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The Dynamics of Retraction in Epistemic Networks
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3Dept of Computer Science, Columbia University
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Abstract

Sometimes retracted or thoroughly refuted scientific information is used and
propagated long after it is understood to be misleading. Likewise, sometimes
retracted news items spread and persist, even after it has been publicly established
that they are false. In this paper, we use agent-based models of epistemic networks
to explore the dynamics of retraction. In particular, we focus on why false beliefs
might persist, even in the face of retraction. We find that in many cases those who
have received false information simply fail to receive retractions due to social
dynamics. Surprisingly, we find that in some cases delaying retraction may increase
its impact. We also find that retractions are most successful when issued by the
original source of misinformation, rather than a separate source.

*lacroixt@mila.quebec; tlacroix@uci.edu (corresponding author)
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1 Introduction

Over the course of a decade, Scott S. Reuben, an influential American anaesthesiologist,
published a series of articles examining the role of cyclooxygenase-2 specific inhibitors in
controlling post-operative pain following orthopaedic surgery (Buckwalter et all 2015)).
In 2010, though, Reuben was convicted of fraud for accepting grants from drug
companies to perform clinical trials, but then fabricating the data and publishing
‘results’ without having conducted trials.[] An investigation determined that at least 21
of Reuben’s articles contained fabricated data; all of these articles were subsequently
retracted (Shafer] 2015)).

Before retraction, the articles had collectively obtained nearly 1200 citations. By
2014, however, a case study found that roughly half of these articles continued to be
cited consistently, and only 1/4 of the citing articles clearly stated that Reuben’s work
had been retracted (Bornemann-Cimenti et al., 2016). It seems remarkable that scientific
findings of this sort would be so widely used in the literature after being withdrawn as
fraudulent, but this is by no means an isolated case. Studies of retracted results have
found that they are often widely cited after retraction. Moreover, Cor and Sood, (2018))
find that 91% of these post-retraction citations are approving of the original researchE]

In this paper, we examine how false information perpetuates, even in light of
correction. To explore the dynamics of retraction, we develop agent-based models where

actors on networks share and spread beliefs. Our models make the following,

'Reuben pled guilty on 22 February 2010, and was sentenced to six months imprison-

ment; see Massachusetts| (2010)).
2See also |Budd et al.| (1998); [Neale et al.| (2010)).



fundamental assumption: there is an asymmetry in the way a new finding spreads versus
a retracted one. While individuals are apt to share novel information, they only tend to
share retractions when the topic of conversation already centres on the false information.
This assumption is consistent with Grice’s maxim of relation that, in conversation, one
should be relevant (Grice, [1975)).

In our models, false beliefs can take a long time to eliminate after retraction.
Additionally, we find that whenever information gets old, in the sense that individuals
stop sharing information after some time frame, false beliefs can persist indefinitely even
when a retraction is issued. This occurs without any biased reasoning—we assume that
any individual exposed to a retraction will change their mind. The persistence of false
beliefs is a direct result of the fact that some individuals who received false beliefs from
their neighbours happen never to receive a retraction.

Additionally, we consider the conditions under which retractions are more or less
successful. We find there can be unexpected interactions between how long a retraction
is delayed and how effective it is. In particular, a retraction that is introduced later—i.e.,
once a false belief is held widely—may be more efficacious, because it is relevant to a
greater number of individuals. We also explore how network structure influences these
processes. We examine small-world networks and preferential-attachment networks to
see what effect the location of a retraction has on its success and find that retractions
are more successful when issued from the original source. Additionally, we show that
homophily—i.e., disproportionate in-group communication—can slow the spread of a
retraction, especially if it is introduced in a subgroup where the false belief is not
widely-held.

Our paper proceeds as follows. In section [2) we give an overview of relevant literature



and introduce the modelling framework upon which this paper draws. In section |3 we
present the simplest model explored here and describe its fundamental behaviour.
Sections and [3.4] extend these results to several different scenarios intended to

tease out the dynamics of retraction. Section {4] concludes.

2 Retraction and Contagion

As we have seen, retraction of a scientific paper does not always work the way it should.
There are two things we should distinguish here. First is whether articles are cited after
retraction, and second is whether scientists continue to hold beliefs now known to be
false. Our models actually consider the second question: how might false beliefs persist
in the face of retraction/refutation of a result? However, the empirical literature focuses
on citations, rather than underlying beliefs. Given scientific norms against citing known
falsehoods, we take this literature to provide evidence (albeit imperfect) about false
beliefs in the face of retraction.

Papers typically are retracted due to error, fraud, or failure to replicate (Wager and |

‘Williams|, 2011; Steen, [2011}; Fang et al., [2012), and retractions have become increasingly

common (Cokol et al.; 2008} |Grieneisen and Zhangj, 2012; [Steen et al. [2013;

Madlock-Brown and Eichmann| 2015). Importantly, study after study has found that

even after retraction, papers continue to be cited, sometimes for years (Pfeifer and |

Snodgrass|, [1990; [Budd et al., |1998; (Cor and Sood, 2018} [Van Der Vet and Nijveen, 2016;

Madlock-Brown and Eichmann, 2015)). Some studies find declines in citation rate after

retraction, others no change, or even an increase in citation rate (Cor and Sood, 2018;

'Van Der Vet and Nijveen, |2016; [Madlock-Brown and Eichmann| 2015)).




There is another, relevant kind of retraction which occurs in the news media. This
often involves issuing an erratum or apology concerning a specific claim instead of
retracting an entire article or report. There is little data about the effects of news-media
retraction on belief. However, in many cases claims continue to spread widely after
media retraction. During the COVID-19 pandemic, for instance, claims that the virus
strips hemoglobin of iron were tweeted thousands of times after the Medium article
originating them was removed. We do not claim here that retraction in science and
retraction in media are just the same, but we think that many cases from both arenas
can be captured by the models we develop.

Our models draw on the network-contagion modelling paradigm.ﬁ These models are
widely used to represent the spread of both disease and belief (Hayhoe et al., [2017). The
idea is that just as infections spread to susceptible individuals, in some cases beliefs
spread in social networks from those who hold them to those who do not.

There is an extensive literature on social-contagion models to which it would be
impossible to do justice here. Nonetheless, the basic idea is simple. We use network
models where the nodes are individuals (scientists, journalists, members of the public),
and the vertices are communication channels between them. False information can
spread from individual to individual. Information about a retraction can also spread;
though, as we outline below, we assume there is an asymmetry in how false reports and

retractions spreadﬁ

3Contagion models are a type of diffusion model (Rogers, [2012). See discussion in [Levy

and Nail (1993).
1At least one previous paper—Hui et al.| (2011)—has used a contagion-type network

model to investigate the dynamics of retracted information. However, they assume their
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Of course, not all beliefs are well-modelled as contagions. These models are best
tuned to beliefs that spread unit-like from person to person and are easily adopted. In
many cases, individuals depend on evidence to form beliefs in a rational or semi-rational
way and can hold graded degrees of belief. This is especially true in scientific
communities, where beliefs are expected to be evidence-based. (For this reason,
philosophers of science have more often used the network-epistemology framework to
represent the spread of scientific beliefs (Zollman, [2013} |Goldman and O’Connor, 2019).)

What cases, then, are appropriate targets of the investigation here? The models
apply to cases where beliefs are adopted relatively unreflectively. For instance, scientists
may trust free-standing claims published by peers—e.g., that a particular hormone
causes hunger or that a drug effectively reduces pain. Media consumers may trust
journalists who claim there is a fire in some city, that Moonstruck is a great movie, or
that SARS-CoV-2 strips iron from hemoglobin. In cases of beliefs that are controversial
or that depend upon background theory, so that individuals engage in calculation or
reasoning before adopting them, the models will be less applicable. Additionally, the
models will apply best in cases where retractions/refutations are apparent—i.e., where it

becomes uncontroversial that the original claim is, in fact, false.

3 Model and Results

In this section, we present a base model and results. We also examine variations on this

foundation to obtain a clearer picture of the dynamics of false and retracted information.

misinformed agents exit the network, rather than continuing to share information, which

makes these models a poor fit to most real-world cases.



Suppose we have a population of N individuals. Each has a belief about the world,
contingent on information they have received. In particular, we consider false
information, representing an erroneous or fraudulent scientific finding, or a misleading
news item, and also retracted (or corrected) information. Individuals can thus have three
belief states: neutral (before receiving any information), false (having received false
information), and true or retracted (having received the retraction).

We start simulations with the majority of the population holding neutral beliefs. One
individual holds a false belief. A retraction is introduced to one individual either at the
start of the simulation or after some number of rounds. At each time step, we pair two
network neighbours at random to interact. This is done by randomly selecting a focal
individual and then randomly selecting a partner from their neighbours.E]

Beliefs spread as follows. If one individual holds the false belief and the other a
neutral belief, we assume the false belief always spreads. The idea is that the individuals
pass on new information per the contagion framework discussed in section [2| Retracted
beliefs also spread in this way, but only to those who already hold the false belief. As
mentioned in the introduction, this captures the idea that sharing some novel, albeit

false, information is more apt than sharing a retraction of that same information,

®Many models of network contagion/diffusion assume a probabilistic flow of opinion
that happens between each new adopter and all their neighbours—i.e., node M adopts
an opinion in round ¢, and with probability 0.3 all her neighbours will adopt that opinion
in t;. We instead assume probabilistic pairings and a deterministic flow of information
when these pairings happen. We still take our model to fall under the umbrella of this
framework since, unlike other epistemic-network models, we do not represent evidence or

complex belief states.



because a retraction is parasitic on the context. It is only interesting or relevant to those
who already hold false beliefs. We might alternatively interpret the model in the
following way: if one individual mentions a false belief to a partner who knows it has
been retracted, the partner will then share the retraction. (To be clear, there are cases
not well captured by these models where retractions are of interest independent of initial

findings.)

3.1 Complete Network

We begin with a population connected in a complete network, as in figure [} This means
every agent is eligible for pairing with the focal individual on every given round. (We
might also describe this as a population without a network, where individuals meet

randomly for interaction.) When, after some time step, no further belief-revision can

Figure 1: A complete network, with a population of N = 10 agents.

occur, we say that the population is in a stable state. For a model of this sort, of any
size, several population states are stable. For all of these, it is the case that no individual
in the population holds a false belief. In other words, for the model to be in a stable
state, every individual must hold either neutral or retracted information. This fact

actually holds of a broader set of networks—those that are connected (meaning there is a



path between every pair of nodes). Intuitively, this occurs because the retraction can
spread to all individuals with the false belief, but not to individuals with a neutral belief.
Since all individuals are connected, eventually each individual with a false belief will pair
with someone holding the retraction and end up with the true belief. Either all members
of the network are exposed to the false belief, and end up, eventually, with the true
belief; or else, some of them never see the false belief, and at the end will have neutral

beliefs that are stable because there are no false beliefs left in the network.

Proposition 1. For any connected network, a population configuration is stable if and
only if no individual holds a false belief.

Proof. See appendix A. n

Furthermore, the population will always converge toward one of these stable states given

enough time. This fact is stated in corollary [1}

Corollary 1. For a connected network, in the limit, the population configuration always
reaches a stable state.

Proof. This follows from the proof of proposition [I} O

Since the long-term fate of false belief is reasonably predictable, in the sense just
outlined, for now, we are interested in the ‘medium-run’ results. How long does false
information persist in this set-up? How widely does it spread? How do alterations

influence this process? To answer these questions, we run simulations.ﬂ

6The simulations are run using the Mesa agent-based modelling framework in Python3.
See https://github.com /projectmesa. The code for our simulations is publicly available at

[REMOVED FOR REVIEW].


https://github.com/projectmesa

We examine populations of N = 10, 50, 100, 1000 individuals. In each case, one
individual from the population is given false information, and one the retraction, at the
outset. Simulations proceed round by round. Reported results are averages across
simulationsﬂ In each case, the population converges to a stable configuration (as
expected). The typical behaviour of the model involves first the spread of the false belief,
sometimes saturating the population (or coming close), and subsequently the spread of
the retraction until all individuals hold true or neutral beliefs. In figure [2, we can see this
process for three population sizes. The z-axis tracks time (note the different time scales),
and the y-axis tracks the proportion of the population in the three possible belief states.

There are a few things to notice. A group of 10 individuals sees, on average, 40% of
the population holding false beliefs at some point. When we increase the population to
1000 individuals, this becomes 90%. In other words, for a larger population, on average,
false beliefs spread further. This is because, for smaller networks, the false belief is easier
to nip in the bud. Though the proportion of individuals holding retracted and false
beliefs at the outset are the equivalent for a given population size (10% of the population
for N =10 and 0.1% of the population for N = 1000), for smaller networks, it is more
likely that early pairings bring all those with the false belief in contact with the

retractionﬁ For similar reasons, there appears to be a strong, positive relationship

"We average the results of 1000, 1000, 1000, and 100 episodes, respectively, for networks
of size 10, 50, 100, and 1000. In the largest population, simulations take longer to run. For
this reason, we mostly focus on results from smaller populations where we can gather more

data. Throughout, we ran each simulation long enough to reach a stable state
8By way of example, at the outset of a simulation with N = 10, the false belief is an

order of magnitude more likely to spread than the retraction. In contrast, for N = 1000,
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Figure 2: Simulation results for a population on a complete network. N is the size of the
population.

between the size of the population and the average length of time (number of time steps)
for which an agent holds her false belief, as is evident in figure [3]
These observations could be outlined analytically, given that pairings are based solely

on probability distributions for the complete network—i.e., they depend entirely upon

the false belief is three orders of magnitude more likely to spread than the retraction.
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Population Size and Length of False Belief

Average Length of False Belief

0 100 200 300 400 500 600 700 800 900 1000

Population Size

Figure 3: Length of time false beliefs are held for populations of different sizes. For larger
populations, false beliefs are held longer on average.

how many individuals hold each type of belief at a given time step and how large the
population is. While the results here are perhaps unsurprising, we now extend this

model by looking at some variations.

3.1.1 Delayed Retraction

We assume in the base model that the false information and the retraction enter the
network at the outset of an episode. This assumption is perhaps accurate with
something like real-time fact-checking during a political debate; however, in the case of
replication and retraction of scientific studies, there is usually a (potentially significant)
delay before the retraction enters into the population. For instance, Fang et al.| (2012)
find that it takes an average of three years for a finding to be retracted. In some cases,
the discovery of fraud can trigger retraction of an author’s older articles, including ones

published many years previously.
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We delay the introduction of retracted information by a parameter, DELAY.
Otherwise, the simulations are run as before. The delay generally tends to increase the
number of individuals who ever hold the false belief. It also increases the average
amount of time individuals hold false beliefs. However, for relatively short delays, there
is little impact on the average time false beliefs are held. This is shown in figure [l As is
apparent, for N = 100 there is virtually no change for DELAY < 200. This is because if a
retraction is issued when relatively few individuals hold the false belief, it spreads very
slowly, since few individuals will take it up. If it is issued once false beliefs have
saturated the community, each interaction is one where the retraction will spread, so it
catches on more quickly. As we will see later in the paper, this means that, perhaps

surprisingly, under some conditions, later retractions are successful.

Delayed Retraction in Complete Networks

600
500
400
300
200
100

0

Average Length of False Belief

0 100 200 300 400 500 600

Delay in Retraction

Figure 4: As retractions are delayed, false beliefs are held for a longer time on average.
For short delays, there is relatively little effect. N = 100
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3.1.2 Timed Novelty

We also previously assumed that agents share information indefinitely. However, in
many cases new information is more readily shared than old. We model this as follows.
Each agent—upon receiving novel (false or retracted) information—only shares it for a
specified time frame. This small, realistic change means that the analytic results in
proposition [1} and corollary [1| no longer hold. Now false information may stably persist.
This happens when enough time has passed that no one shares the retraction, even
though some individuals in the network hold false beliefs.

As before, in each case, we give one individual from the population false information
and one individual the correction. Figure [5| shows results for population size N = 100.E|
The z-axis tracks time, and the y-axis tracks the average belief state of the population
over simulations.

As is apparent, when the window for which individuals share beliefs is long,
simulations are much like the previous models (figure . The false belief spreads and
then is supplanted by the true belief. As the sharing window gets shorter, though, false
beliefs start to persist alongside retracted beliefs because the retraction is no longer
shared (figures , . As the window grows shorter still, the retraction does not spread
at all, and only false and neutral beliefs persist (figures , . For the shortest time
windows, neither belief spreads (figure . In other words, there is a regime of moderate

sharing where false beliefs are common at the end of a simulation.

9Results are qualitatively similar for N = 50, 1000. Because the population is so small
when N = 10, the behaviour of the model is slightly different, but with timed novelty,

false beliefs can persist indefinitely in this model as well.
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Figure 5: Simulation results for the model with timed novelty on a complete network with
a population of N = 100 individuals.

Why do we see these effects? For the false information to begin to spread in the first
place, the individual holding the false belief must be chosen within the early rounds
before they stop sharing. Since there are 100 individuals in the population, each equally
likely to be picked on a given round, the agent holding the false information has a
reasonably low probability of being chosen within a short frame of time. It is harder still
for the retraction to spread since this requires that the individual with the retracted
belief be selected in the first rounds, and also meet a neighbour with the false belief.

Since false beliefs are stable in these models we can ask: under different regimes,
what proportion of the population ends up with a false belief? Figure [6] shows the

qualitative trend visible in figure 5] Each colour band represents the average proportion
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of individuals at that end state for some time frame of belief-sharing. As the time frame
grows, neutral beliefs decrease, the proportion of stable false beliefs grows and then

shrinks, and the proportion of retracted beliefs growsEl

Timed Novelty and Average End State of Belief
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g == False
S 60 = Neutral
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5
=
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50 100 150 200 250 300 350 400

Time Frame for Sharing

Figure 6: As sharing time increases, false beliefs become more prevalent and then less
prevalent. N = 100, DELAY = 0

We have been discussing independent variations to the base model, but there are

interaction effects between these parameters. In particular, a delayed retraction can

10Reported results to this point have been averages over simulations. However, in these
models, there is significant variation in the level of false belief at the end of runs for
particular sets of parameter values. For some runs, the false belief will gain traction,
while for others, it may never spread at all. For some runs, the retraction will spread
widely due to an accident of history, and for others, the retraction does not reach many
individuals. This means that some information is lost in the data we have presented so

far. This is especially true for longer time frames.
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interact with timed novelty in the following way. When there is only one individual with
false information and one individual with retracted information, on any given round,
there is a minuscule probability that the retracted information can spread. However, if
almost everyone in the population already holds a false belief, this probability is much
higher. We have already seen that a delay in retraction does not necessarily lead to a
significant increase in average length of false belief, for this reason. However, in some
cases, a delay in retraction can actually improve belief because a population where the
false belief is widely held will be more receptive to the retraction. It can catch on like a
contagion. Figure [7]shows this. As the delay increases, we see a decrease in the final
number of false beliefs because the delay makes the retraction relevant during the time

frame where individuals are sharing it.

Timed Novelty, Delayed Retraction, and Average End State of Belief

== Retracted
== False

~&= Neutral

Average Proportion of False Belief

0 100 200 300 400 500

Delay in Retraction

Figure 7: For a fixed sharing time frame of 200, as the delay in retraction increases, final
false beliefs decrease, and retracted beliefs increase. N = 100

16



3.2 Small-World Networks

To this point, we have considered a trivial network structure which assumes every
individual meets every other randomly. But some scientists are regular communicators,
and others do not interact at all. We can vary network structure to restrict the
individuals with whom any particular agent can share information—two agents are
eligible for pairing just in case they are connected.

We consider small-world networks because many real-world social networks exhibit
small-world properties (Telesford et al., 2011). Small-world networks are defined by short
average path-length—i.e., the distance between any pair of nodes is relatively short—and
high clustering coefficients. The clustering coefficient is a measure of how dense the
connections are for individual nodes: If your friends are all friends with one another,
then you have a high clustering coefficient. Small-world networks also tend to have hubs,
which are nodes with higher-than-average connections—e.g., a popular individual at the
centre of a clique is a ‘hub’ for social interactions ||

We generate networks according to the Watts-Strogatz model (Watts and Strogatz,
1998)). The algorithm begins with a network with N nodes, each of which connects to its
K nearest neighbours. Then, for every node, n;, it takes every edge connecting n; to its
K /2 rightmost neighbours and re-wires it with probability p. Rewiring is done such that
the new link connects (n;, ny), where k is chosen at random, subject to the constraints

that there are no loops, and no duplications. We examine models with

UNote that small-world networks generally display an over-abundance of hubs com-
pared to real-world networks. The preferential-attachment networks considered in the

next section do not.
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(k,p) = (8,0.1), (16,0.07), (32, 0.016)E| Figure |8 shows an example of a regular lattice, a
small-world network, and a random network. As the figure makes clear, the small-world
network is related to both of these. The more rewiring in the algorithm, the further the
network is from a lattice, and the closer to the random network. Small worlds exist for

intermediate values between these extremes.

(a) lattice (b) small world (¢) random

Figure 8: Particular instances of (a) a lattice network, (b) a small-world network, and (c)
a random network. In each case, the population consists of 50 individuals, and the average
degree for each node is 8.

With a non-trivial network structure, we must now specify the relationship between
the source of the false belief and the source of the retraction. They might originate at
the same node. This captures a situation in which, e.g., a specific individual (lab,

journal, institute) publishes a result and then subsequently retracts it. Alternatively, a

12The parameters for k were chosen somewhat arbitrarily, but they correspond to an
individual, on average, knowing between 1/10 and 1/3 of the population. Once we decided

upon these values for k, we empirically tested a variety of values for p and calculated the

‘small-worldness’ of the resultant network using the w measure described in Telestord et al.|

(2011)). The values we chose consistently achieved w close to zero.

18



retraction might originate at a different node if another journal or lab publishes a failure
to replicate, or if one news outlet invalidates another’s claim.

The qualitative results from our base model hold for small worlds. We discuss
simulations for N = 100. When individuals never stop sharing information, the only
stable states are ones in which there are no false beliefs. Delaying the introduction of
retracted information again tends to increase the average amount of time individuals
hold false beliefs. As before, when we introduce timed novelty to our model, stable false
beliefs are possible. And as before, delay can create a surprising benefit in such cases.

Does the location of a retraction influence its success? We looked at simulations
where the retraction was either introduced 1) by the same agent who introduced the
false belief or 2) by another, random agent in the network. We find that introducing the
retraction in a different spot leads to more, stable false belief (assuming there is some
time frame for sharing). Figure @ shows this for a particular model. This happens
because the retraction, when introduced in the same location, can chase and overtake
false beliefs[’] When introduced in another location, it takes longer for the retraction and
false beliefs to come into contact, and thus the false belief is harder to eradicate. As we

will discuss in the conclusion, this may have important policy implications for journals.

13Notice that for the model where the same agent issues the retraction, increasing delay
first slightly increases false belief and then decreases it. This is because when the retraction
is issued right away, there may be no time for the false belief to spread at all. So, there
are few false beliefs. But when the delay continues to increase, it improves the uptake of

the retraction.
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Location of Retraction in Small World Networks
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Figure 9: False beliefs are less prevalent when the same source issues a retraction, N =
100, K = 8, time frame for sharing = 200.

3.3 Preferential-Attachment Networks

As noted, small-world networks accord with some empirically observed properties of

social networks. However, unlike small-world networks, many real-world networks have
been observed to have scale-free properties such that some small number of individuals
are very highly connected, while most are notE In particular, scale-free properties are

common in citation networks, scientific collaboration networks, and on the internet

(Barabasi and Albert, (1999; Barabasi et al., 2002; |Albert and Barabasi, [2002; Steyvers |

and Tenenbaum), [2005) ['] This might correspond, for instance, to scientific communities

where some individuals are highly connected, and others are marginally so.

We now look at networks generated according to the Barabasi—Albert

In a scale-free network, the asymptotic degree distribution follows a power law.
Though the scale-free nature of some networks has been contested; see

(|2007|); |Milojevié| (|2010|); |Broido and Clauset| (|2019|).
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preferential-attachment model (Barabasi and Albert| [1999). The algorithm begins with a

connected network of m individuals. New nodes (up to N) are added one at a time.
Each connects to m existing nodes with probability directly proportional to the number
of links the nodes already have. Therefore, existing nodes with many links tend to
receive more new attachments, e.g., new articles are proportionally more likely to cite
‘famous’ (already heavily cited) articles rather than newer articles with fewer citations.
Figure 10| shows an example of networks for m = 1,3,5. We examine networks with

m=1,2,3,4,5.

(c)m=5

Figure 10: Example of preferential-attachment networks.

Our results are generally robust in these new networks. Timed novelty can lead to
the indefinite persistence of false beliefs, and delayed retraction can sometimes improve
the saturation of a retraction. As with small-world networks, for preferential-attachment
networks, we can ask: how does the location of retraction influence outcomes? We were
particularly interested in cases where a founding, central node introduced a false result.
We then looked at treatments where either 1) the retraction was introduced by this same
node, or 2) the last node introduced the retraction. This might correspond to situations
where either a well-established scientist retracts their own finding, or where a relative

newcomer to the community refutes them.
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We found that, across parameter values, retraction is more effective when introduced
by the original, founding node. It is not entirely surprising. There are two advantages to
a central node issuing a retraction. First, as with the small-world networks, there is an
advantage of a retraction coming from the same place because it can chase the same
paths the false belief took. Second, there is a benefit when the retraction is issued by a
highly connected node, with relatively short paths to the rest of the network. Figure
shows these results for different values of m. Note that when m is low, there is relatively
little false belief because the sparse network structure impairs its spread. In all cases,

there is a clear benefit to retraction from the original node.

Location of Retraction in Preferential Attachment Networks
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Figure 11: False beliefs are less prevalent when a central node issues a retraction of its
own falsehood, rather than when a relatively less central node does. N = 100, Delay=100,
time frame for sharing = 200
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3.4 Homophilic Networks

Sometimes populations fracture into political camps or research communities that take
different approaches. Such networks are especially relevant to thinking about failures of
retraction, since retractions accepted by one subgroup may be ignored by another.

To consider this sort of case, we look at how homophily affects the persistence of
retracted information. Network homophily describes the tendency for nodes that are
‘similar’ in some respect (i.e., in-groups) to be more likely to attach to one another than
‘dissimilar’ (i.e., out-group) nodes. Because of this tendency, in homophilic networks, we
see highly connected subgroups with relatively fewer connections between. Figure

shows an example.

Figure 12: Example of a network exhibiting homophily. Each subpopulation has N = 50
agents. The probability that a particular individual has a connection with a member of
her in-group is significantly higher than the probability that she has a connection with a
member of her out-group. In this case, p;, = 0.25 and p,,; = 0.10, respectively.

There are two reasons we examine homophilic networks. First, we see subgroups of

this sort in many real-world networks, including scientific Communitiesm Additionally,

16For example, among medical researchers in the United States, there is a sharp divide
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social networks surrounding political orientation are often homophilic (Himelboim et al.,
2016). Second, by splitting the population into subgroups, we can examine the effect
that distinct sources of information have on the persistence of false information in the
population as a whole and within each subpopulation.

We always assume that for N individuals, each subpopulation consists of N/2
individuals. For each individual, n;, in the network, there is some probability, p;,, that
n; is connected with a given member of her in-group, and there is some other probability,
Pout, that n; is paired with a member of her out-group. In figure [12] for example,

Pin = 0.25 and py; = 0.10.

What happens in models with homophily? General results are similar to those
reported. Compared to the model with a complete network, retracted beliefs tend to
spread less quickly in homophilic networks, meaning that on average neutral and false
beliefs persist longer, and in models with timed novelty fewer individuals ever reach
retracted beliefs.

In cases with a high level of homophily between the groups, we find that retractions
are less successful when introduced in the group that did not generate the original false
belief. This is unsurprising since homophily means that it takes longer for false beliefs to
reach the other group, making retraction less relevant and more likely to stop

Spreading.m Once the retraction does manage to spread, there are fewer links by which

between those who believe that ‘chronic Lyme disease’—i.e., a form of the disease that
resists short-term antibiotic treatment—is a fiction and those who report efficacy of long-

term antibiotics to relieve symptoms (O’Connor and Weatherall, |2019).
1"Perhaps more surprising is that we see little effect for lower levels of homophily. We

are not sure why only extreme homophily values exhibit these tendencies.

24



it can travel to the group that originated the false belief. Figure [13| shows this.

Location of Retraction in Homophilic Networks
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Figure 13: Homophilic networks may have more persistent false belief when retraction
is introduced to a different partition from where it originated. p;, = 0.4, pos = 0.004,
N =100, timed novelty stops after 200 rounds

Additionally, both the location of the original false belief and the location of the
retraction can influence the relative levels of false belief in the two subgroups. For
simplicity, let us call the groups 1 and 2. We assume the false belief is always introduced
in group 1, and the retraction can be introduced in either. In most cases, group 1 tends
to hold false beliefs for more extended periods than 2, since the false belief originated in
their area of the network. Though in cases where both the false belief and the retraction
show up in group 1, it will sometimes be the case that the false belief, but not the
retraction, manages to spread effectively to group 2. In such cases, more members of
group 1 will hold the false belief at some time or another, but they’ll also learn the
retraction faster. When the retraction is introduced in group 2, though, group 1 holds
false beliefs for longer in all models. If the individuals with the incorrect belief do not

receive a correction in their own subgroup, they are left in a state of false belief as the
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retraction slowly trickles back to them. Figure [14] shows data supporting these claims.
We report average end beliefs for groups 1 and 2, for cases where the retraction is
introduced in 1 (same) and 2 (other). When the retraction is in the same subgroup, that
group ends up with many more retracted beliefs; and, for these parameter values, shorter
average false beliefs. When the retraction is introduced in group 2, group 1 has

dramatically higher levels of false belief and lower levels of retracted beliefs.
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Figure 14: Average length of belief for two subgroups in a homophilic network. Results
are for group 1 and group 2, for cases where the retraction is introduced in the same
subgroup (1) and the other subgroup (2). py = 0.4, pour = 0.004, N = 100, Delay=400,
timed novelty stops after 200 rounds

4 Conclusion

To summarise our findings: we find that contagion-type models are a useful tool in
exploring the dynamics of retraction. They show why false beliefs can persist indefinitely,

even in light of a retraction, when agents stop sharing new beliefs. They illustrate how
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delays might influence the success of a retraction, including the surprising finding that in
some cases delay might improve the saturation of a retraction. They show how network
structure can impact the success of retraction, and, in particular, how retractions are less
successful when they do not come from the original source. In homophilic networks,
retractions are more successful when they originate in the same group as the false claim.

Simplified models like the ones we present here must always be treated carefully
when applied to real-world cases. In particular, there are mismatches between model and
target in our work that may attenuate the relevance of the results. We will now talk
about a few of these mismatches before outlining in greater detail what we think these
models can do.

One of these gaps is that we do not model prominent, or central communicating
agents such as a journal, or academic search engine, that spread ideas to large portions
of a population at once. One might worry that in science authors will always check with
these sorts of central agents before adopting a new belief, or citing a source, thus
invalidating our models. Empirically, though, we know that this does not always happen.
Instead, authors often pull citations directly from citing papers, rather than looking to
the original source (Broadus, 1983). Moreover, as we made clear earlier in the paper, the
existence of these central agents does not seem to stop the widespread citation of
retracted work. Still, this kind of structure should impact the flow of information in
scientific communities, and below we will discuss this further.

Another issue relates to the representation of agents’ cognition. Our agents have only
three belief states—mneutral, false, or retracted. However, in many cases, results of
scientific studies are not easily deemed to be true or false but are controversial. For this

reason, as noted above, the models will not apply to a wide range of cases where beliefs
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vary in degree. Additionally, the agents in our populations have none of the special
reasoning biases humans exhibit. Thus, there are no instances of, e.g., confirmation bias,
where individuals seek out all and only ‘facts’ that support their beliefs. They do not
yield to conformist bias—i.e., imitating the beliefs of neighbours for social reasons.
Further work might look at whether the results here hold up under more complex
representations of agents.

Our models also assume that agents are not motivated to shape the beliefs of those
around them. Whenever agents learn that a piece of information is false, they stop
sharing it and start sharing the retraction. However, it seems scientists often continue to
cite and share their own retracted findings. Madlock-Brown and Eichmann (2015) show
this is a common practice and that scientists who do it boost their post-retraction
citation count. One reason for this may be that scientists often seek credit—attention
and good reputation from those in the community (Merton, (1973)).

Scientific journals and research institutions are also incentivised to maintain both
readership and reputation, which may make them both reluctant to retract papers and to
communicate these retractions to readers (Unger and Couzin|, 2006; [Wager and Williams,
2011; Madlock-Brown and Eichmann| 2015)). For instance, there seem to be many cases
in which journal retractions are overly vague, or imply an error, when, in fact, they were
the result of discovered fraud (Wager and Williams, 2011} Fang et al., 2012).@ Many
philosophers of science have used Merton’s framework to model scientists as taking part

in a ‘credit economy’ (Kitcher} 1990; Bright, |2017; Heesen, |2018)). A next version of our

18News sources may do the same thing. Writing about news retractions, Craig Sil-
verman reports that news sources often try to downplay the fact that they were wrong

(McWilliams, 2013)).
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model might include credit motivations as well as epistemic motivations for our agents.
In other cases, retracted information is shared by those with political or economic
motivations. We might also consider agents who seek to shape the landscape of belieff;g]

Despite the limitations of these models, there are several appropriate takeaways.
First, they are useful for hypothesis-generation and directing further empirical research.
This is especially true for cases where empirical work is lacking, such as in the case of
uptake of media retractions. To give an example: our results suggest that moderate
delays in retraction may sometimes make them more effective. Although this is not an
obvious hypothesis to test prior to this modelling work, it is worth examining given the
theoretical support generated here. It is also worth considering how the location of a
retraction in real networks influences outcomes. Does the source matter, especially in
homophilic groups, as we suggest?

Second, the models here provide tools for thinking about how to improve current
systems to make retractions more effective. (Improvements that can be empirically
tested.) What solutions do they suggest? We cannot easily alter the network connections
between human individuals, laboratories, or research institutes. Additionally, we
probably cannot convince agents to keep talking about retractions for a longer period
than they usually would. However, we might be able to institute changes for central
communicators like those mentioned above—journals and academic search engines.
Imagine the addition of a node into our network models that communicates with a large

proportion of the population and continues to share information about the retraction

Philosophers of science have successfully used network-epistemology models to in-
vestigate situations like this (Holman and Bruner, 2015, 2017; |Weatherall et al. 2018}

Lewandowsky et al., 2019).
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actively and indefinitely. Such a node would move the population towards something like
the networks we discussed first, where falsehood is always eventually stamped out. If
each individual is connected to a node that continues to share the retraction, they should
eventually get that information.

This also implies that real organisations should be more active about communicating
retractions. For instance, in searching Google scholar, it is easy to yield retracted
research papers as results without also seeing the retraction. A better practice would
involve tying these search results together. Journals should implement editorial policies
that check to see whether cited sources have been retracted, and then ask authors to
remove these sources where appropriate. This would, in effect, be a policy designed to
promote continued and widespread sharing of the retraction.

Our results also suggest it is important for retractions to be spread by the same
sources that originated a false belief. If a refutation is published in another field or
sub-field, it might not be effective. The journal that originally published the false result
should publicise this refutation to their own readers. Likewise, if a news source proves
that another is wrong, it is important that the original news source share this
information as well. Journalists who, for instance, publicise false claims should try to use
the same venues to clarify matters.

In sum, while these models are highly simplified, they are useful in directing further
research into retraction. In particular, they help yield hypotheses regarding network
structure and community design that may help improve retraction and the elimination of

false beliefs.
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A  Proofs

Proposition 1: For any connected network, a population configuration is
stable if and only if no individual holds a false belief.

Proof. (<) Assume that no individual in the population holds a false belief.
Then every individual in the population either has neutral information or
retracted information.

On a particular trial, we pair two individuals, A and B. Either A and B have
the same information, or they have different information. If they have the
same information—both neutral or both retracted—then they do not update,
so the state-configuration remains unchanged. This leaves the case where
they have different information. Without loss of generality, assume that A
holds a neutral belief, and B holds a retracted belief. In this case, ex
hypothesi, they do not share information. Therefore, the state configuration
remains unchanged.

(=) We proceed via the contrapositive.

Assume at least one individual in the population holds false information. By
assumption, at least one individual in the network holds a retracted belief.
Because the network is connected, there is at least one path of vertices
connecting these individuals. On every round, there is a positive probability
that any two neighbours meet. Thus, from any starting time step, in the
limit, all neighbours on this path will be selected to meet with probability 1.
Consider moving down the path from the individual with false belief. If the
individual with false belief has a neighbour with neutral or retracted belief,
the configuration is thus not stable. If their neighbour has a false belief, but
if the next neighbour has a neutral or retracted belief, the configuration is
not stable, etc. Since the final node on the path holds the retracted belief,
the sub-network consisting in this path is not stable, and thus the entire
network is not in a stable configuration.
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