
UC Irvine
ICS Technical Reports

Title
Percolation-based compiling for evaluation of parallelism and hardware design trade-offs

Permalink
https://escholarship.org/uc/item/8wr9f25d

Author
Potasman, Roni

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8wr9f25d
https://escholarship.org
http://www.cdlib.org/

Percolation-Based Compiling for Evaluation of ---
Parallelism and Hardware Design Trade-Offs

Technical Report 91-80

Roni Potasman
--:::o--

~

Department of Information and Computer Science

University of California, Irvine CA; 92717

Notice: This Material
may be prot~cted
by Copyright Law
(Title 17 U.S.C.)

(13

11<1' f 1-/(0

@1991

Roni Potasman

ALL RIGHTS RESERVED

~i

Dedication

To my late grandparents Adel and Moshe Herman

for teaching me the first steps in my life.

111

Contents

List of Figures

List of Tables .

Acknowledgements

Abstract .

Chapter 1 Introduction
1.1 Parallelism
1.2 Motivation
1.3 Previous Related Work
1.4 Thesis Overview

Chapter 2 Overview of the Compiler .
2.1 Layered Structure ·
2.2 Hierarchical Approach .·
2.3 Incremental Register Allocation and Renaming .
2.4 Machine Model :

Chapter 3 The Parallelizing Transformations .
3.1 Fine-Grain Transformations for Pipelined Architectures ..
3.2 So Why is PPS Needed?
3.3 Definitions
3.4 PPS Transformations
3.5 Higher-Level Transformations
3.6 PPS-Related Specific Problems
3. 7 Examples

Chapter 4 Register allocation, renaming and their impact on our

VI

viii

IX

xi

1
1
4
7
9

11
11
18
19
20

25
25
27
28
31
40
45
53

compiler . 60
4.1 When Should Register Allocation Be Done? . . 60
4.2 Renaming in Fine-Grain Parallelizing Compilers 64
4.3 Previous Work 70
4.4 Our Approach 71

IV

Chapter 5 Resource Constrained Scheduling 79
5.1 Resource Constrained Scheduling and Local Transformations 79
5.2 Our Technique 82
5.3 Resource Constrained Scheduling Algorithm 87

Chapter 6 Tree Height Reduction . 90
6.1 THR Applications. ·. . 94
6.2 Algorithm Description 95
6.3 Examples 102
6.4 THR Experiments 110

Chapter 7 Specific Issues 112
7.1 Dead-Code-Elimination ''On The Fly" 112
7.2 Procedure Calls and Inter-procedural Live Analysis . 113
7.3 Load-After-Store Elimination 118
7.4 Loop Detection and Incremental Update 124
7.5 Memory Reference Disambiguation . 127
7.6 Simulator 128

Chapter 8 Results 132
8.1 Definitions . . . 133
8.2 Hardware Parameters . . 136
8.3 Parallelization Parameters 141
8.4 Discussion 145

Chapter 9 The compiler as a High Level Synthesis tool 161
9.1 Design Space Exploration . 162
9.2 Application-specific Des.ign 163
9.3 Design Feedback 164
9.4 Gradual, 2-Dimensional Design Example 164
9.5 Future Extensions 169

Chapter 10 Summary, Discussion and Future Work 172
10.1 Thesis summary . . 172
10.2 Discussion 175
10.3 Future Work 178

v

I

~i

List of Figures

2.1 Compiler's Layers
2.2 Modular Architecture . . .
2.3 A Node in Our Machine

3.1. Why is PPS Needed?
3.2 Pipe_set and InducedJield Of a Node ..
3.3 Explanatory Example for Condition 4 .
3.4 Before and After Move-op
3.5 Three Address Code for The Loop .. .
3.6 Code After i := i + 4 Percolated Up ..
3.7 Code After Insertion of an Empty Node
3.8 Final Code
3.9 Initial Code
3.10 Code After Renaming.
3 .11 Final Code
3.12 Example 1: Compacted Code by PPS .
3.13 Example 2: Compacted Code by PPS .
3.14 Example 2: Compacted Code by PS ..

4.1 Loop Unwinding ·
4.2 A Node Splitting

5.1 Code Segment Before Deferring of opl
5.2 Code Segment After Deferring of opl
5.3 Code Segment After Deferri:hg of Conditional
5.4 Code Segment Before Compaction .
5.5 . Code Segment After Compaction
5.6 Code Segment After RCS ...

6.1 Better Utilization of Resources
6.2 Sample Digital Filter
6.3 Original Code of Example 1.
6.4 Example 1 After Step 2. . .
6.5 Compacted Program for Example 1.
6.6 Original Program for Example 2. . ..
6. 7 Compacted Program for Example 2. . .

VI

12
21
22

29
31
34
46
48
50
51
52
53
54
54
56
58
59

73
77

83
84
84
85
86
86

91
94

. 103
104
105
106
107

.i;

6.8 Original Program for Example 3 and Corresponding Data-Dependency.
108

6.9 Pipelined Loop of Example 3. 109
6.10 Pipelined Loop of Example 3 After THR. 109

7.1 Generation of Dead-Code by Move-op 114
7.2 An Example of Calling Graph 119
7.3 Code After Loop Pipelining When Pipe_fence Includes Node n. 122
7.4 Code After Load-After-Store Elimination. . 123
7.5 Code Before Move-op. 124
7.6 A Reducible Loop Becomes Irreducible . . 126

8.1 Possible Nodes When Conditional Execution Disabled . 137
8.2 Utilization and Normalized Speed-Up for Uni-Cycle Operations. 147
8.3 Utilization and Normalized Speed-Up for Pipelined Operations. 148

9.1 Performance vs. Chip Area. 162
9.2 Speed-up With Different Latencies for the Gradual Design With 2

Functional Units. 167

Vll

~i

List of Tables

6.1 Fifth Order Elliptic Filter-Non-Pipelined 110

6.2 Fifth Order Elliptic Filter-Pipelined 111

6.3 Sehwa's Digital FIR Filter - Pipelined 111

8.1 Conditional Execution vs. Non Conditional Execution Model 151

8.2 Uni-Cycle vs. Pipelined Operations 152

8.3 Number of Registers Used 153

8.4 Speed-Up With Different Number of Functional Units-Uni-Cycle
case 154

8.5 Speed-Up With Different Number of Functional Units-Pipelined
case -. 155

8.6 Impact of Register Renaming on Speed-Up 156

8.7 Impact of IV Removal and Copy Elimination on Speed-Up 157

8.8 Impact of Load-After-Store-Elimination on Speed-Up 158

8.9 Compaction With Move-cj vs. Compaction Without Move-cj . 159

8.10 Impact of Disambiguation on Speed-Up . 160

9.1 Speed-Up With Two and Three Functional Units 168

Vlll

~i

Acknowledgements

Many people have helped me to reach this point that ends almost 22 years of
formal study. My advisor, Professor Alex Nicolau, opened for me a window to the
world of compilers and parallel processing, spending endless hours discussing new
ideas and problems. His support, guidance and constant encouragement made my
research fruitful and so enjoyable.

I would like to thank my committee members, Professor Daniel Gajski, Pro
fessor Nader Bagherzadeh and Professor Fadi Kurdahi for their interest in my
research.

The e-mail and phone communication with Mauricio Breternitz helped me
a lot during the toughest hours of the research. Haigeng Wang shared with me
a lot of frustrating as well as bright moments writing two important parts of the
compiler and debugging dozens of benchmarks. Steve Novack and David Kolson
spent hours reviewing my drafts.

Of course, special thanks are due to my wife Sarah who made the last three
years possible and to our son Doron who brought a new meaning and dimension
to our life. Their daily warm welcome made this Ph.D. worthwhile.

Finally, thanks to my parents Emma and William and to my brother lco for
their everlasting love and support and for giving me the opportunity to be a part
of their pride.

lX

~i

Curriculum Vitae

November 3, 1954

1976

1983

1991

Publications

Born N ahariya, Israel.
BSc. in Electrical Engineering, Technion, Israel Institute
of Technology, Haifa, Israel.
MSc. in Electrical Engineering, Technion, Israel Institute
of Technology, Haifa, Israel.

PhD. in Electrical and Computer Engineering, University
of California, Irvine, California.

Dissertation "Percolation-Based Compiling for Evalua
tion of Parallelism and Hardware Design Trade-Offs".

R. Potasman, J. Lis, A. Nicolau, D. Gajski. "Percolation Based Synthesis".
Proceedings of the ACM IEEE 27th Design Automation Conference, Orlando, FA,
June 1990.

A. Nicolau, R. Potasman. "Realistic Scheduling: Compaction for Pipelined
Architectures". Proceedings of the 23rd Annual Workshop on Microprogramming,
Orlando, FA, November 1990.

A. Nicolau, R. Potasman. "Incremental Tree Height Reduction for High Level
Synthesis". Proceedings of the A CM IEEE 28th Design Automation Conference,
San Francisco, CA, June 1991.

A. Abnous, R. Potasman, N. Bagherzadeh and A. Nicolau. "A Percolation
Based VLIW Architecture". Proceedings of the 1991 International Conference on
Parallel Processing, St. Charles, IL, August 1991.

A. Nicolau, R. Potasman and H. Wang. "Register Allocation, Renaming and
Their Impact on Fine-Grain Parallelism". Proceedings of the 4th International
Workshop on Languages and Compilers for Parallel Processing, Santa Clara, CA,
August 1991.

H. Wang, A. Nicolau and R. Potasman. "A New Technique for Induction
Variable Removal". Proceedings of the 24th Annual Workshop on Microprogram
ming, Albuquerque, NM, November 1991.

x

~i

Abstract of the Dissertation

Percolation-Based Compiling for Evaluation of Parallelism
and Hardware Design Trade-Offs

by
Roni Potasman

Doctor of Philosophy in Electrical and Computer Engineering
University of California, Irvine, 1991
Professor Alexandru Nicolau, Chair

This thesis investigates parallelism and hardware design trade-offs of paral

lel and pipelined architectures. To explore these trade-offs we developed a retar-

getable compiler based on a set of powerful code transformations called Percolation

Scheduling (PS) that map programs with real-time constraints and/or massive time

requirements onto synchronous, parallel, high-performance or semi-custom archi-

tectures.

High-performance is achieved through extraction of application inherent fine

grain parallelism and the use of a suitable architecture. Exploiting fine-grain par

allelism is a critical part of exploiting all of the parallelism available in a given

program, particularly since highly irregular forms of parallelism are often not vis

ible at coarser levels and since the use of low-level parallelism has a multiplicative

effect on the overall performance.

XI

Xll

To extract substantial parallelism from both the hardware and the compiler,

we use a clean, highly parallel VLIW-like architecture that is synchronous, has

multiple functional units and has a single program counter. The use of a hazard-

free and homogeneous architecture does not result only in a better VLSI design

but also considerably increases the compiler's ability to produce better code. To

further enhance parallelism we modified the uni-cycle VLIW model and extended

the transformations such that pipelined units that provide extra parallelism are

used.

Another approach presented is of resource constrained scheduling (RCS).

Since the RCS problem is known to be NP-hard, in practice it may be solved only

by a heuristic approach. We argue that using the heuristic after extraction of the

unlimited-resources schedule may yield better results than if the heuristic has been

applied at the beginning of the scheduling process.

Through a series of benchmarks we evaluate hardware design trade-offs and

show that speed-ups on average of one order of magnitude are feasible with suf-

ficient functional units. However, when resources are limited we show that the

number of functional units needed may be optimized for a particular suite of ap-

plication programs.

I

~i

f
,..f.\ ,,

Chapter 1

Introduction

1.1 Parallelism

The ever-growing need for computation power combined with the advances

in VLSI technology created a new research domain called parallel processing. Al

though parallel processing is achieved quite differently by various approaches-all

have the same goal: to increase the performance of a computer system as much

as possible by performing activit~es concurrently. Basically, there are four ways to

increase performance:

• Increase the inherent parallelism in the application.

• Use of a better technology.

• Use of hardware parallelism.

• Algorithmic change of the application.

For years, researchers seemed to concentrate only on the last 3 methods:

Among the parallel computers the vector machines appeared first. They were tar-

geted to enhance the performance for vector and matrix scientific applications,

where the computation could be easily distributed. They included a high-speed

1

2

pipelined floating-point unit which reduced the overhead needed in vector compu

tation by applying the same instructions to many different vector elements. These

machines are classified according to [Fl66] as SIMD machines. By definition, these

machines are powerful only for limited (vector) applications and the fact that

one has to issue the same instruction to all functional units limits, naturally, its

potential speed-up. The second class of parallel machines was the class of asyn

chronous multiprocessors or MIMD. The idea behind MIMD was to distribute the

computation among several communicating processors to achieve parallelism in

the application level.1 In order to reduce the interprocessor communication cost,

which is the bottleneck in MIMD machines, much effort was put into developing

parallel algorithms in order to decrease the communication needs of each proces

sor, thereby reducing the overall interprocessor communication overhead. At the

present it appears that SIMD's and MIMD's have reached some saturation point

due to physical limitations and complexity of developing parallel algorithms.

The RISC [He85] approach was a consequence of the physical limitations

and the complexity involved in implementing a memory hierarchy to alleviate the

memory access-time problem. The idea was to concentrate on boosting the pro

cessor's performance as well as simplifying the memory system. To achieve this a

load/store architecture was proposed which intergrates a simple and small instruc

tion set (enabling less instruction decoding time, thus reducing the clock cycle)

with a fast memory. Furthermore, the simplicity of the instruction set combined

with the "cleanliness" of the hardware enabled the use of pipelined functional units

with relatively high efficiency. The high degree of architecture efficiency is most

likely the main reason for the success of the RISC approach.

1 Also known as coarse-grain parallelism.

I

3

However, RISC is based on a single functional unit. Therefore, the natural

following candidate of parallel architecture had been a tightly-coupled synchronous

machine with a simple instruction set and several functional units. The need for

several units coincided well with the fast advances in VLSI technology manifested

by much higher integration. These advances made the integration of several func-

tional units on one chip possible and eliminated the inter-processor communica-

tion overhead. A representative of the tightly-coupled synchronous architecture

is the VLIW (Very Large Instruction Word) architecture [Fi83]. As implied by

its name, VLIW enables issuing and execution of several independent operations

concurrently. Although the VLIW architecture may be regarded as a horizontally-

microcoded engine, it had not been considered as a realistic architecture because

of the lack of automatic tools which find these independent operations so that the

functional units might be kept busy. Scheduling for these machines by hand, even

short programs, turned out to be tedious and error prone task.

Discouraging results published by [TjF170] and [RiFo72], which showed that

the potential parallelism in ordinary sdentific programs is on the order of 2-3, pre-

vented for years further research in this area. However, these results were derived

looking for parallelism only within the basic blocks of the program. Obviously, if

one considers only operations within; basic blocks, since the average number of op-

erations within these basic blocks is 4-5, one cannot expect a speed-up greater than

2-3! In addition, there is Amdahl's Law which states that unless the entire pro

gram can be parallelized-one cannot expect significant parallelism. Fortunately,

experiments done by Nicolau and Fisher [NiFi84] showed that there is substantial

parallelism available when one goes beyond basic blocks boundaries. Similar results

were obtained by [Ku88]. The available parallelism found was one to two orders

I

I

4

of magnitude. These encouraging results led to a growing interest in searching for

the automatic extraction of potential parallelism in the programs. This parallelism

is also known as fine-grain parallelism. Fine grain parallelism is the parallelism

extracted by our compiler and discussed in this thesis.

1.2 Motivation

The compiler presented in this thesis is geared towards mapping general sci

entific problems with real-time constraints and/or massive time requirements onto

high-performance architectures. Since we were looking for considerable amounts of

parallelism for general scientific problems we have chosen to do it by extracting fine

grain parallelism. Exploiting fine-grain parallelism is a critical part of exploiting all

of the parallelism available in a given program, particularly since highly irregular

forms of parallelism are often not visible at coarser levels and since the use of low-

level parallelism has a multiplicative effect on the overall performance. However,

· low-level parallelism can be effective only when communication overhead is neg-

ligible. Consequently, a synchronous,. parallel hardware configuration is required.

In this context, VLIW architecture seemed to be an appropriate paradigm for our

compiler. VLIW, which emergdd as a result of Fisher's (Fi83] work has some nice

properties: it supports fine-grain parallelism by enabling the issue of several RISC

like operations each clock cycle; it is completely synchronous (each action takes, a

statically predicted, fixed amount of time unlike superscalars), thus the communi

cation penalty is zero since data transfers are scheduled statically by the compiler;

and it supports homogeneous, conflict-free data paths and its control flow is sim-

ple (one thread of control, unlike MIMD machines). VLIW can be thought of as

I

~i

f
,..f.\ ,,

5

a "perfect parallelism" architecture: it integrates temporal (functional pipelining)

with spatial (several functional units) parallelism. Furthermore, with unlimited

resources, VLIW can be considered as a "static data-flow" machine since all oper-

ations can be scheduled as soon as their source arguments are available. But while

data-flow machines exhibit complex (and expensive) hardware, VLIW may be im

plemented as a clean and relatively cheap machine due to its simple homogeneous

design and since synchronization is handled during compile-time. The original

model of VLIW assumes a single program counter and synchronous functional

units that execute all operations in one cycle. In order to take advantage of tem

poral parallelism we extended the original machine model and our transformations

to make pipelining feasible. In fact, by selecting the VLIW architecture· and by

using low-level parallelizing transformations, we take advantage of the first three

methods of increasing performance mentioned at the beginning of the chapter: we

increase the inherent parallelism by scheduling operations in parallel, we use an

advanced technology and we implement hardware parallelism. The last method is

achieved in our compiler on a modest scale suitable for integration into a compiler

by a new local and incremental Tree Height Reduction algorithm that rearranges

the program, while preserving semantic correctness, such that more parallelism is

exposed.

While this dissertation presents a compiler based on advanced compilation

techniques that may be used independently, we were also interested in using the

compiler in the context of application-specific system design. We believe that

when considerably high system performance is required, problem-specific peculiar-

ities have to be taken into consideration during the design even if it violates the

generality property (otherwise, the overhead incurred may dominate the overall

6

performance or, at least, may significantly constrain parallelism). For example,

one application performs best with a hardware configuration that includes a mul

tiplier with 3 pipeline stages while another application performs better with a

4-stage multiplier. In order to achieve high system performance, we propose in

this thesis an approach which enables gradual, two dimensional system synthe

sis and analysis. This is in contrast to the traditional approach where compilers

were written after a system's hardware had been specified. In other words, they

were optimizing the performance using only one degree of freedom (the compiler).

Naturally, the prespecified hardware may restrict the ability of the compiler to

produce good-quality code. We, on the other hand, are trying to optimize the

system's performance using two degrees of freedom (compiler and hardware) by

allowing gradual fine-tuning of both. By starting from a canonical paradigm, we

can iterate on different hardware configurations (all of which are derivations of the

canonical form) in order to achieve the best performance for a specific problem.

Since a system's hardware and compiler are two interdependent domains, being

able to synthesize the system while controlling both may, potentially, yield better

performance than when one of them is predefined.

Another objective of this research was to investigate different hardware and

parallelization trade-offs in high-performance, parallel architectures. Therefore,

the retargetability of our compiler that allowed scheduling for various system con

figurations was especially important. In this way we were able to investigate the

following: What is the impact of register renaming on the overall performance?,

How many registers are needed?, How many functional units?, How many pipeline

stages for each unit? and How parallelism increases with number of functional

units?

I

7

1.3 Previous Related Work

Multiflow's Trace compiler can be considered as the first commercial fine-

grain compiler capable of extracting parallelism beyond the basic block bound

aries. It is based on Fisher's [Fi81] Trace Scheduling (TS) transformations that

convert programs to more parallel ones by concentrating on the most probable

paths (called traces) taken during their execution. The program is divided into

numerous execution paths and then, according to their priority, each path is com-

pacted using semantic-preserving code transformations. First, independent oper-

ations are scheduled concurrently and then compensation code is introduced to

preserve program correctness at exits to this trace. Trace Scheduling was mainly

targeted for scientific code and for applications in which the flow-of-control can be

predicted. For these applications experiments found a considerable speed-up of 10-

20. However, the TS transformations are inflexible since they are monolithic and

dependent on the success of the single trace selection heuristic and limited since

the program is compacted one trace at a time and traces cannot be combined.

Therefore, for unpredictable flow-of-control applications, usefulness of TS may de-

crease. Furthermore, the overhead paid by compensation-code on non-selected

paths degrades the performance when the run-time paths executed were not those

given high priority during scheduling.

Other approach differences between the Trace compiler and our compiler

are in the way multi-cycle and pipelined operations are dealt with and in the

application of higher-level compaction strategies as discussed in detail in Chapter 3.

IBM's VLIW [Eb88] is a machine currently being built at IBM Yorktown

Heights. Its compiler is based on Percolation Scheduling transformations which

8

were slightly changed to fit the architecture. The interesting features of IBM's

compiler are: a conditional execution model (see Chapter 2), a loop pipelining

technique [Eb87] to enhance parallelism and a Software Lookahead Window tech

nique [N aEb90] to manage code-explosion and reduce compilation-time.

IBM's compiler assumes that all operations take 1 cycle (no pipelining of

operations). In order to meet this constraint, the machine clock was extended

such that the "fastest" operation takes the same amount of time as the "slowest"

one. This kind of "worst case design" may be unacceptable in some situations.

Breternitz's [Br91] architecture synthesis approach is conceptually similar to

our compiler (although the goals are different). 2 Their methodology utilizes an

architecture paradigm and a set of tools to generate the structure of customized

data and control paths. The synthesis is done in three major tasks: Architecture

Synthesis, Specification Synthesis and Implementation Synthesis. The first defines

an architectural template for the application. The second task tries to parallelize

the application given this architecture template and the Implementation Synthesis

phase finds the best implementation for the (previously) parallelized code. The

major differences between the architecture synthesis approach and our approach

can be summarized as: (a) while the architecture synthesis approach is targeted

towards automatic generation of architecture for application-specific programs, our

compiler is an evaluation compiler. We are interested in exploring hardware and

compilation trade-offs to generate the best schedule for a given application and

affordable architecture. (b) our approach deals with pipelined or multi-cycle op-

erations, which is a major issue in high-performance, parallel architectures. (c)

2In fact, the first prototype of our compiler was jointly developed with John Shen's group in

Carnegie Mellon University.

I

9

our approach supports modest algorithmic changes of the application program

(like Tree Height Reduction). (d) we use different register allocation and resource

constrained scheduling algorithms.

1.4 Thesis Overview

This dissertation is organized into 10 chapters. Chapter 2 gives a brief

overview of the compiler, its different layers and the approach taken during its

design. In Chapter 3 we detail all transformations used in our compiler from the

lowest-level transformations to the highest-level compaction strategies. In this

chapter we try to answer the question "Why Percolation Scheduling, as defined

by Nicolau in [Ni85a], cannot deal with pipelined (multi-cycle) operations?", we

present some transformation-related problems and show examples why our ap-

proach has a better potential over other approaches for scheduling with pipelined

operations.

In Chapter 4 we discuss one of the main issues in parallelism extraction

in high-performance architectures: register allocation and register renaming. We

show how parallelism is determined by the number of registers used and explain

our approach for local register renaming during the parallelization process. Since

our technique involves, in general, addition of copy operations into the code (and

in the case of loops some of these copies become redundant induction variable) it

is crucial to be able to remove them. For completeness purposes, we describe a

technique, written at UC Irvine by Haigeng Wang, that removes copy operations

I

10

generated during renaming. Other (non-induction-variable generated) copies are

removed by a copy elimination technique that is described at the end of the chapter.

Chapter 5 discusses the way we perform resource constrained scheduling.

We give the motivation for our approach which involves scheduling with unlimited

resources and then mapping of this schedule to the given (constrained) architecture.

In Chapter 6 we present a novel incremental Tree Height Reduction· algorithm.

This algorithm compacts programs even when data-dependency prevents further

compaction. We show several examples that clarify the algorithm and justify our

claims.

Chapter 7 is devoted to specific issues that are peculiar to the compiler and

are not directly related to any of the other chapters. We describe our "on-the-

fly" dead-code-elimination technique, we show how we perform inter-procedural

live analysis and describe a code optimization called "load-after-store optimiza-

tion" that removes unnecessary memory loads for memory-traffic reduction. We

then address the loop detection problem and explain how memory reference dis-

ambiguation, which is critical for significant parallelism extraction, is done in our

compiler. Our simulator is described at the end of this chapter. The results of

benchmarking the compiler in various configurations and the analysis of these re

sults are discussed in Chapter 8.

In Chapter 9 we explain why our compiler can be considered a High Level

Synthesis (HLS) tool, we give an example to illustrate our gradual, two dimensional

design approach and suggest some future extensions. We conclude the dissertation

in Chapter 10 with a summary, discussion and future work.

I

Chapter 2

Overview of the Compiler

When building a fine-grain, parallelizing, optimizing compiler, many trade-

offs and design decisions have to be made. This chapter lays out the approach

taken during the compiler's design and the main trade-offs that inspired it. We

also detail the machine model used throughout the thesis.

2.1 Layered Structure

While some commercial compilers are built monolithically with the essential

procedures merged into a single module, our compiler is implemented in several

layers as shown in Figure 2.1. The layered structure is especially important in

our context since one of the primary objectives of this research was to evaluate

different configurations and design alternatives. It is possible that a monolithic

compiler would be more efficient but it would be harder to reconfigure and debug.

If the interfaces between the layers are well-defined, the reconfiguration price is

usually that of replacing one layer by another (compatible) one, which is relatively

easy.

11

r--
1
I
I
I

hardware • _.,.
parameters 1

I
I
I
I
I
I
I
I
I
I
I
I
I

parallelization : __.,.
parameters :

I
I

C source

•
front end

'
Ii ve analysis

disambiguation

-------t--------,
loop pipelining

maxcomp

reso~rce
cons ramed
scheduling:

tree height
reduction

I
L.;.. -------- ---------

t 1r
,.

simulator
compacted
program

Figure 2.1: Compiler's Layers

12

I

13

For example, in order to check another loop pipelining algorithm, the only

change needed is to replace the layer called loop pipelining. All others remain

intact. Another by-product of this philosophy is that it is easier to reconfigure

the compiler even without recompiling it: we keep a configuration file in which all

layers are specified. The compiler decides which layers to execute by reading this

file. In this way, disabling a layer means commenting out the corresponding line

in the configuration file.

The front end is a modified GNU front end that converts a C source input to

an abstract, machine-independent RISC-like load/store three-address code.1 All

optimizations and transformations are done on this code. As an example, consider

the following C program:

for (i = 1; i < 20; i + +)

A[i] = A[i - 1] + B[i];

The corresponding formal three-address code for this program is shown below.

Next to it we give a readable format: which is used throughout the thesis: (For

readability reasons we use base, i, a, b, ccO as virtual hardware registers.)

(PROC_BEGIN main

(LABEL main)

(iconstant base 176)

(iconstant i 0)

(LABEL 11)

(ivload a base -88)

base:= 176

i := 0

a := M[base - 88]

1 Which is a subset of N:-address code, NADDR. We used the MIPS implementation of the

GNU as a basis for our front-end and modified it to produce our abstract format.

(ivload b base -164)

(iadd a a b)

(ivstore base a -84)

(iadd base base 4)

(iadd i i 4)

(ile ccO i 76)

(if ccO (LABEL Ll))

(LABEL exit)

(igoto $31)

(PROC_END main))

b := M[base - 164]

a:= a+ b

M[base - 84] :=a

base := base + 4

i := i + 4

cco := (i <= 76)?

return

14

The destination register is specified first followed by the source variables.

Each operation is preceded by the letter "i" or the letter "f" indicating whether the

operation is an integer operation.or floating-point one. The last operation in each

procedure (igoto $31) represents a return from the procedure through an address

specified in register $31. Since store operations have no register destination, their

notation is a bit different than the others: (ivstore base a -84) means M[base-84]:=

a. Comparison operations always set condition-code registers (cc). In the example

above, ccO is assigned with the,: logical value of the (integer) comparison between

i and 76. Subsequently, a conditional jump operation controls the program's flow

by testing the updated condition code register.

The disambiguation layer is responsible for determining whether two indirect

(array) memory references of two .memory-accessing operations (loads and stores)

are actually referring to the same memory location in which case their schedule

ordering matters. Like other non-memory-accessing operations, memory loads and

I

15

stores may cause data-dependencies. Since data-dependencies restrict the paral-

lelization process and since indirect memory references are very common in many

application programs, it is very important to be able to disambiguate (anti-alias)

these memory references. While in the case of non-memory-accessing operations

it is quite easy to check for a dependency, the dependency test when loads and

stores are involved requires quite complex computations. Consider, for example,

this code segment:

1. a:= b + c[refl];

2. c[re/2] := d + e;

If we are unable to show that the two references refl and ref2 are always different,

these two operations should not be scheduled independently. The "easy", solution

of assuming that these references could be equal without trying to disambiguate

causes a considerable degradation in performance [Ni84]. Our compiler uses a

powerful and efficient fine-grain disambiguation technique to enable considerable

parallelism extraction. The technique, which was implemented in our compiler

by Haigeng Wang, works by computing the symbolic derivations of all loads and

stores in the program. The symbolic derivations are the corresponding addresses

expressed in symbolic terms that enable simpler comparison of addresses.

Loop pipelining is a class of techniques for extracting parallelism by over-

lapping execution of consecutive iterations of the same loop. In other words, the

next iteration may be initiated before the current iteration is completed. This

causes a pipelining effect similar to the one found in hardware pipelining. Since

ordinary programs tend to spend most of their time executing loops, the ability to

parallelize loops has a major impact on the overall parallelism.

16

Maxcomp is a transformation to maximally compact the non-inner-loop parts

of the program. After this layer the program is maximally compacted and the

parallelism is restricted only by data-dependency.

The resource-constrained scheduling layer is the one responsible for the map-

ping of the unlimited-resources schedule (produced by previous layers) to the given

machine. The schedule derived up to this layer assumes that all needed resources

are available. In practice, machines have fewer functional units than required by

the unlimited resources schedule. In order to "fit" the schedule for the given ma-

chine, the schedule is adjusted so that no more operations are issued per cycle than

allowed by the hardware constraints. Since the RCS problem is known to be NP-

hard it must be solved in practice by heuristics. The lack of optimality raises the

question: "What is a good RC schedule?". Another common question regarding

RCS is "When to apply the heuristics?". We present in Chapter 5 a new algorithm

for performing RCS that is applied after the extraction of the unlimited-resources

schedule. We show in [PLNG90] that applying RCS after unlimited-resources

scheduling (which is in many cases the optimal schedule and does not involve ap

plication of heuristics) rather than scheduling from the beginning with RCS, is one

of the most important factors in scheduling. The are four reasons for this: First,

when parallelism is limited it may be critical to do very well. Hence, too early ap

plication of heuristics may further decrease performance. Second, the application

of heuristics after the extraction of unlimited resources parallelism offers flexibility

to tune only the heuristics to get better speed-up. Third, this approach gives a

good lower bound for the total execution time. Without this bound it is sometimes

very difficult to estimate what would be the best performance of an application,

I

17

making the h~uristic algorithm harder (When to stop?, What is a "good" sched

ule?). Fourth, with this approach it is easy to compare different RCS heuristics

and schedule for a variety of different resource constraints, starting from the same

unlimited-resources schedule.

All transformations applied to this point do not change the code structure.

All operations in the compacted code are either copies or derivatives of operations

in the input (serial) code. The next layer, the Tree Height Reduction layer, does

change the code. When data-dependency restricts the parallelization, Tree Height

Reduction is applied to further compact the program by performing an algorithmic

change on the code in case there are unused resources. Although this process

involves structural change of the code, it provably preserves the semantics of the

original code.

As shown in Figure 2.1, several hardware and parallelization parameters may

be tested by inputing different constraints to the compiler. The constraints include

the number of pipeline stages needed for each multi-cycle operation, the number

of functional units and registers available and whether a conditional execution

model is supported by the machine or not. Parallelization parameters may include

renaming, induction variable removal, copy elimination, load-after-store optimiza-

tion, compaction without moving conditional jumps and turning disambiguation

off.

The simulator is a very important layer in our· compiler. As mentioned in

Chapter 1 one of our objectives in this research was to explore hardware/software

trade-offs by measuring the performance of the compiler under variety of configu

rations/ conditions. While a "traditional" compiler can be evaluated and tested by

18

running it on its target architecture, we needed a simulator to test our compiler

in these different environments. The simulator served also as a validation tool. It

turns out that, even for very short programs, it is impractical to check the correct-

ness of the results produced by the compiler. The presence of conditional jumps in

the code and the fact that our transformations compact numerous operations into

trees, formed by these conditionals, make hand-debugging (or hand-checking) non

realistic. The simulator checks the correctness by comparing the results obtained

by running the serial program on a set of input data and the results obtained by

the compacted program, running on the same data. In this context, we also tuned

our simulator to serve as an efficient debugging tool.

2.2 Hierarchical Approach

The compiler is built hierarchically. On the lowest level there are the core

Pipelined Percolation Scheduling (PPS) transformations that convert an original

program graph into a more parallel one. The transformations define the rules

for moving operation between two adjacent nodes in the graph (see Section 3.4).

Since even for small programs the number of transformations required to compact

the graph is considerable, a set of higher-level transformations is required. The

higher-level transformations "guide" the low-level transformations in an attempt

to expose as much parallelism as possible. The hierarchical approach provides

easier examination of different control strategies by abstraction of the paralleliz-

ing process: the system, rather than the user, deals with the burdensome details

of correctness-preservation while the user can concentrate on different higher-level

I

~i 19

control strategies. The layered structure of the compiler integrates well with the hi

erarchical approach. Since the interface with the low-level transformations and the

interfaces between the layers are well-defined-exploring a new higher-level tech-

nique, usually, means a substitution of a present layer with the new one; thereby

eliminating the need to make drastic changes in several layers.

The two main higher-level transformations used are loop pipelining and max

comp. Loop pipelining invokes the core transformations in order to extract paral-

lelism both across and within inner-loop iterations in the program. Maxcomp is

a transformation to maximally compact the non-loop or non-inner-loop portions

of the code. These transformations are described in detail in Sections 3.5.2 and

3.5.1.

2.3 Incremental Register Allocation and Renam-

As in most existing compilers, the GNU front-end that we use also tries to

make an efficient use of registers by using the minimal number possible. This is

achieved by assigning the same registers to variables whose life-spans do not over-

lap. While saving registers may be a good strategy for sequential machine, for

parallel, high performance architectures the re-use of registers introduces false de-

pendencies (either "anti" or "output") that may severely decrease the performance

since it limits the compiler's ability to compact.

~i 20

In the past, when VLSI technology limited the number of registers that would

be integrated into one chip, efficient use of registers was a primary issue in any chip

design. However, today, with the recent advances in VLSI technology, the number

of registers is considered a less-serious bottleneck (although the cost of routing to

and from multi-ported register-files increased). When building a high performance

architecture, one qmnot afford to limit the number of registers to the number that

was used only a few years ago.

Ideally, in parallel architectures, only true data-dependency and resource

availability should limit the parallelism. On the other hand, register allocation has

to be done-we simply do not have an infinite number of registers. In order to solve

this problem we propose a new approach for register allocation. We begin with

GNU's register allocation and during the parallelization process we allow renaming

of registers to eliminate false dependencies that prevent otherwise desirable/feasible

code transformations, provided that a register is available at that point.

2.4 · Machine Model

Throughout this thesis we assume a modular architecture which serves as a

paradigm for our target architecture. This architecture is illustrated in Figure 2.2.

The paradigm has a single flow-of-control (single PC), it is totally synchronous,

has multiple functional units and a multi-ported register-file. Each functional unit

may have a variable number of pipeline stages. The model, called the conditional

execution model, allows the presence of multiple conditional jumps (as well as

other operations) per cycle. This model is similar to the one used by the IBM

I

r
I
I
I
I
I
I
L
I
I
I
I
I
I
I
I
I
I L-

Instructio
Memory

Control
Unit

r---------------- Data
Memory

------ ~ontrol
---data 1

I
I
I
I
I

r-
I
I
I
I
I
I
I
I

_J

Multi-Ported Register File

000

I I I I
I I I I I

L-----------~---------i---------L-----------~

Figure 2.2: Modular Architecture

21

VLIW machine [Eb88] and allows a direct mapping of the schedule into horizontal

microcode.

The input program is represented by a control flow graph. The vertices

(nodes) in the graph correspond to operations executed in each cycle. The edges

represent flow of control from one node to its successor. Initially all nodes contain a

single operation. Making a program "more parallel" involves compaction of several

operations into one node (or microinstruction) while preserving the semantics of

the sequential code. In the original PS model [Ni85a] a node represented a large

instruction word containing several operations (all of which executed in parallel)

and a tree-like structure of conditioial jumps. The actual value of these condition

code registers determined the next instruction. The model described in [Eb88] is

a refinement on the original model. The difference is that two operations writing

to the same destination are allowed to be packed into one node (the conditional

codes are used to allow only operations on the actual execution path to write their

results).

22

Ll L2 L3

Figure 2.3: A Node in Our Machine

Operations form a tree-like structure in the node. Exactly one execution

path is selected from the root down to the unique successor of the node. This path

is selected according to the results of the conditional operations in the tree. For

example, if we assume that condl is true and cond2 is false in Figure 2.3, then

opl, op2, op5 and op6 are to be executed and the successor of this node is L2. The

execution of the node can be conceptualized as three steps (on the IBM machine,

these three steps are executed as part of one basic machine cycle):

1. Operands (for all operations) and condition code registers are read.

2. All operations are executed, condition codes are evaluated and a path to the

(unique) successor instruction is chosen.

3. The results of operations on the path chosen (for single cycle operations)

and the results of (pipelin~d) operations which were issued in previous nodes

and completed their execution in this node, are written back to the register

file/data memory.

This model is similar to any microcode-based architecture supporting a multiway

jump mechanism. 2 A simple mapping to other machines is also feasible. If the

2In fact, work done at UC Irvine [Ab91, APBN91] implements this multiway branching and

conditional execution model.

I

23

machine does not support this sort of conditional execution, the transformations

can be simply modified to disallow moving multiple operations writing to the same

destination and multiple conditional jumps into the same node.

The pipeline model we use assumes that each operation can take several

cycles (or nodes) to complete. In order to reflect the effect of multi-cycle operation

on the program graph, we assume that each operation (with latency of k cycles)

reads its source arguments during the first cycle (in which it is specified). Then, for

k-1 cycles, it uses the stages of its functional unit. In the last cycle, it writes back

the result to its destination. All operations which use the result of this operation

should be scheduled at least k cycles later than the beginning of this operation.

This model encompasses both pipelined functional uni ts (where we can issue a new

operation every cycle) and multi-cycle functional, units (where we have to flush the

unit before issuing the next operation).

The model described here (as opposed to superscalars, for example) assumes

that everything can be determined statically. It is the compiler's responsibility

that all data paths will be conflict-free (i.e. multi-ported register file and memory

accesses). The only exception is when a cache miss occurs. Then, the processor's

activity is frozen until the data is fetched from memory. Throughout this thesis

we assumed a "clean" model with only one register-file and a single data memory.

When implementation issues require several register files or memory banking we

further assume that all accesses are uniform (i.e. each functional unit can access

register-file and memory bank). When the actual hardware is unable to support

such accesses, it is again the compiler's job to orchestrate these implementation-

hazards. While superscalars can take advantage of the time lost by VLIW s during

cache misses, they are certainly more complicated and therefore their hardware

~; 24

is more complex. More complex hardware usually means a slower machine. In

addition, since superscalars schedule operations dynamically their ability to do a

good job is constrained by the cycle time of the processor.

~i

Chapter 3

The Parallelizing

Transformations

3.1 Fine-Grain Transformations for Pipelined

Architectures

Compile-time techniques to extract parallelism from ordinary programs can

be grouped into two classes: coarse-grain parallelizing techniques and fine-grain

parallelizing techniques. While coarse-grain techniques expose parallelism at the

implementation level (this parallelism is often visible and easier to detect), they

cannot take advantage of highly irregular forms of parallelism exhibited in the

fine-grain (instruction) level. Howevbr, exploiting fine-grain parallelism is critical

since low-level parallelism has a multiplicative effect on the overall achievable par-

allelism. By definition, fine-grain transformations are low-level transformations.

Therefore, even for short programs, the number of transformations needed can be

considerable and that is why fine-grain transformations need to be very efficient.

We have chosen Percolation Scheduling (PS) transformations as a basis for our

compiler since they are efficient (need only local data), atomic (applied to two

25

26

adjacent nodes in the program graph), and virtually complete with respect to the

set of all possible local, dependency-preserving transformations on program graphs

[Ai88]. The atomicity is especially important since it enables easy integration with

a wide variety of higher-level transformations which may expose coarse-grain paral-

lelism as well. The transformations described in this chapter deal with both levels

of parallelism-we first detail the low-level transformations and continue with the

higher-level ones.

When trying to extract substantial parallelism for high-performance, parallel

architectures, one of the promising ways to do this is by exploiting both spatial

and temporal parallelism. To enhance temporal parallelism, machines are built

with pipelined functional units, therefore, a pipeline-supporting set of transfor

mations is required. Neither Trace Scheduling (TS) nor PS integrate multi-cycle

operations within their transformational model. Ellis [El86] uses a partial solution

by insertion of a partial schedule into the code for multi-cycle operations for the

trace selected for compaction. While this approach may yield good results for the

selected traces-for off-trace paths the partial schedule can cause poor compaction.

The poor compaction in off-traces is a result of inherent TS limitations1 amplified

by the fact that operations are multi-cycled (more no-ops in the code). Since func

tional unit pipelining is particularly important when loop pipelining is applied and

since loop pipelining is a major parallelizing technique in our compiler, we had to

extend the original transformations to be able to deal with pipelined operations.

The extended transformations are called Pipelined Percolation Scheduling (PPS).

1TS can not move two syntactical copies of an operation above conditional jump while the

unify transformation in PS enables it.

27

rwo previous approaches have been taken to deal with the differences in

operations' latencies. In the first approach, a parallelizing compiler (assuming

that all operations take the same amount of time, i.e. one time-unit) was built

and then a supporting architecture was fitted. In such a way the machine cycle

time was extended to satisfy the slowest operation's latency. This approach was

obviously inefficient since both the fastest and slowest operations required the same

amount of time to execute. The other approach schedules in two phases. First,

the code was compacted as if each operation took one cycle. Then, in a second

phase, empty cycles were inserted between adjacent nodes, such that latency times

of the operations were satisfied. Again, this strategy assumes worst case design,

because the number of empty cycles inserted is the maximal latency on the path

connecting the two nodes-a fact that caused frequent idle time for some functional

units. To our knowledge no technique to date allows uniform compaction to go

beyond straight line code. In other words, there are no previous general approaches

to exploit spatial and temporal parallelism. This is precisely the role of PPS.

To substantiate our claims we show in Section 3. 7 representative examples

where PPS produces better schedules than those achieved by the other two ap-

proaches mentioned.

3.2 So Why is PPS Needed?

In the original PS model, all nodes contain operations that are issued and

executed at the same time in one cycle, hence, in PS only a node and its immedi-

ate successors need to be considered to preserve correctness of the transformations.

28

However, when dealing with the movement of multi-cycle operations (whose exe

cution can span several nodes beyond the one in which they issue), care must be

taken to keep correct information in all these successors on the execution path of

the operation, making the correctness preservation issue much harder. The cause

of difficulty is that we want to refrain from using pipeline interlocks. We want to

guarantee that whatever execution path is taken (even if the path is determined

after the operation has been issued)-the correctness is preserved on all possible

paths.

Suppose, for example, in Figure 3.1 that we try to apply move-op to op (i.e.

schedule op in node m instead of node n). Let's assume that there is no data

dependency between op and all other operations in node m and that a is dead at

the top of node p. In this case PS would allow the motion. But, when dealing

with multi-cycle operations, these operations may have effect on those successors

other than the immediate ones. In this example, if op takes 5 cycles to complete

and op 1 takes 2 cycles, by moving op to node m, we change the value of a used in

nodes following node k. Hence, in addition to conditions which are required by PS

we need to impose further restrictions on the move.

3.3 Definitions

In this section we define terms used later in this chapter.

• latency and distance

The latency of an operation is the number of pipeline stages needed to execute

I

op: a:= b * c
opl: a:= e - d

m

n

Figure 3.1: Why is PPS Needed?

29

this operation. The distance between some node s and some node n is the

number of nodes between them plus 1.

• pipeline analysis

The movement of a multi-cycle operation from one node to its predecessor

may affect not only these two nodes but also other nodes in the program.

The affected nodes are those within a distance less than or equal to this

operation's latency. The procedµre to check correctness (in all these nodes)

when trying to move the operation is called pipeline analysis.

• pipe_set

The original PS transformation,,s use data-dependency analysis and live/dead

analysis to check whether the movement of an operation is allowed. The

live_set of a node is the set of variables live at the top of the node. The

kilLset of a node is the set of variables written (or defined) in the node.

For PPS, we also need to keep (locally, in each node) information about

the effect of multi-cycle operations on successor nodes. Each node in the

graph contains a set of elements called pipe_set. Each element in the set

I

30

represents an operation which is in the process of evaluation in this node.

The operation is represented either by its destination register (for non-store

operations) or by its memory location (for store operations). If, for example,

an operation writes into register a, issued in node n and has a latency of

5, then in another node k, which is 2 cycles later, it is represented by the

value a and an integer equal to 2 which is the number of cycles still needed

to complete its execution. The pipe_set information is added to the program

graph when new empty nodes are inserted in the original graph between

adjacent nodes to satisfy pipeline latencies. This information is updated

incrementally during the movement of operations from one node to another.

• induced_field

The induced_field of a node is information similar in notion to the pipe_set

information. The difference is that while pipe_set represents all operations

which are under evaluation in this node, the induced_field information ex-

eludes operations which have been issued in this node. In other words, it

represents the "net" effect of operations in preceding nodes on this node. The

name induced_field reflects the fact that operation "induces" a field (which

is its destination-register or memory location) on successor nodes which can

not be seen by simply looking at the operations specified in this node.

An illustration is given in Figure 3.2. Assume that opl and op2 take 3 cycles

to complete and op3 and op4 take 2 cycles. The pipe_set of node n includes

the values { r 1,r2,r3,r4}. This means that operations 1, 2, 3 and 4 are in the

process of evaluation. The induced_field in node n includes the values {rl,r2}.

These values ({rl,r2}) represent the effect of operations in predecessor nodes

of n on this node.

• trail

opl: rl:= a* b (3 cycles)
op2: r2:= c * d (3 cycles)
op3: r3:= e + f (2 cycles)
op4: r4:= g + h (2 cycles)

Figure 3.2: Pipe_set and InducedJield Of a Node.

31

The trail of an operation is the path(s) /branch(es) in the node originating at

the node's entry point and encompassing the operation. In Figure 2.3, the

trail of op6 is the path from the entry point ,of_the node leading to instruction

12. The trail of op2 and op5 are the paths from the node's entry to 11 and

12.

3.4 PPS Transformations

PS uses four core transformations (move-op, move-cj, delete and unify) to

compact programs. The actual code motion is done by the first two transformations

while the other two can be considered as optimization transformations. We detail

PPS transformations as an extension of the PS transformations described in [Ni84,

Ni85a, AiNi88a, EbNi89].

32

3.4.1 Move-op

Move-op is a transformation to move an operation up from a node n to one of

its predecessors m. The original move-op does not allow the motion of op when its

destination is either read by another operation in from-node or when its destination

is live on a path in from-node other than op's trail. We use throughout this thesis

the modified version of move-op that allows the motion by doing renaming. For

more detail refer to [EbNi89].

The move-op of an operation op from a node n to node mis possible whenever:

1. No operation in m writes one of op's source variables (data-dependency test).

2. None of op's source variables is an element in m's induced_field (pipeline

dependency).

3. No successor s of m through a path not in op's trail which is at distance less

than op's latency includes op's destination in its pipe_set.

OR

If one of these successors does include op's destination in its pipe_set, then,

either the pipe_set for all successors of n at distance equal to (latency - 2)

includes at least one ele~ent of op's destination or op's destination is dead

at all nodes that do not include it. (Pipeline dependency and correctness in

all paths other than op's traiQ.

4. All successors s of n in op's trail and at a distance equal to (latency - 2) have

in their pipe_set one and only one element of op's destination. (correctness

in all successors through op's traiQ.

I

33

We refer to the last three conditions as pipeline dependency. Condition 1 tests

the data-dependency between the operation we want to move and all operations

in the target node.

Condition 2 guarantees that an operation which reads a value won't read it

while the operation producing the value is still being executed in the functional

unit. (Remember that induced_field is an indication that an operation is still under

evaluation).

Condition 3 is to ensure that the movement of op up does not interfere with

the same destination register read by operations in successor nodes which are not in

op's trail. In PS this test is done by checking that op's destination is dead on these

paths (otherwise we need to rename op), but since PPS deals with operations which

may have different latencies, op's destination may be dead but it still may overwrite

the destination of another operation (due to larger latency), thus changing the

semantics of the program. To understand the first part of condition 3 refer again

to Figure 3.1. Let's assume that op takes 3 cycles and opl takes 2 cycles to

complete. In this case there is no problem in moving op from n to m because all

successors of n at a distance equal to· latency - 2 (node p in this case) include at

least one element of op's kind in thyir pipe_set. It means that opl modifies the

register-file after op which guarantees a correct order of modification. If, on the

other hand, op take 5 cycles the move is not allowed since op modifies the register-

file in node k (after op 1 has modified it) and therefore all nodes following k will

read op's value instead of opl 's. The second part of condition 3 is to guarantee that

if there is a conflict due to the fact that two operations modify the same register

in the register-file in the same node, the order of modification will be preserved.

If all successors of n at a distance equal to (latency - 2) have in their pipe_set at

m

n

k
opl: a:=b*c
op2: a:=d+e

Figure 3.3: Explanatory Example for Condition 4

34

le~st one element of op's destination, it means that another operation is inducing

the same field on the same successors as op induces. After the move, the other

operation is guaranteed to modify its destination later than op so there is no reason

to prevent the motion.

Condition 4 is necessary to keep the correct order of modification of op's

destination in successors of op's trail. This addresses the problem caused by two

different operations that con:iplete their execution in the same node. For example,

in Figure 3.3, opl and op2 both c;omplete in node 1, assuming multiplication takes

3 cycles and addition takes 2 cycles. Remember that in our model, the value of

a in node k is determined by op2 (which reads its source variables later), so the

operation in node k should re~p the value computed by op2). If we move op2

up to m we may expose node k to a "new" value which is opl's result, causing a

change in the program semantics. In order to prevent this situation, we check all

successors of n in op's trail and at distance (latency - 2) from n. It is clear that

if all these nodes have a pipe_set which includes more than 1 of op's destination

registers, two different operations might complete in the same node k. Hence, the

move is disallowed.

35

The move-op version we use allows renaming of variables wherever there

is a false dependency (anti-dependency) between operations. In this context, it

is important to note that variable renaming is of major importance in pipelined

machines. While in single clock machines this "artificial" dependency prevents an

operation from moving up one step (cycle), in pipelined machines, it blocks the

move up of several cycles. This could cause a substantial degradation in parallelism

extraction. The code outline for the transformation follows.

procedure move-op(op: operation, n: from_node,m: to_node, tp: path_to)

/* latency= the latency of op * /

/* dest= destination-register or memory location of op * /

/* dest'= renamed destination-register * /

if (all 4 conditions met) begin

if /* write-live conditions * /

(there is an op' in n other than op such that

intersection(reads(op'), writes(op)) ! = nil)

or

(for one successors s of n op is live and not killed in path to s)

renameJlag= TRUE;

/* actual move * /

create a copy n' of n;

unify(n' ,op); /* unification * /

move op into tail of tp in m;

make m go ton' instead of n (on path tp only!);

if (there exist op' in m s.t. writes(op')= writes(op)) and

(op' is on a path in m going through the newly added op) begin

delete op' from these paths;

push it down to the branch not leading to op;

end

/* modify pipeline characteristics * /

modify the pipe_set of m to reflect addition of op;

modify the pi pe_set of n' to be equal to:

the induced.Jield of n plus

all destinations of operations issued in n';

for all successors s of min paths reached through n'

but NOT in op's trail and in distance <= latency

add dest to pipe_set(s);

if (renameJlag= TRUE) begin

for all successors s of n' at distance= latency

add copy operations: dest:= dest ';

for all successors s of m at distance < latency

add dest' to pi pe_set (s) ;:

end

if (n has no predecessors)

delete(n);

if (deletion succeeded)

for all successors s of n at a distance <= latency

remove dest from pi pe_set (s);

update live-dead information in m;

end /*move*/

end (move-op)

36

I

·~;

37

3.4.2 Move-cj

Move-cj performs the movement of a conditional jump from a node n to a

predecessor node m. Since a conditional jump operation does not modify any

variable, the last two conditions of move-op are irrelevant here. So, the movement

of a conditional jump from node n to node mis possible if:

1. No operation in m writes one of op's source variables (data-dependency test).

2. None of op's source variables is an element in m's inducedJield (pipeline

dependency).

procedure move-cj(op: cj, n: from_node, m: to_node, tp: path_to)

/* latency= the latency of op * /
if (conqitionl and condition2 are met) begin

create a copy nT of n, that behaves as if op inn

always took the true branch, and unify(nT,op);

create a copy nF of n, that behav~s as if op in n

always took the false branch, and unify(nF ,op);

create a new (cj 1: copy of op) conditional jump and place

it as the last operation on path tp in m and make:

the target of the true branch of cj 1 is nT;

the target of the false branch of cjl is nF;

/* modify pipeline characteristics * /

modify pipe_set(nT); /* see n' in move-op * /

modify pi pe_set (nF); / * see n' in move-op * /
for all successors s of nT at a distance<=latency

modify pipe_set(s);

- _\

for all successors s of nF at a distance<=latency

modify pi pe_set (s);

/* try to delete n * /

if n has no predecessors

delete(n);

if the deletion succeeded

for all successors s of n at a distance<=latency

reflect the deletion of n in pi pe_set (s);

update live-dead information in nT;

update live-dead information in nF;

end /*move*/

end (move-cj)

3.4.3 Delete

38

The PPS delete transformation is very similar to the PS delete transforma-

tion. Delete removes nodes that do not contain any operation or nodes that have

no predecessors from the progr~m graph. It is called by move-op and move-cj after

a successful move. The only difference is that a node which does not include any

operation can not be simply removed because it might serve as a delay node for

satisfying pipeline latencies. Hence, in addition to checking predecessors, one has

to check whether the pipe_set field in this node is empty, which means that no

operation is under evaluation during this node.

procedure delete (n: node)

I

if ((n has no predecessors) or (n has no operations)) and

(pipe...set(n) is empty) begin

for all successors s of n at a distance<=latency

remove all corresponding pipeline elements from pipe...set(s);

remove n from the program and adjust links;

end

end (delete)

3.4.4 Unify

39

Unify merges syntactical copies of an operation from different branches of

a node into a unique copy placed in a mutual predecessor node. It is called by

move-op and move-cj after a successful move. The difference between the original

unify transformation and PPS unify is that now, we have to reflect the deletion of

all syntactical copies of op in all successors of these branches. In other words we

have to modify the pipeline information in all relevant successor nodes.

procedure unify (n: node, op: oper,~tion)

for all copies op' of op in n

for all successors s of n in trail of op' at a distance <= latency

remove corresponding pipeline element from pipe...set(s) and inducedJield(s);

end (unify)

f
,..f.\ ,,

40

3.5 Higher-Level Transformations

The transformations described in previous sections are the lower-level trans-

formations that perform the actual motion of operations while preserving correct-

ness. However, some higher-level transformations are required in order to direct the

low-level transformations and in order to extract coarser-grain parallelism which

is sometimes exhibited only in higher-level program constructs. Maxcomp is an

example of a transformation requiredto "guide" the low-level core transformations

in order to maximaly compact the program. It works by moving operations as high

as possible in the program graph. The goal of Maxcomp is to schedule all oper-

ations as soon as possible, subject only to da~a-dependencies. Another example

of a higher-level transformation that extracts parallelism in loops is called Loop

Pipelining. It exploits parallelism across as well as within loop iterations.

3.5.1 Maxcomp

procedure Maxcomp(program)

/* real successor= successor not through backedge * /

/* fence= global list of nodes.:*/

for each instruction n in the program filled(n)= FALSE;

let fence= {header instruction of the program};

let newfence= {empty set};

while fence is not empty begin

for each instruction n in fence

filUnstr(n);

for each instruction n in fence begin

for all successors s of n

if ((s is a real successor of n) and

(not filled(s)) and

(s is not in fence) and

(s is not in newf ence))

add s to newf ence;

mark filled(n)= TRUE;

end

let fence= newf ence;

let newf ence= {empty set};

end (while)

end (Maxcomp)

41

The idea behind Maxcomp is to "push" operations up by filling all nodes in

the program with operations in their sµccessors. Fillinstr tries to move operations

from all successors of n into n using move-op and move-cj. In order to guarantee

that an operation will move up as high as possible, whenever an operation has

moved into n all of n's predecessors are added to the (global) fence. Consequently,

when nodes in the new fence are fill~d, this operation can move up from n to its

predecessor.

procedure fillJnstr(n: to_node)

/* fence= global list of nodes * /

for each successors s of n in paths t from n to s begin

for each operation op in s

move-op(op, s, n, t);

for each conditional jump cj in s

move-cj(cj, s, n, t);

if (any operation moved out of s)

for each predecessors p of s

end

if (p is not in fence)

add p to fence;

if (any operation moved into n)

for each predecessors p of n

if (p is not in fence)

add p to fence;

end (fill instr)

3.5.2 Loop Pipelining

42

Since ordinary programs t.end to spend most of their time executing loops,

the ability to parallelize loops has a major impact on the overall parallelization

of the program. Loop pipelining is a class of techniques for extracting parallelism

within and across iterations, by overlapping execution of operations from multiple

iterations of the same loop. This causes a pipelining effect similar to that found

in hardware pipelining.

The loop pipelining algorithm used by our compiler was inspired by the Per

fect Pipelining (PP) algorithm described in [AiNi88c] and the enhanced pipeline

I

~i 43

scheduling technique detailed in [EbN a89]. Loop pipelining is applied to all inner-

most loops in the program one by one.

The main goal of any software loop pipelining technique is to schedule dif-

ferent iterations of the same loop in an overlapped fashion so that an iteration

may start before the previous one has ended. In our compiler the overlapping is

achieved by allowing operations from the next iteration to percolate up into nodes

containing operations from the current iteration. The loop pipelining works as

follows. We keep a global list of instructions called pipeline_fence which is sorted

originally in a depth-first order. Initially the list contains the loop header only.

First, all operations in the loop are allowed to move up as high as possible by

move-op and move-cj transformations (so that the loop body is fully compacted).

Then, we virtually unwind the loop header by increasing its depth-first number

so that it is greater than the depth-first number of all its successors. This makes

the header a real successor of all its predecessors and allows operations from the

header (which now represent the next iteration) to percolate up into nodes from

previous iteration. Concurrently, the pipeline_Jence is replaced by all successors

of nodes that are in the pipeline_/ ence. During this stage of compaction, nodes

that were previously added to the pipeline_fence are not allowed to break apart.

In other words, either all their operations can move up or none. Only later, in a

post-pass, we allow operations from all nodes to percolate up in the loop. This

process continues with modification of the pipeline_/ ence until no nodes can be

added to the pipeline_fence.

The algorithm, as presented, enhances the technique in (EbNa89] to be equiv

alent to PP. Since Ebcioglu and N akatani are allowing operations to move only into

nodes that are currently in the pipeline_fence (in other words, nodes that are not in

44

the pipeline_fence can not be parallelized) and since they do not allow the splitting

of those nodes that have already been in the pipeline_Jence, their algorithm tends

to converge too fast. While in the case of uni-cycle operations the fast convergence

is not a determinant factor, with multi-cycle operations it significantly affects the

speed-up. We alleviated this problem by integrating two changes: first, we allow

all nodes in the loop to be filled (more aggressive compaction) and second we apply

the post-pass compaction phase to all nodes such that we actually "simulate" the

PP technique (in the limit) in a controlled and simpler fashion. In the algorithm

th~t follows, Maxcomp-for-pipelining() performs the same function as Maxcomp()

except that nodes that have already been in the pipeline_fence cannot be split.

procedure Pipeline(loop)

/* s is a real successor of n if s's DFS number is larger * /

/* than n's DFS and s is part of the loop * /

for each instruction n in loop

mark n as not part of pipeline_fence;

let pipeline_/ ence= {header instruction of the loop};

let pipeline_newfence= {empty set};

while pipeline-1ence is not empty begin

Maxcomp-for-pi pelining(loop);

for each instruction n in the pipeline_fence begin

mark n as part of pipeline_fence;

for all successors s of n

if ((s is a real successor of n) and

(not filled(s)) and

(s is not in pipeline_Jence) and

I

(s is not in pipeline_newfence))

add s to pipeline_newfence;

/* modify n's DFS number to be larger than all its successors * /

make n a real successor of all its predecessors;

mark filled(n)= TRUE;

end

Maxcomp(loop);

let pipeline_fence= pipeline_newfence;

let pipeline_newfence= empty;

end (while)

end (Pipeline)

3.6 PPS-Related Specific Problems

45

Besides some implementation differences, the extension of PS to PPS trans

formations required a solution of several delicate problems that are inherent to

compaction with multi-cycle operations. Pipelined operations (unlike uni-cycle op

erations) have an impact on nodes as far away as their latency. This has to be taken

into consideration during compaction, otherwise either significant performance-

degradation or wrong results may occur. These problems include:

• Disambiguation: while for PS the move up of a load operation to a pre-

decessor node depends only on the predecessor's store operations, in PPS

one has to further verify that the predecessor's pipe_set does not include an

element representing a reference to the possibly same location caused by a

m

n

s

46

m m

n n

s f6:= f6' s

(a) before move-op (b) after move-op (wrong) (c) after move-op (correct)

Figure 3.4: Before and After Move-op

store issued in previous nodes. Therefore we need to disambiguate not only

with 'store operations but also with symbolic derivations induced by store

operations kept locally in each node.

• Renaming: while in PS renaming requires extraction of local live information

stored in the node from which we move the operation and its immediate

successors, in PPS we have to extract this information from all nodes that

are in the operation's laten~y distance. Refer to Figure 3.4(a) and suppose

we want to move op from n to m and assume that the load takes two cycles.

Since f 6 is read by another. operation in n it has to be renamed.

With PS we would pick f6' to be the renamed register (!6' is dead in n)

and get the segment shown in Figure 3.4(b). However, this code is obviously

wrong since f6 in s uses a the value computed by f6 := f6'. Therefore,

for PPS we have to find a register that is dead not only in n but also in its

successors. Doing this yields the code shown in Figure 3.4(c).

I

~; 47

• Resource Constrained Scheduling: when deferring pipelined operations (see

Chapter 5) care must be taken to preserve correctness in order of modifica-

ti on.

• Simulator: when two pipelined operations modify the same register in the

register-file in the same cycle-only the one that was issued later determines

the value of the register.

In the remainder of this section we present two other problems encountered

with PPS during the parallelization process. Although the problems may be re-

garded as implementation-specific, we believe that they apply in general to any

local transformation that handles multi-cycle operations.

3.6.1 Blocking of Loop Pipelining by Operations Outside

the Loop

Suppose the following loop is giyen:

for (i=O; i < 10; i++)

x[i] = x[i] + 2.0

We assume in this example that additions and memory loads take 2 cycles,

while all other operations take one cycle. This loop transforms into the three

address-code shown in Figure 3.5 (for simplicity, we omitted the exit test).

After i := i + 4 moves across the backedge and percolates up, we get the

program illustrated in Figure 3.6. However, without any further change the loop

pipelining process terminates here because the induced_field of i := i + 4 (which is

I

r
. ..f.',

" 48

Figure 3.5: Three Address Code for The Loop

I

~i 49

outside the loop, now) reaches nodes inside the loop. In particular, x := M[i+O] is

blocked from moving into node m and it blocks the motion of other operations as

well. In other words, operations which are not part of the loop limit the parallelism

inside the loop. To alleviate this problem, we trade parallelism outside the loop

for parallelism inside (which is much more critical). This is done by the insertion

of extra empty nodes (up to the latency of the operation leaving the loop) between

the operation that has left the loop (during loop pipelining, in this case i := i + 4)

and the loop as shown in Figure 3. 7. This guarantees that no operation outside

the loop will prevent motion inside the loop. The solution proposed here enables

compaction of the loop into 2 nodes as shown in Figure 3.8, while without insertion

the loop would be compacted into 6 nodes.

3.6.2 Renaming During Pipelining

We illustrate in this section another example of a problem related to com

paction with multi-cycle operations. Consider the partially compacted code shown

in Figure 3.9. When trying to move the operation x := x + 2.0 from n to m we

have to rename x (since it is used by the other operation in n. According to move-

op, when performing a renaming of variable x into x', we add a copy operation

x := x' in all successors of min a distance equal to this operation's latency. Let's

assume that a floating-point addition takes 3 cycles. In this case, it seems that

the copy operation should be added to node las shown in Figure 3.10, but this

may lead to a incorrect code since node l is executed before node m. Hence, in

order to guarantee a correct renaming, whenever the copy operation is added to a

50

m

Figure 3.6: Code After i := i + 4 Percolated Up

~i 51

m

Figure 3. 7: Code After Insertion of an Empty Node

~i

i':~ i"
x:= x' + 2
x';= M[i" +O]
i"~= i" + 4

Figure 3.8: Final Code

52

I

53

Figure 3. 9: Initial Code

node that may be executed before node m, an extra node is added before the loop

header to compensate for this copy. This is shown in Figure 3.11.

3. 7 Examples

The two examples presented in this section show why our PPS transforma

tions yield better results than PS (with insertion of empty nodes after compaction)

and Trace Scheduling (TS) with multi-cycle operations.

3. 7.1 Example 1

Assume the following code segment is given:

LABEL Ll:

a:= c * 1.0; 3 cycles

54

1

Figure 3.10: Code After Renaming

x':= x

Figure 3 .11: Final Code

I

LABEL L2:

LABEL L3:

c := M[O + b];

b := 2.0;

d :=a* 3.0;

if d <= 0 GOTO L2;

e := b * 4.0;

f := c * 5.0;

g := fix(e);

M[f + 1] := g;

GOTO L3

e := b * 4.0;

f := C* 5.0;

g := fix(e);

M[f + 2] := g;

EXIT

2 cycles

1 cycle

3 cycles

1 cycle

3 cycles

3 cycles

1 cycle

1 cycle

3 cycles

3 cycles

1 cycle

1 cycle

55

The latencies of the operations are listed next to the serial code. The serial
.;

execution time of any of the two paths is 18 cycles. By applying PPS we get the

code depicted in Figure 3.12 below. This shows that code is compacted into 7

cycles. On the other hand, TS would pick one of the traces (let's say the TRUE

branch) and would compact only this trace. But after compacting this trace all

other operations in the FALSE branch can NOT move any more into the compacted

trace which results in execution time of 7 cycles on one trace but 12 cycles on

56

EXIT

Figure 3.12: Example 1: Compacted Code by PPS

the other. This difference is partly due to PS, but is exacerbated by operations'

latencies. 2

3.7.2 Example 2

The following example sh9ws the power of PPS over PS, assuming each op

eration takes 1 cycle, and then inserting empty cycles to satisfy the real latencies

of operations:

LABEL Ll:

a:= c * 1.0; 3 cycles

2Presumably there are other paths going through 12 implying that normal code hoisting would

fail to eliminate the same operations on different branches.

f
~·.

"
~; 57

b :=a* 3.0; 3 cycles

c :=-a; 1 cycle

d :=a+ 2.0; 2 cycle

if c <= 0 GOTO L2; 1 cycle

g := fix(b); 1 cycle

M[e + 1] := d; 1 cycle

GOTO Ll

LABEL L2:

g := fix(b); 1 cycle

M[e + 2] := d; 1 cycle

EXIT

Again, the latencies of the operations are given in the code. Figure 3.13

shows the compaction derived by PPS-a sequential loop with execution time of

12 cycles is compacted into a parallel loop with execution time of 4 cycles. If

we apply PS on the same loop, assuming each operation takes 1 cycle, we get a

compacted graph' which also has 4 cycles in the loop. Now, if after compacting the

code with one-cycle operations, we insert empty nodes to satisfy real latencies and

then attempt to locally compact, we'' get a loop which takes 6 cycles to complete

(compared to 4 with PPS) as shown in figure 3.14. The reason for that difference

is that while PPS fills nodes as tightly as possible, allowing general motion of

multi-cycle operations, PS followed by insertion of empty cycles does not allow the

movement of operations out of the basic block (after the initial compaction has

been done) and thus prevents better compaction. Of course, we could try to remove

~i
. 58

EXIT

Figure 3.13: Example 2: Compacted Code by PPS

these constraints, but to do this with any generality would require transformations

akin to those provided by PPS.

I

.~·. ,,

EXIT

Figure 3.14: Example 2: Compacted Code by PS

59

Chapter 4

Register allocation, renaming

and their impact on our compiler

4.1 When Should Register Allocation Be Done?

Registers have been considered for years as one of the most precious resources

in any architecture design. Integration (space) and timing (address decoding)

limitations restricted the total number of registers on chip. Accordingly, a good

style of programming and/or a good :policy of register allocation for a compiler

has been one that makes efficient use of registers. This has been accomplished

by compiling source programs into machine language using ·a minimal number of

registers, assigning the same register~ to variables whose runtime life-spans do not

overlap. Such use of registers is beneficial for sequential machines. However, the re

use of registers in high-performance, pipelined, fine-grain parallel architectures may

severely decrease performance since it limits the ability of fine-grain parallelizing

compilers to compact programs [El86, CKV85].

In parallel architectures, ideally, only true data-dependency (and resources

availability) should limit the parallelism. Re-use of registers limits the achievable

60

61

parallelism since it introduces a false ordering (dependency) between operations.1

This could cause a substantial degradation in performance. Consider, for example,

the following program segment:

1: a:= b + c;

2: d :=a* e;

3: a:= f + g;

4: h :=a+ k;

Here, d := a*e has to be executed after a:= b+c. That is a strict data-dependency.

On the other hand, a := f + g is prevented from being scheduled in parallel with

a := b + c, only because it re-uses register a which is read by d := a * e. This

dependency is called an anti-dependency [CKV85]. But this dependency need not

limit the parallelism. Renaming register a to a' would yield the following:

1:

2:

a:= b + c;

d :=a* e;

a':= f + g;

h :=a'+ k;

which is two cycles shorter. Thus by using an additional register (a') we have

increased the parallelism of the program. Another source of false dependency is

called output dependency which occurs when two operations write to the same

output register. In the example above, operations a := f + g and a := b + c

modify ·the same registers. Without renaming, a := f + g cannot move above

a := b + c. As will be shown in Section 4.2, the effect of renaming becomes even

more important during loop pipelining [RaG182, GrLa86, Eb87, AiNi88c] when

1 While in uni-cycle operations this artificial dependency prevents an operation from moving

up one step, for multi-cycle operations it blocks a move of several cycles (equal to the latency of

the operation which causes this anti-dependency}.

I

f
~··,

i!

62

operations are allowed to move out of their original iteration in order to achieve

parallelization both across and within loop iterations.

Thus fine-grain parallelizing compilers face two mutually contradictory con-

straints: on the one hand registers should be aggressively re-used to avoid spilling

and its ensuing inefficiency, while on the other hand anti/output dependencies

should be eliminated to increase parallelism. In this context the time when regis

ter allocation is done becomes critical to the quality of the code produced.

If register allocation is carried out before compaction, the best strategy to

avoid undully .limiting parallelism is to use as many registers as necessary (essen-

tially equivalent to transforming the code into quasi static-single-assignment (SSA)

form [CFRWZ89]). Unfortunately, the total number of registers needed is usually

greater ·than the number physically available. Hence, some registers have to be

re-used. Ideally, we would like to refrain from re-use in places where it actually

inhibits the compaction, and allow re-use where it is insignificant. However, if

register allocation precedes the comp~ction phase, this information is unavailable

and we may end up with re-use of registers in the wrong places.

A second ·approach is to performregister allocation after compaction has been

completed. This method allows unlimited virtual registers during compaction. 2 In

a post compaction pass, the virtual registers are mapped to the actual architec-

ture's registers. Of course, if the number of registers needed exceeds the number

2That is, a new virtual register is used for each computed operand and its associated use(s).

This may be achieved simply during translation of the input into intermediate code, for non-loop

code. However, for maximizing parallelism in loops (in the context of loop pipelining), renaming

is still necessary as will be discussed in Section 4.2.

~; 63

of actual registers-· spilling to memory is required. Performing spilling after com

paction may severely damage the carefully parallelized ("packed") code, yielding

inefficient schedules. In fact, the performance obtained by this approach on its own

can be so poor that compilers using it (e.g. Cydrome, Fujitsu) resort to repeated

compaction of the new program whenever a spill occurs. While after such iterative

compaction the code quality is very good, this repeated computation can be very

time costly in cases where many spills occur.

Ideally, we would like to do register allocation during compaction which

would make meaningful trade-offs possible. However, this implies dealing with

two NP-hard problems (functional units allocation and register allocation) during

compaction, presenting an exceedingly complex task. Because of the difficulty in

volved, this approach has been avoided by existing compilers which instead chose

one of the simpler approaches above.

In this chapter we propose a simple alternative that allows the flexibility of

renaming during compaction while avoiding spilling and the complexity of per-

forming full register allocation during the parallelization process. We start by

performing conventional register· allocation before compaction. However, during

compaction we allow renaming to remove false dependencies that prevent other-

wise desirable// easible code trans/ ormations-provided a register is available at

that point. So, extra registers are used only when actually needed to enhance

parallelism, and only if the benefits are not offset by spilling cost.

~i 64

4.2 Renaming in Fine-Grain Parallelizing Com-

pilers

The price paid for register renaming is not. only the increase in number of

registers. If renaming is to be done during fine-grain compaction, it needs to be very

efficient. In particular, we simply cannot afford to do global searches for uses of

the registers being renamed, and potentially complex code transformations to allow

semantically correct renaming. Consider again the previous example. Register a in

a:= f +g has been renamed to a':= f +g. Consequently, in all following operations

using a, we substituted a'. In general there might be multiple, distant, uses of

register a requiring a global search throughout the program. Furthermore, even if

all uses are located, renaming may not be immediately feasible, as shown in the

example in Section 4.2.2. To avoid these problems during compaction, renaming

can be carried out by leaving a copy operation in place of the renamed operation,

to reassign the value computed to the original register. Thus, by adding an extra

copy to the code, renaming is convert'ed into a local, efficient transformation and

the need for search and issues of semantic preservation are eliminated:

1: a:= b + c; a':= f + g;

2: d :=a* e; a:= a';

3: h :=a+ k;

However, the copies introduced may create their own set of problems. The effect

of introducing extra copies is especially critical when loop pipelining is performed

and a considerable number of operations (from multiple iterations of the loop) are

exposed to renaming. This may cause significant code-explosion. Furthermore, if

these copies are left in the code, their execution results in a waste of functional

65

units. So, when considering renaming as a parallelization aid in fine-grain compil-

ers, special care must be taken to maintain a good schedule taking into account all

the resources available (functional units and registers)-otherwise renaming may

not be beneficial.

4.2.1 Local Copy Bypassing

The renaming process, using copy operations in the code, does not (by itself)

significantly increase parallelism. Another local substitution is required to tap the

full potential of renaming. Refer again to the previous example. Here, h := a + k

cannot move up into cycle 2 since it depends on a := a'. However, since this

data-dependency is generated by a copy operation, we can always substitute a' in

h := a + k and rewrite the schedule as:

1: a:= b + c; a':= f + g;

2: d :=a* e; a:= a'; h :=a'+ k;

which is one cycle shorter. This optimization is local (applied during one of the local

PS transformations) and therefore simple and efficient. Obviously, if all operations

using a move above the copy during PS, a:= a' becomes dead and can be removed

locally from the code.

4.2.2 Renaming During Loop Pipelining

Loop pipelining (see Section 3.5.2) involves unwinding the loop body and

compacting the resulting code. This incremental process repeats until data-dependencies

force the emergence of a repeating pattern which then becomes the compacted loop

I

66

body. In general, the amount of unwinding cannot be precisely predetermined,

particularly in the presence of conditional jumps. Thus, static renaming (e.g. on

the loop body or on some small and fixed number of unrolled iterations) is not

satisfactory. Dynamic renaming is needed.

The overlapping effect is achieved in our technique by allowing operations

from the next iteration to percolate up into nodes containing operations from the

current iteration. To illustrate the application of renaming during the process of

loop pipelining consider the following example:

for(i = 1; i < 20; i + +)

A[i] = 4 * (A[i] + 8) + A[i];

This loop translates into the following three-address-code (all operations

listed in the same node number are executed in parallel):3

PROGJ3EGIN:

node 1: i := O;

LABEL LOOP:

node 2: a:= M[i + 4];

node 3: b :=a+ 8;

node 4: c := b * 4;

node 5: d :=a+ c;

node 6: · i := i + 4;

node 7: M[i + O] := d;

node 8: ccO := i <= 80;

3 For simplicity, we do not draw the program graph but. use labels to denote nodes.

:' .. '. ,,

67

node 9: IF ccO GOTO LABEL LOOP;

LABEL EXIT:

node 10: RETURN;

PROG_END

Also, in order to simplify the explanation we ignore the exit test operations

(nodes 8 and 9). Omitting these two operations and compacting the loop body

yields the (partially) compacted code:

PROG_BEGIN:

node 1:

LABEL LOOP:

node 2:

node 3:

node 4:

node 5:

node 6:

LABEL EXIT:

node 7:

PROG_END

i := O;

a := M[i + 4]; i := i + 4;

b :=a+ 8;

c := b * 4;

d :=a+ c;

M[i + O] := d; GOTO LOOP

RETURN;

The next step is to unfold the next iteration of the loop and try to percolate

its operations upwards. For example, after operations from the first node of the

second iteration have percolated the code would be:

PROG_BEGIN:

node 1: i := O;

node 2: a := M(i + 4]; i : = i + 4;

I

LABEL LOOP:

node 3:

node 4:

node 5:

node 6:

LABEL EXIT:

node 7:

PROG_END

b :=a+ 8;

c := b * 4;

d :=a+ c; a:= M[i + 4];

M[i + O] := d; i := i + 4;

RETURN;

68

GOTO LOOP

Without renaming, neither a := M[i + 4] nor i := i + 4 can move any further.

Both a and i are used_ by other operations in their corresponding nodes. This

sort of dependency is common in loops since the index (as well as other v~riables)

are often used repeatedly in successive iterations, greatly restricting parallelism.

However, with renaming further motion is allowed. This process continues and

further iterations are unfolded and percolated until a repeating pattern emerges

in the schedule. For our example the final schedule (after pipelining of the next

iterations) results in:

PROG.BEGIN:

node 1:

node 2:

node 3:

node 4:

node 5:

LABEL LOOP:

i := O;

a := M[i + 4]; i := i + 4;

b :=a+ 8;

c := b * 4;

i" := i' + 4;

d :=a+ c;

b :=a"+ 8;

a' := M[i + 4]; i' := i + 4;

b :=a'+ 8; a":= M[i + 4];

a:= a'; a' :=a";

a":= M[i" + 4]; i"' := i" + 4;

c := b * 4;

f
.-' .. \ ,,

69

node 6: M[i +OJ := d; i := i'; i' := i"; i" := i"';

d :=a+ Cj a:= a'; a' := a"; c := b * 4;

b :=a"+ 8; a":= M[i"' + 4]; i"' := i"' + 4; GOTO LOOP

LABEL EXIT:

node 7: RETURN;

PROG_END

The final schedule shows that the whole loop {6 cycles in sequential form) is

compacted into one cycle (speed-up of 6) given enough resources. 4 On the other

hand, if renaming were not performed the overlap of iterations would have been

minimal, yielding a speed-up of only 2. However, renaming resulted in numerous

copy operations. If only two functional units were available, no speed-up would be

obtained without eliminating these copies. Since 5 extra copies are added to the

original 6 operations in the loop, 6 cycles are required to issue the 11 operation in

the new loop body.

Conventional copy propagation techniques will fail to remove the copies gen-

erated in this example. In node 6, i is both defined and used and two different

definitions of i are reaching the node. Consequently, conventional copy propaga

tion (and/ or induction variable,; elimination) techniques will not work {it is not

possible to substitute for i).

4The speed-up achieved when considering the exit test operation would be 8.

I

,.f.',

"
70

4.3 Previous Work

The effect of storage allocation on parallelism and storage requirements for

Fortran programs is discussed in (Ku87]. It is shown that "anti-dependency" in

hibits the parallelism exhibited in scientific programs, therefore renaming (or stor

age reallocation) is needed.

(BEH91] compared three code generation approaches on three RISC proces

sors. The approaches varied from a complete separation between scheduling and

register allocation to execution of the two tasks interdependently. They found

that completely separating register allocation from code scheduling produced inef

ficient code while performing pre-scheduling followed by register allocation when

the scheduling phase (that was done first) was restricted by the same constraints

as the register allocator yields the best cost-performance results.

Cytron and Ferrante (CF87] show that any imperative, Fortran-like language

can always be transformed into a program whose only constraint on the order

of execution is the direct flow of values (i.e. a dataflow graph). In addition, a

polynomial-time algorithm to allocate registers (for a scalar processor), requiring

no more than the maximum number of simultaneously live registers in the original

program is given. It is further shown that the number of extra copies introduced

into the program is O(M) where Mis the total number of multiple definitions of

variables in the original program.

In IBM's VLIW machine (Eb88], whose compiler performs register renam-

ing during the parallelization process, an intermediate approach similar in spirit

to the one proposed here is taken. Instead of rewriting the whole program in a

I
I

71

single-assignment-form to allow maximal compaction- loops are unrolled several

times (the amount of unrolling is determined empirically) so that each iteration

uses a new set of registers. Consequently, renaming is achieved for registers which

are defined and used inside the loop body. Although the amount of unrolling is

determined heuristically in an extra (preliminary) phase-by unrolling the source

program, the running time of the compiler increases considerably due to code ex

plosion. Furthermore, this is wasteful in terms of the number of registers required.

In order to alleviate this problem (Br91] suggests a refinement on this idea.

Instead of unrolling the loop at the source level, the loop is unrolled in its pipelined

form (renaming using copies is done during loop pipelining). The amount of un

rolling can be determined from the length of the longest chain of copy operations

on each path through the loop. In this way there is no need for multiple iterations

of compaction, however, code duplication is still problematic.

4.4 Our Approach.

Copies created by renaming during the parallelization process may become

dead and be removed locally (se~ Seetion 4.2.1) and thus only the remaining copies

need to be considered for elimination after compaction. Furthermore, another rea-

son for delaying the application of copy elimination is that sometimes these copies

do not affect the resource-constrained schedule (if there are enough functional

units)-and thus removal may be unnecessary.

It is convenient to differentiate between two types of renaming candidates

during loop pipelining: loop induction variables (IVs), and non-induction variable

72

operations which are eliminated by, loop unwinding. Furthermore, we were looking

for an algorithm that, while removing copies generated by renaming of IVs, will

remove redundant IVs as well. The approach described here includes two parts,

each corresponding to a different source of renaming. Since the technique for

removal of IV-generated copies does not involve code duplication it is applied first.

4.4.1 Definitions

. • A loop is a set of nodes in the program graph such that there is a path

from each node in the loop to another node in the loop. The loop may be

irreducible.

• Loop unwinding means duplicating the whole loop and directing the backedges

of the previous iteration to the appropriate nodes of the unrolled iteration.

The two backedges of the loop presented in Figure 4.1 are directed as shown

by the dotted lines.

• A variable i is defined using (defined by) j iff i = j + a or i = j.

• Variables ii, ... ,ik (k >= 1) are induction variables (IVs) in loop L iff i1

is defined exactly once by i2, ... ,ik-t is defined exactly once by ik and ik is

defined exactly once by ii. ii, i .. h are said to be circularly defined.

• A variable i is an induction variable (IV) in loop L iff i is defined only once

in L by one of the operations i = i +a, i = j, i = j +a, where j is an IV and

a is a loop invariant or a constant. An operation that assigns a value to an

iv is also called a definition of that IV.

• An IV whose definition in L is of the form i = i +a is called a basic IV,

otherwise it is called a non-basic IV.

f
,../.',

"'

exit

(a) Original loop

exit

(b) Loop unwound once

Figure 4.1: Loop Unwinding

• Two IVs i and j are in the same IV family iff:

73

1. there exist IVs ii, ... ,ik (k >= 0) such that i is defined by ii, i1 is

defined by i1+i for for l = 1, ... , k - 1, and ik is defined by j, or,

2. there exist IVs ii, ... ,ik (k >= 0) and j1, ... ,jm (m >= 0) and i0

such that i is defined by i 1 , i1 is defined by i1+i for l = 1, ... , k - 1,

and ik is defined by io, and j is defined by ii, in is defined by in+i for

n = 1, ... , m - 1, and im is defined by i 0 •

• An IV is said to be an effective IViff it is used as the memory address register

in some memory access operation (load or store). Otherwise it is called an

ineffective IV.

~i 74

4.4.2 Elimination of Copies Generated by Induction Vari-

able Renaming

In this section we describe briefly our technique to remove redundant induc-

tion variables and copies generated during renaming of IVs. The technique was

developed by Haigeng Wang and described in detail in [NPW91].

The technique

The goal of the technique is to remove as many redundant IVs as possible

and all copy operations generated by renaming of IVs (during loop pipelining)

for each IV family in a given loop L while preserving the semantics of loop L.

The conventional IV elimination algorithm described in [ASU86] cannot remove

redundant IVs from IV families that have no basic IV since that algorithm assumes

the existence of a basic IV for each IV family.

Consider the following example::

PROGJ3EGIN:

i := 5;

i' := i + 4;

i" := i' + 4;

i"' := i" + 4;

LABEL LOOP:

r := M[i + O];

r := r + l;
M[i"' + O] := r;

i := i';

i' := i";

i" := i"';

i"' := i" + 4;

GOTO LOOP;

PROG..END

75

In this example there is no basic IV but i, i', i" and i"' form an IV family.

However, this loop can be transformed into compatible one that includes only one

IV. Since all these IVs are related, by expressing each IV in terms of an iteration

count5 we can find the exact difference between all IVs and the one selected to

remain. This IV derivation problem can be stated as: given a loop L and IV set

{i1 , ···,in}, where each IV is defined only once in L by ik = i1 +a, k = 1, ... , n,

l = 1, ... , n, a E Z, and let I be the iteration count of loop L, we want to express

all IVs in the form i = 8d + i 0 , where Si is the progression of i in each iteration

and i 0 is the initial value of i up9n entering the loop.

After selecting which IV is kept and after deriving expression for all IVs, we

replace all memory expressions in the loop that are using removed IVs with the

base IV and adjust the offset a/ccordingly. To preserve correctness on all paths

outside the loop, for each removed IVs that are live at the loop exit, we add

a compensation operation to reflect the new variables. For example, if i"' was

replaced by i, i"' is still live outside the loop and i"' is larger than i by 12. In this

case we have to add i"' := i + 12 to restore the value of i"' as in the original L.

5The iteration count of a loop counts the number of iterations executed. It can be thought of

as a canonical IV.

J,.',

,,I

76

4.4.3 Copy elimination through unwinding

Previous section presented a technique to remove copies generated by renam-

ing of IVs. However, some copies cannot be eliminated without loop unwinding. In

this section we present a technique to remove other copies generated during loop

pipelining by loop unwinding.

The technique

Copies generated during renaming do not produce new values but rather

serve to "shift" (already computed) values for future uses. An operation may only

define one new value for each iteration. However, the copy operations serve to

preserve values produced by this operation over multiple iterations. The reason

that loop unwinding is done is to match an operation with its corresponding use,

so that copy operations are not needed to keep the produced value live until its

subsequent use.

To begin with, we split all nodes in the loop that have multiple reaching

definitions of registers involved in copy operations. For example, if register a is

involved in one of the copies in the 19op, and node n is part of the loop it is split

as shown in Figure 4.2.

Following the split we perform a reaching value analysis for the loop [ASU86].

During the reaching value analysis we build, for each node that is part of the loop,

a mapping table which represents the correspondence between all operations' sym

bolic values and registers used to store their results. A value is a tuple representing

definition of a
definition of a

E2

definition of a
definition of a

E2

Figure 4.2: A Node Splitting

77

the operation number and the iteration to which the operation belongs.6 For ex

ample, suppose that a representative node includes the following operations:

00: f6 := f6'

12: f6'-:= M[$2 + 1000]

17: f 4 := /6 + f8

23: /2 := /8 - /2

Then, the mapping table may include the following entries: {/6,12:1}, {!6',12:0},

{f4,17:0}, {/2,23:0} which means that register f6 holds the value produced by

operation 12 in the previous itetation, register /6' holds the value produced by

operation 12 in the current iteration, register f 4 holds the value produced by

operation 17 in the current iteration and register /2 holds the value produced by

operation 23 from the current iteration. The next step is to perform a complete

loop unwinding as shown in Figure 4.1.

All freed registers (of removed copies) are used later when needed for sub

stitution. Then, once the reaching value analysis has been applied to this loop

iteration, all undirected backedges of that loop iteration are directed to any previ

ous loop headers with a matching mapping table. In other words, a backedge from

6 Naturally, operations are uniquely numbered.

I

f
.-:.', ,,

78

node s may be directed to a node t only if the mapping table at the output of s

matches the mapping table at t. If there still exist backedges with no matching

headers, the loop is unwound again.

Since the number of copies is finite, as is the number of different paths in

the loop, the number of possible permutations of operations vs. registers (in the

mapping table) is also finite (we do not add new registers during the substitution

process). Therefore, the number of unwindings is bound and the algorithm con

verges. In practice, we found that the number of unwindings required is small

compared to the theoretical bound.

Chapter 5

Resource Constrained Scheduling

5.1 Resource Constrained Scheduling and Local

Transformations

Resource constrained scheduling (RCS) is the process of mapping an unlimited-

resources schedule onto the given architecture, taking into account all its peculiar-

ities and constraints. Since The RCS problem is known to be NP-hard, in practice

it may be solved only by a heuristic algorithm. This raises questions like: "What

is a good RC schedule?" or "When· to apply the heuristics?". Basically, there

are two conceptual alternatives to perform RCS: either consider the constraints

during the parallelizing process, not allowing the motion of operations into nodes

that are already filled, or perform an/ unlimited-resources parallelizing process and

then apply the constraints in another pass.

The main problem in integrating RCS with any local transformations (like

PPS), is their different nature. While PPS is a set of local transformations, based

on local information available at each node, RCS would yield, potentially, bet-

ter results when using global information. In other words, when scheduling for

a specific node n in the graph, one would like to move into this node the best

79

80

choice among all operations in the graph rather than among operations which are

closer to n. Since operations are moved from one node to another by higher-level

transformations, there is no guarantee that an operation op1 which is closer to n

will not block another, farther, operation op2 from moving into n, while the better

choice would be to move op2 first. Hence, a global RCS technique should be applied

during the RCS process.

That is exactly what Ebcioglu and Nicolau propose in [EbNi89]. Their tech-

nique integrates resource limitations into the Percolation Scheduling transforma-

tional model without sacrificing the generality and completeness of PS. The tech

nique relies on information called unifiable_ops that is- kept locally for each node

in the graph. The unifiable_ops of a node is the set of all operations in the pro

gram that can potentially be scheduled in it., This information is computed for the

serial (uncompacted) program and updated incrementally during the parallelizing

process. Hence, the RCS problem can be stated as: "among all operations in the

unifiable_ops find the best k choices and move them up into this node". Since

the information in unifiable_ops is incrementally updated during compaction the

"best" global information is available for making the choices at every step.

Another approach, which is used by our compiler, is to extract first the

maximal parallelism, ignoring resource constraints and then, in another pass, map

this schedule with the given resources by "splitting" nodes with more operations

than allowed to meet the constraints.

The main argument against the latter technique is that it may have to undo

some of the code motions performed in the unrestricted phase, thus increasing

the compaction time. In addition, since some of the transformations do not have a

I

~i 81

unique inverse-undoing them may produce worse code than the original program.

In order to have a measure for these claims, we have implemented at the early

stages of our project both techniques (the global technique was implemented in

CMU [Br91]). It turned out that the compaction time with the former technique

was much higher than with the latter. That was mainly due to the time spent in

computing and modifying the unifiable_ops information.

On the other hand, we show in [PLNG90] that starting from an unlimited-

resources schedule, which is in most cases the optimal schedule, is one of the most

important factors in scheduling because it offers a good lower bound for the total

execution time. Without this bound it is sometimes very hard to estimate what

would be the best performance of an application, making the heuristic algorithm

harder (when to stop?, what is a "good" schedule?).

Another important argument in favor of our technique is that it actually en-

ables exposure of all optimizations since operations are compacted first without

taking resource constraints into accolfnt. On the other hand, when resource con

straints are inherent to the parallelization process, the order in which operations

are selected for scheduling implies whether an optimization is invoked or not. By

(heuristically) preferring some operations, we may loose some important optimiza

tions. For example, in Section 7.3 we present the load-after-store optimization. In

this optimization a load operation is eliminated when the two nodes involved in

the move-op transformation have a specific pattern (the node to which the opera

tion moves contains a store into a memory location and the node from which the

operation moves includes a load from the same location). The unlimited-resources

schedule will always expose this pattern when it exists. However, if RC heuris

tics are integrated in the scheduler only a specific selection of operations during

~i 82

resource constraints scheduling will yield the same effect. Furthermore, once this

load is eliminated, there is obviously no need to schedule it later with resource

constraints. ·

5.2 Our Technique

Using a heuristic to solve the NP-hard RCS problem implies a priority func-

tiqn to select the "most important" operations to be scheduled in a node. The

priority function we have selected is a weighted priority function. It includes two

measures that characterize the operation. First is the mobility of the operation.

The mobility1 of an operation is the "freedom" one has in scheduling this oper

ation without stretching the whole schedule [PaGa86]. When an operation can

be deferred by one cycle and does not cause a subsequent increase in the total

execution time its mobility is one. In other words, operations on critical paths

have a zero mobility (delaying these operation lengthens the schedule) while op

erations not on critical paths may have positive mobility. The mobility itself is

prioritized: critical paths in inner-loops are more important then critical paths in

non-inner-loops or non loop sections of the program. Naturally, we tend to defer

operations with highest mobility. The other measure characterizing the priority

of an operation is its precedence_number in the original (non-compacted) program.

The precedence_number indicates its original "distance" from the program header.

Basically, our algorithm is a list-scheduling-based RCS with mobility and prece-

dence_number as a heuristic.

1This is the term that is used in High Level Synthesis.

83

k

Figure 5.1: Code Segment Before Deferring of opl

The resource constraints include the maximal number of functional units of

each kind (adders, multipliers etc.) that are available per node and the total num

ber of operations (if less than the sum of partial constraints) executable per node.

The RCS process is carried out by traversing all nodes in the (unlimited-resources)

compacted program. For each node we compare ,the number of operations sched-

uled with the allowable number and when some operations have to be deferred-

they are selected in an order according to their priority. When deferring operations

care must be taken not to violate program correctness. An operation selected for

deferring has to be deferred on all paths it belongs to. In Figure 5.1, suppose that

opl is selected for deferring. In this case two new nodes are created and inserted

between nodes n and k and l. Opl is deferred from n to the newly created nodes

k' and l'. The resulting segment is shown in Figure 5.2.

When a conditional jump has to be deferred, the lowest one in the operation

tree is always the one selected for deferring. After the conditional jump has been

deferred, the code segment of Figure 5.1 will be transformed into the one shown

in Figure 5.3.

84

k'

k

Figure 5.2: Code Segment After Deferring of opl

k

Figure 5.3: Code Segment After Deferring of Conditional

85

Ll

L2

Figure 5.4: Code Segment Before Compaction

The second priority measure of an operation, its precedence_number, is an

important one since omitting it may yield a compacted program whose execution

time is worse than the original (seque.ntial) program. We clarify this by the example

illustrated in Figure 5.4. After (unlimited-resources) compaction this segment

transformed to the one shown in Figure 5.5. Now assume that two operations are

executable per node and assume that priorities of all three operations in node n

are such that ccO := J(b, c) was selected to be deferred. In this case we get the

segment illustrated in Figure 5.6.

This schedule is worse than the original (uncompacted) schedule despite that

two operations are executable per node!. In the original schedule it took two

steps to execute the path from Ll to EXIT while in the compacted program it

takes 3 steps. This happens because PPS allows speculative execution of opera

tions (i.e. operations are scheduled to be executed before the condition to execute

them has been resolved). In order to prevent such cases, each operation in the

86

Ll

Figure 5.5: Code Segment After Compaction

Ll

Figure 5.6: Code Segment After RCS

87

original program graph is assigned a precedence_number. All operations below a

conditional jump are assigned a precedence_number which is greater by one than

the precedence_number of operations above this conditional. Thus, the rule for

deferring can be stated as: "among all operations in the node choose to defer the

ones with the greatest precedence_number. Among all operations having the same

precedence_number choose the ones with the highest mobility.

5.3 Resource Constrained Scheduling Algorithm

The RCS process is detailed hierarchically in this section.

procedure RCS()

/* real successor= successor not through backedge * /
assign mobility and precedence_number to all operations in the program;

for each instruction n in the program

RCJUled(n)= FALSE;

let RC_f ence= {header instruction of the program};

let RC_newfence= {empty set};

while RC-fence is not empty begJn

for each instruction n in the fence

RC _sched uleJnst (n);

RC_maxcomp(program);

for each instruction n in the fen~e begin

for all successors s of n

if ((s is a real successor of n) and

(not RCJl.lled(s)) and

(s is not in RC_fence) and

(s is not in RC_newfence))

add s to RC_newfence;

mark RCJl.lled(n)= TRUE;

end

let RC_fence= RC_newfence;

let RC_newfence= {empty set};

end (while)

end (RCS)

88

RCS(), which is the highest-level RCS procedure, uses two other proce

dures: RC...scheduleinst() and RC_maxcomp(). The former schedules each node

in the program such that it meets the resource constraints while RC_maxcomp()

tries to maximally compact the program after all nodes in RC_fence have been

scheduled. The procedure RC_m~xcomp() is different from the Maxcomp() proce

dure described in 3.5.1 in that nodes that have already been scheduled with RC

(RCJl.lled(n)=TRUE) are not involved in the parallelizing process anymore (they

are presumably full).

procedure RC...scheduleJnst(n: instruction)

while RC violation begin

op_to_defer= selecLcandi date(n);

create_new _nodesJn...successors_of(op_to_defer);

defer_op(op_to_defer);

update number of operations in n;

;

j

89

end (while)

end (RC...scheduleJnst)

SelecLcandidate(n) chooses the best operation to defer according to the cri

teria explained above. Create_new _nodes_in...successors_of () creates new nodes at

all successors of op_to_defer as explained earlier and defer _op() performs the actual

deferring of the operation.

;~('

Chapter 6

Tree Height Reduction

PPS transformations are parallelizing, semantic-preserving transformations

that convert a serial program to a parallel one while maintaining the original data

dependencies between operations. Consequently, the compaction is limited only

by data-dependencies and resources' availability. In this context two interesting

questions are:

• Is there any way to further compact the code (while preserving correctness)

at the expense of additional computation?

• With the given resource constra~nts, can the (PPS-compacted) code be fur

ther parallelized?

The questions are especially important when very high performance is needed,

even at the expense of more hardware, and when one wishes to maximize the

utilization of a given design (i.e. for given resource constraints to achieve shorter

schedules). Suppose the schedule illustrated in Figure 6.l(a) is given and the

resource constraints are such that the use of only 2 adders is allowed.

Without any semantic transformation four steps are required to execute this

segment. In three out of the four cycles resources are not fully used. However,

this segment may be rescheduled as shown in Figure 6.l(b) which is one cycle

90

91

(a) schedule before THR

(b) schedule after THR

Figure 6.1: Better Utilization of Resources

I

I

~i 92

shorter under the same resource constraints. This is achieved through additional

computation (two operations in this case). This schedule length reduction is called

Tree Height Reduction (THR).

THR is a well known technique (KuMuCh72, Ku78], which was introduced

many years ago, for reducing the height of an expression tree. The question is: "If

so, why has THR not been widely used by other scheduling systems?". The answer

to this question is two fold. First, THR is effective only when there is a long-enough

chain of operations that are data-dependent. Unfortunately, the original THR was

only applicable to operations within basic blocks. Since the average number of

operations within a basic block is 4-5 (TjF170] (and not all of these will always

form a chain) potential speed-up in basic blocks is limited. Second, the traditional

implementation of THR required global information about the whole expression

to be reduced. This prevented integration of THR into any of the existing local

and incremental parallelizing transformations (List Scheduling, Trace Scheduling,

PS etc.).

Obviously, if one considers only basic blocks, the chain of dependencies is

not long enough to expose the strength of THR, but by looking at the global

RTL-level parallelism we are able to go past conditional jumps and have a longer

chain of operations which improves the potential parallelism. This is particularly

noticeable when combined with loop pipelining, when operations from different

iterations make this chain even longer.

By designing a set of incremental transformations for THR that integrate

into our system of local transformations we overcome the previous problems asso-

dated with THR. In this context incremental and local THR has some important

93

advantages: it is not as ad hoc as the global one, it has more general application,

it is easier to implement and it interfaces very well with other local parallelizing

transformations and enables better control of resources.

Furthermore, the local and incremental aspect of our technique will exploit

potential opportunities wherever they are interspersed in the program; so even in

a program that is not as regular as in the above example, we may still benefit from

local opportunities interspersed throughout the program.

The application of our THR is controlled by the resources available such

that it only "fills" unused resources. Thus, the traditional concern that THR

may degrade performance by generating redundant code that cannot translate into

speed-up (due to limited resources) is· completely eliminated by our incremental

approach.

Besides the fact that THR is able to compact programs when other tech-

niques fail due to data-dependency between operations, it has another interesting

property: while known compaction techniques yield a constant factor of speed-

up (even with unlimited resources), THR has a potential speed-up of O(n/ log n)

[Ku78].

In performing THR care must be taken not to violate the numerical stability

of the code. This problem may occur when the code includes two operations like:

a:= b- c

d :=a* e

This may be transformed during THR into d := b * e - c * e. If the values of b or

c are too large but the value of their difference is still small, the order in which

~i 94

Figure 6.2: Sample Digital Filter

the expression is evaluated may be significant. However, the algorithm presented

in this chapter may be used selectively and in cases where numerical stability is

violated the algorithm would disallow it. We believe that in most cases THR can

be applied without detrimental side effects.

Although our implementation of THR can handle pipelined operations, for

simplicity, we assume throughout the algorithm description that all operations are

uni-cycle. The extension of the incremental THR algorithm to pipelined operations

is straightforward.

6.1 THR Applications

Although [Ku78] claims that applying THR to multi-operation machines

"would be quite disappointing", we found a wide range of applications for THR.

Digital filters are potential candidates for THR since they have a chain of addi

tions (resulting from the different delay elements), as shown in Figure 6.2, and

since they are usually implementing loops that may be pipelined, so that many

more operations may be exposed to THR.

I

95

Another common candidate for THR is the computation of array elements.

This includes sum of vector elements, dot product and simple recurrences where one

can find a chain of dependent operations. Although these chains of dependencies

are simple-they prevent any reduction to parallel form without an algorithmic

change. Given enough resources, THR will reduce the computation time for all

these examples from O(n) to O(log n).

6.2 Algorithm Description

6.2.1 Background

The idea behind tree height reduction is to try to compact a program at

the expense of additional computation (that results, sometimes, in an increase in

design area). In a design where execution of more than one operation per cycle is

possible, it is natural to utilize all available (unused) resources in order to increase

performance. Hence, THR is adding more operations to the program that can

be executed by these "free" resources such that the total execution time of the

program is reduced.

THR takes advantage of the associativity and distributivity properties of

arithmetic operations. For simplicity, we only present the algorithm with addi

tion, multiplication and subtraction. It can be extended easily to programs with

divisions and logical (AND, OR) operations as well.

96

6.2.2 Definitions

In this section we define some notations used later in the algorithm:

• Program:

The program is the one defined in Section 2.4.

• Operation:

Each operation has a type (op_type) and variables which are called uses

variables (for operands read) and a def variable (for operands written). For

the operation: a := b * c the def is a and the uses are b and c. The op_type

is multiplication.

• CurrenLop:

The operation currently being examined (or the operation we are trying to

schedule earlier than its current cycle).

• Selected_path:

The path selected for THR.

• Later_definer and earlier_definet:

The operations defining the uses of currenLop. In a := b * c, b and c are

called the "definers" of a. Suppose the following program is given:

cycle (k) :

cycle (k+l):

cycle (k+2):

b := d + e;

c := h - e;

a:= b * c;

We will call the operation (c := h-e) the later_definerof operation (a:= b*c)

while the operation (b := d + e) is called the earlier_definer of the currenLop.

• Available variable:

A variable is said to be available in cycle (k) if it is defined at cycle (k-1) or

~i 97

earlier. In the example above c is available in cycle (k+2) while b is in cycle

(k+l).

• Percolate Operations:

Compact the program using PPS transformations (see Chapter 3).

6.2.3 Algorithm in Detail

Our local and incremental THR algorithm can be invoked in one of two ways.

If during the incremental process, in which PS is trying to move an operation up

from a node to its predecessor, a dependency is encountered then THR is invoked

to incrementally change the code to allow the motion. Alternatively, incremental

THR can be invoked in the final phase of the compaction process, after all data-

independent operations have moved up as high as possible and there are still unused

resources to "fill". In either of the former cases only those nodes in the graph that

are not full, may be considered for incremental THR.

When activated for a particular operation the algorithm checks whether it

could be scheduled earlier than its current cycle by introduction of a new operation

that can be performed early enough to be used to eliminate the dependency on

the later_definer and advance th:e schedule of the currenLop. Since each node may

have more than one predecessor node (several incoming paths), incremental THR

should be performed with respect to selected_paths in the program. On different

98

paths, each operation may have different later_definer and different earlier_definer,

thus each path should be considered separately.1

Although it is usually sufficient to check only adjacent nodes in the program,

thus preserving locality, it turns out that in order to achieve optimality (in the

presence of sufficient resources), the whole chain of operations on the path has

to be checked. This process is not needed when the resources are limited. The

following algorithmic description refers to the optimal reduction on each path.

The algorithm analyzes two cases differently. The first is when the asso-

ciativity property of operations is used, which happens whenever the currenLop

and its later_definer constitute one of the following pairs: ADD/ ADD, ADD/SUB,

SUB/ ADD, SUB/SUB and MUL/MUL. The other case is when currenLop is MUL

and its later_definer is either ADD or SUB where the distributivity property is used.

In any of these cases we try to hoist currenLop from its current node (cycle) to a

predecessor node, which eventually may reduce the length of the program.

Necessary and sufficient conditions for an operation to be hoisted:

1. One of its definers must be available at least two cycles earlier than itself

on the path selected.

2. currenLop's later _definer has a definer which is available at least two cycles

earlier than currenLop's cycle on that path.

1This does not mean that the algorithm needs to consider all paths; we may simply concentrate

on only one or several important paths. Due to the incremental nature of the transformations

we can stop at any point in the process and still have correct code.

99

3. If currenLop is ADD or SUB then later_definer has to be either ADD or

SUB. (These legal combinations constitute a "legal" chain). If, on the other

hand, currenLop is MUL, the later_definer might be either MUL, ADD or

SUB.

4. Both currenLop and its definers have two uses variables.

5. All relevant nodes on the path (into which new operations are added) have

free resources.

Procedures

The procedures are described in this section in a top-down manner.

procedure THR_Analysis(selected_path)

for each node n in the selected_path begin

reset back_track flag;

for each operations in n be~in

if current_op meets the conditions begin

switch

case associativity:

Associativity _Analysis(currenLop);

case distributivity:

Distributivity _Analysis(currenLop);

end

percolate operations on the path;

end

end

100

if back_track is set

recheck predecessor node;

else

check next node;

end

end (T HR_A nalysis)

The back_track flag causes backtracking to the previous node. This node has

to be rechecked due to the possible creation of "new" legal chains of operations

following the "pushing" of multiplications upward. These chains may create further

THR opportunities. See example 1.

procedure Associativity_A nalysis(currenLop)

if currenLop is SUB and later_definer is its subtrahend

set sign_flag;

earliest_op= Find.Jiighest_A vaiLOp(currenLop);

if succeeded to find such an operation begin

/* add new operations recursively to path * /

Climb_Up(modified op_type, earliesLop's earlier_definer,

currenLop's later_definer);

remove currenLop from list;

end

end (Associativity_A nalysis)

SignJlag controls the correct addition of SUB operations into the program. We

need to flip the operands whenever we find a SUB and its later_definer is its

subtrahend.

~i

procedure Distributivity_A nalysis(currenLop)

/* the procedure is called when currenLop is of the form d :=a* (b + c).

In this case we do not try to hoist cl-but rather use the distributivity

property and convert d into d := a * b + a * c. * /
/* add first additive (a* b) * /
add new operation with (MUL type, later_definer's earlier_definer,

currenLop 's earlier_definer) into later_definer's node;

/* add second additive (a* c) * /

add new operation with (MUL type, later_definer's later_definer,

currenLop 's earlier_definer) into later_definer's node;

/* add modified currenLop (d) * /
add new operation with (later_definer's type, firsLadditive, second_additive)

into currenLop's node;

remove currenLop from list;

set back_track flag;

end (Distributivity_A nalysis)

procedure Find_HighesLA vaiLOp(selected_path)

/* the procedure is searching along the selected_path for the earliest

operation which meets the d~nditions explained in section 4.3.1. For

correctness preservation, each time a SUB is found and its later_definer

is the subtrahend-the operation's sign is flipped. * /
end (Find_HighesLA vail_ Op)

procedure Climb_Up(type, firsLop, second_op)

/* the procedure adds new operations into selected_path after the earliest

101

102

operation that meets the conditions has been found by previous procedure.

Calls itself recursively until it reaches the later_definer of currenLop. The

addition of the modified currenLop is done by a higher level procedure. * /
add new operation with (type, firsLop, second_op);

if (didn't reach currenLop's later_definer)

Climb_Up(first_op's type, firsLop's later_definer, the newly added operation);

end (Climb_ Up)

6.3 Examples

We present in this section three examples on which THR is applied. The

first is to clarify the algorithm, the second to show how incremental THR works

across basic blocks of a program and the last to show how THR, combined with

loop pipelining, may exposes more operations for compaction, thus yielding better

parallelization.

6.3.1 Example 1

Suppose a code segment, as illustrated in Figure 6.3, is given and assume

that aO and all e's are available at the first cycle.

Step 1:

Let us begin, for example, with the third operation (a3 := a2 - c3). Its ear

lier_definer is not defined in the previous instruction, so execute Associativity_Analysis().

The op_type is SUB-so set signJlag and call Find_HighesLAvaiLOp(). But, since

~i 103

Figure 6.3~ Original Code of Example 1.

currenLop violates condition 3 quit the procedure.

Step 2:

CurrenLop is (a4 := a3 * c4). It's type is MUL and its later_definer is SUB so

Distributivity_A nalysis () is called. Three operations are added into the tree:

1. A MUL operation whose uses are later_definer's earlier_definer (c3) and cur

renLop's earlier_definer (c4). This operation gets a new def (t1) and is in

serted into later_definer's cycle.

2. Another MUL whose uses are (a2) and (c4) and its def is t2. It is inserted

into later_definer's cycle.

3. The reconstruction of currenLop with the type of later_definer (SUB) and

with uses which are the operations just added. Its def is currenLop 's def

The back_track flag is set. After this step and percolation, we get the code shown

in Figure 6.4:

Step 3:

Since back_track flag is set cycle 3 is rechecked. (a3 := a2 - c3) c_annot be hoisted

1:
I

~i 104

Figure 6.4: Example 1 After Step 2.

for the same reason mentioned in step 1 above-so check the next operation in

this cycle (t2 := a2*c4). The operation is MUL and its later_definer (a2) is MUL,

hence by Find_HighesLAvaiLOp() the highest op which is (a2 :=al* c2) is found.

Now, using Climb_Up(), operations a:re added as follows: a MUL (t3) operation

whose uses are highest op's earlier_definer (c2) and currenLop's earlier_definer (c4)

is added. Then another MUL, whose uses are later_definer's later_definer (al) and

t3 is added. After this step and percolation we get:

al := aO +cl; t1 := c3 * c4; t3 := c2 * c4;

a2 := al * c2; t2 := al * t3;

a3 := a2 - c3; a4 := t2 - tl;

a5 := a4 - c5;

~-',

·"

105

Figure 6.5: Compacted Program for Example 1.

Step 4:

Consider (a5 := a4 - c5) as the currenLop. Since it is SUB we use Associativ

ity_Analysis() and get the final compacted code as illustrated in Figure 6.5:

Note that if resources didn't allow one of the steps (e.g. if only two subtracters

were available per cycle) the incremental THR would have stopped without allow

ing a5 to move up, but still would produce a one cycle gain.

6.3.2 Example 2

This example shows how incremental THR works across basic blocks. Con-

sider the program shown in Figure 6.6.

This program segment has 3 basic blocks separated by conditional jumps.

"Conventional" THR (within basic block boundaries) on this program fails since

there are not enough operations in each of these 3 chains to produce any speed-up.

But applying our incremental THR beyond the conditionals yields a significant

compaction (from 8 cycles to 3) as shown in Figure 6.7.

i

I

I

~i

c
{r6}

is live here

B
{r5,r6}

A
{ r3,r4,r5,r6}

are dead here

are dead here

Figure 6.6: Original Program for Example 2.

106

107

r3:=rl+tl

Figure 6. 7: Compacted Program for Example 2.

6.3.3 Example 3

THR is especially powerful when combined with loop pipelining since pipelin-

ing exposes more operations. for THR. Consider, for example, the loop described

in Figure 6.8

For simplicity we omitted the conditional jump (loop exit test). Loop pipelin

ing converts this loop into the one shown in Figure 6.9 parallelizing it from 7 * n

cycles into 5 * n cycles.

That is the optimal schedule for this loop, preserving data-dependencies be-

tween operations. As seen, two adders are needed to execute this loop optimally.

However, this loop can be further compacted by THR by adding an extra operation

as shown in Figure 6 .10.

~i 108

(b) data dependency

to EXIT

(a) original loop

Figure 6.8: Original Program for Example 3 and Corresponding Data-Dependency.

'1 2 3
1 0
2 1
3 2
4 3

__ 5 4 -- - - -- ---------------
6 5 0 cycle 1: 5(i) O(i+l)

7 6 1 cycle 2: 6(i) l(i+l)
8 2 > cycle 3: 2(i+l)
9 3 cycle 4: 3(i+l)

l 4 ~Yfle q:_ 4(H-J)_ __
1 5 0
1 6 1
1

Figure 6.9: Pipelined Loop of Example 3.

1
1 0
2 1
3 2
4 3
5 4
6 5
7 6
8
9 - ---

1

1
1

2 3

0
1

2 4'

-~-4_
5 0
6 1

cycle 1: 5(i) O(i+l)

> cycle 2: 6(i) l(i+l)
cycle 3: 2(i+l) 4'(i+l)

~Yfle_1~~(~t!l5~iltl)

4': t4:= r6 + rO
4*: r4:= r2 + t4

Figure 6.10: Pipelined Loop of Example 3 After THR.

109

110

So, using the same resources, THR reduces the total execution time by 20%.

While this example is quite simple-it demonstrates the potential effectiveness of

THR combined with loop pipelining.

6.4 THR Experiments

This section details the results obtained by applying the incremental THR on

the fifth order elliptic filter example (PaKn89] and the Sehwa example presented in

(PaPa88]. In the following tables FDS and FDLS stand for Force Directed (List)

Scheduling, PBC for Percolation Based Compiler (PLNG90] and PBCT for PBC

with THR.

A. Fifth Order Elliptic Filter:

Table 6.1 refers to the non pipelined case where the model assumes that the exe-

cution unit has to be flushed before the succeeding operation can be issued.

Table 6.1: Fifth Order Elliptic Filter-Non-Pipelined

Without loop With loop

pipelining pipelining

Res FDS FDLS, PBC PBCT PBC PBCT
"

3+, 3* 17 17 17 16 16 16

3+, 2* 18 NA 18 17 17 16

2+, 2* 19 18 18 17 17 17

2+, 1* 21 21 21 20 20 19

Table 6.2 is for the pipelined case where the functional units units can accept

new input each cycle. The results for the elliptic filter show that even though

111

Table 6.2: Fifth Order Elliptic Filter-Pipelined

Without loop With loop

pipelining pipelining

Res FDS FDLS PBC PBCT PBC PBCT

3+, 2* 17 17 17 16 16 16

3+, 1* 18 18 18 17 16 16

2+, 1* 19 19 19 18 18 18

incremental THR is powerful when applied to the loop body-it may yield further

parallelization when combined with loop pipelining.

B. Sehwa:

The Sehwa example is an implementation of a digital filter with 16 points. Using

the same semantics as [PaPa88], our system reduces the schedule from 6 time steps

to 5. Using structural pipelining rather then functional pipelining (see [PLNG90])

incremental THR reduces the schedule from 10 steps into 8 as shown in table 6.3.

Table 6.3 S h ' D' . t 1 FIR F'lt e was ig1 a I er - Pipelined

Pipelining SEHWA PBCT

Functional 6 5

Structural 10 8

I

~i

f
-!.',
~l

Chapter 7

Specific Issues

In this chapter we describe some issues that are peculiar to our compiler.

Although design and implementation of a parallelizing compiler usually involves

many specific optimizations, enhancements and techniques, we detail here only the

more characteristic ones that have an important impact on the performance of the

compiler.

7.1 Dead-Code-Elimination "On The Fly"

Dead-code-elimination [ASU86] is a well known technique to remove redun

dant operations from the code. Operations which become redundant (or dead) as

a by-product of the parallelizing tran,~formations should be removed. However, ap

plying the traditional (global) dead-code-elimination techniques may become very

costly if applied frequently. Thus, a local and efficient technique is required. For

tunately, the fact that we keep the live/dead information, locally, in each of the

program's nodes enables us to apply a local dead-code-elimination transformation

"on the fly" during the parallelization process.

112

~.'.
;,1

113

One of the two most common scenarios in which dead code is generated is

described in Section 4.2.1. The other happens when moving up an operation op2

from node n to m as shown in Figure 7.l(a). Notice that opl is live since a is

used by f := a* g on the true branch of m. After move-op we get the segment

shown in Figure 7 .1 (b). When a move-cj is performed we get the code shown in

Figure 7.l(c). Thus, opl in node m/becomes dead and should be removed.

Since the live/dead information in each of the nodes is kept and updated

locally, carrying out dead-code-elimination means checking, before move-op and

move-cj are performed, that the relevant paths in the node do not contain any

dead operations and removing such operations if needed. This task is relatively

easy and efficient.

7.2 Procedure Calls and Inter-procedural Live

Analysis

The "programs" discussed so far throughout this thesis assumed implicitly

that the input is a single procedure and consequently represented by a single control

graph. However, procedure calls are an integral part of any higher-level language

and therefore should be considered by our compiler. Procedure calls exhibit not

only a change in the control flow of the program but also affect the live/dead

information in higher and lower levels of the calling hierarchy. Since C allows

recursive calls, we allow them in our compiler too.

114

m

(a) original code (b) after move-op (op2)

(c) after move-cj

Figure 7.1: Generation of Dead-Code by Move-op

115

There are several published works on inter-procedural flow analysis [He77,

Ba78, JoMu81]. Like other techniques, the algorithm presented here is also inspired

by the idea described in detail in [ASU86]. For each procedure we perform "the

traditional" live analysis but changes in each procedure are also reflected in higher

and lower level procedures (in the calling hierarchy) until all levels have settled

down.

Procedure calls are represented in the three-address-code by lines with the

called procedure name. Procedure call operations are never compacted into nodes

with other operations. In other words, nodes which contain procedure call opera-

tions do not contain any other operation.

The initial live/ dead analysis is performed on the sequential (input) code

(where each instruction holds a single operation). Then, during the parallelizing

process (see Chapter 3) the live/dead information is locally and incrementally

updated. The algorithm presented relies on the fact that the set of registers live

at the top of the call operation is the union of two sets: the set of registers live at

the top of the successor node and the set of registers live at the top of the called

procedure. For example, in Figure 7.2 the set of registers live at the top of "call

procl" (in main) is the union of the set of registers live at the top of instrl and

the set of registers live at the tdp of procl().

7.2.1 Definitions:

• IN-SET(l): Set of all registers live at instruction 1.

• LIVE-SET(proc): Set of all registers live at entry of procedure proc.

• GEN-SET(p): Set of all registers used in path p.

~i

• KILL-SET(p): Set of all registers killed in path p.

7.2.2 Algorithm Description

procedure live_analysis(proc, live-set)

for each instruction l in proc

IN-SET(l)= new-set;

changes= TRUE;

while (changes)

changes= FALSE;

for each instruction l in proc backwards begin

if l holds a CALL operation begin

/* assume the operation is CALL call-dest * /

if ((call-dest!= proc) and changes) begin

/* non-recursive call * /
stack-pointer++;

live-stack[stack-pointer]= live-set;

live-set= LIVE-SET(call-dest);

live....analysis(call-dest,live;-set);

live-set= live-stack[stack-pointer];

stack-pointer--;

end

else if (call-dest== proc)

/ * a recursive call * /
live-set= live-set U LIVE-SET(proc)

116

temp= IN-SET(successor of l);

temp= temp U LIVE-SET(call-dest);

end

else /* not a CALL operation * /
temp= new-set;

for each path p in l begin

temp= GEN-SET(p);

templ= IN-SET(successor of l in path p);

templ= templ \ KILL-SET(p);

temp= temp U templ;

if (l is a RETURN instruction)

temp= live-set;

end

if (temp != IN-SET(l)) begin

IN-SET(l)= temp; .

changes= TRUE;

end

end

end

end (live_ analysis)

7.2.3 Example

117

Figure 7.2 illustrates a program with two regular calls and a recursive one.

Beginning with the main procedure we compute the live set of all nodes that do

I

I

~i 118

not hold call operations. For these nodes the live set is derived by subtracting

registers killed in this node from the live set of their successors (see [ASU86]).

When a call is encountered we either proceed to analyze the called procedure (in

a non-recursive call) or add the set of registers live at the top of this procedure to

the set of registers live at the call's (only) successor (in a recursive call case).

Refer_ to Figure 7 .2: we compute, backwards, the live set of all nodes in

main(), beginning from the end (igoto), until we hit the call to procl(). Since

IN-SET(call procl) equals to the union of IN-SET(instrl) and LIVE-SET(procl)

we have to compute first the latter set. In order to do that, we then proceed to

compute the live set of all nodes in procl() starting from its last (igoto) instruction.

When call proc2 is found we leave procl() and begin to compute LIVE-SET(proc2).

This time, since proc2 calls itself, IN-SET(call proc2) equals to the union of IN-

SET(instr3) and LIVE-SET(proc2).

This iterative process continues until there is no change in any of the live

sets of any node in the program.

7.3 Load-After-Store Elimination

One of the traditional bottlenecks of high-performance systems is the memory-

access problem caused by load and store operations. Since meµiory access time

is normally much larger than the CPU cycle time each memory access potentially

degrades the overall system's performance. To alleviate this problem two tradi-

tional approaches have been introduced. The first (caching) deals with dividing the

main()

call procl
instr 1

+
igoto $31

procl()

call proc
instr 2

t
igoto $31

call procu-----r
instr 3

+
igoto $31

Figure 7.2: An Example of Calling Graph

119

I

~i 120

memory hierarchically such that the CPU accesses only the lowest (fastest) hierar

chy. The other approach (memory banking) "parallelizes" the memory such that

different memory modules may be accessed concurrently by the CPU. Obviously,

both solutions are hardware solutions.

We implemented in our compiler a very powerful (software) technique to

reduce the memory transfer rate by eliminating load operations occurring after

store operations. Not only are the number of memory accesses reduced, but also

the total speed-up may increase dramatically.

We have adopted the idea of redundant load elimination ([CCK87]) to fit

into our local transformations. In the context of PS, load-after-store elimination

happens directly as a result of the move-op transformation. In our compiler this

optimization applies to non-loop code and works in the presence of conditional

jumps. The original technique ([CCK87]) is not applicable with these two fea

tures. Yet another advantage of our technique is that the optimization is done

only when needed to enhance parallelism and so register pressure is not unnec

essarily increased as it might if the optimization was done separately from PS

transformations.

Consider, for example, the following loop:

for (i = l;i < 20;i + +)

A[i] = A[i - 1] + B[i];

This loop transforms into:

base:= 176;

i:= O;

f
~·'. ,,,

(LABEL Ll)

a:= M[base-88];

b:= M[base-164];

a:= a+b;

M[base-84]:= a;

base:= base+4;

i:= i+4;

ccO:= i <= 76;

if ccO (LABEL Ll)

(LABEL exit)

121

The first load in the second iteration addresses the same memory location as

the first iteration's store operation. This reflects the recursion in a[i]. After the

loop body is compacted we get the code illustrated in Figure 7.3.

The next step in loop pipeljning involves moving up operations from n into

m. But since the load in n and the store in mare referring to the same location

instead of moving the load up we· simply optimize the loop into the form shown in

Figure 7.4. This loop does not ~ontain the load anymore.

Since for each memory-access operation we keep its symbolic derivation lo-

cally, this optimization is actually a comparison of two symbolic derivations, which

is relatively efficient and done as part of the move-op transformation. Therefore,

practically, this optimization comes almost for free.

Actually, by using local transformations we do not even have to realize that

these operations are inside a loop. Whenever move-op is invoked as in the code

i

I

I

<; 122

EXIT

Figure 7.3: Code After Loop Pipelining When Pipe_fence Includes Node n.

~i 123

n

F

~
EXIT

Figure 7.4: Code After Load-After-Store Elimination.

~i 124

I1 11

12

n n'

E2 E2

(a) prior to move-op (b) after move-op

Figure 7.5: Code Before Move-op.

segment shown in Figure 7.5 (a) the code transforms into the one illustrated in

Figure 7.5 (b).

7.4 Loop Detection and Incremental Update

According to the principle of locality, programs tend to spend most of their

time executing loops. Therefore compacting loops successfully obviously affects

the overall performance of the compiler. Loop information is important not only

in the context of loop pipelining (see Section 3.5.2) but also for other optimization

techniques and loop-based algorithms like redundant induction variables removal

(see Chapter 4), removal of other copy-operations generated by renaming, reaching

definition computation, maxcomp and others.

Programs which are written exclusively with structured flow-of-control state

ments (if-then-else, for, while-do, continue, break etc.) always create a reducible

125

graph. Even programs written using goto statements are almost always reducible.

Intuitively, reducible programs are those in which there is no jump into the middle

of a loop from outside the loop (and not through the loop header). Detection

of reducible loops is easy and implemented in the compiler according to the con

ventional algorithm presented in [ASU86]. Unfortunately, during loop pipelining,

graphs that are reducible may become irreducible. The loop detection algorithm

fails for these loops, therefore, we cannot apply the loop detection algorithm on

an already compacted program.

In Figure 7.6(a) a reducible loop is illustrated. There is one node that domi

nates all other nodes in the loop (node n). However, if the conditional jumps in n

are moved up (into node m) across the backedge (see Section 3.5.2) an irreducible

graph is generated as illustrated in Figure 7.6(b). This phenomenon happens in

other cases as well.

The strategy we have chosen to solve the irreducibility problem was to update

the loop information incrementally during the parallelizing process. Since loops are

uniquely defined by their backedges (the triplet of: source node, destination node

and the backedge connecting these nodes) and since we know precisely when the

transformations change the loop information, we modify this information whenever

there is a move (move-op or move-cj) across a backedge that changes the backedge

triplet. For example, in Figure 7.6(a) the triplet is {m, n, be}. After move-cj we

get two loops with the following triplets {nt, 11, bel} and {nf, 12, be2}.

I

'

126

EXIT

(a) A reducible graph (b) An irreducible graph (after Move-cj)

Figure 7.6: A Reducible Loop Becomes Irreducible

~i 127

7.5 Memory Reference Disambiguation

When high performance is achieved through aggressive code motion, it is

very important not to bottleneck the parallelizing process by an overly conservative

approach. Indirect memory references are created by the use of array indexing and

pointers. While pointers constitute a complex form of indirection and are often

dependent on run-time data (and therefore hard to disambiguate), array references

offer the greatest potential for parallelism and can, relatively easily, be precisely

analyzed.

As mentioned in Section 3.5.2, the ability to pipeline the inner loops of a

program is crucial for the overall performance of the compiler. However, scientific

programs include a significant number of indirect references, most of which are due

to array references. If for each store-load pair of operations (i.e. a store followed by

a load operation), we always assumed that they refer to the same memory location

(the conservative approach), we would, actually, serialize all memory references

and degrade drastically the performance as discussed and shown in [Ni85b]. The

performance degradation occurs since the whole chain of operations which are

data-dependent on the load's result are prevented from moving up. The inability

to move up the load causes a b<;i>ttleneck in the compaction process.

· The disambiguation algorithm used by our compiler is based on the work

m [Ni85b] and was implemented by Haigeng Wang. In a pre-compaction pass,

all memory accesses in the program are expressed in terms of symbolic deriva-

tions. A symbolic derivation of an operation is its most primitive presentation in

terms of loop invariants, loop indices and other (predefined) variables. The sym

bolic derivations are derived by variable-folding-each memory address is defined

128

in terms of previous reaching definitions of its source variables. By a recursive

process, all addresses are expressed in terms of variables that cannot be further

simplified (folded). The special case of variables called induction variables, for

which the variables are defined by themselves (and therefore the recursion would

run infinitely), is treated differently: before evaluation of the symbolic derivations,

all induction variables are detected and substituted by derivations that contain an

imaginary loop counter.

Hence, after substitution of all memory addresses by their symbolic deriva

tion, the disambiguation problem is to find whether two addresses have an integer

solution when their symbolic derivations are equated. These equations are called

Diophantine equations. These equations can be solved for the linear case but can-

not be handled for the non-linear case, therefore, in the variable-folding process,

· we stop substitution whenever an operation, other than addition, subtraction or

multiplication is involved.

7.6 Simulator

The simulator which we built Jfor our compiler was inspired by the lack of

existing supporting hardware to validate the derived compaction results. Since

we compact programs beyond basic block limits and since we allow compaction of

several conditional jumps into one node, it turns out that even for relatively short

programs, it is simply impractical to check the correctness of the results produced

by the compiler. Traditionally, a compiler is validated by running the compacted

code on the target architecture and comparing the results with the results derived

129

by running the serial code on the same input data. However, since our compiler is

mainly a research/study oriented compiler, it was hard to find a specific machine

to run our compiled code on. On the other hand, a compiler has to be debugged

and validated. This required us to come up with a debugging and validation tool.

That is exactly the goal of the simulator.

The simulator works by "executing" the serial (sequential) program, step

by step, (as defined in Section 2.4) and recording the results of all registers and

memory locations involved for a set of input data. Then, it "executes" the com-

pacted (parallel) program and compares the results to the ones recorded for the

·sequential code. By "execution" we mean a total emulation of the program as if

it was running on the hardware described in Section 2.4. This includes setting

and resetting of condition code registers, modification of all memory locations and

architecture-registers, loading values from memory locations and branching and

returning from procedure calls.

The simulator is implemented, basically, using two arrays: one representing

the register-file and the other the memory space. After initialization of all memory

locations and registers (by the sample input data), the simulator ex;ecutes each

node in the program in three steps which are part of the basic machine cycle:

1. Operands (for all operations) and condition code registers are read from the

two arrays (register-file and memory).

2. All operations are executed by calling a C procedure, that emulates the

physical operation. All condition codes are evaluated and the next node is

determined.

•; 130

3. The results of operations on the path chosen (for single cycle operations) and

the results of operations which began in previous nodes and completed their

execution in this node, are written back to the two arrays.

When completed, all elements of the two arrays are compared with the two

arrays derived for the sequential execution.

During the development of the compiler we _found out that the simulator

can serve not only as a validation tool but also as a very powerful debugging

tool. This is due to the fact that we use semantic-preserving and atomic set of

transformations. Suppose we run the compiler on a specific benchmark and get

negative results (i.e. the results for the compacted program are different from

the results for the sequential program). If the benchmark is non-trivial, it is

quite complicated to figure out where and why a bug happens. The compaction

process involves sometimes tens of thousands of code transformations and it is not

feasible to hand-trace the bug. However, since PPS transformations are semantic

preserving, if at any time (i.e. in any compaction phase) we freeze the program

and simulate it the result should be correct if there are no bugs. Conversely, if

there is a bug, there is a very high likelihood that the simulator will catch it.

Since the transformations are atomic, we could concentrate on the transformation

which actually converts the program from a correct one to a wrong one. Hence,

the debugging procedure can be summarized as follows:

1. Run the compiler to the n-th PPS transformation.

2. Simulate the compacted code.

3. If simulation is correct increment n and repeat from step 1. Otherwise,

concentrate on the n-th transformation.

,\; 131

In practice, we found a much faster way to find n: we first derived a m for

which the simulation was correct. Then, we found a p for which the simulation

results were bad. By bisecting, iteratively, the region [m:p], n could be found easily.

The simulator serves not only as a validation and debugging tool but also as

a run-time emulator tool. Dynamic speed-up (see Chapter 8) is only one example

of parameters that may be produced by the simulator as a run-time measure.

Chapter 8

Results

In order to investigate hardware design trade-offs and evaluate achievable

parallelism we carried out a series of tests on well-known benchmarks. The re-

sults of these tests are presented in this chapter. The benchmarks represent a

spectrum of applications in different scientific and computer-science domains. The

first 24 benchmarks that we use are the Livermore kernels representing different

known loop structures. The next 6 benchmarks are known as Stanford benchmarks:

FFT, bubble, cos, minmax, quicksort and permute. Line26, crale10, unriems50 and

nav7055 are core loops from CFD (Computational Fluid Dynamics) codes.

As mentioned in Chapter 2, the compiler may be reconfigured to use differ-

ent hardware models and/ or parallelization input parameters. For example, we

can compact a program with three pipelined functional units, with 20 registers

and with the conditional execution model described in Chapter 2. In another run

we may use only two functional units (not pipelined), 14 registers and disallow

conditional execution. We refer to these parameters as hardware parameters. Nat

urally, each target architecture has its own set of hardware parameters. But there

are other parameters that may control the parallelization process: we may use

renaming of registers (see Chapter 4) or disallow it, we may use induction variable

132

133

removal and copy elimination (see Sections 4.4.2 and 4.4.3) or ignore them. We

can further apply load-after-store optimization (see Section 7.3), allow/ disallow

compaction while moving conditional jumps or check what parallelism is available

when disambiguation is switched off. We refer to these evaluation parameters as

parallelization parameters. Since one of the goals of this research was to evaluate

compilation techniques and their impact on parallelism we show the effect of each

on the system's performance.

Since the number of parameters checked is relatively high, the best way

to evaluate the impact of a specific parameter on the overall performance is by

changing this parameter while all others are kept unchanged. Obviously, this

prevents presenting all possible combinations, but on the other hand makes the

comparisons meaningful and tractable.

8.1 Definitions

In this section we define some terms used throughout the chapter.

• Speed-up

The speed-up is the ratio of serial code execution time (in cycles) to the com

pacted code execution time. (Cycle counts were obtained via the simulator).

It is computed by the following formula:

S d
Number of cycles executed by serial program

pee -up=
Number of cycles executed by compacted program

Given this metric, it is worth pointing out that one has to be careful when

comparing speed-up achieved with uni-cycle operations vs. speed-up achieved

134

with multi-cycle operations. In practice (see Section 3.1) the cycle time of

uni-cycle machines is much larger than that of pipelined machines. There

fore, when a speed-up of 4 (for example) is obtained for uni-cycle machine

and a speed-up of 4 is obtained for multi-cycle machine--these number do

not imply that the actual performance of the systems is the same. With

equal speed-up, pipelined machine will, everything else being equal, execute

faster due to shorter cycle time. Hence, the results presented in this section

are somehow "unfair" to the pipelined machines. In the context of bench

marking for a particular architecture, a more accurate measure for system

performance would be speed-up normalized by the cycle time of the actual

machine.

When uni-cycle operations are used, in some of the benchmarks (e.g. 11,

12, 13, 14, 17, 19, 111, 112 etc.) we were able to compact the loop into

a single node with unlimited resources. Compaction of a loop into a single

node was one of the termination conditions to the loop pipelining algorithm.

However, in some of these loops there are no loop-carried-dependencies, thus

the parallelism that may be achieved by scheduling more iterations per cycle

can be much higher than given in the tables. In the context of uni-cycle

operations it should be further n,oted that for some benchmarks the speed-up

is greater than 2.00 even when only two resources are available. This happens

since during the parallelization process we apply some code optimizations

that are able to eliminate operations which become redundant.

• Weighted Harmonic Mean (WHM)

The Weighted Harmonic Mean is a measure which attempts to normalize the

speed-ups by taking into account their relative sizes. The WHM is computed

by the following formula:

Where: /

WHM = l:i::1 Ni ""n N·
L,,i=l s:-

Ni is the number of cycles needed to execute (serial) benchmark i.

Si is the speed-up derived for benchmark i.

135

For example: suppose three different benchmarks are given. The first requires

1000 cycles to execute sequentially, the second 5000 cycles and the third

1800 cycles. Therefore, 7800 cycles are required to execute all three serially.

Further assume that the speed-up obtained for the first benchmark is 5, for

the second is 10 and for the thitd is 6. Consequently, the compacted programs

require, in total, 1000 cycles to complete {(1000/5)+(5000/10)+(1800/6)}.

Hence, the real speed-up (when all three are executed) is 7.8. This is exactly

what WHM measures.

• unlimited resource constraints

In the following sections we detail results for unlimited resources (functional

units) as well as for limited resources. By unlimited resource we mean the

number of resources required to execute the schedule produced by the com

piler "as is". In other words, this is the number of units needed to execute

the instruction with the most operations in the compacted program. Note

that unlimited resources does not mean infinite resources.

• canonical resource constraints

Unless otherwise specified, by canonical resource constraints we mean that

only two operations can be issued in any given cycle but at most one memory

load and/or one conditional jump. These constraints are chosen somewhat

136

arbitrarily, but they are representatives of current superscalar /VLIW tech

nology in general and an actual machine in particular.

8.2 Hardware Parameters

Different hardware model configurations result in different speed-up ratios.

In this section we illustrate the impact of four hardware parameters on the overall

system's performance. We begin with the impact of the conditional execution

model on the speed-up. Then we present results obtained for pipelined operations

compared to uni-cycle operations. We measure the effect of the number of registers

on compaction and conclude with comparing performance achieved with different

numbers of functional units.

8.2.1 Conditional Execution

The conditional execution model explained in Section 2.4 may be a worth

while enhancement over· the standard (non conditional) model since it reduces the

time needed for the execution of conditional statements. In the conditional exe

cution model only two serial steps are required for the execution of a conditional

operation: (a) evaluation of the condition-code register and (b) if the condition is

true execution of operations. In the standard model three serial steps are needed:

(a) evaluation of the condition-code register, (b) branching to destination if con

dition holds and (c) execution of the operation. In branch-intensive code this

difference may be important; however, the gain does not come for free since the

137

11 11 12 13

Figure 8.1: Possible Nodes When Conditional Execution Disabled

conditional execution model involves higher degree of complexity1• We measured

the effect of the conditional execution model by comparing the speed-up obtained

with and without conditional execution. When conditional execution is disabled,

an operation can move (move-op or move-cj) from node n into node m only if

node m does not result in conditional execution of the operation. That is, only

compaction resulting in nodes like the two shown in Figure 8.1 is allowed.

In Table 8.1 all operations are single cycle operations. For comparison, we

give the speed-up with unlimited resources and with limited resources as well. The

resource constraints are the canoriical resource constraints mentioned earlier.

The conditional execution model yields 233% better speed-ups on the average

and 213% in WHM with unlimited resources. However, when resources are limited

the gain drops to only 10%. The:'difference in the speed-up between the two models

decreases in the latter case since the resource constraints limit the exploitation of

substantial parallelism, therefore making both speed-ups comparable.

10perations have to be tagged so that their write-back result can be controlled at run-time.

'<; 138

8.2.2 Pipelining of Operations

As discussed in Chapter 3 one of the features of our compiler is the exploita

tion of temporal parallelism as well as spatial parallelism. While spatial parallelism

is achieved through the use of a number of functional units in parallel, temporal

parallelism may be achieved by using pipelined functional units. In this section we

illustrate the impact of functional unit pipelining on the overall speed-up. In Ta

ble 8.2 we use the canonical resource constraints as the limited resources. For the

pipelined operations we assume that memory loads take 2 cycles, all floating-point

operations take 3 cycles and all other operations take one cycle.

The speed-up achieved with unlimited resources for pipelined operations is

less than the corresponding uni-cycle operations for two reasons: (a) it is (ob

jectively) harder to achieve similar compaction for pipelined operations as for

uni-cycle operations since multi-cycle operations may affect many more succes

sor nodes through data-dependency and may prevent better utilization. (b) we

use a loop pipelining algorithm (see Section 3.5.2) that tends to converge very

fast. Remember that we do not allow nodes that have already been in a fence to

"break" unless all operations from that node can move up. This prevents better

pipelini,ng. While in the uni-cycle ca~e this restriction is negligible (i.e. the loop

pipelining is limited by other factors like data-dependency, disambiguation etc.),

in retrospect, for the pipelined case this is crucial and stops the pipelining well

ahead of the other factors mentioned. Other algorithms like Perfect Pipelining

[AiNi88c] should produce better results. On the other hand, the results with re

source constraints for the pipelined case are better than for uni-cycle operations

since the resource constraints "stretch" (lengthen) the schedule in such a way that

~i

f
;\ ,,

139

resources, rather than operations' latencies, become the dominant factor in com-

paction. This creates many more opportunities for scheduling and enables better

"filling" of nodes. The "empty" nodes (no-ops) that were an artifact of the fast

convergence of the pipelining algorithm (they were originally introduced for latency

preservation) disappear in the limited resources case.

8.2.3 Number of Registers

As discussed in Chapter 4, register allocation and renaming have a major

impact on the achievable speed-ups. In this section we show the effect of the

number of registers used on speed-up. In Table 8.3 we present the number of

registers used in the (serial) input program ~ollowed by the number of registers in

the compacted program. The number of registers needed is the maximal number of

registers concurrently live at any node. One may see that the number of registers

for the compacted program is on average 2-3 times the number for the input

program. The two speed-up coltfmns represent the speed-up achieved when we

allow the same number of registers as in the input program and with the maximal

number needed (unlimited number of registers).

8.2.4 Number of Functional Units

Selecting the right number of functional units for a given architecture is one

of the major design decisions. Increasing the number of functional units means

not only an immediate increase in area due to the addition of more units' but

also increase in the number of multiplexers and wires. Therefore, the number

140

of functional units has to be determined very carefully. The main goal of the

results presented in Table 8.4 and in Table 8.5 is to analyze how the speed-up

grows as the number of functional units increases. The former table presents

the results for uni-cycle operations while the latter shows the speed-up for multi-

cycle operations. The multi-cycle operations' latencies are as in Section 8.2.2.

For both tables we assume that each functional unit can execute every operation

(homogeneous functional units). If, for example, 2 functional units are given, one

can issue all possible combinations of 2 operations in this cycle (note: different

than the canonical resource constraints!).

For each number of functional units, we added two columns. The utilization

column gives the ratio between the speed-up achieved and the number of functional

units available.

U .
1

_ Speed-up
ti - Number of functional units

This measures how well the units are utilized. The second column is more indica-

tive of the system's overall performance: it is the normalized speed-up:

NS = Speed-up
Unlimited resources speed-up

This number is important since it provides information on how well we can enhance

the system's performance by increasing the number of functional units.

For the uni-cycle operations the utilization decreases by 2.5 when we increase

the number of functional units from 2 to 16. For the pipelined case this ratio is

4.5. 2 The normalized speed-up with uni-cycle operations increases 3.5 times with

2 Again, since cycle times should be different, direct comparisons between pipelined and uni

cycle "cases are questionable.

141

the increase in the number of functional units from 2 to 16, while in the pipelined

case it increases only by 2.5. This relatively low increase is due to fast convergence

of the loop pipelining algorithm.

8.3 Parallelization Parameters

In this section we analyze some parallelization parameters and measure their

i~pact on the speed-up. First we test the effect of register renaming (see Chap

ter 4) on the performance, then we measure the effects achieved by application

of the induction variable removal and copy elimination techniques described in

Sections 4.4.2 and 4.4.3. We test the effect of load-after-store optimization (see

Section 7.3) on the speed-up and then present compaction result without move-cj.

We conclude this section with measuring the effect of disambiguation on the overall

performance.

8.3.1 Renaming

As mentioned in Chapter 4, renaming of registers is an important optimiza

tion in high-performance, parallel architectures. Table 8.6 compares the speed-up

achieved with and without renaming.

Clearly, disabling renaming causes a dramatic degradation in the speed-up

(54 %) in the unlimited resources case. In this table all operations are uni-cycle op

erations and the resource constraints are the canonical resource constraints. When

,,
142

resources are limited the speed-ups are comparable. Since we have to "fill" only

two functional units we can still do well when renaming is disabled.

8.3.2 Induction Variable Removal and Copy Elimination

We presented in Chapter 4 a new technique to remove redundant induction

variables and eliminate copies generated by renaming of induction variables. Since

loop pipelining frequently involves intensive induction variable renaming it was

interesting to measure the effect of induction variable removal and copy elimina

tion techniques on the overall speed-up in the presence of limited resources where

removing copies is critical. In Table 8. 7 we compare the speed-up achieved when

the techniques are applied vs. the speed-up obtained without their application.

As before, we assumed here the canonical resource constraints.

We see from Table 8. 7 that taken together these techniques account for 35.3%

improvement. Therefore, without a means for eliminating copies generated during

loop pipelining, the gain obtained by renaming may be significantly offset by the

introduction of additional copies into the compacted code.

8.3.3 Load-after-store-elimination

Table 8.8 compares the results achieved with load-after-store-elimination op

timization (discussed in Section 7.3) vs. the speed-up derived without this opti

mization.

143

Comparing WHM, the gain by this optimization is 45.6% for the unlimited

resources and 3.5% for the limited resources case. However, in this case the average

(or the WHM) may be misleading: this optimization applies to only 12 out of

the 35 benchmarks. If we measured the improvement only for the 12 applicable

benchmarks w~ would get 311 % improvement in the unlimited case and 13% for

the limited resources case compared to the results obtained in the absence of this

optimization.

8.3.4 Compaction Without move-cj

One of the "traditional" arguments against :i;:>ercolation Scheduling has always

been code explosion. The main contribution to code explosion is due to the move-

cj transformation (see Chapter 3). The penalty of code explosion in parallelizing

compilers is not only the extra space needed but also the compilation time which

increases significantly as number of nodes/ operations increase. One may want to

allow limiting the transformation;s to save space and compilation time. (Conse-

quently, a trade-off exists in determining when it is beneficial to apply move-cj

and when it is not.) In Table 8.9 we present the speed-up derived when move-cj

is enabled vs. the speed-up obta.tned when it is disabled. In addition, we give the

total number of nodes in the program and the total number of operations in each

of these cases. Notice that disabling move-cj tends, sometimes, to make the loop

pipelining algorithm converge slower. This happens because much more renaming

is required and therefore many copy operations are introduced into the code. Thus,

since more unwindings are needed, many more nodes and operations are created.

144

This makes the difference between the enabling and disabling of move-cj "milder"

than one might expect.

The speed-up obtained without move-cj is about 32% less (WHM) as com

pared to the case when move-cj is enabled. However, on average, 2.5 times more

nodes and 2. 7 times more operations are involved when move-cj is allowed. For the

latter two cases (number of nodes and number of operations) we compare averages,

rather than WHM, since these numbers are compile-time measurements.

8.3.5 Disambiguation

Table 8.10 measures the effect of disambiguation on compaction with unlim

ited resources. The left column corresponds to automatic compaction while the

disambiguator is in effect. The middle column presents compaction results with

out disambiguation. The rightmost column is for compaction with disambiguation

when user assertions are allowed. In some sense these results may be regarded as

"perfect disambiguation" results. Disambiguation is switched off by assuming that

whenever there is a chance for a memory conflict-the conflict really happens (i.e.

we take a pessimistic view). The results show the significant impact of disambigua

tion on the achievable speed-up. With unlimited resources the speed-up is 2.33

times higher than that obtained when disambiguation is disengaged. When user

assertions are allowed, the speed-up increases by 4 7.6% relative to the speed-up

achieved when the compiler uses the automatic disambiguation algorithm.

145

8.4 Discussion

In the two previous sections we have presented a set of various results derived

with different hardware models and parallelization parameters. Naturally, the re

sults cannot (and were not intended to) suggest the "ultimate" hardware model

configuration-this depends on the specific application, but we can draw some

guidelines and build some intuition based on the results presented. Any inferences

from the results presented should, of course, be taken with a grain of salt, partic-

ularly since the benchmarks we used are not large enough so that other important

issues involved with large benchmarks (e.g. cache effects) are not addressed here.

As mentioned, designing an architecture which implements the conditional

execution model may be advantageous over the traditional model. As the results

indicate, the conditional execution model yields a greater speed-up. On the other

hand it involves significant complexity in its hardware implementation. A conser

vative conclusion from the results is that the importance of conditional execution

increases with the number of funCtional units available and in the case that the

code is branch-intensive.

The use of pipelined oper?-tions vs. uni-cycle operations is also a design

trade-off as mentioned in Chapter 3. We showed that for limited resources the

speed-up achieved is higher when multi-cycle operations are used. After imple-

mentation of a better loop pipelining algorithm, we believe that the speed-up for

unlimited resources will grow as well. The benefits of pipelined operations become

even greater if one keeps in mind that the actual performance of a system can be

I

<;

expressed by the following proportion:

Speed-up
Performance = a C l .

ye e time

146

where a is a machine dependent factor. Since (generally) the cycle time may be

reduced as the number of pipeline stages increases the enhancement of pipelining

is amplified.

Another problem related to multi-cycle operations and not addressed so far

is the compilation-time. Pipelining of operations actually means a "finer" clock.

Since each clock (or control step) is represented by a single node, more nodes

are involved in the parallelizing process (a three cycle operation spans over three

nodes). As the number of nodes increases the compilation-time grows. For the

set of benchmarks selected in this thesis the compilation-time for pipelined oper-

ations was 2-3 times longer than the corresponding compilation-time for uni-cycle

operations.

The selection of the appropriate number of functional units is considered one

of the most important design issues in any system that includes multiple functional

units. On one hand we would like to have as many functional units as needed.

On the other hand the number of functional units affects so many other crucial

hardware aspects that one cannot afford to invest in many functional units. Among

other issues the number of functional units affects: the width of the instruction

word, the number of ports in the register-file, the number of multiplexers needed,

the number of bits needed to tag the units, the number of internal wires, the

number of pins for packaging etc.. Therefore, a careful selection of the appropriate

number of functional units has to be done since we would like to have enough

speed-up but be sure that the units are well utilized.

100%

50%

+..

+

..
... -:+

......

utilization
normalized speed-up

······· .. .J..
,,,, , ,,,, c:r-·. • .. ·.

.... ..+

4 8 2
numis>er of units

Figure 8.2: Utilization and Normalized Speed-Up for Uni-Cycle Operations.

147

Tables 8.4 and 8.5 and Figures 8.2 and 8.3 demonstrate two conflicting

desires as we increase the number of functional units. First, it becomes harder to

keep the units busy, and therefore the utilization drops (in a fair approximation

it drops logarithmically). This may suggest an architecture with fewer functional

units. Second, at the same time the normalized speed-up increases as the number

of units grow. In this sense, the more units we have, the greater opportunity is for

potential speed-up.

In order to take into consideration both desires, a good design-compromise

(assuming that the cost-function weights equally utilization and normalized speed

up) would be to implement the system with the number of functional units that

corresponds to. the intersection of the two curves. While for the uni-cycle opera-

tions the curves intersect around 8 units, for the pipelined unit the intersection is

around 7 units. Special care must be taken not to infer that the best selection for

every pipelined system is 7-8 functional units. The results for pipelined units were

obtained under the assumption that floating-point operations take three cycles to

+
100%

50%
+

2

+..

>·< .. ~--
~---- +· ...

4 8

utilization
normalized speed-up

.. ..

nurhier of units

Figure 8.3: Utilization and Normalized Speed-Up for Pipelined Operations.

148

complete, memory loads take two cycles and all other operations are uni-cycle op-

erations. Different combination of latencies may lead to a different selection of

functional units. It should be further emphasized that this applies only to our

compiler and for the whole set of benchmarks that we selected. For other applica-

tions (and even for specific applications out of our selection) these selections may

change.

Regarding register allocation and renaming it has been shown that more reg

isters are needed (approximately 3 times) for compaction than available in the

input program. The price paid by our compiler for renaming is introduction of

extra copy operations into the code. These copies, if not removed, may severely

degrade the speed-up. Therefore, carrying out renaming without being able to

eliminate these copies may become useless .. We have shown the effect of renaming

as well as the effect of copy elimination on the speed-up. From the results it is clear

that both renaming and copy elimination are essential parts of any parallelizing

~i 149

compiler. There is still one drawback in the way we perform these two optimiza

tions: while renaming is done incrementally (or locally) during the parallelization

process the induction variable removal and copy elimination is performed as a post

pass after c01;npaction (before resource constraints scheduling). Performing copy

elimination "on the fly" would be too costly. Consequently, during parallelization

copies increase compilation time as. well as code space.

-The importance of memory reference disambiguation for extraction of sig-

nificant parallelism in scientific code was reported a few years ago [Ba79, Ni85a].

We have confirmed this observation by comparing the speed-ups obtained with an

automatic disambiguation algorithm, without disambiguation and with assertions

applied by the user. However, a powerful and precise disambiguation technique not

only yields better speed-up by enabling compaction of memory loads and stores .

but also enables integration of other optimizations which are a direct by-product

of the technique. Besides the results shown in Table 8.10 we have also shown in

Table 8. 7 and in Table 8.8 that further improvements may be achieved by appli-

cation of redundant IV removal technique and load-after-store elimination. These

two techniques rely completely on an accurate (and efficient) disambiguator. The

latter even reduces the the memory transfer rate by eliminating load operations

and consequently alleviates the; memory traffic bottleneck that has posed a real

problem in architecture design for years.

We have presented throughout the thesis some higher-level strategies like:

loop pipelining, maxcomp, compaction without moving conditional jumps etc. that

may be applied on top of the low-level, atomic PPS transformations. Since the

interface between those high-level techniques and the low-level transformations is

150

well-defined it should be quite easy to apply other strategies to check other trade

offs and performance. Compaction without motion of conditional branches was

implemented to control compilation-time as well as code space problems. However,

since these problems are important enough, a full scale and careful study as well

as experimentation with other techniques is still needed.

151

Table 8 l · Conditional Execution vs Non Conditional Execution Model
No. Benchmark Unlimited resources Limited resources

W / cond. exec. W / o cond. exec. W / cond. exec. W / o cond. exec.

1 Livermore L 1 13.63 4.64 2.00 1.75

2 Livermore L 2 13.09 4.78 1.84 1.66
~

3 Livermore L3 8.94 3.00 1.80 1.80

4 Livermore L4 11.34 3.97 1.99 1.72

5 Livermore L5 5.48 3.66 2.20 1.57

6 Livermore L6 3.64 2.88 1.63 1.85

7 Livermore L 7 27.65 7.54 1.82 1.41

8 Livermore LS 3.98 3.98 1.78 1.48

9 Livermore L9 33.65 9.42 1.78 1.40

10 Livermore LlO 4.29 13.37 1.95 1.24

11 Livermore L 11 8.93 3.00 2.25 1.80

12 Livermore L12 8.94 3.00 1.80 1.80

13 Livermore L13 2.97 2.97 1.95 1.72

14 Livermore L14 5.04 4.69 1.83 1.76

15 Livermore L15 5.00 3.02' 1.69 1.78

16 Livermore L16 2.68 1.21 1.25 1.17

17 Livermore Ll 7 5.75 1.78 1.29 1.44

18 Livermore Ll8 25.54 11.12 1.96 1.68

19 Livermore L 19 5.78 4.97 2.05 1.94

20 Livermore L20 5.29 2.16 1.13 1.62
;

21 Livermore L 21 3.85 2.69 1.73 1.80

22 Livermore L22 7.77 5.23 1.99 1.78
~

23 Livermore L23 7.20 7.20 1.89 1.38

24 Livermore L24 9.93 1.25 1.43 1.25

25 FFT 3.69 3.03 1.56 1.56 ,,

26 bubble 5.12 1.51 1.47 1.28

27 cos 8.93 1.69 1.60 1.56

28 minmax 12.78 1.30 1.30 1.18

29 quicksort 2.31 1.58 1.36 1.29

30 permute 3.15 2.88 1.58 1.57

31 line26 8.62 3;32 1.99 1.70

32 cralelO 17.17 5.98 2.00 1.80

33 unriems50 54.11 13.71 1.91 2.12

34 nav7055 24.88 13.68 1.92 2.16

35 dblloop 6.33 1.48 1.73 1.48

Average 10.78 4.62 1.76 1.61

WHM 7.63 3.58 1.76 1.66

No.

1

2

3

4

s

6

7

8

9

10

11

12

13

14

IS

16

17

18

19

20

21

22

23

24

2S

26

27

28

29

30

31

32

33

34

35

Table 8.2: Uni-Cycle vs. Pipelined Operations
Benchmark Unlimited resources Limited resources

Uni-cycle ops Pipelined ops Uni-cycle ops Pipelined ops

Livermore Ll 13.63 8.82 2.00 3.36

Livermore L2 13.09 8.44 1.84 2.71

Livermore L3 8.94 4.99 1.80 2.99

Livermore L4 11.34 6.18 1.99 3.12

Livermore LS S.48 3.00 2.20 2.S7

Livermore L6 3.64 2.42 1.63 1.76

Livermore L 7 27.6S 19.07 1.82 3.73

Livermore L8 3.98 3.24 1.78 2.19

Livermore L9 33.6S 21.68 1.78 2.23

Livermore LIO 4.29 2.S4 1.9S 1.87

Livermore Lll 8.93 4.32 2.2S 3.24

Livermore L12 8.94 4.32 1.80 2.60

Livermore L 13 2.97 2.S8 1.9S 2.12

Livermore L14 S.04 3.63 1.83 1.99

Livermore LIS S.00 3.81 1.69 2.43

Livermore L16 2.68 2.19 1.2S 1.34

Livermore Ll 7 S.7S 2.38 1.29 1.S9

Livermore L18 2S.S4 11.37 1.96 3.17

Livermore L19 S.78 2.94 2.0S 2.11

Livermore L20 S.29 2.2S 1.13 1.35

Livermore L21 3.85 2.52 1.73 1.67

Livermore L22 7.77 2.80 1.99 2.32

Livermore L23 7.20 4.26 1.89 2.32

Livermore L24 9.93 2.40 1.43 1.50

FFT 3.69 } 2.84 1.56 1.83

bubble 5.12 3.92 1.47 1.85

cos 8.93 3.93 1.60 1.53

minmax 12.78 4.98 1.30 1.25

quicksort 2.31 1.06 1.36 1.05

permute 3.15 1.20 1.S8 1.11

line26 8.62 4.31 1.99 2.23

cralelO 17.17 4.33 2.00 2.16

unriems50 54.11 31.67 1.91 3.66

nav7055 24.88 6.96 1.92 2.81

dblloop 6.33 2.78 1.73 2.23

Average 10.78 5.72 1.76 2.23

WHM 7.63 4.18 1.76 2.26

152

I

I

153

Table 8.3: Number of Registers Used
No. Benchmark Regs used Speed-up

Org. Comp. Ratio min max

1 Livermore Ll 10 20 2.00 2.00 13.63

2 Livermore L2 13 23 1.77 4.89 13.09

3 Livermore L3 8 11 1.38 8.94 8.94

4 Livermore L4 11 14 1.27 5.89 11.34

5 Livermore LS 7 13 1.86 2.75 5.48

6 Livermore L6 11 17 1.55 3.64 3.64

7 Livermore L 7 11 50 4.55 1.72 27.65

8 Livermore LS 17 37 2.18 2.83 3.98

9 Livermore L9 10 92 9.20 3.55 33.65

10 Livermore L 10 7 54 7.71 3.58 4.29

11 Livermore Lll 6 10 1.67 3.00 8.93

12 Livermore Ll2 6 9 1.50 3.00 8.94

13 Livermore Ll3 15 22 1.47 2.39 2.97

14 Livermore L14 16 114 7.13 2.87 5.04

15 Livermore L15 18 33 1.83 2.97 5.00

16 Livermore Ll6 21 108 5.14 2.27 2.68

17 Livermore Ll 7 16 24 1.50 2.84 5.75

18 Livermore L18 26 84 3.23 6.50 25.54

19 Livermore L 19 12 22 1.83 4.96 5.78

20 Livermore L20 15 56 3.73 2.55 5.29

21 Livermore L21 15 17 1.13 3.12 3.85

22 Livermore L22 11 26 2.36 2.29 7.77

23 Livermore L23 15 87 5.80 4.86 7.20
'

24 Livermore L24 10 20 2.00 3.33 9.93

25 FFT 19 26 1.37 2.79 3.69

26 bubble 10 20 2.00 2.98 5.12

27 cos 9 22 2.44 4.63 8.93

28 minmax 10 23 2.30 3.24 12.78

29 quicksort 15 23 1.53 1.96 2.31

30 permute 15 17 1.13 2.78 3.15

31 line26 9 14 1.56 4.83 8.62

32 cralelO 13 23 1.77 8.88 17.17

33 unriems50 15 20 1.33 3.93 54.11

34 nav7055 18 169 9.39 4.22 24.88

35 dblloop 4 9 2.25 2.16 6.33

Average 12.69 37.97 2.88 3.69 10.78

WHM 11.66 20.59 1.76 3.51 7.63

154

Table 8.4: Speed-Up With Different Number of Functional Units-Uni-Cycle case

No. Bench- Number of functional units

mark 00 2 4 8 16

SU SU Util NS SU Util NS SU Util NS SU Util NS

1 Liv. Ll 13.63 2.00 100 14.7 3.48 87.0 25.5 6.94 86.7 50.9 13.63 85.1 100

2 Liv. L2 13.09 1.85 92.5 14.1 3.64 91.0 27.8 1.01 88.4 54.0 7.26 45.4 55.4

3 Liv. L3 8.94 1.80 90.0 20.1 3.00 15.0 33.6 4.49 56.1 50.3 8.94 55.9 100

4 Liv. L4 11.34 1.99 99.5 17.5 3.96 99.0 34.9 5.91 73.9 52.1 11.34 10.9 100

5 Liv. L5 5.48 2.20 110 40.1 3.66 91.5 66.8 5.48 68.5 100 5.48 34.3 100

6 Liv. L6 3.64 1.79 89.5 49.1 2.89 72.3 79.4 3.64 45.5 100 3.64 22.8 100

7 Liv. L7 27.65 1.93 96.5 1.0 3.86 96.5 14.0 7.63 95.4 27.6 14.87 92.9 53.8

8 Liv. LS 3.98 1.86 93.0 46.7 2.98 74.5 74.9 3.54 44.3 88.9 3.86 24.1 97.0

9 Liv. L9 33.65 1.96 98.0 5.8 3.90 97.5 11.6 7.73 96.6 23.0 12.82 80.1 38.1

10 Liv. LlO 4.29 1.95 97.5 45.4 2.86 71.5 66.7 3.58 44.8 83.4 4.29 26.8 100

11 Liv. Lll 8.93 2.25 112 25.2 4.49 112 50.3 8.93 111 100 8.93 55.8 100

12 Liv. L12 8.94 1.80 90.0 20.1 3.00 75.0 33.6 4.49 56.1 ,50.2 8.94 55.8 100

13 Liv. L13 2.97 1.95 97.5 65.6 2.74 68.5 92.3 2.97 37.1 100 2.97 18.6 100

14 Liv. L14 5.04 1.88 94.0 37.3 3.19 79.6 63.3 4.45 55.6 88.3 4.95 30.9 98.2

15 Liv. L15 5.00 1.73 86.5 34.6 3.00 75.0 60.0 4.65 58.1 93.0 5.00 31.3 100

16 Liv. L16 2.68 1.28 64.0 47.8 1.79 44.8 66.8 2.28 28.5 85.0 2.48 15.5 92.5

17 Liv. Ll 7 5.75 1.29 64.5 22.4 2.31 57.8 40.2 2.88 36.0 50.1 2.88 18.0 50.1

18 Liv. L18 25.54 1.96 98.0 1.7 3.74 93.5 14.6 6.93 86.6 27.1 11.5 71.6 44.8

19 Liv. L19 5.78 2.05 103 35.5 3:74 93.5 64.7 5.78 72.3 100 5.78 36.1 100

20 Liv. L20 5.29 1.23 61.5 23.3 . 2.26 56.5 42.7 3.86 48.3 73.0 5.29 33.1 100

21 Liv. L21 3.85 1.69 84.5 62.1 2.59 64.8 67.3 3.73 46.6 96.9 3.85 24.1 100

22 Liv. L22 7.77 1.99 100 25.6 3.94 98.5 50.7 1.77 97.1 100 7.77 48.6 100

23 Liv. L23 1.20 1.89 94.5 26.3 3.11 77.8 43.2 4.82 60.3 66.9 6.17 38.6 85.7

24 Liv. L24 9.93 1.67 83.5 16.8 2.00 50.0 20.1 2.50 31.3 25.2 4.99 31.2 50.3

25 FFT 3.69 1.73 86.5 46.8 2.67 66.8 72.4 3.29 41.1 89.1 3.69 23.1 100

26 bubble 5.12 1.80 80.0 35.1 2.32 58.0 45.3 2.53 38.3 54.4 4.82 30.1 94.1

27 cos 8.93 1.69 84.5 18.9 2.78 69.5 33.5 4.03 50.4 45.1 6.25 39.0 70.0

28 mi nm ax 12.78 1.30 65.0 10.2 2.59 64.8 20.3 4.30 53.8 33.6 6.46 40.4 50.5

29 quicksort 2.31 1.37 68.5 59.3 1.93 48.3 83.5 2.19 27.4 94.8 2.31 14.4 100

30 permute 3.15 1.75 87.5 55.6 2.67 66.8 84.8 3.15 39.4 100 3.15 19.7 100

31 line26 8.62 1.99 100 23.1 3.36 84.0 39.0 4.91 61.4 57.0 8.62 53.9 100

32 cralelO 17.17 2.00 100 11.6 3.60 90.0 21.0 5.99 74.9 34.9 8.92 55.8 52.0

33 unrms50 54.11 2.11 106 3.8 4.21 105 8.9 8.84 111 16.3 17.36 109 32.1

34 nav7055 24.88 2.18 109 8.8 4.22 106 17.0 8.24 103 33.l 14.24 89.0 57.2

35 dblloop 6.33 1.73 86.5 27.3 2.16 54.0 34.1 3.96 49.5 62.6 3.96 24.8 62.6

Average 10.78 1.82 90.7 28.9 3.10 71.6 45.9 4.96 62.2 65.9 7.07 44.2 82.4

WHM 7.63 1.86 93.2 21.2 3.15 78.7 36.4 4.74 59.3 55.8 6.28 39.3 73.4

155

Table 8.5: Speed-Up With Different Number of Functional Units-Pipelined case
No. Bench- Number of functional units

mark 00 2 4 8 16

SU SU Util NS SU Util NS SU Util NS SU Util NS

1 Liv. Ll 8.82 3.36 I68 38.1 6.66 I67 75.5 8.82 110 100 8.82 55.1 100

2 Liv. L2 8.44 3.33 167 39.4 5.31 133 62.9 8.44 106 IOO 8.44 53.0 100

3 Liv. L3 4.99 2.99 74.8 59.9 4.99 I25 IOO 4.99 62.4 100 4.99 31.2 100

4 Liv. L4 6.18 3.12 50.5 156 6.I5 99.5 154 6.I8 77.3 100 6.18 38.6 100

5 Liv. LS 3.00 2.57 129 85.7 3.00 75.0 100 3.00 37.5 100 3.00 18.8 100

6 Liv. L6 2.42 1.76 88.0 72.7 2.36 97.5 59.0 2.42 30.3 IOO 2.42 15.1 100

7 Liv. L7 19.07 4.36 218 22.9 7.72 40.5 193 11.4 I42 59.7 16.21 101 85.0

8 Liv. LS 3.24 2.29 115 70.7 2.76 69.0 85.2 3.07 38.4 94.7 3.24 20.3 100

9 Liv. L9 21.68 2.58 129 11.9 4.37 109 20.I 7.78 97.3 35.9 I3.66 85.4 63.0

10 Liv. LIO 2.54 1.87 93.5 73.6 2.29 57.3 90.2 2.54 31.8 100 2.54 I5.9 100

l1 Liv. Lll 4.32 3.24 162 75.0 4.32 108 100 4.32 54 100 4.32 27 100

12 Liv. L12 4.32 2.60 130 60.2 4.32 108 100 4.32 54 100 4.32 27 100

13 Liv. LI3 2.58 2.I2 106 82.I 2.52 63.0 97.7 2.58 32.3 IOO 2.58 I6.1 100

14 Liv. LI4 3.63 2.14 107 59.0 2.33 58.3 64.2 3.63 45.4 100 3.63 22.7 100

15 Liv. L15 3.81 2.54 127 66.7 3.68 92.0 96.6 3.8I 47.6 100 3.81 23.8 IOO

16 Liv. L16 2.19 1.27 63.5 58.0 1.85 46.3 84.5 2.09 26.1 95.4 2.09 13.1 95.4

17 Liv. Ll 7 2.38 1.73 86.5 72.7 2.01 50.3 84.5 2.24 28.0 94.1 2.38 14.9 100

18 Liv. LIS 11.37 3.17 I59 27.9 4.83 I21 42.5 6.49 81.1 57.I 7.69 48.0 67.6

I9 Liv. L19 2.94 2.11 106 71.8 2.94 73.5 100 2.94 36.8 100 2.94 18.4 100

20 Liv. L20 2.25 1.57 78.5 69.8 1.89 47.3 84.0 2.13 26.6 94.7 2.14 13.4 95.1

21 Liv. L21 2.52 1.67 83.5 66.2 2.25 56.3 89.3 2.52 31.5 100 2.52 15.8 100

22 Liv. L22 2.80 2.15 108 76.8 2.79 69.8 99.6 2.80 35.0 100 2.80 17.5 100

23 Liv. L23 4.26 2.32 116 54.5 3.19 79.8. 74.9 4.00 50.0 93.9 4.26 26.6 100

24 Liv. L24 2.40 1.71 85.5 11.3 1.71 42.3 71.3 2.00 25.0 83.3 2.40 15.0 100

25 FFT 2.84 1.98 99.0 69.7 2.50 62.5 88.0 2.82 35.3 99.3 2.84 17.8 100

26 bubble 3.92 1.83 91.5 46.7 2.52 63.0 64.3 3.58 44.8 91.3 3.58 22.4 91.3

27 cos 3.93 1.53 76.5 38.9 2.54 63.5 64.6 3.67 45.9 93.4 3.93 24.6 100

28 minrnax 4.98 1.74 87.0 34.9 2.50 62.5 50.2 2.96 37.0 59.4 3.20 20.0 64.3

29 quicksort 1.06 1.06 53.0 100 1.06 26.5 100 1.06 I3.3 100 1.06 6.6 100

30 permute 1.20 1.11 55.5 92.5 1.18 29.5 98.3 1.20 I5.0 100 1.20 7.5 100

31 line26 4.31 2.60 130 60.3 4.23 106 98.1 4.31 53.9 IOO 4.31 26.9 100

32 cralelO 4.33 2.16 108 49.9 3.25 40.6 75.1 4.33 54.1 100 4.33 27.1 100

33 unrms50 31.67 3.83 192 12.I 6.12 153 19.3 8.21 103 25.9 14.85 92.8 46.9

34 nav7055 6.96 2.81 141 40.4 3.77 94.3 54.2 5.32 66.5 76.4 6.96 43.5 100

35 dblloop 2.78 2.23 112 80.2 2.78 69.5 100 2.78 34.8 100 2.78 17.4 100

Average 5.72 2.33 111 62.0 3.39 78.8 84.0 4.14 51.7 90.l 4.75 29.8 94.5

WHM 4.18 2.39 111 31.8 3.18 78.7 47.2 3.65 45.8 59.7 4.00 24.9 78.9

156

Table 8.6: Impact of Register Renaming on Speed-Up
No. Benchmark Unlimited resources Limited resources

W/ renaming W / o renaming W /renaming W / o renaming

1 Livermore L 1 13.63 2.00 2.00 1.75

2 Livermore L2 13.09 4.89 1.84 1.87

3 Livermore L3 8.94 8.94 1.80 1.80

4 Livermore L4 11.34 5.89 1.99 1.99

5 Livermore L5 5.48 2.75 2.20 1.83

6 Livermore L6 3.64 3.64 1.63 1.87

7 Livermore L 7 27.65 1.72 1.82 1.63

8 Livermore L8 3.98 2.83 1.78 1.87

9 Livermore L9 33.65 3.55 1.78 1.5t

10 Livermore Lt 0 4.29 3.58 1.95 1.96

11 Livermore Lll 8.93 3.00 2.25 1.80

t2 Livermore Lt2 8.94 3.00 1.80 1.80

13 Livermore L13 2.97 2.39 1.95 1.81

14 Livermore Lt 4 5.04 2.87 1.83 1.98

15 Livermore Ll 5 5.00 2.97 1.69 1.94

t6 Livermore Ll 6 2.68 2.27 1.25 1.38

t7 Livermore Lt 7 5.75 2.84 1.29 1.76

18 Livermore L18 25.54 6.50 1.96 1.87

t9 Livermore L19 5.78 4.96 2.05 2.05

20 Livermore L20 5.29 2.55 1.13 1.0t

21 Livermore L2t 3.85 3.t2 1.73 1.78

22 Livermore L22 7.77 2.29 1.99 1.78

23 Livermore L23 7.20 4.86 1.89 1.9t

24 Livermore L24 9.93 3.33 1.43 1.66

25 FFT 3.69 .i 2.79 1.56 1.62

26 bubble 5.12 2.98 1.47 1.4t

27 cos 8.93 4.63 1.60 1.62

28 rninrnax 12.78 3.24 1.30 1.44

29 quicksort 2.31 1.96 1.36 1.50

30 permute 3.15 2.78 1.58 1.54

3t line26 8.62 4.83 1.99 2.02

32 cralelO 17.17 8.88 2.00 2.00

33 unrierns50 54.11 3.93 l.9t 2.04

34 nav7055 24.88 4.22 1.92 2.10

35 dblloop 6.33 2.16 1.73 1.53

Average 10.78 3.69 1.76 1.76

WHM 7.63 3.5t 1.76 1.8t

---- !

,\1 157

Table 8.7: Impact of IV Removal and Copy Elimination on Speed-Up
No. Benchmark W / IV and copy W /o IV and copy

elimination elimination

1 Livermore LI 2.00 1.27

2 Livermore L2 1.84 1.47

3 Livermore L3 1.80 1.80

4 Livermore L4 1.99 1.99

5 Livermore LS 2.20 1.38

6 Livermore L6 1.63 1.61

7 Livermore L 7 1.82 1.11

8 Livermore LS 1.78 1.48

9 Livermore L9 1.78 1.00

10 Livermore LIO 1.95 1.20

11 Livermore Lll 2.25 1.80

12 Livermore L12 1.80 1.50

13 Livermore L13 1.95 1.72

14 Livermore L14 1.83 1.17

15 Livermore L 15 1.69 1.62

16 Livermore L16 1.25 1.11

17 Livermore Ll 7 1.29 1.22

18 Livermore L18 1.96 1.56

19 Livermore L19 2.05 1.66

20 Livermore L20 1.13 0.66

21 Livermore L21 1.73 1.41

22 Livermore L22 1.99 1.16

23 Livermore L23 1.89 0.94

24 Livermore L24 1.43 1.43

25 FFT 1.56 1.42

26 bubble 1.47 1.44

27 cos 1.60 1.44

28 minmax 1.30 1.08

29 quicksort 1.36 1.17

30 permute 1.58 1.55

31 line26 1.99 1.46

32 cralelO 2.00 1.39

33 unriems50 1.91 1.20

34 nav7055 1.92 0.92

35 dblloop 1.73 1.73

I I

Average 1.76 1.37

WHM 1.76 1.30

I
I

I

158

Table 8.8: Impact of Load-After-Store-Elimination on Speed-Up
No. Benchmark Unlimited resources Limited resources

W/ optim. W/o optim. W/ optim. W/o optim.

1 Livermore Ll 13.63 13.63 2.00 2.00

2 Livermore L2 13.09 13.09 1.84 1.84

3 Li verrnore L3 8.94 8.94 1.80 1.80

4 Livermore L4 11.34 2.99 1.99 1.71

5 Livermore L5 5.48 2.75 2.20 1.83

6 Livermore L6 3.64 3.64 1.63 1.63

7 Livermore L7 27.65 27.65 1.82 1.82

8 Livermore LS 3.98 3.98 1.78 1.78

9 Livermore L9 33.65 33.65 1.78 1.78

10 Livermore L 10 4.29 4.29 1.95 1.95

11 Livermore L 11 8.93 3.00 2.25 1.80

12 Livermore L12 8.94 8.94 1.80 1.80

13 Livermore L13 2.97 2.56 1.95 1.72

14 Livermore L14 5.04 3.12 1.83 1.56

15 Livermore L15 5.00 5.00 1.69 1.69

16 Livermore L 16 2.68 2.68 1.25 1.25

17 Livermore Ll 7 5.75 5.75 1.29 1.29

18 Livermore L18 25.54 25.54 1.96 1.96

19 Livermore L19 5.78 2.70 2.05 1.59

20 Livermore L20 5.29 3.55 1.13 1.08

21 Livermore L21 3.85 3.85 1.73 1.66

22 Livermore L22 7.77 7.77 1.99 1.99

23 Livermore L23 7.20 4.42 1.89 1.82

24 Livermore L24 9.93 9.93 1.43 1.43

25 FFT 3.69 3.69 1.56 1.56

26 bubble 5.12 5.12 1.47 1.47

27 cos 8.93 8.93 1.60 1.60

28 minmax 12.78 12.78 1.30 1.18

29 quicksort 2.31 2.31 1.36 1.36

30 permute 3.15 3.15 1.58 1.58

31 line26 8.62 8.62 1.99 1.99

32 cralelO 17.17 17.17 2.00 2.00

33 unriems50 54.11 7.95 1.91 1.89

34 nav7055 24.88 4.08 1.92 1.82

35 dblloop 6.33 6.33 1.73 1.73

Average 10.78 8.10 1.76 1.68

WHM 7.63 5.24 1.76 1.70

159

Table 8.9: Compaction With Move-cj vs. Compaction Without Move-cj
No. Benchmark W / move-cj W /o move-cj

Speed-up nodes ops Speed-up nodes ops

1 Livermore L 1 13.63 30 141 13.63 13 88

2 Livermore L2 13.09 44 226 12.58 26 188

3 Livermore L3 8.94 9 33 8.93 10 41

4 Livermore L4 11.34 20 71 11.20 19 73

5 Livermore LS 5.48 11 35 5.48 11 39

6 Livermore L6 3.64 38 116 3.48 20 83

7 Livermore L 7 27.65 76 759 27.45 17 277

8 Livermore LS 3.98 98 319 3.95 48 220

9 Livermore L9 33.65 92 890 33.65 18 396

10 Livermore LIO 4.29 26 112 3.58 19 143

11 Livermore L 11 8.93 10 29 8.92 11 36

12 Livermore L 12 8.94 9 30 8.93 10 38

13 Livermore L13 2.97 52 148 2.97 32 100

14 Livermore L 14 5.04 509 3570 4.21 57 602

15 Livermore L15 5.00 233 '1644 3.53 121 707

16 Livermore L16 2.68 63 563 2.05 75 457

17 Livermore Ll 7 5.75 27 345 2.56 20 85

18 Livermore L18 25.54 221 2510 6.05 57 1332

19 Livermore L19 5.78 37 158 5.70 26 124

20 Livermore L20 5.29 75 517 4.25 29 209
;

21 Livermore L21 3.85 18 68 3.40 20 74

22 Livermore L22 7.77 29 178 7.65 19 97

23 Livermore L23 7.20 111 475 7.10 24 284

24 Livermore L24 9.93 15 106 4.98 17 128

25 FFT 3.~9 66 232 3.69 42 231

26 bubble 5.12 13 83 3.66 15 96

27 cos 8.93 20 690 3.57 19 339

28 mimnax 12.78 11 256 2.41 34 560

29 quicksort 2.31 37 129 2.31 38 122

30 permute 3.15 42 122 3.07 40 119

31 line26 8.62 11 52 8.18 10 54

32 cralelO 17.17 25 167 17.09 14 119

33 unriems50 54.11 78 1293 5.59 18 172

34 nav7055 24.88 273 5250 3.99 28 220

35 dblloop 6.33 13 83 3.80 8 47

Average 10.78 69.8 611.4 7.24 28.1 225.7

WHM 7.63 26.9 117.4 5.18 18.9 105.2

160

Table 8.10: Impact of Disambiguation on Speed-Up
No. Benchmark W / disambiguation W / o disambiguation W / assertions

1 Livermore L 1 13.63 2.33 13.63

2 Livermore L2 13.09 3.01 13.09

3 Livermore L3 8.94 8.94 8.94

4 Livermore L4 11.34 2.99 11.34

5 Livermore L5 5.48 2.75 5.48

6 Livermore L6 3.64 2.18 10.05

7 Livermore L 7 27.65 3.10 27.65

8 Livermore LS 3.98 3.39 20.23

9 Livermore L9 33.65 3.53 33.65

10 Livermore LlO 4.29 2.69 37.22

11 Livermore Lll 8.93 3.00 8.93

12 Livermore Ll 2 8.94 3.00 8.94

13 Livermore Ll3 2.97 2.06 22.09

14 Livermore Ll4 5.04 2.01 5.04

15 Livermore L15 5.00 4.26 5.00

16 Livermore L16 2.68 2.68 2.68

17 Livermore Ll 7 5.75 3.82 5.75

18 Livermore L18 25.54 3.43 25.54

19 Livermore L 19 5.78 2.70 5.78

20 Livermore L20 5.29 3.55 5.29

21 Livermore L21 3.85 2.72 8.45
;

22 Livermore L22 7.77 2.30 7.77

23 Livermore L23 7.20 3.68 7.20

24 Livermore L24 9.93 9.93 9.93

25 FFT 3.69 2.73 12.72

26 bubble 5.12:; 4.20 5.12

27 cos 8.93 8.93 8.93

28 minmax 12.78 12.78 12.78

29 quicksort 2.31 2.31 2.31

30 permute 3.15 3.15 3.15

31 line26 8.62 2.55 8.62

32 cralelO 17.17 2.27 17.17

33 unriems50 54.11 3.67 54.11

34 nav7055 24.88 2.25 24.88

35 dblloop 6.33 2.79 6.33

I I II 3.28 11.26

Average 3.76 13.31 10.78

WHM 7.63

Chapter 9

The compiler as a High Level

Synthesis tool

High Level Synthesis (HLS) is the process of designing a structure that im

plements the behavioral description of a given problem. This process involves

three phases [McPC88) which are compilation of the behavioral description into an

internal representation, scheduling, and allocation (which includes binding). Our

compiler includes similar phases-we compile from a high-level representation (C)

into internal representation (three-address-code), then we schedule and then do

some higher level hardware allocation. Thus, a natural questions is: "Can our

compiler be considered as a HLS tool?" and if so, "What is the relationship be

tween our compiler and other HLS systems?". We are focusing on these issues

in this chapter. To illustrate how the compiler can serve as a HLS tool we give

an example of our gradual, two dimensional design approach. Another aspect we

address here is what extensions should and could be made in order to make this

compiler a better HLS tool.

161

~i 162

Performance

B

Area

Figure 9.1: Performance vs. Chip Area.

9.1 Design Space Exploration

While trying to synthesize a hardware structure out of a behavioral descrip

tion there is always a trade-off between the achievable performance and the chip's

area. Intuitively, the more area we have, the better performance we can get, as

illustrated in Figure 9.1. The graph represents the set of all optimal points in the

design space for a given technology (i.e. it represents the best achievable perfor

mance for a specific architecture for a given technology). Obviously not all the

points are feasible. The architecture design problem is to reach one of the curve's

points starting from an arbitrary point in the design space.

Consider, for example, the traditional serial design process in which the hard

ware is desi_gned first and then a compiler is written for this machine. This approach

is adopted by most of the microprocessor designing companies. The approach is

represented by the path A in Figure 9.1. When the compiler is written the silicon

area is already determined and there is no way to add another adder or other func

tional units which may be required for enhancing the performance for a specific

problem.

I

It;

163

On the other hand, a typical HLS methodology is represented in the figure by

path B. Here, during the scheduling phase of the synthesis, one always schedules

with the same scheduler but searches for the design with least area. In both

approaches one can explore the design space in one axis only.

The flexibility of our compiler, exhibited in allowing compaction with differ

ent constraints, software optimizations and hardware models, enables exploration

in two axes and makes our compiler a good candidate for use in HLS. By being able

to choose several hardware parameters (conditional execution or not, number of

functional units, number of pipeline stages for each functional unit, total number

of registers used), and increment them gradually we can "tune" the compiler to

maximize performance and actually explore the design space in both axes.

9.2 Application-specific Design

Application-specific design is one of the important arguments in favor of HLS

methodology. It is well known that a big penalty (in terms of excess hardware)

is incurred during the design of general-purpose (GP) architectures for enabling

their use for a large spectrum of app,lications, but when a very high performance

architecture is needed these GP designs are unable to provide the performance

required; Therefore, by fine-tuning the design and making it application-specific

one can save some of the area spent for generality and devote it to other critical

parts needed for the specific design.

~i 164

The approach we take in our compiler coincides with the application-specific

design approach. Since we have complete control on the compiler we can pa-

rameterize the design. We can check different options with different hardware

parameters and choose the best one as the final schedule. As hardware technology

approaches its physical limitations, fine-tuning becomes even more important.

9.3 Design Feedback

Another feature provided by our approach is that of immediate design feed-

back. To demonstrate this argument we'll refer to one of the major decisions during

the architecture design process: the selection of the system-clock. Having a fast

system-clock makes the whole design faster but will probably increase the number

of pipeline stag~s needed for the execution of the slow operations. On the other

hand, stretching the system clock will decrease, naturally, the number of stages

but will increase the time wasted in the execution of fast operations. This is a

"pure" design trade-off issue. With our approach, we may estimate the execution

times of all combinations of clocks and pipeline stages and get the best choice.

9.4 Gradual, 2-Dimensional Design Example

The idea behind our gradual, 2D design approach is to gradually change the

compiler's configuration and the hardware constraints to best fine-tune the perfor

mance for a specific problem. In other words, we propose a methodology to solve

an optimization problem while the problem is N-dimensional (we may have control

I

165

on N different parameters) and the optimization function is maximal performance

in minimal chip area. The approach is gradual since it allows incremental change

of each of these N dimensions and it is 2D because we allow design in both axes of

the design space mentioned in Section 9.1. The different problem dimensions may

be: the number of functional units, the number of pipeline stages of each unit, the

number of registers used and the model of execution (with or without conditional

execution).

To simplify the example below, we refer in this section to the performance

in terms of dynamic speed-up (as defined in Section 8.1) although in real system

design the cycle time may vary for different pipeline depths and therefore should

be accounted for. Furthermore, the only two dimension we allow to change (for

this example) are the number of functional units ·and the number of stages in each

unit.

Suppose the following program is given:

main()

{

int i;

float x[lO] ,y[lO];

for (i = 1; i < 10; i + +)

x[i] = x[i] * (x[i - 1] + y[i]);

}

The intermediate code representing the loop body is:

(LABEL Ll)

$2 := $3 - 44;

$f6 := M[$3 - 48];

$f8 := N/($3 - 84];

$J 4 := $/6 +$JS;

$f6 := M[$2 +OJ;

$f4 := $f4 * $f6;

M[$2 +OJ := $/4;

$3 := $3 + 4;

$4 := $4 + 4;

$cc0 := $4 <= 36;

if $cc0 (LABEL Ll)

166

The loop body has three memory loads, one floating-point addition and one

floating-point multiplication. The design goal is to come up with the best speed-up

under the following assumptions:

• Only floating-point operations and memory loads need to be pipelined. All

other operations can be completed in one cycle.

• Floating-point addition and multiplication are executed by the same func

tional unit (and therefore have the same latency). Memory loads are carried

out by another functional unit and all integer and conditional operations are

executed on a third unit.

• Pipeline latencies for floating-point operations and for the load may vary

from two stages to five stages.

• At most 3 functional units are allowed for this design.

speed-up

3.20
3.10

3.00
2.90
2.80
2.70
2.60
2.50
2.40
2.30
2.20
2.10
2.00

+
······+ ...

+---------+ -..

2 3

··+

.... .,...
.......

4

167

latency of load

2
3
4

-+-+ 5

5
latency of fadd/fmul

Figure 9.2: Speed-up With Different Latencies for the Gradual Design With 2
Functional Units.

To begin with, let us assume that the latencies of both loads and floating-

point operations is two cycles and that only two functional units are available.

Using the metric of speed-up, we then gradually change only one of the dimensions,

the latency dimension, and measure the speed-up obtained for each combination

of latencies. The results summarized in Figure 9.2 assume that only two functional

units are available and that no more than one load and/or conditional jump can

be executed in each cycle.

Figure 9.2 shows how the speed-up changes with a change in the pipeline

depth (when the number of units is kept constant). Intuitively, we would expect

the speed-up to decrease with an increase in operations' latency. However, while

168

an increase in the latency of the memory load unit increases the speed-up (keep

ing the latency of the addition/multiplication unit constant)-an increase in the

addition/multiplication units results in a decrease in speed-up.

Similar gradual change on the other axis (number of functional units), while

maintaining constant latency (of 2) for the addition/multiplication operations,

results in the numbers presented in Table 9.1. Same gradual change can be carried

out with latencies of 3-5 for the addition/multiplication operations.

Consequently, we get the best speed-up within the given pipeline limits and

with 2 functional units when the load takes 5 cycles and the floating-point func-

tional unit takes 2 cycles.

Ta bl 9 1 S d U w· th T e .. 1pee - p I WO a:µ d Th ree F t' unc 10na 1 Units

Load latency 2 3 4 5

2 functional units 2.25 2.55 2.87 3.14

3 fonctional uni ts 2.98 3.35 3.76 3.60

Improvement 32.5% 31.8% 31.0% 14.6%

From Table 9.1 one can see that, except for the case when load takes five

cycles, the improvement in speed-up with 3 units is significant over the speed-up

with 2 units. However, for this specific case the speed-up was maximal with 2

units. Therefore, the decision whether to use 3 functional units or stay with 2 is a

pure optimization problem: if three functional units are feasible the best choice is

with memory load unit that has 4 pipeline stages and floating-point unit that has

2 stages. On the other hand, if the design of 3 functional units is non-realistic, the

best selection is that of load unit with 5 pipeline stages and addition/multiplication

units with 2 stages.

169

In general, for each problem and for each set of feasible constraints one can

always find the best implementation using the approach described here. Naturally,

the selection of the best hardware choices is application-specific.

9.5 Future Extensions

9.5.1 Interactive Compaction

The parallelizing process discussed throughout the thesis is an automatic one

based on low-level transformations directed by higher-level "guidance" rules (see

chapter 3) and its goal is to generate a schedule that is better (i.e. more parallel)

than the one that can be produced by human e~perts. However, due to the com

plexity of schedule-generation problems (which are NP-hard), a compiler must rely

on heuristics, as explained in chapter 5, which sometimes fail to produce good (i.e.

optimal or nearly optimal) schedules.1 The automaticly-generated schedule may

not be the best achievable implementation under the given constraints. Hence,

allowing the user to interact with the compiler and direct the application of par

allelizing transformations, while the compiler takes care of the tedious aspects of

compaction, may yield even better schedules than those generated automatically.

Together with researchers at CMU we have integrated a graphical interface,

through which the user can suggest what should be done in parallel, while the

1This is true even for sequential architectures, but is critical for architectures utilizing sub

stantially both spatial and temporal parallelism, where the complexity of the schedule-generation

problem is much greater. Furthermore, the penalty for a bad schedule in parallel architectures

is proportional to the parallelism of the architecture, and thus could be very large.

~i 170

compiler performs the actual changes using the PPS transformations. If a request

cannot be satisfied, the compiler reports the problem causing the failure. The user

may then help eliminate the problem by supplying guidance or information not

explicit in the program. In such a way the user may add his insight and experience

to change the schedule such that all constraints are met and the best, fine-tuned

design is achieved.

A typical interactive session proceeds as follows. The user starts by request-

ing the automatic parallelization of the program (i.e. invoking the built-in heuristic

aggregate transformations). If the resulting schedule and hardware are satisfactory,

then no further work is needed and the interaction is complete. However, if the

user is not satisfied, he may chose to interactively parallelize critical kernels. The

user then refines the schedule by requesting specific modifications to the program

(e.g. moving some operations from one point in the graph to another. When such

a request is made, the compiler tries to instantiate it by a series of transformations.

If the instantiation succeeds, the schedule is changed accordingly. Otherwise, the

compiler reports the cause of the· failure (e.g. a dependency violation). Alterna

tively, a transformation may sometimes fail due to the inability of the compiler to

eliminate spurious dependencies (see Section 7 .5). Two indirect references could

appear to refer to the same memory location (thus causing a dependency) when

in fact the references are distinct. The user may realize this, based on information

available from the problem domain but not explicit in the program. In this case,

the user may choose to ignore the conflict and direct the compiler to perform the

transformation.

Most of this interactive interface has been implemented. We are now looking

for ways to integrate the automatic compilation with the interactive session.

<:
171

9.5.2 Consideration of Allocation Issues

As explained in chapter 5, when performing resource-constrained scheduling

we use a priority function to decide which operation to defer in the case that a node

contains more operations than allowed. This priority function takes into account

the operation's mobility as well as its precedence_number . . Currently, this priority

does not consider any allocation aspect of the operation chosen. We believe that

choosing a priority function that weights the allocation-aspects of the different

options could result in a better overall design. The only change required is to

rewrite the p~iority function (and of course an efficient algorithm to evaluate the

"allocation-price").

Chapter 10

Summary, Discussion and Future

Work

10.1 Thesis summary

The compiler presented in this thesis is targeted to map application-specific

programs onto high-performance, parallel architectures instantiated by a VLIW

template. When a high-performance system is designed, it is critical to have a

perfect matching between its hardwate and its compiler, otherwise considerable

parallelism may be lost. However, one cannot design a general-purpose compiler

to match the architecture for all possible applications. We propose in this thesis an

approach to fine-tune a very powerfvl compiler to an affordable hardware-design

by reconfiguring it, iteratively, so that the best matching is achieved. Naturally,

the best matching is achieved when the speed-up is maximized for a particular,

realizable design.

In order to extract substantial parallelism from both the hardware and the

compiler, we use a clean, highly parallel architecture paradigm as well as advanced

172

~i

- --- --- - - --- - ----- ----

173

compilation techniques. The architecture is VLIW-like in that it is totally syn

chronous, has muitiple functional units which can simultaneously access a shared

register-file and has a single program counter (single control thread). To further

enhance parallelism, we modified the "pure" VLIW model so that instead of single

stage functional units we use pipelined functional units that provide extra (tempo-

ral) parallelism. The use of clean (interlock-free) and homogeneous (all units have

the same structure) architectures does not only result in a better VLSI design but

also considerably increases the compiler's ability to produce better code.

Our compiler's high-performance is achieved through the integration of sev-

eral transformations, techniques and optimizations:

• The compiler uses a set of transformations called Pipelined Percolation Schedul-

ing (PPS) that extract parallelism across basic blocks of the programs. This

is crucial since, unfortunately, there is not enough parallelism within the

basic block limits. Any attempt to schedule operations only within basic

blocks boundaries is potentially limited. On the other hand, by using trans-

formations that schedule operations from different basic blocks we are able

to obtain significant speed-up. These transformations are especially powerful

since they allow scheduling for pipelined (multi-cycle) architectures that use

temporal parallelism.

• It is well-known that program execution exhibits the "90/10 locality rule"

namely, that a program spends about 90% of its time executing 10% of the

code. That 10% typically consists of the inner-loops in a program. Hence,

being able to significantly parallelize loops is an important factor in overall

parallelism extraction. Parallelism extraction in loops is carried out by an

enhanced loop pipelining technique that is implemented in the compiler.

I

I

- - _,_ -- - ~-------------------

174

• We use a powerful disambiguation technique to determine whether two (in

direct) memory references can be scheduled concurrently. This is especially

important when the references are due to array indexing in inner-loops. Turn

ing off this technique (by assuming that the two accesses may always refer

to the same location) considerably limits the parallelism. Relying on the

disambiguation information, we applied two other code optimizations that

removed redundant induction variables from loops and eliminated redundant

memory loads that consequently reduced the memory access traffic.

• The compiler implements a very efficient technique to rename (reallocate)

registers that otherwise cause false dependencies that may cause major degra

dation in achievable parallelism. To get rid of copies generated during re

naming we applied redundant IV removal ,and copy elimination techniques

which are very important to achieve a good resource constrained schedule.

• Sometimes, an algorithmic change of the application (i.e. expressing the

same problem in a different way) can enhance parallelism. A new local and

incremental Tree Height Reduct:ion algorithm is integrated in the compiler.

The algorithm rearranges the application such that more operations are ex

ecuted but their (total) execution time is reduced. THR can yield dramatic

speed-up when enough resources are available.

The scheduling process for a specific architecture is done in two phases. First,

the compiler extracts the maximal achievable parallelism as if all resources were

available. Second, it performs resource constrained scheduling which maps the

unconstrained schedule into the given architecture.

In order to be able to evaluate the complier's performance and validate its

correctness we built a simulator which serves both as an emulator for the target

175

architecture (we run our compacted code on the simulator rather on the "real"

hardware) and as debugging and verification tool. By comparing results derived

by running the serial (uncompacted) program on various input combinations with

the results derived by running the compacted program on the same input we were

able to verify the compiler's compaction correctness.

10.2 Discussion

During the endless hours I spent writing and debugging the compiler (and

even before ...) a lot of ideas inspired my research. Some simply came as a re

sult of previous work and others grew as by-products of this project. Some of

these perspectives, which I see as this research's contribution, are discussed in this

section.

• Since digital computers were introduced in the early 1960's there is everlast-

ing dispute: "Who is to blame for the insufficient performance of the ma

chine?". Throughout these years the machines have changed but the dispute

remained. Hardware designers were happy to blame the software people who

"were not able to write an :appropriate compiler for this wonderful machine"

while the software designers used to claim that "with such an architecture

not much can be done." Who was right depends on whom you have asked,

but the result was the same: machines were built with worse performance

than could have been achieved with the same technology.

From an objective point of view, both sides were right: there was no problem

with the designers but there was a problem with the approach: separating

176

the machine into software and hardware was the key. What actually matters

is the system's performance and performance is the integration result of the

compiler and the hardware. When a hardware engineer designs a chip one

cannot expect him to foresee all compiler-related problems. On the other

hand, when the hardware is predetermined the compiler's ability to produce

good-quality code is also limited. What is needed is an interactive concurrent

design in both domains so that there is immediate feedback from one to the

other. This is especially true when very high performance is required and the

compiler is allowed to take advantage of application-specific peculiarities.

The approach taken in this thesis is that of gradual, two dimensional system

design where the compiler and the hardware are concurrently reconfigured

to optimize the system's overall performance.

• When this research began there were only two published systems of code

transformations that exploit parallelism across basic blocks: Trace Schedul

ing (TS) and Percolation Scheduling (PS). However, both TS and PS did

not have a way of integrating IT1ulti-cycle operations within their transfor

mational model. The assumption that each operation takes one cycle implies

that one cannot take advantage of the architecture's temporal parallelism

capability which is very important in high performance architectures.

Since the current technology enables design of architectures with pipelined

functional units, it seemed t~ me that using transformations that cannot

handle pipelined operation may be a major drawback of our compiler. That

inspired the introduction of the modified transformations called Pipelined

Percolation Scheduling (PPS) which are used by our compiler.

177

• When scheduling for a specific architecture two possible approaches can be

taken: either take the architecture's resource constraints into consideration

from the beginning of the scheduling process or find the unlimited resources

schedule and then map the resulting schedule onto the given architecture.

The pro and con arguments are discussed in Chapter 5. Our compiler uses

the second approach. The main conceptual advantage of this approach is

that the unlimited resources schedule adds extra information to the resource

constrained scheduling (RCS) task.

We believe that by having the unlimited resources schedule first, we provide a

good (lower) bound on how well we can expect our constrained schedule to be.

In addition, this approach separates the heuristic part of the compiler from

the non-heuristic part thereby enabling evaluation of different heuristics.

• It is well known that one of the promising ways to increase parallelism in par-

allel systems is to perform algorithmic changes of the application. The way an

application is written determines its inherent achievable parallelism. In this

context, while we did not want to cross over into auto-programming(!), we

asked ourselves: "Is there any general way to rewrite code such that the com-

piler can compact it better while preserving the original code's semantics?".

We found that further compaction can be derived by using a new local and

incremental Tree Height Reduction algorithm. The THR algorithm which

is implemented in the compiler can reduce (sometimes significantly) the to

tal execution of the program at the expense of more computation. In other

words, when enough resources are available, by changing data-dependencies

between operations, we can achieve better parallelism than exhibited in the

original program.

I

178

10.3 Future Work

As mentioned in Chapter 2 one of the approaches taken in designing the

compiler was to build it in layers such that algorithms and techniques within each

layer that are currently implemented may be easily replaced by other compatible

alternatives. Following this idea, we intend to integrate into the compiler different

higher-level strategies that control the low-level PPS transformations. In partic

ular, we intend to integrate, at least, two other loop pipelining algorithms (OPT

[AiNi88b] and PP [AiNi88c]) that, potentially, may yield better results than the

current algorithm we use. In the context of loop pipelining we intend to extend

the current algorithm to pipeline not only inner-loops but also outer-loops. While

Loop Quantization [Ni88] allows unwinding of both inner-loops and outer-loops

concurrently, thus yielding good pipelining effect, it may be difficult to imp!ement

and may result in expensive code duplication. We want to relax this method by

pipelining first all inner-loops and then consider; the (pipelined) inner-loop as one

unit during the pipelining process of ~he outer-loops ([AiNi89]).

An extension of our disambiguation technique such that more sophisticated

assertions can be added to the automatic algorithm is also one of our future

tasks. Unfortunately, the compiler1s analysis of a program cannot capture the

user's knowledge of the general problem since this knowledge is usually not fully

encoded in the program. The user may be able to make decisions based on infor

mation not available to the compiler. Consider, for example indirect references like

A[B[i]] where array A's index depends on the input data B[i]. Since the compiler

cannot expect any specific input data pattern, the automatic algorithm will always

assume that there might be a conflict. However, based on non-encoded knowledge,

179

the user may realize that A[B[l]] and A[B[3]] can never refer to the same location.

Since precise disambiguation is critical to substantial parallelism such an assertion

mechanism can enhance the compiler's performance.

Code explosion and compilation-time are two issues that still need careful

attention in our compiler. Currently, although compilation-time and code explo-

sion are not restricted by any heuristics we obtain very reasonable time and space

when running the benchmarks. However, we expect that both measures will grow

considerably as the input grows. To solve this problem we intend to tackle these

problems in two different approaches. First, we are going to implement several

code optimization techniques on the input data which should reduce the input

code size. Second, we want to implement different heuristics to limit the paral-

lelization process and estimate how much parallelism is lost by these limitations.

Another future extension that we intend to perform is that of better com-

paction in the presence of procedure calls. Currently, all procedure calls are pre-

vented from being compacted intq nodes with other operations. In other words,

calls form barriers for compaction. Better compaction involves more analysis, but

it is feasible.

In the context of resource copstraints scheduling we plan to add a path priority

to operations' weighted priority function such that operations on most probable

paths will have priority over those on paths less probable.

Bibliography

[Ab91] A. Abnous. "Architectural Design and Analysis of a VLIW Processor".

MS thesis, University of California, Irvine , 1991.

[APBN91] A. Abnous, R. Potasman, N. Bagherzadeh and A. Nicolau. "A Per

colation Based VLIW Architecture". Proceedings of the 1991 International

Conference on Parallel Processing, St. Charles, IL, August 1991.

[Ai88] A. S. Aiken. "Compaction-Based Parallelization". PhD thesis, Cornell

University, August 1988.

[AiNi88a] A. Aiken and A. Nicolau. "A Development Environment for Horizontal

Microcode". IEEE Transactions on Software Engineering, Vol. 14, No. 5, May

1988.

[AiNi88b] A. Aiken and A. Nicolau. "Optimal Loop Parallelization". Proceedings

SIGPLAN 88, Conference on Programming Language Design and Implemen

tation, Atlanta, GA, June 22-24,;, 1988.

[AiNi88c] A. Aiken and A. Nicolau. "Perfect Pipelining: A new loop parallelization

technique". In Proceedings of the 1988 European Symposium on Programming.

Springer Verlag Lecture Notes in Computer Science no. 300, March 1988.

[AiNi89] A. Aiken and A. Nicolau. "Fine-Grain Parallelization and the Wavefront

Method". Proceedings of the 2nd Workshop on Programming Languages and

Compilers for Parallel Computing, Urbana, IL, August 1989.

180

~i 181

[ASU86] A. Aho, R. Sethi, J.D. Ullman. "Compilers: Principles, Techniques and

Tools". Addison-Wesley, Reading, MA, 1986.

[Ba78] J. Barth. "A Practical Interprocedural Data Flow Analysis Algorithm".

Communication of the ACM, Vol. 21, No. 9, pp. 724-736, 1978.

[Ba79] U. Banerjee. "Speed-up of Ordinary Programs". Technical Report

UIUCDS-R-79-989, University of Illinois, Department of Computer Science,

1979.

[BEH91] D. Bradlee, S. Eggers and R. Henry. "Integrating Register Allocation

and Instruction Scheduling for RISCs". Proceedings of 4th International Con-

ference on ASPLOS, Santa Clara, CA, April 1991.

[Br91] M. Breternitz Jr. "Architecture Synthesis of High-Performance Application

Speci:fic Processors". PhD thesis, Carnegie Mellon University, April 1991.

[CCK87] D. Callahan, J. Cocke, K. Kennedy. "Estimating interlock and improving

balance for pipelined architectures". Proceedings of the 1987 International

Conference on Parallel Processing, pp. 295-304, 1987.

[CF87] R. Cytron and J. Ferrante. "What's in a name? or The value of renaming

for parallelism detection and storage allocation". Proceedings of the 1987

International Conference on Parallel Processing, 1987.

[CFRWZ89] R. Cytron, J. Ferrante, B. K. Rosen, M.N. Wegman and F.K. Zadeck.

"An efficient method of computing static single assignment form". 16th An

nual ACM Symposium on Principles of Programming Languages, Austin, TX,

January 1989.

[CKV85] R. Cytron, D.J. Kuck and A.V. Veidenbaum. "The effect of restructur-

ing compilers on program performance for high-speed computers". Computer

Physics Communications, 37:37-48, 1985.

182

[Co88] R. P. Colwell, R. P. Nix, J. J.O'Donnell,D. B. Papworth,P. K. Rodman.

"A VLIW architecture for a Trace Scheduling Compiler". IEEE Transactions

on Computers, Vol. 37, No. 8,1988.

[Eb87] K.Ebcioglu. "A Compilation Technique for Software Pipelining of Loops

with Conditional Jumps". Proceedings of the 20th Annual Workshop on Mi

croprogramming, pp. 69-79, ACM Press, 1987.

[Eb88] K.Ebcioglu. "Some Design Ideas for a VLIW Architecture for Sequential

N atured Software". Proceedings IFIP, 1988.

[EbNa89] K.Ebcioglu, and T. Nakatani. "A New Compilation Technique for Par

allelizing Loops with Unpredictable Branches on a VLIW Architecture". Pro

ceedings of the 2nd Workshop on Programming [:anguages and Compilers for

Parallel Computing, Urbana, IL, 1989.

[EbNi89] K.Ebcioglu, and A.Nicolau. "A global resource-constrained paralleliza

tion technique". Proceedings of ACM SIGARCH ICS-89: International Con-

ference on Supercomputing, Crete, Greece June 2-9 1989.

[El86] J. R. Ellis. "Bulldog-A Compiler for VLIW Architectures". MIT Press,

1986.

[Fl66] M. J. Flynn. "Very high spe,ed computing systems". Proceedings of the

IEEE, 54(12) ,pp. 1901-1909, 1966.

[Fi81] J. A. Fisher. "Trace Scheduling: A technique for global microcode com

paction". IEEE Transactions on Computers, No. 7,pp. 478-490, 1981.

[Fi83] J. A. Fisher. "Very Long Instruction Word architectures and the ELI-

512". Proceedings of the 10th Annual Internation Architecture Conference,

Stockholm, June 1983.

183

[GrLa86] T. Gross, M. S. Lam. "Compilation for high-performance systolic array".

Proceedings of the 1986 SIGPLAN Symposium on Compiler Construction,

July 1986.

[He77] M. S. Hecht. "Flow Analysis of Computer Programs". elsevier North

Holland, New York, 1977.

[He85] J. L. Hennessy. "VLSI RISC processors". VLSI Systems Design, VI: 10, pp.

22-32, October 1985.

[JoMu81] N. D. Jones, S. S. Muchnick. "Program Flow Analysis: Theory and

Applications". Prantice-Hall, Englewood Cliffs, NJ, 1981.

[Ku78) D. J. Kuck. "The Structure of Computers and Computations". Vol I, New

York: Wiley, 1978.

[Ku87] M. Kumar. "Effect of Storage Allocation/Reclamation Methods on Paral

lelism and Storage Requirements". Proceedings of the 14th Annual Interna

tional Symposium on Computer Architecture, Pittsburgh, PA, June 1987.

[Ku88] M. Kumar. "Measuring Parallelism in Computation-Intensive Scien-

tific/Engineering Applications". IEEE Trans. on Computers, Vol 37, No.

9, pp. 1088-1098, September 1988.

[KuMuCh72) D. J. Kuck, Y. Mutaoka and S. C. Chen. "On the number of opera-

tions simultaneously executable in Fortran-like programs and their resulting

speedup". IEEE Trans. on Computers, C-21, 12, December 1972.

[McPC88) M. C. McFarland, A. C. Parker and R. Camposano. "Tutorial on High

Level Synthesis". Proceedings of the A CM IEEE 25th Design Automation

Conference, June 1988.

. :
"'l!

~'

184

[NaEb90] T. Nakatani, K.Ebcioglu. "Using a lookahead window in a compaction

based parallelizing compiler". Proceedings of the 23rd Annual Workshop on

Microprogramming, Orlando, FA, November 1990.

[Ni84] A. Nicolau. "Percolation Scheduling: A parallel compilation technique" .

Technical Report 85-678, Cornell University, 1984.

[Ni85a] A. Nicolau. "Uniform Parallelism Exploitation in Ordinary Programs".

Proceedings of the 1985 International Conference on Parallel Processing, 1985.

[Ni85b] A. Nicolau. "Parallelism, Memory Anti-aliasing and Correctness for Trace

Scheduling Compilers". PhD thesis, Yale University, March 1985.

[Ni88] A. Nicolau. "Loop Quantization: A Generalized Loop Unwinding Tech

nique." Journal of Parallel and Distributed Computing, 5, pp. 568-586, 1988.

[NiFi84] A. Nicolau, J. Fisher. "Measuring the parallelism available for VLIW

architectures". IEEE Trans. on Computers, C-33, pp. 968-976, November

1984.

[NiPo90] A. Nicolau, R. Potasman.. "Realistic Scheduling: . Compaction for

Pipelined Architectures". Proceedings of the 23rd Annual Workshop on Mi-

croprogramming, Orlando, FA, November 1990.

[NiPo91] A. Nicolau, R. Potasman. ~'Incremental Tree Height Reduction for High

Level Synthesis". Proceedings of the A CM IEEE 28th Design Automation

Conference, San Francisco, CA, June 1991.

[NPW91] A. Nicolau, R. Potasman and H. Wang. "Register allocation, renaming

and their impact on parallelism". Technical Report, University of California,

Irvine, April 1991.

'i

II Ill llllll I II Ill Ill Ill I Ill I Ill I I llll Ill II Ill Ill I Ill Ill llll /111
.t3 1970 00882 8714

185

[PaGa86] B. M. Pangrle and D. D. Gajski. "States Synthesis and Connectiv-

ity Binding for Microarchitecture compilation". Proceedings of ICCAD ,Nov.

1986, pp. 210-213.

[PaKn89] P. G. Paulin and J. P. Knight. "Force-Directed scheduling for the Be

havioral Synthesis of ASIC's". IEEE trans. on CAD, Vol. 8, No. 6, June

1989.

[PaPa88] N. Park and A. C. Parker. "Sehwa: A Software Package for Synthesis of

Pipelines from Behavioral Specifications". IEEE Trans. on CAD, Vol. 7, No.

3, March 1988.

[PLNG90] R. Potasman, J. Lis, A. Nicolau, D. Gajski. "Percolation Based Syn

thesis". Proceedings of the A CM IEEE 27th Design Automation Conference,

Orlando, FA, June 1990.

[RaG182] B. R Rau, C. D. Glaeser. "Efficient Code Generation for Horizontal

Architectures: Compiler Techniques and Architectural Support". Proceedings

of the 9th Symposium on Computer Architecture, April 1982.

[RiFo72] E. Riseman, C. Foster. "The inhibition of potential parallelism by condi

tional jumps". IEEE Trans.· on Computers, Vol. 21, No. 12, December 1972.

[TjF170] G. S. Tjaden and M. J.,Flynn. ·"Detection and parallel execution of inde

pendent instructions". IEEE Trans. on Computers, Vol. 19, No. 10, October

1970.

[Tr87] H. Trickey. "Flamel: A High-Level Hardware Compiler". IEEE Trans. on

CAD, Vol. 6, No. 2, March 1987.

