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Certain activities of neurons and neuronal networks are 
associated with the successful encoding of memories and 
retention of new information, and thus may be necessary 
for learning and memory. In Alzheimer disease (AD), 
schizophrenia, epilepsy and other neurological and psy
chiatric diseases that cause cognitive impairment, net
work activities supporting cognition are altered, even 
during preclinical stages1–5, that is, before symptoms are 
noticed by the patient or can be detected by neurocogni
tive exams. These network alterations include activation 
and deactivation deficits, abnormal oscillatory rhythmic 
activity and network hypersynchrony. In people at high risk 
of developing AD, for example, abnormal activation and 
deactivation of specific networks during memory encod
ing can be detected decades before the predicted onset 
of clinical disease6–9. As these functional network altera
tions widely overlap with the brain regions that ultimately 
develop pathological hallmarks and atrophy in AD, they 
may be a harbinger and possibly even a cause of clinical 
disease manifestations.

Robust network alterations are associated with diverse 
cognitive disorders, but the mechanisms and patho
physiological consequences of the alterations are poorly 
understood. Do alterations in network activity contribute 
to cognitive impairment or are they incidental byproducts  
of diseaseinduced cellular dysfunction? Do alterations 
in network synchrony cause the dysfunction of micro
circuits, larger distributed networks, or both? Most 
importantly, could cognitive alterations be prevented 
and even reversed by improving the function of cells that  
promote specific network activities?

Recent findings suggest that altered network activity 
can indeed contribute to cognitive impairment in AD 
and that network activities can be experimentally or 
behaviourally manipulated to improve cognitive func
tions in patients at risk of AD and related mouse models. 
In this Review, we explore two main concepts — that 
network abnormalities and interneuron dysfunction con
tribute to cognitive deficits in AD and related conditions, 
and that blocking or counteracting these mechanisms 
could be of both symptomatic and diseasemodifying 
therapeutic value.

Neuronal synchrony and brain function
Cognitive functions depend on brain states that range 
from maximal focus and concentration to inattentive
ness, drowsiness and sleep. These states probably do 
not reflect a continuous functional gradient of neuronal 
activities but rather represent distinct operating modes 
of brain activity that are closely linked to — and possi
bly determined by — changes in neuronal synchrony, the 
degree to which neuronal activities are correlated. Such 
synchrony fluctuates considerably with behavioural and 
brain states10. The degree of synchrony among neuronal 
populations (network synchrony) can be determined by 
measuring and correlating neuronal activities at multi
ple sites, for example, through electroencephalograhy 
(EEG) or the recording of local field potentials (LFPs) 
with multielectrode arrays. During nonactive states, 
such as slowwave sleep or quiet wakefulness, cortical 
neuronal activities at different sites tend to be synchro
nized and slowly fluctuate at high amplitudes (FIG. 1a). 
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Encoding
Transformation of acquired 
information into changes in 
brain activity. Memory 
formation requires effective 
encoding but also involves the 
storage of the acquired 
information for later retrieval.

Preclinical stages
Phases of disease development 
during which people are still 
asymptomatic and physicians 
are not yet able to detect by 
standard clinical examination 
the abnormalities that are 
required for the diagnosis of 
the disease.

Network abnormalities and 
interneuron dysfunction in  
Alzheimer disease
Jorge J. Palop1,2 and Lennart Mucke1,2

Abstract | The function of neural circuits and networks can be controlled, in part, by modulating 
the synchrony of their components’ activities. Network hypersynchrony and altered oscillatory 
rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this 
condition, network activities that support cognition are altered decades before clinical disease 
onset, and these alterations predict future pathology and brain atrophy. Although the precise 
causes and pathophysiological consequences of these network alterations remain to be defined, 
interneuron dysfunction and network abnormalities have emerged as potential mechanisms of 
cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating 
these mechanisms may help to improve brain function in these conditions.
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Oscillatory rhythmic activity
Rhythmic electrical activity 
that is generated by 
populations of neurons and 
contains different frequency 
bands. Frequency, amplitude 
(or power) and phase are the 
basic properties of brain 
oscillations (or brain rhythms).

Network hypersynchrony
Pathological state of excessive 
synchronization of neuronal 
activities that results in 
epileptiform discharges or 
seizures that are detectable by 
local field recordings or 
electroencephalography.

During active behaviours, such as paying attention or 
learning, this highly synchronized pattern of brain activ
ity abruptly ceases, and neuronal activities at different 
sites become desynchronized and fluctuate at higher 
frequencies and smaller amplitudes11 (FIG. 1a).

The fundamental relationship between the syn
chrony of neuronal activities and functional states is 
also evident at the circuit level (FIG. 1b). When mice are 
resting, adjacent layer 2 pyramidal cells in the soma
tosensory cortex show synchronous highamplitude 
fluctuations in membrane potentials, which result in 
relatively low signaltonoise ratios for evoking action 
potentials relative to ongoing fluctuations; however, 
with active whisker use, this highamplitude syn
chrony of membrane potentials ceases abruptly, and 
signaltonoise ratios increase12,13. Thus, increasing 
synchrony among neurons and recruiting them into 
slowfrequency and highamplitude fluctuations seem 
to be basic mechanisms for ‘switching off ’ specific brain 

regions. By contrast, the suppression of highamplitude 
fluctuations and desynchronization of neuronal activi
ties increase the ability of neurons to respond to exter
nal informationrich inputs12. Synchrony and functional 
states are closely related in many neocortical and hip
pocampal regions, suggesting that synchrony reflects a 
fundamental principle of nervous system design. Here, 
we propose that deficits in synchrony are an impor
tant pathogenic mechanism of ADrelated cognitive 
dysfunction.

Amyloid‑β and AD pathogenesis
The hypothesis that amyloidβ has a causal role in 
AD pathogenesis is supported by diverse lines of evi
dence, including the early accumulation of amyloidβ 
in the brain in people who go on to develop AD and 
the ability of mutations in the genes encoding the amy
loid precursor protein (APP) or presenilins (PSENs), 
which alter amyloidβ production, to cause autosomal 
dominant, earlyonset familial AD (FAD)14. Amyloidβ 
peptides are proteolytically released from APP by βsite  
APPcleaving enzyme 1 (BACE1; also known as βsecre
tase) and γsecretase, and exist in diverse assembly 
states, including monomers, oligomers, fibrils and amy
loid plaques15. FAD is caused by APP duplications, muta
tions in APP located around the BACE1 and γsecretase 
cleavage sites or within the amyloidβ coding sequence, 
or by mutations in the genes that encode PSEN1 and 
PSEN2 (alternative catalytic subunits of the γsecretase  
complex). Over 250 genetic alterations have been 
linked to FAD. Those alterations that have been tested 
for effects on APP metabolism increase the overall pro
duction of amyloidβ or the amyloidβ1–42/amyloidβ1–40 
ratio16–19, or promote the accumulation of pathogenic 
amyloidβ assemblies20–22. Conversely, an APP mutation 
(A673T) that reduces the βsecretasemediated cleavage 
of APP and, consequently, amyloidβ levels decreases the 
risk of lateonset sporadic AD23,24.

Amyloidβ oligomers elicit abnormalities in synap
tic and cognitive functions in vivo and in vitro15,25–30. 
Neuronal expression of FADmutant human or human
ized APP (with or without coexpression of FAD
mutant PSEN1 or PSEN2) in transgenic mice simulates 
key aspects of AD, including elevated levels of human 
amyloidβ, amyloid plaques, neuritic dystrophy, syn
aptodendritic impairments, astrocytosis, microgliosis, 
vasculopathy, network dysfunction, cognitive deficits 
and behavioural alterations31. We refer to these models 
collectively as FAD mice (Supplementary information S1 
(table)). An example of such models is highlighted in 
Supplementary information S2 (table), which lists the 
ADlike alterations that are observed in the hAPPJ20 
mouse model, which was generated in our laboratory. 
In combination, the above findings strongly support  
the amyloidβ hypothesis, which includes the notion 
that amyloidβ is a crucial cause of cognitive decline in 
AD. Notably, several other factors, including tau accu
mulation, apolipoprotein E4 (APOE4) and inflamma
tory mediators, contribute to the complex pathogenesis 
of AD and can be introduced into FAD models through 
additional genetic modifications32–35.

Figure 1 | Synchrony and functional states of networks. The degree of correlated 
neuronal activity (synchrony) reflects the functional state of networks and circuits. 
a | To illustrate this relationship at the network level, the top panels show local field 
potentials (LFPs) recorded from four electrodes (1–4) inserted 1 mm apart into the cat 
parietal cortex (suprasylvian gyrus) during sleep (left) and wakefulness (right). Network 
activity during resting and non-active states is predominantly characterized by 
synchronized slow-frequency and high-amplitude fluctuations (red shading). By 
contrast, network activity during active states is characterized by desynchronized 
fast-frequency and low-amplitude fluctuations (blue shading). The bottom panels show 
hypothetical representations of the amplitude (red line) and frequency (blue line) of 
LFP fluctuations and of the associated network synchrony (pink line). b | Membrane 
potential recordings of two layer 2/3 (L2/3) pyramidal neurons from mouse parietal 
cortex (whisker barrel cortex) during resting and active (whisker use) periods illustrate 
that neurons desynchronize during active periods. Part a is republished with permission 
of Society for Neuroscience, from Spatiotemporal analysis of local field potentials and 
unit discharges in cat cerebral cortex during natural wake and sleep states, 
Destexhe, A., Contreras, D. & Steriade, M., 19, 11, 1999; permission conveyed through 
Copyright Clearance Center, Inc. Part b is from REF. 12, Nature Publishing Group.
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Neuronal synchrony
The degree of correlated 
neuronal activity within or 
across populations of neurons; 
measures to assess neuronal 
synchrony typically include 
action potentials or membrane 
potential fluctuations for single 
neurons (cellular synchrony), 
and local field recordings, 
electro encephalographic 
recordings or microscopic 
imaging with 
activity-dependent sensors for 
populations of neurons 
(network synchrony).

Default mode network
(DMN). Brain regions that show 
decreased functional MRI 
signals during attention- 
demanding tasks and 
increased functional MRI 
signals during inwardly 
oriented mental activity.

A major unresolved question in the field is which 
forms of amyloidβ, tau and APOE4 are the most neuro
toxic. Lead suspects include soluble amyloidβ142 oli
gomers15,30, abnormal assemblies or posttranslational 
modifications of nonfibrillar tau35–38 and APOE4 frag
ments39. The importance of answering this question is 
illustrated by the following observations. Approximately 
20% of healthy aged individuals, 60% of patients with 
mild cognitive impairment (MCI) and almost all patients 
with AD exhibit evidence of amyloid deposition in the 
cortex, as shown by positron emission tomography (PET) 
involving radiopharmaceutical ligands that bind to amy
loid plaques such as Pittsburgh compound B (PiB)40. In 
healthy aged individuals and patients with MCI, cortical 
amyloid load correlated inversely with episodic memory 
performance40; this correlation weakened with amy
loid accumulation and age and does not exist in AD40,41. 
Discrepancies between amyloid deposition and cognitive 
dysfunction may be explained, at least in part, by the 
early plateau of amyloid burden during disease progres
sion42 and by dissociations between amyloid burden and 
the accumulation of soluble amyloidβ oligomers43. The 
latter may be more bioactive than amyloidβ monomers, 
fibrils and amyloid plaques, and readily elicit neuronal 
and network dysfunction26,28,30,43–50. Notably, patients with 
FAD who carry a mutation in the amyloidβ sequence 
that increases amyloidβ oligomerization49 have promi
nent cognitive impairments without PiBpositive (PiB+) 
amyloid deposition22, suggesting that AD can be caused by 
pathogenic assemblies of amyloidβ (probably amyloidβ 
oligomers) that cannot be detected by PiB imaging.

Notably, amyloidβ oligomers cannot yet be accu
rately measured in the brain parenchyma of live patients, 
which has greatly hampered clinical testing of the amy
loidβ hypothesis. For example, it is not clear whether  
amyloidβ oligomer levels were significantly lowered in 
any of the failed clinical trials of antiamyloidβ com
pounds for the treatment of AD. Nor is it clear how much, 
or by which mechanism, they would have to be lowered 
to reduce amyloidβdependent synaptic and network 
dysfunction. Antiamyloidβ treatments that failed to 
lower amyloidβ oligomer levels in the brain also failed 
to reduce cognitive deficits in hAPPJ20 mice51,52.

In conclusion, testing the amyloidβ hypothesis in 
humans will probably require therapeutics that effec
tively lower or counteract the most pathogenic amy
loidβ assemblies as well as better methods to confirm 
their target engagement in the brain. The above evidence 
strongly supports the hypothesis that amyloidβ causally 
contributes to cognitive decline in AD. However, the 
mechanisms remain to be fully elucidated, and alternative 
interpretations have been offered53–56.

Network dysfunction and preclinical AD
Brain activity can be monitored by functional MRI 
(fMRI), PET, singlephoton emission computed tomo
graphy (SPECT), EEG or LFP recordings. The corre
sponding signals emerge from the complex relationships 
among electrical activity, cerebrovascular haemodynam
ics, oxygen consumption and the metabolism of neurons 
and glia57. Attentiondemanding tasks, such as sensory 

processing and memory encoding, require coordinated 
regulation of many neuronal ensembles. In healthy peo
ple, attentiondemanding cognitive tasks increase fMRI 
signals in specific brain regions (for example, the hippo
campus during learning) but also cause a profound large 
scale deactivation in brain regions that are collectively 
referred to as the default mode network (DMN)58,59 (FIG. 2a). 
This network is most active during inwardly oriented 
mental activity, such as introspection, daydreaming, 
mind wandering, wakeful rest, imagination and recalling,  
and it becomes deactivated during outwardly directed 
mental tasks such as acquisition and encoding of new 
information.

The DMN includes the precuneus, posterior cingulate 
cortex, lateral and inferior parietal cortex, and regions of 
the temporal and medial prefrontal cortex59. A widely 
overlapping, but not identical, DMN that includes the 
hippocampus has been revealed by restingstate func
tional connectivity MRI60. Taskinduced activation and 
deactivation of networks correlate well with cognitive 
performance in young healthy people61. Notably, task 
induced deactivation of regions of the DMN (for exam
ple, the precuneus) can be a better predictor of good 
cognitive performance than the activation of regions 
that have been more extensively studied with regard to 
their involvement in cognitive functions (for example, 
the hippocampus)61. In fact, taskinduced hippocampal 
activation without adequate DMN deactivation is asso
ciated with poor memory formation in healthy people 
(FIG. 2b), which highlights that proper execution of these 
complex functions requires wellcoordinated regulation 
of widely distributed networks.

In AD, schizophrenia and other cognitive disorders, 
deactivation of DMN components is impaired during 
learning1–5. Because synchrony regulates the functional 
states of networks (FIG. 1), the abnormal activation or 
deactivation of brain regions during specific tasks raises 
the possibility that cognitive dysfunction in these dis
orders results from synchrony deficits. Although AD is 
increasingly viewed as a heterogeneous, multicausal syn
drome, its fMRI signature seems to be remarkably con
sistent, particularly during the early stages of the disease. 
Hippocampal hyperactivation and reduced deactivation 
of DMN components during memoryencoding tasks 
have been observed in cognitively normal individuals 
with cerebral amyloid deposits4 (a potential harbinger 
of AD), cognitively normal carriers of the APΟΕ ε4 
allele6,62–64 (the major genetic risk factor for AD), pre
symptomatic carriers of FADcausing mutations65,66 and 
patients with MCI67–69, which often develops into AD. In 
later stages of AD, the hippocampal formation is hypo
active during memory encoding, whereas the reduced 
deactivation of the DMN persists4,9,69,70.

Early hippocampal hyperactivation has been inter
preted as a mechanism that may compensate for 
emerging cognitive decline in early AD71 and APΟΕ ε4 
carriers64. However, accumulating evidence suggests that 
this hyperactivation is primarily pathogenic and may 
impair learning and memory67,72,73. In cognitively normal 
APΟΕ ε4 carriers, increased hippocampal activation was 
associated with reduced grid celllike representations in 
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Non-task-related networks
Networks (also known as 
task-negative networks) that 
comprise widely distributed 
brain regions that show 
decreased functional MRI 
signals during attention- 
demanding cognitive tasks.

the entorhinal cortex during a virtual spatialmemory 
task64, suggesting a potential link between entorhinal 
grid cell dysfunction and hippocampal hyperactivation.

In patients with MCI, hippocampal hyperactivation 
occurred during a patternseparation task, which strongly 
depends on hippocampal functions; treatment with low 
doses of the antiepileptic drug levetiracetam for 2 weeks 
reversed the hyperactivation and improved performance 
on the task67,73 (FIG. 2c). In FAD mice (lines hAPPJ20 and 
3xTgAD) (Supplementary information S1 (table)), 

levetiracetam suppressed network hyperexcitability, 
improved cognitive functions74,75 and reversed excessive 
neuronal DNA doublestrand breaks76, which may con
tribute to neurodegeneration77,78. Thus, this drug may 
have both symptomatic and diseasemodifying therapeu
tic potential. Collectively, these studies suggest that net
work hyperactivity is an early and detrimental alteration 
in the pathogenesis of ADrelated cognitive dysfunction 
and that preventing or reversing this hyperactivity may 
be of therapeutic benefit.

Figure 2 | Encoding reveals network dysfunction in people with mild cognitive impairment. Memory encoding 
causes specific changes in brain activity-related functional MRI (fMRI) signals across different networks. People at 
increased risk of Alzheimer disease (AD) show early changes in activation and deactivation of specific networks.  
a | Lateral (left panel) and medial (right panel) views of a healthy left hemibrain. During encoding in healthy people, 
network activity increases in task-related networks (blue) and decreases in non-task-related networks (yellow/orange). 
Anti-correlated activity (blue versus yellow/orange) in these two widely distributed and non-overlapping networks is also 
evident when spontaneous fluctuations of fMRI signals during resting states are examined (not shown). The default mode 
network (yellow and orange regions) includes brain regions that show decreased fMRI activity during attention-demanding 
tasks but become active during inwardly oriented mental activity. b | In healthy individuals whose brain activity was 
monitored by fMRI during a cognitive task, a relatively smaller extent of hippocampal activation and a relatively greater 
extent of precuneal deactivation were associated with better cognitive performance. c | Pattern separation and 
completion are cognitive functions that heavily rely on the hippocampal formation and allow us to discriminate (pattern 
separation) or merge (pattern completion) similar representations or episodes. In a pattern-separation task, in which 
individuals were asked to discriminate between slightly different trowels (left panel), patients with amnestic mild 
cognitive impairment (MCI) made more pattern-completion errors (that is, they failed to discriminate slightly different 
trowels) and had aberrant hyperactivation of the dentate gyrus (DG) and CA3 regions of the hippocampus on fMRI (right 
panel). Treatment with the antiepileptic drug levetiracetam reversed the hippocampal hyperactivation and improved the 
patients’ ability to discriminate between images that were similar but not identical. d | During a face–name association 
task, patients with MCI and amyloid deposits in the brain (as revealed by a Pittsburgh compound B-positive (PiB+) signal on 
positron emission tomography) and patients with AD showed deactivation deficits in the precuneus. Part a is adapted 
from REF. 58. Part b is adapted with permission from REF. 61, Springer. Part c is adapted with permission from REF. 67, Cell 
Press/Elsevier. Part d is adapted with permission from REF. 4, Cell Press/Elsevier.

Nature Reviews | Neuroscience

c

Old AD

fM
R

I r
es

po
ns

e 
in

 th
e 

pr
ec

un
eu

s 
(%

)

20

0

Young

40

–20

–40

PiB –
PiB +

Hippocampus

Precuneus

a b

d
Controls MCI AD

Old Similar

fM
R

I r
es

po
ns

e 
(%

) 

20

0

40

-20

Cognitive performance

High
Low

fM
R

I r
es

po
ns

e 
(D

G
 a

nd
 C

A
3)

0.8

0

0.4

1.2

1.6

-0.4 MCI + placebo

Controls

MCI + drug

Lateral Medial
Left hemibrain

+– 0

Activation
fMRI response (%)

Deactivation

Hippocampus
Precuneus

‘New object’
(correct response)

‘Old object’
(incorrect response)

Controls
MCI + placebo
MCI + drug

Pattern 
completion

Pattern 
separation

R E V I E W S

780 | DECEMBER 2016 | VOLUME 17 www.nature.com/nrn

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

http://www.nature.com/nrn/journal/vaop/ncurrent/full/nrn.2016.141.html#supplementary-information


Remarkably, there is strong evidence that functional 
brain alterations begin decades before the clinical onset 
of AD. The Dominantly Inherited Alzheimer Network 
(DIAN) consortium revealed that pathophysiological 
changes in the brain in people carrying autosomal dom
inant FAD mutations begin at least two decades before 
the predicted onset of clinical symptoms, including 
changes in cerebrospinal fluid (CSF) biomarkers, cerebral 
amyloid deposition and brain metabolism8. Increased 
brain activity precedes the diagnosis of AD by 30 years 
in PSEN1 mutation carriers7,9. Finally, 20–35 yearold 

asymptomatic carriers of APOE ε4 show taskrelated 
hippocampal hyperactivation and altered DMN activity 
on fMRI6. Thus, FADcausing mutations and APOE4 
modulate brain function several decades before any 
clinical manifestations of the disease.

Network activity and amyloid deposits
Impaired deactivation of the DMN in older people 
with or without AD is closely linked to amyloid dep
osition in brain regions that make up this network4,9,70 
(FIG. 2d,3a). Whether the dysfunction of the DMN is a 

Figure 3 | Neuronal activity regulates amyloid‑β production and deposition. a | Most patients with Alzheimer 
disease (AD) and some people without dementia have increased Pittsburgh compound B-positive amyloid deposits in the 
brain243 (red). Amyloid deposits predominate in brain regions of the default mode network (blue), which shows 
deactivation deficits in AD (FIG. 2), suggesting a potential link between aberrant neuronal activity and amyloid deposition. 
b | In APP-A7 mice, chronic optogenetic stimulation of pyramidal cells in the entorhinal cortex triggered epileptiform 
activity and increased amyloid deposition in the molecular layer of the dentate gyrus, directly supporting the notion that 
aberrant neuronal activity can promote amyloid deposition in vivo. c | At the synaptic level, an increase in the frequency of 
action potentials (APs) proportionally enhances amyloid-β1–42 (Aβ1–42) and amyloid-β1–40 (Aβ1–40) production. Compared with 
regular firing, burst firing reduces the Aβ1–42/Aβ1–40 ratio. d | Basal neurotransmitter release determines the ‘filter’ mode of 
synapses and regulates synaptic plasticity. The top panel indicates that excitatory synapses with lower release probability 
(high-pass-filter synapses) have greater presynaptic Ca2+ build-up, produce lower Aβ1–42/ Aβ1–40 ratios, exhibit synaptic 
facilitation and primarily transfer potentiated responses. The bottom panel depicts synapses with higher release 
probability (low-pass-filter synapses), which have less presynaptic Ca2+ build-up, produce higher Aβ1–42/Aβ1–40 ratios and 
show synaptic depression as well as enhanced spike transfer. In AD, synapses may shift from high- to low-pass synaptic 
filtering. e | Electroencephalograhy recordings capture the combined electrical output of neuronal ensembles. In such 
recordings, most familial AD (FAD) mice, including hAPP-J20 (REF. 96), APP/PSEN1dE9 (REFS 102,103), Tg2576 (REF. 104), 
5xFAD122, 3xTg-AD75, APP/TTA-EC105, APP/TTA-CaMKIIα106 and APP23 (REF. 107) mice (Supplementary information S1 
(table)), show intermittent large-amplitude epileptiform discharges (denoted by the asterisk in hAPP-J20 mice; bottom 
panel), which provide evidence of network hypersynchrony. fMRI, functional MRI; PET, positron emission tomography.  
Part a is republished with permission of Society for Neuroscience, from Molecular, structural, and functional 
characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and 
memory, Buckner, R. L. et al., 25, 34, 2005; permission conveyed through Copyright Clearance Center, Inc. Part e is adapted 
with permission from REF. 172, Cell Press/Elsevier.
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cause or a consequence of amyloid deposition is not 
known. When studying clinicopathological associa
tions in humans, it is often impossible to conclusively 
discriminate between detrimental, beneficial and 
bystander alterations. Transgenic mouse or rat models 
expressing proteins that are suspected of contribut
ing to the pathogenesis of AD can help to test related 
hypotheses in vivo31–33,79,80.

In humans and mice, soluble amyloidβ levels in 
the interstitial fluid of different brain regions fluctuate 
with the brain state. Amyloidβ levels are higher during 
wakefulness than during sleep81–83. In mice, sleep pro
motes amyloidβ clearance83, whereas sleep deprivation 
increases amyloidβ levels and amyloid deposition82, sug
gesting that brain states can modulate amyloid deposition. 
In young FAD mice (line Tg2576) (Supplementary infor
mation S1 (table)), interstitial levels of soluble amyloidβ 
vary markedly in different regions and relate closely to 
regional differences in metabolic activity84. Higher lev
els of metabolic activity are associated with higher levels 
of soluble amyloidβ and predict the regional amyloid 
burden in older mice. Thus, networks with higher meta
bolic rates may be more prone to amyloid deposition. In 
addition, experimental increases in neuronal activity by 
chronic optogenetic activation promote amyloid deposi
tion and trigger epileptiform activity in FAD mice (line 
APPA7)85 (FIG. 3b; see Supplementary information S1 
(table)). Thus, the vulnerability of the DMN to amyloid 
deposition may be related to its relatively high baseline 
activity and to deactivation deficits that are associated 
with early stages of AD.

Synaptic functions and amyloid‑β
Amyloidβ production and the amyloidβ1–42/amyloidβ1–40 
ratio, which influence the formation of pathogenic oli
gomers as well as amyloid deposition, are regulated by 
neuronal action potential firing and calciumdependent 
conformational changes in PSEN1 at presynaptic ter
minals86. Increasing the rates of regular or burst firing 
enhances amyloidβ1–40 and amyloidβ1–42 production 
in an activitydependent manner (see also REFS 87,88) 
(FIG. 3c). Regular firing proportionally increases both 
amyloidβ1–40 and amyloidβ1–42 levels, whereas burst 
firing, which raises presynaptic calcium concentrations, 
selectively increases the level of amyloidβ1–40, reducing 
the amyloidβ1–42/amyloidβ1–40 ratio (FIG. 3c).

Synaptic plasticity is controlled by neurotransmitter 
release probability and calcium concentrations at pre
synaptic terminals. Excitatory synapses with a low initial 
probability of neurotransmitter release typically display 
greater facilitation during highfrequency stimulation 
(potentiation) and act as highpass filters. Thus, they 
tend to be unresponsive to infrequent or disorganized 
action potentials but potentiate their responses to coor
dinated firing (FIG. 3d). By contrast, excitatory synapses 
with a high initial release probability respond preferen
tially to singlespike firing patterns and act as lowpass 
filters89,90. They tend to exhibit depression or reduced 
potentiation during sequential stimulation (FIG. 3d). In 
one study, the authors concluded that highpassfilter 
synapses with higher calcium loading produce a lower 

amyloidβ1–42/amyloidβ1–40 ratio, whereas lowpassfilter 
synapses with lower calcium loading produce a higher 
amyloidβ1–42/amyloidβ1–40 ratio86.

Amyloidβ and other APP metabolites seem to partic
ipate in pre and postsynaptic homeostatic mechanisms 
that regulate synaptic activity86,88,91–95. Amyloidβ may 
enhance presynaptic facilitation at low concentrations93 
and promote postsynaptic depression at high concen
trations88. Application of synthetic or recombinant amy
loidβ1–42 oligomers or overexpression of FADmutant 
human APP reduces pairedpulse facilitation — a meas
ure of increased release probability — and impairs long
term potentiation (LTP) at some, but not other, synapses 
in the mouse hippocampus91,93,96. These alterations may 
shift the filtering properties of the affected synapses from 
highpass to lowpass. This shift could enhance the trans
fer of single action potentials, increase synaptic depression 
and elevate the amyloidβ1–42/amyloidβ1–40 ratio (FIG. 3d), 
promoting both hyperactivity in vulnerable networks 
and amyloid deposition. Reducing presynaptic release 
might counteract these processes. Indeed, levetiracetam, 
which has beneficial effects on network activity in FAD 
mice74,75 and humans with MCI67,73, reduces presynaptic 
neurotransmitter release in a usedependent manner90,97,98. 
Thus, it may counteract amyloidβinduced alterations in 
release probability.

In general, it is difficult to extrapolate from the effect 
that factors exert on specific synapses or neurons to 
the overall effect that they have on microcircuits and 
complex networks. Indeed, this has been true for APP 
and amyloidβ. Although early studies suggested that 
increased neuronal amyloidβ production may be part 
of a homeostatic feedback loop that primarily reduces 
neuronal activity88, we now know that amyloidβ accu
mulation can also cause neuronal hyperexcitability 
in vitro and in vivo32,96,99–111. Acute amyloidβ applica
tion initially andtransiently (10–20 minutes) increases 
the levels of surface AMPAtype glutamate receptors 
and GluN2Bcontaining NMDAtype glutamate recep
tors (NMDARs)100,103 and the frequency of spontaneous 
excitatory postsynaptic currents in primary neuronal 
cultures100,103. In brain slices, amyloidβ application 
also acutely increases the rate of action potential fir
ing by hippocampal pyramidal cells99. FAD mice (lines 
hAPPJ20, hAPPJ9, APP23xPS45 and APP/PSEN1dE9) 
(Supplementary information S1 (table)) contain both 
hyperactive and hypoactive neurons — reflected in 
abnormally high or low rates of action potentialde
pendent calcium transients or levels of transcripts for the 
immediate early genes Arc and Fos — both before96,112,113 
and after109,114,115 amyloid deposition becomes detectable.

Neurons exposed to pathologically elevated levels 
of amyloidβ in vitro or in vivo show signs of atrophy, 
including lower dendritic spine density and shorter den
drites116,117, alterations that can increase intrinsic cellular 
excitability118 and may explain the hyperactivity of some 
excitatory neurons. These morphological and functional 
effects of amyloidβ may be mediated, at least in part, 
by neuronal depletion of the DNA repair factor BRCA1 
and the resulting accumulation of activityinduced DNA  
doublestrand breaks77. Compensatory increases in 
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Inhibitory interneuron
A type of neuronal cell that 
typically produces the 
inhibitory neurotransmitter 
GABA and regulates the 
activity of many other neurons, 
neuronal synchrony and the 
functional state of brain 
networks.

inhibitory interneuron activity may account for the hypo
activity of other excitatory neurons101,109. Notably, 
hippocampal neuronal hyperactivity preceded amy
loid plaque deposition and neuronal hypoactivity in 
APP23xPS45 mice and could be induced by local appli
cation of amyloidβ in wildtype mice101, suggesting that 
it is a very early step in the pathogenic cascade that is 
triggered by amyloidβ accumulation.

Hypersynchrony in AD and animal models
Besides network activation and deactivation deficits 
detectable by fMRI (FIG. 2), AD also results in net
work hypersynchrony (TABLE 1; see Supplementary  
information S3 (table)). Unlike normal fluctuations in 
network synchrony that are associated with physiolog
ical changes in behaviour and brain states (FIG. 1), net
work hypersynchrony is a pathological phenomenon in 
which aberrant synchronization of neuronal networks 
results in epileptiform discharges and seizures.

Neuronal expression or overexpression of proteins 
that accumulate in AD brains or are genetically linked 
to the disease, such as APP, amyloidβ, tau, APOE4 or 
αsynuclein, causes network hypersynchrony in trans
genic mice96,119–121. Spontaneous epileptiform activity 
has been documented in many FAD models, includ
ing hAPPJ20 (REF. 96), APP/PSEN1dE9 (REFS 102,103), 
Tg2576 (REF. 104), 5xFAD122, 3xTgAD75, APP/TTAEC105, 
APP/TTACaMKIIα106, APP23 (REF. 107) and hAPPJ9/
FYN108 transgenic mice (FIG. 3e; see Supplementary 
information S1 (table)). Behavioural seizures and lower 
thresholds for chemically induced seizures have also 
been described in some of these models96,103,108,111,123,124. 
Interestingly, network hypersynchrony in mouse models 
of AD and of epilepsy depends on the presence of endog
enous, soluble wildtype tau, which seems to enable or 
promote aberrant synchronization32,35,110,111,125,126.

In humans, epidemiological studies have consistently 
shown that AD is a risk factor for epileptic seizures127,128. 
However, the reported incidence of seizures in patients 
with AD that were detected by observation has ranged 
from 0.5% to 64%129,130. A recent review of 17 clinical stud
ies that assessed epileptic activity in AD reported an aver
age incidence of 15.1% (median: 9.0%)131. The incidence 

of seizures is roughly 7–8fold higher in individuals with 
AD than in people without dementia132,133. In a recent 
nationwide study of data from over 140 million hospi
talizations, patients with AD were fourfold more likely 
to be hospitalized for a seizure than for a nonseizure 
related condition134. Moreover, people with earlyonset 
AD (50–65 years old) were more likely to be hospitalized 
for seizures or epilepsy than those with a later onset of AD 
(>81 years old)134. These new findings are consistent with 
earlier reports indicating that earlyonset AD (<65 years 
old) is a major risk factor for seizures129,133,135. Conversely, 
patients with amnestic MCI or AD who had seizures or 
subclinical epileptic activity typically had an earlier onset 
and faster progression of cognitive decline than those 
without detectable epilepsy129,136,258.

Although seizures in AD are widely thought to result 
from endstage neurodegeneration, several reports 
indicate that they can occur early in the disease course 
and before a neurodegenerative disease diagnosis is 
made136,137. Indeed, in patients who had MCI or early AD 
with epilepsy, seizure onset clustered near the onset of 
cognitive decline136 or preceded the MCI diagnosis by 
4 to 7 years138. At the time MCI was diagnosed, the lat
ter group of patients had mild hippocampal atrophy138. 
Seizures in MCI or early AD with epilepsy responded 
best to the antiepileptic drugs levetiracetam or lamotrig
ine and least well to phenytoin136. The lower relative risk 
of seizures in patients with lateonset AD may reflect the 
fact that strokes and other ageingrelated comorbidities 
increase seizure risk in people without dementia. It is 
also possible that old brains are less susceptible to amy
loidβinduced network hypersynchrony than younger 
brains and that amyloidβ has a less important role in 
the pathogenesis of lateonset AD, which may be more 
multifactorial than earlyonset AD.

Epileptic activity is even more prominent in pedigrees 
of earlyonset autosomal dominant FAD91,139,140. Seizures 
have been observed in patients with FAD who carry any 
of 66 different PSEN1 mutations141,142 (Supplementary 
information S3 (table)), in 31% of patients with AD car
rying PSEN2 mutations143 and in 58% of patients with 
APP duplications144,145. More recently, a multicentre 
study including 132 patients with FAD showed that 48% 

Table 1 | Network hypersynchrony in humans with FAD caused by mutations used in mouse models

Affected 
genes

FAD mutations Number of patients with seizures 
(study population percentage)

Age at onset of cognitive 
deficits, years (mean)

Refs

APP KM670/671NL 10 (50%) 44–61 (53) 244

APP V717L, V717G or V717I 11 (40%) 40–67 (51) 245–248

APP T714I or 714A 6 (85%) 33–55 (NA) 249,250

APP Duplication 27 (45%) 39–62 (NA) 144,145, 
251–253

APP; PSEN1 KM670/671NL (APP); 
H163Y (PSEN1)

8 (89%) 44–65 (54) 254

PSEN1 M146L 7 (70%) 33–46 (39) 255

PSEN1 M146V 1 (100%) 39 (NA) 256

PSEN1 L286V 7 (64%) 39–56 (48) 257

APP, amyloid precursor protein; FAD, familial Alzheimer disease; NA, not available; PSEN1, presenilin 1.
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Task-related networks
Networks (also known as 
task-positive networks) that 
comprise widely distributed 
brain regions that show 
increased functional MRI 
signals during attention- 
demanding cognitive tasks.

of patients harbouring an FAD mutation had seizures, 
including 43% of PSEN1 mutation carriers (n = 94), 43% 
of PSEN2 mutation carriers (n = 7), 47% of APP muta
tion carriers (n = 15) and 81% of APP duplication carriers 
(n = 16)146. Seizure frequency in patients with FAD seems 
to be even higher than that observed in most FAD mice 
(Supplementary information S1 (table)).

In addition, 84% of patients with Down’s syndrome 
who progress to dementia also develop seizures147. 
Interestingly, very early onset of AD (<40 years old) 
further increases the proportion of FAD pedigrees with 
epileptic phenotypes (>80%)148. Some FAD mutations 
(for example, PSEN1 L166P) and APP duplications 
even cause epileptic activity in childhood or adoles
cence, preceding cognitive decline by many years145,149. 
Thus, network hypersynchrony can be a very early 
and prominent clinical feature of FAD. Indeed, many 
FADPSEN1 pedigrees qualify as epileptic syndromes 
or disorders140,141. This intriguing association between 
AD and epilepsy probably holds important clues about 
the mechanisms by which amyloidβ, tau and APOE4 
promote the development of AD and about potential 
entry points for therapeutic intervention.

The power of gamma oscillations
Whereas abnormal neuronal synchrony can result in 
epileptic activity, normal neuronal synchrony underlies 
the generation of oscillatory rhythmic activities, or brain 
rhythms, that promote cognitive functions. Neuronal 
ensembles coordinate their firing within a range of oscil
latory frequencies (0–300 Hz). Within each frequency 
band, neuronal ensembles can increase or decrease their 
firing rate and synchrony and thus generate higher or 
lower oscillatory amplitudes (FIG. 4a), although it should 
be noted that only a small fraction of the cells contrib
utes to each oscillatory cycle. The amplitude, phase and 
frequency in each oscillatory band modulate each other 
and neuronal firing rates in precise ways150. For exam
ple, the firing of hippocampal pyramidal cells shows 
phasecoupling with lowfrequency oscillations, such as 
theta (4–8 Hz). Thus, during periods of high theta, the 
action potential firing rate of pyramidal cells is increased 
and its timing is synchronized with this rhythm151. By 
contrast, the firing of several types of interneurons shows 
phasecoupling with highfrequency oscillations, such  
as gamma (30–150 Hz)150–152. Thus, during periods of 
high gamma power, action potential firing of interneu
rons is more prominent and synchronized with the 
phase of gamma151 (FIG. 4b,c).

The amplitude (or power) of gamma oscillatory activity 
increases during sensory processing or memory encoding, 
and such increases in gamma power predict successful 
memory formation in humans and mice153–158. Encoding 
during sensory, motor or memory tasks is associated 
not only with increased power of highfrequency oscil
lations (gamma) but also with reduced power of lower 
frequency oscillations (alpha, beta and theta) in taskre
lated brain regions57,154,159,160 (FIG. 4d). However, the relation
ship between gamma power and attention can differ across 
cortical areas and tasks161. Increases in gamma power tend 
to be localized to networks that are directly involved in 

the task (task-related networks), whereas reductions in the 
power of lowerfrequency oscillations typically involve 
multiple cortical regions162,163. During sensory encoding, 
individuals with schizophrenia have reduced increases 
in gamma power in taskrelated networks and reduced 
decreases in the power of lowerfrequency oscillations 
across multiple components of the DMN164. It is tempt
ing to speculate that these largescale deficits of oscillatory 
activity may be related to the activation and deactivation 
deficits of fMRI signals in patients with schizophrenia 
or AD5 (FIG. 2). Patients with AD also have reductions 
in gamma power165; however, the relationship between 
taskrelated deficits in fMRI signals, oscillatory frequen
cies and the observed prominent memoryencoding  
problems does not seem to have been directly studied in 
this disease.

In healthy individuals, the strength of fMRI blood 
oxygenleveldependent (BOLD) signals correlates pos
itively with the power of gamma oscillations166,167 and 
negatively with the power of alpha oscillations168–170. 
By contrast, decreases in DMN fMRI BOLD signals are 
associated with reductions in gamma power171. During 
visual stimulation in monkeys, an increase in oxygen 
level, which was associated with a rise in fMRI signals, 
coincided with increases in LFP gamma power in task 
related networks (for example, visual area V3), whereas 
a decrease in oxygen level coincided with prominent 
decreases in LFP power in all oscillatory frequencies in 
DMN regions (for example, the posterior cingulate cor
tex)57 (FIG. 4d). These findings suggest that fMRI signals 
may directly reflect changes in oscillatory activity. It 
should be informative to further explore the relationship 
between fMRI signals and oscillatory alterations in AD 
and other cognitive disorders.

Longitudinal videoEEG recordings revealed abnor
mal behaviourdependent fluctuations in the power of 
gamma oscillations in hAPPJ20 mice (FIG. 5a). Notably, 
spontaneous epileptiform discharges emerged primar
ily during resting periods in these animals, when the 
intensity of gamma oscillations was low172. In two mouse 
models of absence epilepsy, pharmacologically induced 
increases or decreases of gamma power were associated 
with decreases or increases in epileptic activity, respec
tively173. Thus, network hypersynchrony and reduced 
gamma power may be mechanistically linked across 
different conditions, and behaviourinduced increases 
in gamma oscillatory power may counteract ADrelated 
epileptiform activity by activating taskrelated brain 
regions and reducing network synchrony.

These ideas are supported by findings in humans 
with epilepsy154 (FIG. 5b). During EEG recordings, indi
viduals were shown a set of images (encoding trials), 
and their memory of the images was probed 24 hours 
later (recognition trials). Encoding trials were deemed 
‘correct’ or ‘incorrect’, depending on whether or not the 
old images were recognized during the recognition trial. 
Remarkably, gamma power increased and epileptiform 
activity reduced only during correct memory encoding.

Overall, these LFP, EEG and fMRI findings suggest 
that effective memory formation requires, or induces, 
a pattern of brain activity that increases the power of 
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gamma oscillations and reduces the power of low 
frequency oscillations, and that this ‘brain state’ reduces 
aberrant network hypersynchrony in humans and mice 
(FIG. 5c). Social interactions and mental activity may ben
efit some patients with AD174, perhaps, at least in part, 
by promoting this state. Pharmacological interventions 
that more persistently improve brain rhythms could be 
of greater therapeutic benefit.

Interneuron impairments in AD
Network synchrony and oscillatory brain rhythms 
are promoted and controlled by the activity of inhibi
tory GABAergic interneurons175. These cells are highly 
diverse, and different subtypes form electrically coupled 
functional networks176. Their combined inhibitory syn
aptic input onto excitatory principal neurons and other 
interneurons generates precise oscillatory rhythms that 

in turn coordinate the timing of pyramidal cell firing (see 
above). Some types of inhibitory interneurons, such as 
somatostatinpositive (SOM+) or neuropeptide Ypositive 
(NPY+) cells, tend to fire tonically and independently 
of brain and behavioural states177,178. Others, such as  
parvalbuminpositive (PV+) or vasoactive intestinal pol
ypeptidepositive (VIP+) cells, fire predominantly during 
brain states that promote encoding177,178. Interneurons 
and the oscillatory network activities that they reg
ulate are altered in AD, epilepsy, schizophrenia and 
autism91,165,172,179–182. Indeed, interneuron impairment is 
emerging as a potential common mechanism of brain dys
rhythmias and cognitive dysfunction in many neurolog
ical and psychiatric disorders172,179,180,183,184. What is more, 
recent findings support the hypothesis that modulating 
interneuron function may improve brain rhythms and 
cognitive functions in AD and related disorders172,182,185,186.

Figure 4 | Neuronal ensembles generate oscillatory activity patterns. a | Oscillatory rhythms (grey boxes) emerge 
from, and control, the activity of neuronal ensembles that are formed by excitatory neurons (blue) and inhibitory 
interneurons (red). The amplitude, or power, of low-frequency oscillations increases during rest, whereas the amplitude 
of high-frequency oscillations increases during activity. Action potentials (APs) of excitatory neurons are phase-locked to 
high-power, lower-frequency oscillations (top grey box), whereas APs of inhibitory cells are phase-locked to high-power, 
high-frequency oscillations (bottom grey box). b | The left panel shows local field potential (LFP) gamma oscillations 
(blue) and APs (red) for a parvalbumin-positive (PV+) cell in area CA3, revealing a close association between APs and the 
phase of gamma oscillations. In the right panel, the AP firing rate (colour coded) is shown as a function of gamma phase 
for the same PV+ cell, which prominently fires during the ascending phase of gamma oscillations. c | Optogenetic 
stimulation of PV+ and pyramidal cells at different frequencies resulted in a cell type- and frequency-specific generation 
of oscillatory activity. 40-Hz stimulation of PV+, but not pyramidal, cells increased gamma power, whereas 8-Hz 
stimulation of pyramidal, but not PV+, cells increased theta power. d | In macaques, visual stimulation (15 s of dim 1 Hz 
illumination) increased the power of LFP gamma (30–150 Hz) oscillations in a task-related network (visual area V3; left 
panel) and decreased LFP power across multiple oscillatory frequencies in a default mode network region (posterior 
cingulate cortex; right panel). SEM, standard error of the mean. Part b is from REF. 151, Nature Publishing Group. Part c is 
from REF. 190, Nature Publishing Group. Part d is adapted from Bentley, W. J., Li, J. M., Snyder, A. Z., Raichle, M. E. & Snyder, 
L. H., Oxygen level and LFP in task-positive and task-negative areas: bridging BOLD fMRI and electrophysiology, Cerebral 
Cortex, 2014, 26, 1, 346–357, by permission of Oxford Journals.

Nature Reviews | Neuroscience

a b

c d

Active RestingResting

V
is

ua
l a

re
a 

V
3

LF
P 

fr
eq

ue
nc

y 
(H

z)

Task-related network

Po
st

er
io

r c
in

gu
la

te
 c

or
te

x
LF

P 
fr

eq
ue

nc
y 

(H
z)

Default mode network

Pow
er change (SEM

 units)

0

+10

–10
Stimulation frequency (Hz)
0 20 40 60 80 100

0

2

4

6

8

LF
P 

po
w

er
 ra

ti
o

40 Hz8 Hz

Gamma phase
Pyramidal cell Inhibitory interneuron

Pyramidal cells PV+ cells

Low-frequency oscillations

High-frequency oscillations

Population APs

Fr
eq

ue
nc

y 
(H

z)

0 180 360

20

40

60

80

100

0.5 mV

0.1 mV

50 ms

LFP gamma
PV+ cell AP firing

High
Low

Time (s)
0 20 40

0

50

100

150

Time (s)
0 20 40

0

50

100

150

Visual stimulation

AP rate

R E V I E W S

NATURE REVIEWS | NEUROSCIENCE  VOLUME 17 | DECEMBER 2016 | 785

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



Proper functioning of inhibitory interneurons is 
required for the generation of highfrequency gamma 
oscillatory activity, coordination among different oscil
latory frequencies (crossfrequency interactions) and 
regulation of neuronal firing by brain rhythms (frequency– 
action potential interactions). Several lines of evidence 
suggest that fastspiking PV+ cells are impaired in disor
ders that are associated with hypersynchronous network 
activity such as schizophrenia and epilepsy187, and that 
other types of interneurons — for example, those con
taining cholecystokinin or NPY — are impaired in mood 
disorders and anxiety187–189.

PV+ cells constitute ~40% of inhibitory interneurons 
and are the major source of perisomatic inhibition onto 
excitatory pyramidal cells. Because PV+ cells are elec
trically coupled by dendritic gap junctions and form an 
electrically coordinated interneuron network, they are 
particularly well suited to synchronously modulate the 
activity of many pyramidal cells176. In optogenetic stimu
lation studies in wildtype mice, increasing the firing rate 
of PV+ cells increased the power of gamma oscillations 
but not of other oscillations, whereas increasing the firing 
rate of pyramidal cells specifically increased the power 
of lowfrequency oscillations179,190 (FIG. 4c), indicating a 
causal link between gamma power and PV+ cell function. 
Increasing gamma power improved the signaltonoise 
ratio of pyramidal cell firing, an effect that is likely to 
enhance neuronal processing179,190.

In FAD mice (lines hAPPJ20, Tg2576, APP23, 
APOE4KI and APP/PSEN1dE9) (Supplementary 
information S1 (table)), gamma oscillatory activity is 
altered107,172,191–193, suggesting that these animals have 

deficits in interneuron function. hAPPJ20 mice have 
brief peaks of increased gamma power and long peri
ods of decreased gamma power172,192. Similar abnormal 
fluctuations in gamma power occur in Tg2576 mice191. 
Increased gamma power is associated with behaviour 
dependent brain activation, increased firing rate of PV+ 
cells177,194 and the suppression of epileptiform discharges 
in hAPPJ20 mice172 and humans with epilepsy154. By con
trast, gamma power is decreased during resting activity 
and is associated with reduced firing rate of PV+ cells177,194 
and increased epileptiform discharges in hAPPJ20 
mice172. These behaviourrelated modulations of gamma 
oscillations probably differ mechanistically from aberrant 
increases in gamma power during seizures or hyper
synchronized network activity and from the overall 
increases in oscillatory power across multiple frequency 
bands in APP23 and APP/PSEN1dE9 mice107,193. In 
APP23xPS45 mice, hyperactivity of cortical neurons was 
associated with decreased GABAergic inhibition rather 
than increased glutamatergic transmission, suggesting 
impaired inhibitory function109. More recently, reduced 
inhibitory function has been linked to amyloidβ 
induced deficits in slowwave propagation195,196. Aberrant 
increases in gamma power in the auditory cortex during 
evoked auditory stimulation in patients with AD have 
also been related to decreased inhibition197,198. Overall, 
however, humans with AD typically show decreases in 
the power of higherfrequency oscillations and increases 
in the power of lowerfrequency oscillations199.

APOE4KI mice (Supplementary information S1 
(table)), in which the Apoe gene is replaced by knocking 
in the human ε4 allele, also have prominent GABAergic 

Figure 5 | Close association between behavioural state, gamma oscillations and epileptiform activity in mice and 
humans. a,b | Behavioural activity, full-frequency range spectrograms, gamma oscillatory power and distribution of 
epileptic discharges in cortical networks of an hAPP-J20 mouse (part a) and a human with epilepsy (part b). In mice, 
exploration (active) of a novel environment robustly increased gamma oscillatory power and reduced epileptiform 
discharges, suggesting that the brain state modulates brain rhythms and network hypersynchrony. In humans, successful, 
but not unsuccessful, memory encoding also increased gamma oscillatory power and reduced epileptiform discharges. 
c | In our hypothetical model, memory encoding requires frequency-specific modulation of oscillatory frequencies, which 
reduces network hypersynchrony. Part a is adapted with permission from REF. 172, Cell Press/Elsevier. Part b is adapted 
from Matsumoto, J. Y. et al., Network oscillations modulate interictal epileptiform spike rate during human memory, Brain, 
2013, 136, 8, 2444–2456, by permission of Oxford Journals.
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dysfunction and show reduced hippocampal power 
of slow gamma oscillations during sharpwave ripple 
activity200. Amyloidβ application99,201 and APP overex
pression202–204 markedly suppress the power of kainate 
induced gamma oscillations in neuronal cultures. The 
mechanisms of gamma degradation by amyloidβ in  
brain slices are unclear but may involve changes  
in inhibition–excitation balance and cellular excita
bility99. Amyloidβ treatment increased excitatory and 
decreased inhibitory postsynaptic currents in pyram
idal cells and increased the firing rate of these excita
tory neurons99. Interestingly, although the mean phase 
of action potential firing did not change, the temporal 
firing window of excitatory neurons became wider, sug
gesting desynchronization of action potential firing99. 
Perhaps, spiketheta phase dysregulation204 also contrib
utes to the reduced gamma power and the epileptiform 
activity that are observed in FAD mice. Hippocampal 
injections of amyloidβ reduced firing rates in rhythmi
cally bursting interneurons (probably PV+ cells) but not 
in tonically firing interneurons (probably cholinergic 
interneurons) in the septum203.

Across brain regions and behavioural tasks, effec
tive encoding also seems to depend on crossfrequency 
interactions, particularly the coupling between the phase 
of theta oscillations and the power of gamma oscillations 
(phase–amplitude coupling)205–209, which is regulated 
by the synaptic activity of PV+ cells210,211. Recordings 
from acute brain slices of young FAD mice and in vivo 
recordings from adult FAD mice (lines TgCRND8 and 
APP/PSEN1dE9, respectively) (Supplementary infor
mation S1 (table)) revealed deficits in theta–gamma 
coupling193,212, which were associated with cognitive 
deficits212 and could result from the kind of PV+ cell dys
function that we identified in hAPPJ20 mice. Indeed, by 
impairing PV+ cell functions, APP and amyloidβ could 
disrupt multiple aspects of neuronal coordination.

Singleunit recordings of inhibitory cells in behaving 
rodents have revealed that behavioural and brain states 
affect interneuron subtypes differentially177,178,189,213. For 
example, PV+ and VIP+ cells drastically increase their 
action potential firing rate during specific behavioural 
states (for example, locomotor exploration), whereas 
NPY+ and SOM+ cells show persistent or tonic firing 
across multiple behavioural states (for example, loco
motion, sleep and quiet wakefulness). These findings 
imply that certain behavioural states may be able to 
overcome, at least partly and for short periods, PV+ cell 
impairments that cause low gamma power, hypersyn
chronous network activity and cognitive deficits in FAD 
mice and humans with AD (FIG. 5c). Optogenetically 
suppressing the activity of interneurons that express the 
homeobox protein DLX1 in the dentate gyrus impaired 
learning and acutely suppressed memory retrieval in 
mice, further highlighting the crucial role of interneu
rons in cognitive tasks214. It is tempting to speculate 
that fluctuations in interneuron activity may help to 
explain the fluctuations in cognitive performance of 
patients with AD that are frequently reported by care
takers but have been difficult to document by clinical 
measurements.

The mechanisms by which interneuron deficits con
tribute to network and cognitive dysfunction in AD and 
related conditions remain to be fully elucidated, although 
much progress has recently been made on this front. 
Decreased synaptic inhibition and excitation–inhibition  
imbalances might explain deactivation deficits in the 
DMN of individuals with MCI or AD4,67,72, but these 
hypotheses have not yet been tested experimentally. 
Impaired inhibition is another potential mechanism for 
plaquerelated neuronal hyperactivity in APP23xPS45 
mice109. In hAPPJ20 mice, we found that PV+ cell impair
ments are caused by the depletion of the voltagegated 
sodium channel subunit Nav1.1 and crucially contribute 
to network and cognitive dysfunctions172 (FIG. 6a). Voltage
gated sodium channels control intrinsic cellular excita
bility by modulating action potential firing in specific 
neuronal subtypes. Nav1.1 is expressed predominantly 
in interneurons, including PV+ cells, in both mice172 and 
humans215, and its levels in the parietal cortex are reduced 
in hAPPJ20 mice and patients with AD172. Hypofunction 
of Nav1.1 has been also described in Tg2576 mice216 and 
in transgenic mice overexpressing BACE1 (REF. 217). As 
indicated earlier, the activity of BACE1, which is expressed 
at high levels in the brains of patients with AD218, is 
required for the release of amyloidβ from APP. Because 
this enzyme also cleaves the βsubunit of voltagegated 
sodium channels, increased BACE1 levels lead to aber
rant βsubunit cleavage and reduced transport of Nav1.1 
to the membrane, resulting in Nav1.1 hypofunction216,217. 
Neuroblastoma cells expressing the FADlinked PSEN1 
E280A mutation also had reduced Nav1.1 mRNA and 
protein levels219.

APOE4KI mice also develop spontaneous epileptic 
activity and seizures120. In humans without dementia, 
hyperventilation induces network hypersynchronization 
(for example, sharp waves) more frequently in APOE ε4 
carriers than in noncarriers220. Although network hyper
synchrony has not been directly linked to interneuron 
dysfunction in APOE4KI mice, these mice lose around 
30% of SOM+ cells in the hilus of the dentate gyrus, and 
this reduction is associated with learning and memory 
deficits221. Interestingly, chronic treatment with pentobar
bital reversed the latter deficits but not the loss of hilar 
interneurons221, suggesting that this positive allosteric 
modulator of GABA type A receptors can compensate 
for the partial loss of inhibitory input (FIG. 6b).

Synaptic depression and hypersynchrony
Synaptic loss is a pathological hallmark of AD and cor
relates well with cognitive decline222,223. In experimental 
models, high levels of amyloidβ cause synaptic loss, 
reduce glutamatergic synaptic transmission and LTP, and 
increase longterm depression25,88,94,224–228. Intriguingly, 
several proposed mechanisms of amyloidβinduced 
synaptic depression might also contribute to network 
hypersynchrony229. For example, amyloidβ blocks neu
ronal glutamate uptake at synapses, which could result in 
glutamate spillover around the synaptic cleft25. The rise  
in glutamate may desensitize synaptic NMDARs and aber
rantly activate extra or perisynaptic GluN2Bcontaining 
NMDARs and metabotropic glutamate receptors 

R E V I E W S

NATURE REVIEWS | NEUROSCIENCE  VOLUME 17 | DECEMBER 2016 | 787

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

http://www.nature.com/nrn/journal/vaop/ncurrent/full/nrn.2016.141.html#supplementary-information
http://www.nature.com/nrn/journal/vaop/ncurrent/full/nrn.2016.141.html#supplementary-information


(mGluRs), and both GluN2Bcontaining NMDARs and 
mGluRs can promote longterm synaptic depression  
and spine retraction25,228,230. Amyloidβinduced NMDAR 
and mGluRdependent longterm depression can be pre
vented by lowering extracellular glutamate25 and can be 
mimicked by application of the glutamate reuptake inhib
itor threoβbenzyloxyaspartate (TBOA), which can also 
trigger epileptiform discharges in wildtype brain slices231. 
Thus, amyloidβinduced network hypersynchrony may 
be directly linked to synaptic depression.

Future therapies
The effective therapy of AD will probably require com
bining treatments targeting the root causes of the disease 
with therapeutic strategies that can block or counteract 
the pathogenic processes that these causes trigger33. 
From the evidence reviewed above, we think that brain 
dysrhythmias caused by aberrant interneuron activity 
and other mechanisms probably contribute to cognitive 
deficits and behavioural alterations in AD and related 
conditions. We further hypothesize that enhancing the 
function of interneurons in these conditions, particularly 
of PV+ and SOM+ cells, will improve network activities 
and cognitive performance.

In hAPPJ20 mice, restoring Nav1.1 levels enhanced 
PV+ celldependent gamma oscillatory power, reduced 
network hypersynchrony and improved cognitive per
formance (FIG. 6a), pinpointing Nav1.1 and PV+ cell 
dependent oscillatory rhythms as potential therapeutic  
targets. Although it is never certain that therapeutic 
findings obtained in experimental models (or in early 
clinical trials in humans, for that matter) will hold up in 
large heterogeneous human populations, Nav1.1 deple
tion and various other molecular alterations identified 
in hAPPJ20 mice have been found in people with AD 

(Supplementary information S2 (table)). These include 
depletions of calbindin in the dentate gyrus and of reelin 
in the entorhinal cortex, increased neuronal production 
of collagen VI, higher hippocampal levels of activated 
group IVA phospholipase A2 and increased expression 
of the adenosine A2A receptor by hippocampal astro
cytes100,172,232–236. In addition, the antiepileptic drug leveti
racetam, which reduces synaptic, network and cognitive 
deficits in hAPPJ20 mice74, also exerts beneficial effects 
in patients with amnestic MCI67,73, which is widely viewed 
as an early stage of AD237–239.

Manipulating interneuron function to improve brain 
rhythms is a promising therapeutic strategy for disor
ders involving interneuron and network dysfunctions, 
including AD, epilepsy, schizophrenia and autism. But 
how might these dysfunctions be approached therapeu
tically? Interneurons have highly specialized functions, 
electrophysiological properties and molecular profiles. 
Targeting molecules such as ion channels or receptors 
that are predominantly expressed in specific types of 
interneurons might make it possible to improve and har
ness the function of these cells without impairing other 
cell types. Indeed, Nav1.1 enhancers that preferentially 
activate Nav1.1containing interneurons have been pro
posed for the treatment of epilepsy, schizophrenia and 
AD240. Because the firing rate of PV+ cells and gamma 
power strongly depend on behavioural activity154,177, 
behavioural or sensorial interventions that promote brain 
states associated with increased power ratios in high to 
lowfrequency oscillations might also be of benefit.

Finally, embryonic interneuron precursors trans
planted into adult brains can migrate and integrate into 
appropriate circuits and mature into fully functional 
interneurons182. Although cell therapy for cognitive 
disorders may seem to be rather daring and must be 
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approached with appropriate caution, it has already 
been explored in a small clinical trial in patients with 
AD241. In ADrelated mouse models with prominent 
loss of hilar interneurons, including pilocarpinetreated 
wildtype mice185 and untreated APOE4KI mice186, 
hippocampal transplants of wildtype interneuron pre
cursors improved behavioural functions. However, it is 
not known how well such transplants would survive and 
function in the proteopathic, toxic microenvironment of 
AD brains172,203. Genetic modifications may be required 
to render interneuron precursors resistant to such condi
tions. Potentially beneficial modifications include over
expression of proteins that protect against the disease, 
such as Nav1.1 (REF. 172) in PV+ cells, or reduction of 
proteins that promote or enable ADrelated pathogene
sis, such as tau110 and APOE4 fragments242. These ther
apeutic opportunities also call for the development of 
reprogramming strategies to convert skin or blood cells 
into precursors of specific interneuron subtypes.

Conclusions
Network activities that support cognition are altered 
decades before the expected onset of clinical signs and 
symptoms of AD, and the affected networks predict 
future pathology and brain atrophy. Because neuronal 
synchrony regulates the functional state of brain circuits 
and networks, deficits in synchrony, including network 
hypersynchrony and altered oscillatory rhythmic activ
ity, could contribute to ADrelated cognitive dysfunction. 
Although the precise causes of these synchrony deficits 
remain to be defined, diverse lines of evidence suggest 
that interneuron dysfunction and network abnormalities 
may be crucially involved. Therapeutic strategies that 
improve the function of interneurons and counteract 
such abnormalities might improve cognitive functions 
in AD and related disorders. By preventing excitotoxic 
overstimulation of neurons and maladaptive compen
satory processes, they may also help to prevent or stall 
disease progression.
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