.27)

This is the same as the optimal Gaussian parameters obtained through the SMD formula-

tion as shown in Eq. 3.19.

3.3.2 Multi-robot case

In the case of multiple robots, each robot maintains an individual pdf of the common

landmark y, denoted by qi(y). The consensus constraint is then imposed on these distributions,

saying that the distribution maintained by each robot for the common state needs to be the same,

that is, the KL divergence between the distributions should be 0.

Distributed SMD Formulation

The observations made by the robots are assumed to be independent and thus the central-

ized objective V (q) in Eq. 3.9 can be decomposed as a separable problem [36],

V (q) = ∑
i∈V

Vi(qi). (3.28)

The robot’s individually minimize their own local objective while also maintaining con-

sensus of the common landmarks across all the robots pi(y) = p j(y). The consensus constraint

is added into the objective as minimizing the KL-divergence between robot i’s distribution and

24

the prior distribution of its neighbor’s Ni.

q∗i ∈ argmin
qi

Vi(qi)

= argmin
qi

Eqi[− log pi(zi|y)]+ ∑
j∈Ni

Ai jKL(qi(y)||p j(y)).
(3.29)

The closed form solution to this is given by [36],

q∗i ∝ pi(zi|y) ∏
j∈Ni

pAi j
j (y). (3.30)

Proof [36]. Similar to the single robot case, this is again an equality constrained problem with

the constraint being
∫

qi = 1. Relaxing the constraint with Lagrangian multiplier, leads to,

L(qi,λ) = Eqi[− log pi(zi|y)]+ ∑
j∈Ni

Ai jKL(qi(y)||p j(y))+λ (E1[qi]−1). (3.31)

The derivative of the right hand side with respect to qi is given by,

∂L
∂qi

=− log pi(zi|y)+(1+ logqi(y)− ∑
j∈Ni

Ai j log p j(y))+λ . (3.32)

Setting this equal to 0,

logqi(y) = log pi(zi|y)+ ∑
j∈Ni

Ai j log p j(y)−1−λ ,

qi(y) = exp(−1−λ + log pi(zi|yi)) ∏
j∈Ni

pAi j
j (y).

(3.33)

25

The constraint
∫

qi = 1 can be used to solve for λ .

exp(−1−λ)
∫

exp(log pi(zi|y)) ∏
j∈Ni

pAi j
j (y)︸ ︷︷ ︸

Γi

= 1,

exp(−1−λ) =
1
Γi
.

(3.34)

Substituting Eq. 3.34 in Eq. 3.33 leads to,

qi(y) =
1
Γi

pi(zi|y) ∏
j∈Ni

pAi j
j (y). (3.35)

Define q̄ = ∏ j∈Ni pAi j
j (y) with the corresponding Gaussian parameters mean µ̄µµ and

covariance Σ̄ΣΣ. Given a set of random variables with Gaussian distribution denoted by p j =

G(ννν j,ΩΩΩ j), where ννν j is the information vector and ΩΩΩ j is the information matrix, the weighted

geometric mean of the individual pdfs ∏ j pκ j
j (κ j is the corresponding weight) is proportional to

the pdf with distribution G(∑ j κ jννν j,∑ j κ jΩΩΩ j) [3].

∏
j

pκ j
j ∼ G(∑

j
κ jννν j,∑

j
κ jΩΩΩ j) (3.36)

This leads to the following equations for µ̄µµ and Σ̄ΣΣ,

Σ̄ΣΣ
−1

= ∑
j∈Ni

Ai jΣ̌ΣΣ
−1
j ,

Σ̄ΣΣ
−1

µ̄µµ = ∑
j∈Ni

Ai jΣ̌ΣΣ
−1
j µ̌µµ j.

(3.37)

Similar to the single robot case, the posterior distribution is approximated by a Gaussian

26

and the corresponding optimal parameters is given by,

ΣΣΣ
∗−1

i = Σ̄ΣΣ
−1

+C⊤
i V−1

i Ci,

ΣΣΣ
∗−1

i µµµ
∗
i = Σ̄ΣΣ

−1
µ̄µµ +C⊤

i V−1
i zi.

(3.38)

By iteratively averaging the information mean and information matrix, consensus is

achieved across all robots with respect to the pdf of the common landmark states y [36].

Alternate Formulation

Again, the posterior distribution parameters can be similarly derived as in the single robot

case. Consider the following constrained optimization problem,

min
qi

n

∑
i=1

Vi(qi),

subject to ∑
j∈Ni

Ai jKL(qi(y)||q j(y)) = 0,

Ai j > 0, ∀ j ∈ Ni.

(3.39)

The objective function similar to the SMD algorithm in Eq. 3.9 is considered with α = 1,

min
q

Eq[− log p(z|y)]+αKL(q(y)||p(y)). (3.40)

Using Eq. 3.40 in Eq. 3.39 and relaxing the constraint with Lagrangian multiplier, the

cost function for each individual robot is the dual problem given by,

Vi(qi)

= Eqi[− log p(zi|y)]+αKL(qi(y)||p(y))+λ ∑
j∈Ni

Ai jKL(qi(y)||q j(y)),
(3.41)

27

which can be rewritten in the following form,

Vi(qi)

= Eqi[− log p(zi|y)]+(α +λ −λAii −1)Eqi[logqi(y)]

+KL(qi(y)||pα(y) ∏
j∈Ni\{i}

qλAi j
j (y)).

(3.42)

Define q̄(y) = pα(y)∏ j∈Ni\{i} qλAi j
j (y) with mean and covariance µ̄µµ and Σ̄ΣΣ. Using Eq.

3.36, it leads to the following equations for µ̄µµ and Σ̄ΣΣ,

Σ̄ΣΣ
−1

= αΣ̌ΣΣ
−1

+λ ∑
j∈Ni\{i}

Ai jΣΣΣ
−1
j ,

Σ̄ΣΣ
−1

µ̄µµ = αΣ̌ΣΣ
−1

µ̌µµ +λ ∑
j∈Ni\{i}

Ai jΣΣΣ
−1
j µµµ j.

(3.43)

Let φi(yi) = − log p(zi|y), the derivatives of Vi(qi) are computed again similar to Eq.

3.21 using Stein’s lemma from Eq. 3.20 and [34],

∂Vi(qi)

∂ µµµ⊤
i

= ΣΣΣ
−1
i Eqi[(y−µµµ i)φi(y)] (3.44a)

−ΣΣΣ
−1
i Eqi[(y−µµµ i) log q̄(y)], (3.44a)

∂ 2Vi(qi)

∂ µµµ⊤
i ∂ µµµ i

= ΣΣΣ
−1
i Eqi[(y−µµµ i)(y−µµµ i)

⊤
φi(y)]ΣΣΣ−1

i (3.44b)

−ΣΣΣ
−1
i Eqi[(y−µµµ i)(y−µµµ i)

⊤ log q̄(y)]ΣΣΣ−1
i (3.44b)

−ΣΣΣ
−1
i Eqi[φi(y)]+ΣΣΣ

−1
i Eqi[log q̄(y)], (3.44b)

∂Vi(qi)

∂ΣΣΣ
−1
i

=−1
2
Eqi[(y−µµµ i)(y−µµµ i)

⊤
φi(y)] (3.44c)

+
1
2

ΣΣΣiEqi[ψ(y)]+
1
2
(α +λ −λAii)ΣΣΣi (3.44c)

+
1
2
Eqi[(y−µµµ i)(y−µµµ i)

⊤ log q̄(y)] (3.44c)

− 1
2

ΣΣΣiEqi[log q̄(y)]. (3.44c)

28

Comparing Eq. 3.44b and Eq. 3.44c,

∂ 2Vi(qi)

∂ µµµ⊤
i ∂ µµµ i

= (α +λ −λAii)ΣΣΣ
−1
i −2ΣΣΣ

−1
i

∂Vi(qi)

∂ΣΣΣ
−1
i

ΣΣΣ
−1
i . (3.45)

Applying Stein’s lemma from Eq. 3.20 to Eq. 3.44a, we get,

∂Vi(qi)

∂ µµµ⊤
i

= Eqi[
∂φi(y)
∂y⊤

]−Eqi[
∂ log q̄(y)

∂y⊤
]

= Eqi[−C⊤
i V−1

i (zi −Ciy)]+Eqi[Σ̄ΣΣ
−1
(y− µ̄µµ)]

=−C⊤
i V−1

i (zi −Ciµµµ i)+ Σ̄ΣΣ
−1
(µµµ i − µ̄µµ).

(3.46)

The second derivative is then given by,

∂ 2Vi(qi)

∂ µµµ⊤
i ∂ µµµ i

= Σ̄ΣΣ
−1

+C⊤
i V−1

i Ci. (3.47)

By setting ∂Vi(qi)

∂ΣΣΣ
−1
i

= 0 and using Eq. 3.45, we get,

ΣΣΣ
−1
i =

1
α +λ −λAii

(Σ̄ΣΣ
−1

+CT
i V−1

i Ci). (3.48)

Setting ∂Vi(qi)
∂ µµµ i

= 0 and substituting ΣΣΣ
−1
i into Eq. 3.46, the information vector is given by,

ΣΣΣ
−1
i µµµ i =

1
α +λ −λAii

(Σ̄ΣΣ
−1

µ̄µµ +CT
i V−1

i zi). (3.49)

If we set α = Aii and λ = 1, it is similar to the optimal parameters derived through SMD

formulation as shown in Eq. 3.38.

3.4 Distributed Kalman Filter

This section presents the distributed Kalman filter algorithm which is the main focus

of this thesis. By extending the objective function in the previous section to take into account

29

the robot’s motion, the joint probability of both robot and landmark states q(x,y) is considered

instead of only the common landmarks q(y), and the minimization function can be rewritten as,

min
qt+1

V (qt+1) = min
qt+1

KL(qt+1(xt+1,y)||p(xt+1,y|z0:t+1,u0:t)), (3.50)

where qt+1(xt+1,y) is the approximate posterior distribution, and pt+1(xt+1,y|z0:t+1,u0:t) is the

true posterior distribution.

This equation can then be rewritten again similar to the SMD formulation in the previous

section using Markov assumptions and Bayes rule.

V (qt+1) = KL(qt+1(xt+1,y)||pt+1(xt+1,y|z0:t+1,u0:t))

= Eqt+1 [logqt+1(xt+1,y)]−Eqt+1 [log pt+1(xt+1,y|z0:t+1,u0:t)]

= Eqt+1 [logqt+1(xt+1|y)+ logqt+1(y)]

−Eqt+1 [log pt+1(zt+1|xt+1,y,z0:t ,u0:t)+ log pt+1(xt+1,y|z0:t ,u0:t)]

= Eqt+1 [logqt+1(xt+1|y)]+Eqt+1 [logqt+1(y)]

−Eqt+1 [log pt+1(zt+1|xt+1,y)]−Eqt+1 [− log pt+1(xt+1|y,z0:t ,u0:t)]

−Eqt+1 [log pt+1(y)]

= Eqt+1 [− log pt+1(zt+1|xt+1,y)]

+Eqt+1 [logqt+1(xt+1|y)− log pt+1(xt+1|y,z0:t ,u0:t)]

+Eqt+1 [logqt+1(y)− log pt+1(y)] .

(3.51)

This problem can be decomposed like in Eq. 3.29 and adding the consensus constraint

only to the marginal distribution of the landmarks, it leads to the following minimization problem

30

that is solved by each individual robot,

qi,t+1 ∈ argmin
qi,t+1

Eqi,t+1[− log pi,t+1(zi,t+1|xi,t+1,y)]

+Eqi,t+1 [logqi,t+1(xi,t+1|y)− log pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t)]

+ ∑
j∈Nt+1

Ai j,t+1Eqi,t+1

[
logqi,t+1(y)− log p j,t+1(y)

]
.

(3.52)

This minimization problem has a closed form solution given by,

qi,t+1(xi,t+1,y) ∝ pi,t+1(zi,t+1|xi,t+1,y) pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t) ∏
j∈Ni,t+1

p
Ai j,t+1
j,t+1 (y). (3.53)

Proof. Relaxing the equality constraint
∫

qi,t+1 = 1 with Lagrangian multiplier, leads to,

L(qi,t+1,λ) = Eqi,t+1[− log pi,t+1(zi,t+1|xi,t+1,y)]

+Eqi,t+1 [logqi,t+1(xi,t+1|y)− log pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t)]

+ ∑
j∈Nt+1

Ai j,t+1Eqi,t+1

[
logqi,t+1(y)− log p j,t+1(y)

]
+λ (E1[qi,t+1]−1).

(3.54)

The derivative of the right hand side with respect to qi,t+1 is given by,

∂L
∂qi,t+1

=− log pi,t+1(zi,t+1|xi,t+1,y)

+(
∂

∂qi,t+1
Eqi,t+1[logqi,t+1(xi,t+1|y)]− log pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t))

+(
∂

∂qi,t+1
Eqi,t+1[logqi,t+1(y)]− ∑

j∈Ni,t+1

Ai j,t+1 log p j,t+1(y))+λ .

(3.55)

31

Setting this equal to 0,

∂

∂qi,t+1
Eqi,t+1[logqi,t+1(xi,t+1|y)+ logqi,t+1(y)] = log pi,t+1(zi,t+1|xi,t+1,y)

+ log pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t)

+ ∑
j∈Ni,t+1

Ai j,t+1 log p j,t+1(y)−λ ,

∂

∂qi,t+1
Eqi,t+1[logqi,t+1(xi,t+1,y)] = log pi,t+1(zi,t+1|xi,t+1,y)

+ log pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t)

+ ∑
j∈Ni,t+1

Ai j,t+1 log p j,t+1(y)−λ ,

1+ logqi,t+1(xi,t+1,y) = log pi,t+1(zi,t+1|xi,t+1,y)

+ log pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t)

+ ∑
j∈Ni,t+1

Ai j,t+1 log p j,t+1(y)−λ ,

qi,t+1(xi,t+1,y) = exp(−1−λ + log pi,t+1(zi,t+1|xi,t+1,y)

+ log pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t))

∏
j∈Ni,t+1

p
Ai j,t+1
j,t+1 (y).

(3.56)

The constraint
∫

qi,t+1 = 1 can be used to solve for λ .

exp(−1−λ)×∫
exp(log pi,t+1(zi,t+1|xi,t+1,y)+ log pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t)) ∏

j∈Ni,t+1

p
Ai j,t+1
j,t+1 (y)︸ ︷︷ ︸

Γi,t+1

= 1,

exp(−1−λ) =
1

Γi,t+1
.

(3.57)

32

Substituting Eq. 3.57 in Eq. 3.56 leads to,

qi,t+1(xi,t+1,y) =
1

Γi,t+1
pi,t+1(zi,t+1|xi,t+1,y) pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t) ∏

j∈Ni,t+1

p
Ai j,t+1
j,t+1 (y).

(3.58)

The prior distribution pt+1(y) at time t +1 is same as the posterior distribution qt(y) at

time t, giving the following closed-form solution,

qi,t+1(xi,t+1,y) ∝

Update︷ ︸︸ ︷
pi,t+1(zi,t+1|xi,t+1,y) pi,t+1(xi,t+1|y,zi,0:t ,ui,0:t) ∏

j∈Ni,t

qAi j,t
j,t (y)︸ ︷︷ ︸

Average︸ ︷︷ ︸
Predict

, (3.59)

which is similar to the Bayes filter shown in Eq. 1.2 but with an additional averaging component.

The distributed Kalman filter algorithm is presented as a recursive estimation algorithm

with three steps: Average, Predict and Update. Consider the joint distribution of the robot and

landmark states at time t to be Gaussian distributed and is given by,

[
y

xi,t

]
= G(

[
ωωω i,t

ννν i,t

]
,

[
ΩΩΩi,t Hi,t

HT
i,t Ni,t

]
), (3.60)

where G(ωωω,ΩΩΩ) denote a Gaussian distribution N (µµµ,ΣΣΣ) parameterized with information mean

ωωω = ΣΣΣ
−1

µµµ and information matrix ΩΩΩ = ΣΣΣ
−1.

The marginal and conditional distributions from Eq. 3.60 are given by,

y ∼ G(ωωω i,t −Hi,tN−1
i,t ννν i,t , ΩΩΩi,t −Hi,tN−1

i,t HT
i,t),

xi,t |y ∼ G(ννν i,t −HT
i,tyt , Ni,t).

(3.61)

33

Average: Define q̄i,t(y) = ∏
j∈Ni,t

qAi j,t
j,t (y) with information mean ν̄νν i,t and information matrix Ω̄ΩΩi,t .

Using Eq. 3.36 and Eq. 3.61, we get,

ω̄ωω i,t = ∑
j∈Ni,t

Ai j,t(ωωω j,t −H j,tN−1
j,t ννν j,t),

Ω̄ΩΩi,t = ∑
j∈Ni,t

Ai j,t(ΩΩΩ j,t −H j,tN−1
j,t HT

j,t).

(3.62)

Predict: Define q+i,t+1(xi,t+1,y) = pi,t+1(xi,t+1|y,z0:t ,u0:t) q̄i,t(y). Using Eq. 3.61 and the

motion model in Eq. 3.1, the joint information mean and information matrix is given by,

[
ΩΩΩ

+
i,t+1 H+

i,t+1

H+T

i,t+1 N+
i,t+1

]
=

[I 0
0 Ai

][
Ω̄ΩΩi,t +Hi,tN−1

i,t HT
i,t Hi,t

HT
i,t Ni,t

]−1[
I 0
0 Ai

]T

+

[
0 0
0 Wi

]−1

,

[
ωωω

+
i,t+1

ννν
+
i,t+1

]
=

[
ΩΩΩ

+
i,t+1 H+

i,t+1

H+T

i,t+1 N+
i,t+1

][I 0
0 Ai

][
Ω̄ΩΩi,t +Hi,tN−1

i,t HT
i,t Hi,t

HT
i,t Ni,t

]−1[
ω̄ωω i,t +Hi,tN−1

i,t ννν i,t

ννν i,t

]
+

[
0

Biui,t

] .

(3.63)

Update: Define qi,t+1(xi,t+1,y) = pi,t+1(zi,t+1|xi,t+1y) q+i,t+1(xi,t+1,y). The joint information

mean and information matrix based on the observation model in Eq. 3.2 is given by,

[
ΩΩΩi,t+1 Hi,t+1

HT
i,t+1 Ni,t+1

]
,=

[
ΩΩΩ

+
i,t+1 H+

i,t+1

H+T

i,t+1 N+
i,t+1

]
+

[
CT

i,y

CT
i,x

]
V−1

i

[
Ci,y Ci,x

]
,[

ωωω i,t+1

ννν i,t+1

]
=

[
ωωω

+
i,t+1

ννν
+
i,t+1

]
+

[
CT

i,y

CT
i,x

]
V−1

i zi,t+1.

(3.64)

The distributed Kalman filter is described in Alg. 1.

34

Algorithm 1. Distributed Kalman Filter
Require: Prior pdf parameters (ωωω i,t ,ννν i,t ,ΩΩΩi,t ,Hi,t ,Ni,t), messages (ωωω j,t ,ννν j,t ,ΩΩΩ j,t ,H j,t ,N j,t),

control input ui,t , and measurement zi,t+1.

For each robot i,
Average:

ω̄ωω i,t = ∑
j∈Ni,t

Ai j,t(ωωω j,t −H j,tN−1
j,t ννν j,t)

Ω̄ΩΩi,t = ∑
j∈Ni,t

Ai j,t(ΩΩΩ j,t −H j,tN−1
j,t HT

j,t)

Predict:[
ΩΩΩ

+
i,t+1 H+

i,t+1

H+T

i,t+1 N+
i,t+1

]
=

([
I 0
0 Ai

][
Ω̄ΩΩi,t +Hi,tN−1

i,t HT
i,t Hi,t

HT
i,t Ni,t

]−1[
I 0
0 Ai

]T

+

[
0 0
0 Wi

])−1

[
ωωω

+
i,t+1

ννν
+
i,t+1

]
=

[
ΩΩΩ

+
i,t+1 H+

i,t+1

H+T

i,t+1 N+
i,t+1

]([
I 0
0 Ai

][
Ω̄ΩΩi,t +Hi,tN−1

i,t HT
i,t Hi,t

HT
i,t Ni,t

]−1[
ω̄ωω i,t +Hi,tN−1

i,t ννν i,t

ννν i,t

]
+

[
0

Biui,t

])

Update: [
ΩΩΩi,t+1 Hi,t+1
HT

i,t+1 Ni,t+1

]
=

[
ΩΩΩ

+
i,t+1 H+

i,t+1

H+T

i,t+1 N+
i,t+1

]
+

[
CT

i,y
CT

i,x

]
V−1

i
[
Ci,y Ci,x

]
[

ωωω i,t+1
ννν i,t+1

]
=

[
ωωω

+
i,t+1

ννν
+
i,t+1

]
+

[
CT

i,y
CT

i,x

]
V−1

i zi,t+1

All the Chapters, in part, are currently being prepared for submission for publication of

the material. Cao, Hanwen; Shreedharan, Sriram; Kansal, Shrey; Kumar, Shubham; Nukala,

Kishore; Atanasov, Nikolay. The thesis author was one of the researchers/authors of this paper.

Section 3.3 in Chapter 3 is co-authored with Hanwen Cao. The thesis author was the

primary author of this chapter.

35

Chapter 4

Experiment and Results

4.1 Application to Multi-Robot SLAM

We apply the distributed Kalman filter algorithm proposed in the previous Chapter to a

Multi-Robot Visual SLAM problem. For practical purposes, the robot’s motion model and the

camera observation model is not linear. Therefore, we linearize the non-linear models and follow

the update step similar to the extended Kalman filter [5].

Assumptions:

1. The observed images are undistorted and rectified, and the camera intrinsic parameters,

that is, the calibration matrix is known which is given by,

K =

 fx s cx

0 fy cy

0 0 1

 . (4.1)

where (fx, fy) is the focal length of the camera in pixels, (cx,cy) is the optical center of the

camera in pixels, and s is the skew.

2. The data association across robots is known with the common landmarks sharing the same

global ids.

3. The initial poses of all the robots with respect to a common world frame is known.

36

4. The communication graph is fully-connected; that is, each robot can communicate with all

the other robots at every time step.

To simultaneously create a sparse map of the environment and accurately localize the

robot, features can be extracted from the images and tracked through time. With only the control

input, and a single observation of a feature, the estimated state of the robot and the landmark will

be noisy, and over time, the noise accumulates and leads to a large error. To correct this error, we

can use the observations from the environment tracked through multiple frames and combine all

the information to accurately estimate the states using filtering methods.

The 3D coordinates of the landmarks are initialized using triangulation when they are

first observed. The depth of a landmark is computed as follows,

disp = ul −ur

d =
fx b

disp

(4.2)

where disp is the disparity, ul and ur are the features in the x-axis from the left and right images,

d is the depth of the landmark, and b is the baseline of the stereo camera.

Once we have the depth, we can compute the 3D coordinates of the landmark in the

camera frame, which can then be transformed to the world frame using the estimated pose of the

robot at that time (assuming Identity transformation between the camera and the robot frame).

Xcam

Ycam

Zcam

= d ∗K−1

ul

vl

1

Xw

Yw

Zw

1

= wT cam

Xcam

Ycam

Zcam

1

(4.3)

where (Xcam,Ycam, Zcam) and (Xw,Yw, Zw) are the coordinates of the landmark in camera frame

and world frame respectively, and wT cam is the transformation from camera to world frame.

37

4.1.1 Feature Tracking

We use the Oriented FAST and rotated BRIEF [39] feature detection algorithm to obtain

unique features from the images. This method is considered as it is faster than other state-of-the-

art feature detection algorithms like SIFT (Scale-Invariant Feature Transform) [26] and SURF

(Speeded-Up Robust Features) [7] while matching the performance of these algorithms.

Once we obtain the features, we utilize the feature matching algorithm from OpenCV

with outlier rejection to accurately track the observed ORB features over time.

ORB Feature Detection Algorithm

ORB is built on top of FAST (Features from Accelerated Segment Test) [38] keypoint

detector and BRIEF (Binary Robust Independent Elementary Features) [11] feature descriptor.

FAST algorithm works by taking a pixel p and comparing the brightness of its 16 surrounding

pixels within a small circle. If 8 pixels are brighter or darker than p, it is considered a keypoint.

However, these keypoints do not have any orientation assigned and are therefore not rotation

invariant. To solve this issue, the ORB feature detection algorithm takes a patch around the pixel

and calculates its orientation using its moments, introducing rotation invariance. Additionally,

the ORB features are detected from multi-scale image pyramids, meaning different scales of

the same image are considered for keypoint detection, thus making the algorithm partially scale

invariant.

The next step is to compute the keypoint descriptors using the BRIEF algorithm. BRIEF

compares a random pair of points from the neighborhood around the keypoint. The first point

is sampled from a Gaussian distribution centered around the mean point with some standard

deviation σ , while the second point is sampled from a Gaussian distribution centered around the

first point with standard deviation σ

2 . If the first pixel is brighter than the second pixel, then a

value of 1 is assigned, else, it is set to 0. This process is repeated 128 times for each keypoint to

get a 128-bit descriptor. The issue with the BRIEF algorithm is that it is not rotation invariant,

so ORB uses rBRIEF (Rotation-aware BRIEF), which steers the binary test points based on the

38

patch orientation θ and computes the descriptor from the new set of points. Let (xi,yi) denote

the test points and say there are n test points, then,

S =

[
x1 x2 · · · xn

y1 y2 · · · yn

]

Sθ = Rθ S

(4.4)

Feature matching

First, the ORB features are computed and matched between the stereo pairs of two

consecutive frames. Then, the matched features in the left images of the two frames are matched

again to ensure consistency. A brute force matcher is used to match the keypoints with similar

descriptors. Essentially, every descriptor in one frame is compared with all the descriptors in

the other frame and the descriptors that are almost the same (nearest neighbor) are matched.

Additionally, the fundamental matrix is computed between the two frames using the detected set

of matches, and RANSAC is utilized to remove outliers, thus retaining only the good matches.

An example feature matching between the first and second frame of sequence 00 from

the KITTI dataset using ORB feature detection and matching from OpenCV [33] is shown in

Fig. 4.1

4.2 Evaluation

The algorithm has been tested on a simulation data and real-time data from KITTI. The

results on both datasets show that the distributed Kalman filter has a smaller estimation error

than each robot individually running the Kalman filter.

4.2.1 Metrics

We use two different metrics to evaluate the trajectory estimates: the absolute translation

error tabs given in meters and the relative translation error trel given in %. The errors are calculated

39

(a) ORB Keypoints - Image 1 (b) Keypoints Size

(c) ORB Keypoints - Image 2 (d) Keypoints Size

(e) Feature Matches between Image 1 and 2

Figure 4.1. ORB Feature Matching

using the tool rpg trajectory evaluation [42]. The absolute translation error is determined directly

by computing the root-mean-squared error (rmse) between the estimated state and the groundtruth

at each time step. To compute the relative translation error, the trajectory is divided into equal

lengths, and the absolute translation error is calculated for each sub-trajectory. This error is then

expressed as a percentage of the sub-trajectory length, and the final relative translation error is

calculated by averaging the individual sub-trajectory errors.

4.2.2 Simulation Data

In the simulation environment, we consider 3 robots and 600 common landmarks. We

generated an 8-shape trajectory for each robot consisting of 400 time steps. The control inputs

and measurements with some random Gaussian noise added are available at each time step. The

control inputs are pose transformations for the robots from time t to t +1, and the measurements

are rectified stereo observations with data association obtained by each robot. The robots ground

truth trajectories and landmarks in 2D are shown in Fig. 4.2.

40

To analyze the performance of our algorithm, we first run the Kalman filter algorithm

individually for each robot to obtain a baseline error, and the results are shown in Fig. 4.3. We

do not consider any communication between the robots in this case, and each robot estimates its

own state and map. Next, we implemented the proposed distributed Kalman filter algorithm on

the dataset, and the results are shown in Fig. 4.4. In this case, each robot can communicate with

all the other robots and shares the pdf parameters (information mean and information vector) of

the common landmarks. The comparison of the overall translation error and error in each axis (x,

y, z) across time is shown in Fig. 4.5 and 4.6, where the orange line indicates the error using the

Kalman filter and the blue line indicates the error using the distributed Kalman filter algorithm.

Table 4.1 compares the algorithms based on the metrics described in the previous section. It is

clear from the figures and the table that our algorithm outperforms the individual Kalman filter.

Figure 4.2. Simulation Environment of 3 Robots and Landmarks in 2D

Table 4.1. Error Comparison in Simulation Data

Distributed Kalman Filter Kalman Filter

Robot tabs (m) trel (%) tabs (m) trel (%)

1 0.2289 4.6610 0.3531 5.3456
2 0.1919 5.4560 0.2922 6.8593
3 0.3732 5.8495 0.4595 6.2197

Mean 0.2646 5.3222 0.3683 6.1415

41

(a) Robot-1 (b) Robot-2 (c) Robot-3

Figure 4.3. Kalman Filter in Simulation Data

(a) Robot-1 (b) Robot-2 (c) Robot-3

Figure 4.4. Distributed Kalman Filter in Simulation Data

4.2.3 KITTI Data

The algorithm has also been tested with Semantic KITTI dataset [1], [18] sequence

00, where the instance segmentation and labels of around 176 objects in the images have been

provided. The centroid of the bounding box of these objects are considered as landmarks in the

environment, and since the instance labels are given, the data association is known across all

frames. However, the number of objects in the Semantic KITTI dataset is very few, so to improve

the localization accuracy, ORB features are extracted from the images, and features that appear

in continuous frames are tracked. These ORB features have only short-term data association

and are local to each robot. Once the feature track is lost, the feature will be initialized as a

new one when observed again. On the other hand, the semantic landmarks have long-term data

42

Figure 4.5. Translation Error Comparison across Time in Simulation Data

association and share the same feature id across robots. Therefore, only the semantic feature

observations are shared across all robots.

The sequence 00 has a total of 4540 frames (stereo images) which is split into 3: robot1

is from frame 0 to 2500, robot2 is from frame 1300 to 3800, and robot3 is from frame 2000 to

4540. The ground truth trajectories of the robots and the landmarks are shown in 2D in Fig. 4.7.

The initial pose predictions (control inputs) for the robot states are obtained from libviso [19],

[24], which uses the stereo images to perform feature detection and matching, and computes

the relative pose between the camera frames. This pose estimation is, however, noisy, and we

require a filter for an accurate state estimate.

Only Semantic Landmarks

In this section, we will consider only the semantic landmarks for localization and mapping.

Similar to the simulation dataset, we run the Kalman filter algorithm individually for each robot

to obtain a baseline error, and the results are shown in Fig. 4.8. Again, we do not consider any

communication between the robots, and each robot estimates its own state and map. Next, the

43

Figure 4.6. xyz Drift Comparison across Time in Simulation Data

Figure 4.7. KITTI Sequence 00 split for 3 Robots with Semantic Landmarks and Geometric
Landmarks in 2D

proposed distributed Kalman filter algorithm is implemented on the dataset, and the results are

shown in Fig. 4.9.

The comparison of the overall translation error and error in each axis (x, y, z) across time

is shown in Fig. 4.10 and 4.11 for the Kalman filter and the distributed Kalman filter algorithm.

Table 4.2 compares the absolute and relative translation errors between the algorithms. The

44

(a) Robot-1 (b) Robot-2 (c) Robot-3

Figure 4.8. Kalman Filter in KITTI Data with Semantic Landmarks

(a) Robot-1 (b) Robot-2 (c) Robot-3

Figure 4.9. Distributed Kalman Filter in KITTI Data with Semantic Landmarks

distributed Kalman filter again outperforms the individual Kalman filter, as is evident from the

figures and table.

Table 4.2. Error Comparison in KITTI Data with Semantic Landmarks

Distributed Kalman Filter Kalman Filter

Robot tabs (m) trel (%) tabs (m) trel (%)

1 1.7012 1.9462 3.0663 4.7336
2 1.7499 2.0425 2.1968 3.9980
3 2.3455 1.8409 2.4369 3.9247

Mean 1.9322 1.9432 2.5667 4.2188

45

Figure 4.10. Translation Error Comparison across Time in KITTI Data with Semantic
Landmarks

Figure 4.11. xyz Drift Comparison across Time in KITTI Data with Semantic Landmarks

46

Semantic Landmarks and Geometric Landmarks

In this section, we will consider both the semantic landmarks and geometric landmarks

and run the Kalman filter and the distributed Kalman filter algorithm on the dataset.

The comparison of the overall translation error and error in each axis (x, y, z) across time

is shown in Fig. 4.12 and 4.13, and the Table 4.3 compares the absolute and relative translation

errors between the algorithms.

Figure 4.12. Translation Error Comparison across Time in KITTI Data with Semantic
Landmarks and Geometric Landmarks

Table 4.3. Error Comparison in KITTI Data with Semantic Landmarks and Geometric
Landmarks

Distributed Kalman Filter Kalman Filter

Robot tabs (m) trel (%) tabs (m) trel (%)

1 1.5112 3.1109 1.6015 3.1229
2 1.8687 3.2929 1.8355 3.1389
3 1.6647 3.6140 1.6760 3.5277

Mean 1.6815 3.3393 1.7043 3.2632

In this case, we see little difference between the algorithms as the number of geometric

47

Figure 4.13. xyz Drift Comparison across Time in KITTI Data with Semantic Landmarks and
Geometric Landmarks

landmarks (around 7000) is very high compared to the number of semantic landmarks. Thus,

very few common features are being shared across the robots, and averaging these does not

contribute much towards improving the estimation accuracy.

All the Chapters, in part, are currently being prepared for submission for publication of

the material. Cao, Hanwen; Shreedharan, Sriram; Kansal, Shrey; Kumar, Shubham; Nukala,

Kishore; Atanasov, Nikolay. The thesis author was one of the researchers/authors of this paper.

48

Chapter 5

Conclusion

5.1 Contributions

In this thesis, a simple and efficient distributed Kalman filter algorithm for multi-robot

systems has been proposed. An accurate sparse global map is created by combining information

from all the robots. This is achieved by employing consensus optimization, which enables the

robots to come to an agreement about the common landmarks from the environment. The robots

share only the sparse common landmarks with their neighbors, leading to efficient communication.

Additionally, the distributed algorithm helps to leverage the computation power of all robots,

thereby allowing a faster exploration of the environment. Finally, the system is fault-tolerant as

the other robots can continue to explore and map the environment even if one robot experiences

a breakdown or malfunction.

The proposed algorithm has been tested on a simulation and real-time dataset. In both

datasets, when the robots maintain only common landmarks, the additional averaging step in the

distributed Kalman filter algorithm improves the accuracy of the estimate significantly. However,

it is noted that when the common landmarks that are being shared are significantly fewer when

compared to local robot features, then the averaging step has little effect on the overall estimation

accuracy.

Overall, this distributed SLAM approach for multi-robot systems takes us a step closer

towards mapping large and complex environments quickly and accurately.

49

5.2 Future Work

The following extensions can be considered for future work. First, a rigorous proof

can be derived for the proposed distributed Kalman filter algorithm to prove convergence and

stability. The algorithm is currently inspired from the distributed SMD formulation shown in the

papers [35], [36], whose proof of convergence is for static networks and therefore do not directly

hold as the robots are not stationary and the pdf of the landmarks maintained by the robots differ

at each time step.

Another possible improvement is to build a system that does the data association across

multiple robots online instead of assuming to be known prior. This can be done by sharing the

descriptors for the newly observed landmarks once with the neighboring robots.

Finally, the algorithm can be tested on a larger number of robots, and instead of assuming

a fully-connected communication graph, a strongly connected graph can be considered, and to

reach a consensus on the common landmarks, different numbers of iterations can be performed

in the averaging step.

All the Chapters, in part, are currently being prepared for submission for publication of

the material. Cao, Hanwen; Shreedharan, Sriram; Kansal, Shrey; Kumar, Shubham; Nukala,

Kishore; Atanasov, Nikolay. The thesis author was one of the researchers/authors of this paper.

50

Bibliography

[1] Hassan Alhaija, Siva Mustikovela, Lars Mescheder, Andreas Geiger, and Carsten Rother.
Augmented reality meets computer vision: Efficient data generation for urban driving
scenes. International Journal of Computer Vision (IJCV), 2018.

[2] Nikolay Atanasov. Bayes filter. https://natanaso.github.io/ece276a2022/ref/ECE276A 9
BayesianFiltering.pdf.

[3] Nikolay Atanasov, Roberto Tron, Victor M. Preciado, and George J. Pappas. Joint estimation
and localization in sensor networks. In 53rd IEEE Conference on Decision and Control,
pages 6875–6882, 2014.

[4] Saptarshi Bandyopadhyay and Soon-Jo Chung. Distributed estimation using bayesian
consensus filtering. In 2014 American Control Conference, pages 634–641, 2014.

[5] Timothy D. Barfoot. State Estimation for Robotics. Cambridge University Press, 2017.

[6] Timothy D Barfoot, James R Forbes, and David J Yoon. Exactly sparse gaussian varia-
tional inference with application to derivative-free batch nonlinear state estimation. The
International Journal of Robotics Research, 39(13):1473–1502, 2020.

[7] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In
Aleš Leonardis, Horst Bischof, and Axel Pinz, editors, Computer Vision – ECCV 2006,
pages 404–417, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[8] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[9] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi-robot
exploration. In Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065),
volume 1, pages 476–481 vol.1, 2000.

[10] W. Burgard, M. Moors, C. Stachniss, and F.E. Schneider. Coordinated multi-robot explo-
ration. IEEE Transactions on Robotics, 21(3):376–386, 2005.

[11] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary robust
independent elementary features. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios,

51

https://natanaso.github.io/ece276a2022/ref/ECE276A_9_BayesianFiltering.pdf
https://natanaso.github.io/ece276a2022/ref/ECE276A_9_BayesianFiltering.pdf

editors, Computer Vision – ECCV 2010, pages 778–792, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[12] Göksel Dedeoglu and Gaurav S Sukhatme. Landmark-based matching algorithm for
cooperative mapping by autonomous robots. Distributed autonomous robotic systems 4,
pages 251–260, 2000.

[13] Frank Dellaert and Michael Kaess. Factor graphs for robot perception. Foundations and
Trends® in Robotics, 6(1-2):1–139, 2017.

[14] Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart Russell. Rao-blackwellised
particle filtering for dynamic bayesian networks. CoRR, abs/1301.3853, 2013.

[15] J.W. Fenwick, P.M. Newman, and J.J. Leonard. Cooperative concurrent mapping and local-
ization. In Proceedings 2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292), volume 2, pages 1810–1817 vol.2, 2002.

[16] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart. Distributed multirobot
exploration and mapping. Proceedings of the IEEE, 94(7):1325–1339, 2006.

[17] Dieter Fox, Wolfram Burgard, Hannes Kruppa, and Sebastian Thrun. Collaborative multi-
robot localization. In Wolfgang Förstner, Joachim M. Buhmann, Annett Faber, and Petko
Faber, editors, Mustererkennung 1999, pages 15–26, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[18] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[19] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stereoscan: Dense 3d reconstruction
in real-time. In Intelligent Vehicles Symposium (IV), 2011.

[20] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang. Openvins:
A research platform for visual-inertial estimation. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 4666–4672, 2020.

[21] Trevor Halsted, Ola Shorinwa, Javier Yu, and Mac Schwager. A survey of distributed
optimization methods for multi-robot systems. arXiv preprint arXiv:2103.12840, 2021.

[22] Syed Riaz un Nabi Jafri and Ryad Chellali. A distributed multi robot slam system for
environment learning. In 2013 IEEE Workshop on Robotic Intelligence in Informationally
Structured Space (RiiSS), pages 82–88, 2013.

[23] Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Foun-
dations and Trends® in Machine Learning, 12(4):307–392, 2019.

[24] Bernd Kitt, Andreas Geiger, and Henning Lategahn. Visual odometry based on stereo image
sequences with ransac-based outlier rejection scheme. In Intelligent Vehicles Symposium
(IV), 2010.

52

[25] Pierre-Yves Lajoie, Benjamin Ramtoula, Yun Chang, Luca Carlone, and Giovanni Beltrame.
Door-slam: Distributed, online, and outlier resilient slam for robotic teams. IEEE Robotics
and Automation Letters, 5(2):1656–1663, 2020.

[26] David G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, Nov 2004.

[27] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fastslam: A
factored solution to the simultaneous localization and mapping problem. In Eighteenth
National Conference on Artificial Intelligence, page 593–598, USA, 2002. American
Association for Artificial Intelligence.

[28] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. Orb-slam: A versatile and accurate
monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163, 2015.

[29] Raúl Mur-Artal and Juan D. Tardós. Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–1262, 2017.

[30] Angelia Nedich. Convergence rate of distributed averaging dynamics and optimization in
networks. Foundations and Trends® in Systems and Control, 2(1):1–100, 2015.

[31] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgib-
bon. Kinectfusion: Real-time dense surface mapping and tracking. In 2011 10th IEEE
International Symposium on Mixed and Augmented Reality, pages 127–136, 2011.

[32] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto. Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav planning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2017.

[33] OpenCV. Feature matching. https://docs.opencv.org/4.x/dc/dc3/tutorial py matcher.html/.

[34] Manfred Opper and Cédric Archambeau. The variational gaussian approximation revisited.
Neural Computation, 21(3):786–792, 2009.

[35] Parth Paritosh, Nikolay Atanasov, and Sonia Martinez. Marginal density averaging for
distributed node localization from local edge measurements. In 2020 59th IEEE Conference
on Decision and Control (CDC), pages 2404–2410, 2020.

[36] Parth Paritosh, Nikolay Atanasov, and Sonia Martinez. Distributed bayesian estimation of
continuous variables over time-varying directed networks. IEEE Control Systems Letters,
6:2545–2550, 2022.

[37] V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena, and J. Nieto. Voxgraph:
Globally consistent, volumetric mapping using signed distance function submaps. IEEE
Robotics and Automation Letters, 2020.

53

https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html/

[38] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.
In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors, Computer Vision – ECCV 2006,
pages 430–443, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[39] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International Conference on Computer Vision, pages
2564–2571, 2011.

[40] Charles M. Stein. Estimation of the Mean of a Multivariate Normal Distribution. The
Annals of Statistics, 9(6):1135 – 1151, 1981.

[41] Yulun Tian, Yun Chang, Fernando Herrera Arias, Carlos Nieto-Granda, Jonathan P. How,
and Luca Carlone. Kimera-multi: Robust, distributed, dense metric-semantic slam for
multi-robot systems, 2021.

[42] Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory evaluation for
visual(-inertial) odometry. In IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2018.

54

	Thesis Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Introduction
	Perception for Robots
	Simultaneous Localization and Mapping
	Bayes Filter

	Towards Multi-agent Systems
	Chapter Organization

	Related Work and Background
	Distributed Consensus Optimization
	Optimization Methods
	Distributed Subgradient
	Decomposition
	Alternating Direction Method of Multipliers

	Gaussian Variational Inference

	Methodology
	Overview
	Problem Statement
	Mapping only
	Single-Robot Case
	Multi-robot case

	Distributed Kalman Filter

	Experiment and Results
	Application to Multi-Robot SLAM
	Feature Tracking

	Evaluation
	Metrics
	Simulation Data
	KITTI Data

	Conclusion
	Contributions
	Future Work

	Bibliography

