
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Understanding the role of malicious PDFs in the malware ecosystem

Permalink
https://escholarship.org/uc/item/8ws3t3gk

Author
Gupta, Moitrayee

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8ws3t3gk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Understanding the Role of Malicious PDFs in the Malware Ecosystem

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Moitrayee Gupta

Committee in charge:

Professor Geoffrey M. Voelker, Chair
Professor Stefan Savage
Professor Hovav Shacham

2011

Copyright

Moitrayee Gupta, 2011

All rights reserved.

The thesis of Moitrayee Gupta is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2011

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures and Tables . vi

Acknowledgements . vii

Abstract of the Thesis . viii

1 Introduction . 1

2 Related Work . 4

3 Vulnerabilities in Adobe Reader . 6

4 Anatomy of a PDF Exploit . 9
4.1 Infection Vectors . 9

4.1.1 Email . 9
4.1.2 Drive-by downloads . 10

4.2 Document Structure . 11
4.2.1 Code that exploits the targeted vulnerability 11
4.2.2 Heap spray code . 11
4.2.3 Shellcode . 12
4.2.4 Additional Features . 12

5 Methodology . 15
5.1 Samples of malicious PDFs . 15
5.2 Experimental Setup . 16
5.3 Information collected from network traces 17

6 Results . 19
6.1 CVE information . 19
6.2 Activity breakdown . 22
6.3 Analysis of Stage 1 and Stage 2 malware 23

6.3.1 Stage 1 malware . 25
6.3.2 Stage 2 malware . 25

6.4 Overlap with Trajectory Data . 27
6.4.1 Overlap of domains . 27
6.4.2 Overlap of parked pages . 30

7 Adobe Reader Protected Mode . 33

iv

8 Alternate PDF Readers . 35

9 Conclusion . 37

Bibliography . 38

v

LIST OF FIGURES AND TABLES

Figure 5.1: Network flow pattern generated by malicious PDF 18

Figure 6.1: Count of malicious PDFs by CVE number 20

Table 3.1: Commonly exploited Adobe Reader vulnerabilities 7

Table 5.1: Summary of sources of malicious PDFs 16

Table 6.1: Activity breakdown of a subset of malicious PDFs 22
Table 6.2: Malware Categories . 24
Table 6.3: Categorization of Stage 1 and Stage 2 malware 26
Table 6.4: Domain overlap percentages for each collection 27
Table 6.5: Domain overlap percentages for each feed 28
Table 6.6: Tagged URLs by content type 29
Table 6.7: Overlap of parked pages . 31

vi

ACKNOWLEDGEMENTS

I would like to thank the following people whose contributions made this

work possible: Mila Parkour, Stephan Chenette, Christian Kreibich and the re-

searchers at Filex, for providing the collections of malicious PDFs that we exam-

ined; the members of the Trajectory team, especially Neha Chachra, Chris Grier,

He Liu and Tristan Halvorson, for assisting with data retrieval and analysis; Pro-

fessors Stefan Savage and Hovav Shacham, for serving on my thesis committee and

providing valuable feedback on initial versions of this document; and finally, my

advisor Professor Geoffrey Voelker, for his constant guidance, encouragement and

support.

vii

ABSTRACT OF THE THESIS

Understanding the Role of Malicious PDFs in the Malware Ecosystem

by

Moitrayee Gupta

Master of Science in Computer Science

University of California, San Diego, 2011

Professor Geoffrey M. Voelker, Chair

The Portable Document Format (PDF) is a widely used, cross-platform file

format for document exchange. Several applications exist for parsing and rendering

PDF documents, with Adobe’s Acrobat Reader being the most widely used PDF

reader. Starting in 2007, several vulnerabilities in Adobe Reader were discovered

being exploited in the wild. PDF-based exploits continued to proliferate during

2008 and 2009, and, although recent security reports have noted a decline in the

numbers of PDF-based malware in 2011, malicious PDFs are likely to continue to

be a significant threat for the next few years, given the ubiquity of the PDF format

and the existence of a large base of unpatched Adobe Reader installations.

In this work, we try to understand the role played by malicious PDFs in

viii

the malware and spam ecosystems. We collect data from the execution of a set

of about 11,000 malicious PDFs obtained from various sources. We find a corre-

lation between the age of a vulnerability and the number of PDFs exploiting that

vulnerability. We also find differences in behavior depending on the distribution

vector used. Looking at the final payload of the malicious PDFs, we find that some

known pay-per-install services seem to use malicious PDFs as an infection vector.

Finally, we see a considerable overlap in malware-hosting domains contacted by

malicious PDFs and spam-advertised domains seen in emails collected by various

spam feeds, pointing to the use of both vectors for malware distribution.

ix

1 Introduction

The Portable Document Format (PDF) is a cross-platform, open standard

file format that is widely accepted as an industry standard for portable document

exchange. A PDF file is a self-contained document that includes the actual content

of the file as well as formatting and layout information. Several applications exist

for parsing and rendering PDF documents, with Adobe’s Acrobat Reader being

the most widely used PDF reader.

Starting in 2007, several vulnerabilities in Adobe Reader were discovered

being exploited in the wild. These exploits used maliciously-crafted PDF docu-

ments that, when opened with vulnerable versions of Adobe Reader, resulted in

arbitrary code execution and eventual compromise of the host system. Compro-

mised systems can be used for various different purposes, depending on the kind

of malware installed on them. For instance, they could be used to send out a large

number of email messages advertising different goods — counterfeit software or

replicas, pharmaceutical products etc. These email messages are commonly clas-

sified as ‘spam’ and the compromised systems are said to be part of ‘spamming

botnets’. Several different kinds of botnets exist, with compromised systems be-

ing made to participate in activities ranging from click fraud to denial-of-service

attacks. Compromised systems can also have other kinds of malware installed on

them, such as key-loggers, backdoors or ‘scareware’, all of which aim at using dif-

ferent methods to monetize information collected from the users of the systems.

PDF-based exploits continued to proliferate during 2008 and 2009, with

security reports estimating that PDF-based malware formed 80% of all malware

1

2

seen by the end of 2009 [1]. New vulnerabilities were discovered in Adobe Reader

during 2010 and 2011 as well, and several different types of PDF-based exploits

were seen in the wild. Some of these attacks were ‘zero-day’ attacks, a term used

to describe an exploit targeting a vulnerability that is unknown to the software

vendor. Zero-day attacks are more potent because they usually succeed in ex-

ploiting a large number of systems in the time that it takes the software vendor

to develop and distribute a patch for the targeted vulnerability. Though recent

security reports have noted a decline in the numbers of PDF-based malware in

2011 [2], malicious PDFs are likely to continue to be a significant threat for the

next few years, given the ubiquity of the PDF format and the existence of a large

base of unpatched Adobe Reader installations [3].

The purpose of this work is to understand the role played by malicious

PDFs in the overall malware ecosystem. Specifically, we focus on analysing how

PDF-based malware fits into the current spam ecosystem, as described in the analy-

sis of the spam value chain performed by the Trajectory project [4]. To this end, we

collect data from the execution of a set of about 11,000 malicious PDFs obtained

from various sources, and analyze the overlap with data about spam-advertised

domains collected by the Trajectory project. We also analyze data collected from

the malicious PDFs about the vulnerabilities being exploited and the malware in-

tended to be the final payload of the PDF.

We observe a correlation between the age of a vulnerability and the number

of PDFs exploiting that vulnerability in our collection of samples — we find more

PDFs targeting older vulnerabilities than more recently discovered ones. One ex-

ception, however, is a large set of PDFs that exploit a recent vulnerability and

also use specific techniques to bypass advanced defenses like DEP and ASLR,

which presumably improves the infection rate. The malware executables dropped

or downloaded by the malicious PDFs in our collection are predominantly classi-

fied as ‘Generic Trojans’, with a few of them being identified more specifically as

password-stealers, backdoors or scareware. We find that some of the executables

3

classified as ‘Generic Trojans’ are downloaders created by known ‘Pay-per-install’

providers [5].

We observe a significant overlap between malware-hosting domains con-

tacted by malicious PDFs and spam-advertised domains seen in spam feeds used

in the Trajectory project. We also find an overlap in the third-party services main-

taining parked pages used by both spam-advertised domains and malware-hosting

domains. These results highlight the sharing of Web infrastructure supporting

these two activities, and the possible use of both malicious PDFs and email-based

spam to advertise malware-hosting domains.

The remainder of this document is organized as follows. Section 2 gives

an overview of related work. Section 3 gives a brief history of Adobe Reader

vulnerabilities and describes six of the most commonly exploited ones. Section 4

describes the anatomy of a typical PDF exploit and the structure and content of

a malicious PDF document. Section 5 describes our analysis methodology and

experimental setup, and details the kind of data that we collected from the PDFs.

Section 6 describes the results of the analysis performed on the collected data.

Section 7 describes the sandboxing technology called Protected Mode that was

recently introduced in Adobe Reader 10. Section 8 briefly lists out alternatives to

Adobe Reader. We close with our conclusions in Section 9.

2 Related Work

The mechanics of PDF-based exploits and vulnerabilities are typically de-

scribed, in great detail, on online security Web sites and blogs (e.g., [6], [7], [8], [9]).

To the best of our knowledge, however, this report describes the first study that

has been conducted on PDF-based malware with the purpose of understanding its

role in the overall malware and spam ecosystems. Previous studies have focused on

other aspects of the malware ecosystem that are relevant to the study of malicious

PDFs. We mention a few such related papers in this section.

Wepawet [10] is a commonly used Web service that detects malicious JavaScript

content in Web pages and files. In [11], the authors describe the approach followed

by JSAND, the tool that is used by Wepawet to automatically detect and analyze

malicious JavaScript. Since the majority of PDF-based exploits attack JavaScript

vulnerabilities in Adobe Reader, Wepawet is able to analyze and identify most

malicious PDFs.

Drive-by downloads are widely used as a vector for the dissemination of

PDF-based malware, by targeting vulnerabilities in the Adobe Reader plugin

present in Web browsers. The authors of [12], [13] and [14] perform in-depth

studies of the threat posed by drive-by download attacks, and suggest mitigation

techniques. In particular, the authors of [13] state that 24.7% of all exploits in the

Mebroot drive-by download campaign that they studied made use of vulnerabili-

ties in the Adobe Reader browser plugin.

In [15], the authors describe a study performed to analyze the life-cycle and

4

5

network-level behavior of Web-based malware on infected systems. They identify

different categories of network traffic sent by compromised hosts, and character-

ize the traffic exchanged between compromised hosts and command-and-control

channels of various botnets. Another study, described in [5], focuses on analysing

Pay-per-install services (PPI) that aim at ‘outsourcing’ the distribution of mal-

ware and infection of user systems to various third-parties. Using the information

described in [5], we find that some known PPI providers are involved in the use of

malicious PDFs as a vector for malware distribution.

3 Vulnerabilities in Adobe

Reader

The most commonly used PDF reader — Adobe Reader — currently has 223

vulnerabilities listed in The Common Vulnerabilities and Exposures database [16],

most of them discovered between 2007 and 2010. In this section, we describe some

of the commonly targeted vulnerabilities using the assigned CVE numbers. Ta-

ble 3.1 summarizes these commonly exploited vulnerabilities.

CVE-2007-5659. This CVE refers to a vulnerability in the JavaScript

method Collab.collectEmailInfo, which is susceptible to buffer overflow attacks be-

cause it does not validate the length of input arguments. This could result in

arbitrary code execution with specially designed input data.

CVE-2008-2992. This CVE refers to a vulnerability that exists in Adobe

Reader’s implementation of the JavaScript util.printf method, and is caused by a

boundary error when parsing a format string argument containing a floating point

specifier. The vulnerable piece of code reads in an input value but returns only the

first 16 digits of the input, with the rest of it padded with zeroes. By passing in an

input value that is sufficiently long, it is possible to overwrite memory locations in

the process’ address space and divert control flow to attacker-specified data.

CVE-2009-0927. This CVE refers to a vulnerability that exists in the

Collab.getIcon method. A call to the strncpy function could result in a stack over-

flow because of improper bounds checking on the third input argument to strncpy,

6

7

Table 3.1: Commonly exploited Adobe Reader vulnerabilities

CVE Number Description Date Affected Versions
CVE-2007-5659 Input validation bug in Col-

lab.collectEmailInfo
10/2007 <8.1.2

CVE-2008-2992 Boundary error in util.printf 05/2008 <8.1.3
CVE-2009-0927 Input validation bug in Col-

lab.getIcon
07/2008 <7.1.1, 8.1.3, 9.1

CVE-2009-4324 Use-after-free bug in
doc.media.NewPlayer

12/2009 <8.2, 9.3

CVE-2010-0188 Integer overflow bug in
libtiff library

02/2010 <8.2.1, 9.3.1

CVE-2010-2883 Input validation bug in
cooltype.dll module

09/2010 <8.2.5, 9.4

which is the size of input to be copied.

CVE-2009-4324. This CVE refers to a use-after-free bug that exists in

the doc.media.NewPlayer method in the Multimedia API and is triggered when a

null argument is passed to the function. In some of the sample PDFs that used this

vulnerability, the JavaScript code that triggered the exploit was contained within

a compressed zlib stream object, making detection harder.

CVE-2010-0188. This CVE refers to an integer overflow vulnerability

in the libtiff library that is used for rendering TIFF images. When a TIFF image

is included in a PDF, a field called DotRange containing a count value is defined,

which is then used by other modules. In particular, the AcroForm.api plugin uses

this value without sufficient sanitization, which could result in stack smashing and

attacker-specified code execution. A similar integer overflow vulnerability was re-

ported in 2006 in the same library (CVE-2006-3459).

CVE-2010-2883. This CVE refers to a vulnerability in the cooltype.dll

module which is used when parsing data describing certain TrueType (TTF) fonts.

The TTF font specification requires a table that describes the font, which includes a

null-terminated string called UniqueName. The vulnerable code in the cooltype.dll

8

module uses the value specified in this field without checking for null-termination,

thus making a buffer overflow possible.

4 Anatomy of a PDF Exploit

In this section, we describe how a typical PDF exploit works, based on the

behavior observed in a majority of the samples that we examined.

4.1 Infection Vectors

The two most common vectors used for the dissemination of malicious PDFs

are email and drive-by downloads.

4.1.1 Email

Emails with malicious PDFs as attachments are sent out to specific recipi-

ents, with the body of the email containing a socially engineered message designed

to lure the recipient into opening the attached file. Some instances observed have

had the following type of content:

1. ‘Breaking news’ about current political or social events

2. Foreign policy and international relations missives from various countries

3. Notification about an award

4. Agenda for a meeting, event or interview

5. Lessons or tips from sporting professionals

This vector necessarily requires user interaction, as the malicious attach-

ment has to be downloaded and opened by the recipient, using a software reader

9

10

that is vulnerable to the specific exploit. In addition, spam filters and anti-virus

scanners present in email clients could prevent the message from being delivered

to the recipient’s inbox, possibly reducing the effectiveness of this vector.

4.1.2 Drive-by downloads

A drive-by download [14] is characterized by an absence of user knowledge

and/or consent about software being downloaded onto his system. Common drive-

by downloads work by exploiting a vulnerability present in one of the browser

plugins or in the browser itself. Since many browser plugins are configured to be

automatically invoked whenever content of a specific type is seen, this infection

method does not require explicit user interaction, apart from getting the user to

visit the Web site that is serving the drive-by download.

An attacker can serve up a drive-by download in multiple ways. He could

set up a malicious Web site serving the malware, and then use SEO or social en-

gineering techniques to get users to visit his Web site. Alternatively, he could use

existing Web sites to serve the malware — for instance, he could buy ad space on

a Web site and insert an advertisement containing malicious code that serves up

the drive-by download. He could also inject malicious code into legitimate Web

sites by exploiting security flaws in web applications used on the web server. Using

existing Web sites to serve up drive-by downloads ensures a higher infection rate,

especially when the Web site has an established visitor base.

As described in [14], drive-by downloads operate by first checking the user’s

browser for information about the type and version of the browser, the browser

plugins and the operating system. This step is called ‘fingerprinting’. Based on

the fingerprint obtained, the malicious code serves up an exploit that is designed

to take advantage of specific vulnerabilities present in the above-mentioned com-

ponents. Most of the malicious PDFs that we surveyed exploited vulnerabilities

present in the Adobe Reader browser plugin.

11

4.2 Document Structure

A malicious PDF document typically has the following parts:

4.2.1 Code that exploits the targeted vulnerability

In the case of PDFs exploiting buffer or integer overflow vulnerabilities,

this is the part of the PDF that constructs a specially crafted malicious input

designed to cause the overflow, followed by a call to the vulnerable method(s) with

the malicious input. The purpose of the overflow is to overwrite specific memory

locations in the process’ address space, with the aim of diverting control flow to

a malicious, attacker-specified code block. These malicious code blocks are placed

on the process’ address space using techniques like heap spraying, as described

below.

4.2.2 Heap spray code

Heap spraying is the term used to describe the technique of allocating large

chunks of memory on a process’ heap and filling it with specific data. Malicious

PDFs employ heap spraying to place attacker-specified code blocks in various lo-

cations in the process’ heap. These code blocks contain malicious code, called

shellcode, which performs various unauthorized actions on the host system. Since

the size of the shellcode is fairly small compared to the size of the process’ address

space, the attacker usually distributes multiple blocks of shellcode throughout the

heap, to improve the chances of execution. Another commonly used technique is

to include NOP sleds in each code block. A NOP sled is simply a sequence of NOP

instructions preceding the shellcode in each code block. By including a large NOP

sled in a code block, the attacker can increase the probability of execution of the

shellcode. All he has to do now is divert control flow to any part of a NOP sled,

and the control flow will ‘slide’ down the NOP sled to the beginning of the shell-

code in that code block. Malicious PDFs employing this technique usually have

a small JavaScript code block that performs the heap spraying prior to executing

the exploit code.

12

4.2.3 Shellcode

Shellcode is the term used to describe malicious blocks of code that perform

unauthorized actions on a host machine. The shellcode in malicious PDFs usually

performs some or all of the following actions:

1. Extracts an executable file that is embedded within the code of the malicious

PDF, and drops it to a standard location on the host system. We call this

executable the ‘Stage 1 malware’. The shellcode then executes this malware,

which in turn could try to download additional malware or install its payload

on the system (in the case of key-loggers, rootkits or other kinds of trojans).

2. Connects to a remote server and downloads malware directly. This is different

from the behavior described above in that the network connection is made

by the malicious PDF itself, not by a dropped executable. If the network

connection to the remote server fails or if the server does not respond, there

are no executables or other files left behind by the PDF on the system. If the

remote connection succeeds, additional malware is downloaded onto the host

system and is executed by the shellcode. We call this downloaded malware

the ‘Stage 2 malware’.

3. Extracts another PDF from code embedded inside the malicious PDF, and

opens the new PDF with the same instance of Reader or Acrobat. This

second PDF serves as a decoy and usually contains legitimate text and/or

images to divert the user’s attention while the malware is executing on his

system.

4. Performs system modifications to ensure the execution of the installed mal-

ware at system boot time, by adding entries into the Windows Startup menu

or by adding keys to the Windows Registry.

4.2.4 Additional Features

Many of the malicious samples observed in the wild employed specific tricks

to bypass detection and/or improve infection rates.

13

Use of JBIG2Decode filter. The PDF specification defines several dif-

ferent filters that can be applied to uncompress raw compressed data or to decode

encoded data. The specification allows multiple layers of the same or different

filter to be applied on a single stream in succession. Most malicious PDFs use

several layers of filters to obfuscate data and make analysis more difficult. Some of

the malicious PDFs observed in the wild exploit a flaw in the specification which

allows a certain filter called JBIG2Decode to be applied to any object stream, as

long as the object stream has been declared as a 2D monochromatic image in the

document. Many anti-virus scanners fail to detect these PDFs [8] because of the

unexpected use of this filter, since the specification states that the filter only de-

codes monochrome images but the content that is encoded in the malicious PDFs

is a text stream containing the exploit code.

Code obfuscation. This is a common technique used by malware writers

to make malware hard to read and analyze. There are several ways to obfuscate

content with the PDF file format, one of which is to use encoding schemes and

decoding filters, as described above. Encoding schemes like Base64 or ASCII85 [9]

are supported by the PDF format, and can be used to transform sections of a PDF

document into an unintelligible character stream that would require decoding to

be analyzed. Other common obfuscation techniques include replacing ASCII char-

acters with their hexadecimal or octal equivalents, using ‘eval’ and ‘unescape’ to

construct calls to vulnerable functions at runtime, splitting up and storing the

malicious code in different parts of the document, etc.

DEP/ASLR bypass. DEP or Data Execution Prevention is a security

technique implemented in modern operating systems that aims at preventing code

execution from areas of a process’ address space that are traditionally used only

for data. By marking these areas of a process’ address space ‘non-executable’,

DEP prevents the kind of exploits that work by placing malicious code on the

process’ stack or heap and then executing it by diverting control flow to it. ASLR

14

or Address Space Layout Randomization is a security technique that aims at mak-

ing it harder for malware writers to predict addresses and locations in a process’

address space. ASLR works by randomly selecting starting memory addresses for

key components in a process’ address space, such as the heap, the stack and the

addresses at which system libraries are loaded. A subset of the PDF samples exam-

ined employed a specific trick to bypass the protection afforded by these mitigation

techniques on Windows Vista and Windows 7 systems. DEP was defeated by the

use of a technique called Return Oriented Programming [17], where already-loaded

system modules with execute permission are used to create a chain of calls that

results in attacker-specified code being executed. The samples used a module that

does not support ASLR (icucnv.dll) and is therefore loaded into a fixed memory

location in the process address space, thus defeating the protection afforded by

stack randomization.

5 Methodology

To understand and characterize the behavior of PDF-based malware, we

obtained samples of malicious PDFs from various sources, executed them in a

sandboxed environment, and collected information about different aspects of their

behavior. In this section, we describe our experimental setup and the kind of

information that we collected from our samples.

5.1 Samples of malicious PDFs

We obtained samples from two main sources — the contagiodump malware

collection [6] and the Filex malware collection [18]. From [6], we obtained two sets

of malicious PDFs — one set distributed via email as attachments and the second

set collected from Web sites serving them up as drive-by downloads. In addition

to these two primary sources, we also obtained samples from two honeypot feeds

that collected email attachments delivered to various accounts.

For each of these collections, we first removed duplicate files by sorting

them according to their md5sum hashes. We then separated the malicious PDFs

from the benign ones using malware scanning tools (as described in Section 6.1).

Table 5.1 gives a summary of all the sources and collections, with the num-

ber of malicious and benign PDFs in each collection.

15

16

Table 5.1: Summary of sources of malicious PDFs

Name Source Distribution
vector

Unique PDFs Malicious
PDFs

Collection1 Contagiodump Email 175 175
Collection2 Contagiodump Drive-by

download
10939 9816

Collection3 Filex Email,drive-
by download

1978 983

Collection4 Honeypot feeds Email 323 8

Total 13415 10982

5.2 Experimental Setup

To examine the behavior of the malicious PDFs, we created a virtualized

environment to run the samples in. We used VirtualBox (version 4.0.8) to create

virtual images, each running Windows XP SP 3 with either Adobe Reader 8.0 or

9.0 installed. To decide which version of Adobe Reader would be vulnerable to the

exploits used by the samples, we first identified the vulnerabilities being exploited

by each sample using malware detection tools, as described in Section 6.1. We

installed Cygwin (version 1.7.9) on the images and used shell scripts to automate

the execution of the PDFs. We used Wireshark (version 1.4.4) to collect network

traces, and common Unix utilities available in Cygwin to record other changes

made on the images during the execution of the PDFs.

For each PDF sample, our automation script performed the following steps:

1. Created a fresh virtual image from a clean base image, and copied over

required files

2. Took a snapshot of the filesystem on the image prior to running the malicious

sample

3. Started a network trace using Wireshark

4. Opened the malicious sample using a specific version of Adobe Reader

5. Closed Reader after 120 seconds, and stopped the network trace

17

6. Scanned specific locations in the filesystem for dropped or downloaded files

7. Checked for new entries added to the Windows startup menu

While performing this automation on a random subset of samples, we ob-

served that most of the samples were not completely active — while the malicious

code in the sample did try to connect to a server and request for additional mal-

ware, there was no response from the server for a large majority of the samples.

In some cases, the domain names were no longer registered, while in others, the

server contacted did not respond or indicated that the resource being requested

for was no longer available. Based on this behavior and considering the short life-

time of malware in general, we focused on using the information obtained from the

sample’s network trace to characterize its behavior, as described in the next section.

The filesystem locations scanned in step 6 were compiled based on the

observed behavior of a random subset of samples. We found that the samples in

this subset dropped files in certain specific locations on the host system, such as the

current working directory, the ‘Temp’ directory, the ‘Application Data’ directory,

etc. We cross-checked this with accounts of malicious PDF behavior documented

on different security Web sites. However, there does still remain a small possibility

of some of the examined PDFs dropping files in uncommon locations that were

not checked by our automation script.

5.3 Information collected from network traces

A typical malicious PDF opened with a vulnerable reader behaves in the

following way:

1. The malicious code in the PDF performs the exploit and the embedded shell-

code is executed on the host system.

2. Depending on the kind of PDF, the shellcode either extracts an executable

file that is embedded within the PDF, or requests for and downloads an

executable file from a remote server.

18

 DNS request to
resolve domain

name of
remote server

TCP connection setup
with remote server

GET request to
remote server

for specific resource

Response from
remote server

TCP connection
close

Figure 5.1: Network flow pattern generated by malicious PDF

3. The dropped or downloaded file from step 2 is executed on the host system,

and either downloads additional malware from the same or a different remote

server, or installs its payload on the host system.

The network traffic seen on the host system during the execution of a ma-

licious PDF usually has the pattern shown in Figure 5.1.

From the network traces collected during the execution of the samples,

we extracted all the domain names from the DNS requests and used them to check

for an overlap with known spam-advertised domains. We also extracted tuples of

the form {domain name, resource name} and used them to look up information

about the kind of malware that was intended to be the final payload of the mali-

cious PDF. Many of the samples that requested for malware from a remote server

returned a generic parking page in step 4 of Figure 5.1. We extracted the HTML

content from these pages and checked for an overlap with parking pages displayed

by known spam-advertised domains. The results obtained from analysing these

data sets are described in the next section.

6 Results

In this section, we describe the results obtained from clustering and map-

ping the information that we collected from the malware samples.

6.1 CVE information

The first set of data that we analyzed was the CVE numbers of vulnerabil-

ities being exploited by each PDF. We used the Wepawet [10] and Virustotal [19]

public APIs to collect this information. For each PDF, we first checked for an ex-

isting report using the md5sum hash of the sample, and if a report did not exist,

we submitted the sample for analysis and then checked the generated report. A

subset of the PDFs were identified as being benign by both tools; we excluded this

subset from further consideration. We expect that the use of two different tools for

identification reduced the number of false negatives generated during this process.

Figure 6.1 shows the categorization of samples grouped by the exploit(s)

present in the sample. Each bar corresponds to a CVE number assigned to a spe-

cific vulnerability, and the height of the bar (in logarithmic scale) represents the

number of samples in our collection that contained an exploit for that vulnerabil-

ity. The bar labelled ‘Undefined CVE’ represents all the PDFs that were identified

as being malicious by at least one of the tools, but did not have an assigned CVE

number in either of the reports. The bar labelled ‘Other’ represents all the PDFs

that exploited relatively uncommon vulnerabilities, and are all grouped together

for ease of representation.

19

20

100

1000

10000

C
VE-2007-5659

C
VE-2008-2992

C
VE-2009-0927

C
VE-2009-4324

C
VE-2010-0188

C
VE-2010-2883

O
ther C

VE

U
ndefined C

VE

N
u
m

b
e
r

o
f
P

D
F

s
 (

lo
g
 s

c
a
le

)

7277

1917 2023

381

155

940

141

752

Figure 6.1: Count of malicious PDFs by CVE number

As seen in the graph, there are 6 vulnerabilities that are most widely ex-

ploited by the PDFs in our collection of samples. These vulnerabilities (and the

corresponding CVEs) are described in Section 3. All the vulnerabilities, with the

exception of one, exploit buffer overflow bugs present in various modules of Adobe

Reader.

From the graph, it appears that our collection of samples had a larger num-

ber of PDFs with exploits for older vulnerabilities (CVE-2007-5659, CVE-2008-

2992), and fewer PDFs exploiting newer vulnerabilities (CVE-2010-0188). This is

in accordance with observations made by security analysts of a sharp rise in the

numbers of malicious PDFs seen in the wild between 2007 and 2009, when vul-

nerabilities in Adobe Reader started being discovered very frequently. As security

researchers and anti-virus vendors became more aware of the nature of these ex-

ploits, detection rates improved and patches for vulnerabilities were released faster,

as a result of which newer exploits were probably less successful at infecting sys-

21

tems and were, therefore, used less. Thus, the presence of a large number of PDFs

exploiting older vulnerabilities could be an indication of the ages of the samples in

our collections. However, security vendors have also observed that the majority of

systems running Adobe Reader continue to remain unpatched, even when critical

security updates are released [3]. This means that attackers can continue to rely on

vulnerabilities even after patches have been released for them, presumably because

infection rates on older, unpatched systems continue to be satisfactorily high. The

absence of security techniques like DEP and ASLR on older systems also increases

the chances of an exploit being successful. In our collection of samples, we found

several examples of recent PDFs exploiting older vulnerabilities. For instance, in

Collection1, some of the PDFs sent as email attachments during 2010 were found

exploiting CVE-2007-5659, and some PDFs sent during 2011 were found exploiting

CVE-2009-4324 [6].

One notable exception in the graph is CVE-2010-2883, with our collection

of samples containing a high number of PDFs exploiting this vulnerability when

compared to contemporary vulnerabilities. This is most likely due to the fact that

the PDFs targeting this vulnerability also used a specific technique to bypass DEP

and ASLR (by using ROP and a DLL used by Adobe Reader that does not have

ASLR enabled, as described in Section 4.2.4). Given the possibility of a higher

infection rate because of the DEP and ASLR bypass, it is perhaps not surprising

that higher numbers of this specific exploit were seen in the wild, compared to

other vulnerabilities that were discovered around the same time.

Another interesting observation is that many of the PDF-malware sam-

ples in our collection contained exploits for more than one vulnerability. These

multi-exploit PDFs contained exploit code for up to 3 vulnerabilities targeting dif-

ferent versions of Adobe Reader, improving the chances of a successful infection.

The presence of multiple exploits in a malicious PDF could be an indicator that

the PDF was generated by one of the many exploit packs that are used by Web

sites distributing drive-by downloads. As described in [7] and [20], exploit packs

22

Table 6.1: Activity breakdown of a subset of malicious PDFs

Type of traffic # of samples % of samples
No network traffic 626 24.8%

Domain name unresolvable 1142 45.2%
No response from server 258 10.2%

Resource unavailable 234 9.3%
Server returns parked page 233 9.2%

Valid server response 36 1.4%

Total 2526 100%

are toolkits that can be installed on Web servers and be configured to generate

exploits that target selected vulnerabilities in a visitor’s Web browser or browser

plugins. The exploit packs that offer PDF-based exploits target several of the most

commonly exploited Adobe Reader CVEs. For instance, the Eleonore exploit pack

examined in [7] targets CVE-2007-5659, CVE-2008-2992 and CVE-2009-0927, and

generates malicious PDFs containing exploit code for all the three vulnerabilities.

We found that 8% of the samples in Collection1, 14% of the samples in Collection2

and 27% of the samples in Collection3 were multi-exploit PDFs. In Figure 6.1,

these PDFs were counted once for each vulnerability that they targeted.

6.2 Activity breakdown

For a subset of the malicious PDFs in our collection, we analyzed the net-

work traces and identified the different kinds of network activities seen. Table 6.1

lists out the different activities and the number and percentage of samples for each

kind.

The majority of samples (45.2%) in the subset examined tried to contact

domains that were no longer registered. For 10.2% of the samples, the server con-

tacted did not complete the TCP handshake. For 9.3% of the samples, the server

contacted returned an error code. The most commonly seen codes were 404 (Not

Found) and 301 (Moved Permanently). 9.2% of the samples had generic parked

pages sent back to them by the contacted servers. For 1.4% of the samples, the

23

server returned a valid response — these were seen to be executable files in a few

cases, but most of them were ‘200 OK’ responses with no content in the message

body. 24.8% of the samples did not perform any network activity at all, indicating

that either the exploit code in the PDF was unsuccessful, or that the final payload

was contained in the PDF itself and did not require to be downloaded from a re-

mote server.

While this data describes the network activity of only a subset of the sam-

ples examined, it is representative of the behavior observed in our collection of

samples as a whole. The large majority of samples in our collection that were

supposed to download malware from remote servers were unable to successfully

do so. While this is perhaps not too surprising for the older samples, some of the

newer PDFs were also found to be inoperable just days after being found in the

wild. It remains an open question on how long malicious PDFs remain viable and

what their typical window of operability is.

6.3 Analysis of Stage 1 and Stage 2 malware

As described in Section 4.2, a malicious PDF usually drops and/or down-

loads additional malware during its execution. The first piece of malware that is

usually extracted from the malicious PDF itself and dropped to a standard loca-

tion on the host system is termed ‘Stage 1 malware’. Additional malware that may

subsequently be downloaded from remote servers, either by the Stage 1 malware

or by the malicious PDF, is termed ‘Stage 2 malware’.

During the execution of our PDF samples, we observed that most PDFs

from Collection1 exhibited the two-stage behavior, where Stage 1 malware is first

extracted and dropped from the PDF, followed by the download of Stage 2 malware

from a remote server. In contrast, most PDFs from Collection2 and Collection3

did not drop any Stage 1 malware — the PDF directly attempted to contact a re-

mote server and download the Stage 2 malware from it. This could be an indication

24

Table 6.2: Malware Categories

Category Name Description
Trojan Downloader Downloads malware from remote

servers
Trojan Dropper Drops and installs malware onto

user system
Generic Trojan Shows suspicious behavior, per-

forms unauthorized actions on sys-
tem

Backdoor Provides a remote attacker unau-
thorized access to system

Info Stealer Collects and sends user/system in-
formation to remote attacker

Fake AV Pretends to be anti-virus software,
shows warning messages on system

Ransom Trojan Denies access to system until ‘ran-
som’ is paid

Worm Infects host system and other sys-
tems on network

of the source of a PDF — the ones that are created for targeted distribution via

email (Collection1) behave differently from the ones that are created by exploit

packs for distribution via drive-by downloads (Collection2). However, it seems

counter-intuitive that the malicious PDFs created for distribution via email would

have malicious executables embedded in the PDF content, since this would make

the PDFs larger in size and more likely to be detected and blocked by email anti-

virus and spam filters. One possibility is that these PDFs were distributed by

PPI providers and affiliates [5] and hence had to contain an embedded downloader

created by the PPI provider, which would then connect to a remote malware server

hosting malware binaries provided by the client. In contrast, the exploit pack PDFs

that did not display the two-stage behavior were more generic in design, and could

thus be used to deliver a wider range of malware, since the actual payload was not

part of the document content and could be downloaded from any remote server.

We used Virustotal [19] and Anubis [21] to categorize the Stage 1 and Stage

2 malware executables from our PDF samples. Since each AV vendor uses its own

25

heuristics and names for identifying different kinds of malware, we created 8 general

categories of malware and placed each identified file in one of the categories, based

on the labels given to the file by the AV vendors. Table 6.2 lists the category

names and a brief description of each category.

6.3.1 Stage 1 malware

We collected and analyzed some of the Stage 1 malware files that were

dropped by the malicious PDF samples during their execution. As mentioned

above, most of these dropped files came from the PDFs in Collection1. From a

total of 150 files, 53 of them were identified by at least one anti-virus vendor on

Virustotal. Columns 2 and 3 in Table 6.3 list the number and percentage of files

that were found in each category. Most of the files were classified ‘Generic Trojan’,

which includes generally suspicious behavior such as adding entries into the system

registry and making outbound network connections.

6.3.2 Stage 2 malware

As mentioned in Section 5.2, most of the samples in our collection of PDFs

did not receive the Stage 2 malware requested from the remote servers. The domain

names were either unresolvable, or the servers did not respond, or the resource re-

quested for was not found on the server. In many cases, the server returned a

generic parking page in response to the request for malware. As a result, we had

to look at other ways to analyze the malware that was intended to be the final

payload of the malicious PDFs in our collection.

From the network requests made by the PDFs during their execution, we

were able to extract complete URLs of the resources requested by many of the

PDFs. This included the domain name of the remote server and the path of the

resource being requested. Using this information, we searched several malware

databases such as [22], [23], [24] and [25]. For each match found, we used the

listed md5sum or sha1sum hash of the file, and looked up reports for the file on

26

Table 6.3: Categorization of Stage 1 and Stage 2 malware

Category Name # of samples
(Stage 1)

% of samples
(Stage 1)

of samples
(Stage 2)

% of samples
(Stage 2)

Trojan Down-
loader

7 13.2% 38 20.4%

Trojan Dropper 6 11.3% 24 12.9%
Generic Trojan 24 45.3% 55 29.6%
Backdoor 6 11.3% 17 9.1%
Info Stealer 3 5.7% 21 11.3%
Fake AV 0 0 17 9.1%
Ransom Trojan 0 0 3 1.6%
Worm 0 0 5 2.7%
Other 7 13.2% 6 3.2%

Total 53 100% 186 100%

Virustotal [19] and ThreatExpert [26]. Of a total of 657 unique URLs extracted

from the network traces, we found matches for 327 of them in one of the listed

databases, and 186 of the matches had hashes listed for the exact file. As in the

case of the Stage 1 malware classification, we used the labels given to each file

by different AV vendors to place the file in one of the categories listed in Ta-

ble 6.2. Columns 4 and 5 in Table 6.3 list the number and percentage of samples

in each category. While most of the Stage 2 malware samples were classified as

being generic Trojans, downloaders or droppers, about 34% of them were identified

more specifically as being information-stealing malware, backdoors or ‘scareware’.

To gain more insight into the executables that were classified as generic

Trojans, we compared some of the specific AV-vendor labels given to the executa-

bles with known malware families described in [27] and [5]. We found instances

of ‘Bredolab’, ‘Hiloti’ and ‘Alureon’ executables in our collection of samples, all

three of which are listed as known Downloader/PPI services in [27]. As described

in [5], Pay-per-install (PPI) services are offered by specialized organizations that

focus on infecting users’ systems, and provide a way to effectively ‘outsource’ the

distribution of malware. PPI providers accept requests from clients for a certain

number of ‘installs’ of the client’s programs on targeted hosts, and then arrange for

27

Table 6.4: Domain overlap percentages for each collection

Collection Name Distribution Vector Domain overlap
Collection1 Email 0.41%
Collection2 Drive-by downloads 81.93%
Collection3 Email, drive-by downloads 17.51%
Collection4 Email 0.13%

the required number of compromised systems. The actual infection of hosts could

be performed by the PPI provider itself or be outsourced to another third-party,

called an ‘affiliate’, that specializes in specific malware distribution methods. The

PPI executables seen in our collection of samples are downloaders that are sup-

posed to connect back to the PPI provider, download a specific ‘client’ executable

and install it on the compromised host system. Depending on the kind of the

‘client’ malware installed, the compromised host would then be used in different

ways, most commonly as a member of a botnet of some kind.

6.4 Overlap with Trajectory Data

To understand the role played by malicious PDFs in the spam ecosystem,

we analyzed the overlap of specific data collected from our samples with data

collected by the Trajectory project. As described in Section 5, we executed our

samples in a virtualized environment and extracted information from the network

traces.

6.4.1 Overlap of domains

The Trajectory database has a large corpus of URLs which are collected

from different spam feeds. These URLs are then examined by crawlers that tag

them based on the nature of their content. To check for an overlap with this

dataset, we extracted all the domain names from the DNS requests seen in the

network traces. These domain names point to the remote servers contacted by the

malicious PDFs for additional malware (step 1 in Figure 5.1).

28

Table 6.5: Domain overlap percentages for each feed

Feed Name Feed Source Domain overlap
Feed A MX honeypot 2.52%
Feed B Seeded honey accounts 0.21%
Feed C MX honeypot 0.77%
Feed D Seeded honey accounts 0.93%
Feed X MX honeypot 0.07%
Feed Y Human identified 95.47%
Feed Z MX honeypot 0.01%

We searched the Trajectory database for URLs with the same domain names

as the domains contacted by the PDFs, and we found that out of a total of 1441 do-

mains extracted from our set of malicious PDFs, 690 or 47.88% of them overlapped

with domains listed in the Trajectory database. Table 6.4 contains details of the

overlapping domains. Using these results, we can state that a significant percent-

age of the malicious PDFs from our collection attempted to contact and download

malware from domains that were identified as spam-advertised domains appearing

in various spam feeds. The collection with the most overlap is Collection2, which

consists entirely of PDFs distributed via drive-by downloads. While this large

overlap with Collection2 could be caused simply by the size of that collection rel-

ative to the other collections, it also indicates that that some of the same parties

that use unsolicited email messages to advertise their domains also try to infect

systems by using malicious PDFs distributed by drive-by downloads. This suggests

that the Web infrastructure used to support spam-advertised scams is also used, to

some extent, to support the infection and compromise of machines on the Internet.

We also identified the exact spam feeds that produced the overlapping do-

mains, by mapping all the URLs containing the overlapping domains to the feeds

they came from, and then counting the number of URLs obtained from each feed.

Table 6.5 contains a description of each feed source, and lists the percentage of

URLs that was mapped back to each feed. Most of the overlapping domains were

seen in the content of Feed Y, which consists of URLs present in emails identified

as spam by users.

29

Table 6.6: Tagged URLs by content type

Category # of tagged URLs % of tagged URLs
Known affiliate programs 4 0.03%
Spam-advertised goods 191 1.33%

Scheduled drugs 526 3.65%
Minimal 13131 91.24%

Parked pages 158 1.10%
Affiliate/User ID 367 2.55%

Other 15 0.10%

Total 14392 100%

As mentioned earlier, all the URLs present in the Trajectory database are

also visited by a crawler to determine the kind of Web resource pointed to by the

URL, and are tagged accordingly. To understand the nature of the domain overlap

better, we extracted the tags from all the URLs in the database that appeared in

the set of overlapping domains. Table 6.6 lists the type of content and the per-

centage of tagged URLs for each type.

The category ‘Spam advertised goods’ includes all domains that appeared

to advertise or sell goods like software, replicas or pharmaceutical products. The

category ‘Known affiliate programs’ refers to domains in the above category that

clearly referenced one of the several identified affiliate programs listed in [4]. The

category ‘Scheduled drugs’ includes all domains that appeared to advertise or sell

regulated prescription drugs. The ‘Parked pages’ category includes domains that

displayed generic parked pages, which indicates the availability of the domain for

sale. The ‘Affiliate/User ID’ category includes domains that contained activity-

tracking code (e.g., Google Analytics) in the content of the crawled pages. The

category ‘Other’ included all domains that did not fall into one of the above de-

scribed categories. The majority of URLs pointing to overlapping domains were

classified as ‘minimal’, which means that these URLs pointed to Web resources

that were either very simple HTML pages with not much content or resources that

displayed an error when visited by the crawler.

30

There are two overall sets of tagged URLs seen in Table 6.6. The first set

consists of URLs pointing to domains that were used both as a spam-advertised

domain and a malware-hosting domain, presumably at different points in time.

These are the domains that are identified by the crawler as having content of a

specific kind (affiliate programs, goods, drugs). The second set consists of URLs

pointing to domains contacted by malicious PDFs that are identified as ‘minimal’

by the crawler. These domains are most likely malware-hosting domains that used

email to spread their malware, by sending out email messages containing URLs

pointing directly to the malware executables. These emails were captured by the

spam feeds and were then visited by the crawler, which classified the URLs as

‘minimal’ pages because they pointed directly to executable files and thus did not

generate any HTML content.

Looking at the percentage and nature of the domain overlap as a whole, we

find that 81.9% of overlapping domains are tagged as ‘minimal’ domains, which

implies that they are malware-hosting domains that use at least two vectors to

spread their malware and increase infection rates - malicious PDFs that connect

to the servers and download malware from them, and email messages that are sent

out to users containing direct links to the hosted malware.

6.4.2 Overlap of parked pages

During the execution of the malicious PDF samples, we observed that some

of the samples returned HTTP responses containing HTML and JavaScript code

from the remote server, instead of the malware that they requested (9.2% in Ta-

ble 6.1. These responses appeared to be generic ‘parked pages’ returned by the

domain, which indicate that the server was possibly active earlier, but was no

longer hosting the resource requested for by the PDF. Parked pages indicate that

the domain is registered but is up for sale. Parked domains can be monetized by

the owner, the registrar or third-parties by hosting advertisements and showing

sponsored content to visitors. Most of the parked pages returned to our set of

31

Table 6.7: Overlap of parked pages

Category Parked page overlap
Affiliate/User ID 16.56%

Frame 3.55%
Parked 79.88%

PDFs contained advertisements, text and links to other domains.

The Trajectory database has a set of regular expressions collected from

parked pages displayed by spam-advertised domains. We extracted the contents

of the network responses containing parked pages that were sent to our malicious

PDF samples, and ran the regular expressions on them to check for an overlap.

Table 6.7 summarizes the percentage of overlapping parked pages and the tags

given to them by the crawler.

Most of the overlapping parked pages were tagged as ‘Parked’ by the crawler,

which confirms our identification of the contents of the network responses. A

smaller percentage was tagged as ‘Affiliate/User ID’, indicating that the page con-

tained some kind of activity-tracking code (e.g., Google Analytics). The category

‘Frame’ refers to pages that simply contained iframes pointing to other websites.

As in the case of the domain name overlap, there is the possibility that

all the overlapping domains were malware-hosting domains that used both mali-

cious PDFs and email spam to increase infection rates. However, in the specific

case of parked domains, the overlap is more likely resulting from the reuse of

domain names between malware-hosting domains and spam-advertised domains.

The ‘churn rate’ of domain names in the malware ecosystem is known to be fairly

high, and malware distributors are constantly on the lookout for new domains that

are not on blacklists and have a steady stream of user traffic. Domain parking is

one way to ensure that a high-value domain name can be sold and reused many

times, by different players and for different purposes. The overlap in parked pages

suggests that the same third-parties are involved in providing domains to support

32

both spam-based advertising and malware-hosting activities.

7 Adobe Reader Protected Mode

The latest major release of Adobe Acrobat Reader in November 2010 - ver-

sion 10 - introduced a new mitigation technique, called Adobe Reader Protected

Mode, which implements a sandbox around the renderer component of Adobe

Reader. The sandbox limits the actions that the renderer process is allowed to

perform on its own, with all other actions requiring communication with a ‘broker’

running in a separate process. The broker process defines an API for interprocess

communication, and uses a set of fixed policies to allow or disallow requests from

the renderer process running in the sandbox.

The introduction of the sandboxing features reduces the exploitability of

Adobe Reader significantly, because it increases the number of vulnerabilities that

have to be found and exploited for a successful take-over of the system [28]. First,

the malicious PDF has to find and exploit a vulnerability in the renderer compo-

nent, allowing it to execute malicious code. However, this code would run inside

the sandbox since the renderer process is confined to the sandbox. In order to be

able to execute code that will affect the rest of the system, the malicious PDF has

to find and exploit a vulnerability in the broker process’ API that would allow it

to break out of the sandbox. However, since the broker process does not run with

administrator privileges, the malicious PDF would then have to find and exploit

a privilege escalation vulnerability to have administrative control on the system.

In addition, both the renderer and broker processes are executed with DEP and

ASLR enabled on systems which support them, so a successful exploit would also

have to bypass these protections.

33

34

While several new Adobe Reader vulnerabilities have been discovered since

the release of version 10, none of the exploits seen in the wild have managed to

successfully bypass all the additional security layers added by the Protected Mode

sandboxing.

Other security-focused features that were added to Adobe Reader during

2010 and 2011 include the addition of an auto-updater and the selection of ‘Up-

date Automatically’ as the default configuration of the auto-updater [29]. These

changes were introduced, presumably, to reduce the number of unpatched and out-

of-date installations that would not benefit from the addition of security measures

like sandboxing. According to [30], it was found that, with the new version of the

updater, users applied new updates roughly three times faster than they did with

earlier versions of the updater.

While security reports have stated that there has been a decline in the

number of PDF exploits seen towards the end of 2010 and in 2011, it is not yet

clear if this can be attributed to the introduction of these security-focused changes

in Adobe Reader, or if it is simply because other attack vectors, like Java, are

proving to be more profitable and easier to exploit [2].

8 Alternate PDF Readers

In this section, we look at some alternatives to Adobe Acrobat Reader on

Windows, and briefly summarize their track record of vulnerabilities and exploits.

Foxit PDF Reader. The Foxit Reader is a free PDF reader that has

gained popularity as the best alternative to Adobe Reader. It has been described

as being faster and more lightweight than Reader, and can be run as a standalone

executable not requiring installation. The Foxit reader is also generally considered

to be more secure than Adobe Reader, with only 14 vulnerabilities listed in the

CVE database [16] since 2007. Of these, 3 vulnerabilities were found being ex-

ploited in the wild [31]. In our collection of samples, we found 68 malicious PDFs

in total that exploited a Foxit vulnerability (CVE-2009-0837).

Google PDF Readers. Google has released two PDF readers in the

recent past — the first is a PDF viewer within the Google Docs framework, and

the second is a PDF reader built into Google Chrome. The Google Docs PDF

viewer renders a PDF document as PNG images with overlays on the text to al-

low for highlighting. The Google Chrome PDF reader is a PDF reader built into

Chrome that is run within the Chrome sandbox for better security and isolation.

The earlier versions of Chrome had a Foxit-based PDF reader plugin. There are

8 CVEs listed in the CVE database [16] for Chrome vulnerabilities that can be

exploited via malicious PDF documents. However, there have not been any re-

ports so far about actual PDF-based exploits on Chrome that have managed to

compromise user systems.

35

36

Other readers. Some of the other commonly used PDF readers are Suma-

tra, PDF-XChange Viewer and NitroPDF. All these readers have vulnerabilities

that have been discovered, but none of them have been found being exploited in

the wild so far.

To summarize, all the alternatives to Adobe Reader have one major ad-

vantage: since they are not as widely used, they are less targeted by attackers

and therefore, presumably, safer. Though vulnerabilities have been discovered and

disclosed for these readers as well, they are usually not exploited in the wild since

it is much more profitable for attackers to focus on targeting Adobe Reader.

9 Conclusion

In this thesis, we described a study performed on a set of malicious PDF

documents, with the aim of understanding better the nature of PDF-based malware

and how it fits into the overall malware ecosystem. We described our experimental

setup, methodology and the data collected from our collection of samples. We then

described the analysis performed on the data, and explained in detail the nature of

the overlap seen with data on spam-advertised domains collected by the Trajectory

project. We found that about 48% of the malware-hosting domains contacted by

our collection of malicious PDFs also appear in the Trajectory spam feeds. This

points to a possible reuse of domains names, as well as the use of two different dis-

tribution vectors — malicious PDFs and email-based spam — to increase malware

download and infection rates. We also found that some well-known Pay-per-install

providers use malicious PDFs as an infection vector. We listed some alternate

PDF readers that are less frequently targeted by attackers, and described two re-

cent security-focused features that were added to Adobe Reader — sandboxing

and auto-updates. While current malware trends show a decline in the use of PDF

exploits in favor of Java exploits, it remains to be seen if the security features

added in Adobe Reader 10 will act as a sufficient deterrent to attackers, or if the

existence of older vulnerabilities and a large base of unpatched systems will con-

tinue to make PDF-based malware a reliable vector for infecting and compromising

systems.

37

Bibliography

[1] “Scansafe Annual Global Threat Report 2009.” http://www.scansafe.com/
downloads/gtr/2009 AGTR.pdf .

[2] “Cisco 2010 Annual Security Report.” http://www.cisco.com/en/US/prod/
collateral/vpndevc/security annual report 2010.pdf .

[3] “6 out of every 10 users run vulnerable versions of Adobe Reader.” http:
//public.avast.com/mkt/20110713 6 out of 10 with vulnerable PDF.pdf .

[4] K. Levchenko, N. Chachra, B. Enright, M. Felegyhazi, C. Grier, T. Halvor-
son, C. Kanich, C. Kreibich, H. Liu, D. McCoy, A. Pitsillidis, N. Weaver,
V. Paxson, G. M. Voelker, and S. Savage, “Click Trajectories: End-to-End
Analysis of the Spam Value Chain,” in Proceedings of 32nd annual Symposium
on Security and Privacy, IEEE, May 2011.

[5] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring Pay-per-
Install: The Commoditization of Malware Distribution,” in Proceedings of
USENIX Security, August 2011.

[6] “Contagio Malware Dump.” http://contagiodump.blogspot.com/2010/08/
malicious-documents-archive-for.html .

[7] “Krebs On Security - A Peek Inside the Eleonore
Browser Exploit Kit.” http://krebsonsecurity.com/2010/01/
a-peek-inside-the-eleonore-browser-exploit-kit/ .

[8] “Avast Security Blog.” https://blog.avast.com/2011/04/22/
another-nasty-trick-in-malicious-pdf/ .

[9] “Symantec Security Blog.” http://www.symantec.com/connect/blogs/
fight-against-malicious-pdfs-using-ascii85decode-filter .

[10] “Wepawet.” http://wepawet.iseclab.org/index.php .

[11] M. Cova, C. Kruegel, and G. Vigna, “Detection and Analysis of Drive-by-
Download Attacks and Malicious JavaScript Code,” in Proceedings of the
World Wide Web Conference (WWW), 2010.

38

39

[12] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu, “The
Ghost In The Browser: Analysis of Web-based Malware,” in Proceedings of
the USENIX Workshop on Hot Topics in Understanding Botnets, 2007.

[13] B. Stone-Gross, M. Cova, C. Kruegel, , and G. Vigna, “Peering Through the
iFrame,” in Proceedings of IEEE Infocom, 2011.

[14] M. Egele, E. Kirda, and C. Kruegel, “Mitigating Drive-by Download At-
tacks: Challenges and Open Problems,” in Proceedings of the Open Re-
search Problems in Network Security Workshop (iNetSec 2009), 2009. http:
//iseclab.org/papers/inetsec09.pdf .

[15] M. Polychronakis, P. Mavrommatis, and N. Provos, “Ghost Turns Zom-
bie: Exploring the Life Cycle of Web-based Malware,” in Proceedings of the
USENIX Workshop on Large-Scale Exploits and Emergent Threats, 2008.

[16] “CVE - Common Vulnerabilities and Exposures.” http://cve.mitre.org/ .

[17] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented pro-
gramming: Systems, languages, and applications,” Trans. Info. & Sys. Sec.,
2011. To appear.

[18] “File Exchange.” http://filex.jeek.org/ .

[19] “Virustotal - Free online virus, malware and URL scanner.” http://www.
virustotal.com/ .

[20] “An Overview of Exploit Packs.” http://blogs.mcafee.com/mcafee-labs/
an-overview-of-exploit-packs .

[21] “Anubis: Analyzing Unknown Binaries.” http://anubis.iseclab.org/ .

[22] “Malc0de Database.” http://malc0de.com/database/ .

[23] “Clean MX Realtime Database.” http://support.clean-mx.de/clean-mx/
viruses.php .

[24] “Malware URL.” http://www.malwareurl.com/listing-urls.php .

[25] “Malware Database by abuse.ch.” http://amada.abuse.ch/ .

[26] “ThreatExpert Malware Reports.” http://www.threatexpert.com/reports.
aspx/ .

[27] “World’s Top Malware.” http://blog.fireeye.com/research/2010/07/worlds
top modern malware.html/ .

40

[28] “Inside Adobe Reader Protected Mode.” http://blogs.adobe.
com/asset/2010/11/inside-adobe-reader-protected-mode-part-3\
\-broker-process-policies-and-inter-process-communication.html .

[29] “Adobe Ships Security Patches, Auto-Update
Feature.” http://krebsonsecurity.com/2011/06/
adobe-ships-security-patches-auto-update-feature/ .

[30] “Update on the New Updater.” http://blogs.adobe.com/adobereader/2010/
06/adobe reader and acrobat 933 a.html/ .

[31] “Foxit Reader PDF Handling Multiple Remote Vulnerabilities.” http://www.
securityfocus.com/bid/34035/info .

