
UC Irvine
ICS Technical Reports

Title
Improved sparsification

Permalink
https://escholarship.org/uc/item/8wt0h4n2

Authors
Eppstein, David
Galil, Zvi
Italiano, Giuseppe F.

Publication Date
1993-04-15
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8wt0h4n2
https://escholarship.org
http://www.cdlib.org/


_lmproved Sparsification 

David ~ppstein* Zvi Galilt Giuseppe F. Italiano+ 

Tech. Report 93-20 

Department of Information and Computer Science 
University of California, Irvine, CA 92717 

April 15, 1993 

Abstract 

In previous work we introduced sparsification, a technique that 
transforms fully dynamic algorithms for sparse graphs into ones that 
work on any graph, with a logarithmic increase in complexity. In this 
work we describe an improvement on this technique that avoids the 
logarithmic overhead. Using our improved sparsification technique, 
we keep track of the following properties: minimum spanning for­
est, best swap, connectivity, 2-edge-connectivity, and bipartiteness, 
in time O(n 112 ) per edge insertion or deletion; 2-vertex-connectivity 
and 3-vertex-connectivity, in time O(n) per update; and 4-vertex­
connectivity, in time O(na(n)) per update. 

*Department of Information and Computer Science, University of California, Irvine, 
CA 92717. Work supported in pa.rt by NSF grant CCR-9258355. 

tDepa.rtment of Computer Science, Columbia University, New York, NY 10027 and 
Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel. Work supported 
in part by NSF Grants CCR-9014605 and CDA-9024735. 

lIBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598. On 
leave from U niversita di Roma. 



1 Introduction 

A fully dynamic graph algorithm is one that allows edge insertions and dele­
tions, and recomputes some desired graph property quickly after each such 
update. In a previous paper [4), we introduced sparsification, a general tech­
nique that improves many such algorithms. Using this technique we were 
able to improve time bounds of the form 0( me) for such problems, into 
the form 0( nc log( m/n )). We used sparsification to improve algorithms for 
many problems related to minimum spanning forests, edge and vertex con­
nectivity, and bipartiteness. Apart from the logarithmic term O(log(ni/n)), 
the resulting time bounds for general graphs matched the best that could 
previously have been achieved only for sparse graphs. 

An open problem remaining from that work was to close the remaining 
gap between sparse and general graphs, and eliminate the O(log( m/ n)) term 
from the time bound. In this paper we provide a method of doing so. Using 
this idea we can further improve the time bounds of algorithms for many of 
the same minimum spanning forest, connectivity, and bipartiteness problems 
previously solved by sparsification. 

Sparsification itself worked by recursively partitioning the edges of the 
graph into a tree of subgraphs, and representing each node of the tree by a 
sparse certificate. The partition itself was quite arbitrary. For our new re­
sults, we use the same edge partition idea of our original sparsifica.tion paper, 
but we guide the edge partition by a corresponding partition of the vertices. 
In this way we can guarantee that the sizes of the certificates involved in 
any single update decrease in a geometric progression, and eliminate the 
0 (log( m / n)) overhead term found in our original sparsification results. We 
improve any sparsification based dynamic graph algorithm previously run­
ning in time O(nclog(m/n)), for some c > 0, to O(nc) per update. 

Related ideas have been used in two special cases of sparsifica.tion. First, 
in an application of general graph sparsification to a geometric minimum 
spanning tree problem [1], we were able to eliminate the logarithmic over­
head, by partitioning vertices as well as edges. In this case the vertex par­
tition occurred naturally as part of the recursive definition of the graph on 
which sparsification was applied. Second, we later used an idea similar to 
spa.rsification, but based on partitions by separators, to achieve improve­
ments in many dynamic algorithms for planar graphs [.5]. In that paper ' 
as well, the partition of vertices a.rose naturally, in this case from the use 
of known separator theorems. Again the number of vertices in each par­
tition decreased appropriately and we were able to a.void the logarithmic 

1 



factor. Our results in this paper can be seen as a generalization of the ver­
tex partition techniques used in those two situations, to cover all possible 
input graphs. However we do not require any particularly natural vertex 
partition: we show that, as in our previous paper where any edge partition 
performed well, here any vertex partition suffices in our improved sparsifi­
cation technique. 

2 New Results 

We describe fully dynamic data structures for the following problems. 

1. We maintain the minimum spanning forest of an edge-weighted graph 
in 0( n 112 ) time per edge insertion, deletion, or weight change, im­
proving a previous O(n112 log(m/n)) bound [4). Applications of this 
result include algorithms for selecting random spanning trees [6) and 
maintaining color-constrained minimum spanning trees [9]. 

2. We give a fully persistent, fully dynamic data structure for maintain­
ing the best swap in the minimum spanning tree of a graph, in time 
0( n 112 ) per update. As a consequence we find the k smallest spanning 
trees of a graph in time O(mlogf1(m, n) + kn 112 ). The best previous 
times were O(n112 log(m/n)) and O(mlogf1(m,n) + kn112 log(m/n)) 
respectively [4). 

3. We give a data structure for querying membership in the connected 
components of a graph, in O(n112 ) time per edge insertion or deletion, 
and 0(1) time per query. As with minimum spanning forests, the best 
previous bound was O(n112 log(m/n)) [4]. 

4. We maintain the 2-edge-connected components of a graph, in time 
0( n112 ) per update, and O(log n) per query, improving the previous 
O(n112 log(m/n)) bound per update [4). 

5. We maintain the 2- and 3-vertex connected components of a graph in 
time 0( n) per update, improving a previous bound of 0( n log( m/ n)) [4]. 
Rauch [12) proved an incomparible time bound of 0( m 213

) per update 
and 0(1) per query for fully dynamic 2-vertex connectivity. 

6. We maintain the 4-vertex-connected components of a graph in time 
O(na(n)) per update, improving a previous bound of O(nlog(m/n) + 
na(n)) [4]. 

2 



7. We maintain a bipartition of a graph, or determine that the graph is 
not bipartite, in 0( n 112

) time per update, improving a previous bound 
of O(n112 log(m/n)) [4]. 

3 Sparsification 

In this section we review the definition of sparsification from our earlier 
paper. Sparsification is based on the notion of a strong certificate: 

Definition 1. For any graph property P, and graph G, a strong certificate 
for G is a. graph G' on the same vertex set such that, for any H, GU H has 
property P if and only if G' U H has the property. 

A graph property is said to have sparse certificates if there is some con­
stant c such that for every graph G on an n-vertex set, we can find a strong 
certificate for G with at most en edges. 

The original sparsification technique maintains a partition of the edges 
of the graph into fm/nl groups, all but one of which contain exactly n edges. 
We form a complete binary tree with leaves corresponding to the groups. 
Each node in this sparsification tree corresponds to a subgraph formed by the 
edges in the groups at the leaves of the tree that are descendants of the given 
node. For each such subgraph, we maintain a sparse certificate of P. The 
certificate at a given node is found by forming the union of the certificates 
at the two child nodes, and running the sparse certificate algorithm on this 
union. Each update will cause 0( 1) changes in the structure of the tree, so 
when an edge is inserted or deleted, we change 0(1) groups. For ea.ch of 
these groups, and for their log( m/n) ancestors in the sparsification tree, we 
recompute a new sparse certificate. This results in a sparse certificate for 
the whole graph at the root of the tree. We then update the data structure 
for property P, on the graph formed by the sparse certificate a.t the root of 
the tree. If the certificates and the data structure can both be constructed 
in linear time, the result is a fully dynamic algorithm with update time 
O(nlog(m/n)). In this paper we show that with the same assumptions this 
result can be improved to 0( n) time per update. 

In a variant of our original sparsification technique, we update ea.ch cer­
tificate quickly using a dynamic data structure instead of a static computa­
tion, by taking advantage of a stability property of certain certificates. 

Definition 2. Let A be a function mapping graphs to strong certificates. 
Tlwn A is stable if it lrns the fallowing two properties: (1) For any grapl1s 

3 



G and H, A(GU H) = A(A(G)U H). (2) For any graph G and edge e in G, 
A( G - e) differs from A( G) by 0( 1) edges. 

Informally, we refer to a certificate as stable if it is the certificate pro­
duced by a stable mapping. 

The stable sparsification technique assumes the existence of a fully dy­
namic data structure for maintaining the desired stable certificates. As 
before, we group the edges into rm/ n l groups of n edges each, arranged 
in a complete binary tree. We propagate changes up the tree, using the 
data structure for maintaining certificates, and update the data structure 
for property P, defined on the graph formed by the sparse certificate at the 
tree root. At each node of the tree, we maintain a stable certificate on the 
graph formed as the union of the two certificates in the two child nodes. It 
follows from stability that at each level of the sparsification tree there is a 
constant amount of change, and so the update to the certificate at each level 
can be performed with 0(1) data structure operations. If the certificate, and 
a data structure for maintaining property P itself, can be maintained in time 
O(mc), this technique improves the bound to O(nclog(m/n)). In this paper 
we provide a further improvement, to 0( nc). 

4 Improved Sparsification 

In the original sparsification technique, the edge partition was arbitrary, 
and the graphs induced at each node of the sparsification tree could have 
many vertices. We use a different partition technique, similar to the 2-
dimensional topology tree of Frederickson [7, 8] to partition the edges in a 
way that induces subgraphs with few vertices. 

We start with a partition of the vertices of the graph, as follows: we split 
the vertices evenly in two halves, and recursively partition each half. Thus 
we end up with a complete binary tree in which nodes at distance i from 
the root have n/2i vertices. 

We then use the structure of this tree to partition the edges of the graph. 
For any two nodes a and /3 of the vertex partition tree at the same level i, 
containing vertex sets Vex and V13, we create a node EOl/3 in the edge partition 
tree, containing all edges in VO/ x 1l13. The parent of EOl(J is E"'s' where/ and 
b are the parents of a and /3 respectively in the vertex partition tree. Each 
node E0/[3 in the edge partition tree has either three or four children (three 
if a= /3, four otherwise). 

4 



We use a slightly modified version of this edge partition tree as our 
sparsification tree. The modification is that we only construct those nodes 
Eo:f3 for which there is at lea.st one edge in Fax Vf3. If a new edge is inserted 
new nodes are created as necessary, and if an edge is deleted those nodes for 
which it was the only edge a.re deleted. 

Lemma 1. In the sparsification tree described a.hove, ea.ch node Eaf3 at 
level i contains edges inducing a gra.ph with at most n/2i-l vertices. 

Proof: There can be at most n/2i in each of Vo: and Vf3. D 

We say a time bound T(n) is well-behaved if for some c < 1, T(n/2) < 
cT( n ). We assume well-beha.vedness to eliminate strange situations in which 
a. time bound fluctuates wildly with n, and also in stable spa.rsification to 
make sure that f( n) is large enough for our improvement to work. All 
polynomials are well-behaved. 

Theorem 1. Let P be a property for which we can find sparse certificates 
in time f ( n, m) for some well-behaved f, and such tha.t we can construct 
a. data structure for testing property P in time g( n, m) which can answer 
queries in time q(n, m). Then tl1ere is a fully dynamic data structure for 
testing whetl1er a. gra.ph J1as property P, for which edge insertions and dele­
tions can be performed in time O(f( n, 0( n))) + g( n, 0( n) ), and for ¥Fili ch 
the query time is q( n, 0( n)). 

Proof: We maintain a sparse certificate for the graph induced by each 
node of the spa.rsifica.tion tree. The certificate at a. given node is found by 
forming the union of the certificates at the three or four child nodes, and 
running the sparse certificate algorithm on this union. As shown in [4], the 
certificate of a union of certificates is itself a certificate of the union, so 
this gives a sparse certificate for the subgraph at the node. Ea.ch certificate 
at level i can be computed in time f ( n/2i-l, 0( n/2i) ). Ea.ch update will 
change the certificates of at most one node at ea.ch level of the tree. The 
time to recompute certificates at each such node adds in a geometric series 
to f(n,O(n)). 

This process results in a sparse certificate for the whole graph at the 
root of the tree. We update the data structure for property P, on the graph 
formed by the sparse certificate at the root of the tree, in time g( n, 0 ( n)). 
The total time per update is thus O(f(n,O(n)))+ g(n,cn). D 



Theorem 2. Let P be a. property for which stable sparse certificates can 
be maintained in time f ( n, m) per update for some well-behaved f, and 
for wl1ich there is a data structure for property P with update time g(n, m) 
and query time q( n, m ). Then P can be maintained in time O(f ( n, 0( n))) + 
g(n,O(n)) per update, with query time q(n,O(n)). 

Proof: As before, we use the sparsification tree described above. After each 
update, we propagate the changes up the sparsification tree, using the data 
structure for maintaining certificates. We then update the data structure for 
property P, which is defined on the graph formed by the sparse certificate 
a.t the tree root. 

At each node of the tree, we maintain a stable certificate on the graph 
formed as the union of the certificates in the three or four child nodes. The 
first part of the definition of stability implies that this certificate will also be 
a stable certificate that could have been selected by the mapping A starting 
on the subgraph of all edges in groups descending from the node. The second 
part of the definition of stability then bounds the number of changes in the 
certificate by some constant s, since the subgraph is changing only by a 
single edge. Thus at each level of the sparsification tree there is a constant 
amount of change. 

When we perform an update, we find these s changes at each successive 
level of the sparsification tree, using the data structure for stable certificates. 
We perform at most s data structure operations, one for each change in the 
certificate at the next lower level. Each operation produces at most s changes 
to be made to the certificate at the present level, so we would expect a total 
of s 2 changes. However, we can cancel many of these changes out as in [4] 
so the net effect of the update will be at mm;t s changes in the certificate. 

The times to change each certificate then add in a geometric series to 
give the stated bound. D 

Theorem 1 can be used to dynamize static algorithms, while Theorem 2 
can be used to speed up existing fully dynamic algorithms. In order to apply 
effectively Theorem 1 we only need to compute efficiently sparse certificates, 
while for Theorem 2 we need to maintain efficiently stable sparse certificates. 

5 Better space and preprocessing 

In the original version of sparsification [4], the space and preprocessing time 
were linear (assuming the same to be true of the certificate computation 

6 



algorithm). In the improved sparsification presented above, the time has 
been improved by a logarithmic factor, but the space and preprocessing 
time will now be increased by a similar factor. Indeed, the best one can 
show is a space and preprocessing bound of 0 ( m log( n2 / m)). 

In this section we combine the vertex partition of our improved spar­
sification with the edge partition of our original sparsification, to create a 
hybrid algorithm that will have the best time and space bounds of both 
algorithms. 

The idea is simple: we use the improved sparsification tree only down 
to the level of nodes with 0( n2 / m) vertices ea.ch. Above that level, the 
space and preprocessing are proportional to the total number of vertices in 
all nodes, which sums to 0( m ). Below that level, we use the linear space 
sparsification method of our previous paper [4]. 

The time for computing or updating certificates in the upper levels of 
the sparsification tree is O(J( n)) by Theorem 1 or Theorem 2 The time in 
lower levels is O(f(n2 /m)log(m2/n2 )) by results of [4]; with the assump­
tion of well-bahavedness this can be rewritten O(f ( n )( n/ m)logc log( m/ n)) = 
O(J(n)). 

We state our results more formally. The assumption of upwards convex­
ity is needed in order to bound the amount of space used in a collection of 
data structures at different nodes in the sparsification tree, with different 
numbers of vertices adding to a certain total. 

Theorem 3. The time bound of Theorem 1 ca.n be a.chieved with 0( m) 
spa.ce, plus a.ny a.dditiona.1 spa.ce needed to construct certifica.tes or compute 
the grapl1 property on the root certificate. For preprocessing time in Theo­
rem 1, or either space or preprocessing in Tl1eorem 2, if the bounds on tl1e 
individua.l processing or spa.ce at a. node of the spa.rsifica.tion tree a.re given 
by a.n upwards convex function h(n), tl1e total bound will be 0( 1~ h(n)). 

6 Applications 

The improved sparsification technique can be applied to a wide variety of 
problems. We first discuss several problems related to minimum spanning 
forests. 

Theorem 4. Tl1e minimum spanning forest of an undirected gra.ph ca.n be 
ma.inta.ined in time 0( n112 ) per upda.te. 

7 



Proof: Apply the stable sparsification technique of Theorem 2, with 
f ( n, m) = g( n, m) = 0( m 1/

2
) by the clustering algorithm of Frederick­

son [7). D 

The best swap in a graph is the pair of edges such that if they are respec­
tively added to and removed from the minimum spanning forest, the result 
is again a spanning forest with minimum possible weight. Best swaps have 
been used to enumerate the spanning forests of a graph in order by weight [8). 
For this application one needs a fully persistent data structure (one in which 
any update does not modify previous versions of the data structure, but 
instead creates a new separately existing version, and in which each update 
or query can be performed in any of the versions tha.t have been so created). 

Theorem 5. Tlie best swap of an undirected graph can be maintained 
with full persistence in time 0( n 112 ) per update. 

Proof: As in [4), we use the union of the two smallest spanning trees as a 
certificate, maintained by Frederickson's minimum spanning tree algorithm, 
and use Frederickson 's [8) best swap data structure at the root of the spar­
sification tree. And as in [4, 8), it is not difficult to modify both the data 
structures used at each node of the tree, and our spa.rsification technique 
itself, to support full persistence. D 

Theorem 6. The k best spanning trees of an undirected graph can be 
found in a total of 0( m log /3( m, n) + k min( n, k )112) time. 

Proof: As Frederickson [8) shows, this problem can be solved using 0( k) 
operations in the persistent best swap data structure. A graph reduction 
technique of the first author [2) replaces n by min( n, k) and m by min( m, k) 
in the time bounds at the expense of an additive 0( m log /3( m, n)) term. 

With the same graph reduction technique, the best swap data struc­
ture can be constructed in time O(min(m, k) logmin(n, k) log log* min(n, k)). 
With a. more complicated spa.rsifica.tion tree in which our original structured 
tree is compressed to a.void nodes containing few edges, we can eliminate the 
O(log min( n, k)) term in this bound, however such an improvement is not 
necessary as the setup time is dominated by the 0( k min( n, k )112) term. D 

Corollary 1. Tlle k best spanning trees of a Euclidean pla.nar point set can 
be found in time 0( n log n log k + k min( k, n )112). Par a point set with tlie 
rectilinear metric the time is 0( n log n+n log log n log k+k min( k, n )112), a.nd 
for a point set in l1igher dimensions the time is O(n2- 2/(fd/2l+1)+€ + kn112 ). 

8 



Proof: In an earlier work [3] we reduced these geometric problems to the 
general graph problem in these time bounds. D 

Feder and Mihail [6] use a random walk technique to select uniformly 
distributed spanning trees of a graph. Their walk either removes a random 
edge from the spanning tree, or adds a random edge making the current 
forest into a spanning tree. As shown in [4], this can be done by using a 
dynamic minimum spanning tree algorithm with weights determined by a 
separately maintained random permutation on non-tree edges. 

Theorem 7. We ca.n implement the random wa.lk of Feder and Milza.il [6] 
on the spanning forests of a. given gra.plz, in time 0( n112 ) per step. 

In the color-constrained minimum spanning tree problem, ea.ch edge of a 
graph is labeled with one out of d different colors. We would like to maintain 
a minimum spanning tree that contains a certain number of edges of each 
color, as edges are inserted, deleted or have their weight changed. Freder­
ickson and Srinivas (9] show that this can be done in time 0 ( d2 U ( m, n) + 
d1113(d!) 2n 113 Iogn) time per update, where U(rn,n) = O(m112) is the time 
to update a minimum spanning tree after an edge insertion or deletion. 

Theorem 8. Let G be a gra.pl1 with n vertices and m edges of d colors. 
A solution to tlze color-constra.ined minimum spanning tree problem ca.n be 
maintained in 0( fl2n 112 + d1113( d! )2n113 log n) time per update. 

We next discuss a variety of connectivity problems. 

Theorem 9. Tlze connected components of an undirected gra.plz can be 
maintained in time 0( n112 ) per upda.te, and 0( 1) time per query. 

Proof: Again, use Theorem 2 with Frederickson 's minimum spanning tree 
algorithm. As noted by Frederickson (8], connectivity queries in his data 
structure can be performed in constant time. D 

Theorem 10. Tlze 2-edge-connected components of an undirected graph 
can be maintained in time 0( n112 ) per update. Queries asking wl1etl1er two 
vertices a.re in tlze same component can be answered in O(log n) time. 

Proof: We use Frederickson 's minimum spanning tree algorithm [7) to 
maintain a stable strong certificate consisting of two edge-disjoint spanning 
trees [4], giving .f( n, m) = 0( m,112). The 2-edge-connected components of 
U2 can be maintained in time g( n, m) = 0( ni 112 

), with queries whether two 
vertices a.re in the same component answered in time q(n, m) = O(log n) [8]. 
Applying Theorem 2 gives our result. D 

9 



Theorem 11. Tlie 2- and 3-vertex connected components of an undirected 
gra.ph can be maintained in time 0( n) per update. The 4-vertex-connectivity 
of an undirected grapl1 can be maintained in time 0( na( n)) per update. 

Proof: We use Theorem 1 with a certificate consisting of two, three, or 
four edge-disjoint breadth first search trees, constructed in linear time [4). 
At the root of the sparsification tree, k-vertex-connectivity can be tested, 
and k-vertex-connected components identified, in linear time for k = 2 and 
k = 3 [10, 13). 4-vertex-connectivity can be tested in time g( n, m) = 0( m + 
na(n)) [11). D 

Finally, we use our technique to maintain dynamic information about 
the bipartiteness of a graph. 

Theorem 12. We can perform edge insertions or deletions in a graph, and 
compute whether the graph is bipartite after each update, in time 0( n 112 ) 

per update. 

Proof: In the full version of [4] we show that a graph formed by adding 
to the minimum spanning forest the shortest edge inducing an odd cycle is 
a stable certificate of bipartiteness, and can be maintained in 0( rn 112 ) time 
using Frederickson 's clustering techniques [7, 8]. We use these certificates in 
Theorem 2. D 

References 

[1] P. K. Agarwal, D. Eppstein, and J. Matousek. Dynamic algorithms 
for half-space reporting, proximity problems, and geometric minimum 
spanning trees. In Proc. 33rd Annual Symp. on Foundations of Com­
puter Science, pages 80-89, 1992. 

[2] D. Eppstein. Finding the k smallest spanning trees. BIT, 32:237-248, 
1992. 

[3] D. Eppstein. Tree-weighted neighbors and geometric k smallest span­
ning trees. Int. J. Comput. Geom. f3 Appl., 1993. To appear. 

[4] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Spa.rnification 
- A technique for speeding up dynamic graph algorithms. In Proc. 3.'Jrd 
Annual Symp. on Foundations of Computer Science, pages 60-69, 1992. 

10 



[.5) D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer. Separator 
based sparsification for dynamic planar graph algorithms. In Proc. 
25th Annual ACM Symp. on Theory of Computing, 1993. 

[6) T. Feder and M. Mihail. Balanced matroids. In Proc. 24th ACM Symp. 
Theory of Computing, pages 26-38, 1992. 

[7) G. N. Frederickson. Data structures for on-line updating of minimum 
spanning trees. SIAM J. Comput., 14:781-798, 1985. 

[8) G. N. Frederickson. Ambivalent data structures for dynamic 2-edge­
connectivity and k smallest spanning trees. In Proc. 32nd Annual Symp. 
on Foundations of Computer Science, pages 632-641, 1991. 

[9] G. N. Frederickson and M.A. Srinivas. Algorithms and data structures 
for an expanded family of matroid intersection problems. SIAM J. 
Comput., 18:112-138, 1989. 

[10] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected com­
ponents. SIAM J. Comput., 2:135-158, 1973. 

[11] A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. On-line main­
tenance of the four-connected components of a graph. In Pmc. 32nd 
Annual Symp. on Foundations of Computer Science, pages 793-801, 
1991. 

[12] M. Rauch. Fully dynamic biconnectivity in graphs. In Proc. 33rd IEEE 
Symp. Foundations of Computer Science, pages 50-59, 1992. 

[13] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. 
Comput., 1:146-160, 1972. 

11 




