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Immunocytochemical Localization of the Lens Main

Intrinsic Polypeptide (MIP26) in Communicating Junctions

DEAN BOK, JAMES DOCKSTADER, and JOSEPH HORWITZ
Department of Anatomy and Jules Stein Eye Institute, University of California,
Los Angeles, California 90024

ABSTRACT

	

Plasma membranes of vertebrate lens fiber cells contain a major intrinsic polypep-
tide with an apparent molecular weight of 26,000 (MIP26) . These plasma membranes are
extremely rich in communicating junctions, and it has been suggested that MIP26 is a
component of them . MIP26 was purified from cow lenses using preparative SDS gel electro-
phoresis followed by hydroxylapatite column chromatography . From gel electrophoresis pat-
terns and aggregational properties it was concluded that the MIP26 preparation was homoge-
neous . The purified MIP26 was used to produce monospecific antibodies in rabbits as assessed
by double immunodiffusion and crossed immunoelectrophoresis of purified MIP26 and solu-
bilized lens plasma membranes against the antiserum . Indirect immunocytochemical studies
were performed on open and closed lens plasma membrane vesicles by incubation in anti-MIP
antiserum followed by ferritin-conjugated goat antirabbit IgG . The conjugate bound unequiv-
ocally to lens communicating junctions, indicating that MIP26 is a component of these
structures .

The lens ofthe vertebrate eye is derived from ectoderm and is
composed primarily of concentric layers of long, hexagonally-
shaped units called lens fiber cells. The fiber cells differentiate
from an epithelial monolayer that covers the anterior surface
of the lens and terminates at the equator. During the process
of differentiation, which occurs throughout life, the equatorial
epithelial cells elongate and follow a curved course that extends
from the anterior pole of the lens to the posterior pole . New
lens fibers are deposited over the older ones, the latter being
compressed towards the interior of the region known as the
nucleus. As a result of this constant process of differentiation
and in the absence ofcell sloughing, the lens gradually increases
in size with age . The fiber cells occupying the superficial layers,
collectively termed the cortex, begin to lose theirmitochondria,
nuclei, and cytoplasmic membranes shortly after elongation
commences, but retain their polyribosomes for a while (4) .
During this time, they synthesize a diverse class of proteins
called crystallins along with their membrane proteins. The
oldest fiber cells of the lens, compacted into the lens center
(nucleus) and having lost all of their organelles, are incapable
of protein synthesis (48).

Because the lens fiber cells are, on the average, very sparsely
populated with cytoplasmic membranes, purification of their
plasma membranes is simplified . During the past decade these
plasma membranes have aroused interest because, like the
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erythrocyte membrane, they provide us with an easily accessi-
ble model for the study of membrane structure (4). Further-
more, they are extraordinarily rich in a unique type of com-
municating junction' (4, 6, 27, 31, 37) that is the subject of this
investigation.

It is now generally agreed that vertebrate lens fiber cell
plasma membranes contain a major intrinsic polypeptide spe-
cies of -26 kdaltons (2, 5, 7, 9), variously referred to as MIP
(9) or MP26 (5) . It should be stated however that this situation
prevails only in the youngest of lens fiber cells . As the lens
ages, or as the fiber cells are sampled in successively deeper
and therefore older layers of the lens, an intrinsic polypeptide
of 22 kdaltons is also found (25, 42). The lens of a 24-yr-old
human has about equal amounts of the MIP26 and 22-kdalton
intrinsic polypeptide (25) . Horwitz and Wong (26) have shown
that the 22-kdalton protein is derived from MIP26 by the
posttranslational cleavage of a 4-kdalton segment . The 26-
kdalton protein has been reported for isolated lens fiber cell

'The term communicating junction (43) rather than gap junction is
used throughout this report for the lens because there is disagreement
concerning the existence of an intrajunctional "gap" as originally
described by Revel and Kamovsry (41) . Reference 39 reviews the
evidence on this subject and summarizes data relating to the intercel-
lular coupling that is mediated by lens communicating junctions.
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junctions from various species (17) . Because thesejunctions are
so numerous (50-6001o of the cell surface in some cases [27]),
several authors have suggested on the basis of this evidence
that MIP26 and the 26-kdalton junctional protein may be the
same (1, 4, 8, 17) . This report employs immunocytochemical
methods in the investigation ofthis question.

MATERIALS AND METHODS
Purification of MIP26

After decapsulation, bovine lenses were partially crushed with a mortar and
pestle in 20 mM Tris-HCI, 0.1 MNaCl buffer, pH 7.7. Lens nuclei were removed
by straining the crushed lenses through sterile gauze. Afterthis step, the cortical
suspension was homogenized in the same buffer using a Ten Broeck glass
homogenizer. The homogenate was centrifuged at 18,000 rpm for 25 min in a
Sorvall SS-34 rotor (DuPont Co., Wilmington, Del.). The pellet was washed six
times by resuspending with homogenization in a Ten Broeck glass homogenizer
and repelleting the insolubleprotein fraction by centrifugation . The final buffer-
insoluble fraction was treated similarly six times with 7 M urea added to the
buffer . Before each centrifugation step, the homogenate was diluted 1 :4 with
Tris-HCI buffer without urea. Urea was removed fromthe final insoluble fraction
by two washes with the same buffer .
The resulting material was solubilized in 20 mM Tris-HCl buffer, pH 7.7,

containing 1% SDS, and then centrifuged at 20,000 rpm for 15 min. 6 ml ofthe
supernatant (total protein, -15mg) were applied to a 4 x 120 x 160mmtoothless
slab gel, and electrophoresed at 20 mA for 18 h. Stacking and running gels were
composed of 4.5% and 15% acrylamide, respectively. To prevent heat-induced
aggregation of the lens main intrinsic polypeptide, the sample was not heated
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before electrophoresis (47). After electrophoresis, a 1-cm vertical strip, cut from
the center of the gel, was scanned at 280 nm using an ACTA MVI spectropho-
tometer (Beckman Instruments, Inc., Palo Alto, Calif) equipped with a model 2
Gel Scanner. This scan allowed the localization of MIP26 in the preparative slab
gel(Fig. 1). A horizontal slice containing MIP26was cut from the geland crushed
through a 6-ml syringe. The crushed gel was suspended in an equal volume of
0.1 M sodium phosphate buffer, pH 6.8, containing 1% SDS. The suspension of
crushed gel and buffer was stirred gently at room temperature for 24 h to allow
the protein to diffuse from the acrylamide. The supernatant was then applied to
a l cm x 3 cm column of hydroxylapatite equilibrated with 0.1 M sodium
phosphate buffer, pH 6.8, containing 1% SDS. After flushing the column with 5
bed volumes of the starting buffer, a two-step discontinuous gradient consisting
of -25 ml of0.3 Msodium phosphate, pH 6.8, containing 1% SDS, followed by
0.5 M sodium phosphate, pH 6.8, with 1% SDS, was used to elute the proteins
from the column . The material eluted with the 0.5 Msodium phosphate/ 1% SDS
buffer was collected and pooled. Because the hydroxylapatite column was at
times overloaded with protein, the fraction eluted with 0.3 Msodium phosphate
contained a significant amount of MIP26. To recover the protein, this fraction
was diluted again to a finalconcentration of 0.1 M sodium phosphate buffer, pH
6.8, with l% SDS and rechromatographed as described above.

Removal of SDS and Concentration of MIP26 by
KCI Precipitation

Solid KCI was added to 5-ml aliquots of the 0.5 M sodium phosphate/ I%
SDS elution peak from the hydroxylapatite column to a final concentration of
0.5 M. The KCI precipitated the MIP26 as well as the bulk of the dodecyl sulfate
ion. We centrifuged the suspension at 18,000 rpm for 10 min and discarded the
supernatant . The pellet was washed by resuspension in 0.5 ml or I ml of20 mM
Tris-HCl buffer, pH 7.7, followed by centrifugation at 18,000 rpm for 10 min.

FIGURE 1

	

Arepresentative absorption scan at 280 nm of a preparative polyacrylamide SDS gel . The urea-washed pellet containing
lens plasma membranes was dissolved in buffer with 1% SDS and electrophoresed . The protein peak appearing at a distance of
3 .8-4 .7 cm and indicated by arrows, contains the 26-kdalton main intrinsic membrane polypeptide (MIP26) .

FIGURE 2

	

Elution profile of MIP26, which was recovered from the region of the gel indicated by the arrows in Fig . 1 and then
applied to a hydroxylapatite column . Membrane proteins were eluted with 0 .3 M and 0 .5 phosphate buffer containing 1% SDS . For
more details see Materials and Methods section .

FIGURE 3

	

SDS PAGE of various fractions containing MIP26 . Column 1 : plasma membrane fraction after urea-wash ; column 1:
same as column 1, but heated at 100°C for4 min before electrophoresis ; column 3: MIP26 eluted from the hydroxylapatite column
with 0 .3 M sodium phosphate ; column 4 : same as column 3, but heated at 100°C for 4 min before electrophoresis ; column 5:
purified MIP26 eluted with 0.5 M sodium phosphate from the hydroxylapatite column ; column 6 : same as column 5, but heated
at 100°C for 4 min before electrophoresis ; column 7 standards (OV, ovalbumin ; CH, a-chymotrypsinogen ; CT, cytochrome c) .
Approximately 30 Rg of protein was applied in each of columns 1-6.



More than 90% of the polypeptide generally was recovered in the supernatant of
the second and third washes, as determined by absorbance measurements at 280
nm .
The concentration of residual SDS present in the recovered protein was

determined by introducing 35 S-labeled SDS into the stock buffer-SDS solution .
Results from several experiments indicated that the residual SDS in the protein
sample was<_0.05% of the SDS originally added . In addition to being invaluable
insofar as bulk SDS removal was concerned, this technique also served to
concentrate the samples 5- to 10-fold . From a total of 15 mg of membrane
proteins that was applied to the preparative gel, 2 mg of highly purified MIP26
were obtained.

Preparation and Characterization of Antisera
Female New Zealand rabbits were injected intradermally with 0 .3 mg of

antigen in Freund's adjuvant per immunization. Attwo successive 10-d intervals,
the injections were repeated, after which the animals were bled for the first time .
Thereafter, rabbits were bled monthly for -6 mo with an injection of antigen
administered 1 wkbefore each bleeding. Immunodif fusion assays were performed
in 1% agar containing 0.2% SDS to prevent nonspecific precipitation as described
previously (38). In addition, crossed immunoelectrophoresis was performed on
pure antigen and solubilized membranes by the method of Converse and Pap-
ermaster (13) with the modification suggested by Chua and Blomberg (12).

Preparation of Membranes for
Immunocytochemical Studies
Bovine lens plasma membranes were prepared by discontinuous density

centrifugation according to the procedure of Bloemendal et al. (6) . A fraction
rich in plasma membranes was collected from the 1 .14/1 .16 and 1 .16/1 .18
interfaces . After removal of the sucrose by two water washes, the membranes
were washed twice with 7 M urea in 20 mM Tris-HCI, 0.1 M NaCl, pH 7 .7 . The
remaining pellet was washed twice with phosphate-buffered saline (PBS), then
aliquoted into several fractions, each containing 3-4 mg of the total protein . In
some of the experiments the urea wash was omitted in order to test its effect on
antibody binding.

Indirect Immunocytochemistry
Each of the above membrane fractions was suspended in PBS containing 5%

bovine serum albumin for 15 min. Immune serum was added to the membrane
suspension at a final dilution of 1 :3 . Low dilutions of the antiserum were used
due to the extraordinarily high concentration of antigen in each membrane
fraction (3-4 mg of protein, 80% ofwhich was MIP26), although dilutions ofup
to 1 :100 gave positive results. The mixture was incubated for 1 h at 21'C. During
that period, the suspension was gently homogenized once with a single stroke of
the pestle. The suspension was then washed with PBS . Control fractions were
prepared in an identical manner, except that the membrane suspensions were
incubated in preimmune serum. After the PBS washes, the membrane fractions
were again suspended in PBS containing 5% bovine serum albumin, and affinity-
purified ferritin-conjugated goat antirabbit IgG (GAR-Fn, 1 .0 mg/ml; Miles-
Yeda, Rehovot, Israel). After incubation for 1 h at room temperature, the
fractions were washed three times with PBS. At this point, the membrane
fractions were suspended again in PBS and stirred gently overnight at 4°C to
ensure thorough removal of loosely bound GAR-Fn . Each fraction was sedi-
mented in a Sorvall SS-34 rotor at 20,000 rpm for 15 min . The pellets obtained
were fixed in a solution of2% glutaraldehyde, 0 .1 M phosphate, pH 7 .3, for two
h, and further fixed in 1% osmium tetroxide for 1 h. All membrane pellets were
dehydrated in a graded ethanol series and embedded in Araldite 502. Silver
sections were prepared and viewedonFormvar-carbon-coated grids in a Siemens
IA or JEOL 1000 electron microscope.

RESULTS

Purification of MIP26 from Lens Fiber Cell
Plasma Membranes
Fig . 1 shows a densitometric scan of a typical urea-washed

membrane preparation recorded from a strip of preparative
SDS polyacrylamide gel . In this figure, the MIP26 is contained
in the peak appearing at a distance of 3.8-i.7 cm on the
preparative gel. After removal of the protein from the gel, the

FIGURE 4

	

Double immunodiffusion of cow lens MIP26 against lens soluble crystallins, rabbit anti-MIP26 antiserum, and rabbit
preimmune serum . Well A, 35 pl of immune serum . Well B, 20Itg of total lens soluble proteins solubilized in 0.1% SDS . Well C, 20
ILg of KCI-extracted MIP26. Well D, 35 pl of preimmune serum . Dark-field photograph .

FIGURE 5

	

Crossed immunoelectrophoresis of MIP26 and its multimeric aggregates against rabbit antiserum raised against MIP26 .
20 Wg of purified MIP26 were first electrophoresed in a conventional SDS PAGE system, as shown in Fig . 3, column 5. The lane
containing the sample (2 x 6 x 10 mm) was cut out of the gel . A 2 x 2 x 80 mm strip containing the pertinent bands was then
electrophoresed in the second dimension into the agarose antibody-containing gel, as described by Chua and Blomberg (12) . The
agarose gel contained 7% immune serum, and the intermediate gel contained 3% Lubrol PX . All other conditions were as described
previously . Coomassie Blue stain .

FIGURE 6

	

Crossed immunoelectrophoresis of crude cow lens plasma membrane preparation against MIP26 antiserum . 20 Wg of
urea-washed membranes were first electrophoresed in SDS as shown in Fig . 3, column 1 . A 2-mm strip containing the pertinent
bands was then electrophoresed in the second dimension into the agarose antibody-containing gel . All conditions were the same
as Fig . 5 . MIP26 (26K) and its dimer (1-26K) were the only bands to elicit rockets in the agar gel . Coomassie Blue stain .
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protein solution was applied to a 1 x 3 cm column of hydrox-
ylapatite . The first protein peak (Fig. 2), eluted with 1% SDS
containing 0.3 M sodium phosphate buffer, comprises mainly
the MIP26 component ; however, appreciable amounts of
smaller peptides can be detected in the electropherogram of
this fraction (Fig. 3, lanes 3 and 4) . The protein fraction eluted
with 0.5 M sodium phosphate buffer was found to be free of
any low molecular weight contaminants . An SDS PAGE pro-
file ofa concentrated sample obtained from the 0 .5 M sodium
phosphate elution peak ofthe hydroxylapatite column is shown
in Fig. 3, lanes 5 and 6. In agreement with an earlier report,
MIP26 formed multimeric aggregates with increased purifica-
tion and concentration (26) . Furthermore, MIP26 aggregated
when the sample was heated before electrophoresis. Since
MIP26 is the only protein associated with lens membranes that
is heat sensitive, this behavior served as an additional criterion
for the purity ofthe preparation (25) .

Characterization of Antisera against MIP26
The specificity of the anti-MIP26 serum was demonstrated

in an earlier report by double immunodiffusion (49), and the
data therefore is only partially repeated here. That study
showed no cross-reactivity with any of the soluble bovine lens
crystallins . Furthermore, no nonspecific precipitin lines were
observed when 1% SDS was diffused against immune serum .
Fig. 4 reemphasizes the lack of reactivity with soluble lens
proteins and demonstrates in addition that no reaction was
observed with preimmune serum.
To achieve a more rigorous demonstration of specificity of

the anti-MIP26 antibody, we used the crossed immunoelectro-
phoresis system of Converse and Papermaster (13), which was
recently improved by Chua and Blomberg (12) . A highly
purified preparation of MIP26 was first separated by SDS
PAGE and subsequently electrophoresed at right angles to an
agarose gel containing anti-MIP26 antiserum (Fig . 5) . It is
noteworthy that, in addition to MIP26, every multimer of this
protein reacted specifically with the antiserum to produce a
rocket which was proportional to the concentration of the
corresponding MIP26 multimer. The result of crossed immu-
noelectrophoresis with a urea-washed lens membrane prepa-
ration is shown in Fig . 6 . In the first dimension (SDS PAGE),
many protein bands are observed in addition to MIP26. The
three bands ofmolecular weight <26 kdaltons are known to be
crystallins (26) . Upon electrophoresis in the second dimension,
MIP26 reacted with the immune serum to produce a rocket .
We also observed consistently a second weak rocket at the
position corresponding to 52 kdaltons, which represents the
dimer of MIP26. This agrees with a previous observation that
dimers of 26 kdaltons can be formed in solubilized membrane
preparations (26) . Thus combined, the immunodiffusion and
crossed immunoelectrophoresis experiments demonstrate the
specificity of the antiserum against MIP26 .

Indirect Immunocytochemistry Using GAR-Fn
Purification of lens fiber cell plasma membranes by sucrose

density centrifugation and washing in 7 M urea to remove
adherent crystallins produced open and closed vesicles with a
wide range ofsizes (Figs. 7 and 8). The binding ofanti-MIP26
antibody to the membranes was qualitatively the same whether
or not the urea wash was included in the protocol. All results
reported below are for urea-washed material. Fig . 7 illustrates
a membrane preparation that was treated with immune serum
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followed by GAR-Fn . Each vesicle is labeled on its external
surface and some are labeled on their internal surface as well,
indicating that the latter were open during incubation in the
immune reagents. Control vesicles that were incubated in
preimmune serum followed by GAR-Fn showed no binding of
the label (Fig. 8), although occasional nonspecific adsorption
of ferritin particles or clumps was observed . Fig . 9 shows a
higher magnification of a vesicle that was open during its
treatment with immune serum and GAR-Fn. The vesicle is
composed entirely of communicating junction as evidenced by
its pentalaminar profile (16). Ferritin-labeled antibody is
evenly distributed along both the external and internal surface .
These two surfaces represent the cytoplasmic sides oflens fiber
membranes that were connected in situ. Wherever the junction
profile is favorably oriented, it can be observed that the ferritin
molecules are separated from the membrane surface by a
translucent zone . This is to be expected when first and second
stage IgG molecules intervene between antigenic determinants
on the membrane surface and the ferritin that is conjugated to
the second stage antibody .
An even distribution offerritin was not always observed over

vesicles that were formed entirely ofjunctional membrane . Fig.
10 includes two vesicles that were closed during incubation in
the immune reagents . The distribution of ferritin over the
example on the left is interrupted in several places, whereas
the vesicle on the right is saturated with label. It is possible
that vacancies in the otherwise uniform labeling pattern result
from imperfect delivery of either the primary or secondary
antibody to the membrane surface during incubation . Alter-
natively, the vacancies in the staining may well be due to
clumping ofMIP26 in the plane of the membrane, with result-
ant denuded patches . This phenomenon has been observed in
freeze-fracture replicas of lenticular junctions (17) .

It was not possible to make a firmjudgment concerning the
binding of anti-MIP26 antibody to nonjunctional areas of the
lens fiber cell plasma membrane because, in sectioned vesicles,
one could never be certain of the past status of apparent
nonjunctional regions . Without question, our vesicle prepara-
tions contained some nonjunctional membrane because they
were formed in the absence of detergents which are known to
selectively solubilize lens nonjunctional plasma membrane
(17) . Nonetheless, it is conceivable that communicating junc-
tions were capable of dissociation under the conditions em-
ployed. Junctional splitting is known to occur in liver under
hypertonic conditions (19) . One might conclude that the vesi-
cles illustrated in Figs . 11 and 12 demonstrate examples of
labeled junctional and nonjunctional membrane . Alternatively,
it could be argued that those segments that appear to be
nonjunctional are in fact regions where the communicating
junctions had split apart. We have evidence from indirect
ferritin immunocytochemical staining of lens ultrathin frozen
sections, however, that MIP26 is distributed at high density
both junctionally and extrajunctionally (Fitzgerald, P . J ., D.
Bok, and J. Horwitz, manuscript in preparation) .

DISCUSSION
Earlier studies, based on biochemical and fluorescence immu-
nocytochemical methods, showed that MIP26 is a component
of the lens fiber plasma membrane (2, 5, 7, 9, 10, 14, 46).
However, because lens communicating junctions had not been
purified and because of the relatively low resolution of fluo-
rescence microscopy, it could not be determined whether



FIGURES 7-9

	

Lens fiber cell plasma membranes purified by sucrose
density centrifugation, washed in 7 M urea and incubated in either
preimmune or immune rabbit serum followed by ferritin-labeled
goat antirabbit IgG (GAR-Fn) .

FIGURE 7 Membrane vesicles incubated in immune serum and
GAR-Fn were always labeled . In some instances, ferritin was bound
only to the external surface of a vesicle (long arrows) whereas other
vesicles were labeled on both their external and internal surfaces
(short arrows) indicating that the latter were patent during incuba-
tion . Bar, 0.5 ym . x 50,000.

FIGURE 8 Vesicles incubated in preimmune serum and GAR-Fn
were not labeled . Occasional clumps of ferritin (arrows) are ob-
served in the field . Bar, 0.5 gm . x 40,000 .

FIGURE 9

	

Some vesicles were composed entirely ofcommunicating
junction . In this case, the external and internal surface of the vesicle
represent the two cytoplasmic surfaces of the junction . Ferritin is
uniformly distributed on both surfaces (arrows) of this vesicle which
was incubated in immune serum and GAR-Fn . Bar, 0 .1 gm . x 92,400.
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FIGURES 10-12

	

Lens fiber cell plasma membranes purified by sucrose density centrifugation, washed in 7 M urea and incubated
in immune rabbit serum and GAR-Fn .

FIGURE 10

	

Vesicles composed of communicating junctions were not always uniformly labeled. The closed vesicle on the right
appears to be saturated with label whereas that on the left has an uneven distribution of ferritin on its surface. The latter may be
due to the uneven delivery of immune reagents or to clumping of MIP26 in the plane of the membrane . The vesicle on the right
has retained some lens crystallins in its interior (flocculent material). The junction forming it appears to be separating (arrows) .
Alternatively this region might represent nonjunctional membrane. Bar, 0.2 Am. x 62,000.

FIGURE 11 Vesicle profiles more complicated than those illustrated in Fig. 9 and 10 were also observed . A labeled single-
membrane vesicle (short arrow) is observed within a larger labeled vesicle in this figure. It is deduced that the larger, obliquely
sectioned vesicle consists, in part, of communicating junction, because portions of it are interspersed by separated membranes
(long arrows). These labeled areas might represent dissociating junctional regions or they could be intervening nonjunctional
membrane. Bar, 0.2 Am . x 65,000 .

FIGURE 12

	

An example similar to that shown in Fig. 11 indicates labeled separated areas (arrows) that could be interpreted either
as dissociated junctional or as nonjunctional membrane . Bar 0.2 Am . x 65,000.

MIP26 is a junctional or a nonjunctional component . Lens
fiber communicating junctions have recently been purified to
morphological homogeneity with a concomitant enrichment of
MIP26 (7) . The immunocytochemical data presented in this
study support this biochemical evidence for MIP26 in com-
municating junctions. Because our identification of nonjunc-
tional membrane had to be made with equivocation, we were
not able to say with certainty from this study whether MIP26
is distributed throughout lens fiber plasma membranes or
whether it is confined to communicating junctions . However,
work in progress, utilizing frozen sections of lightly fixed lens
cortex shows a general distribution ofMIP26 in bothjunctional
and nonjunctional regions . The functional consequences ofthis
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remain to be determined (Fitzgerald et al., manuscript in
preparation) .

It is obvious from our data that antigenic determinants
sufficiently protrude from the cytoplasmic surface of the lens
plasma membrane communicating junctions to allow binding
of the first stage antibodies . This is not a surprising feature for
a protein that is engaged in the formation of transmembrane
channels . It is also consistent with the observation that prote-
olytic digestion ofintact lens membrane cleaves the 26-kdalton
component to a 20-kdalton "core" that is resistant to further
proteolysis . These results suggest that the core 20-kdalton
polypeptide is protected by the lipid bilayer, whereas a 6-
kdalton component is accessible to the enzymes (44) . Similar



results were obtained by others with proteolysis of liver com-
municating junctions (22) . The extracellular surfaces of tightly
apposed communicating junctions should not be accessible to
enzymes or to immune reagents whose molecular weights
exceed that of substances known to penetrate the extracellular
gap between conventional communicating junctions . Because
of this inaccessibility, and because no method exists for the
controlled dissociation of lens communicating junctions before
incubation in the primary antiserum and labeled second stage
antibody, it could not be determined whether the rabbit anti-
MIP26 antiserum included IgG species directed against anti-
genic determinants on the extracellular surface of this junc-
tional protein.

During the past 10 yr, considerable effort has been expended
in attempts at isolation and characterization of the subunits
that make up the connexons (15) of communicating junctions .
The question has been raised whether these subunits would be
conservative in their structural and functional properties from
one tissue to the next in a given individual and even among
classes of vertebrates. However, in recent years, it has become
apparent that this may not be the case, because communicating
junctions between lens fibers have properties that are not
shared by communicating or gap junctions in other tissues .
One major difference may involve the matter of connexon
crystallization in the plane of the membrane . Under conditions
of increased proton or calcium ion concentration, the commu-
nicating junctions of nonlenticular tissues are uncoupled with
respect to ion permeability (28, 45) . It is felt by some that the
morphological correlate of this uncoupling, when viewed by
freeze-fracture electron microscopy, is that of a crystalline
array of intramembranous particles or connexons with a center
to center spacing of 8.5 tun, whereas the electrically coupled
version displays a more fluid configuration (10.3-10.5 run
spacing) with a somewhat random distribution of connexons
within the junction domain (32, 34) . Others agree that con-
nexon crystallization occurs under conditions ofhigh calcium,
low pH, and anoxia but feel that the relationship between
crystallization and function is by no means clear (40) . The
crystalline junctional configuration is reported to be rare in
lens fibers by some investigators (17, 20), although there is
disagreement from one laboratory that has published freeze-
fracture evidence for crystallization of isolated lens communi-
cating junctions (33, 35, 36) . In spite of a lack of consensus at
the morphological level regarding comparative features oflen-
ticular and other communicating junctions, more definitive
statements can be made about differences in the chemistry of
lenticular and other communicatingjunction subunits now that
we are certain that lens MIP26 is a junctional protein. In this
respect, it is best to compare the junctional subunits of liver
and lens, since they are the best characterized of the lot . The
molecular weight of liver junctional protein that has not been
exposed to enzymes during purification (22, 24) and that ofthe
lens are both -26 kdaltons, but they are quite dissimilar in
several other respects . Peptide maps prepared from liver and
lens 26-kdalton proteins are different (23, 30), as are their NH2-
terminal amino acid sequences (30), whereas peptide maps of
MIP26 from mammals, birds, reptiles, and amphibians are
similar (44) . Antibodies against MIP26 from lens do not cross-
react with the 26-kdalton protein from liver gap junctions (23,
49), whereas they do cross-react against MIP26 from human,
chicken, toad, gekko, and shark (Horwitz, J ., and D . Bok,
manuscript in preparation) . Earlier reports claiming that avian
MIP26 did not cross-react (3, 49) resulted from a lack of

sensitivity in the immunoprecipitation methods used at the
time . Evidence has recently been presented that connexon
symmetry also varies between lens and liver communicating
junctions . X-ray crystallography ofcentrifuged, unfixed pellets
and image reconstruction methods applied to negatively
stained junctions from liver have suggested a sixfold symmetry
for connexons from this tissue (11, 22, 29) . On the other hand,
two other laboratories have recently suggested that lens con-
nexons are tetramers rather than hexamers (36; and G . Zam-
pighi, personal communication). Thus, not only is there ample
evidence for significant differences with respect to amino acid
sequence and immunochemistry, but the manner in which the
connexon monomers interact with one another may also be
strikingly different for lens and liver communicating junctions.
Two laboratories have reported that the epithelial layer from

which the lens fiber cells differentiate is not stained by immu-
nofluorescence with anti-MIP26 antibodies (10, 46), whereas,
as was stated earlier, the lens fiber membranes stain intensely.
Since the lens epithelium is known to contain communicating
junctions (18), this could be taken as evidence that the protein
in communicating junctions of lens epithelium and the MIP26
from the junctions in lens fibers are immunologically distinct.
This interpretation could be disputed from the standpoint that
the junction density in the epithelium might be too low to be
detected by immunc fluorescence, but it is strengthened by the
observation that isolated, solubilized plasma membranes from
lens epithelium do not cross-react with MIP26 antibodies (10).
The evidence is building that lens communicating junctions

are constructed of an intrinsic protein that is very different
from its counterpart in the liver. Much remains to be learned
about the similarities and differences between communication
junction proteins from other tissues such as heart, kidney, and
the various epithelia within the eye itself. With respect to
comparisons with the liver, however, lens junctional protein
appears to be a unique gene product that appears upon elon-
gation of lens epithelium into fiber cells . In spite of these
surprising differences, electrophysiological evidence (39) and
experiments involving the transcellular diffusion offluorescent
dyes injected intracellularly (21, 39) underscore the role oflens
communicatingjunctions in the extensive coupling of lens fiber
cells . Metabolic cooperation is an essential feature in an avas-
cular structure such as the lens (18), which must rely upon a
supply of nutrients from the ocular aqueous humor for its
survival . Now that we are certain of the protein species that
subserves these important functions, we are better equipped to
explore mechanisms whereby lens communicating junctions
exert their control over the transcellular transport of metabo-
lites .
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