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Abstract of the Dissertation 

Percolation-Based Compiling for Evaluation of Parallelism 
and Hardware Design Trade-Offs 

by 
Roni Potasman 

Doctor of Philosophy in Electrical and Computer Engineering 
University of California, Irvine, 1991 
Professor Alexandru Nicolau, Chair 

This thesis investigates parallelism and hardware design trade-offs of paral­

lel and pipelined architectures. To explore these trade-offs we developed a retar-

getable compiler based on a set of powerful code transformations called Percolation 

Scheduling (PS) that map programs with real-time constraints and/or massive time 

requirements onto synchronous, parallel, high-performance or semi-custom archi-

tectures. 

High-performance is achieved through extraction of application inherent fine­

grain parallelism and the use of a suitable architecture. Exploiting fine-grain par­

allelism is a critical part of exploiting all of the parallelism available in a given 

program, particularly since highly irregular forms of parallelism are often not vis­

ible at coarser levels and since the use of low-level parallelism has a multiplicative 

effect on the overall performance. 

XI 
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To extract substantial parallelism from both the hardware and the compiler, 

we use a clean, highly parallel VLIW-like architecture that is synchronous, has 

multiple functional units and has a single program counter. The use of a hazard-

free and homogeneous architecture does not result only in a better VLSI design 

but also considerably increases the compiler's ability to produce better code. To 

further enhance parallelism we modified the uni-cycle VLIW model and extended 

the transformations such that pipelined units that provide extra parallelism are 

used. 

Another approach presented is of resource constrained scheduling (RCS). 

Since the RCS problem is known to be NP-hard, in practice it may be solved only 

by a heuristic approach. We argue that using the heuristic after extraction of the 

unlimited-resources schedule may yield better results than if the heuristic has been 

applied at the beginning of the scheduling process. 

Through a series of benchmarks we evaluate hardware design trade-offs and 

show that speed-ups on average of one order of magnitude are feasible with suf-

ficient functional units. However, when resources are limited we show that the 

number of functional units needed may be optimized for a particular suite of ap-

plication programs. 

I 
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Chapter 1 

Introduction 

1.1 Parallelism 

The ever-growing need for computation power combined with the advances 

in VLSI technology created a new research domain called parallel processing. Al­

though parallel processing is achieved quite differently by various approaches-all 

have the same goal: to increase the performance of a computer system as much 

as possible by performing activit~es concurrently. Basically, there are four ways to 

increase performance: 

• Increase the inherent parallelism in the application. 

• Use of a better technology. 

• Use of hardware parallelism. 

• Algorithmic change of the application. 

For years, researchers seemed to concentrate only on the last 3 methods: 

Among the parallel computers the vector machines appeared first. They were tar-

geted to enhance the performance for vector and matrix scientific applications, 

where the computation could be easily distributed. They included a high-speed 

1 
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pipelined floating-point unit which reduced the overhead needed in vector compu­

tation by applying the same instructions to many different vector elements. These 

machines are classified according to [Fl66] as SIMD machines. By definition, these 

machines are powerful only for limited (vector) applications and the fact that 

one has to issue the same instruction to all functional units limits, naturally, its 

potential speed-up. The second class of parallel machines was the class of asyn­

chronous multiprocessors or MIMD. The idea behind MIMD was to distribute the 

computation among several communicating processors to achieve parallelism in 

the application level.1 In order to reduce the interprocessor communication cost, 

which is the bottleneck in MIMD machines, much effort was put into developing 

parallel algorithms in order to decrease the communication needs of each proces­

sor, thereby reducing the overall interprocessor communication overhead. At the 

present it appears that SIMD's and MIMD's have reached some saturation point 

due to physical limitations and complexity of developing parallel algorithms. 

The RISC [He85] approach was a consequence of the physical limitations 

and the complexity involved in implementing a memory hierarchy to alleviate the 

memory access-time problem. The idea was to concentrate on boosting the pro­

cessor's performance as well as simplifying the memory system. To achieve this a 

load/store architecture was proposed which intergrates a simple and small instruc­

tion set (enabling less instruction decoding time, thus reducing the clock cycle) 

with a fast memory. Furthermore, the simplicity of the instruction set combined 

with the "cleanliness" of the hardware enabled the use of pipelined functional units 

with relatively high efficiency. The high degree of architecture efficiency is most 

likely the main reason for the success of the RISC approach. 

1 Also known as coarse-grain parallelism. 

I 
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However, RISC is based on a single functional unit. Therefore, the natural 

following candidate of parallel architecture had been a tightly-coupled synchronous 

machine with a simple instruction set and several functional units. The need for 

several units coincided well with the fast advances in VLSI technology manifested 

by much higher integration. These advances made the integration of several func-

tional units on one chip possible and eliminated the inter-processor communica-

tion overhead. A representative of the tightly-coupled synchronous architecture 

is the VLIW (Very Large Instruction Word) architecture [Fi83]. As implied by 

its name, VLIW enables issuing and execution of several independent operations 

concurrently. Although the VLIW architecture may be regarded as a horizontally-

microcoded engine, it had not been considered as a realistic architecture because 

of the lack of automatic tools which find these independent operations so that the 

functional units might be kept busy. Scheduling for these machines by hand, even 

short programs, turned out to be tedious and error prone task. 

Discouraging results published by [TjF170] and [RiFo72], which showed that 

the potential parallelism in ordinary sdentific programs is on the order of 2-3, pre-

vented for years further research in this area. However, these results were derived 

looking for parallelism only within the basic blocks of the program. Obviously, if 

one considers only operations within; basic blocks, since the average number of op-

erations within these basic blocks is 4-5, one cannot expect a speed-up greater than 

2-3! In addition, there is Amdahl's Law which states that unless the entire pro­

gram can be parallelized-one cannot expect significant parallelism. Fortunately, 

experiments done by Nicolau and Fisher [NiFi84] showed that there is substantial 

parallelism available when one goes beyond basic blocks boundaries. Similar results 

were obtained by [Ku88]. The available parallelism found was one to two orders 

I 

I 
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of magnitude. These encouraging results led to a growing interest in searching for 

the automatic extraction of potential parallelism in the programs. This parallelism 

is also known as fine-grain parallelism. Fine grain parallelism is the parallelism 

extracted by our compiler and discussed in this thesis. 

1.2 Motivation 

The compiler presented in this thesis is geared towards mapping general sci­

entific problems with real-time constraints and/or massive time requirements onto 

high-performance architectures. Since we were looking for considerable amounts of 

parallelism for general scientific problems we have chosen to do it by extracting fine­

grain parallelism. Exploiting fine-grain parallelism is a critical part of exploiting all 

of the parallelism available in a given program, particularly since highly irregular 

forms of parallelism are often not visible at coarser levels and since the use of low-

level parallelism has a multiplicative effect on the overall performance. However, 

· low-level parallelism can be effective only when communication overhead is neg-

ligible. Consequently, a synchronous,. parallel hardware configuration is required. 

In this context, VLIW architecture seemed to be an appropriate paradigm for our 

compiler. VLIW, which emergdd as a result of Fisher's (Fi83] work has some nice 

properties: it supports fine-grain parallelism by enabling the issue of several RISC­

like operations each clock cycle; it is completely synchronous (each action takes, a 

statically predicted, fixed amount of time unlike superscalars), thus the communi­

cation penalty is zero since data transfers are scheduled statically by the compiler; 

and it supports homogeneous, conflict-free data paths and its control flow is sim-

ple (one thread of control, unlike MIMD machines). VLIW can be thought of as 

I 
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a "perfect parallelism" architecture: it integrates temporal (functional pipelining) 

with spatial (several functional units) parallelism. Furthermore, with unlimited 

resources, VLIW can be considered as a "static data-flow" machine since all oper-

ations can be scheduled as soon as their source arguments are available. But while 

data-flow machines exhibit complex (and expensive) hardware, VLIW may be im­

plemented as a clean and relatively cheap machine due to its simple homogeneous 

design and since synchronization is handled during compile-time. The original 

model of VLIW assumes a single program counter and synchronous functional 

units that execute all operations in one cycle. In order to take advantage of tem­

poral parallelism we extended the original machine model and our transformations 

to make pipelining feasible. In fact, by selecting the VLIW architecture· and by 

using low-level parallelizing transformations, we take advantage of the first three 

methods of increasing performance mentioned at the beginning of the chapter: we 

increase the inherent parallelism by scheduling operations in parallel, we use an 

advanced technology and we implement hardware parallelism. The last method is 

achieved in our compiler on a modest scale suitable for integration into a compiler 

by a new local and incremental Tree Height Reduction algorithm that rearranges 

the program, while preserving semantic correctness, such that more parallelism is 

exposed. 

While this dissertation presents a compiler based on advanced compilation 

techniques that may be used independently, we were also interested in using the 

compiler in the context of application-specific system design. We believe that 

when considerably high system performance is required, problem-specific peculiar-

ities have to be taken into consideration during the design even if it violates the 

generality property (otherwise, the overhead incurred may dominate the overall 
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performance or, at least, may significantly constrain parallelism). For example, 

one application performs best with a hardware configuration that includes a mul­

tiplier with 3 pipeline stages while another application performs better with a 

4-stage multiplier. In order to achieve high system performance, we propose in 

this thesis an approach which enables gradual, two dimensional system synthe­

sis and analysis. This is in contrast to the traditional approach where compilers 

were written after a system's hardware had been specified. In other words, they 

were optimizing the performance using only one degree of freedom (the compiler). 

Naturally, the prespecified hardware may restrict the ability of the compiler to 

produce good-quality code. We, on the other hand, are trying to optimize the 

system's performance using two degrees of freedom (compiler and hardware) by 

allowing gradual fine-tuning of both. By starting from a canonical paradigm, we 

can iterate on different hardware configurations (all of which are derivations of the 

canonical form) in order to achieve the best performance for a specific problem. 

Since a system's hardware and compiler are two interdependent domains, being 

able to synthesize the system while controlling both may, potentially, yield better 

performance than when one of them is predefined. 

Another objective of this research was to investigate different hardware and 

parallelization trade-offs in high-performance, parallel architectures. Therefore, 

the retargetability of our compiler that allowed scheduling for various system con­

figurations was especially important. In this way we were able to investigate the 

following: What is the impact of register renaming on the overall performance?, 

How many registers are needed?, How many functional units?, How many pipeline 

stages for each unit? and How parallelism increases with number of functional 

units? 

I 
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1.3 Previous Related Work 

Multiflow's Trace compiler can be considered as the first commercial fine-

grain compiler capable of extracting parallelism beyond the basic block bound­

aries. It is based on Fisher's [Fi81] Trace Scheduling (TS) transformations that 

convert programs to more parallel ones by concentrating on the most probable 

paths (called traces) taken during their execution. The program is divided into 

numerous execution paths and then, according to their priority, each path is com-

pacted using semantic-preserving code transformations. First, independent oper-

ations are scheduled concurrently and then compensation code is introduced to 

preserve program correctness at exits to this trace. Trace Scheduling was mainly 

targeted for scientific code and for applications in which the flow-of-control can be 

predicted. For these applications experiments found a considerable speed-up of 10-

20. However, the TS transformations are inflexible since they are monolithic and 

dependent on the success of the single trace selection heuristic and limited since 

the program is compacted one trace at a time and traces cannot be combined. 

Therefore, for unpredictable flow-of-control applications, usefulness of TS may de-

crease. Furthermore, the overhead paid by compensation-code on non-selected 

paths degrades the performance when the run-time paths executed were not those 

given high priority during scheduling. 

Other approach differences between the Trace compiler and our compiler 

are in the way multi-cycle and pipelined operations are dealt with and in the 

application of higher-level compaction strategies as discussed in detail in Chapter 3. 

IBM's VLIW [Eb88] is a machine currently being built at IBM Yorktown 

Heights. Its compiler is based on Percolation Scheduling transformations which 
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were slightly changed to fit the architecture. The interesting features of IBM's 

compiler are: a conditional execution model (see Chapter 2), a loop pipelining 

technique [Eb87] to enhance parallelism and a Software Lookahead Window tech­

nique [N aEb90] to manage code-explosion and reduce compilation-time. 

IBM's compiler assumes that all operations take 1 cycle (no pipelining of 

operations). In order to meet this constraint, the machine clock was extended 

such that the "fastest" operation takes the same amount of time as the "slowest" 

one. This kind of "worst case design" may be unacceptable in some situations. 

Breternitz's [Br91] architecture synthesis approach is conceptually similar to 

our compiler (although the goals are different). 2 Their methodology utilizes an 

architecture paradigm and a set of tools to generate the structure of customized 

data and control paths. The synthesis is done in three major tasks: Architecture 

Synthesis, Specification Synthesis and Implementation Synthesis. The first defines 

an architectural template for the application. The second task tries to parallelize 

the application given this architecture template and the Implementation Synthesis 

phase finds the best implementation for the (previously) parallelized code. The 

major differences between the architecture synthesis approach and our approach 

can be summarized as: (a) while the architecture synthesis approach is targeted 

towards automatic generation of architecture for application-specific programs, our 

compiler is an evaluation compiler. We are interested in exploring hardware and 

compilation trade-offs to generate the best schedule for a given application and 

affordable architecture. (b) our approach deals with pipelined or multi-cycle op-

erations, which is a major issue in high-performance, parallel architectures. ( c) 

2In fact, the first prototype of our compiler was jointly developed with John Shen's group in 

Carnegie Mellon University. 

I 
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our approach supports modest algorithmic changes of the application program 

(like Tree Height Reduction). ( d) we use different register allocation and resource 

constrained scheduling algorithms. 

1.4 Thesis Overview 

This dissertation is organized into 10 chapters. Chapter 2 gives a brief 

overview of the compiler, its different layers and the approach taken during its 

design. In Chapter 3 we detail all transformations used in our compiler from the 

lowest-level transformations to the highest-level compaction strategies. In this 

chapter we try to answer the question "Why Percolation Scheduling, as defined 

by Nicolau in [Ni85a], cannot deal with pipelined (multi-cycle) operations?", we 

present some transformation-related problems and show examples why our ap-

proach has a better potential over other approaches for scheduling with pipelined 

operations. 

In Chapter 4 we discuss one of the main issues in parallelism extraction 

in high-performance architectures: register allocation and register renaming. We 

show how parallelism is determined by the number of registers used and explain 

our approach for local register renaming during the parallelization process. Since 

our technique involves, in general, addition of copy operations into the code (and 

in the case of loops some of these copies become redundant induction variable) it 

is crucial to be able to remove them. For completeness purposes, we describe a 

technique, written at UC Irvine by Haigeng Wang, that removes copy operations 

I 
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generated during renaming. Other (non-induction-variable generated) copies are 

removed by a copy elimination technique that is described at the end of the chapter. 

Chapter 5 discusses the way we perform resource constrained scheduling. 

We give the motivation for our approach which involves scheduling with unlimited 

resources and then mapping of this schedule to the given (constrained) architecture. 

In Chapter 6 we present a novel incremental Tree Height Reduction· algorithm. 

This algorithm compacts programs even when data-dependency prevents further 

compaction. We show several examples that clarify the algorithm and justify our 

claims. 

Chapter 7 is devoted to specific issues that are peculiar to the compiler and 

are not directly related to any of the other chapters. We describe our "on-the-

fly" dead-code-elimination technique, we show how we perform inter-procedural 

live analysis and describe a code optimization called "load-after-store optimiza-

tion" that removes unnecessary memory loads for memory-traffic reduction. We 

then address the loop detection problem and explain how memory reference dis-

ambiguation, which is critical for significant parallelism extraction, is done in our 

compiler. Our simulator is described at the end of this chapter. The results of 

benchmarking the compiler in various configurations and the analysis of these re­

sults are discussed in Chapter 8. 

In Chapter 9 we explain why our compiler can be considered a High Level 

Synthesis (HLS) tool, we give an example to illustrate our gradual, two dimensional 

design approach and suggest some future extensions. We conclude the dissertation 

in Chapter 10 with a summary, discussion and future work. 

I 



Chapter 2 

Overview of the Compiler 

When building a fine-grain, parallelizing, optimizing compiler, many trade-

offs and design decisions have to be made. This chapter lays out the approach 

taken during the compiler's design and the main trade-offs that inspired it. We 

also detail the machine model used throughout the thesis. 

2.1 Layered Structure 

While some commercial compilers are built monolithically with the essential 

procedures merged into a single module, our compiler is implemented in several 

layers as shown in Figure 2.1. The layered structure is especially important in 

our context since one of the primary objectives of this research was to evaluate 

different configurations and design alternatives. It is possible that a monolithic 

compiler would be more efficient but it would be harder to reconfigure and debug. 

If the interfaces between the layers are well-defined, the reconfiguration price is 

usually that of replacing one layer by another (compatible) one, which is relatively 

easy. 

11 
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For example, in order to check another loop pipelining algorithm, the only 

change needed is to replace the layer called loop pipelining. All others remain 

intact. Another by-product of this philosophy is that it is easier to reconfigure 

the compiler even without recompiling it: we keep a configuration file in which all 

layers are specified. The compiler decides which layers to execute by reading this 

file. In this way, disabling a layer means commenting out the corresponding line 

in the configuration file. 

The front end is a modified GNU front end that converts a C source input to 

an abstract, machine-independent RISC-like load/store three-address code.1 All 

optimizations and transformations are done on this code. As an example, consider 

the following C program: 

for ( i = 1; i < 20; i + +) 

A[i] = A[i - 1] + B[i]; 

The corresponding formal three-address code for this program is shown below. 

Next to it we give a readable format: which is used throughout the thesis: (For 

readability reasons we use base, i, a, b, ccO as virtual hardware registers.) 

(PROC_BEGIN main 

(LABEL main) 

(iconstant base 176) 

(iconstant i 0) 

(LABEL 11) 

(ivload a base -88) 

base:= 176 

i := 0 

a := M[base - 88] 

1 Which is a subset of N:-address code, NADDR. We used the MIPS implementation of the 

GNU as a basis for our front-end and modified it to produce our abstract format. 



(ivload b base -164) 

(iadd a a b) 

(ivstore base a -84) 

(iadd base base 4) 

(iadd i i 4) 

(ile ccO i 76) 

(if ccO (LABEL Ll)) 

(LABEL exit) 

(igoto $31) 

(PROC_END main)) 

b := M[base - 164] 

a:= a+ b 

M[base - 84] :=a 

base := base + 4 

i := i + 4 

cco := (i <= 76)? 

return 
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The destination register is specified first followed by the source variables. 

Each operation is preceded by the letter "i" or the letter "f" indicating whether the 

operation is an integer operation.or floating-point one. The last operation in each 

procedure (igoto $31) represents a return from the procedure through an address 

specified in register $31. Since store operations have no register destination, their 

notation is a bit different than the others: (ivstore base a -84) means M[base-84]:= 

a. Comparison operations always set condition-code registers (cc). In the example 

above, ccO is assigned with the,: logical value of the (integer) comparison between 

i and 76. Subsequently, a conditional jump operation controls the program's flow 

by testing the updated condition code register. 

The disambiguation layer is responsible for determining whether two indirect 

(array) memory references of two .memory-accessing operations (loads and stores) 

are actually referring to the same memory location in which case their schedule­

ordering matters. Like other non-memory-accessing operations, memory loads and 
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stores may cause data-dependencies. Since data-dependencies restrict the paral-

lelization process and since indirect memory references are very common in many 

application programs, it is very important to be able to disambiguate (anti-alias) 

these memory references. While in the case of non-memory-accessing operations 

it is quite easy to check for a dependency, the dependency test when loads and 

stores are involved requires quite complex computations. Consider, for example, 

this code segment: 

1. a:= b + c[refl]; 

2. c[re/2] := d + e; 

If we are unable to show that the two references refl and ref2 are always different, 

these two operations should not be scheduled independently. The "easy", solution 

of assuming that these references could be equal without trying to disambiguate 

causes a considerable degradation in performance [Ni84]. Our compiler uses a 

powerful and efficient fine-grain disambiguation technique to enable considerable 

parallelism extraction. The technique, which was implemented in our compiler 

by Haigeng Wang, works by computing the symbolic derivations of all loads and 

stores in the program. The symbolic derivations are the corresponding addresses 

expressed in symbolic terms that enable simpler comparison of addresses. 

Loop pipelining is a class of techniques for extracting parallelism by over-

lapping execution of consecutive iterations of the same loop. In other words, the 

next iteration may be initiated before the current iteration is completed. This 

causes a pipelining effect similar to the one found in hardware pipelining. Since 

ordinary programs tend to spend most of their time executing loops, the ability to 

parallelize loops has a major impact on the overall parallelism. 
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Maxcomp is a transformation to maximally compact the non-inner-loop parts 

of the program. After this layer the program is maximally compacted and the 

parallelism is restricted only by data-dependency. 

The resource-constrained scheduling layer is the one responsible for the map-

ping of the unlimited-resources schedule (produced by previous layers) to the given 

machine. The schedule derived up to this layer assumes that all needed resources 

are available. In practice, machines have fewer functional units than required by 

the unlimited resources schedule. In order to "fit" the schedule for the given ma-

chine, the schedule is adjusted so that no more operations are issued per cycle than 

allowed by the hardware constraints. Since the RCS problem is known to be NP-

hard it must be solved in practice by heuristics. The lack of optimality raises the 

question: "What is a good RC schedule?". Another common question regarding 

RCS is "When to apply the heuristics?". We present in Chapter 5 a new algorithm 

for performing RCS that is applied after the extraction of the unlimited-resources 

schedule. We show in [PLNG90] that applying RCS after unlimited-resources 

scheduling (which is in many cases the optimal schedule and does not involve ap­

plication of heuristics) rather than scheduling from the beginning with RCS, is one 

of the most important factors in scheduling. The are four reasons for this: First, 

when parallelism is limited it may be critical to do very well. Hence, too early ap­

plication of heuristics may further decrease performance. Second, the application 

of heuristics after the extraction of unlimited resources parallelism offers flexibility 

to tune only the heuristics to get better speed-up. Third, this approach gives a 

good lower bound for the total execution time. Without this bound it is sometimes 

very difficult to estimate what would be the best performance of an application, 
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making the h~uristic algorithm harder (When to stop?, What is a "good" sched­

ule?). Fourth, with this approach it is easy to compare different RCS heuristics 

and schedule for a variety of different resource constraints, starting from the same 

unlimited-resources schedule. 

All transformations applied to this point do not change the code structure. 

All operations in the compacted code are either copies or derivatives of operations 

in the input (serial) code. The next layer, the Tree Height Reduction layer, does 

change the code. When data-dependency restricts the parallelization, Tree Height 

Reduction is applied to further compact the program by performing an algorithmic 

change on the code in case there are unused resources. Although this process 

involves structural change of the code, it provably preserves the semantics of the 

original code. 

As shown in Figure 2.1, several hardware and parallelization parameters may 

be tested by inputing different constraints to the compiler. The constraints include 

the number of pipeline stages needed for each multi-cycle operation, the number 

of functional units and registers available and whether a conditional execution 

model is supported by the machine or not. Parallelization parameters may include 

renaming, induction variable removal, copy elimination, load-after-store optimiza-

tion, compaction without moving conditional jumps and turning disambiguation 

off. 

The simulator is a very important layer in our· compiler. As mentioned in 

Chapter 1 one of our objectives in this research was to explore hardware/software 

trade-offs by measuring the performance of the compiler under variety of configu­

rations/ conditions. While a "traditional" compiler can be evaluated and tested by 
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running it on its target architecture, we needed a simulator to test our compiler 

in these different environments. The simulator served also as a validation tool. It 

turns out that, even for very short programs, it is impractical to check the correct-

ness of the results produced by the compiler. The presence of conditional jumps in 

the code and the fact that our transformations compact numerous operations into 

trees, formed by these conditionals, make hand-debugging (or hand-checking) non 

realistic. The simulator checks the correctness by comparing the results obtained 

by running the serial program on a set of input data and the results obtained by 

the compacted program, running on the same data. In this context, we also tuned 

our simulator to serve as an efficient debugging tool. 

2.2 Hierarchical Approach 

The compiler is built hierarchically. On the lowest level there are the core 

Pipelined Percolation Scheduling (PPS) transformations that convert an original 

program graph into a more parallel one. The transformations define the rules 

for moving operation between two adjacent nodes in the graph (see Section 3.4). 

Since even for small programs the number of transformations required to compact 

the graph is considerable, a set of higher-level transformations is required. The 

higher-level transformations "guide" the low-level transformations in an attempt 

to expose as much parallelism as possible. The hierarchical approach provides 

easier examination of different control strategies by abstraction of the paralleliz-

ing process: the system, rather than the user, deals with the burdensome details 

of correctness-preservation while the user can concentrate on different higher-level 

I 
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control strategies. The layered structure of the compiler integrates well with the hi­

erarchical approach. Since the interface with the low-level transformations and the 

interfaces between the layers are well-defined-exploring a new higher-level tech-

nique, usually, means a substitution of a present layer with the new one; thereby 

eliminating the need to make drastic changes in several layers. 

The two main higher-level transformations used are loop pipelining and max­

comp. Loop pipelining invokes the core transformations in order to extract paral-

lelism both across and within inner-loop iterations in the program. Maxcomp is 

a transformation to maximally compact the non-loop or non-inner-loop portions 

of the code. These transformations are described in detail in Sections 3.5.2 and 

3.5.1. 

2.3 Incremental Register Allocation and Renam-

As in most existing compilers, the GNU front-end that we use also tries to 

make an efficient use of registers by using the minimal number possible. This is 

achieved by assigning the same registers to variables whose life-spans do not over-

lap. While saving registers may be a good strategy for sequential machine, for 

parallel, high performance architectures the re-use of registers introduces false de-

pendencies (either "anti" or "output") that may severely decrease the performance 

since it limits the compiler's ability to compact. 
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In the past, when VLSI technology limited the number of registers that would 

be integrated into one chip, efficient use of registers was a primary issue in any chip 

design. However, today, with the recent advances in VLSI technology, the number 

of registers is considered a less-serious bottleneck (although the cost of routing to 

and from multi-ported register-files increased). When building a high performance 

architecture, one qmnot afford to limit the number of registers to the number that 

was used only a few years ago. 

Ideally, in parallel architectures, only true data-dependency and resource 

availability should limit the parallelism. On the other hand, register allocation has 

to be done-we simply do not have an infinite number of registers. In order to solve 

this problem we propose a new approach for register allocation. We begin with 

GNU's register allocation and during the parallelization process we allow renaming 

of registers to eliminate false dependencies that prevent otherwise desirable/feasible 

code transformations, provided that a register is available at that point. 

2.4 · Machine Model 

Throughout this thesis we assume a modular architecture which serves as a 

paradigm for our target architecture. This architecture is illustrated in Figure 2.2. 

The paradigm has a single flow-of-control (single PC), it is totally synchronous, 

has multiple functional units and a multi-ported register-file. Each functional unit 

may have a variable number of pipeline stages. The model, called the conditional 

execution model, allows the presence of multiple conditional jumps (as well as 

other operations) per cycle. This model is similar to the one used by the IBM 
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VLIW machine [Eb88] and allows a direct mapping of the schedule into horizontal 

microcode. 

The input program is represented by a control flow graph. The vertices 

(nodes) in the graph correspond to operations executed in each cycle. The edges 

represent flow of control from one node to its successor. Initially all nodes contain a 

single operation. Making a program "more parallel" involves compaction of several 

operations into one node (or microinstruction) while preserving the semantics of 

the sequential code. In the original PS model [Ni85a] a node represented a large 

instruction word containing several operations (all of which executed in parallel) 

and a tree-like structure of conditioial jumps. The actual value of these condition 

code registers determined the next instruction. The model described in [Eb88] is 

a refinement on the original model. The difference is that two operations writing 

to the same destination are allowed to be packed into one node (the conditional 

codes are used to allow only operations on the actual execution path to write their 

results). 



22 

Ll L2 L3 

Figure 2.3: A Node in Our Machine 

Operations form a tree-like structure in the node. Exactly one execution 

path is selected from the root down to the unique successor of the node. This path 

is selected according to the results of the conditional operations in the tree. For 

example, if we assume that condl is true and cond2 is false in Figure 2.3, then 

opl, op2, op5 and op6 are to be executed and the successor of this node is L2. The 

execution of the node can be conceptualized as three steps (on the IBM machine, 

these three steps are executed as part of one basic machine cycle): 

1. Operands (for all operations) and condition code registers are read. 

2. All operations are executed, condition codes are evaluated and a path to the 

(unique) successor instruction is chosen. 

3. The results of operations on the path chosen (for single cycle operations) 

and the results of (pipelin~d) operations which were issued in previous nodes 

and completed their execution in this node, are written back to the register 

file/data memory. 

This model is similar to any microcode-based architecture supporting a multiway 

jump mechanism. 2 A simple mapping to other machines is also feasible. If the 

2In fact, work done at UC Irvine [Ab91, APBN91] implements this multiway branching and 

conditional execution model. 
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machine does not support this sort of conditional execution, the transformations 

can be simply modified to disallow moving multiple operations writing to the same 

destination and multiple conditional jumps into the same node. 

The pipeline model we use assumes that each operation can take several 

cycles (or nodes) to complete. In order to reflect the effect of multi-cycle operation 

on the program graph, we assume that each operation (with latency of k cycles) 

reads its source arguments during the first cycle (in which it is specified). Then, for 

k-1 cycles, it uses the stages of its functional unit. In the last cycle, it writes back 

the result to its destination. All operations which use the result of this operation 

should be scheduled at least k cycles later than the beginning of this operation. 

This model encompasses both pipelined functional uni ts (where we can issue a new 

operation every cycle) and multi-cycle functional, units (where we have to flush the 

unit before issuing the next operation). 

The model described here (as opposed to superscalars, for example) assumes 

that everything can be determined statically. It is the compiler's responsibility 

that all data paths will be conflict-free (i.e. multi-ported register file and memory 

accesses). The only exception is when a cache miss occurs. Then, the processor's 

activity is frozen until the data is fetched from memory. Throughout this thesis 

we assumed a "clean" model with only one register-file and a single data memory. 

When implementation issues require several register files or memory banking we 

further assume that all accesses are uniform (i.e. each functional unit can access 

register-file and memory bank). When the actual hardware is unable to support 

such accesses, it is again the compiler's job to orchestrate these implementation-

hazards. While superscalars can take advantage of the time lost by VLIW s during 

cache misses, they are certainly more complicated and therefore their hardware 
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is more complex. More complex hardware usually means a slower machine. In 

addition, since superscalars schedule operations dynamically their ability to do a 

good job is constrained by the cycle time of the processor. 
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Chapter 3 

The Parallelizing 

Transformations 

3.1 Fine-Grain Transformations for Pipelined 

Architectures 

Compile-time techniques to extract parallelism from ordinary programs can 

be grouped into two classes: coarse-grain parallelizing techniques and fine-grain 

parallelizing techniques. While coarse-grain techniques expose parallelism at the 

implementation level (this parallelism is often visible and easier to detect), they 

cannot take advantage of highly irregular forms of parallelism exhibited in the 

fine-grain (instruction) level. Howevbr, exploiting fine-grain parallelism is critical 

since low-level parallelism has a multiplicative effect on the overall achievable par-

allelism. By definition, fine-grain transformations are low-level transformations. 

Therefore, even for short programs, the number of transformations needed can be 

considerable and that is why fine-grain transformations need to be very efficient. 

We have chosen Percolation Scheduling (PS) transformations as a basis for our 

compiler since they are efficient (need only local data), atomic (applied to two 
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adjacent nodes in the program graph), and virtually complete with respect to the 

set of all possible local, dependency-preserving transformations on program graphs 

[Ai88]. The atomicity is especially important since it enables easy integration with 

a wide variety of higher-level transformations which may expose coarse-grain paral-

lelism as well. The transformations described in this chapter deal with both levels 

of parallelism-we first detail the low-level transformations and continue with the 

higher-level ones. 

When trying to extract substantial parallelism for high-performance, parallel 

architectures, one of the promising ways to do this is by exploiting both spatial 

and temporal parallelism. To enhance temporal parallelism, machines are built 

with pipelined functional units, therefore, a pipeline-supporting set of transfor­

mations is required. Neither Trace Scheduling (TS) nor PS integrate multi-cycle 

operations within their transformational model. Ellis [El86] uses a partial solution 

by insertion of a partial schedule into the code for multi-cycle operations for the 

trace selected for compaction. While this approach may yield good results for the 

selected traces-for off-trace paths the partial schedule can cause poor compaction. 

The poor compaction in off-traces is a result of inherent TS limitations1 amplified 

by the fact that operations are multi-cycled (more no-ops in the code). Since func­

tional unit pipelining is particularly important when loop pipelining is applied and 

since loop pipelining is a major parallelizing technique in our compiler, we had to 

extend the original transformations to be able to deal with pipelined operations. 

The extended transformations are called Pipelined Percolation Scheduling (PPS). 

1TS can not move two syntactical copies of an operation above conditional jump while the 

unify transformation in PS enables it. 
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rwo previous approaches have been taken to deal with the differences in 

operations' latencies. In the first approach, a parallelizing compiler (assuming 

that all operations take the same amount of time, i.e. one time-unit) was built 

and then a supporting architecture was fitted. In such a way the machine cycle 

time was extended to satisfy the slowest operation's latency. This approach was 

obviously inefficient since both the fastest and slowest operations required the same 

amount of time to execute. The other approach schedules in two phases. First, 

the code was compacted as if each operation took one cycle. Then, in a second 

phase, empty cycles were inserted between adjacent nodes, such that latency times 

of the operations were satisfied. Again, this strategy assumes worst case design, 

because the number of empty cycles inserted is the maximal latency on the path 

connecting the two nodes-a fact that caused frequent idle time for some functional 

units. To our knowledge no technique to date allows uniform compaction to go 

beyond straight line code. In other words, there are no previous general approaches 

to exploit spatial and temporal parallelism. This is precisely the role of PPS. 

To substantiate our claims we show in Section 3. 7 representative examples 

where PPS produces better schedules than those achieved by the other two ap-

proaches mentioned. 

3.2 So Why is PPS Needed? 

In the original PS model, all nodes contain operations that are issued and 

executed at the same time in one cycle, hence, in PS only a node and its immedi-

ate successors need to be considered to preserve correctness of the transformations. 
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However, when dealing with the movement of multi-cycle operations (whose exe­

cution can span several nodes beyond the one in which they issue), care must be 

taken to keep correct information in all these successors on the execution path of 

the operation, making the correctness preservation issue much harder. The cause 

of difficulty is that we want to refrain from using pipeline interlocks. We want to 

guarantee that whatever execution path is taken (even if the path is determined 

after the operation has been issued)-the correctness is preserved on all possible 

paths. 

Suppose, for example, in Figure 3.1 that we try to apply move-op to op (i.e. 

schedule op in node m instead of node n). Let's assume that there is no data­

dependency between op and all other operations in node m and that a is dead at 

the top of node p. In this case PS would allow the motion. But, when dealing 

with multi-cycle operations, these operations may have effect on those successors 

other than the immediate ones. In this example, if op takes 5 cycles to complete 

and op 1 takes 2 cycles, by moving op to node m, we change the value of a used in 

nodes following node k. Hence, in addition to conditions which are required by PS 

we need to impose further restrictions on the move. 

3.3 Definitions 

In this section we define terms used later in this chapter. 

• latency and distance 

The latency of an operation is the number of pipeline stages needed to execute 
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op: a:= b * c 
opl: a:= e - d 
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Figure 3.1: Why is PPS Needed? 
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this operation. The distance between some node s and some node n is the 

number of nodes between them plus 1. 

• pipeline analysis 

The movement of a multi-cycle operation from one node to its predecessor 

may affect not only these two nodes but also other nodes in the program. 

The affected nodes are those within a distance less than or equal to this 

operation's latency. The procedµre to check correctness (in all these nodes) 

when trying to move the operation is called pipeline analysis. 

• pipe_set 

The original PS transformation,,s use data-dependency analysis and live/dead 

analysis to check whether the movement of an operation is allowed. The 

live_set of a node is the set of variables live at the top of the node. The 

kilLset of a node is the set of variables written (or defined) in the node. 

For PPS, we also need to keep (locally, in each node) information about 

the effect of multi-cycle operations on successor nodes. Each node in the 

graph contains a set of elements called pipe_set. Each element in the set 
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represents an operation which is in the process of evaluation in this node. 

The operation is represented either by its destination register (for non-store 

operations) or by its memory location (for store operations). If, for example, 

an operation writes into register a, issued in node n and has a latency of 

5, then in another node k, which is 2 cycles later, it is represented by the 

value a and an integer equal to 2 which is the number of cycles still needed 

to complete its execution. The pipe_set information is added to the program 

graph when new empty nodes are inserted in the original graph between 

adjacent nodes to satisfy pipeline latencies. This information is updated 

incrementally during the movement of operations from one node to another. 

• induced_field 

The induced_field of a node is information similar in notion to the pipe_set 

information. The difference is that while pipe_set represents all operations 

which are under evaluation in this node, the induced_field information ex-

eludes operations which have been issued in this node. In other words, it 

represents the "net" effect of operations in preceding nodes on this node. The 

name induced_field reflects the fact that operation "induces" a field (which 

is its destination-register or memory location) on successor nodes which can 

not be seen by simply looking at the operations specified in this node. 

An illustration is given in Figure 3.2. Assume that opl and op2 take 3 cycles 

to complete and op3 and op4 take 2 cycles. The pipe_set of node n includes 

the values { r 1,r2,r3,r4}. This means that operations 1, 2, 3 and 4 are in the 

process of evaluation. The induced_field in node n includes the values {rl,r2}. 

These values ( {rl,r2}) represent the effect of operations in predecessor nodes 

of n on this node. 



• trail 

opl: rl:= a* b (3 cycles) 
op2: r2:= c * d (3 cycles) 
op3: r3:= e + f (2 cycles) 
op4: r4:= g + h (2 cycles) 

Figure 3.2: Pipe_set and InducedJield Of a Node. 
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The trail of an operation is the path( s) /branch( es) in the node originating at 

the node's entry point and encompassing the operation. In Figure 2.3, the 

trail of op6 is the path from the entry point ,of_the node leading to instruction 

12. The trail of op2 and op5 are the paths from the node's entry to 11 and 

12. 

3.4 PPS Transformations 

PS uses four core transformations (move-op, move-cj, delete and unify) to 

compact programs. The actual code motion is done by the first two transformations 

while the other two can be considered as optimization transformations. We detail 

PPS transformations as an extension of the PS transformations described in [Ni84, 

Ni85a, AiNi88a, EbNi89]. 
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3.4.1 Move-op 

Move-op is a transformation to move an operation up from a node n to one of 

its predecessors m. The original move-op does not allow the motion of op when its 

destination is either read by another operation in from-node or when its destination 

is live on a path in from-node other than op's trail. We use throughout this thesis 

the modified version of move-op that allows the motion by doing renaming. For 

more detail refer to [EbNi89]. 

The move-op of an operation op from a node n to node mis possible whenever: 

1. No operation in m writes one of op's source variables (data-dependency test). 

2. None of op's source variables is an element in m's induced_field (pipeline 

dependency). 

3. No successor s of m through a path not in op's trail which is at distance less 

than op's latency includes op's destination in its pipe_set. 

OR 

If one of these successors does include op's destination in its pipe_set, then, 

either the pipe_set for all successors of n at distance equal to (latency - 2) 

includes at least one ele~ent of op's destination or op's destination is dead 

at all nodes that do not include it. (Pipeline dependency and correctness in 

all paths other than op's traiQ. 

4. All successors s of n in op's trail and at a distance equal to (latency - 2) have 

in their pipe_set one and only one element of op's destination. (correctness 

in all successors through op's traiQ. 
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We refer to the last three conditions as pipeline dependency. Condition 1 tests 

the data-dependency between the operation we want to move and all operations 

in the target node. 

Condition 2 guarantees that an operation which reads a value won't read it 

while the operation producing the value is still being executed in the functional 

unit. (Remember that induced_field is an indication that an operation is still under 

evaluation). 

Condition 3 is to ensure that the movement of op up does not interfere with 

the same destination register read by operations in successor nodes which are not in 

op's trail. In PS this test is done by checking that op's destination is dead on these 

paths (otherwise we need to rename op), but since PPS deals with operations which 

may have different latencies, op's destination may be dead but it still may overwrite 

the destination of another operation (due to larger latency), thus changing the 

semantics of the program. To understand the first part of condition 3 refer again 

to Figure 3.1. Let's assume that op takes 3 cycles and opl takes 2 cycles to 

complete. In this case there is no problem in moving op from n to m because all 

successors of n at a distance equal to· latency - 2 (node p in this case) include at 

least one element of op's kind in thyir pipe_set. It means that opl modifies the 

register-file after op which guarantees a correct order of modification. If, on the 

other hand, op take 5 cycles the move is not allowed since op modifies the register-

file in node k (after op 1 has modified it) and therefore all nodes following k will 

read op's value instead of opl 's. The second part of condition 3 is to guarantee that 

if there is a conflict due to the fact that two operations modify the same register 

in the register-file in the same node, the order of modification will be preserved. 

If all successors of n at a distance equal to (latency - 2) have in their pipe_set at 
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k 
opl: a:=b*c 
op2: a:=d+e 

Figure 3.3: Explanatory Example for Condition 4 
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le~st one element of op's destination, it means that another operation is inducing 

the same field on the same successors as op induces. After the move, the other 

operation is guaranteed to modify its destination later than op so there is no reason 

to prevent the motion. 

Condition 4 is necessary to keep the correct order of modification of op's 

destination in successors of op's trail. This addresses the problem caused by two 

different operations that con:iplete their execution in the same node. For example, 

in Figure 3.3, opl and op2 both c;omplete in node 1, assuming multiplication takes 

3 cycles and addition takes 2 cycles. Remember that in our model, the value of 

a in node k is determined by op2 (which reads its source variables later), so the 

operation in node k should re~p the value computed by op2). If we move op2 

up to m we may expose node k to a "new" value which is opl's result, causing a 

change in the program semantics. In order to prevent this situation, we check all 

successors of n in op's trail and at distance (latency - 2) from n. It is clear that 

if all these nodes have a pipe_set which includes more than 1 of op's destination 

registers, two different operations might complete in the same node k. Hence, the 

move is disallowed. 
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The move-op version we use allows renaming of variables wherever there 

is a false dependency (anti-dependency) between operations. In this context, it 

is important to note that variable renaming is of major importance in pipelined 

machines. While in single clock machines this "artificial" dependency prevents an 

operation from moving up one step (cycle), in pipelined machines, it blocks the 

move up of several cycles. This could cause a substantial degradation in parallelism 

extraction. The code outline for the transformation follows. 

procedure move-op(op: operation, n: from_node,m: to_node, tp: path_to) 

/* latency= the latency of op * / 

/* dest= destination-register or memory location of op * / 

/* dest'= renamed destination-register * / 

if (all 4 conditions met) begin 

if /* write-live conditions * / 

(there is an op' in n other than op such that 

intersection( reads( op'), writes( op) ) ! = nil) 

or 

(for one successors s of n op is live and not killed in path to s) 

renameJlag= TRUE; 

/* actual move * / 

create a copy n' of n; 

unify(n' ,op); /* unification * / 

move op into tail of tp in m; 

make m go ton' instead of n (on path tp only!); 

if (there exist op' in m s.t. writes(op')= writes(op)) and 

(op' is on a path in m going through the newly added op) begin 



delete op' from these paths; 

push it down to the branch not leading to op; 

end 

/* modify pipeline characteristics * / 

modify the pipe_set of m to reflect addition of op; 

modify the pi pe_set of n' to be equal to: 

the induced.Jield of n plus 

all destinations of operations issued in n'; 

for all successors s of min paths reached through n' 

but NOT in op's trail and in distance <= latency 

add dest to pipe_set(s); 

if (renameJlag= TRUE) begin 

for all successors s of n' at distance= latency 

add copy operations: dest:= dest '; 

for all successors s of m at distance < latency 

add dest' to pi pe_set ( s) ;: 

end 

if ( n has no predecessors) 

delete(n); 

if (deletion succeeded) 

for all successors s of n at a distance <= latency 

remove dest from pi pe_set ( s); 

update live-dead information in m; 

end /*move*/ 

end (move-op) 
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3.4.2 Move-cj 

Move-cj performs the movement of a conditional jump from a node n to a 

predecessor node m. Since a conditional jump operation does not modify any 

variable, the last two conditions of move-op are irrelevant here. So, the movement 

of a conditional jump from node n to node mis possible if: 

1. No operation in m writes one of op's source variables (data-dependency test). 

2. None of op's source variables is an element in m's inducedJield (pipeline 

dependency). 

procedure move-cj(op: cj, n: from_node, m: to_node, tp: path_to) 

/* latency= the latency of op * / 
if (conqitionl and condition2 are met) begin 

create a copy nT of n, that behaves as if op inn 

always took the true branch, and unify(nT,op); 

create a copy nF of n, that behav~s as if op in n 

always took the false branch, and unify( nF ,op); 

create a new ( cj 1: copy of op) conditional jump and place 

it as the last operation on path tp in m and make: 

the target of the true branch of cj 1 is nT; 

the target of the false branch of cjl is nF; 

/* modify pipeline characteristics * / 

modify pipe_set(nT); /* see n' in move-op * / 

modify pi pe_set ( nF); / * see n' in move-op * / 
for all successors s of nT at a distance<=latency 

modify pipe_set( s); 
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for all successors s of nF at a distance<=latency 

modify pi pe_set ( s); 

/* try to delete n * / 

if n has no predecessors 

delete(n); 

if the deletion succeeded 

for all successors s of n at a distance<=latency 

reflect the deletion of n in pi pe_set ( s); 

update live-dead information in nT; 

update live-dead information in nF; 

end /*move*/ 

end ( move-cj) 

3.4.3 Delete 
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The PPS delete transformation is very similar to the PS delete transforma-

tion. Delete removes nodes that do not contain any operation or nodes that have 

no predecessors from the progr~m graph. It is called by move-op and move-cj after 

a successful move. The only difference is that a node which does not include any 

operation can not be simply removed because it might serve as a delay node for 

satisfying pipeline latencies. Hence, in addition to checking predecessors, one has 

to check whether the pipe_set field in this node is empty, which means that no 

operation is under evaluation during this node. 

procedure delete (n: node) 
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if ( ( n has no predecessors) or ( n has no operations) ) and 

(pipe...set(n) is empty) begin 

for all successors s of n at a distance<=latency 

remove all corresponding pipeline elements from pipe...set(s); 

remove n from the program and adjust links; 

end 

end (delete) 

3.4.4 Unify 
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Unify merges syntactical copies of an operation from different branches of 

a node into a unique copy placed in a mutual predecessor node. It is called by 

move-op and move-cj after a successful move. The difference between the original 

unify transformation and PPS unify is that now, we have to reflect the deletion of 

all syntactical copies of op in all successors of these branches. In other words we 

have to modify the pipeline information in all relevant successor nodes. 

procedure unify (n: node, op: oper,~tion) 

for all copies op' of op in n 

for all successors s of n in trail of op' at a distance <= latency 

remove corresponding pipeline element from pipe...set(s) and inducedJield(s); 

end (unify) 
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3.5 Higher-Level Transformations 

The transformations described in previous sections are the lower-level trans-

formations that perform the actual motion of operations while preserving correct-

ness. However, some higher-level transformations are required in order to direct the 

low-level transformations and in order to extract coarser-grain parallelism which 

is sometimes exhibited only in higher-level program constructs. Maxcomp is an 

example of a transformation requiredto "guide" the low-level core transformations 

in order to maximaly compact the program. It works by moving operations as high 

as possible in the program graph. The goal of Maxcomp is to schedule all oper-

ations as soon as possible, subject only to da~a-dependencies. Another example 

of a higher-level transformation that extracts parallelism in loops is called Loop 

Pipelining. It exploits parallelism across as well as within loop iterations. 

3.5.1 Maxcomp 

procedure Maxcomp(program) 

/* real successor= successor not through backedge * / 

/* fence= global list of nodes.:*/ 

for each instruction n in the program filled(n)= FALSE; 

let fence= {header instruction of the program}; 

let newfence= {empty set}; 

while fence is not empty begin 

for each instruction n in fence 

filUnstr(n); 



for each instruction n in fence begin 

for all successors s of n 

if ( ( s is a real successor of n) and 

(not filled(s)) and 

( s is not in fence) and 

( s is not in newf ence) ) 

add s to newf ence; 

mark filled(n)= TRUE; 

end 

let fence= newf ence; 

let newf ence= {empty set}; 

end (while) 

end (Maxcomp) 
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The idea behind Maxcomp is to "push" operations up by filling all nodes in 

the program with operations in their sµccessors. Fillinstr tries to move operations 

from all successors of n into n using move-op and move-cj. In order to guarantee 

that an operation will move up as high as possible, whenever an operation has 

moved into n all of n's predecessors are added to the (global) fence. Consequently, 

when nodes in the new fence are fill~d, this operation can move up from n to its 

predecessor. 

procedure fillJnstr(n: to_node) 

/* fence= global list of nodes * / 

for each successors s of n in paths t from n to s begin 

for each operation op in s 



move-op(op, s, n, t); 

for each conditional jump cj in s 

move-cj(cj, s, n, t); 

if (any operation moved out of s) 

for each predecessors p of s 

end 

if (p is not in fence) 

add p to fence; 

if (any operation moved into n) 

for each predecessors p of n 

if (p is not in fence) 

add p to fence; 

end (fill instr) 

3.5.2 Loop Pipelining 

42 

Since ordinary programs t.end to spend most of their time executing loops, 

the ability to parallelize loops has a major impact on the overall parallelization 

of the program. Loop pipelining is a class of techniques for extracting parallelism 

within and across iterations, by overlapping execution of operations from multiple 

iterations of the same loop. This causes a pipelining effect similar to that found 

in hardware pipelining. 

The loop pipelining algorithm used by our compiler was inspired by the Per­

fect Pipelining (PP) algorithm described in [AiNi88c] and the enhanced pipeline 
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scheduling technique detailed in [EbN a89]. Loop pipelining is applied to all inner-

most loops in the program one by one. 

The main goal of any software loop pipelining technique is to schedule dif-

ferent iterations of the same loop in an overlapped fashion so that an iteration 

may start before the previous one has ended. In our compiler the overlapping is 

achieved by allowing operations from the next iteration to percolate up into nodes 

containing operations from the current iteration. The loop pipelining works as 

follows. We keep a global list of instructions called pipeline_fence which is sorted 

originally in a depth-first order. Initially the list contains the loop header only. 

First, all operations in the loop are allowed to move up as high as possible by 

move-op and move-cj transformations (so that the loop body is fully compacted). 

Then, we virtually unwind the loop header by increasing its depth-first number 

so that it is greater than the depth-first number of all its successors. This makes 

the header a real successor of all its predecessors and allows operations from the 

header (which now represent the next iteration) to percolate up into nodes from 

previous iteration. Concurrently, the pipeline_Jence is replaced by all successors 

of nodes that are in the pipeline_/ ence. During this stage of compaction, nodes 

that were previously added to the pipeline_fence are not allowed to break apart. 

In other words, either all their operations can move up or none. Only later, in a 

post-pass, we allow operations from all nodes to percolate up in the loop. This 

process continues with modification of the pipeline_/ ence until no nodes can be 

added to the pipeline_fence. 

The algorithm, as presented, enhances the technique in (EbNa89] to be equiv­

alent to PP. Since Ebcioglu and N akatani are allowing operations to move only into 

nodes that are currently in the pipeline_fence (in other words, nodes that are not in 
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the pipeline_fence can not be parallelized) and since they do not allow the splitting 

of those nodes that have already been in the pipeline_Jence, their algorithm tends 

to converge too fast. While in the case of uni-cycle operations the fast convergence 

is not a determinant factor, with multi-cycle operations it significantly affects the 

speed-up. We alleviated this problem by integrating two changes: first, we allow 

all nodes in the loop to be filled (more aggressive compaction) and second we apply 

the post-pass compaction phase to all nodes such that we actually "simulate" the 

PP technique (in the limit) in a controlled and simpler fashion. In the algorithm 

th~t follows, Maxcomp-for-pipelining() performs the same function as Maxcomp() 

except that nodes that have already been in the pipeline_fence cannot be split. 

procedure Pipeline(loop) 

/* s is a real successor of n if s's DFS number is larger * / 

/* than n's DFS and s is part of the loop * / 

for each instruction n in loop 

mark n as not part of pipeline_fence; 

let pipeline_/ ence= {header instruction of the loop}; 

let pipeline_newfence= {empty set}; 

while pipeline-1ence is not empty begin 

Maxcomp-for-pi pelining(loop); 

for each instruction n in the pipeline_fence begin 

mark n as part of pipeline_fence; 

for all successors s of n 

if ( ( s is a real successor of n) and 

(not filled( s)) and 

( s is not in pipeline_Jence) and 
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( s is not in pipeline_newfence) ) 

add s to pipeline_newfence; 

/* modify n's DFS number to be larger than all its successors * / 

make n a real successor of all its predecessors; 

mark filled(n)= TRUE; 

end 

Maxcomp(loop ); 

let pipeline_fence= pipeline_newfence; 

let pipeline_newfence= empty; 

end (while) 

end (Pipeline) 

3.6 PPS-Related Specific Problems 
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Besides some implementation differences, the extension of PS to PPS trans­

formations required a solution of several delicate problems that are inherent to 

compaction with multi-cycle operations. Pipelined operations (unlike uni-cycle op­

erations) have an impact on nodes as far away as their latency. This has to be taken 

into consideration during compaction, otherwise either significant performance-

degradation or wrong results may occur. These problems include: 

• Disambiguation: while for PS the move up of a load operation to a pre-

decessor node depends only on the predecessor's store operations, in PPS 

one has to further verify that the predecessor's pipe_set does not include an 

element representing a reference to the possibly same location caused by a 
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m m 

n n 

s f6:= f6' s 

(a) before move-op (b) after move-op (wrong) ( c) after move-op (correct) 

Figure 3.4: Before and After Move-op 

store issued in previous nodes. Therefore we need to disambiguate not only 

with 'store operations but also with symbolic derivations induced by store 

operations kept locally in each node. 

• Renaming: while in PS renaming requires extraction of local live information 

stored in the node from which we move the operation and its immediate 

successors, in PPS we have to extract this information from all nodes that 

are in the operation's laten~y distance. Refer to Figure 3.4( a) and suppose 

we want to move op from n to m and assume that the load takes two cycles. 

Since f 6 is read by another. operation in n it has to be renamed. 

With PS we would pick f6' to be the renamed register (!6' is dead in n) 

and get the segment shown in Figure 3.4(b). However, this code is obviously 

wrong since f6 in s uses a the value computed by f6 := f6'. Therefore, 

for PPS we have to find a register that is dead not only in n but also in its 

successors. Doing this yields the code shown in Figure 3.4( c). 
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• Resource Constrained Scheduling: when deferring pipelined operations (see 

Chapter 5) care must be taken to preserve correctness in order of modifica-

ti on. 

• Simulator: when two pipelined operations modify the same register in the 

register-file in the same cycle-only the one that was issued later determines 

the value of the register. 

In the remainder of this section we present two other problems encountered 

with PPS during the parallelization process. Although the problems may be re-

garded as implementation-specific, we believe that they apply in general to any 

local transformation that handles multi-cycle operations. 

3.6.1 Blocking of Loop Pipelining by Operations Outside 

the Loop 

Suppose the following loop is giyen: 

for (i=O; i < 10; i++) 

x[i] = x[i] + 2.0 

We assume in this example that additions and memory loads take 2 cycles, 

while all other operations take one cycle. This loop transforms into the three­

address-code shown in Figure 3.5 (for simplicity, we omitted the exit test). 

After i := i + 4 moves across the backedge and percolates up, we get the 

program illustrated in Figure 3.6. However, without any further change the loop 

pipelining process terminates here because the induced_field of i := i + 4 (which is 
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Figure 3.5: Three Address Code for The Loop 
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outside the loop, now) reaches nodes inside the loop. In particular, x := M[i+O] is 

blocked from moving into node m and it blocks the motion of other operations as 

well. In other words, operations which are not part of the loop limit the parallelism 

inside the loop. To alleviate this problem, we trade parallelism outside the loop 

for parallelism inside (which is much more critical). This is done by the insertion 

of extra empty nodes (up to the latency of the operation leaving the loop) between 

the operation that has left the loop (during loop pipelining, in this case i := i + 4) 

and the loop as shown in Figure 3. 7. This guarantees that no operation outside 

the loop will prevent motion inside the loop. The solution proposed here enables 

compaction of the loop into 2 nodes as shown in Figure 3.8, while without insertion 

the loop would be compacted into 6 nodes. 

3.6.2 Renaming During Pipelining 

We illustrate in this section another example of a problem related to com­

paction with multi-cycle operations. Consider the partially compacted code shown 

in Figure 3.9. When trying to move the operation x := x + 2.0 from n to m we 

have to rename x (since it is used by the other operation in n. According to move-

op, when performing a renaming of variable x into x', we add a copy operation 

x := x' in all successors of min a distance equal to this operation's latency. Let's 

assume that a floating-point addition takes 3 cycles. In this case, it seems that 

the copy operation should be added to node las shown in Figure 3.10, but this 

may lead to a incorrect code since node l is executed before node m. Hence, in 

order to guarantee a correct renaming, whenever the copy operation is added to a 
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m 

Figure 3.6: Code After i := i + 4 Percolated Up 
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m 

Figure 3. 7: Code After Insertion of an Empty Node 
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i':~ i" 
x:= x' + 2 
x';= M[i" +O] 
i"~= i" + 4 

Figure 3.8: Final Code 
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Figure 3. 9: Initial Code 

node that may be executed before node m, an extra node is added before the loop 

header to compensate for this copy. This is shown in Figure 3.11. 

3. 7 Examples 

The two examples presented in this section show why our PPS transforma­

tions yield better results than PS (with insertion of empty nodes after compaction) 

and Trace Scheduling (TS) with multi-cycle operations. 

3. 7.1 Example 1 

Assume the following code segment is given: 

LABEL Ll: 

a:= c * 1.0; 3 cycles 
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1 

Figure 3.10: Code After Renaming 

x':= x 

Figure 3 .11: Final Code 
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LABEL L2: 

LABEL L3: 

c := M[O + b]; 

b := 2.0; 

d :=a* 3.0; 

if d <= 0 GOTO L2; 

e := b * 4.0; 

f := c * 5.0; 

g := fix( e); 

M[f + 1] := g; 

GOTO L3 

e := b * 4.0; 

f := C* 5.0; 

g := fix(e); 

M[f + 2] := g; 

EXIT 

2 cycles 

1 cycle 

3 cycles 

1 cycle 

3 cycles 

3 cycles 

1 cycle 

1 cycle 

3 cycles 

3 cycles 

1 cycle 

1 cycle 
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The latencies of the operations are listed next to the serial code. The serial 
.; 

execution time of any of the two paths is 18 cycles. By applying PPS we get the 

code depicted in Figure 3.12 below. This shows that code is compacted into 7 

cycles. On the other hand, TS would pick one of the traces (let's say the TRUE 

branch) and would compact only this trace. But after compacting this trace all 

other operations in the FALSE branch can NOT move any more into the compacted 

trace which results in execution time of 7 cycles on one trace but 12 cycles on 
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EXIT 

Figure 3.12: Example 1: Compacted Code by PPS 

the other. This difference is partly due to PS, but is exacerbated by operations' 

latencies. 2 

3.7.2 Example 2 

The following example sh9ws the power of PPS over PS, assuming each op­

eration takes 1 cycle, and then inserting empty cycles to satisfy the real latencies 

of operations: 

LABEL Ll: 

a:= c * 1.0; 3 cycles 

2Presumably there are other paths going through 12 implying that normal code hoisting would 

fail to eliminate the same operations on different branches. 
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b :=a* 3.0; 3 cycles 

c :=-a; 1 cycle 

d :=a+ 2.0; 2 cycle 

if c <= 0 GOTO L2; 1 cycle 

g := fix(b); 1 cycle 

M[e + 1] := d; 1 cycle 

GOTO Ll 

LABEL L2: 

g := fix(b); 1 cycle 

M[e + 2] := d; 1 cycle 

EXIT 

Again, the latencies of the operations are given in the code. Figure 3.13 

shows the compaction derived by PPS-a sequential loop with execution time of 

12 cycles is compacted into a parallel loop with execution time of 4 cycles. If 

we apply PS on the same loop, assuming each operation takes 1 cycle, we get a 

compacted graph' which also has 4 cycles in the loop. Now, if after compacting the 

code with one-cycle operations, we insert empty nodes to satisfy real latencies and 

then attempt to locally compact, we'' get a loop which takes 6 cycles to complete 

(compared to 4 with PPS) as shown in figure 3.14. The reason for that difference 

is that while PPS fills nodes as tightly as possible, allowing general motion of 

multi-cycle operations, PS followed by insertion of empty cycles does not allow the 

movement of operations out of the basic block (after the initial compaction has 

been done) and thus prevents better compaction. Of course, we could try to remove 
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EXIT 

Figure 3.13: Example 2: Compacted Code by PPS 

these constraints, but to do this with any generality would require transformations 

akin to those provided by PPS. 

I 
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Figure 3.14: Example 2: Compacted Code by PS 
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Chapter 4 

Register allocation, renaming 

and their impact on our compiler 

4.1 When Should Register Allocation Be Done? 

Registers have been considered for years as one of the most precious resources 

in any architecture design. Integration (space) and timing (address decoding) 

limitations restricted the total number of registers on chip. Accordingly, a good 

style of programming and/or a good :policy of register allocation for a compiler 

has been one that makes efficient use of registers. This has been accomplished 

by compiling source programs into machine language using ·a minimal number of 

registers, assigning the same register~ to variables whose runtime life-spans do not 

overlap. Such use of registers is beneficial for sequential machines. However, the re­

use of registers in high-performance, pipelined, fine-grain parallel architectures may 

severely decrease performance since it limits the ability of fine-grain parallelizing 

compilers to compact programs [El86, CKV85]. 

In parallel architectures, ideally, only true data-dependency (and resources 

availability) should limit the parallelism. Re-use of registers limits the achievable 
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parallelism since it introduces a false ordering (dependency) between operations.1 

This could cause a substantial degradation in performance. Consider, for example, 

the following program segment: 

1: a:= b + c; 

2: d :=a* e; 

3: a:= f + g; 

4: h :=a+ k; 

Here, d := a*e has to be executed after a:= b+c. That is a strict data-dependency. 

On the other hand, a := f + g is prevented from being scheduled in parallel with 

a := b + c, only because it re-uses register a which is read by d := a * e. This 

dependency is called an anti-dependency [CKV85]. But this dependency need not 

limit the parallelism. Renaming register a to a' would yield the following: 

1: 

2: 

a:= b + c; 

d :=a* e; 

a':= f + g; 

h :=a'+ k; 

which is two cycles shorter. Thus by using an additional register (a') we have 

increased the parallelism of the program. Another source of false dependency is 

called output dependency which occurs when two operations write to the same 

output register. In the example above, operations a := f + g and a := b + c 

modify ·the same registers. Without renaming, a := f + g cannot move above 

a := b + c. As will be shown in Section 4.2, the effect of renaming becomes even 

more important during loop pipelining [RaG182, GrLa86, Eb87, AiNi88c] when 

1 While in uni-cycle operations this artificial dependency prevents an operation from moving 

up one step, for multi-cycle operations it blocks a move of several cycles (equal to the latency of 

the operation which causes this anti-dependency}. 
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operations are allowed to move out of their original iteration in order to achieve 

parallelization both across and within loop iterations. 

Thus fine-grain parallelizing compilers face two mutually contradictory con-

straints: on the one hand registers should be aggressively re-used to avoid spilling 

and its ensuing inefficiency, while on the other hand anti/output dependencies 

should be eliminated to increase parallelism. In this context the time when regis­

ter allocation is done becomes critical to the quality of the code produced. 

If register allocation is carried out before compaction, the best strategy to 

avoid undully .limiting parallelism is to use as many registers as necessary ( essen-

tially equivalent to transforming the code into quasi static-single-assignment (SSA) 

form [CFRWZ89]). Unfortunately, the total number of registers needed is usually 

greater ·than the number physically available. Hence, some registers have to be 

re-used. Ideally, we would like to refrain from re-use in places where it actually 

inhibits the compaction, and allow re-use where it is insignificant. However, if 

register allocation precedes the comp~ction phase, this information is unavailable 

and we may end up with re-use of registers in the wrong places. 

A second ·approach is to performregister allocation after compaction has been 

completed. This method allows unlimited virtual registers during compaction. 2 In 

a post compaction pass, the virtual registers are mapped to the actual architec-

ture's registers. Of course, if the number of registers needed exceeds the number 

2That is, a new virtual register is used for each computed operand and its associated use(s). 

This may be achieved simply during translation of the input into intermediate code, for non-loop 

code. However, for maximizing parallelism in loops (in the context of loop pipelining), renaming 

is still necessary as will be discussed in Section 4.2. 
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of actual registers-· spilling to memory is required. Performing spilling after com­

paction may severely damage the carefully parallelized ("packed") code, yielding 

inefficient schedules. In fact, the performance obtained by this approach on its own 

can be so poor that compilers using it (e.g. Cydrome, Fujitsu) resort to repeated 

compaction of the new program whenever a spill occurs. While after such iterative 

compaction the code quality is very good, this repeated computation can be very 

time costly in cases where many spills occur. 

Ideally, we would like to do register allocation during compaction which 

would make meaningful trade-offs possible. However, this implies dealing with 

two NP-hard problems (functional units allocation and register allocation) during 

compaction, presenting an exceedingly complex task. Because of the difficulty in­

volved, this approach has been avoided by existing compilers which instead chose 

one of the simpler approaches above. 

In this chapter we propose a simple alternative that allows the flexibility of 

renaming during compaction while avoiding spilling and the complexity of per-

forming full register allocation during the parallelization process. We start by 

performing conventional register· allocation before compaction. However, during 

compaction we allow renaming to remove false dependencies that prevent other-

wise desirable// easible code trans/ ormations-provided a register is available at 

that point. So, extra registers are used only when actually needed to enhance 

parallelism, and only if the benefits are not offset by spilling cost. 
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4.2 Renaming in Fine-Grain Parallelizing Com-

pilers 

The price paid for register renaming is not. only the increase in number of 

registers. If renaming is to be done during fine-grain compaction, it needs to be very 

efficient. In particular, we simply cannot afford to do global searches for uses of 

the registers being renamed, and potentially complex code transformations to allow 

semantically correct renaming. Consider again the previous example. Register a in 

a:= f +g has been renamed to a':= f +g. Consequently, in all following operations 

using a, we substituted a'. In general there might be multiple, distant, uses of 

register a requiring a global search throughout the program. Furthermore, even if 

all uses are located, renaming may not be immediately feasible, as shown in the 

example in Section 4.2.2. To avoid these problems during compaction, renaming 

can be carried out by leaving a copy operation in place of the renamed operation, 

to reassign the value computed to the original register. Thus, by adding an extra 

copy to the code, renaming is convert'ed into a local, efficient transformation and 

the need for search and issues of semantic preservation are eliminated: 

1: a:= b + c; a':= f + g; 

2: d :=a* e; a:= a'; 

3: h :=a+ k; 

However, the copies introduced may create their own set of problems. The effect 

of introducing extra copies is especially critical when loop pipelining is performed 

and a considerable number of operations (from multiple iterations of the loop) are 

exposed to renaming. This may cause significant code-explosion. Furthermore, if 

these copies are left in the code, their execution results in a waste of functional 



65 

units. So, when considering renaming as a parallelization aid in fine-grain compil-

ers, special care must be taken to maintain a good schedule taking into account all 

the resources available (functional units and registers)-otherwise renaming may 

not be beneficial. 

4.2.1 Local Copy Bypassing 

The renaming process, using copy operations in the code, does not (by itself) 

significantly increase parallelism. Another local substitution is required to tap the 

full potential of renaming. Refer again to the previous example. Here, h := a + k 

cannot move up into cycle 2 since it depends on a := a'. However, since this 

data-dependency is generated by a copy operation, we can always substitute a' in 

h := a + k and rewrite the schedule as: 

1: a:= b + c; a':= f + g; 

2: d :=a* e; a:= a'; h :=a'+ k; 

which is one cycle shorter. This optimization is local (applied during one of the local 

PS transformations) and therefore simple and efficient. Obviously, if all operations 

using a move above the copy during PS, a:= a' becomes dead and can be removed 

locally from the code. 

4.2.2 Renaming During Loop Pipelining 

Loop pipelining (see Section 3.5.2) involves unwinding the loop body and 

compacting the resulting code. This incremental process repeats until data-dependencies 

force the emergence of a repeating pattern which then becomes the compacted loop 

I 
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body. In general, the amount of unwinding cannot be precisely predetermined, 

particularly in the presence of conditional jumps. Thus, static renaming (e.g. on 

the loop body or on some small and fixed number of unrolled iterations) is not 

satisfactory. Dynamic renaming is needed. 

The overlapping effect is achieved in our technique by allowing operations 

from the next iteration to percolate up into nodes containing operations from the 

current iteration. To illustrate the application of renaming during the process of 

loop pipelining consider the following example: 

for( i = 1; i < 20; i + +) 

A[i] = 4 * (A[i] + 8) + A[i]; 

This loop translates into the following three-address-code (all operations 

listed in the same node number are executed in parallel):3 

PROGJ3EGIN: 

node 1: i := O; 

LABEL LOOP: 

node 2: a:= M[i + 4]; 

node 3: b :=a+ 8; 

node 4: c := b * 4; 

node 5: d :=a+ c; 

node 6: · i := i + 4; 

node 7: M[i + O] := d; 

node 8: ccO := i <= 80; 

3 For simplicity, we do not draw the program graph but. use labels to denote nodes. 
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node 9: IF ccO GOTO LABEL LOOP; 

LABEL EXIT: 

node 10: RETURN; 

PROG_END 

Also, in order to simplify the explanation we ignore the exit test operations 

(nodes 8 and 9). Omitting these two operations and compacting the loop body 

yields the (partially) compacted code: 

PROG_BEGIN: 

node 1: 

LABEL LOOP: 

node 2: 

node 3: 

node 4: 

node 5: 

node 6: 

LABEL EXIT: 

node 7: 

PROG_END 

i := O; 

a := M[i + 4]; i := i + 4; 

b :=a+ 8; 

c := b * 4; 

d :=a+ c; 

M[i + O] := d; GOTO LOOP 

RETURN; 

The next step is to unfold the next iteration of the loop and try to percolate 

its operations upwards. For example, after operations from the first node of the 

second iteration have percolated the code would be: 

PROG_BEGIN: 

node 1: i := O; 

node 2: a := M( i + 4]; i : = i + 4; 

I 



LABEL LOOP: 

node 3: 

node 4: 

node 5: 

node 6: 

LABEL EXIT: 

node 7: 

PROG_END 

b :=a+ 8; 

c := b * 4; 

d :=a+ c; a:= M[i + 4]; 

M[i + O] := d; i := i + 4; 

RETURN; 
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GOTO LOOP 

Without renaming, neither a := M[i + 4] nor i := i + 4 can move any further. 

Both a and i are used_ by other operations in their corresponding nodes. This 

sort of dependency is common in loops since the index (as well as other v~riables) 

are often used repeatedly in successive iterations, greatly restricting parallelism. 

However, with renaming further motion is allowed. This process continues and 

further iterations are unfolded and percolated until a repeating pattern emerges 

in the schedule. For our example the final schedule (after pipelining of the next 

iterations) results in: 

PROG.BEGIN: 

node 1: 

node 2: 

node 3: 

node 4: 

node 5: 

LABEL LOOP: 

i := O; 

a := M[i + 4]; i := i + 4; 

b :=a+ 8; 

c := b * 4; 

i" := i' + 4; 

d :=a+ c; 

b :=a"+ 8; 

a' := M[i + 4]; i' := i + 4; 

b :=a'+ 8; a":= M[i + 4]; 

a:= a'; a' :=a"; 

a":= M[i" + 4]; i"' := i" + 4; 

c := b * 4; 
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node 6: M[i +OJ := d; i := i'; i' := i"; i" := i"'; 

d :=a+ Cj a:= a'; a' := a"; c := b * 4; 

b :=a"+ 8; a":= M[i"' + 4]; i"' := i"' + 4; GOTO LOOP 

LABEL EXIT: 

node 7: RETURN; 

PROG_END 

The final schedule shows that the whole loop {6 cycles in sequential form) is 

compacted into one cycle (speed-up of 6) given enough resources. 4 On the other 

hand, if renaming were not performed the overlap of iterations would have been 

minimal, yielding a speed-up of only 2. However, renaming resulted in numerous 

copy operations. If only two functional units were available, no speed-up would be 

obtained without eliminating these copies. Since 5 extra copies are added to the 

original 6 operations in the loop, 6 cycles are required to issue the 11 operation in 

the new loop body. 

Conventional copy propagation techniques will fail to remove the copies gen-

erated in this example. In node 6, i is both defined and used and two different 

definitions of i are reaching the node. Consequently, conventional copy propaga­

tion (and/ or induction variable,; elimination) techniques will not work {it is not 

possible to substitute for i). 

4The speed-up achieved when considering the exit test operation would be 8. 
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4.3 Previous Work 

The effect of storage allocation on parallelism and storage requirements for 

Fortran programs is discussed in (Ku87]. It is shown that "anti-dependency" in­

hibits the parallelism exhibited in scientific programs, therefore renaming (or stor­

age reallocation) is needed. 

(BEH91] compared three code generation approaches on three RISC proces­

sors. The approaches varied from a complete separation between scheduling and 

register allocation to execution of the two tasks interdependently. They found 

that completely separating register allocation from code scheduling produced inef­

ficient code while performing pre-scheduling followed by register allocation when 

the scheduling phase (that was done first) was restricted by the same constraints 

as the register allocator yields the best cost-performance results. 

Cytron and Ferrante (CF87] show that any imperative, Fortran-like language 

can always be transformed into a program whose only constraint on the order 

of execution is the direct flow of values (i.e. a dataflow graph). In addition, a 

polynomial-time algorithm to allocate registers (for a scalar processor), requiring 

no more than the maximum number of simultaneously live registers in the original 

program is given. It is further shown that the number of extra copies introduced 

into the program is O(M) where Mis the total number of multiple definitions of 

variables in the original program. 

In IBM's VLIW machine (Eb88], whose compiler performs register renam-

ing during the parallelization process, an intermediate approach similar in spirit 

to the one proposed here is taken. Instead of rewriting the whole program in a 
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single-assignment-form to allow maximal compaction- loops are unrolled several 

times (the amount of unrolling is determined empirically) so that each iteration 

uses a new set of registers. Consequently, renaming is achieved for registers which 

are defined and used inside the loop body. Although the amount of unrolling is 

determined heuristically in an extra (preliminary) phase-by unrolling the source 

program, the running time of the compiler increases considerably due to code ex­

plosion. Furthermore, this is wasteful in terms of the number of registers required. 

In order to alleviate this problem (Br91] suggests a refinement on this idea. 

Instead of unrolling the loop at the source level, the loop is unrolled in its pipelined 

form (renaming using copies is done during loop pipelining). The amount of un­

rolling can be determined from the length of the longest chain of copy operations 

on each path through the loop. In this way there is no need for multiple iterations 

of compaction, however, code duplication is still problematic. 

4.4 Our Approach. 

Copies created by renaming during the parallelization process may become 

dead and be removed locally ( se~ Seetion 4.2.1) and thus only the remaining copies 

need to be considered for elimination after compaction. Furthermore, another rea-

son for delaying the application of copy elimination is that sometimes these copies 

do not affect the resource-constrained schedule (if there are enough functional 

units )-and thus removal may be unnecessary. 

It is convenient to differentiate between two types of renaming candidates 

during loop pipelining: loop induction variables (IVs), and non-induction variable 
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operations which are eliminated by, loop unwinding. Furthermore, we were looking 

for an algorithm that, while removing copies generated by renaming of IVs, will 

remove redundant IVs as well. The approach described here includes two parts, 

each corresponding to a different source of renaming. Since the technique for 

removal of IV-generated copies does not involve code duplication it is applied first. 

4.4.1 Definitions 

. • A loop is a set of nodes in the program graph such that there is a path 

from each node in the loop to another node in the loop. The loop may be 

irreducible. 

• Loop unwinding means duplicating the whole loop and directing the backedges 

of the previous iteration to the appropriate nodes of the unrolled iteration. 

The two backedges of the loop presented in Figure 4.1 are directed as shown 

by the dotted lines. 

• A variable i is defined using (defined by) j iff i = j + a or i = j. 

• Variables ii, ... ,ik ( k >= 1) are induction variables (IVs) in loop L iff i1 

is defined exactly once by i2, ... ,ik-t is defined exactly once by ik and ik is 

defined exactly once by ii. ii, i .. h are said to be circularly defined. 

• A variable i is an induction variable (IV) in loop L iff i is defined only once 

in L by one of the operations i = i +a, i = j, i = j +a, where j is an IV and 

a is a loop invariant or a constant. An operation that assigns a value to an 

iv is also called a definition of that IV. 

• An IV whose definition in L is of the form i = i +a is called a basic IV, 

otherwise it is called a non-basic IV. 
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(a) Original loop 

exit 

(b) Loop unwound once 

Figure 4.1: Loop Unwinding 

• Two IVs i and j are in the same IV family iff: 
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1. there exist IVs ii, ... ,ik (k >= 0) such that i is defined by ii, i1 is 

defined by i1+i for for l = 1, ... , k - 1, and ik is defined by j, or, 

2. there exist IVs ii, ... ,ik (k >= 0) and j1, ... ,jm (m >= 0) and i0 

such that i is defined by i 1 , i1 is defined by i1+i for l = 1, ... , k - 1, 

and ik is defined by io, and j is defined by ii, in is defined by in+i for 

n = 1, ... , m - 1, and im is defined by i 0 • 

• An IV is said to be an effective IViff it is used as the memory address register 

in some memory access operation (load or store). Otherwise it is called an 

ineffective IV. 
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4.4.2 Elimination of Copies Generated by Induction Vari-

able Renaming 

In this section we describe briefly our technique to remove redundant induc-

tion variables and copies generated during renaming of IVs. The technique was 

developed by Haigeng Wang and described in detail in [NPW91]. 

The technique 

The goal of the technique is to remove as many redundant IVs as possible 

and all copy operations generated by renaming of IVs (during loop pipelining) 

for each IV family in a given loop L while preserving the semantics of loop L. 

The conventional IV elimination algorithm described in [ASU86] cannot remove 

redundant IVs from IV families that have no basic IV since that algorithm assumes 

the existence of a basic IV for each IV family. 

Consider the following example:: 

PROGJ3EGIN: 

i := 5; 

i' := i + 4; 

i" := i' + 4; 

i"' := i" + 4; 

LABEL LOOP: 

r := M[i + O]; 

r := r + l; 
M[i"' + O] := r; 



i := i'; 

i' := i"; 

i" := i"'; 

i"' := i" + 4; 

GOTO LOOP; 

PROG..END 
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In this example there is no basic IV but i, i', i" and i"' form an IV family. 

However, this loop can be transformed into compatible one that includes only one 

IV. Since all these IVs are related, by expressing each IV in terms of an iteration 

count5 we can find the exact difference between all IVs and the one selected to 

remain. This IV derivation problem can be stated as: given a loop L and IV set 

{i1 , ···,in}, where each IV is defined only once in L by ik = i1 +a, k = 1, ... , n, 

l = 1, ... , n, a E Z, and let I be the iteration count of loop L, we want to express 

all IVs in the form i = 8d + i 0 , where Si is the progression of i in each iteration 

and i 0 is the initial value of i up9n entering the loop. 

After selecting which IV is kept and after deriving expression for all IVs, we 

replace all memory expressions in the loop that are using removed IVs with the 

base IV and adjust the offset a/ccordingly. To preserve correctness on all paths 

outside the loop, for each removed IVs that are live at the loop exit, we add 

a compensation operation to reflect the new variables. For example, if i"' was 

replaced by i, i"' is still live outside the loop and i"' is larger than i by 12. In this 

case we have to add i"' := i + 12 to restore the value of i"' as in the original L. 

5The iteration count of a loop counts the number of iterations executed. It can be thought of 

as a canonical IV. 
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4.4.3 Copy elimination through unwinding 

Previous section presented a technique to remove copies generated by renam-

ing of IVs. However, some copies cannot be eliminated without loop unwinding. In 

this section we present a technique to remove other copies generated during loop 

pipelining by loop unwinding. 

The technique 

Copies generated during renaming do not produce new values but rather 

serve to "shift" (already computed) values for future uses. An operation may only 

define one new value for each iteration. However, the copy operations serve to 

preserve values produced by this operation over multiple iterations. The reason 

that loop unwinding is done is to match an operation with its corresponding use, 

so that copy operations are not needed to keep the produced value live until its 

subsequent use. 

To begin with, we split all nodes in the loop that have multiple reaching 

definitions of registers involved in copy operations. For example, if register a is 

involved in one of the copies in the 19op, and node n is part of the loop it is split 

as shown in Figure 4.2. 

Following the split we perform a reaching value analysis for the loop [ASU86]. 

During the reaching value analysis we build, for each node that is part of the loop, 

a mapping table which represents the correspondence between all operations' sym­

bolic values and registers used to store their results. A value is a tuple representing 
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Figure 4.2: A Node Splitting 
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the operation number and the iteration to which the operation belongs.6 For ex­

ample, suppose that a representative node includes the following operations: 

00: f6 := f6' 

12: f6'-:= M[$2 + 1000] 

17: f 4 := /6 + f8 

23: /2 := /8 - /2 

Then, the mapping table may include the following entries: {/6,12:1}, {!6',12:0}, 

{f4,17:0}, {/2,23:0} which means that register f6 holds the value produced by 

operation 12 in the previous itetation, register /6' holds the value produced by 

operation 12 in the current iteration, register f 4 holds the value produced by 

operation 17 in the current iteration and register /2 holds the value produced by 

operation 23 from the current iteration. The next step is to perform a complete 

loop unwinding as shown in Figure 4.1. 

All freed registers (of removed copies) are used later when needed for sub­

stitution. Then, once the reaching value analysis has been applied to this loop 

iteration, all undirected backedges of that loop iteration are directed to any previ­

ous loop headers with a matching mapping table. In other words, a backedge from 

6 Naturally, operations are uniquely numbered. 

I 
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node s may be directed to a node t only if the mapping table at the output of s 

matches the mapping table at t. If there still exist backedges with no matching 

headers, the loop is unwound again. 

Since the number of copies is finite, as is the number of different paths in 

the loop, the number of possible permutations of operations vs. registers (in the 

mapping table) is also finite (we do not add new registers during the substitution 

process). Therefore, the number of unwindings is bound and the algorithm con­

verges. In practice, we found that the number of unwindings required is small 

compared to the theoretical bound. 



Chapter 5 

Resource Constrained Scheduling 

5.1 Resource Constrained Scheduling and Local 

Transformations 

Resource constrained scheduling (RCS) is the process of mapping an unlimited-

resources schedule onto the given architecture, taking into account all its peculiar-

ities and constraints. Since The RCS problem is known to be NP-hard, in practice 

it may be solved only by a heuristic algorithm. This raises questions like: "What 

is a good RC schedule?" or "When· to apply the heuristics?". Basically, there 

are two conceptual alternatives to perform RCS: either consider the constraints 

during the parallelizing process, not allowing the motion of operations into nodes 

that are already filled, or perform an/ unlimited-resources parallelizing process and 

then apply the constraints in another pass. 

The main problem in integrating RCS with any local transformations (like 

PPS), is their different nature. While PPS is a set of local transformations, based 

on local information available at each node, RCS would yield, potentially, bet-

ter results when using global information. In other words, when scheduling for 

a specific node n in the graph, one would like to move into this node the best 

79 
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choice among all operations in the graph rather than among operations which are 

closer to n. Since operations are moved from one node to another by higher-level 

transformations, there is no guarantee that an operation op1 which is closer to n 

will not block another, farther, operation op2 from moving into n, while the better 

choice would be to move op2 first. Hence, a global RCS technique should be applied 

during the RCS process. 

That is exactly what Ebcioglu and Nicolau propose in [EbNi89]. Their tech-

nique integrates resource limitations into the Percolation Scheduling transforma-

tional model without sacrificing the generality and completeness of PS. The tech­

nique relies on information called unifiable_ops that is- kept locally for each node 

in the graph. The unifiable_ops of a node is the set of all operations in the pro­

gram that can potentially be scheduled in it., This information is computed for the 

serial (uncompacted) program and updated incrementally during the parallelizing 

process. Hence, the RCS problem can be stated as: "among all operations in the 

unifiable_ops find the best k choices and move them up into this node". Since 

the information in unifiable_ops is incrementally updated during compaction the 

"best" global information is available for making the choices at every step. 

Another approach, which is used by our compiler, is to extract first the 

maximal parallelism, ignoring resource constraints and then, in another pass, map 

this schedule with the given resources by "splitting" nodes with more operations 

than allowed to meet the constraints. 

The main argument against the latter technique is that it may have to undo 

some of the code motions performed in the unrestricted phase, thus increasing 

the compaction time. In addition, since some of the transformations do not have a 

I 
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unique inverse-undoing them may produce worse code than the original program. 

In order to have a measure for these claims, we have implemented at the early 

stages of our project both techniques (the global technique was implemented in 

CMU [Br91]). It turned out that the compaction time with the former technique 

was much higher than with the latter. That was mainly due to the time spent in 

computing and modifying the unifiable_ops information. 

On the other hand, we show in [PLNG90] that starting from an unlimited-

resources schedule, which is in most cases the optimal schedule, is one of the most 

important factors in scheduling because it offers a good lower bound for the total 

execution time. Without this bound it is sometimes very hard to estimate what 

would be the best performance of an application, making the heuristic algorithm 

harder (when to stop?, what is a "good" schedule?). 

Another important argument in favor of our technique is that it actually en-

ables exposure of all optimizations since operations are compacted first without 

taking resource constraints into accolfnt. On the other hand, when resource con­

straints are inherent to the parallelization process, the order in which operations 

are selected for scheduling implies whether an optimization is invoked or not. By 

(heuristically) preferring some operations, we may loose some important optimiza­

tions. For example, in Section 7.3 we present the load-after-store optimization. In 

this optimization a load operation is eliminated when the two nodes involved in 

the move-op transformation have a specific pattern (the node to which the opera­

tion moves contains a store into a memory location and the node from which the 

operation moves includes a load from the same location). The unlimited-resources 

schedule will always expose this pattern when it exists. However, if RC heuris­

tics are integrated in the scheduler only a specific selection of operations during 
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resource constraints scheduling will yield the same effect. Furthermore, once this 

load is eliminated, there is obviously no need to schedule it later with resource 

constraints. · 

5.2 Our Technique 

Using a heuristic to solve the NP-hard RCS problem implies a priority func-

tiqn to select the "most important" operations to be scheduled in a node. The 

priority function we have selected is a weighted priority function. It includes two 

measures that characterize the operation. First is the mobility of the operation. 

The mobility1 of an operation is the "freedom" one has in scheduling this oper­

ation without stretching the whole schedule [PaGa86]. When an operation can 

be deferred by one cycle and does not cause a subsequent increase in the total 

execution time its mobility is one. In other words, operations on critical paths 

have a zero mobility (delaying these operation lengthens the schedule) while op­

erations not on critical paths may have positive mobility. The mobility itself is 

prioritized: critical paths in inner-loops are more important then critical paths in 

non-inner-loops or non loop sections of the program. Naturally, we tend to defer 

operations with highest mobility. The other measure characterizing the priority 

of an operation is its precedence_number in the original (non-compacted) program. 

The precedence_number indicates its original "distance" from the program header. 

Basically, our algorithm is a list-scheduling-based RCS with mobility and prece-

dence_number as a heuristic. 

1This is the term that is used in High Level Synthesis. 
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k 

Figure 5.1: Code Segment Before Deferring of opl 

The resource constraints include the maximal number of functional units of 

each kind (adders, multipliers etc.) that are available per node and the total num­

ber of operations (if less than the sum of partial constraints) executable per node. 

The RCS process is carried out by traversing all nodes in the (unlimited-resources) 

compacted program. For each node we compare ,the number of operations sched-

uled with the allowable number and when some operations have to be deferred-

they are selected in an order according to their priority. When deferring operations 

care must be taken not to violate program correctness. An operation selected for 

deferring has to be deferred on all paths it belongs to. In Figure 5.1, suppose that 

opl is selected for deferring. In this case two new nodes are created and inserted 

between nodes n and k and l. Opl is deferred from n to the newly created nodes 

k' and l'. The resulting segment is shown in Figure 5.2. 

When a conditional jump has to be deferred, the lowest one in the operation 

tree is always the one selected for deferring. After the conditional jump has been 

deferred, the code segment of Figure 5.1 will be transformed into the one shown 

in Figure 5.3. 
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Figure 5.2: Code Segment After Deferring of opl 

k 

Figure 5.3: Code Segment After Deferring of Conditional 
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Figure 5.4: Code Segment Before Compaction 

The second priority measure of an operation, its precedence_number, is an 

important one since omitting it may yield a compacted program whose execution 

time is worse than the original (seque.ntial) program. We clarify this by the example 

illustrated in Figure 5.4. After (unlimited-resources) compaction this segment 

transformed to the one shown in Figure 5.5. Now assume that two operations are 

executable per node and assume that priorities of all three operations in node n 

are such that ccO := J(b, c) was selected to be deferred. In this case we get the 

segment illustrated in Figure 5.6. 

This schedule is worse than the original ( uncompacted) schedule despite that 

two operations are executable per node!. In the original schedule it took two 

steps to execute the path from Ll to EXIT while in the compacted program it 

takes 3 steps. This happens because PPS allows speculative execution of opera­

tions (i.e. operations are scheduled to be executed before the condition to execute 

them has been resolved). In order to prevent such cases, each operation in the 
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Figure 5.5: Code Segment After Compaction 
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Figure 5.6: Code Segment After RCS 
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original program graph is assigned a precedence_number. All operations below a 

conditional jump are assigned a precedence_number which is greater by one than 

the precedence_number of operations above this conditional. Thus, the rule for 

deferring can be stated as: "among all operations in the node choose to defer the 

ones with the greatest precedence_number. Among all operations having the same 

precedence_number choose the ones with the highest mobility. 

5.3 Resource Constrained Scheduling Algorithm 

The RCS process is detailed hierarchically in this section. 

procedure RCS() 

/* real successor= successor not through backedge * / 
assign mobility and precedence_number to all operations in the program; 

for each instruction n in the program 

RCJUled(n)= FALSE; 

let RC_f ence= {header instruction of the program}; 

let RC_newfence= {empty set}; 

while RC-fence is not empty begJn 

for each instruction n in the fence 

RC _sched uleJnst ( n); 

RC_maxcomp(program); 

for each instruction n in the fen~e begin 

for all successors s of n 

if ( ( s is a real successor of n) and 



(not RCJl.lled(s)) and 

(s is not in RC_fence) and 

(s is not in RC_newfence) ) 

add s to RC_newfence; 

mark RCJl.lled(n)= TRUE; 

end 

let RC_fence= RC_newfence; 

let RC_newfence= {empty set}; 

end (while) 

end (RCS) 
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RCS(), which is the highest-level RCS procedure, uses two other proce­

dures: RC...scheduleinst() and RC_maxcomp(). The former schedules each node 

in the program such that it meets the resource constraints while RC_maxcomp() 

tries to maximally compact the program after all nodes in RC_fence have been 

scheduled. The procedure RC_m~xcomp() is different from the Maxcomp() proce­

dure described in 3.5.1 in that nodes that have already been scheduled with RC 

(RCJl.lled(n)=TRUE) are not involved in the parallelizing process anymore (they 

are presumably full). 

procedure RC...scheduleJnst(n: instruction) 

while RC violation begin 

op_to_defer= selecLcandi date( n); 

create_new _nodesJn...successors_of( op_to_defer); 

defer_op( op_to_defer ); 

update number of operations in n; 

; 

j 
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end (while) 

end (RC...scheduleJnst) 

SelecLcandidate( n) chooses the best operation to defer according to the cri­

teria explained above. Create_new _nodes_in...successors_of () creates new nodes at 

all successors of op_to_defer as explained earlier and defer _op() performs the actual 

deferring of the operation. 
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Chapter 6 

Tree Height Reduction 

PPS transformations are parallelizing, semantic-preserving transformations 

that convert a serial program to a parallel one while maintaining the original data­

dependencies between operations. Consequently, the compaction is limited only 

by data-dependencies and resources' availability. In this context two interesting 

questions are: 

• Is there any way to further compact the code (while preserving correctness) 

at the expense of additional computation? 

• With the given resource constra~nts, can the (PPS-compacted) code be fur­

ther parallelized? 

The questions are especially important when very high performance is needed, 

even at the expense of more hardware, and when one wishes to maximize the 

utilization of a given design (i.e. for given resource constraints to achieve shorter 

schedules). Suppose the schedule illustrated in Figure 6.l(a) is given and the 

resource constraints are such that the use of only 2 adders is allowed. 

Without any semantic transformation four steps are required to execute this 

segment. In three out of the four cycles resources are not fully used. However, 

this segment may be rescheduled as shown in Figure 6.l(b) which is one cycle 

90 
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------------------------------
(a) schedule before THR 

------------------------------
(b) schedule after THR 

Figure 6.1: Better Utilization of Resources 

I 

I 
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shorter under the same resource constraints. This is achieved through additional 

computation (two operations in this case). This schedule length reduction is called 

Tree Height Reduction (THR). 

THR is a well known technique (KuMuCh72, Ku78], which was introduced 

many years ago, for reducing the height of an expression tree. The question is: "If 

so, why has THR not been widely used by other scheduling systems?". The answer 

to this question is two fold. First, THR is effective only when there is a long-enough 

chain of operations that are data-dependent. Unfortunately, the original THR was 

only applicable to operations within basic blocks. Since the average number of 

operations within a basic block is 4-5 (TjF170] (and not all of these will always 

form a chain) potential speed-up in basic blocks is limited. Second, the traditional 

implementation of THR required global information about the whole expression 

to be reduced. This prevented integration of THR into any of the existing local 

and incremental parallelizing transformations (List Scheduling, Trace Scheduling, 

PS etc.). 

Obviously, if one considers only basic blocks, the chain of dependencies is 

not long enough to expose the strength of THR, but by looking at the global 

RTL-level parallelism we are able to go past conditional jumps and have a longer 

chain of operations which improves the potential parallelism. This is particularly 

noticeable when combined with loop pipelining, when operations from different 

iterations make this chain even longer. 

By designing a set of incremental transformations for THR that integrate 

into our system of local transformations we overcome the previous problems asso-

dated with THR. In this context incremental and local THR has some important 
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advantages: it is not as ad hoc as the global one, it has more general application, 

it is easier to implement and it interfaces very well with other local parallelizing 

transformations and enables better control of resources. 

Furthermore, the local and incremental aspect of our technique will exploit 

potential opportunities wherever they are interspersed in the program; so even in 

a program that is not as regular as in the above example, we may still benefit from 

local opportunities interspersed throughout the program. 

The application of our THR is controlled by the resources available such 

that it only "fills" unused resources. Thus, the traditional concern that THR 

may degrade performance by generating redundant code that cannot translate into 

speed-up (due to limited resources) is· completely eliminated by our incremental 

approach. 

Besides the fact that THR is able to compact programs when other tech-

niques fail due to data-dependency between operations, it has another interesting 

property: while known compaction techniques yield a constant factor of speed-

up (even with unlimited resources), THR has a potential speed-up of O(n/ log n) 

[Ku78]. 

In performing THR care must be taken not to violate the numerical stability 

of the code. This problem may occur when the code includes two operations like: 

a:= b- c 

d :=a* e 

This may be transformed during THR into d := b * e - c * e. If the values of b or 

c are too large but the value of their difference is still small, the order in which 
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Figure 6.2: Sample Digital Filter 

the expression is evaluated may be significant. However, the algorithm presented 

in this chapter may be used selectively and in cases where numerical stability is 

violated the algorithm would disallow it. We believe that in most cases THR can 

be applied without detrimental side effects. 

Although our implementation of THR can handle pipelined operations, for 

simplicity, we assume throughout the algorithm description that all operations are 

uni-cycle. The extension of the incremental THR algorithm to pipelined operations 

is straightforward. 

6.1 THR Applications 

Although [Ku78] claims that applying THR to multi-operation machines 

"would be quite disappointing", we found a wide range of applications for THR. 

Digital filters are potential candidates for THR since they have a chain of addi­

tions (resulting from the different delay elements), as shown in Figure 6.2, and 

since they are usually implementing loops that may be pipelined, so that many 

more operations may be exposed to THR. 

I 
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Another common candidate for THR is the computation of array elements. 

This includes sum of vector elements, dot product and simple recurrences where one 

can find a chain of dependent operations. Although these chains of dependencies 

are simple-they prevent any reduction to parallel form without an algorithmic 

change. Given enough resources, THR will reduce the computation time for all 

these examples from O(n) to O(log n ). 

6.2 Algorithm Description 

6.2.1 Background 

The idea behind tree height reduction is to try to compact a program at 

the expense of additional computation (that results, sometimes, in an increase in 

design area). In a design where execution of more than one operation per cycle is 

possible, it is natural to utilize all available (unused) resources in order to increase 

performance. Hence, THR is adding more operations to the program that can 

be executed by these "free" resources such that the total execution time of the 

program is reduced. 

THR takes advantage of the associativity and distributivity properties of 

arithmetic operations. For simplicity, we only present the algorithm with addi­

tion, multiplication and subtraction. It can be extended easily to programs with 

divisions and logical (AND, OR) operations as well. 
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6.2.2 Definitions 

In this section we define some notations used later in the algorithm: 

• Program: 

The program is the one defined in Section 2.4. 

• Operation: 

Each operation has a type (op_type) and variables which are called uses 

variables (for operands read) and a def variable (for operands written). For 

the operation: a := b * c the def is a and the uses are b and c. The op_type 

is multiplication. 

• CurrenLop: 

The operation currently being examined (or the operation we are trying to 

schedule earlier than its current cycle). 

• Selected_path: 

The path selected for THR. 

• Later_definer and earlier_definet: 

The operations defining the uses of currenLop. In a := b * c, b and c are 

called the "definers" of a. Suppose the following program is given: 

cycle (k) : 

cycle (k+l): 

cycle (k+2): 

b := d + e; 

c := h - e; 

a:= b * c; 

We will call the operation (c := h-e) the later_definerof operation (a:= b*c) 

while the operation ( b := d + e) is called the earlier_definer of the currenLop. 

• Available variable: 

A variable is said to be available in cycle (k) if it is defined at cycle (k-1) or 
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earlier. In the example above c is available in cycle (k+2) while b is in cycle 

(k+l). 

• Percolate Operations: 

Compact the program using PPS transformations (see Chapter 3). 

6.2.3 Algorithm in Detail 

Our local and incremental THR algorithm can be invoked in one of two ways. 

If during the incremental process, in which PS is trying to move an operation up 

from a node to its predecessor, a dependency is encountered then THR is invoked 

to incrementally change the code to allow the motion. Alternatively, incremental 

THR can be invoked in the final phase of the compaction process, after all data-

independent operations have moved up as high as possible and there are still unused 

resources to "fill". In either of the former cases only those nodes in the graph that 

are not full, may be considered for incremental THR. 

When activated for a particular operation the algorithm checks whether it 

could be scheduled earlier than its current cycle by introduction of a new operation 

that can be performed early enough to be used to eliminate the dependency on 

the later_definer and advance th:e schedule of the currenLop. Since each node may 

have more than one predecessor node (several incoming paths), incremental THR 

should be performed with respect to selected_paths in the program. On different 
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paths, each operation may have different later_definer and different earlier_definer, 

thus each path should be considered separately.1 

Although it is usually sufficient to check only adjacent nodes in the program, 

thus preserving locality, it turns out that in order to achieve optimality (in the 

presence of sufficient resources), the whole chain of operations on the path has 

to be checked. This process is not needed when the resources are limited. The 

following algorithmic description refers to the optimal reduction on each path. 

The algorithm analyzes two cases differently. The first is when the asso-

ciativity property of operations is used, which happens whenever the currenLop 

and its later_definer constitute one of the following pairs: ADD/ ADD, ADD/SUB, 

SUB/ ADD, SUB/SUB and MUL/MUL. The other case is when currenLop is MUL 

and its later_definer is either ADD or SUB where the distributivity property is used. 

In any of these cases we try to hoist currenLop from its current node (cycle) to a 

predecessor node, which eventually may reduce the length of the program. 

Necessary and sufficient conditions for an operation to be hoisted: 

1. One of its definers must be available at least two cycles earlier than itself 

on the path selected. 

2. currenLop's later _definer has a definer which is available at least two cycles 

earlier than currenLop's cycle on that path. 

1This does not mean that the algorithm needs to consider all paths; we may simply concentrate 

on only one or several important paths. Due to the incremental nature of the transformations 

we can stop at any point in the process and still have correct code. 
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3. If currenLop is ADD or SUB then later_definer has to be either ADD or 

SUB. (These legal combinations constitute a "legal" chain). If, on the other 

hand, currenLop is MUL, the later_definer might be either MUL, ADD or 

SUB. 

4. Both currenLop and its definers have two uses variables. 

5. All relevant nodes on the path (into which new operations are added) have 

free resources. 

Procedures 

The procedures are described in this section in a top-down manner. 

procedure THR_Analysis( selected_path) 

for each node n in the selected_path begin 

reset back_track flag; 

for each operations in n be~in 

if current_op meets the conditions begin 

switch 

case associativity: 

Associativity _Analysis( currenLop); 

case distributivity: 

Distributivity _Analysis( currenLop); 

end 

percolate operations on the path; 

end 

end 
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if back_track is set 

recheck predecessor node; 

else 

check next node; 

end 

end ( T HR_A nalysis) 

The back_track flag causes backtracking to the previous node. This node has 

to be rechecked due to the possible creation of "new" legal chains of operations 

following the "pushing" of multiplications upward. These chains may create further 

THR opportunities. See example 1. 

procedure Associativity_A nalysis( currenLop) 

if currenLop is SUB and later_definer is its subtrahend 

set sign_flag; 

earliest_op= Find.Jiighest_A vaiLOp( currenLop); 

if succeeded to find such an operation begin 

/* add new operations recursively to path * / 

Climb_Up(modified op_type, earliesLop's earlier_definer, 

currenLop's later_definer); 

remove currenLop from list; 

end 

end ( Associativity_A nalysis) 

SignJlag controls the correct addition of SUB operations into the program. We 

need to flip the operands whenever we find a SUB and its later_definer is its 

subtrahend. 
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procedure Distributivity_A nalysis( currenLop) 

/* the procedure is called when currenLop is of the form d :=a* (b + c). 

In this case we do not try to hoist cl-but rather use the distributivity 

property and convert d into d := a * b + a * c. * / 
/* add first additive (a* b) * / 
add new operation with (MUL type, later_definer's earlier_definer, 

currenLop 's earlier_definer) into later_definer's node; 

/* add second additive (a* c) * / 

add new operation with (MUL type, later_definer's later_definer, 

currenLop 's earlier_definer) into later_definer's node; 

/* add modified currenLop ( d) * / 
add new operation with (later_definer's type, firsLadditive, second_additive) 

into currenLop's node; 

remove currenLop from list; 

set back_track flag; 

end ( Distributivity_A nalysis) 

procedure Find_HighesLA vaiLOp( selected_path) 

/* the procedure is searching along the selected_path for the earliest 

operation which meets the d~nditions explained in section 4.3.1. For 

correctness preservation, each time a SUB is found and its later_definer 

is the subtrahend-the operation's sign is flipped. * / 
end ( Find_HighesLA vail_ Op) 

procedure Climb_Up(type, firsLop, second_op) 

/* the procedure adds new operations into selected_path after the earliest 

101 
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operation that meets the conditions has been found by previous procedure. 

Calls itself recursively until it reaches the later_definer of currenLop. The 

addition of the modified currenLop is done by a higher level procedure. * / 
add new operation with (type, firsLop, second_op ); 

if (didn't reach currenLop's later_definer) 

Climb_Up(first_op's type, firsLop's later_definer, the newly added operation); 

end (Climb_ Up) 

6.3 Examples 

We present in this section three examples on which THR is applied. The 

first is to clarify the algorithm, the second to show how incremental THR works 

across basic blocks of a program and the last to show how THR, combined with 

loop pipelining, may exposes more operations for compaction, thus yielding better 

parallelization. 

6.3.1 Example 1 

Suppose a code segment, as illustrated in Figure 6.3, is given and assume 

that aO and all e's are available at the first cycle. 

Step 1: 

Let us begin, for example, with the third operation ( a3 := a2 - c3). Its ear­

lier_definer is not defined in the previous instruction, so execute Associativity_Analysis(). 

The op_type is SUB-so set signJlag and call Find_HighesLAvaiLOp(). But, since 



~i 103 

Figure 6.3~ Original Code of Example 1. 

currenLop violates condition 3 quit the procedure. 

Step 2: 

CurrenLop is (a4 := a3 * c4). It's type is MUL and its later_definer is SUB so 

Distributivity_A nalysis () is called. Three operations are added into the tree: 

1. A MUL operation whose uses are later_definer's earlier_definer ( c3) and cur­

renLop's earlier_definer ( c4). This operation gets a new def ( t1) and is in­

serted into later_definer's cycle. 

2. Another MUL whose uses are ( a2) and ( c4) and its def is t2. It is inserted 

into later_definer's cycle. 

3. The reconstruction of currenLop with the type of later_definer (SUB) and 

with uses which are the operations just added. Its def is currenLop 's def 

The back_track flag is set. After this step and percolation, we get the code shown 

in Figure 6.4: 

Step 3: 

Since back_track flag is set cycle 3 is rechecked. ( a3 := a2 - c3) c_annot be hoisted 

1: 
I 
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Figure 6.4: Example 1 After Step 2. 

for the same reason mentioned in step 1 above-so check the next operation in 

this cycle (t2 := a2*c4). The operation is MUL and its later_definer (a2) is MUL, 

hence by Find_HighesLAvaiLOp() the highest op which is (a2 :=al* c2) is found. 

Now, using Climb_Up(), operations a:re added as follows: a MUL (t3) operation 

whose uses are highest op's earlier_definer ( c2) and currenLop's earlier_definer ( c4) 

is added. Then another MUL, whose uses are later_definer's later_definer (al) and 

t3 is added. After this step and percolation we get: 

al := aO +cl; t1 := c3 * c4; t3 := c2 * c4; 

a2 := al * c2; t2 := al * t3; 

a3 := a2 - c3; a4 := t2 - tl; 

a5 := a4 - c5; 
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Figure 6.5: Compacted Program for Example 1. 

Step 4: 

Consider (a5 := a4 - c5) as the currenLop. Since it is SUB we use Associativ­

ity_Analysis() and get the final compacted code as illustrated in Figure 6.5: 

Note that if resources didn't allow one of the steps (e.g. if only two subtracters 

were available per cycle) the incremental THR would have stopped without allow­

ing a5 to move up, but still would produce a one cycle gain. 

6.3.2 Example 2 

This example shows how incremental THR works across basic blocks. Con-

sider the program shown in Figure 6.6. 

This program segment has 3 basic blocks separated by conditional jumps. 

"Conventional" THR (within basic block boundaries) on this program fails since 

there are not enough operations in each of these 3 chains to produce any speed-up. 

But applying our incremental THR beyond the conditionals yields a significant 

compaction (from 8 cycles to 3) as shown in Figure 6.7. 

i 

I 

I 
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c 
{r6} 

is live here 

B 
{r5,r6} 

A 
{ r3,r4,r5,r6} 

are dead here 

are dead here 

Figure 6.6: Original Program for Example 2. 
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r3:=rl+tl 

Figure 6. 7: Compacted Program for Example 2. 

6.3.3 Example 3 

THR is especially powerful when combined with loop pipelining since pipelin-

ing exposes more operations. for THR. Consider, for example, the loop described 

in Figure 6.8 

For simplicity we omitted the conditional jump (loop exit test). Loop pipelin­

ing converts this loop into the one shown in Figure 6.9 parallelizing it from 7 * n 

cycles into 5 * n cycles. 

That is the optimal schedule for this loop, preserving data-dependencies be-

tween operations. As seen, two adders are needed to execute this loop optimally. 

However, this loop can be further compacted by THR by adding an extra operation 

as shown in Figure 6 .10. 
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(b) data dependency 

to EXIT 

(a) original loop 

Figure 6.8: Original Program for Example 3 and Corresponding Data-Dependency. 



'1 2 3 
1 0 
2 1 
3 2 
4 3 

__ 5 4 -- - - -- ---------------
6 5 0 cycle 1: 5(i) O(i+l) 

7 6 1 cycle 2: 6(i) l(i+l) 
8 2 > cycle 3: 2(i+l) 
9 3 cycle 4: 3(i+l) 

_l 4 ~Yfle_ q:_ 4(H-J)_ __ 
1 5 0 
1 6 1 
1 

Figure 6.9: Pipelined Loop of Example 3. 

1 
1 0 
2 1 
3 2 
4 3 
5 4 
6 5 
7 6 
8 
9 - ---

1 

1 
1 

2 3 

0 
1 

2 4' 

-~-4_ 
5 0 
6 1 

------------------
cycle 1: 5(i) O(i+l) 

> cycle 2: 6(i) l(i+l) 
cycle 3: 2(i+l) 4'(i+l) 

~Yfle_1~~(~t!l5~iltl) 

4': t4:= r6 + rO 
4*: r4:= r2 + t4 

Figure 6.10: Pipelined Loop of Example 3 After THR. 
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So, using the same resources, THR reduces the total execution time by 20%. 

While this example is quite simple-it demonstrates the potential effectiveness of 

THR combined with loop pipelining. 

6.4 THR Experiments 

This section details the results obtained by applying the incremental THR on 

the fifth order elliptic filter example (PaKn89] and the Sehwa example presented in 

(PaPa88]. In the following tables FDS and FDLS stand for Force Directed (List) 

Scheduling, PBC for Percolation Based Compiler (PLNG90] and PBCT for PBC 

with THR. 

A. Fifth Order Elliptic Filter: 

Table 6.1 refers to the non pipelined case where the model assumes that the exe-

cution unit has to be flushed before the succeeding operation can be issued. 

Table 6.1: Fifth Order Elliptic Filter-Non-Pipelined 

Without loop With loop 

pipelining pipelining 

Res FDS FDLS, PBC PBCT PBC PBCT 
" 

3+, 3* 17 17 17 16 16 16 

3+, 2* 18 NA 18 17 17 16 

2+, 2* 19 18 18 17 17 17 

2+, 1* 21 21 21 20 20 19 

Table 6.2 is for the pipelined case where the functional units units can accept 

new input each cycle. The results for the elliptic filter show that even though 
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Table 6.2: Fifth Order Elliptic Filter-Pipelined 

Without loop With loop 

pipelining pipelining 

Res FDS FDLS PBC PBCT PBC PBCT 

3+, 2* 17 17 17 16 16 16 

3+, 1* 18 18 18 17 16 16 

2+, 1* 19 19 19 18 18 18 

incremental THR is powerful when applied to the loop body-it may yield further 

parallelization when combined with loop pipelining. 

B. Sehwa: 

The Sehwa example is an implementation of a digital filter with 16 points. Using 

the same semantics as [PaPa88], our system reduces the schedule from 6 time steps 

to 5. Using structural pipelining rather then functional pipelining (see [PLNG90]) 

incremental THR reduces the schedule from 10 steps into 8 as shown in table 6.3. 

Table 6.3 S h ' D' . t 1 FIR F'lt e was ig1 a I er - Pipelined 

Pipelining SEHWA PBCT 

Functional 6 5 

Structural 10 8 

I 
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Chapter 7 

Specific Issues 

In this chapter we describe some issues that are peculiar to our compiler. 

Although design and implementation of a parallelizing compiler usually involves 

many specific optimizations, enhancements and techniques, we detail here only the 

more characteristic ones that have an important impact on the performance of the 

compiler. 

7.1 Dead-Code-Elimination "On The Fly" 

Dead-code-elimination [ ASU86] is a well known technique to remove redun­

dant operations from the code. Operations which become redundant (or dead) as 

a by-product of the parallelizing tran,~formations should be removed. However, ap­

plying the traditional (global) dead-code-elimination techniques may become very 

costly if applied frequently. Thus, a local and efficient technique is required. For­

tunately, the fact that we keep the live/dead information, locally, in each of the 

program's nodes enables us to apply a local dead-code-elimination transformation 

"on the fly" during the parallelization process. 

112 
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One of the two most common scenarios in which dead code is generated is 

described in Section 4.2.1. The other happens when moving up an operation op2 

from node n to m as shown in Figure 7.l(a). Notice that opl is live since a is 

used by f := a* g on the true branch of m. After move-op we get the segment 

shown in Figure 7 .1 (b). When a move-cj is performed we get the code shown in 

Figure 7.l(c). Thus, opl in node m/becomes dead and should be removed. 

Since the live/dead information in each of the nodes is kept and updated 

locally, carrying out dead-code-elimination means checking, before move-op and 

move-cj are performed, that the relevant paths in the node do not contain any 

dead operations and removing such operations if needed. This task is relatively 

easy and efficient. 

7.2 Procedure Calls and Inter-procedural Live 

Analysis 

The "programs" discussed so far throughout this thesis assumed implicitly 

that the input is a single procedure and consequently represented by a single control 

graph. However, procedure calls are an integral part of any higher-level language 

and therefore should be considered by our compiler. Procedure calls exhibit not 

only a change in the control flow of the program but also affect the live/dead 

information in higher and lower levels of the calling hierarchy. Since C allows 

recursive calls, we allow them in our compiler too. 
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(a) original code (b) after move-op ( op2) 

( c) after move-cj 

Figure 7.1: Generation of Dead-Code by Move-op 
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There are several published works on inter-procedural flow analysis [He77, 

Ba78, JoMu81]. Like other techniques, the algorithm presented here is also inspired 

by the idea described in detail in [ASU86]. For each procedure we perform "the 

traditional" live analysis but changes in each procedure are also reflected in higher 

and lower level procedures (in the calling hierarchy) until all levels have settled 

down. 

Procedure calls are represented in the three-address-code by lines with the 

called procedure name. Procedure call operations are never compacted into nodes 

with other operations. In other words, nodes which contain procedure call opera-

tions do not contain any other operation. 

The initial live/ dead analysis is performed on the sequential (input) code 

(where each instruction holds a single operation). Then, during the parallelizing 

process (see Chapter 3) the live/dead information is locally and incrementally 

updated. The algorithm presented relies on the fact that the set of registers live 

at the top of the call operation is the union of two sets: the set of registers live at 

the top of the successor node and the set of registers live at the top of the called 

procedure. For example, in Figure 7.2 the set of registers live at the top of "call 

procl" (in main) is the union of the set of registers live at the top of instrl and 

the set of registers live at the tdp of procl(). 

7.2.1 Definitions: 

• IN-SET(l): Set of all registers live at instruction 1. 

• LIVE-SET(proc): Set of all registers live at entry of procedure proc. 

• GEN-SET(p ): Set of all registers used in path p. 
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• KILL-SET(p ): Set of all registers killed in path p. 

7.2.2 Algorithm Description 

procedure live_analysis(proc, live-set) 

for each instruction l in proc 

IN-SET( l)= new-set; 

changes= TRUE; 

while (changes) 

changes= FALSE; 

for each instruction l in proc backwards begin 

if l holds a CALL operation begin 

/* assume the operation is CALL call-dest * / 

if ( ( call-dest!= proc) and changes ) begin 

/* non-recursive call * / 
stack-pointer++; 

live-stack[stack-pointer]= live-set; 

live-set= LIVE-SET( call-dest); 

live....analysis( call-dest,live;-set ); 

live-set= live-stack[stack-pointer]; 

stack-pointer--; 

end 

else if ( call-dest== proc) 

/ * a recursive call * / 
live-set= live-set U LIVE-SET(proc) 

116 



temp= IN-SET(successor of l); 

temp= temp U LIVE-SET( call-dest); 

end 

else /* not a CALL operation * / 
temp= new-set; 

for each path p in l begin 

temp= GEN-SET(p); 

templ= IN-SET(successor of l in path p); 

templ= templ \ KILL-SET(p ); 

temp= temp U templ; 

if ( l is a RETURN instruction) 

temp= live-set; 

end 

if ( temp != IN-SET(l) ) begin 

IN-SET(l)= temp; . 

changes= TRUE; 

end 

end 

end 

end (live_ analysis) 

7.2.3 Example 

117 

Figure 7.2 illustrates a program with two regular calls and a recursive one. 

Beginning with the main procedure we compute the live set of all nodes that do 

I 

I 
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not hold call operations. For these nodes the live set is derived by subtracting 

registers killed in this node from the live set of their successors (see [ASU86]). 

When a call is encountered we either proceed to analyze the called procedure (in 

a non-recursive call) or add the set of registers live at the top of this procedure to 

the set of registers live at the call's (only) successor (in a recursive call case). 

Refer_ to Figure 7 .2: we compute, backwards, the live set of all nodes in 

main(), beginning from the end (igoto ), until we hit the call to procl(). Since 

IN-SET( call procl) equals to the union of IN-SET(instrl) and LIVE-SET(procl) 

we have to compute first the latter set. In order to do that, we then proceed to 

compute the live set of all nodes in procl() starting from its last (igoto) instruction. 

When call proc2 is found we leave procl() and begin to compute LIVE-SET(proc2). 

This time, since proc2 calls itself, IN-SET( call proc2) equals to the union of IN-

SET(instr3) and LIVE-SET(proc2). 

This iterative process continues until there is no change in any of the live 

sets of any node in the program. 

7.3 Load-After-Store Elimination 

One of the traditional bottlenecks of high-performance systems is the memory-

access problem caused by load and store operations. Since meµiory access time 

is normally much larger than the CPU cycle time each memory access potentially 

degrades the overall system's performance. To alleviate this problem two tradi-

tional approaches have been introduced. The first (caching) deals with dividing the 



main() 

call procl 
instr 1 

+ 
igoto $31 

procl() 

call proc 
instr 2 

t 
igoto $31 

call procu-----r 
instr 3 

+ 
igoto $31 

Figure 7.2: An Example of Calling Graph 
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memory hierarchically such that the CPU accesses only the lowest (fastest) hierar­

chy. The other approach (memory banking) "parallelizes" the memory such that 

different memory modules may be accessed concurrently by the CPU. Obviously, 

both solutions are hardware solutions. 

We implemented in our compiler a very powerful (software) technique to 

reduce the memory transfer rate by eliminating load operations occurring after 

store operations. Not only are the number of memory accesses reduced, but also 

the total speed-up may increase dramatically. 

We have adopted the idea of redundant load elimination ([CCK87]) to fit 

into our local transformations. In the context of PS, load-after-store elimination 

happens directly as a result of the move-op transformation. In our compiler this 

optimization applies to non-loop code and works in the presence of conditional 

jumps. The original technique ([CCK87]) is not applicable with these two fea­

tures. Yet another advantage of our technique is that the optimization is done 

only when needed to enhance parallelism and so register pressure is not unnec­

essarily increased as it might if the optimization was done separately from PS 

transformations. 

Consider, for example, the following loop: 

for (i = l;i < 20;i + +) 

A[i] = A[i - 1] + B[i]; 

This loop transforms into: 

base:= 176; 

i:= O; 
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(LABEL Ll) 

a:= M[base-88]; 

b:= M[base-164]; 

a:= a+b; 

M[base-84]:= a; 

base:= base+4; 

i:= i+4; 

ccO:= i <= 76; 

if ccO (LABEL Ll) 

(LABEL exit) 
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The first load in the second iteration addresses the same memory location as 

the first iteration's store operation. This reflects the recursion in a[i]. After the 

loop body is compacted we get the code illustrated in Figure 7.3. 

The next step in loop pipeljning involves moving up operations from n into 

m. But since the load in n and the store in mare referring to the same location­

instead of moving the load up we· simply optimize the loop into the form shown in 

Figure 7.4. This loop does not ~ontain the load anymore. 

Since for each memory-access operation we keep its symbolic derivation lo-

cally, this optimization is actually a comparison of two symbolic derivations, which 

is relatively efficient and done as part of the move-op transformation. Therefore, 

practically, this optimization comes almost for free. 

Actually, by using local transformations we do not even have to realize that 

these operations are inside a loop. Whenever move-op is invoked as in the code 

i 

I 

I 
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EXIT 

Figure 7.3: Code After Loop Pipelining When Pipe_fence Includes Node n. 
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n 

F 

~ 
EXIT 

Figure 7.4: Code After Load-After-Store Elimination. 
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I1 11 

12 

n n' 

E2 E2 

(a) prior to move-op (b) after move-op 

Figure 7.5: Code Before Move-op. 

segment shown in Figure 7.5 (a) the code transforms into the one illustrated in 

Figure 7.5 (b ). 

7.4 Loop Detection and Incremental Update 

According to the principle of locality, programs tend to spend most of their 

time executing loops. Therefore compacting loops successfully obviously affects 

the overall performance of the compiler. Loop information is important not only 

in the context of loop pipelining (see Section 3.5.2) but also for other optimization 

techniques and loop-based algorithms like redundant induction variables removal 

(see Chapter 4), removal of other copy-operations generated by renaming, reaching­

definition computation, maxcomp and others. 

Programs which are written exclusively with structured flow-of-control state­

ments (if-then-else, for, while-do, continue, break etc.) always create a reducible 
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graph. Even programs written using goto statements are almost always reducible. 

Intuitively, reducible programs are those in which there is no jump into the middle 

of a loop from outside the loop (and not through the loop header). Detection 

of reducible loops is easy and implemented in the compiler according to the con­

ventional algorithm presented in [ASU86]. Unfortunately, during loop pipelining, 

graphs that are reducible may become irreducible. The loop detection algorithm 

fails for these loops, therefore, we cannot apply the loop detection algorithm on 

an already compacted program. 

In Figure 7.6( a) a reducible loop is illustrated. There is one node that domi­

nates all other nodes in the loop (node n). However, if the conditional jumps in n 

are moved up (into node m) across the backedge (see Section 3.5.2) an irreducible 

graph is generated as illustrated in Figure 7.6(b ). This phenomenon happens in 

other cases as well. 

The strategy we have chosen to solve the irreducibility problem was to update 

the loop information incrementally during the parallelizing process. Since loops are 

uniquely defined by their backedges (the triplet of: source node, destination node 

and the backedge connecting these nodes) and since we know precisely when the 

transformations change the loop information, we modify this information whenever 

there is a move (move-op or move-cj) across a backedge that changes the backedge 

triplet. For example, in Figure 7.6(a) the triplet is {m, n, be}. After move-cj we 

get two loops with the following triplets {nt, 11, bel} and {nf, 12, be2}. 

I 

' 
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EXIT 

(a) A reducible graph (b) An irreducible graph (after Move-cj) 

Figure 7.6: A Reducible Loop Becomes Irreducible 
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7.5 Memory Reference Disambiguation 

When high performance is achieved through aggressive code motion, it is 

very important not to bottleneck the parallelizing process by an overly conservative 

approach. Indirect memory references are created by the use of array indexing and 

pointers. While pointers constitute a complex form of indirection and are often 

dependent on run-time data (and therefore hard to disambiguate), array references 

offer the greatest potential for parallelism and can, relatively easily, be precisely 

analyzed. 

As mentioned in Section 3.5.2, the ability to pipeline the inner loops of a 

program is crucial for the overall performance of the compiler. However, scientific 

programs include a significant number of indirect references, most of which are due 

to array references. If for each store-load pair of operations (i.e. a store followed by 

a load operation), we always assumed that they refer to the same memory location 

(the conservative approach), we would, actually, serialize all memory references 

and degrade drastically the performance as discussed and shown in [Ni85b]. The 

performance degradation occurs since the whole chain of operations which are 

data-dependent on the load's result are prevented from moving up. The inability 

to move up the load causes a b<;i>ttleneck in the compaction process. 

· The disambiguation algorithm used by our compiler is based on the work 

m [Ni85b] and was implemented by Haigeng Wang. In a pre-compaction pass, 

all memory accesses in the program are expressed in terms of symbolic deriva-

tions. A symbolic derivation of an operation is its most primitive presentation in 

terms of loop invariants, loop indices and other (predefined) variables. The sym­

bolic derivations are derived by variable-folding-each memory address is defined 
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in terms of previous reaching definitions of its source variables. By a recursive 

process, all addresses are expressed in terms of variables that cannot be further 

simplified (folded). The special case of variables called induction variables, for 

which the variables are defined by themselves (and therefore the recursion would 

run infinitely), is treated differently: before evaluation of the symbolic derivations, 

all induction variables are detected and substituted by derivations that contain an 

imaginary loop counter. 

Hence, after substitution of all memory addresses by their symbolic deriva­

tion, the disambiguation problem is to find whether two addresses have an integer 

solution when their symbolic derivations are equated. These equations are called 

Diophantine equations. These equations can be solved for the linear case but can-

not be handled for the non-linear case, therefore, in the variable-folding process, 

· we stop substitution whenever an operation, other than addition, subtraction or 

multiplication is involved. 

7.6 Simulator 

The simulator which we built Jfor our compiler was inspired by the lack of 

existing supporting hardware to validate the derived compaction results. Since 

we compact programs beyond basic block limits and since we allow compaction of 

several conditional jumps into one node, it turns out that even for relatively short 

programs, it is simply impractical to check the correctness of the results produced 

by the compiler. Traditionally, a compiler is validated by running the compacted 

code on the target architecture and comparing the results with the results derived 
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by running the serial code on the same input data. However, since our compiler is 

mainly a research/study oriented compiler, it was hard to find a specific machine 

to run our compiled code on. On the other hand, a compiler has to be debugged 

and validated. This required us to come up with a debugging and validation tool. 

That is exactly the goal of the simulator. 

The simulator works by "executing" the serial (sequential) program, step 

by step, (as defined in Section 2.4) and recording the results of all registers and 

memory locations involved for a set of input data. Then, it "executes" the com-

pacted (parallel) program and compares the results to the ones recorded for the 

·sequential code. By "execution" we mean a total emulation of the program as if 

it was running on the hardware described in Section 2.4. This includes setting 

and resetting of condition code registers, modification of all memory locations and 

architecture-registers, loading values from memory locations and branching and 

returning from procedure calls. 

The simulator is implemented, basically, using two arrays: one representing 

the register-file and the other the memory space. After initialization of all memory 

locations and registers (by the sample input data), the simulator ex;ecutes each 

node in the program in three steps which are part of the basic machine cycle: 

1. Operands (for all operations) and condition code registers are read from the 

two arrays (register-file and memory). 

2. All operations are executed by calling a C procedure, that emulates the 

physical operation. All condition codes are evaluated and the next node is 

determined. 
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3. The results of operations on the path chosen (for single cycle operations) and 

the results of operations which began in previous nodes and completed their 

execution in this node, are written back to the two arrays. 

When completed, all elements of the two arrays are compared with the two 

arrays derived for the sequential execution. 

During the development of the compiler we _found out that the simulator 

can serve not only as a validation tool but also as a very powerful debugging 

tool. This is due to the fact that we use semantic-preserving and atomic set of 

transformations. Suppose we run the compiler on a specific benchmark and get 

negative results (i.e. the results for the compacted program are different from 

the results for the sequential program). If the benchmark is non-trivial, it is 

quite complicated to figure out where and why a bug happens. The compaction 

process involves sometimes tens of thousands of code transformations and it is not 

feasible to hand-trace the bug. However, since PPS transformations are semantic­

preserving, if at any time (i.e. in any compaction phase) we freeze the program 

and simulate it the result should be correct if there are no bugs. Conversely, if 

there is a bug, there is a very high likelihood that the simulator will catch it. 

Since the transformations are atomic, we could concentrate on the transformation 

which actually converts the program from a correct one to a wrong one. Hence, 

the debugging procedure can be summarized as follows: 

1. Run the compiler to the n-th PPS transformation. 

2. Simulate the compacted code. 

3. If simulation is correct increment n and repeat from step 1. Otherwise, 

concentrate on the n-th transformation. 
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In practice, we found a much faster way to find n: we first derived a m for 

which the simulation was correct. Then, we found a p for which the simulation 

results were bad. By bisecting, iteratively, the region [m:p], n could be found easily. 

The simulator serves not only as a validation and debugging tool but also as 

a run-time emulator tool. Dynamic speed-up (see Chapter 8) is only one example 

of parameters that may be produced by the simulator as a run-time measure. 



Chapter 8 

Results 

In order to investigate hardware design trade-offs and evaluate achievable 

parallelism we carried out a series of tests on well-known benchmarks. The re-

sults of these tests are presented in this chapter. The benchmarks represent a 

spectrum of applications in different scientific and computer-science domains. The 

first 24 benchmarks that we use are the Livermore kernels representing different 

known loop structures. The next 6 benchmarks are known as Stanford benchmarks: 

FFT, bubble, cos, minmax, quicksort and permute. Line26, crale10, unriems50 and 

nav7055 are core loops from CFD (Computational Fluid Dynamics) codes. 

As mentioned in Chapter 2, the compiler may be reconfigured to use differ-

ent hardware models and/ or parallelization input parameters. For example, we 

can compact a program with three pipelined functional units, with 20 registers 

and with the conditional execution model described in Chapter 2. In another run 

we may use only two functional units (not pipelined), 14 registers and disallow 

conditional execution. We refer to these parameters as hardware parameters. Nat­

urally, each target architecture has its own set of hardware parameters. But there 

are other parameters that may control the parallelization process: we may use 

renaming of registers (see Chapter 4) or disallow it, we may use induction variable 

132 
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removal and copy elimination (see Sections 4.4.2 and 4.4.3) or ignore them. We 

can further apply load-after-store optimization (see Section 7.3), allow/ disallow 

compaction while moving conditional jumps or check what parallelism is available 

when disambiguation is switched off. We refer to these evaluation parameters as 

parallelization parameters. Since one of the goals of this research was to evaluate 

compilation techniques and their impact on parallelism we show the effect of each 

on the system's performance. 

Since the number of parameters checked is relatively high, the best way 

to evaluate the impact of a specific parameter on the overall performance is by 

changing this parameter while all others are kept unchanged. Obviously, this 

prevents presenting all possible combinations, but on the other hand makes the 

comparisons meaningful and tractable. 

8.1 Definitions 

In this section we define some terms used throughout the chapter. 

• Speed-up 

The speed-up is the ratio of serial code execution time (in cycles) to the com­

pacted code execution time. (Cycle counts were obtained via the simulator). 

It is computed by the following formula: 

S d 
Number of cycles executed by serial program 

pee -up= 
Number of cycles executed by compacted program 

Given this metric, it is worth pointing out that one has to be careful when 

comparing speed-up achieved with uni-cycle operations vs. speed-up achieved 
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with multi-cycle operations. In practice (see Section 3.1) the cycle time of 

uni-cycle machines is much larger than that of pipelined machines. There­

fore, when a speed-up of 4 (for example) is obtained for uni-cycle machine 

and a speed-up of 4 is obtained for multi-cycle machine--these number do 

not imply that the actual performance of the systems is the same. With 

equal speed-up, pipelined machine will, everything else being equal, execute 

faster due to shorter cycle time. Hence, the results presented in this section 

are somehow "unfair" to the pipelined machines. In the context of bench­

marking for a particular architecture, a more accurate measure for system 

performance would be speed-up normalized by the cycle time of the actual 

machine. 

When uni-cycle operations are used, in some of the benchmarks (e.g. 11, 

12, 13, 14, 17, 19, 111, 112 etc.) we were able to compact the loop into 

a single node with unlimited resources. Compaction of a loop into a single 

node was one of the termination conditions to the loop pipelining algorithm. 

However, in some of these loops there are no loop-carried-dependencies, thus 

the parallelism that may be achieved by scheduling more iterations per cycle 

can be much higher than given in the tables. In the context of uni-cycle 

operations it should be further n,oted that for some benchmarks the speed-up 

is greater than 2.00 even when only two resources are available. This happens 

since during the parallelization process we apply some code optimizations 

that are able to eliminate operations which become redundant. 

• Weighted Harmonic Mean (WHM) 

The Weighted Harmonic Mean is a measure which attempts to normalize the 

speed-ups by taking into account their relative sizes. The WHM is computed 



by the following formula: 

Where: / 

WHM = l:i::1 Ni ""n N· 
L,,i=l s:-

Ni is the number of cycles needed to execute (serial) benchmark i. 

Si is the speed-up derived for benchmark i. 
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For example: suppose three different benchmarks are given. The first requires 

1000 cycles to execute sequentially, the second 5000 cycles and the third 

1800 cycles. Therefore, 7800 cycles are required to execute all three serially. 

Further assume that the speed-up obtained for the first benchmark is 5, for 

the second is 10 and for the thitd is 6. Consequently, the compacted programs 

require, in total, 1000 cycles to complete {(1000/5)+(5000/10)+(1800/6)}. 

Hence, the real speed-up (when all three are executed) is 7.8. This is exactly 

what WHM measures. 

• unlimited resource constraints 

In the following sections we detail results for unlimited resources (functional 

units) as well as for limited resources. By unlimited resource we mean the 

number of resources required to execute the schedule produced by the com­

piler "as is". In other words, this is the number of units needed to execute 

the instruction with the most operations in the compacted program. Note 

that unlimited resources does not mean infinite resources. 

• canonical resource constraints 

Unless otherwise specified, by canonical resource constraints we mean that 

only two operations can be issued in any given cycle but at most one memory 

load and/or one conditional jump. These constraints are chosen somewhat 
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arbitrarily, but they are representatives of current superscalar /VLIW tech­

nology in general and an actual machine in particular. 

8.2 Hardware Parameters 

Different hardware model configurations result in different speed-up ratios. 

In this section we illustrate the impact of four hardware parameters on the overall 

system's performance. We begin with the impact of the conditional execution 

model on the speed-up. Then we present results obtained for pipelined operations 

compared to uni-cycle operations. We measure the effect of the number of registers 

on compaction and conclude with comparing performance achieved with different 

numbers of functional units. 

8.2.1 Conditional Execution 

The conditional execution model explained in Section 2.4 may be a worth­

while enhancement over· the standard (non conditional) model since it reduces the 

time needed for the execution of conditional statements. In the conditional exe­

cution model only two serial steps are required for the execution of a conditional 

operation: (a) evaluation of the condition-code register and (b) if the condition is 

true execution of operations. In the standard model three serial steps are needed: 

(a) evaluation of the condition-code register, (b) branching to destination if con­

dition holds and ( c) execution of the operation. In branch-intensive code this 

difference may be important; however, the gain does not come for free since the 
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11 11 12 13 

Figure 8.1: Possible Nodes When Conditional Execution Disabled 

conditional execution model involves higher degree of complexity1• We measured 

the effect of the conditional execution model by comparing the speed-up obtained 

with and without conditional execution. When conditional execution is disabled, 

an operation can move (move-op or move-cj) from node n into node m only if 

node m does not result in conditional execution of the operation. That is, only 

compaction resulting in nodes like the two shown in Figure 8.1 is allowed. 

In Table 8.1 all operations are single cycle operations. For comparison, we 

give the speed-up with unlimited resources and with limited resources as well. The 

resource constraints are the canoriical resource constraints mentioned earlier. 

The conditional execution model yields 233% better speed-ups on the average 

and 213% in WHM with unlimited resources. However, when resources are limited 

the gain drops to only 10%. The:'difference in the speed-up between the two models 

decreases in the latter case since the resource constraints limit the exploitation of 

substantial parallelism, therefore making both speed-ups comparable. 

10perations have to be tagged so that their write-back result can be controlled at run-time. 
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8.2.2 Pipelining of Operations 

As discussed in Chapter 3 one of the features of our compiler is the exploita­

tion of temporal parallelism as well as spatial parallelism. While spatial parallelism 

is achieved through the use of a number of functional units in parallel, temporal 

parallelism may be achieved by using pipelined functional units. In this section we 

illustrate the impact of functional unit pipelining on the overall speed-up. In Ta­

ble 8.2 we use the canonical resource constraints as the limited resources. For the 

pipelined operations we assume that memory loads take 2 cycles, all floating-point 

operations take 3 cycles and all other operations take one cycle. 

The speed-up achieved with unlimited resources for pipelined operations is 

less than the corresponding uni-cycle operations for two reasons: (a) it is (ob­

jectively) harder to achieve similar compaction for pipelined operations as for 

uni-cycle operations since multi-cycle operations may affect many more succes­

sor nodes through data-dependency and may prevent better utilization. (b) we 

use a loop pipelining algorithm (see Section 3.5.2) that tends to converge very 

fast. Remember that we do not allow nodes that have already been in a fence to 

"break" unless all operations from that node can move up. This prevents better 

pipelini,ng. While in the uni-cycle ca~e this restriction is negligible (i.e. the loop 

pipelining is limited by other factors like data-dependency, disambiguation etc.), 

in retrospect, for the pipelined case this is crucial and stops the pipelining well 

ahead of the other factors mentioned. Other algorithms like Perfect Pipelining 

[AiNi88c] should produce better results. On the other hand, the results with re­

source constraints for the pipelined case are better than for uni-cycle operations 

since the resource constraints "stretch" (lengthen) the schedule in such a way that 
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resources, rather than operations' latencies, become the dominant factor in com-

paction. This creates many more opportunities for scheduling and enables better 

"filling" of nodes. The "empty" nodes (no-ops) that were an artifact of the fast 

convergence of the pipelining algorithm (they were originally introduced for latency 

preservation) disappear in the limited resources case. 

8.2.3 Number of Registers 

As discussed in Chapter 4, register allocation and renaming have a major 

impact on the achievable speed-ups. In this section we show the effect of the 

number of registers used on speed-up. In Table 8.3 we present the number of 

registers used in the (serial) input program ~ollowed by the number of registers in 

the compacted program. The number of registers needed is the maximal number of 

registers concurrently live at any node. One may see that the number of registers 

for the compacted program is on average 2-3 times the number for the input 

program. The two speed-up coltfmns represent the speed-up achieved when we 

allow the same number of registers as in the input program and with the maximal 

number needed (unlimited number of registers). 

8.2.4 Number of Functional Units 

Selecting the right number of functional units for a given architecture is one 

of the major design decisions. Increasing the number of functional units means 

not only an immediate increase in area due to the addition of more units' but 

also increase in the number of multiplexers and wires. Therefore, the number 
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of functional units has to be determined very carefully. The main goal of the 

results presented in Table 8.4 and in Table 8.5 is to analyze how the speed-up 

grows as the number of functional units increases. The former table presents 

the results for uni-cycle operations while the latter shows the speed-up for multi-

cycle operations. The multi-cycle operations' latencies are as in Section 8.2.2. 

For both tables we assume that each functional unit can execute every operation 

(homogeneous functional units). If, for example, 2 functional units are given, one 

can issue all possible combinations of 2 operations in this cycle (note: different 

than the canonical resource constraints!). 

For each number of functional units, we added two columns. The utilization 

column gives the ratio between the speed-up achieved and the number of functional 

units available. 

U .
1 

_ Speed-up 
ti - Number of functional units 

This measures how well the units are utilized. The second column is more indica-

tive of the system's overall performance: it is the normalized speed-up: 

NS = Speed-up 
Unlimited resources speed-up 

This number is important since it provides information on how well we can enhance 

the system's performance by increasing the number of functional units. 

For the uni-cycle operations the utilization decreases by 2.5 when we increase 

the number of functional units from 2 to 16. For the pipelined case this ratio is 

4.5. 2 The normalized speed-up with uni-cycle operations increases 3.5 times with 

2 Again, since cycle times should be different, direct comparisons between pipelined and uni­

cycle "cases are questionable. 
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the increase in the number of functional units from 2 to 16, while in the pipelined 

case it increases only by 2.5. This relatively low increase is due to fast convergence 

of the loop pipelining algorithm. 

8.3 Parallelization Parameters 

In this section we analyze some parallelization parameters and measure their 

i~pact on the speed-up. First we test the effect of register renaming (see Chap­

ter 4) on the performance, then we measure the effects achieved by application 

of the induction variable removal and copy elimination techniques described in 

Sections 4.4.2 and 4.4.3. We test the effect of load-after-store optimization (see 

Section 7.3) on the speed-up and then present compaction result without move-cj. 

We conclude this section with measuring the effect of disambiguation on the overall 

performance. 

8.3.1 Renaming 

As mentioned in Chapter 4, renaming of registers is an important optimiza­

tion in high-performance, parallel architectures. Table 8.6 compares the speed-up 

achieved with and without renaming. 

Clearly, disabling renaming causes a dramatic degradation in the speed-up 

( 54 % ) in the unlimited resources case. In this table all operations are uni-cycle op­

erations and the resource constraints are the canonical resource constraints. When 
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resources are limited the speed-ups are comparable. Since we have to "fill" only 

two functional units we can still do well when renaming is disabled. 

8.3.2 Induction Variable Removal and Copy Elimination 

We presented in Chapter 4 a new technique to remove redundant induction 

variables and eliminate copies generated by renaming of induction variables. Since 

loop pipelining frequently involves intensive induction variable renaming it was 

interesting to measure the effect of induction variable removal and copy elimina­

tion techniques on the overall speed-up in the presence of limited resources where 

removing copies is critical. In Table 8. 7 we compare the speed-up achieved when 

the techniques are applied vs. the speed-up obtained without their application. 

As before, we assumed here the canonical resource constraints. 

We see from Table 8. 7 that taken together these techniques account for 35.3% 

improvement. Therefore, without a means for eliminating copies generated during 

loop pipelining, the gain obtained by renaming may be significantly offset by the 

introduction of additional copies into the compacted code. 

8.3.3 Load-after-store-elimination 

Table 8.8 compares the results achieved with load-after-store-elimination op­

timization (discussed in Section 7.3) vs. the speed-up derived without this opti­

mization. 
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Comparing WHM, the gain by this optimization is 45.6% for the unlimited 

resources and 3.5% for the limited resources case. However, in this case the average 

(or the WHM) may be misleading: this optimization applies to only 12 out of 

the 35 benchmarks. If we measured the improvement only for the 12 applicable 

benchmarks w~ would get 311 % improvement in the unlimited case and 13% for 

the limited resources case compared to the results obtained in the absence of this 

optimization. 

8.3.4 Compaction Without move-cj 

One of the "traditional" arguments against :i;:>ercolation Scheduling has always 

been code explosion. The main contribution to code explosion is due to the move-

cj transformation (see Chapter 3). The penalty of code explosion in parallelizing 

compilers is not only the extra space needed but also the compilation time which 

increases significantly as number of nodes/ operations increase. One may want to 

allow limiting the transformation;s to save space and compilation time. ( Conse-

quently, a trade-off exists in determining when it is beneficial to apply move-cj 

and when it is not.) In Table 8.9 we present the speed-up derived when move-cj 

is enabled vs. the speed-up obta.tned when it is disabled. In addition, we give the 

total number of nodes in the program and the total number of operations in each 

of these cases. Notice that disabling move-cj tends, sometimes, to make the loop 

pipelining algorithm converge slower. This happens because much more renaming 

is required and therefore many copy operations are introduced into the code. Thus, 

since more unwindings are needed, many more nodes and operations are created. 
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This makes the difference between the enabling and disabling of move-cj "milder" 

than one might expect. 

The speed-up obtained without move-cj is about 32% less (WHM) as com­

pared to the case when move-cj is enabled. However, on average, 2.5 times more 

nodes and 2. 7 times more operations are involved when move-cj is allowed. For the 

latter two cases (number of nodes and number of operations) we compare averages, 

rather than WHM, since these numbers are compile-time measurements. 

8.3.5 Disambiguation 

Table 8.10 measures the effect of disambiguation on compaction with unlim­

ited resources. The left column corresponds to automatic compaction while the 

disambiguator is in effect. The middle column presents compaction results with­

out disambiguation. The rightmost column is for compaction with disambiguation 

when user assertions are allowed. In some sense these results may be regarded as 

"perfect disambiguation" results. Disambiguation is switched off by assuming that 

whenever there is a chance for a memory conflict-the conflict really happens (i.e. 

we take a pessimistic view). The results show the significant impact of disambigua­

tion on the achievable speed-up. With unlimited resources the speed-up is 2.33 

times higher than that obtained when disambiguation is disengaged. When user 

assertions are allowed, the speed-up increases by 4 7.6% relative to the speed-up 

achieved when the compiler uses the automatic disambiguation algorithm. 
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8.4 Discussion 

In the two previous sections we have presented a set of various results derived 

with different hardware models and parallelization parameters. Naturally, the re­

sults cannot (and were not intended to) suggest the "ultimate" hardware model 

configuration-this depends on the specific application, but we can draw some 

guidelines and build some intuition based on the results presented. Any inferences 

from the results presented should, of course, be taken with a grain of salt, partic-

ularly since the benchmarks we used are not large enough so that other important 

issues involved with large benchmarks (e.g. cache effects) are not addressed here. 

As mentioned, designing an architecture which implements the conditional 

execution model may be advantageous over the traditional model. As the results 

indicate, the conditional execution model yields a greater speed-up. On the other 

hand it involves significant complexity in its hardware implementation. A conser­

vative conclusion from the results is that the importance of conditional execution 

increases with the number of funCtional units available and in the case that the 

code is branch-intensive. 

The use of pipelined oper?-tions vs. uni-cycle operations is also a design 

trade-off as mentioned in Chapter 3. We showed that for limited resources the 

speed-up achieved is higher when multi-cycle operations are used. After imple-

mentation of a better loop pipelining algorithm, we believe that the speed-up for 

unlimited resources will grow as well. The benefits of pipelined operations become 

even greater if one keeps in mind that the actual performance of a system can be 

I 
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expressed by the following proportion: 

Speed-up 
Performance = a C l . 

ye e time 
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where a is a machine dependent factor. Since (generally) the cycle time may be 

reduced as the number of pipeline stages increases the enhancement of pipelining 

is amplified. 

Another problem related to multi-cycle operations and not addressed so far 

is the compilation-time. Pipelining of operations actually means a "finer" clock. 

Since each clock (or control step) is represented by a single node, more nodes 

are involved in the parallelizing process (a three cycle operation spans over three 

nodes). As the number of nodes increases the compilation-time grows. For the 

set of benchmarks selected in this thesis the compilation-time for pipelined oper-

ations was 2-3 times longer than the corresponding compilation-time for uni-cycle 

operations. 

The selection of the appropriate number of functional units is considered one 

of the most important design issues in any system that includes multiple functional 

units. On one hand we would like to have as many functional units as needed. 

On the other hand the number of functional units affects so many other crucial 

hardware aspects that one cannot afford to invest in many functional units. Among 

other issues the number of functional units affects: the width of the instruction 

word, the number of ports in the register-file, the number of multiplexers needed, 

the number of bits needed to tag the units, the number of internal wires, the 

number of pins for packaging etc.. Therefore, a careful selection of the appropriate 

number of functional units has to be done since we would like to have enough 

speed-up but be sure that the units are well utilized. 



100% 

50% 

+.. 

+ .... 

.. 
... ... ... ... .. -:+­

...... 

utilization 
normalized speed-up 

······· .. .J.. ......... 
,,,, , ,,,, c:r-·. • .. ·. 

.... ..+ 

4 8 2 
numis>er of units 

Figure 8.2: Utilization and Normalized Speed-Up for Uni-Cycle Operations. 

147 

Tables 8.4 and 8.5 and Figures 8.2 and 8.3 demonstrate two conflicting 

desires as we increase the number of functional units. First, it becomes harder to 

keep the units busy, and therefore the utilization drops (in a fair approximation 

it drops logarithmically). This may suggest an architecture with fewer functional 

units. Second, at the same time the normalized speed-up increases as the number 

of units grow. In this sense, the more units we have, the greater opportunity is for 

potential speed-up. 

In order to take into consideration both desires, a good design-compromise 

(assuming that the cost-function weights equally utilization and normalized speed­

up) would be to implement the system with the number of functional units that 

corresponds to. the intersection of the two curves. While for the uni-cycle opera-

tions the curves intersect around 8 units, for the pipelined unit the intersection is 

around 7 units. Special care must be taken not to infer that the best selection for 

every pipelined system is 7-8 functional units. The results for pipelined units were 

obtained under the assumption that floating-point operations take three cycles to 
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complete, memory loads take two cycles and all other operations are uni-cycle op-

erations. Different combination of latencies may lead to a different selection of 

functional units. It should be further emphasized that this applies only to our 

compiler and for the whole set of benchmarks that we selected. For other applica-

tions (and even for specific applications out of our selection) these selections may 

change. 

Regarding register allocation and renaming it has been shown that more reg­

isters are needed (approximately 3 times) for compaction than available in the 

input program. The price paid by our compiler for renaming is introduction of 

extra copy operations into the code. These copies, if not removed, may severely 

degrade the speed-up. Therefore, carrying out renaming without being able to 

eliminate these copies may become useless .. We have shown the effect of renaming 

as well as the effect of copy elimination on the speed-up. From the results it is clear 

that both renaming and copy elimination are essential parts of any parallelizing 
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compiler. There is still one drawback in the way we perform these two optimiza­

tions: while renaming is done incrementally (or locally) during the parallelization 

process the induction variable removal and copy elimination is performed as a post 

pass after c01;npaction (before resource constraints scheduling). Performing copy 

elimination "on the fly" would be too costly. Consequently, during parallelization 

copies increase compilation time as. well as code space. 

-The importance of memory reference disambiguation for extraction of sig-

nificant parallelism in scientific code was reported a few years ago [Ba79, Ni85a]. 

We have confirmed this observation by comparing the speed-ups obtained with an 

automatic disambiguation algorithm, without disambiguation and with assertions 

applied by the user. However, a powerful and precise disambiguation technique not 

only yields better speed-up by enabling compaction of memory loads and stores . 

but also enables integration of other optimizations which are a direct by-product 

of the technique. Besides the results shown in Table 8.10 we have also shown in 

Table 8. 7 and in Table 8.8 that further improvements may be achieved by appli-

cation of redundant IV removal technique and load-after-store elimination. These 

two techniques rely completely on an accurate (and efficient) disambiguator. The 

latter even reduces the the memory transfer rate by eliminating load operations 

and consequently alleviates the; memory traffic bottleneck that has posed a real 

problem in architecture design for years. 

We have presented throughout the thesis some higher-level strategies like: 

loop pipelining, maxcomp, compaction without moving conditional jumps etc. that 

may be applied on top of the low-level, atomic PPS transformations. Since the 

interface between those high-level techniques and the low-level transformations is 
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well-defined it should be quite easy to apply other strategies to check other trade­

offs and performance. Compaction without motion of conditional branches was 

implemented to control compilation-time as well as code space problems. However, 

since these problems are important enough, a full scale and careful study as well 

as experimentation with other techniques is still needed. 



151 

Table 8 l · Conditional Execution vs Non Conditional Execution Model 
No. Benchmark Unlimited resources Limited resources 

W / cond. exec. W / o cond. exec. W / cond. exec. W / o cond. exec. 

1 Livermore L 1 13.63 4.64 2.00 1.75 

2 Livermore L 2 13.09 4.78 1.84 1.66 
~ 

3 Livermore L3 8.94 3.00 1.80 1.80 

4 Livermore L4 11.34 3.97 1.99 1.72 

5 Livermore L5 5.48 3.66 2.20 1.57 

6 Livermore L6 3.64 2.88 1.63 1.85 

7 Livermore L 7 27.65 7.54 1.82 1.41 

8 Livermore LS 3.98 3.98 1.78 1.48 

9 Livermore L9 33.65 9.42 1.78 1.40 

10 Livermore LlO 4.29 13.37 1.95 1.24 

11 Livermore L 11 8.93 3.00 2.25 1.80 

12 Livermore L12 8.94 3.00 1.80 1.80 

13 Livermore L13 2.97 2.97 1.95 1.72 

14 Livermore L14 5.04 4.69 1.83 1.76 

15 Livermore L15 5.00 3.02' 1.69 1.78 

16 Livermore L16 2.68 1.21 1.25 1.17 

17 Livermore Ll 7 5.75 1.78 1.29 1.44 

18 Livermore Ll8 25.54 11.12 1.96 1.68 

19 Livermore L 19 5.78 4.97 2.05 1.94 

20 Livermore L20 5.29 2.16 1.13 1.62 
; 

21 Livermore L 21 3.85 2.69 1.73 1.80 

22 Livermore L22 7.77 5.23 1.99 1.78 
~ 

23 Livermore L23 7.20 7.20 1.89 1.38 

24 Livermore L24 9.93 1.25 1.43 1.25 

25 FFT 3.69 3.03 1.56 1.56 ,, 

26 bubble 5.12 1.51 1.47 1.28 

27 cos 8.93 1.69 1.60 1.56 

28 minmax 12.78 1.30 1.30 1.18 

29 quicksort 2.31 1.58 1.36 1.29 

30 permute 3.15 2.88 1.58 1.57 

31 line26 8.62 3;32 1.99 1.70 

32 cralelO 17.17 5.98 2.00 1.80 

33 unriems50 54.11 13.71 1.91 2.12 

34 nav7055 24.88 13.68 1.92 2.16 

35 dblloop 6.33 1.48 1.73 1.48 

Average 10.78 4.62 1.76 1.61 

WHM 7.63 3.58 1.76 1.66 
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Table 8.2: Uni-Cycle vs. Pipelined Operations 
Benchmark Unlimited resources Limited resources 

Uni-cycle ops Pipelined ops Uni-cycle ops Pipelined ops 

Livermore Ll 13.63 8.82 2.00 3.36 

Livermore L2 13.09 8.44 1.84 2.71 

Livermore L3 8.94 4.99 1.80 2.99 

Livermore L4 11.34 6.18 1.99 3.12 

Livermore LS S.48 3.00 2.20 2.S7 

Livermore L6 3.64 2.42 1.63 1.76 

Livermore L 7 27.6S 19.07 1.82 3.73 

Livermore L8 3.98 3.24 1.78 2.19 

Livermore L9 33.6S 21.68 1.78 2.23 

Livermore LIO 4.29 2.S4 1.9S 1.87 

Livermore Lll 8.93 4.32 2.2S 3.24 

Livermore L12 8.94 4.32 1.80 2.60 

Livermore L 13 2.97 2.S8 1.9S 2.12 

Livermore L14 S.04 3.63 1.83 1.99 

Livermore LIS S.00 3.81 1.69 2.43 

Livermore L16 2.68 2.19 1.2S 1.34 

Livermore Ll 7 S.7S 2.38 1.29 1.S9 

Livermore L18 2S.S4 11.37 1.96 3.17 

Livermore L19 S.78 2.94 2.0S 2.11 

Livermore L20 S.29 2.2S 1.13 1.35 

Livermore L21 3.85 2.52 1.73 1.67 

Livermore L22 7.77 2.80 1.99 2.32 

Livermore L23 7.20 4.26 1.89 2.32 

Livermore L24 9.93 2.40 1.43 1.50 

FFT 3.69 } 2.84 1.56 1.83 

bubble 5.12 3.92 1.47 1.85 

cos 8.93 3.93 1.60 1.53 

minmax 12.78 4.98 1.30 1.25 

quicksort 2.31 1.06 1.36 1.05 

permute 3.15 1.20 1.S8 1.11 

line26 8.62 4.31 1.99 2.23 

cralelO 17.17 4.33 2.00 2.16 

unriems50 54.11 31.67 1.91 3.66 

nav7055 24.88 6.96 1.92 2.81 

dblloop 6.33 2.78 1.73 2.23 

Average 10.78 5.72 1.76 2.23 

WHM 7.63 4.18 1.76 2.26 
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Table 8.3: Number of Registers Used 
No. Benchmark Regs used Speed-up 

Org. Comp. Ratio min max 

1 Livermore Ll 10 20 2.00 2.00 13.63 

2 Livermore L2 13 23 1.77 4.89 13.09 

3 Livermore L3 8 11 1.38 8.94 8.94 

4 Livermore L4 11 14 1.27 5.89 11.34 

5 Livermore LS 7 13 1.86 2.75 5.48 

6 Livermore L6 11 17 1.55 3.64 3.64 

7 Livermore L 7 11 50 4.55 1.72 27.65 

8 Livermore LS 17 37 2.18 2.83 3.98 

9 Livermore L9 10 92 9.20 3.55 33.65 

10 Livermore L 10 7 54 7.71 3.58 4.29 

11 Livermore Lll 6 10 1.67 3.00 8.93 

12 Livermore Ll2 6 9 1.50 3.00 8.94 

13 Livermore Ll3 15 22 1.47 2.39 2.97 

14 Livermore L14 16 114 7.13 2.87 5.04 

15 Livermore L15 18 33 1.83 2.97 5.00 

16 Livermore Ll6 21 108 5.14 2.27 2.68 

17 Livermore Ll 7 16 24 1.50 2.84 5.75 

18 Livermore L18 26 84 3.23 6.50 25.54 

19 Livermore L 19 12 22 1.83 4.96 5.78 

20 Livermore L20 15 56 3.73 2.55 5.29 

21 Livermore L21 15 17 1.13 3.12 3.85 

22 Livermore L22 11 26 2.36 2.29 7.77 

23 Livermore L23 15 87 5.80 4.86 7.20 
' 

24 Livermore L24 10 20 2.00 3.33 9.93 

25 FFT 19 26 1.37 2.79 3.69 

26 bubble 10 20 2.00 2.98 5.12 

27 cos 9 22 2.44 4.63 8.93 

28 minmax 10 23 2.30 3.24 12.78 

29 quicksort 15 23 1.53 1.96 2.31 

30 permute 15 17 1.13 2.78 3.15 

31 line26 9 14 1.56 4.83 8.62 

32 cralelO 13 23 1.77 8.88 17.17 

33 unriems50 15 20 1.33 3.93 54.11 

34 nav7055 18 169 9.39 4.22 24.88 

35 dblloop 4 9 2.25 2.16 6.33 

Average 12.69 37.97 2.88 3.69 10.78 

WHM 11.66 20.59 1.76 3.51 7.63 
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Table 8.4: Speed-Up With Different Number of Functional Units-Uni-Cycle case 

No. Bench- Number of functional units 

mark 00 2 4 8 16 

SU SU Util NS SU Util NS SU Util NS SU Util NS 

1 Liv. Ll 13.63 2.00 100 14.7 3.48 87.0 25.5 6.94 86.7 50.9 13.63 85.1 100 

2 Liv. L2 13.09 1.85 92.5 14.1 3.64 91.0 27.8 1.01 88.4 54.0 7.26 45.4 55.4 

3 Liv. L3 8.94 1.80 90.0 20.1 3.00 15.0 33.6 4.49 56.1 50.3 8.94 55.9 100 

4 Liv. L4 11.34 1.99 99.5 17.5 3.96 99.0 34.9 5.91 73.9 52.1 11.34 10.9 100 

5 Liv. L5 5.48 2.20 110 40.1 3.66 91.5 66.8 5.48 68.5 100 5.48 34.3 100 

6 Liv. L6 3.64 1.79 89.5 49.1 2.89 72.3 79.4 3.64 45.5 100 3.64 22.8 100 

7 Liv. L7 27.65 1.93 96.5 1.0 3.86 96.5 14.0 7.63 95.4 27.6 14.87 92.9 53.8 

8 Liv. LS 3.98 1.86 93.0 46.7 2.98 74.5 74.9 3.54 44.3 88.9 3.86 24.1 97.0 

9 Liv. L9 33.65 1.96 98.0 5.8 3.90 97.5 11.6 7.73 96.6 23.0 12.82 80.1 38.1 

10 Liv. LlO 4.29 1.95 97.5 45.4 2.86 71.5 66.7 3.58 44.8 83.4 4.29 26.8 100 

11 Liv. Lll 8.93 2.25 112 25.2 4.49 112 50.3 8.93 111 100 8.93 55.8 100 

12 Liv. L12 8.94 1.80 90.0 20.1 3.00 75.0 33.6 4.49 56.1 ,50.2 8.94 55.8 100 

13 Liv. L13 2.97 1.95 97.5 65.6 2.74 68.5 92.3 2.97 37.1 100 2.97 18.6 100 

14 Liv. L14 5.04 1.88 94.0 37.3 3.19 79.6 63.3 4.45 55.6 88.3 4.95 30.9 98.2 

15 Liv. L15 5.00 1.73 86.5 34.6 3.00 75.0 60.0 4.65 58.1 93.0 5.00 31.3 100 

16 Liv. L16 2.68 1.28 64.0 47.8 1.79 44.8 66.8 2.28 28.5 85.0 2.48 15.5 92.5 

17 Liv. Ll 7 5.75 1.29 64.5 22.4 2.31 57.8 40.2 2.88 36.0 50.1 2.88 18.0 50.1 

18 Liv. L18 25.54 1.96 98.0 1.7 3.74 93.5 14.6 6.93 86.6 27.1 11.5 71.6 44.8 

19 Liv. L19 5.78 2.05 103 35.5 3:74 93.5 64.7 5.78 72.3 100 5.78 36.1 100 

20 Liv. L20 5.29 1.23 61.5 23.3 . 2.26 56.5 42.7 3.86 48.3 73.0 5.29 33.1 100 

21 Liv. L21 3.85 1.69 84.5 62.1 2.59 64.8 67.3 3.73 46.6 96.9 3.85 24.1 100 

22 Liv. L22 7.77 1.99 100 25.6 3.94 98.5 50.7 1.77 97.1 100 7.77 48.6 100 

23 Liv. L23 1.20 1.89 94.5 26.3 3.11 77.8 43.2 4.82 60.3 66.9 6.17 38.6 85.7 

24 Liv. L24 9.93 1.67 83.5 16.8 2.00 50.0 20.1 2.50 31.3 25.2 4.99 31.2 50.3 

25 FFT 3.69 1.73 86.5 46.8 2.67 66.8 72.4 3.29 41.1 89.1 3.69 23.1 100 

26 bubble 5.12 1.80 80.0 35.1 2.32 58.0 45.3 2.53 38.3 54.4 4.82 30.1 94.1 

27 cos 8.93 1.69 84.5 18.9 2.78 69.5 33.5 4.03 50.4 45.1 6.25 39.0 70.0 

28 mi nm ax 12.78 1.30 65.0 10.2 2.59 64.8 20.3 4.30 53.8 33.6 6.46 40.4 50.5 

29 quicksort 2.31 1.37 68.5 59.3 1.93 48.3 83.5 2.19 27.4 94.8 2.31 14.4 100 

30 permute 3.15 1.75 87.5 55.6 2.67 66.8 84.8 3.15 39.4 100 3.15 19.7 100 

31 line26 8.62 1.99 100 23.1 3.36 84.0 39.0 4.91 61.4 57.0 8.62 53.9 100 

32 cralelO 17.17 2.00 100 11.6 3.60 90.0 21.0 5.99 74.9 34.9 8.92 55.8 52.0 

33 unrms50 54.11 2.11 106 3.8 4.21 105 8.9 8.84 111 16.3 17.36 109 32.1 

34 nav7055 24.88 2.18 109 8.8 4.22 106 17.0 8.24 103 33.l 14.24 89.0 57.2 

35 dblloop 6.33 1.73 86.5 27.3 2.16 54.0 34.1 3.96 49.5 62.6 3.96 24.8 62.6 

Average 10.78 1.82 90.7 28.9 3.10 71.6 45.9 4.96 62.2 65.9 7.07 44.2 82.4 

WHM 7.63 1.86 93.2 21.2 3.15 78.7 36.4 4.74 59.3 55.8 6.28 39.3 73.4 
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Table 8.5: Speed-Up With Different Number of Functional Units-Pipelined case 
No. Bench- Number of functional units 

mark 00 2 4 8 16 

SU SU Util NS SU Util NS SU Util NS SU Util NS 

1 Liv. Ll 8.82 3.36 I68 38.1 6.66 I67 75.5 8.82 110 100 8.82 55.1 100 

2 Liv. L2 8.44 3.33 167 39.4 5.31 133 62.9 8.44 106 IOO 8.44 53.0 100 

3 Liv. L3 4.99 2.99 74.8 59.9 4.99 I25 IOO 4.99 62.4 100 4.99 31.2 100 

4 Liv. L4 6.18 3.12 50.5 156 6.I5 99.5 154 6.I8 77.3 100 6.18 38.6 100 

5 Liv. LS 3.00 2.57 129 85.7 3.00 75.0 100 3.00 37.5 100 3.00 18.8 100 

6 Liv. L6 2.42 1.76 88.0 72.7 2.36 97.5 59.0 2.42 30.3 IOO 2.42 15.1 100 

7 Liv. L7 19.07 4.36 218 22.9 7.72 40.5 193 11.4 I42 59.7 16.21 101 85.0 

8 Liv. LS 3.24 2.29 115 70.7 2.76 69.0 85.2 3.07 38.4 94.7 3.24 20.3 100 

9 Liv. L9 21.68 2.58 129 11.9 4.37 109 20.I 7.78 97.3 35.9 I3.66 85.4 63.0 

10 Liv. LIO 2.54 1.87 93.5 73.6 2.29 57.3 90.2 2.54 31.8 100 2.54 I5.9 100 

l1 Liv. Lll 4.32 3.24 162 75.0 4.32 108 100 4.32 54 100 4.32 27 100 

12 Liv. L12 4.32 2.60 130 60.2 4.32 108 100 4.32 54 100 4.32 27 100 

13 Liv. LI3 2.58 2.I2 106 82.I 2.52 63.0 97.7 2.58 32.3 IOO 2.58 I6.1 100 

14 Liv. LI4 3.63 2.14 107 59.0 2.33 58.3 64.2 3.63 45.4 100 3.63 22.7 100 

15 Liv. L15 3.81 2.54 127 66.7 3.68 92.0 96.6 3.8I 47.6 100 3.81 23.8 IOO 

16 Liv. L16 2.19 1.27 63.5 58.0 1.85 46.3 84.5 2.09 26.1 95.4 2.09 13.1 95.4 

17 Liv. Ll 7 2.38 1.73 86.5 72.7 2.01 50.3 84.5 2.24 28.0 94.1 2.38 14.9 100 

18 Liv. LIS 11.37 3.17 I59 27.9 4.83 I21 42.5 6.49 81.1 57.I 7.69 48.0 67.6 

I9 Liv. L19 2.94 2.11 106 71.8 2.94 73.5 100 2.94 36.8 100 2.94 18.4 100 

20 Liv. L20 2.25 1.57 78.5 69.8 1.89 47.3 84.0 2.13 26.6 94.7 2.14 13.4 95.1 

21 Liv. L21 2.52 1.67 83.5 66.2 2.25 56.3 89.3 2.52 31.5 100 2.52 15.8 100 

22 Liv. L22 2.80 2.15 108 76.8 2.79 69.8 99.6 2.80 35.0 100 2.80 17.5 100 

23 Liv. L23 4.26 2.32 116 54.5 3.19 79.8. 74.9 4.00 50.0 93.9 4.26 26.6 100 

24 Liv. L24 2.40 1.71 85.5 11.3 1.71 42.3 71.3 2.00 25.0 83.3 2.40 15.0 100 

25 FFT 2.84 1.98 99.0 69.7 2.50 62.5 88.0 2.82 35.3 99.3 2.84 17.8 100 

26 bubble 3.92 1.83 91.5 46.7 2.52 63.0 64.3 3.58 44.8 91.3 3.58 22.4 91.3 

27 cos 3.93 1.53 76.5 38.9 2.54 63.5 64.6 3.67 45.9 93.4 3.93 24.6 100 

28 minrnax 4.98 1.74 87.0 34.9 2.50 62.5 50.2 2.96 37.0 59.4 3.20 20.0 64.3 

29 quicksort 1.06 1.06 53.0 100 1.06 26.5 100 1.06 I3.3 100 1.06 6.6 100 

30 permute 1.20 1.11 55.5 92.5 1.18 29.5 98.3 1.20 I5.0 100 1.20 7.5 100 

31 line26 4.31 2.60 130 60.3 4.23 106 98.1 4.31 53.9 IOO 4.31 26.9 100 

32 cralelO 4.33 2.16 108 49.9 3.25 40.6 75.1 4.33 54.1 100 4.33 27.1 100 

33 unrms50 31.67 3.83 192 12.I 6.12 153 19.3 8.21 103 25.9 14.85 92.8 46.9 

34 nav7055 6.96 2.81 141 40.4 3.77 94.3 54.2 5.32 66.5 76.4 6.96 43.5 100 

35 dblloop 2.78 2.23 112 80.2 2.78 69.5 100 2.78 34.8 100 2.78 17.4 100 

Average 5.72 2.33 111 62.0 3.39 78.8 84.0 4.14 51.7 90.l 4.75 29.8 94.5 

WHM 4.18 2.39 111 31.8 3.18 78.7 47.2 3.65 45.8 59.7 4.00 24.9 78.9 
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Table 8.6: Impact of Register Renaming on Speed-Up 
No. Benchmark Unlimited resources Limited resources 

W/ renaming W / o renaming W /renaming W / o renaming 

1 Livermore L 1 13.63 2.00 2.00 1.75 

2 Livermore L2 13.09 4.89 1.84 1.87 

3 Livermore L3 8.94 8.94 1.80 1.80 

4 Livermore L4 11.34 5.89 1.99 1.99 

5 Livermore L5 5.48 2.75 2.20 1.83 

6 Livermore L6 3.64 3.64 1.63 1.87 

7 Livermore L 7 27.65 1.72 1.82 1.63 

8 Livermore L8 3.98 2.83 1.78 1.87 

9 Livermore L9 33.65 3.55 1.78 1.5t 

10 Livermore Lt 0 4.29 3.58 1.95 1.96 

11 Livermore Lll 8.93 3.00 2.25 1.80 

t2 Livermore Lt2 8.94 3.00 1.80 1.80 

13 Livermore L13 2.97 2.39 1.95 1.81 

14 Livermore Lt 4 5.04 2.87 1.83 1.98 

15 Livermore Ll 5 5.00 2.97 1.69 1.94 

t6 Livermore Ll 6 2.68 2.27 1.25 1.38 

t7 Livermore Lt 7 5.75 2.84 1.29 1.76 

18 Livermore L18 25.54 6.50 1.96 1.87 

t9 Livermore L19 5.78 4.96 2.05 2.05 

20 Livermore L20 5.29 2.55 1.13 1.0t 

21 Livermore L2t 3.85 3.t2 1.73 1.78 

22 Livermore L22 7.77 2.29 1.99 1.78 

23 Livermore L23 7.20 4.86 1.89 1.9t 

24 Livermore L24 9.93 3.33 1.43 1.66 

25 FFT 3.69 .i 2.79 1.56 1.62 

26 bubble 5.12 2.98 1.47 1.4t 

27 cos 8.93 4.63 1.60 1.62 

28 rninrnax 12.78 3.24 1.30 1.44 

29 quicksort 2.31 1.96 1.36 1.50 

30 permute 3.15 2.78 1.58 1.54 

3t line26 8.62 4.83 1.99 2.02 

32 cralelO 17.17 8.88 2.00 2.00 

33 unrierns50 54.11 3.93 l.9t 2.04 

34 nav7055 24.88 4.22 1.92 2.10 

35 dblloop 6.33 2.16 1.73 1.53 

Average 10.78 3.69 1.76 1.76 

WHM 7.63 3.5t 1.76 1.8t 
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Table 8.7: Impact of IV Removal and Copy Elimination on Speed-Up 
No. Benchmark W / IV and copy W /o IV and copy 

elimination elimination 

1 Livermore LI 2.00 1.27 

2 Livermore L2 1.84 1.47 

3 Livermore L3 1.80 1.80 

4 Livermore L4 1.99 1.99 

5 Livermore LS 2.20 1.38 

6 Livermore L6 1.63 1.61 

7 Livermore L 7 1.82 1.11 

8 Livermore LS 1.78 1.48 

9 Livermore L9 1.78 1.00 

10 Livermore LIO 1.95 1.20 

11 Livermore Lll 2.25 1.80 

12 Livermore L12 1.80 1.50 

13 Livermore L13 1.95 1.72 

14 Livermore L14 1.83 1.17 

15 Livermore L 15 1.69 1.62 

16 Livermore L16 1.25 1.11 

17 Livermore Ll 7 1.29 1.22 

18 Livermore L18 1.96 1.56 

19 Livermore L19 2.05 1.66 

20 Livermore L20 1.13 0.66 

21 Livermore L21 1.73 1.41 

22 Livermore L22 1.99 1.16 

23 Livermore L23 1.89 0.94 

24 Livermore L24 1.43 1.43 

25 FFT 1.56 1.42 

26 bubble 1.47 1.44 

27 cos 1.60 1.44 

28 minmax 1.30 1.08 

29 quicksort 1.36 1.17 

30 permute 1.58 1.55 

31 line26 1.99 1.46 

32 cralelO 2.00 1.39 

33 unriems50 1.91 1.20 

34 nav7055 1.92 0.92 

35 dblloop 1.73 1.73 

I I 

Average 1.76 1.37 

WHM 1.76 1.30 

I 
I 

I 
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Table 8.8: Impact of Load-After-Store-Elimination on Speed-Up 
No. Benchmark Unlimited resources Limited resources 

W/ optim. W/o optim. W/ optim. W/o optim. 

1 Livermore Ll 13.63 13.63 2.00 2.00 

2 Livermore L2 13.09 13.09 1.84 1.84 

3 Li verrnore L3 8.94 8.94 1.80 1.80 

4 Livermore L4 11.34 2.99 1.99 1.71 

5 Livermore L5 5.48 2.75 2.20 1.83 

6 Livermore L6 3.64 3.64 1.63 1.63 

7 Livermore L7 27.65 27.65 1.82 1.82 

8 Livermore LS 3.98 3.98 1.78 1.78 

9 Livermore L9 33.65 33.65 1.78 1.78 

10 Livermore L 10 4.29 4.29 1.95 1.95 

11 Livermore L 11 8.93 3.00 2.25 1.80 

12 Livermore L12 8.94 8.94 1.80 1.80 

13 Livermore L13 2.97 2.56 1.95 1.72 

14 Livermore L14 5.04 3.12 1.83 1.56 

15 Livermore L15 5.00 5.00 1.69 1.69 

16 Livermore L 16 2.68 2.68 1.25 1.25 

17 Livermore Ll 7 5.75 5.75 1.29 1.29 

18 Livermore L18 25.54 25.54 1.96 1.96 

19 Livermore L19 5.78 2.70 2.05 1.59 

20 Livermore L20 5.29 3.55 1.13 1.08 

21 Livermore L21 3.85 3.85 1.73 1.66 

22 Livermore L22 7.77 7.77 1.99 1.99 

23 Livermore L23 7.20 4.42 1.89 1.82 

24 Livermore L24 9.93 9.93 1.43 1.43 

25 FFT 3.69 3.69 1.56 1.56 

26 bubble 5.12 5.12 1.47 1.47 

27 cos 8.93 8.93 1.60 1.60 

28 minmax 12.78 12.78 1.30 1.18 

29 quicksort 2.31 2.31 1.36 1.36 

30 permute 3.15 3.15 1.58 1.58 

31 line26 8.62 8.62 1.99 1.99 

32 cralelO 17.17 17.17 2.00 2.00 

33 unriems50 54.11 7.95 1.91 1.89 

34 nav7055 24.88 4.08 1.92 1.82 

35 dblloop 6.33 6.33 1.73 1.73 

Average 10.78 8.10 1.76 1.68 

WHM 7.63 5.24 1.76 1.70 
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Table 8.9: Compaction With Move-cj vs. Compaction Without Move-cj 
No. Benchmark W / move-cj W /o move-cj 

Speed-up nodes ops Speed-up nodes ops 

1 Livermore L 1 13.63 30 141 13.63 13 88 

2 Livermore L2 13.09 44 226 12.58 26 188 

3 Livermore L3 8.94 9 33 8.93 10 41 

4 Livermore L4 11.34 20 71 11.20 19 73 

5 Livermore LS 5.48 11 35 5.48 11 39 

6 Livermore L6 3.64 38 116 3.48 20 83 

7 Livermore L 7 27.65 76 759 27.45 17 277 

8 Livermore LS 3.98 98 319 3.95 48 220 

9 Livermore L9 33.65 92 890 33.65 18 396 

10 Livermore LIO 4.29 26 112 3.58 19 143 

11 Livermore L 11 8.93 10 29 8.92 11 36 

12 Livermore L 12 8.94 9 30 8.93 10 38 

13 Livermore L13 2.97 52 148 2.97 32 100 

14 Livermore L 14 5.04 509 3570 4.21 57 602 

15 Livermore L15 5.00 233 '1644 3.53 121 707 

16 Livermore L16 2.68 63 563 2.05 75 457 

17 Livermore Ll 7 5.75 27 345 2.56 20 85 

18 Livermore L18 25.54 221 2510 6.05 57 1332 

19 Livermore L19 5.78 37 158 5.70 26 124 

20 Livermore L20 5.29 75 517 4.25 29 209 
; 

21 Livermore L21 3.85 18 68 3.40 20 74 

22 Livermore L22 7.77 29 178 7.65 19 97 

23 Livermore L23 7.20 111 475 7.10 24 284 

24 Livermore L24 9.93 15 106 4.98 17 128 

25 FFT 3.~9 66 232 3.69 42 231 

26 bubble 5.12 13 83 3.66 15 96 

27 cos 8.93 20 690 3.57 19 339 

28 mimnax 12.78 11 256 2.41 34 560 

29 quicksort 2.31 37 129 2.31 38 122 

30 permute 3.15 42 122 3.07 40 119 

31 line26 8.62 11 52 8.18 10 54 

32 cralelO 17.17 25 167 17.09 14 119 

33 unriems50 54.11 78 1293 5.59 18 172 

34 nav7055 24.88 273 5250 3.99 28 220 

35 dblloop 6.33 13 83 3.80 8 47 

Average 10.78 69.8 611.4 7.24 28.1 225.7 

WHM 7.63 26.9 117.4 5.18 18.9 105.2 
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Table 8.10: Impact of Disambiguation on Speed-Up 
No. Benchmark W / disambiguation W / o disambiguation W / assertions 

1 Livermore L 1 13.63 2.33 13.63 

2 Livermore L2 13.09 3.01 13.09 

3 Livermore L3 8.94 8.94 8.94 

4 Livermore L4 11.34 2.99 11.34 

5 Livermore L5 5.48 2.75 5.48 

6 Livermore L6 3.64 2.18 10.05 

7 Livermore L 7 27.65 3.10 27.65 

8 Livermore LS 3.98 3.39 20.23 

9 Livermore L9 33.65 3.53 33.65 

10 Livermore LlO 4.29 2.69 37.22 

11 Livermore Lll 8.93 3.00 8.93 

12 Livermore Ll 2 8.94 3.00 8.94 

13 Livermore Ll3 2.97 2.06 22.09 

14 Livermore Ll4 5.04 2.01 5.04 

15 Livermore L15 5.00 4.26 5.00 

16 Livermore L16 2.68 2.68 2.68 

17 Livermore Ll 7 5.75 3.82 5.75 

18 Livermore L18 25.54 3.43 25.54 

19 Livermore L 19 5.78 2.70 5.78 

20 Livermore L20 5.29 3.55 5.29 

21 Livermore L21 3.85 2.72 8.45 
; 

22 Livermore L22 7.77 2.30 7.77 

23 Livermore L23 7.20 3.68 7.20 

24 Livermore L24 9.93 9.93 9.93 

25 FFT 3.69 2.73 12.72 

26 bubble 5.12:; 4.20 5.12 

27 cos 8.93 8.93 8.93 

28 minmax 12.78 12.78 12.78 

29 quicksort 2.31 2.31 2.31 

30 permute 3.15 3.15 3.15 

31 line26 8.62 2.55 8.62 

32 cralelO 17.17 2.27 17.17 

33 unriems50 54.11 3.67 54.11 

34 nav7055 24.88 2.25 24.88 

35 dblloop 6.33 2.79 6.33 

I I II 3.28 11.26 

Average 3.76 13.31 10.78 

WHM 7.63 



Chapter 9 

The compiler as a High Level 

Synthesis tool 

High Level Synthesis (HLS) is the process of designing a structure that im­

plements the behavioral description of a given problem. This process involves 

three phases [McPC88) which are compilation of the behavioral description into an 

internal representation, scheduling, and allocation (which includes binding). Our 

compiler includes similar phases-we compile from a high-level representation (C) 

into internal representation (three-address-code), then we schedule and then do 

some higher level hardware allocation. Thus, a natural questions is: "Can our 

compiler be considered as a HLS tool?" and if so, "What is the relationship be­

tween our compiler and other HLS systems?". We are focusing on these issues 

in this chapter. To illustrate how the compiler can serve as a HLS tool we give 

an example of our gradual, two dimensional design approach. Another aspect we 

address here is what extensions should and could be made in order to make this 

compiler a better HLS tool. 

161 
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Performance 

B 

Area 

Figure 9.1: Performance vs. Chip Area. 

9.1 Design Space Exploration 

While trying to synthesize a hardware structure out of a behavioral descrip­

tion there is always a trade-off between the achievable performance and the chip's 

area. Intuitively, the more area we have, the better performance we can get, as 

illustrated in Figure 9.1. The graph represents the set of all optimal points in the 

design space for a given technology (i.e. it represents the best achievable perfor­

mance for a specific architecture for a given technology). Obviously not all the 

points are feasible. The architecture design problem is to reach one of the curve's 

points starting from an arbitrary point in the design space. 

Consider, for example, the traditional serial design process in which the hard­

ware is desi_gned first and then a compiler is written for this machine. This approach 

is adopted by most of the microprocessor designing companies. The approach is 

represented by the path A in Figure 9.1. When the compiler is written the silicon 

area is already determined and there is no way to add another adder or other func­

tional units which may be required for enhancing the performance for a specific 

problem. 

I 
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On the other hand, a typical HLS methodology is represented in the figure by 

path B. Here, during the scheduling phase of the synthesis, one always schedules 

with the same scheduler but searches for the design with least area. In both 

approaches one can explore the design space in one axis only. 

The flexibility of our compiler, exhibited in allowing compaction with differ­

ent constraints, software optimizations and hardware models, enables exploration 

in two axes and makes our compiler a good candidate for use in HLS. By being able 

to choose several hardware parameters (conditional execution or not, number of 

functional units, number of pipeline stages for each functional unit, total number 

of registers used), and increment them gradually we can "tune" the compiler to 

maximize performance and actually explore the design space in both axes. 

9.2 Application-specific Design 

Application-specific design is one of the important arguments in favor of HLS 

methodology. It is well known that a big penalty (in terms of excess hardware) 

is incurred during the design of general-purpose (GP) architectures for enabling 

their use for a large spectrum of app,lications, but when a very high performance 

architecture is needed these GP designs are unable to provide the performance 

required; Therefore, by fine-tuning the design and making it application-specific 

one can save some of the area spent for generality and devote it to other critical 

parts needed for the specific design. 
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The approach we take in our compiler coincides with the application-specific 

design approach. Since we have complete control on the compiler we can pa-

rameterize the design. We can check different options with different hardware 

parameters and choose the best one as the final schedule. As hardware technology 

approaches its physical limitations, fine-tuning becomes even more important. 

9.3 Design Feedback 

Another feature provided by our approach is that of immediate design feed-

back. To demonstrate this argument we'll refer to one of the major decisions during 

the architecture design process: the selection of the system-clock. Having a fast 

system-clock makes the whole design faster but will probably increase the number 

of pipeline stag~s needed for the execution of the slow operations. On the other 

hand, stretching the system clock will decrease, naturally, the number of stages 

but will increase the time wasted in the execution of fast operations. This is a 

"pure" design trade-off issue. With our approach, we may estimate the execution 

times of all combinations of clocks and pipeline stages and get the best choice. 

9.4 Gradual, 2-Dimensional Design Example 

The idea behind our gradual, 2D design approach is to gradually change the 

compiler's configuration and the hardware constraints to best fine-tune the perfor­

mance for a specific problem. In other words, we propose a methodology to solve 

an optimization problem while the problem is N-dimensional (we may have control 

I 
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on N different parameters) and the optimization function is maximal performance 

in minimal chip area. The approach is gradual since it allows incremental change 

of each of these N dimensions and it is 2D because we allow design in both axes of 

the design space mentioned in Section 9.1. The different problem dimensions may 

be: the number of functional units, the number of pipeline stages of each unit, the 

number of registers used and the model of execution (with or without conditional 

execution). 

To simplify the example below, we refer in this section to the performance 

in terms of dynamic speed-up (as defined in Section 8.1) although in real system 

design the cycle time may vary for different pipeline depths and therefore should 

be accounted for. Furthermore, the only two dimension we allow to change (for 

this example) are the number of functional units ·and the number of stages in each 

unit. 

Suppose the following program is given: 

main() 

{ 

int i; 

float x[lO] ,y[lO]; 

for ( i = 1; i < 10; i + +) 

x[i] = x[i] * (x[i - 1] + y[i]); 

} 

The intermediate code representing the loop body is: 

(LABEL Ll) 



$2 := $3 - 44; 

$f6 := M[$3 - 48]; 

$f8 := N/($3 - 84]; 

$J 4 := $/6 +$JS; 

$f6 := M[$2 +OJ; 

$f4 := $f4 * $f6; 

M[$2 +OJ := $/4; 

$3 := $3 + 4; 

$4 := $4 + 4; 

$cc0 := $4 <= 36; 

if $cc0 (LABEL Ll) 
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The loop body has three memory loads, one floating-point addition and one 

floating-point multiplication. The design goal is to come up with the best speed-up 

under the following assumptions: 

• Only floating-point operations and memory loads need to be pipelined. All 

other operations can be completed in one cycle. 

• Floating-point addition and multiplication are executed by the same func­

tional unit (and therefore have the same latency). Memory loads are carried 

out by another functional unit and all integer and conditional operations are 

executed on a third unit. 

• Pipeline latencies for floating-point operations and for the load may vary 

from two stages to five stages. 

• At most 3 functional units are allowed for this design. 
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Figure 9.2: Speed-up With Different Latencies for the Gradual Design With 2 
Functional Units. 

To begin with, let us assume that the latencies of both loads and floating-

point operations is two cycles and that only two functional units are available. 

Using the metric of speed-up, we then gradually change only one of the dimensions, 

the latency dimension, and measure the speed-up obtained for each combination 

of latencies. The results summarized in Figure 9.2 assume that only two functional 

units are available and that no more than one load and/or conditional jump can 

be executed in each cycle. 

Figure 9.2 shows how the speed-up changes with a change in the pipeline 

depth (when the number of units is kept constant). Intuitively, we would expect 

the speed-up to decrease with an increase in operations' latency. However, while 
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an increase in the latency of the memory load unit increases the speed-up (keep­

ing the latency of the addition/multiplication unit constant )-an increase in the 

addition/multiplication units results in a decrease in speed-up. 

Similar gradual change on the other axis (number of functional units), while 

maintaining constant latency (of 2) for the addition/multiplication operations, 

results in the numbers presented in Table 9.1. Same gradual change can be carried 

out with latencies of 3-5 for the addition/multiplication operations. 

Consequently, we get the best speed-up within the given pipeline limits and 

with 2 functional units when the load takes 5 cycles and the floating-point func-

tional unit takes 2 cycles. 

Ta bl 9 1 S d U w· th T e .. 1pee - p I WO a:µ d Th ree F t' unc 10na 1 Units 

Load latency 2 3 4 5 

2 functional units 2.25 2.55 2.87 3.14 

3 fonctional uni ts 2.98 3.35 3.76 3.60 

Improvement 32.5% 31.8% 31.0% 14.6% 

From Table 9.1 one can see that, except for the case when load takes five 

cycles, the improvement in speed-up with 3 units is significant over the speed-up 

with 2 units. However, for this specific case the speed-up was maximal with 2 

units. Therefore, the decision whether to use 3 functional units or stay with 2 is a 

pure optimization problem: if three functional units are feasible the best choice is 

with memory load unit that has 4 pipeline stages and floating-point unit that has 

2 stages. On the other hand, if the design of 3 functional units is non-realistic, the 

best selection is that of load unit with 5 pipeline stages and addition/multiplication 

units with 2 stages. 
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In general, for each problem and for each set of feasible constraints one can 

always find the best implementation using the approach described here. Naturally, 

the selection of the best hardware choices is application-specific. 

9.5 Future Extensions 

9.5.1 Interactive Compaction 

The parallelizing process discussed throughout the thesis is an automatic one 

based on low-level transformations directed by higher-level "guidance" rules (see 

chapter 3) and its goal is to generate a schedule that is better (i.e. more parallel) 

than the one that can be produced by human e~perts. However, due to the com­

plexity of schedule-generation problems (which are NP-hard), a compiler must rely 

on heuristics, as explained in chapter 5, which sometimes fail to produce good (i.e. 

optimal or nearly optimal) schedules.1 The automaticly-generated schedule may 

not be the best achievable implementation under the given constraints. Hence, 

allowing the user to interact with the compiler and direct the application of par­

allelizing transformations, while the compiler takes care of the tedious aspects of 

compaction, may yield even better schedules than those generated automatically. 

Together with researchers at CMU we have integrated a graphical interface, 

through which the user can suggest what should be done in parallel, while the 

1This is true even for sequential architectures, but is critical for architectures utilizing sub­

stantially both spatial and temporal parallelism, where the complexity of the schedule-generation 

problem is much greater. Furthermore, the penalty for a bad schedule in parallel architectures 

is proportional to the parallelism of the architecture, and thus could be very large. 
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compiler performs the actual changes using the PPS transformations. If a request 

cannot be satisfied, the compiler reports the problem causing the failure. The user 

may then help eliminate the problem by supplying guidance or information not 

explicit in the program. In such a way the user may add his insight and experience 

to change the schedule such that all constraints are met and the best, fine-tuned 

design is achieved. 

A typical interactive session proceeds as follows. The user starts by request-

ing the automatic parallelization of the program (i.e. invoking the built-in heuristic 

aggregate transformations). If the resulting schedule and hardware are satisfactory, 

then no further work is needed and the interaction is complete. However, if the 

user is not satisfied, he may chose to interactively parallelize critical kernels. The 

user then refines the schedule by requesting specific modifications to the program 

(e.g. moving some operations from one point in the graph to another. When such 

a request is made, the compiler tries to instantiate it by a series of transformations. 

If the instantiation succeeds, the schedule is changed accordingly. Otherwise, the 

compiler reports the cause of the· failure (e.g. a dependency violation). Alterna­

tively, a transformation may sometimes fail due to the inability of the compiler to 

eliminate spurious dependencies (see Section 7 .5). Two indirect references could 

appear to refer to the same memory location (thus causing a dependency) when 

in fact the references are distinct. The user may realize this, based on information 

available from the problem domain but not explicit in the program. In this case, 

the user may choose to ignore the conflict and direct the compiler to perform the 

transformation. 

Most of this interactive interface has been implemented. We are now looking 

for ways to integrate the automatic compilation with the interactive session. 
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9.5.2 Consideration of Allocation Issues 

As explained in chapter 5, when performing resource-constrained scheduling 

we use a priority function to decide which operation to defer in the case that a node 

contains more operations than allowed. This priority function takes into account 

the operation's mobility as well as its precedence_number . . Currently, this priority 

does not consider any allocation aspect of the operation chosen. We believe that 

choosing a priority function that weights the allocation-aspects of the different 

options could result in a better overall design. The only change required is to 

rewrite the p~iority function (and of course an efficient algorithm to evaluate the 

"allocation-price"). 



Chapter 10 

Summary, Discussion and Future 

Work 

10.1 Thesis summary 

The compiler presented in this thesis is targeted to map application-specific 

programs onto high-performance, parallel architectures instantiated by a VLIW 

template. When a high-performance system is designed, it is critical to have a 

perfect matching between its hardwate and its compiler, otherwise considerable 

parallelism may be lost. However, one cannot design a general-purpose compiler 

to match the architecture for all possible applications. We propose in this thesis an 

approach to fine-tune a very powerfvl compiler to an affordable hardware-design 

by reconfiguring it, iteratively, so that the best matching is achieved. Naturally, 

the best matching is achieved when the speed-up is maximized for a particular, 

realizable design. 

In order to extract substantial parallelism from both the hardware and the 

compiler, we use a clean, highly parallel architecture paradigm as well as advanced 
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compilation techniques. The architecture is VLIW-like in that it is totally syn­

chronous, has muitiple functional units which can simultaneously access a shared 

register-file and has a single program counter (single control thread). To further 

enhance parallelism, we modified the "pure" VLIW model so that instead of single­

stage functional units we use pipelined functional units that provide extra (tempo-

ral) parallelism. The use of clean (interlock-free) and homogeneous (all units have 

the same structure) architectures does not only result in a better VLSI design but 

also considerably increases the compiler's ability to produce better code. 

Our compiler's high-performance is achieved through the integration of sev-

eral transformations, techniques and optimizations: 

• The compiler uses a set of transformations called Pipelined Percolation Schedul-

ing (PPS) that extract parallelism across basic blocks of the programs. This 

is crucial since, unfortunately, there is not enough parallelism within the 

basic block limits. Any attempt to schedule operations only within basic 

blocks boundaries is potentially limited. On the other hand, by using trans-

formations that schedule operations from different basic blocks we are able 

to obtain significant speed-up. These transformations are especially powerful 

since they allow scheduling for pipelined (multi-cycle) architectures that use 

temporal parallelism. 

• It is well-known that program execution exhibits the "90/10 locality rule" 

namely, that a program spends about 90% of its time executing 10% of the 

code. That 10% typically consists of the inner-loops in a program. Hence, 

being able to significantly parallelize loops is an important factor in overall 

parallelism extraction. Parallelism extraction in loops is carried out by an 

enhanced loop pipelining technique that is implemented in the compiler. 

I 
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• We use a powerful disambiguation technique to determine whether two (in­

direct) memory references can be scheduled concurrently. This is especially 

important when the references are due to array indexing in inner-loops. Turn­

ing off this technique (by assuming that the two accesses may always refer 

to the same location) considerably limits the parallelism. Relying on the 

disambiguation information, we applied two other code optimizations that 

removed redundant induction variables from loops and eliminated redundant 

memory loads that consequently reduced the memory access traffic. 

• The compiler implements a very efficient technique to rename (reallocate) 

registers that otherwise cause false dependencies that may cause major degra­

dation in achievable parallelism. To get rid of copies generated during re­

naming we applied redundant IV removal ,and copy elimination techniques 

which are very important to achieve a good resource constrained schedule. 

• Sometimes, an algorithmic change of the application (i.e. expressing the 

same problem in a different way) can enhance parallelism. A new local and 

incremental Tree Height Reduct:ion algorithm is integrated in the compiler. 

The algorithm rearranges the application such that more operations are ex­

ecuted but their (total) execution time is reduced. THR can yield dramatic 

speed-up when enough resources are available. 

The scheduling process for a specific architecture is done in two phases. First, 

the compiler extracts the maximal achievable parallelism as if all resources were 

available. Second, it performs resource constrained scheduling which maps the 

unconstrained schedule into the given architecture. 

In order to be able to evaluate the complier's performance and validate its 

correctness we built a simulator which serves both as an emulator for the target 
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architecture (we run our compacted code on the simulator rather on the "real" 

hardware) and as debugging and verification tool. By comparing results derived 

by running the serial (uncompacted) program on various input combinations with 

the results derived by running the compacted program on the same input we were 

able to verify the compiler's compaction correctness. 

10.2 Discussion 

During the endless hours I spent writing and debugging the compiler (and 

even before ... ) a lot of ideas inspired my research. Some simply came as a re­

sult of previous work and others grew as by-products of this project. Some of 

these perspectives, which I see as this research's contribution, are discussed in this 

section. 

• Since digital computers were introduced in the early 1960's there is everlast-

ing dispute: "Who is to blame for the insufficient performance of the ma­

chine?". Throughout these years the machines have changed but the dispute 

remained. Hardware designers were happy to blame the software people who 

"were not able to write an :appropriate compiler for this wonderful machine" 

while the software designers used to claim that "with such an architecture 

not much can be done." Who was right depends on whom you have asked, 

but the result was the same: machines were built with worse performance 

than could have been achieved with the same technology. 

From an objective point of view, both sides were right: there was no problem 

with the designers but there was a problem with the approach: separating 
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the machine into software and hardware was the key. What actually matters 

is the system's performance and performance is the integration result of the 

compiler and the hardware. When a hardware engineer designs a chip one 

cannot expect him to foresee all compiler-related problems. On the other 

hand, when the hardware is predetermined the compiler's ability to produce 

good-quality code is also limited. What is needed is an interactive concurrent 

design in both domains so that there is immediate feedback from one to the 

other. This is especially true when very high performance is required and the 

compiler is allowed to take advantage of application-specific peculiarities. 

The approach taken in this thesis is that of gradual, two dimensional system 

design where the compiler and the hardware are concurrently reconfigured 

to optimize the system's overall performance. 

• When this research began there were only two published systems of code 

transformations that exploit parallelism across basic blocks: Trace Schedul­

ing (TS) and Percolation Scheduling (PS). However, both TS and PS did 

not have a way of integrating IT1ulti-cycle operations within their transfor­

mational model. The assumption that each operation takes one cycle implies 

that one cannot take advantage of the architecture's temporal parallelism 

capability which is very important in high performance architectures. 

Since the current technology enables design of architectures with pipelined 

functional units, it seemed t~ me that using transformations that cannot 

handle pipelined operation may be a major drawback of our compiler. That 

inspired the introduction of the modified transformations called Pipelined 

Percolation Scheduling (PPS) which are used by our compiler. 
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• When scheduling for a specific architecture two possible approaches can be 

taken: either take the architecture's resource constraints into consideration 

from the beginning of the scheduling process or find the unlimited resources 

schedule and then map the resulting schedule onto the given architecture. 

The pro and con arguments are discussed in Chapter 5. Our compiler uses 

the second approach. The main conceptual advantage of this approach is 

that the unlimited resources schedule adds extra information to the resource 

constrained scheduling (RCS) task. 

We believe that by having the unlimited resources schedule first, we provide a 

good (lower) bound on how well we can expect our constrained schedule to be. 

In addition, this approach separates the heuristic part of the compiler from 

the non-heuristic part thereby enabling evaluation of different heuristics. 

• It is well known that one of the promising ways to increase parallelism in par-

allel systems is to perform algorithmic changes of the application. The way an 

application is written determines its inherent achievable parallelism. In this 

context, while we did not want to cross over into auto-programming(!), we 

asked ourselves: "Is there any general way to rewrite code such that the com-

piler can compact it better while preserving the original code's semantics?". 

We found that further compaction can be derived by using a new local and 

incremental Tree Height Reduction algorithm. The THR algorithm which 

is implemented in the compiler can reduce (sometimes significantly) the to­

tal execution of the program at the expense of more computation. In other 

words, when enough resources are available, by changing data-dependencies 

between operations, we can achieve better parallelism than exhibited in the 

original program. 

I 
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10.3 Future Work 

As mentioned in Chapter 2 one of the approaches taken in designing the 

compiler was to build it in layers such that algorithms and techniques within each 

layer that are currently implemented may be easily replaced by other compatible 

alternatives. Following this idea, we intend to integrate into the compiler different 

higher-level strategies that control the low-level PPS transformations. In partic­

ular, we intend to integrate, at least, two other loop pipelining algorithms (OPT 

[AiNi88b] and PP [AiNi88c]) that, potentially, may yield better results than the 

current algorithm we use. In the context of loop pipelining we intend to extend 

the current algorithm to pipeline not only inner-loops but also outer-loops. While 

Loop Quantization [Ni88] allows unwinding of both inner-loops and outer-loops 

concurrently, thus yielding good pipelining effect, it may be difficult to imp!ement 

and may result in expensive code duplication. We want to relax this method by 

pipelining first all inner-loops and then consider; the (pipelined) inner-loop as one 

unit during the pipelining process of ~he outer-loops ([AiNi89]). 

An extension of our disambiguation technique such that more sophisticated 

assertions can be added to the automatic algorithm is also one of our future 

tasks. Unfortunately, the compiler1s analysis of a program cannot capture the 

user's knowledge of the general problem since this knowledge is usually not fully 

encoded in the program. The user may be able to make decisions based on infor­

mation not available to the compiler. Consider, for example indirect references like 

A[B[i]] where array A's index depends on the input data B[i]. Since the compiler 

cannot expect any specific input data pattern, the automatic algorithm will always 

assume that there might be a conflict. However, based on non-encoded knowledge, 
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the user may realize that A[B[l]] and A[B[3]] can never refer to the same location. 

Since precise disambiguation is critical to substantial parallelism such an assertion 

mechanism can enhance the compiler's performance. 

Code explosion and compilation-time are two issues that still need careful 

attention in our compiler. Currently, although compilation-time and code explo-

sion are not restricted by any heuristics we obtain very reasonable time and space 

when running the benchmarks. However, we expect that both measures will grow 

considerably as the input grows. To solve this problem we intend to tackle these 

problems in two different approaches. First, we are going to implement several 

code optimization techniques on the input data which should reduce the input 

code size. Second, we want to implement different heuristics to limit the paral-

lelization process and estimate how much parallelism is lost by these limitations. 

Another future extension that we intend to perform is that of better com-

paction in the presence of procedure calls. Currently, all procedure calls are pre-

vented from being compacted intq nodes with other operations. In other words, 

calls form barriers for compaction. Better compaction involves more analysis, but 

it is feasible. 

In the context of resource copstraints scheduling we plan to add a path priority 

to operations' weighted priority function such that operations on most probable 

paths will have priority over those on paths less probable. 
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