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ABSTRACT OF THE DISSERTATION 

 

Radial Echo Planar Spectroscopic Imaging: Acceleration and Applications for Diffusion- 

Weighted Acquisitions 

by 

 

Andres Saucedo 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2023 

Professor Michael Albert Thomas, Chair 

 

Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are powerful, 

non-invasive tools that are capable of assessing the concentrations and distributions of various 

metabolic compounds in vivo. Single-voxel MRS methods such as STEAM and PRESS measure 

the temporal signal from a specific, localized volume of interest. As such, single-voxel MRS does 

not require any type of spatial encoding, such as frequency and phase encoding which are used 

routinely in magnetic resonance imaging (MRI). Although simpler to implement for clinical 

applications, MRS methods are nonetheless limited in their ability to efficiently acquire spectra 

across large anatomical regions, since only a relatively small volume can be probed per 

measurement. On the other hand, multi-voxel acquisitions can be done with MRSI, which 

incorporates additional two-dimensional (2D) or three-dimensional (3D) spatial encoding 

dimensions (i.e., k-space) to resolve multiple spectra from a large volume or slice within a single 

scan session.  
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However, conventional MRSI techniques currently in clinical use depend on sequential phase 

encoding of each spatial dimension, which often results in long scan durations. Therefore, the 

focus of much research in MRSI has been to accelerate the acquisition through various means such 

as by undersampling or by using, often also in combination with undersampling, advanced 

sampling methods such as simultaneous spatiotemporal sampling of one spatial dimension and the 

spectral (time) dimension. The latter approach is accomplished by implementing so-called echo-

planar k-t trajectories, which interleave the acquisition of one frequency-encoded spatial 

dimension (k) with the temporal samples (t) necessary for resolving the spectrum. The other spatial 

dimensions are often resolved with conventional phase encoding. Thus, echo-planar spectroscopic 

imaging (EPSI) is able to accelerate an MRSI scan session by at least an order of magnitude. When 

first proposed in the mid 1980’s, EPSI was done with Cartesian trajectories and, since the late 

1990’s, non-Cartesian trajectories such as spirals, concentric circular, rosette, and radial 

trajectories have been implemented for fast MRSI. These non-Cartesian trajectories provide 

advantageous trade-offs in imaging speed, signal-to-noise ratio, and motion robustness compared 

with Cartesian EPSI.  

 More recently, as late as 2019, radial echo planar spectroscopic imaging (REPSI) has been 

described as a nascent subfield in proton (1H) MRSI.  Although radial projections were the first to 

be demonstrated for MRI, the adoption of radial sampling for MRSI had only found limited 

applications for non-proton MRSI, such as for phosphorus (31P) and carbon (13C), and had not yet 

been demonstrated for in vivo 1H MRSI. This work presents a study of 1H MRSI in the human 

brain in vivo using radial echo-planar trajectories, as well as applications for diffusion-weighted 

MRSI. The capability of REPSI for further acceleration compared to Cartesian EPSI are shown 

within a compressed sensing framework, in which the undersampled REPSI data can be 
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reconstructed with good fidelity by exploiting the sparsity of the data within a transform domain.  

In addition to its higher tolerance for accelerations, the motion robustness of REPSI is shown in 

free-breathing healthy liver and prostate acquisitions. 

 Both MRS and MRSI methods are compatible with diffusion-weighted (DW) techniques. 

DW-MRS and DW-MRSI are able to explore the microstructural characteristics of tissues in vivo 

due to the predominantly intracellular compartmentalization of metabolites. Unlike water, which 

permeates both the intra- and extra-cellular spaces, most metabolites are confined within the 

intracellular space, so that their diffusion reflects the structure and function of tissues at the 

microscopic scale. This compartment-specific assessment of tissue structure enables a clearer 

understanding of the cellular-level conditions and alterations that underlie various pathologies. 

This work also presents the first demonstration of a diffusion-weighted technique, first proposed 

in the mid 1990’s and early 2000’s, for in vivo single voxel DW-MRS and DW-MRSI in the human 

brain. This so-called “single-shot diffusion trace-weighted” scheme had been untestable in humans, 

until recently, due to earlier hardware limitations of clinical scanners. The acquisition and 

processing of the single voxel DW-MRS data was optimized as a precursor for the spectroscopic 

imaging version of the sequence. It is shown that radial echo planar trajectories are particularly 

advantageous for DW-MRSI, due to their self-navigation capability that enables post-processing-

based corrections of the diffusion-weighted data, which is susceptible to shot-to-shot phase and 

frequency inconsistencies.  

In the Appendix, further work in acceleration in the context of parallel imaging using low-

rank approximations is also demonstrated for MRI acquisitions.  
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Chapter 1 Introduction 

 Outline 

Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are powerful 

tools capable of non-invasively measuring metabolic information in vivo, enabling the 

biochemical characterization of various pathologies. MRS and MRSI has been applied for 

diagnosing, monitoring, and understanding the causes of diseases in human brain, liver, kidney, 

and skeletal and cardiac muscle. In contrast to single voxel MRS, MRSI is able to measure spectra 

from multiple voxel locations within a single measurement period. However, the main limitation 

of MRSI is the long acquisition times necessary to encode the necessary spectral and spatial 

information. Consequently, one of the main challenges for MRSI is to shorten the scan time 

without compromising the spectroscopic imaging quality.  An effective approach toward this end 

is to apply echo planar k-t trajectories that speed up the sampling time by an order of magnitude 

compared to conventional MRSI that relies solely on phase encoding each spatial dimension before 

spectral encoding. In contrast, echo planar spectroscopic imaging (EPSI) is a much faster 

alternative for MRSI because it interleaves the collection of spatial-spectral data. The combination 

of undersampling with echo planar trajectories is one of the most effective strategies for reducing 

the total scan time to within practical clinical durations.   

Radial k-space sampling, already widespread in MRI research, has a number of advantages 

compared to Cartesian sampling, such as increased robustness to motion-induced artifacts, greater 

inherent SNR due to its dense sampling of the central k-space, and greater potential for acceleration. 

Radial sampling is particularly suitable for MRSI since the highest sampling density in radial k-

space corresponds to the lowest spatial frequencies, which become more important in the case of 
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low spatial resolutions typically acquired in MRSI.  Therefore, compared to Cartesian EPSI, non-

Cartesian trajectories such as radial trajectories could offer a better alternative for acceleration and 

a better trade-off between sampling efficiency (greater for Cartesian sampling) and higher SNR or 

decreased sensitivity to motion-induced artifacts. However, as late as 2019, radial echo planar 

spectroscopic imaging (REPSI) was considered a nascent subfield of MRSI1, and had yet to be 

demonstrated for 1H spectroscopic imaging. This thesis includes a study of REPSI for accelerated 

acquisitions in human brain, and presents pilot data from free-breathing liver and prostate 

acquisitions.  

Diffusion-weighting MRS and MRSI (DW-MRS/MRSI) offer a more specific tool for probing 

the intracellular conditions underlying pathology. Since most metabolites are confined within the 

intracellular space, measurements of the metabolite apparent diffusion coefficients (ADC) with 

DW-MRS/MRSI more specifically reflect the extent to which tissue structure and cellular function 

are affected by disease. Hence, diffusion-weighted spectroscopy, in general, contributes valuable 

information which cannot be ascertained with DW-MRI, which can only probe water diffusion 

that occurs indiscriminately between intra- and extracellular compartments. Several DW-MRS 

techniques have been reported, although an important subset is dedicated to measuring a particular 

quantity called the trace ADC, or mean diffusivity. The trace ADC is a more reliable quantity to 

estimate diffusion because, in principle, its value is independent of the relative orientation of the 

cell frame of reference with respect to the gradient frame of reference, thus avoiding this potential 

source of bias. Conventional DW-MRSI techniques require at least three separate measurements 

along orthogonal diffusion-sensitizing gradient directions to estimate the trace ADC, which 

prolongs the total measurement time. However, a DW-MRS method based on PRESS localization, 

first proposed in the early 2000’s and based on work originally proposed in the mid 1990’s, is able 
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to measure the trace ADC in one measurement. This “single-shot” diffusion trace-weighted 

spectroscopic technique had only been reported in small animal scanners up to as late as 20122, 

but was prevented from use in clinical scanners due to gradient amplitude and slew rate limitations, 

until recently.  A variant of the original scheme studied in this work was shown in human brain 

most recently in 20203. This thesis presents a study on single-shot trace-weighted MRS (Trace 

DW-MRS) in human brain using the originally proposed sequence. Acquisitions parameters and 

post-processing steps were explored and optimized in preparation for another study on extending 

Trace DW-MRS to Trace DW-REPSI.  

Several studies have reported on DW-MRSI in human brain, mostly using Cartesian 

trajectories, either in the conventional phase-encoding mode or with echo planar trajectories. In 

general, DW-MRS/MRSI requires careful post-processing due to pulsatile motion which causes 

the diffusion-weighted signal to have large amplitude and phase fluctuations from shot-to-shot. 

Additionally, since DW-MRS/MRSI require multiple signal averages, thereby prolonging the scan 

time, frequency drifts during the long measurement period must also be corrected. Past techniques 

based on Cartesian trajectories have necessitated a separate navigator echo within the pulse 

sequence to track the relative phase and frequency inconsistencies of the data. However, as is now 

common practice in MRI, the self-navigation properties of radial sampling can be exploited to 

correct for these errors in DW-MRSI. The resulting single-shot diffusion trace-weighted REPSI 

(DW-REPSI) pulse sequence thus has a further advantage over conventional Cartesian approaches, 

not only because of its self-navigation, but also due to its better prospects for accelerated DW-

MRSI. Therefore, this thesis also presents a study on the spectroscopic imaging version of the 

single-shot diffusion trace-weighted sequence.  
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 Organization of the thesis 

Chapter 2 Background: This chapter begins with a brief introduction of the concepts behind 

nuclear magnetic resonance and classical signal excitation and detection approaches for imaging 

and spectroscopy. A brief summary of echo planar spectroscopic imaging and the various radial 

k-space sampling approaches for MRSI are also presented. Lastly, a brief overview of diffusion-

weighting and diffusion-weighted spectroscopy is discussed.  

Chapter 3 Accelerated Radial Echo Planar Spectroscopic Imaging Using Golden Angle View 

Ordering and Compressed Sensing Reconstruction with Total Variation Regularization: This 

chapter presents an accelerated two-dimensional radial echo-planar spectroscopic imaging (REPSI) 

sequence using undersampled radial k-space trajectories and compressed sensing (CS) 

reconstruction and compares quantitation and imaging results with those from an undersampled 

Cartesian spectroscopic sequence. The results of this chapter have been published as a journal 

article4. 

Chapter 4 Single-Shot Diffusion Trace-weighted MR Spectroscopy: Comparison with 

Unipolar and Bipolar DW-PRESS: This chapter presents a single voxel study to demonstrate the 

feasibility and performance of the PRESS-based, single-shot diffusion trace-weighted sequence in 

quantifying the trace apparent diffusion coefficient (ADC) in phantom and in vivo using a 3T 

MRI/MRS scanner, and to compare results to trace ADC’s derived from conventional diffusion-

weighted PRESS sequences acquired with unipolar and bipolar diffusion gradient configurations.  

The results of this chapter have been submitted to a journal as a full research article and as of July 

2023 is undergoing its first revision.       

Chapter 5 Single-shot Diffusion Trace Spectroscopic Imaging using Radial Echo Planar 

Trajectories: This chapter presents the spectroscopic imaging version of the single voxel singe-
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shot diffusion-trace weighted sequence described in the previous chapter. The goal of the study 

presented in this chapter is to demonstrate the feasibility and evaluate the performance of single-

shot diffusion trace-weighted radial echo planar spectroscopic imaging (Trace DW-REPSI) for 

quantifying the trace apparent diffusion coefficient (ADC) in phantom and in vivo using a 3T 

clinical scanner. The results of this chapter have been submitted to a journal as a full research 

article and as of July 2023 is under review.   

Chapter 6 Conclusion: This chapter includes a summary of the work in this thesis and 

discusses the significance and future directions of the methods implemented in this work.     

Appendix: This portion of the thesis includes a study on parallel imaging-based reconstruction 

using low-rank sparsity along the coil dimension in the image domain within local neighborhoods. 

The main contribution of this work is to provide an alternative reconstruction approach that 

significantly increases the computational efficiency of the reconstruction algorithm, and a proof is 

provided to establish the convergence of the proposed algorithm.  
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Chapter 2 Background 

This chapter introduces some basic background on MRI physics, single voxel MR 

spectroscopy and spectroscopic imaging in two and three spatial dimensions, including Cartesian 

and radial echo planar spectroscopic imaging, and diffusion-weighted MRS/MRSI. Acceleration 

and reconstruction techniques are covered in subsequent chapters.  This chapter is not meant to be 

a comprehensive summary of these subjects but to briefly familiarize the readers with the material 

discussed in the rest of this thesis.  

 Basics of Magnetic Resonance Imaging 

 Magnetic Moment and Magnetization 

The 1H hydrogen atom contains a nucleus with odd mass number (one proton), a property 

which allows the 1H nucleus to possess an intrinsic angular momentum, or spin, 𝑰̂. The associated 

magnetic moment 𝒖̂ of the proton (the charged portion of the nucleus) is represented as 

𝝁 =  𝛾𝑰 (2-1) 

where 𝛾  is the gyromagnetic ratio for 1H and equals 267.522 × 106 𝑟𝑎𝑑 ∙ 𝑇−1 ∙ 𝑠−1 .  In the 

absence of any external magnetic field, each proton within a given sample at thermal equilibrium 

exhibits a random orientation of its spin, and therefore the net magnetization 𝑴 of the sample 

averages to zero. However, when an external magnetic field 𝑩0 = 𝐵0𝒛̂  is applied, the spins 

precess around an axis of rotation defined by the direction of the 𝑩0. The (angular) frequency of 

the precession (also called the Larmor frequency) is:  

𝜔0 = −𝛾𝐵0 (2-2) 
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The negative sign indicates that the rotation is clockwise when viewed down from the positive 𝒛̂ 

axis. Since the proton is a spin-1/2 system, the longitudinal component of 𝝁, denoted by 𝜇𝑧 , 

becomes oriented either parallel or antiparallel to 𝑩0 , with the parallel direction being more 

energetically favorable.  Hence, there is a greater population of spins with 𝜇𝑧 parallel to the applied 

field, leading to a net magnetization vector 𝑴 = 𝑀𝑧
0𝒌̂. In the transverse plane, the components of 

𝝁 for each spin are orientated randomly with respect to all other spins. Thus, at this equilibrium 

state with only the 𝑩0 field applied, the net transverse magnetization remains zero.  

Figure 2-1: The main static magnetic field B0 induces a 

precession of the magnetic moment whose axis of rotation 

is the direction B0. 

 

 

 

 

In the context MRI, 𝑩0 is the static field parallel to the bore axis of the scanner and it is the 

strongest magnetic field of the entire MRI system. Typical field strengths for clinical scanners are 

1.5T and 3T, corresponding to Larmor frequencies of 63.9 MHz/T and 127.7 MHz/T, respectively.  

 Bloch Equations and Excitation 

The main function of a pulse sequence is to manipulate the magnetization through radio-

frequency (RF) excitation and by applying time-dependent gradients 𝑮(𝑡). The magnetic field 

gradient 𝑮(𝑡), in units of mT/m, varies linearly as a function of spatial direction but points in the 

𝒌̂ direction. The RF field, denoted by 𝑩1(𝑡), acts on the net magnetization to induce a detectable 
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transverse component 𝑀𝑥𝑦, and 𝑩1(𝑡) is usually circularly polarized in the same direction as the 

precessing spins, with a carrier frequency at or near the Larmor frequency.  The magnetic field 

gradient 𝑮(𝑡) may act simultaneously with the 𝑩1 field for the purposes of spatial localization and 

it can be applied during the readout period to spatially encode the signal. The 𝑮(𝑡) gradient may 

also be used to sensitize the signal to diffusion and flow.  Generally, the gradient 𝑮(𝑡) is written 

as 𝑮(𝑡)  =  𝐺𝑥(𝑡)𝒊̂  +  𝐺𝑦(𝑡)𝒋̂  +  𝐺𝑧(𝑡)𝒌̂, such that its contribution to the magnetic field at position 

𝒓 =  𝑥𝒊̂  +  𝑦𝒋̂  +  𝑧)𝒌̂ is 𝑮(𝑡) ∙ 𝒓 =  𝐺𝑥(𝑡)𝑥 + 𝐺𝑦(𝑡)𝑦 + 𝐺𝑧(𝑡)𝑧. 

The temporal behavior of the magnetization vector 𝑴(𝑡) is governed by the Bloch equation: 

𝑑𝑴

𝑑𝑡
=  𝛾(𝑴 × 𝑩) − 

(𝑀𝑥𝒊 + 𝑀𝑦𝒋)

𝑇2
− 

(𝑀𝑧 − 𝑀𝑧
0)𝒌

𝑇1
 (2-3) 

where 𝑩 is the total magnetic field (including 𝑩0, 𝑩1(𝑡), and 𝑮(𝑡) ∙ 𝒓), 𝑀𝑧
0 is initial magnetization 

in the presence of 𝑩0  only, and 𝑇1  and 𝑇2  are the spin-lattice and spin-spin relaxation times, 

respectively. The relaxation time 𝑇1  determines the rate of recovery of the longitudinal 

component 𝑀𝑧(𝑡) and 𝑇2  the decaying time of the transverse component  𝑴𝑥𝑦 =  𝑀𝑥 𝒊̂ + 𝑀𝑦𝒋̂. 

Since the relaxation times are sample-specific and related to the tissue characteristics, the times at 

which the signal is sampled can be chosen in order to obtain a particular image contrast among the 

different tissues.   

The applied RF field, 𝑩1(𝑡), can be modeled as 5 

𝑩1(𝑡) = 𝐵1(𝑡) (cos𝜔𝑡  𝒊̂ − sin𝜔𝑡 𝒋̂) ~ 𝐵1(𝑡) 𝑒
−𝑖𝜔𝑡 (2-4) 

where  𝐵1(𝑡) is the envelope function that defines the magnitude of the RF pulse. To make the 

Bloch equations easier to solve, the problem is cast within an alternative coordinate system called 
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the rotating frame. Also, for simplicity, the effects of 𝑇1and 𝑇2 relaxation are ignored during the 

application of the excitation pulse 𝑩1(𝑡).  

The change of basis transformation between the laboratory frame and the rotating frame is a matrix 

that represents a clockwise rotation about the +𝑧̂ axis by an angle 𝜔𝑡: 

𝑹𝒛(𝜔𝑡) =  (
cos𝜔𝑡 − sin𝜔𝑡 0
sin𝜔𝑡 cos𝜔𝑡 0

0 0 1
) (2-5) 

For notational purposes, the coordinate axes {𝑖̂, 𝑗̂, 𝑘̂}  (or {𝑥̂, 𝑦̂, 𝑧̂}) in the laboratory frame are 

written as {𝑖̂′, 𝑗̂′, 𝑘̂′} (or {𝑥̂′, 𝑦̂′, 𝑧̂′}) in the rotating frame, i.e., 𝑴𝑟𝑜𝑡(𝑡) = 𝑀𝑥′𝑖̂
′ + 𝑀𝑦′𝑗̂

′ + 𝑀𝑧′𝑘̂
′. 

The magnetization 𝑴(𝑡) in the laboratory frame is related to the magnetization 𝑴𝑟𝑜𝑡(𝑡) in the 

rotating frame by: 

𝑴(𝑡) =  𝑹𝒛(𝜔𝑡)𝑴𝑟𝑜𝑡(𝑡) (2-6) 

In the rotation frame, the 𝑩1(𝑡) field becomes 

𝑩1,𝑟𝑜𝑡(𝑡) =  𝑹𝒛(𝜔𝑡)𝑩1(𝑡) =  𝐵1(𝑡) 𝒊̂′ (2-7) 

and the Block equation becomes (again, ignoring relaxation effects) 

𝑑𝑴𝑟𝑜𝑡

𝑑𝑡
=  𝛾𝑴𝑟𝑜𝑡 × 𝑩𝑒𝑓𝑓 =  𝛾𝑴𝑟𝑜𝑡 × (𝐵1(𝑡) 𝒊̂

′ + (𝐵0 − 
𝜔

𝛾
) 𝒌̂′) (2-8) 

Therefore, the magnetization 𝑴𝑟𝑜𝑡(𝑡) precesses about and effective magnetic field in the rotating 

frame defined by 

𝑩𝑒𝑓𝑓(𝑡) =  𝐵1(𝑡) 𝒊̂
′ + (𝐵0 − 

𝜔

𝛾
) 𝒌̂′ (2-9) 



10 

 

Now, writing Equation (2-8) in matrix form 

𝑑𝑴𝑟𝑜𝑡

𝑑𝑡
=  (

0 𝜔0 − 𝜔 0

−(𝜔0 − 𝜔) 0 𝛾𝐵1(𝑡)

0 −𝛾𝐵1(𝑡) 0
)𝑴𝑟𝑜𝑡 (2-10) 

If the frequency of 𝑩1(𝑡) is on resonance, i.e., the carrier frequency 𝜔 matches that of the Larmor 

frequency (𝜔0 =  𝜔), the Equation (2-10) becomes 

𝑑𝑴𝑟𝑜𝑡

𝑑𝑡
=  (

0 0 0
0 0 𝛾𝐵1(𝑡)

0 −𝛾𝐵1(𝑡) 0
)𝑴𝑟𝑜𝑡 (2-11) 

This corresponds to a rotation about the 𝑥̂′ axis with a flip angle 𝜃(𝑡) given by  

𝜃(𝑡) =  γ∫ 𝐵1(𝑡
′)

𝑡

0

𝑑𝑡′ (2-12) 

If the initial magnetization is 𝑴𝑟𝑜𝑡(0) = (0, 0,𝑀𝑧
0), then the solution to Equation (2-11) is 

𝑴𝑟𝑜𝑡(𝑡) =  𝑹𝑥′(𝜃(𝑡))𝑴𝑟𝑜𝑡(0) =  (

0
𝑀𝑧

0 sin 𝜃(𝑡)

𝑀𝑧
0 cos 𝜃(𝑡)

) (2-13) 

For example, if 𝐵1(𝑡) =  𝐵1, a constant, and the pulse is on for a time 𝜏, the magnetization rotates 

about the +𝑥̂′ axis with a total flip angle of 𝜃(𝜏) =  𝛾𝐵1𝜏. Such RF pulse is referred to as a 𝜃(𝜏)𝑥′ 

pulse. If a 90𝑥′
∘  pulse is played, then at the end of the pulse, the magnetization points along the 

+𝑦̂′ axis.  
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Figure 2-2: Action of a 90° 

excitation pulse which induces a 

rotation about the x’ axis.  

 

 

 

 Slice Selection 

An RF pulse 𝑩1(𝑡)  with an on-resonant carrier frequency 𝜔 = 𝜔0  will excite all 

magnetization within the volume of interest that is precessing at the Larmor frequency and that is 

sufficiently sensitive to the RF excitation coil. In the presence of a gradient 𝐺𝑧, spins at different 

locations along z will have resonant frequencies given by 𝜔(𝑧) =  𝛾𝐵𝑧 =  𝛾𝐺𝑧𝑧. Hence, the RF 

pulse can be designed to select a single plane within the volume which is perpendicular to 𝑧, 

provided that the temporal frequencies of 𝑩1(𝑡) match the resonant frequencies of the spins within 

that slice. Spins with resonant frequencies that are outside of the bandwidth of 𝑩1(𝑡) will not be 

affected by the excitation pulse. In this manner, the RF pulse acts in conjunction with the spatial 

gradient 𝐺𝑧 to produce signal located from a specific 𝑥 − 𝑦 plane within the volume.  

Figure 2-3: The linear 

relationship between 

the bandwidth of the 

excitation pulse and 

the corresponding 

extent of spatial 

selection, which is 

controlled by the slice 

select gradient Gz.  

In general, with the gradient 𝐺𝑧 turned on, the effective magnetic field in the rotating frame is  
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𝑩𝑒𝑓𝑓(𝑡) =  𝐵1(𝑡) 𝒊̂
′ + (𝐵0 + 𝐺𝑧𝑧 − 

𝜔

𝛾
) 𝒌̂′ (2-14) 

Now, if the carrier frequency of the excitation pulse is tuned to the Larmor frequency (𝜔 =

𝜔0) the Bloch equations become  

𝑑𝑴𝑟𝑜𝑡

𝑑𝑡
=  (−

0 𝜔(𝑧) 0
𝜔(𝑧) 0 𝛾𝐵1(𝑡)

0 −𝛾𝐵1(𝑡) 0
)𝑴𝑟𝑜𝑡 (2-15) 

The term 𝜔(𝑧) =  𝛾𝐺𝑧𝑧 indicates the degree of off-resonance of the spins at location z (again, 

assuming that  𝜔 = 𝜔0). The more off-resonant the spins are, the more the effective field, 𝑩𝑒𝑓𝑓, 

at that location along z, is tilted toward the 𝒛̂′ axis. When 𝑩𝑒𝑓𝑓 is predominantly pointing along 

𝒛̂′, RF pulse is ineffective in generating transverse magnetization.  

 The Bloch equations for selective excitation in Equation (2-15) generally require numerical 

methods to solve. However, a closed-form solution exists for the special case when the flip angle 

of the excitation pulse is small, i.e. 𝜃 <  30∘ , such that 𝑀𝑧′ ≅ 𝑀𝑧
0 . Therefore, 

𝑑𝑀
𝑧′

𝑑𝑡
= 0, and 

Equation (2-15) becomes 

𝑑

𝑑𝑡
(

𝑀𝑥′

𝑀𝑦′

𝑀𝑧′

) = (−
0 𝜔(𝑧) 0

𝜔(𝑧) 0 𝜔1(𝑡)
0 0 0

)(

𝑀𝑥′

𝑀𝑦′

𝑀𝑧′

) (2-16) 

where 𝜔1(𝑡) =  𝛾𝐵1(𝑡). Denoting the transverse magnetization as 𝑀𝑥′𝑦′ = 𝑀𝑥′ + 𝑖𝑀𝑦′  (such 

that 𝑴𝑥′𝑦′ ∙ 𝑖̂′ = 𝑀𝑥′ and 𝑴𝑥′𝑦′ ∙ 𝑗̂′ = 𝑀𝑦′), the solution to Equation (16) is  

𝑀𝑥′𝑦′(𝑡, 𝑧) = 𝑖𝑀𝑧
0𝑒−𝑖𝜔(𝑧)𝑡 ∫ 𝜔1(𝑡

′)𝑒𝑖𝜔(𝑧)∙𝑡′
𝑑𝑡′

𝑡

0

 (2-17) 

If the duration of the RF pulse is 𝜏, then at time 𝑡 =  𝜏, the transverse magnetization is 
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𝑀𝑥′𝑦′(𝜏, 𝑧) = 𝑖𝑀𝑧
0𝑒−𝑖𝜔(𝑧)𝜏 ∫ 𝜔1(𝑠)𝑒

𝑖2𝜋𝑓(𝑧)∙𝑠𝑑𝑠
𝜏

0

 (2-18) 

where 𝑓(𝑧) =
𝜔(𝑧)

2𝜋
=

𝛾

2𝜋
𝐺𝑧𝑧 . Since most RF pulses are designed to be symmetric about 

𝜏

2
, 

Equation (18) can be written with a change of variable 𝑡’ =  𝑠 −  
𝜏

2
 as follows:    

𝑀𝑥′𝑦′(𝜏, 𝑧) = 𝑖𝑀𝑧
0𝑒−𝑖𝜔(𝑧)

𝜏
2 ∫ 𝜔1 (𝑡′ + 

𝜏

2
) 𝑒𝑖2𝜋𝑓(𝑧)∙𝑡′

𝑑𝑡′

𝜏
2

−
𝜏
2

 (2-19) 

Hence, the transverse magnetization 𝑀𝑥′𝑦′ at position 𝑧 is proportional to the Fourier transform of 

𝜔1(𝑡 + 
𝜏

2
), evaluated at the frequency −𝑓(𝑧). This result means that the slice profile along 𝑧 is 

determined by the temporal frequency content of the RF pulse envelope 𝐵1(𝑡).  For example, if 

𝐵1(𝑡) is an ideal 𝑠𝑖𝑛𝑐 function, the Fourier transform would yield a 𝑟𝑒𝑐𝑡 function, describing a 

constant profile amplitude for 𝑀𝑥′𝑦′ across the selection bandwidth in the 𝑧 direction.  

Figure 2-4: (A) Example of an ideal sinc 

pulse envelope whose Fourier Transform 

is the desired (rectangular) slice profile. 

(B) After slice excitation, a rephrasing 

lobe is required to avoid the phase 

dispersion accumulated during the RF 

pulse.  
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As seen in Equation (2-19), the RF pulse induces a spatially-dependent phase 𝜙(𝑧) =  
𝜏

2
𝛾𝐺𝑧𝑧 

across the slice thickness. If not corrected, the total effect of this phase distribution is signal loss, 

as the spins across the slice volume add incoherently. To undo this phase accrual, a negative 

gradient lobe −𝐺𝑧 of duration 
𝜏

2
 is played immediately after the slice selection gradient. After the 

end of this slice refocusing lobe, the phases along z are coherent.  

 Spatial Encoding 

After the applied 𝑩1(𝑡) is turned off, the longitudinal component of the bulk magnetization  

will start to relax toward its equilibrium state, and the signal from the detectable transverse 

component 𝑴𝑥𝑦 can be recorded. In both the non-selective or slice-selective excitation case, the 

detected signal originates from the entire excited slice or volume. Therefore, this signal must be 

localized across all relevant spatial dimensions in order to build an image. This localization is done 

by applying an additional longitudinal magnetic field known as the gradient field, written generally 

in vector form as 𝐆(𝑡) = (𝐺𝑥(𝑡) , 𝐺𝑦(𝑡) , 𝐺𝑧(𝑡)), since this gradient may also be a function of time. 

The role of this gradient is to make the precessional frequencies of the spins a linear function of 

the spatial coordinates. In this way, the received signal becomes spatially-encoded. The frequency 

of the spins at position 𝒓 is given by 

𝜔(𝒓, 𝑡) =  𝛾(𝐵0 +  𝐆(𝑡) ∙ 𝒓) = 𝛾(𝐵0 + 𝐺𝑥(𝑡)𝑥 + 𝐺𝑦(𝑡)𝑦 + 𝐺𝑧(𝑡)𝑧)  (2-20) 

Assuming that transverse magnetization has been produced after an excitation, and that the 

received signal has been demodulated with a demodulation frequency equal to 𝜔0 =  𝛾𝐵0, the MR 

signal 𝑆(𝑡) from the excited volume 𝑚 in the presence of 𝐆(𝑡) is 
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𝑆(𝑡) =  ∫𝑚(𝒓)𝑒−𝑖2𝜋(
𝛾
2𝜋 ∫ 𝜔(𝒓,𝜏)𝑑𝜏

𝑡
0 )𝑑𝒓 =  ∫𝑚(𝒓)𝑒−𝑖2𝜋(

𝛾
2𝜋 ∫ 𝐆(𝜏)∙𝒓 𝑑𝜏

𝑡
0 )𝑑𝒓 (2-21) 

Defining the k-space vector 𝒌(𝑡) as 

𝒌(𝑡) =  
𝛾

2𝜋
∫ 𝐆(𝜏)𝑑𝜏

𝑡

0

 (2-22) 

the Fourier relationship between the object and the detected signal, due to the application of this 

spatially dependent gradient 𝐆(𝑡), can be observed: 

𝑆(𝑡) = ∫𝑚(𝒓)𝑒−𝑖2𝜋𝒌(𝑡)∙𝒓𝑑𝒓 =  𝑀̂(𝒌(𝑡)) (2-23) 

In Equation (2-23), the detected signal 𝑆(𝑡) is essentially the spatial Fourier transform 𝑀̂(𝒌) of 

the underlying object 𝑚(𝒓). Thus, the MR acquisition process can be seen as sampling the spatial-

frequency space with the trajectory described by 𝒌(𝑡) =  (𝑘𝑥(𝑡), 𝑘𝑦(𝑡),  𝑘𝑧(𝑡)). The k-space may 

follow different patterns such as rectilinear, radial, concentric circular, spiral, or rosette trajectories.  

 Cartesian Sampling  

Cartesian sampling is one of the most common ways to sample the k-space. The sampling can 

be done for either 2D or 3D acquisitions, in which either one or two spatial dimensions are phase-

encoded, respectively, while the remaining dimension is frequency-encoded. The frequency-

encoded dimension is also called the readout direction and the corresponding gradient is called the 

readout gradient.  
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Figure 2-5. Examples of 2D and 3D Cartesian sampling trajectories. 

In general, according to the Nyquist criterion, the k-space sampling increment ∆𝑘 that is needed 

to encode a field of view 𝐿 must satisfy  

∆𝑘 ≤   
1

𝐿
 (2-24) 

In practice, ∆𝑘  is usually set to 
1

𝐿
, as this is the maximum ∆𝑘  needed. The range of spatial 

frequencies that are sampled in k-space is denoted as 2𝑘𝑚𝑎𝑥 where 𝑘𝑚𝑎𝑥 is related to the FOV and 

number of sampled points 𝑁 as 

𝑘𝑚𝑎𝑥 =  
𝑁

2𝐿
 (2-25) 

For the 2D Cartesian sampling case, if the readout direction is 𝑥, the amplitude of the gradient 𝐺𝑦 

along the phase-encoded direction, 𝑦, must be incrementally increased or decreased in order to 

spatially encode the signal along 𝑦. If the field-of-view along the phase-encoded direction is 𝐿𝑦, 
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and the duration of the gradient lobe 𝐺𝑦 is ∆𝑇, then the gradient increment ∆𝐺𝑦 for sampling the 

𝑘𝑦 dimension is 

∆𝐺𝑦 = 
2𝜋∆𝑘𝑦

𝛾∆𝑇
=  

2𝜋

𝛾𝐿𝑦 ∙ ∆𝑇
 (2-26) 

After a phase-encoding step, the constant readout gradient 𝐺𝑥(𝑡) = 𝐺𝑥 is turned on for subsequent 

frequency-encoding, and the analog-to-digital converter (ADC) samples the signal.  If the receiver 

or ADC bandwidth is ∆𝜈, then the ADC dwell time is Δ𝑡 =  
1

Δ𝜈
 . While 𝐺𝑥(𝑡) is turned on, the 

spatial bandwidth of the object along 𝑥 is 
𝛾

2𝜋
𝐺𝑥 ∙ 𝐿𝑥, where the prescribed field of view is 𝐿𝑥. To 

satisfy the Nyquist condition for sampling this spatial bandwidth, it follows that the constant 

gradient amplitude 𝐺𝑥 must be  

𝐺𝑥 = 
2𝜋

𝛾𝐿𝑥 ∙ ∆𝑡
 (2-27) 

The signal corresponding to the phase-encoding line at the 𝑛𝑦
𝑡ℎ step is  

𝑆(𝑡) = 𝑀̂ (𝑛𝑦∆𝑘𝑦, 𝑘𝑥(𝑡)) = ∫𝑚(𝑥, 𝑦)𝑒−𝑖2𝜋(𝑛𝑦∆𝑘𝑦∙𝑦)𝑒−𝑖
𝛾
2𝜋(𝐺𝑥∙𝑥∙𝑡)𝑑𝑥𝑑𝑦 =  (2-28) 

Where 𝑛𝑦 = −
𝑁𝑦

2
, −

𝑁𝑦

2
+ 1,… , 0, 1, … ,

𝑁𝑦

2
− 2,

𝑁𝑦

2
− 1 , and 𝑁𝑦  is the total number of phase-

encoding steps. If there are 𝑁𝑥 points to be sampled along 𝑘𝑥, such that the resolution along 𝑥 is 

𝐿𝑥

𝑁𝑥
, then the total readout duration is 𝑁𝑥∆𝑡. 
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Figure 2-6: Basic pulse sequence using a gradient echo for frequency encoding along the x 

dimension and phase encoding along the y dimension. For each phase encoding step, the gradient 

echo is frequency-encoded during the readout period, generating a Cartesian sampling pattern.  

 

For Cartesian MRI, the Fast Fourier Transform (FFT) algorithm is the most efficient digital 

implementation for transformation between k-space and image space. The k-space consists of 

equally-spaced points or lines on a rectilinear grid. Cartesian sampling is the most robust sampling 

strategy for dealing with several sources of system imperfections, such as off-resonance and eddy 

currents. However, it is highly sensitive to motion during the acquisition process. 

 Non-Cartesian Sampling 

More recent MRI and MRSI techniques have made use of k-space trajectories that do not 

follow sampling patterns constrained on a rectilinear grid. In these cases, the imaging gradients 

are modified to traverse a curvilinear path that has several advantages over the more standard 

Cartesian trajectory. One of the main benefits of non-Cartesian trajectories is that the k-space can 

be sampled much faster, such as spiral MRI/MRSI which is able to sample the entire k-space in 

one shot without blipped gradients. Another benefit is the reduced gradient slew rates for curved 

paths with allows the use of larger gradient amplitudes for high resolution imaging, for example. 
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The faster k-space speed and lower slew rate demands of non-Cartesian trajectories are particularly 

important for MRSI because they allow a larger spectral width to be acquired for the same imaging 

parameters of a Cartesian acquisitions. Another advantage is that certain trajectories can more 

densely sample the central, low spatial frequency k-space points which are the most important for 

the low resolution imaging of MRSI and for retention of high SNR signal. Lastly, the repeated 

traversal of the central k-space for some trajectories such as spiral, radial, and rosette allows for 

averaging out the effect of motion-induced phase inconsistencies, making the acquisition more 

motion robust compared with the Cartesian case. Figure 2-8 shows the basic 2D k-space Cartesian 

and non-Cartesian trajectories that are common in MRSI applications. Further information on 

accelerated MRSI using various non-Cartesian trajectories can be found in the review article in 

Reference 1.  

 

Figure 2-7: Several basic two-dimensional k-space sampling patterns using Cartesian and non-

Cartesian trajectories.  
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 Radial Sampling 

 Two-dimensional Radial Acquisitions 

Radial k-space acquisitions were the first to be implemented for magnetic resonance imaging. 

The projection reconstruction method previously developed for computed tomography is also 

applicable to radial MRI acquisitions, since according to the projection-slice theorem, or the 

Fourier-Radon theorem, the Fourier transform of a spatial projection of an object taken at an angle 

𝜃,  𝑃𝜃(𝑟), is the k-space data 𝑀̂(𝑘𝑟 , 𝜃) for the radial spoke at that angle.  

ℱ( 𝑃𝜃(𝑟)) =  𝑀̂(𝑘𝑟 , 𝜃) (2-29) 

For MRSI, the most practical and time-efficient sampling approach is to acquire “full” radial 

spokes in k-space, which extend across an entire k-space diameter from -𝑘𝑟,𝑚𝑎𝑥 to 𝑘𝑟,𝑚𝑎𝑥, rather 

than half-spokes, which start at the origin and sample up to 𝑘𝑟,𝑚𝑎𝑥. Two common types of radial 

k-space sampling patterns for 2D acquisitions are: the golden angle and the uniform angle 

distributions. For the golden angle distribution, each successive spoke 𝑀̂(𝑘𝑟 , 𝜃𝑛) is sampled with 

the projection angle 𝜃𝑛 (𝑛 = 1, 2, …𝑁𝑝) given by  

𝜃𝑛 = 𝜃𝑛−1 + 111.25° (2-30) 

The starting angle 𝜃1 can be chosen to be any value, and a total of 𝑁𝑝 spokes are acquired. Golden 

angle distributions have the property that the k-space plane is covered as uniformly as possible for 

any contiguous subset of the 𝑁𝑝 spokes. Therefore, the golden angle distribution has the advantage 

that a set of spokes can be retrospectively binned or removed in order to select a specific 

acquisition period or to discard corrupted data. However, if the number of spokes in the golden 

angle acquisition is not a Fibonacci number, there will be sets of spokes that are separated by large 
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angular increments relative to other subsets of spokes, which could lead to more coherent aliasing 

artifacts.  

For the uniform angular distribution, the spokes are evenly spaced at an angular increment given 

by  ∆𝜃 =
180°

𝑁𝑝
, so that successive spokes are sampled with projection angles given by  

𝜃𝑛 = 𝜃𝑛−1 +
180°

𝑁𝑝
 (2-31) 

The net readout gradient amplitude 𝐺(𝑡) for full-spoke radial acquisitions in the 2D 𝑘𝑥 − 𝑘𝑦 plane 

is the same as for Cartesian acquisition with otherwise identical imaging parameters, except that 

the amplitude is modulated sinusoidally along the 𝐺𝑥 and 𝐺𝑦 axes as follows 

𝐺𝑥(𝑡) = 𝐺(𝑡) cos 𝜃 

𝐺𝑦(𝑡) = 𝐺(𝑡) sin 𝜃 

(2-32) 

where 𝜃 is the spoke angle. The maximum radius 𝑘𝑟,𝑚𝑎𝑥 is the same as the maximum extent in 

Cartesian space along the readout dimension, i.e., 𝑘𝑟,𝑚𝑎𝑥 = 𝑘𝑚𝑎𝑥 = 
1

2∆𝑥
, where ∆𝑥 =

𝐿

𝑁
. The 

radial acquisitions assume a circular field of view with diameter 𝐿. If the matrix size is 𝑁 × 𝑁 then 

the number of spokes required to satisfy the Nyquist criterion ∆𝑘 =
1

𝐿
 at the k-space edge is 

𝑁𝑝 = 
𝜋

2
𝑁 (2-33) 

Hence, more radial spokes are needed than Cartesian phase-encoding lines to sample an 𝑁 × 𝑁 k-

space matrix. In this sense, radial sampling is less efficient than Cartesian sampling. One of the 

main advantages of radial sampling is that the spoke repeatedly traverses the central k-space region. 
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This property causes the resulting imaging to be more robust to motion artifacts, as the phase 

inconsistencies are averaged over every direction in the k-space, in contrast to motion during 

Cartesian acquisition which causes severe artifacts predominantly along the phase encoding 

direction.  

 

Figure 2-8: (A) An undersampled golden angle distribution of 21 radial spokes for encoding a 32 

× 32 matrix (B) An undersampled uniform angular distribution of 21 spokes for encoding a 32 × 

32 matrix (C) Readout gradients for encoding the x-y plane along radial spoke at angle θ. 

 

 Three-dimensional (Kooshball) Radial Acquisitions 

In contrast to 2D-based acquisitions in which only the in-plane dimensions (x, y) are 

frequency-encoded with radial spokes in k-space, and the through-plane dimension (z) is phase-

encoded, all three spatial dimensions can be frequency-encoded with radial spokes that extend 

through the 3D volumetric k-space - (kx, ky, kz).  In this case, the radial spokes comprise a 
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“kooshball” distribution centered at the k-space origin. Using spherical coordinates, in which the 

polar angle is φ and the azimuthal angle is θ, the necessary gradients to sample data along a spoke 

with angular coordinates (θ, φ) are given by6 

𝐺𝑥(𝑡) = 𝐺(𝑡) cos 𝜃 sin𝜑 
𝐺𝑦(𝑡) = 𝐺(𝑡) sin 𝜃 sin𝜑 

𝐺𝑧(𝑡) = 𝐺(𝑡) cos𝜑 
0 ≤  𝜃 ≤ 2𝜋, 0 ≤  𝜑 ≤  𝜋  

(2-34) 

The function 𝐺(𝑡) is most simply expressed when encoding for an isotropic field-of-view, in 

which case the magnitude of 𝐺⃑(𝑡) = 〈𝐺𝑥(𝑡), 𝐺𝑦(𝑡), 𝐺𝑧(𝑡)〉 is found in the same manner as 

described above for 2D acquisitions of a square field-of-view. This type of k-space sampling is 

only appropriate for three-dimensional volume-selective sequences. The spoke distribution can be 

uniformly distributed, in which the angles θ and φ are incremented from 0 to 2π and from 0 to π, 

respectively.  More practically, the kooshball acquisitions can be done in a manner similar to a 

golden-angle 2D distribution, in which specific sets of angles are sampled such that the 3D k-space 

is covered as much as possible for any given number of spokes. This type of kooshball sampling 

can be accomplished by finding the angles (θ, φ) according to the spiral phyllotaxis formula 

 𝜃𝑞 = 
2𝜋

360
∙ 137.51° ∙ 𝑞 

𝜑𝑞 = 
𝜋

2
∙ √

𝑞

𝑃
 

(2-35) 

where q is the qth spoke and P is the total number of spokes. An example of this distribution is 

shown below, where the endpoints of the spokes are indicated across the outer surface of the 

spherical k-space boundary.  
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Figure 2-9: The distribution of the end points 

of spokes around the spherical surface 

defining the extent of the k-space Kooshball 

encoding volume. This distribution 

corresponds to the spiral phyllotaxis pattern.  

 

 

 

 

 

For a fully-sampled 3D radial acquisition of a 𝑁 × 𝑁 × 𝑁 matrix for encoding an isotropic field 

of view of length L, the required Nyquist number of spokes Ps is 

𝑃𝑠 = 4𝜋(𝑘𝑚𝑎𝑥 ∙ 𝐿)2 (2-36) 

This number is greater by a factor of π compared to a fully-sampled Cartesian acquisition of the 

same volume and matrix size. Therefore, Kooshball acquisitions usually must be undersampled 

for practical applications, limiting their use for only special cases such as low-resolution 3D 31P 

spectroscopic imaging.  

 Stack-of-Stars Radial Acquisitions 

This type of acquisition for a 3D volume is a hybrid between radial and Cartesian encoding, 

where the in-plane dimensions a frequency-encoded using radial spokes, and the through-plane 

dimensions are phase-encoded as in a conventional Cartesian acquisition. Unlike for Kooshball 

radial acquisitions, stack-of-stars is compatible with both slice-selective and volume or slab-

selective excitations. In the slice-selective case, no phase-encoding along the slice dimension is 
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applied, although the end result is a still a hybrid (kx, ky, z) space where the radial spokes are 

stacked in the z direction. With volume-selective excitations, the spokes in the kx-ky dimensions 

are acquired for each phase-encoded along kz.   

 

Figure 2-10: Example of a stack-of-stars sampling pattern in kx-ky-kz. For MRSI, this pattern must 

be acquired for each dwell time along the spectrally-encoded (time) dimension.  

The pulse sequence is a simple modification of the one for 2D radial MRSI, as only an extra 

phase-encoding gradient along the through-plane dimension is needed to encode the 3D space. For 

practical applications in MRSI, undersampling would usually need to be implemented both along 

the kx-ky and the kz dimensions to reduce the total scan time. This can be accomplished by skipping 

phase-encoding steps along kz and by acquiring few spokes in kx-ky.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11: (A) Pulse sequence showing radial sampling along the kx-ky dimensions and 

undersampling along the phase encoding in kz, generating an undersampled stack-of-stars k-space 
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where the number of spokes in the kx-ky dimension is also undersampled. This type of sampling 

would require a non-linear reconstruction along all dimensions to recover the fully-sampled space. 

 

  Basics of Magnetic Resonance Spectroscopy and Spectroscopic Imaging 

 Chemical Shift 

Magnetic resonance spectroscopy (MRS) is a non-invasive technique that can probe the 

chemical composition of tissues in vivo. Most clinical MRS measures signals from 1H which have 

sufficient concentration for the signal to have enough detectable SNR. The fundamental property 

of chemical shift is exploited to resolve the signal into its constituent chemical components. The 

hydrogen atoms within a given molecule experience a shielding from the main magnetic field 𝐵0 

due to the surrounding electron configurations which are particular to that molecule. If the 

shielding constant is 𝜎, then the local magnetic field strength experienced by the proton (assuming 

no other gradients applied) is7 

𝑩𝑙𝑜𝑐𝑎𝑙 = 𝑩0(1 − 𝜎)  (2-37) 

Therefore, its modified Larmor frequency is  

𝜔 = 𝜔0(1 − 𝜎)  (2-38) 

This shift in frequency is referred to as the chemical shift, denoted by 𝛿 , and it is defined 

independent of the magnetic field strength as  

𝛿 =  
𝜔 − 𝜔𝑟𝑒𝑓 

𝜔𝑟𝑒𝑓
 (2-39) 

where the unit of chemical shift is ppm (parts per million). The reference frequency 𝜔𝑟𝑒𝑓  is 

generally taken to be the frequency of chemically inert substance such as water in vivo (4.7 ppm), 

or tetramethylsilane (TMS) in phantom.  
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 Single Voxel Spectroscopy (SVS) 

The signal within a voxel S(t) is generated by a volumetric excitation followed by a readout 

period to sample the signal. At 3T, the spectral width 𝑆𝑊  necessary to resolve individual 

metabolite signals over a range of 9ppm, without spectral aliasing, is approximately 1190 Hz. The 

spectral width determines the spectral dwell time ∆𝜏 =  
1

𝑆𝑊
.  The time-domain signal S(t), which 

is sampled after the volumetric excitation, can be modeled as the discrete summation 

𝑆(𝑡) =  𝑆(𝑛∆𝜏) =  ∑ 𝐴𝑘𝑒
𝑖𝜑𝑘

𝐾

𝑘=1

𝑒𝑖2𝜋𝑓𝑘∙(𝑛∆𝜏) (2-40) 

where K is the total number of underlying frequencies in the FID (free induction decay) signal and 

n = 0, 1, …, N-1, where N is the total number of sampled time points. This model assumes that 

there are K underlying chemical components each with corresponding a magnitude 𝐴𝑘, phase 𝜑𝑘, 

and frequency 𝑓𝑘, although the effect of J-coupling is not adequately considered in Equation 2-40.  

 

Figure 2-12: A single-voxel volume-of-interest in the frontal lobe of the brain and the 

corresponding (idealized) time signal S(t) and resulting spectrum F(ω) after Fourier transformation.  

 

 All pulse sequences for 1H spectroscopy in vivo require some form of water suppression, either 

by incorporating a water suppression module before excitation or by advanced post-processing 

and acquisition methods. The reduction or elimination of the water signal is necessary in order to 
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adequately resolve the signals near the water peak and to reduce the dynamic range of the signal 

since the water peak can be as much as 1000 times greater than the metabolite peaks. A common 

water suppression technique is called WET (water suppression enhanced through T1 effects), 

which uses three RF pulses tuned to the water frequency combined with spoiler gradients to 

dephase the magnetization such that the longitudinal component of water is nulled by the time of 

excitation. 

 The two most common SVS techniques are PRESS and STEAM.  The PRESS pulse sequence 

consists of one selective 90° excitation pulse along 𝑥, followed by two selective 180° refocusing 

pulses along y and z, to generate a spin echo. If the period between the 90° pulse and the first 180° 

pulse is 𝜏, then the first echo time (TE1) is generated a period 𝜏 after the first refocusing pulse. The 

spin echo signal sampled at the second echo time (TE2), which depends on the temporal separation 

between TE1 and the second 180° pulse.  Each individual RF pulse in the PRESS localization 

selects planes whose intersection is the volume of interest (VOI).  

 The STEAM sequence starts with a selective 90° excitation pulse followed by another two 

selective 90° pulses, to generate a stimulated echo. This sequence consists of two periods – the 

mixing time (TM) and the TE. The TM time is between the second and third 90° pulses and it is a 

period during which the transverse magnetization that was produced by the excitation pulse is 

converted to longitudinal magnetization and undergoes further signal preparation (e.g, T1-

weigthing, diffusion, or chemical exchange saturation transfer) before the start of the third 90° 

pulses. If the period between the excitation pulse and the second 90° pulse is 𝜏, then the TE is time 

𝜏 after the last 90° pulse. Generally, one advantage of STEAM is that the TE can be made very 
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short relative to PRESS-based sequences. However, the signal generated by STEAM has been 

shown to have a sensitivity one-half that of the signal generated by PRESS.  

 

Figure 2-13: Pulse sequence schematic for single-voxel PRESS localization of a volume-of-

interest. The action of the three spatially-selective RF pulses results in a volume being selected 

from the intersection of the three planes. The free induction decay (FID) signal from this volume 

is then read out during the analog-to-digital (ADC) sampling period.  

 

Due to the localization and crusher gradients, eddy currents are generated which affect the 

phase and amplitude of the FID, distorting and decreasing the signal intensity of the spectra. An 

effective way to correct for this eddy-current induced phase error is to acquire a separate scan 

without water suppression.  Without water suppression, the water signal is dominant and captures 

the phase induced by eddy currents. If the receiver is set to the water resonance, then the water 

signal can be modeled as 𝑆𝑤(𝑡) = 𝐴𝑒𝑖𝜑𝑒𝑑𝑑𝑦(𝑡), where 𝐴 is the amplitude and 𝜑𝑒𝑑𝑑𝑦(𝑡) contains 

the temporal phase effects from eddy currents. After measuring the water suppressed signal 𝑆(𝑡), 

the corrected signal 𝑆𝑐𝑜𝑟𝑟(𝑡) is found by subtracting the phase 𝜑𝑒𝑑𝑑𝑦(𝑡) from the phase of 𝑆(𝑡) as 

follows: 𝑆𝑐𝑜𝑟𝑟(𝑡) =  𝑆(𝑡)𝑒−𝑖𝜑𝑒𝑑𝑑𝑦(𝑡).  
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All pulse sequences that use RF pulses combined with slice or slab selective gradients for 

localization suffer from chemical shift displacement error (CSDE). Considering the localization 

along the x dimension, when a gradient of constant amplitude G is on, the precessional frequency 

as a function of 𝑥 is  

𝜔(𝑥) =  𝜔0 +  𝛾𝐺𝑥 (2-41) 

Where 𝜔0 =  𝛾𝐵0 is the Larmor frequency. An RF pulse with carrier frequency 𝜔𝑅𝐹  will then 

select a slice centered at 𝑥′ given by  

𝑥′ =  
𝜔𝑅𝐹 − 𝜔0

𝛾𝐺
 (2-42) 

However, if the sample also has spins with precessional frequency 𝜔0 + ∆𝜔, then for this set of 

spins, the RF pulses selects a slice that is offset by 

∆𝑥 =  −
∆𝜔

𝛾𝐺
=  

∆𝜔

𝐵𝑊𝑅𝐹
𝑉𝑥  (2-43) 

relative to the spins with precessional frequencies at 𝜔0.  The same offset can be expressed in 

terms of the bandwidth of the RF pulse, 𝐵𝑊𝑅𝐹 , and the selected voxel dimension along the 𝑥 axis, 

𝑉𝑥. As a result, the generated signal from each metabolite actually originates from different, non-

overlapping spatial locations. The only way to reduce this effect is to increase the RF bandwidth, 

which becomes more challenging at higher fields where the frequency dispersion among 

metabolites also increases.  
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Figure 2-14: Illustration of the relative shift in 

spatial selection between two species – water and 

N-acetyl aspartate (NAA) – with different chemical 

shifts of 4.7 and 2.01 ppm, respectively. The same 

RF pulse bandwidth selects for water and NAA 

signal from different spatial locations.  

 

  

 

The CSDE problem can be minimized by implementing RF pulses that are insensitive to chemical 

shift. One class of such pulses are incorporated in MRS sequences that use localization by adiabatic 

selective refocusing (LASER). In these sequences, adiabatic half passage (AHP) pulses are used 

for excitation, and adiabatic full passage (AFP) pulses are used for refocusing. The semi-LASER 

variants do not use an AHP pulse for excitation. These sequences are also insensitive to 

inhomogeneities in the 𝐵1 field, although one of their limitations is that the RF durations are longer 

and the specific absorption rate (SAR) is higher, causing more energy deposition in tissues.  

 Brain Metabolites 

The major detectable brain metabolites are Choline (Cho), Creatine (Cr), Glutamate (Glu), 

Glutamine (Gln), γ-aminobutyric acid (GABA), myo-inositol (mI), scyllo-inositol (sI), Lactate 

(Lac), and N-acetyl aspartate (NAA). At 3T, the frequency separation between glutamine and 

glutamate is insufficient to differentiate these metabolites, since there is significant overlap in their 

peaks. For this reason, the combination Glx = Glu + Gln is usually reported at lower field strengths. 

The signal-to-noise level of the metabolite signal is directly proportional to the concentration, so 

metabolites that have lower concentration levels such as γ-aminobutyric acid (GABA) are usually 

not able to be reliably estimated with one-dimensional MRS. 
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Figure 2-15: Typical 1H spectrum at high field (7T) showing the common metabolites found in the 

human brain.  

 

Choline 

Choline compounds include three main subgroups: glycerophosphorylcholine (GPC), 

phosphorylcholine (PCh) and free choline (Cho). Total choline (tCho) refers to the sum of these 

three subgroups and it is often reported when the individual components are estimated with 

insufficient reliability, which may happen at long echo times or when the signal-to-noise ratio is 

low. The largest Cho peak is located at a chemical shift 3.2 ppm. This metabolite is associated 

with the cell-membrane as it is a main component of the phospholipid bilayer. The tCho level can 

be a good indicator of various underlying pathologies, particularly cancer, where the tCho 

concentration becomes extremely elevated compared to healthy tissues.  

Creatine 

Creatine compounds include two major subgroups: creatine and phosphocreatine (PCr). The 

addition of these two subgroups is referred to as tCr. The largest Cr peaks are those found at 

chemical shifts of 3ppm and 3.9ppm. Creatine plays a key role in the energy production and 
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metabolism of the cell. Generally, the creatine concentration is relatively stable across different 

brain tissue types, and is therefore used as an internal reference signal with respect to which various 

metabolite ratios are calculated. The singlet peak at 3.9ppm is near water at 4.7ppm so that it can 

be affected by ineffective water suppression. In some pathologies, the Cr level may also change 

so the summation of Cr and tCho may be used as an alternative internal reference signal for 

computing metabolite ratios.  

Glutamate and Glutamine 

Glutamate is one of the main brain neurotransmitters and its concentration can be altered in various 

pathologies. Glutamine is a precursor molecule for glutamate and both Glu and Gln are stored in 

neurons. The Glu functions in the extracellular synapse environment for inducing neuronal 

impulses, and it is converted back to Gln in glial cells before it can be used again for the neuronal 

signaling process, during which it converts to Glu. Both Glu and Gln have very similar chemical 

structures and have significant spectral overlap in the regions at 2.2-2.5ppm and at 3.7ppm, making 

it difficult to distinguish using 1D MRS techniques, especially at lower field strengths. For most 

pathologies, Glu plays a more dominant role. 

γ-aminobutyric acid (GABA) 

GABA is an inhibitory neurotransmitter and plays a role in psychiatric disorders and other 

pathologies such as sleep apnea. It is a relatively low-concentration metabolite and has three main 

sets of multiplets centered at 1.9ppm, 2.3ppm, and 3.0ppm, which overlap with the peaks from 

other, more highly-concentrated metabolites. Therefore, GABA is very difficult to accurately 

quantify, and more sophisticated, specialized techniques such as spectral editing and two-

dimensional spectroscopy have been applied to improve GABA estimation.  
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Inositol 

Inositol compounds have two main subgroups: myo-inositol (mI) and scyllo-inositol (sI). The less 

abundant form of inositol is sI. Myo-inositol has multiplets within 3.4-3.6ppm, as well as peaks at 

3.2 and 4.1ppm, while sI appears as a single peak at 3.35ppm. Both compounds play a role in 

energy storage and in aiding cell growth, and therefore they can be markers of pathological changes 

in brain tissues.  

Lactate  

Lactate (Lac), also known as lactic acid, consists of a characteristic doublet at 1.3ppm and a 

multiplet at 4.1ppm. Lactate is the final form of energy within the anaerobic metabolic pathway, 

in which oxygen is lacking. The amount of Lac greatly increases in oxygen-starved tissues found 

in certain cancers and brain tumors, so this metabolite is used a marker for pathologies that induce 

hypoxic conditions.  

N-acetyl aspartate 

N-acetyl aspartate (NAA) is largely localized in neurons and is a marker of neuronal integrity and 

viability. It is a hydrolysis product of the related compound N-acetyl aspartyl glutamate (NAAG), 

which is involved in modulating the release of glutamate. Both metabolites have very similar 

chemical structure and the addition of these two (NAA+NAAG) is referred to as tNAA. In the 

brain, NAA has a very prominent singlet at 2.0ppm and multiplets in the ranges 2.5-2.8ppm and 

4.3-4.4ppm, and it is one of the most reliably quantifiable metabolites due to its strong singlet at 

2.0ppm.    

Other metabolites 
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There is a list of many other metabolites that are involved in the structural and functional 

characteristics in brain tissue whose specific roles are not as clearly defined and whose 

concentrations are not to the levels necessary for consistent detection and estimation. Certain 

metabolites such as glutathione (GSH) also happen to have its peaks overlapped with those from 

multiple major metabolites such as Cr, Glu and Gln. However, these minor metabolites are also of 

interest and are generally included (depending on the tissue of interest) in MRS quantitation 

algorithms such as LC Model. This list includes: alanine (Ala), ascorbic acid (Asc), aspartate (Asp), 

glucose (Glc), glycine (Glyc), phosphoethanolamine (PE), taurine (Tau), and threonine (Thr).  

 Chemical Shift Imaging/MR Spectroscopic Imaging 

Magnetic resonance spectroscopic imaging (MRSI) uses spatial-encoding to resolve 

multiple voxel locations within a volume-of-interest (VOI). The excitation may be slice-selective 

or may use a volumetric excitation scheme, such as PRESS or STEAM. Conventional MRSI 

methods use phase-encoding to spatially-resolve one FID per voxel. For 2D or 3D spatial encoding 

the number of phase-encoding steps is equal to the prescribed matrix size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧. Hence, 

the acquisition time may be quite long, depending on the TR. Some variants of phase-encoded 

MRSI use elliptical encoding schemes to avoid sampling at the corners of k-space, since the loss 

of this high spatial frequency information is not impactful due to the relatively low resolutions of 

MRSI. Typical in-plane matrix sizes range from 12 × 12 to 32 × 32, and for 3D acquisitions, the 

number of through plane points can range from 4 to 12, with FOV’s ranging from 120 – 320 mm 

in each dimension, depending on the anatomy of interest.  

For 3D chemical shift imaging, suppose the FOV’s along the 𝑥, 𝑦, and 𝑧 dimensions are 

𝐿𝑥, 𝐿𝑥, and 𝐿𝑥. Then the corresponding k-space sampling increments along these dimensions are 
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∆𝑘𝑥 = 
1

𝐿𝑥
, ∆𝑘𝑦 = 

1

𝐿𝑦
, and  ∆𝑘𝑧 = 

1

𝐿𝑧
. After the appropriate phase-encoding gradient steps ∆𝐺𝑥, 

∆𝐺𝑦, and ∆𝐺𝑧 are applied, the FID is modeled as 

𝑆(𝑡) = 𝑀̂(𝑛𝑥∆𝑘𝑥, 𝑛𝑦∆𝑘𝑦, 𝑛𝑧∆𝑘𝑧, 𝑡) = ∫𝑚(𝑥, 𝑦, 𝑧, 𝑓)𝑒−𝑖2𝜋(𝑛𝑥∆𝑘𝑥∙𝑥+ 𝑛𝑦∆𝑘𝑦∙𝑦+𝑛𝑧∆𝑘𝑧∙𝑧)𝑒𝑖2𝜋𝑓∙𝑡𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑓  (2-44) 

where 𝑓 =  
𝛾

2𝜋
𝜔  represents the temporal frequency (Hz) content within the volume. The number 

of phase-encoding steps along 𝑘𝑥 , 𝑘𝑦 , and 𝑘𝑧  are 𝑁𝑥 , 𝑁𝑦 , and 𝑁𝑧 , respectively. After Fourier 

transformation along the spatial and temporal dimensions, the resulting data 𝑚(𝑥, 𝑦, 𝑧, 𝑓) 

represents a spectrum for every coordinate in space. The acquisition time 𝑇𝑎𝑐𝑞 for conventional 

phase-encoded MRSI is  𝑇𝑎𝑐𝑞 =  𝑁𝑎𝑣𝑔 × 𝑇𝑅 × 𝑁𝑥  × 𝑁𝑦 × 𝑁𝑧, where 𝑁𝑎𝑣𝑔 is the total number of 

averages. In addition, a separate water scan must be acquired to perform eddy current phase 

correction on the FID’s from each spatial position.  

 

Figure 2-16: Pulse sequence schematic for a conventional chemical-shift imaging pulse sequence 

based on PRESS localization. After localization of the volume-of-interest with the three slice-

selective RF pulses, the signal is spatially-encoded sequentially along each spatial direction. 

Phase-encoding increments in Gx, Gy, and Gz are needed to generate a dataset with 3D spatial 

and 1D spectral dimensions. 
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 Echo Planar Spectroscopic Imaging (EPSI) 

In order to reduce the acquisition time for MRSI, spatial encoding can be interleaved with the 

temporal sampling of the signal. In the Cartesian case, assuming the readout direction is 𝑥, a 

bipolar gradient echo train 𝐺𝑥(𝑡) is played during which the signal is recorded as the sampling 

trajectory traverses a zig-zag pattern in the 𝑘𝑥 − 𝑡 plane. If the FOV along 𝑥 is 𝐿𝑥 and the matrix 

size is 𝑁𝑥, the spatial bandwidth that must be sampled to resolve this FOV is 2𝑘𝑚𝑎𝑥 = 
𝑁𝑥

𝐿𝑥
. As the 

signal is repeatedly sampled between −𝑘𝑚𝑎𝑥 and 𝑘𝑚𝑎𝑥 along each k-space line, the signal is also 

spectrally-encoded (via time) throughout the readout. Since one k-space dimension is 

simultaneously sampled with the time dimension, the scan time for EPSI is reduced by an order of 

magnitude. Compared to conventional 3D phase-encoded MRSI with the same imaging parameters 

(e.g, matrix size and TR), the scan time is reduced by a factor of 𝑁𝑥, i.e. 𝑇𝑎𝑐𝑞 =  𝑁𝑎𝑣𝑔 × 𝑇𝑅 ×

𝑁𝑦 × 𝑁𝑧. A water reference scan is also acquired for eddy current phase corrections, and the data 

sampled during the odd echoes along the readout gradient echo train must be time reversed with 

respect to the even echoes in order to correctly order them in the 𝑘𝑥 − 𝑡 plane.  

Figure 2-17: Pulse sequence schematic for a three-dimensional Cartesian echo-planar 

spectroscopic imaging sequence, with the bipolar gradient echo readout played on the Gx gradient 

axis and conventional phase encoding accomplished with the Gy and Gz gradients. Shown at right 
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is an illustration of the k-t trajectory created by the bipolar gradient echo train along Gx. The 

sampling in k-t approximates a zig-zag trajectory, and for simplicity the ADC samples the signal 

during the gradient plateaus where the k-space increment Δkx is constant.  

 

During the EPSI readout, spatial encoding is no longer decoupled from the spectral encoding of 

the signal, as it is for conventional phase-encoded MRSI. For a 2D EPSI acquisition, one of the 

spatial dimensions, say 𝑦 , is phase-encoded, while the 𝑥  and time dimensions are sampled 

throughout the gradient echo train. Recalling that 𝑘𝑥(𝑡) =  
𝛾

2𝜋
∫ 𝐺𝑥(𝜏)𝑑𝜏

𝑡

0
, the signal during the 

positive trapezoidal gradient plateaus (with constant amplitude 𝐺) can be represented as 

𝑆(𝑡) = 𝑀̂(𝑘𝑥(𝑡), 𝑛𝑦∆𝑘𝑦, 𝑡) = ∫𝑚(𝑥, 𝑦, 𝑓)𝑒−𝑖2𝜋𝑛𝑦∆𝑘𝑦∙𝑦𝑒𝑖(2𝜋𝑓+ 𝛾𝐺∙𝑥)∙𝑡𝑑𝑥𝑑𝑦𝑑𝑓  (2-45) 

Hence, besides the spatially-dependent phase distribution caused by the readout gradient 𝐺𝑥(𝑡) 

alone, there is additional phase accrual due to the chemical shifts (temporal frequencies 𝑓) from 

all metabolites within the sampled volume. This phase contribution leads to a broadening of the 

spatial point spread function, which can be corrected using the Fourier shift theorem.  

  Diffusion-weighted MR Spectroscopy 

 Diffusion 

Diffusion is characterized by the Brownian motion of molecules in a medium, driven my 

thermal energy. In a fluid medium with no restrictions and with homogenous composition, the 

mean square displacement of molecules increases linearly with time, that is, the mean square 

displacement in any single direction is a linear function of time 𝑡, with the diffusion coefficient, 

D, acting as the proportionality constant:  

〈(𝑟 − 𝑟0)
2〉 = 2𝐷𝑡 (2-46) 
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where 𝑟 and 𝑟0 are the final and initial positions of the molecule. For unrestricted (free) diffusion, 

the diffusion coefficient depends on the temperature and viscosity of the medium as follows: 

𝐷 = 
𝑘𝐵𝑇

6𝜋𝜂𝑅𝐻
 (2-47) 

where 𝑘𝐵  is the Boltzmann constant, 𝑇  is the temperature, 𝜂  is the viscosity and 𝑅𝐻  is the 

molecular hydrodynamic radius. In the case of free diffusion, the displacement of molecules is 

isotropic, that is, there is no preferred diffusion direction, and the diffusion is referred to as 

Gaussian. However, in vivo, water and metabolite molecules encounter restrictive structural 

environments within tissues, including cellular obstacles (walls and organelles) and fibers 

organized along a particular direction, which constrain the motion of particles. In this case, the 

diffusion is anisotropic and the diffusion coefficient is spatially-dependent on the direction in 

which the molecular motion is measured. The effective diffusion coefficient that is measured, 

called the apparent diffusion coefficient (ADC), essentially reflects the average of the diffusion 

coefficients D measured in all directions. This ADC value for a given metabolite is dependent on 

both the inherent diffusion properties of the metabolite molecule and on the surrounding 

environmental influences on its diffusion.  

 Diffusion-weighting, the diffusion tensor and the b-matrix 

The MR signal can be diffusion-weighted by including diffusion-sensitizing gradients within 

a given pulse sequence. With either a spin echo- or a gradient echo-based sequence, the resulting 

signal reflects the amount of gradient-induced phase dispersion that cannot be refocused due to the 

underlying molecular diffusion in the tissue of interest. For example, in the spin echo case, two 

gradients of the same polarity straddle the refocusing pulse. The first gradient (prior to the 180° 

RF pulse) causes a net phase dispersion across the excited volume in the direction of the applied 
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gradient. After the 180 pulse, a second gradient of equal amplitude and duration is played, which 

is meant to refocus the phase dispersion caused by the first gradient, except that non-stationary 

spins undergoing diffusion will have acquired an additional phase accrual due to their motion, 

which cannot be refocused. The un-refocused phase decreases the measured signal intensity as 

follows:  

𝑆(𝑏) = 𝑆(0)𝑒−𝑏𝐷𝑖 (2-48) 

where b is the b-value, 𝐷𝑖 is the diffusion coefficient for the direction 𝑖 specified by the diffusion-

sensitizing gradient and 𝑆(0) is the signal without diffusion-weighting. The b-value is a user-

controlled diffusion-weighting factor which depends on the sequence timing and the diffusion-

sensitizing gradient parameters. It is typically reported in units of 𝑠 𝑚𝑚2⁄ , while the diffusion 

coefficient is most conveniently reported in units of  𝜇𝑚2 𝑚𝑠⁄ . The total b-value is derived from 

the b-matrix and is taken to be the sum of the diagonal entries of this matrix, in practice. In general, 

the b-matrix is defined as  

𝒃 =  ∫ (∫ 𝐺⃑(𝑡′)𝑑𝑡′
𝑡

0

)
𝑇𝐸

0

⨂ (∫ 𝐺⃑(𝑡′)𝑑𝑡′
𝑡

0

)𝑑𝑡 (2-49) 

where ⨂  is the outer product operation and 𝐺⃑(𝑡) = (𝐺𝑥(𝑡), 𝐺𝑦(𝑡), 𝐺𝑧(𝑡) )  is a vector that 

represents the time-varying gradients played along all axes in the pulse sequence before the echo 

time 𝑇𝐸. The signal attenuation is generally given by 

ln (
𝑆(𝑡)

𝑆(0)
) =  −∑𝒃𝛼𝛽𝑫𝛼𝛽

𝛼,𝛽

           (𝛼, 𝛽 ∈ {𝑥, 𝑦, 𝑧}) (2-50) 

where 𝑫 is the diffusion tensor, which provides information regarding the directionality of the 

diffusion within the probed voxel. The diffusion tensor is a symmetric 3 × 3 matrix, written as 
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𝑫 = (

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

) (2-51) 

and its estimation requires at least separate measurements along 6 distinct diffusion directions. The 

diffusion tensor provides several diffusion metrics such as the mean diffusivity (MD), axial 

diffusivity (AD), radial diffusivity (RD), and the fractional anisotropy. The MD is also known as 

the trace of the diffusion tensor or the trace ADC. The trace ADC is a rotationally invariant quantity 

and therefore is theoretically the same regardless of the coordinate system {𝑥′, 𝑦′, 𝑧′} assumed for 

representing the diffusion tensor.   

 Diffusion-weighted MRS using the PRESS sequence 

The MR signal can be diffusion-weighted by including diffusion-sensitizing gradients in the 

PRESS pulse sequence. Two primary examples of diffusion-weighting PRESS-based sequences 

are those with unipolar and bipolar gradient configurations. In the unipolar case, two gradients of 

the same polarity are placed a time Δ apart, on either side of one of the 180° refocusing pulses. For 

simplicity, these gradients are assumed to be rectangular and each of duration 𝛿. If the gradient 

amplitude along a gradient axis is 𝑔𝑑, then the b-value, neglecting all localization and crusher 

gradients, is given by 

𝑏 = 𝛾2𝑔𝑑
2𝛿2 (Δ −

𝛿

3
) (2-52) 

In the bipolar case, two sets of bipolar gradient pairs are placed within the sequence, with each 

pair centered around the two refocusing pulses.  In this case, the gradient duration is defined as 
𝛿

2
 

and the b-value is given by (again, excluding localization and crusher gradients) 
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𝑏 = 𝛾2𝑔𝑑
2𝛿2 (Δ −

𝛿

3
−

𝜏

2
) (2-53) 

where 𝜏  is the separation between the bipolar gradients within one pair. More on diffusion-

weighted PRESS is explained in greater detail in subsequent chapters.  

Figure 2-18: (A) Pulse sequence schematic 

for a PRESS sequence with Unipolar 

arrangement of diffusion-sensitizing 

gradients. The gradient amplitude gd, the 

duration δ, and the separation Δ determine 

the b-value. (B) Another PRESS-based 

sequence with a Bipolar arrangement of 

diffusion-sensitizing gradients. The time 

between gradients around each refocusing 

pulse, τ, is taken into consideration when 

computing the b-value for this sequence.  

 

 

The diffusion time 𝑡𝑑 is an important parameter for any diffusion-weighted pulse sequence, 

and it is the effective amount of time that the molecules are allowed to diffuse during the 

measurement. For long 𝑡𝑑, intracellular molecules have enough time to reach and bounce off of 

the cellular walls, whereas for short 𝑡𝑑, the effects of restriction are reduced since the molecules 

have had less time to encounter barriers to its diffusion. Therefore, at long 𝑡𝑑, the ADC appears to 

be lower than the ADC measured with short 𝑡𝑑, since at short 𝑡𝑑 the molecular diffusion more 

closely approximates free diffusion, where the motion is purely random and causes a maximum 

degree of phase incoherence and a larger mean square displacement.  

Since most metabolites of interest are almost exclusively located within the intracellular 

environment, metabolite diffusion is highly restricted. Consequently, higher b-values are needed 
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to observe an adequate signal attenuation due to diffusion. In most cases, b-value greater than 

approximately 1,500 s/mm2 have been used in most DW-MRS reports. However, the choice of b-

value must also consider the dependence of the apparent diffusion coefficient on the diffusion time. 

As mentioned earlier, a short 𝑡𝑑 leads to larger estimates of the ADC, so that relatively lower b-

values are needed to reach the same level of signal attenuation as DW-MRS acquisitions that use 

higher b-values with longer 𝑡𝑑’s.  

 In contrast to DW-MRI, which can only probe water diffusion, DW-MRS is able to provide 

information on the microstructure of tissues in pathological states, since metabolite diffusion is 

mostly intracellular and therefore reflects the underlying cellular structural changes due to disease. 

Non-diffusion-weighted MRS can only provide information relating metabolite concentration, so 

DW-MRS is a complementary tool for exploring other aspects of tissue-specific alterations that 

occur as a result of injury or pathology, such as changes in cell tortuosity or viscosity, cellular 

damage and breakdown, and interruptions in normal fluid flow and kinetics within and around the 

cellular environment.  

 

Figure 2-19: Example of diffusion-weighted spectra in the occipital gray matter in human brain in 

vivo. As the b-value increases, the signal intensity decreases due to greater diffusion-weighting. 
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The amount of diffusion-weighting and the corresponding signal attenuation also depends on the 

diffusion time td and the specific type of tissue being sampled.  

 

 At least two b-values are needed to solve for the ADC using the signal model in Equation 48. 

Due to the low SNR of metabolites, in addition to the further signal reduction caused by diffusion-

weighting, many averages are needed for measuring a signal with enough SNR, causing the 

acquisition time for DW-MRS experiments to be very long. Besides the long acquisition times, the 

post-processing of DW-MRS spectra requires careful phase and frequency drift corrective 

procedures in order to coherently add the signal averages. When acquiring in vivo measurements, 

it may also be necessary to incorporate cardiac triggering into the pulse sequence to avoid signals 

that may be overly corrupted by pulsatile motion, however, SNR-based thresholding techniques 

could also be applied to retrospectively remove spectra that suffer from too much SNR loss or 

distortion due to motion. Another limitation of DW-MRS is that relatively large voxel volumes 

(up to approximately 15 mL) are usually required in order to obtain enough SNR, compared to 

DW-MRI acquisitions. This limitation can make it challenging to study the diffusion of smaller 

regions of interest with volumes below approximately 0.5 mL without increased averaging or 

specialized methods to reduce noise.  

Currently, the long scan times and the challenging post-processing methods limit the 

clinical applicability of DW-MRS. So far, no consensus or standardization has been established in 

the DW-MRS community for data acquisition or post-processing. Up until now, single voxel DW-

MRS has been the most reliable approach for measuring the in vivo ADC’s from diffusion-

weighted spectra, in contrast to multi-voxel DW-MRSI spectroscopic imaging which encounters 

additional complications due to longer scan time requirements and increased susceptibility to 

motion-induced artifacts in the spatial encoding. 
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Chapter 3 Accelerated Radial Echo Planar Spectroscopic 

Imaging using Golden Angle View Ordering and Compressed 

Sensing Reconstruction with Total Variation Regularization  

 

  Abstract 

Purpose: To implement a novel, accelerated two-dimensional radial echo-planar 

spectroscopic imaging (REPSI) sequence using undersampled radial k-space trajectories and 

compressed sensing (CS) reconstruction, and to compare results with those from an undersampled 

Cartesian spectroscopic sequence.  

Methods: The REPSI sequence was implemented using golden-angle view-ordering on a 3T 

MRI scanner. Radial and Cartesian EPSI data were acquired at 6 acceleration factors (AF), each 

with time-equivalent scan durations, and reconstructed using compressed sensing with total 

variation regularization. Results from prospectively and retrospectively undersampled phantom 

and in vivo brain data were compared over estimated concentrations and Cramer-Rao lower bound 

(CRLB) values, normalized root mean square errors (nRMSE) of reconstructed metabolite maps, 

and percent absolute differences between fully-sampled and reconstructed spectroscopic images.  

Results: REPSI with CS is able to tolerate greater reductions in scan time compared to EPSI. 

The reconstruction and quantitation metrics – namely spectral nRMSE maps, metabolite map 

nRMSE values (e.g, for tNAA: REPSI – 9.4% vs. EPSI – 16.3% (AF = 2.5)), percent absolute 

difference maps, and concentration and CRLB estimates – showed that the scan time can be 

reduced by a factor of 2.5 while retaining image and quantitation quality.  
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Conclusion: Accelerated MRSI using undersampled radial echo-planar acquisitions provides 

greater reconstruction accuracy and more reliable quantitation for a range of acceleration factors 

compared to time-equivalent CS-reconstructions of undersampled Cartesian EPSI. Compared to 

the Cartesian approach, radial undersampling with CS could help reduce 2D spectroscopic imaging 

acquisition time, and offers a better trade-off between imaging speed and quality. 

 Introduction 

Magnetic resonance spectroscopic imaging (MRSI) is capable of providing metabolic 

information from multiple locations in biological tissues, allowing biochemical characterization 

of pathologies, and facilitating the diagnosing and monitoring of disease 8,9. One of the main 

challenges in MRSI is to shorten the data acquisition to clinically-feasible scan times without 

compromising spectroscopic image quality. Conventional MRSI methods require long scan 

durations due to the sequential phase-encoding of each spatial dimension prior to spectral encoding 

10. More advanced MRSI techniques based on echo-planar k-space trajectories significantly reduce 

the scan time by interleaving the collection of the spatial-spectral data 11. Apart from rectilinear or 

Cartesian trajectories, non-Cartesian echo-planar acquisitions using spirals, rosettes, and 

concentric circles have also been applied for efficient and fast MRSI 12–16, and these offer 

advantages relative to Cartesian approaches including lower gradient-slew rate demands, greater 

sampling efficiency, and increased robustness to phase errors caused by motion. 

Radial k-space sampling techniques have gained widespread use in MRI due to their 

relatively decreased sensitivity to motion-related artifacts, inherent SNR advantage, and great 

potential for high acceleration 17,18. Recently in MRSI, radial trajectories were applied for 

hyperpolarized 13C imaging due to their repeated traversal of the central k-space, which enhances 
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the capture of the short-lived image contrast 19. Three-dimensional radial acquisitions were used 

for high-field 31P in vivo spectroscopic imaging to benefit from the higher signal-to-noise per unit 

time that radial sampling offers 20. Most recently, radial sampling was implemented for 1H 

diffusion-weighted MRSI 21. However, to date, the application of radial sampling for 1H MRSI 

remains relatively unexplored 1. Furthermore, the potential of accelerated acquisitions through 

radial undersampling and compressed sensing (CS) reconstruction is proven in the MRI field, but 

has yet to be demonstrated in 1H MRSI.  

In general, radial k-space undersampling is well-suited for CS reconstruction since it 

largely avoids dominantly coherent artifacts in the image domain, in contrast to Cartesian k-space 

undersampling. Unlike in the Cartesian case, the aliasing artifacts from radial undersampling are 

much less pronounced and more noise-like. This property of radial undersampling more closely 

meets the condition that the k-space undersampling pattern produce incoherent noise-like artifacts 

in the image domain, which is prerequisite for effective CS 22. Additionally, the high central k-

space density of radial acquisitions can improve CS reconstructions of the low spatial frequency 

components of the image, which is particularly advantageous due to the relatively low spatial 

resolutions that are usually acquired in MRSI. For radial undersampling, the golden-angle (GA) 

view ordering scheme is ideal since it continuously increments the angle of the radial views, or 

spokes, by 111.25° throughout the acquisition period, such that the k-space is covered as uniformly 

as possible for any given number of spokes 22,23. The combination of radial GA undersampling and 

CS reconstruction has produced diagnostic-quality images from highly undersampled data in 

various accelerated MRI applications, especially dynamic imaging 24,25. One of the most widely-

used sparsity-promoting transforms in CS reconstructions from undersampled radial data is the 
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total variation 26,27. This transform has led to good results in various Cartesian-based accelerated 

MRSI methods as well 28,29.  

Previous studies in accelerated non-Cartesian MRSI have used undersampled spiral 

trajectories in combination with compressed sensing and parallel imaging, applying other types of 

regularization based on variants of L1/TV or low-rank minimization. In Chatnuntawech et al. 30, 

random spiral-based trajectories were acquired and undersampled spiral k-space was reconstructed 

within a TV-SENSE framework to allow for acceleration factors of up to 4 – 4.5 for single-slice 

and 3D-MRSI. In 31 and 32, the total generalized variation (TGV), a second-order variant of TV, 

was used in conjunction with model-based low-rank subspace constraints to reconstruct high-

resolution MRSI. Another subspace-based approach was reported in 33, in which high resolution 

spectra were obtained with the aid of a separate low-resolution scan to model the spatial component 

of the spatial-temporal signal. Both of the methods in 31 and 33, however, were based on Cartesian 

trajectories, yet similar studies involving non-Cartesian trajectories have also been the subject of 

recent research 34.  

Radial sampling has some unique advantages compared to other non-Cartesian trajectories. 

Similar to radial trajectories, spirals and rosettes also repeatedly sample the central portion of k-

space and can therefore be considered a relatively motion-robust technique. However, fast 1H 

MRSI using spiral and rosette trajectories at 3T often require spatial and/or spectral interleaves, 

whereas radial trajectories only require spatial interleaves at 3T 12,14,35. The additional requirement 

of spatial and spectral interleaves for spirals and rosettes can limit the achievable spectral 

bandwidth and makes these trajectories more susceptible to spectral artifacts due to potential 

inconsistencies between the spectral interleaves. Concentric circular trajectories can sample the k-

space twice as fast as Cartesian trajectories, and also require fewer spatial interleaves than radial 
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sampling 13,15,16,36; however, the main disadvantage of this approach is the loss of motion-

robustness because the central k-space is not sampled in each spectral interleaf. However, 

generally all non-Cartesian trajectories are more susceptible to errors due to off-resonance effects, 

leading to blurring and other imaging artifacts. 

In this study, we evaluated accelerated 2D MRSI using radial echo planar k-space 

trajectories and TV-regularized compressed sensing reconstruction, in both retrospectively and 

prospectively undersampled acquisitions of phantom and in vivo brain data. We evaluated the 

performance of radial relative to Cartesian EPSI by comparing the spectroscopic image quality 

and quantitation results obtained from both types of sampling techniques under various rates of 

undersampling. In the appendix to this chapter, we assess radial sampling of free-breathing, in vivo 

liver spectroscopic image data in terms of robustness to motion-related spectral and spatial artifacts. 

 Methods 

3.3.1 Pulse Sequence 

The REPSI and EPSI pulse sequences were implemented on a Siemens 3T Prisma MR 

system (Siemens, Munich, Germany) operating in the VE11C platform. For the spatial-spectral 

readout, a symmetric, bi-polar trapezoidal gradient echo train was utilized, with a spectral 

bandwidth of 1136 Hz, an ADC bandwidth of 100 kHz, ramp durations of 60 μs, and 32 k-space 

points sampled during the gradient plateaus. Volumetric excitation 37 was achieved using semi-

LASER 38 localization, with an initial 90° RF excitation pulse along the slice (z) direction followed 

by two pairs of adiabatic full-passage (AFP) 180° RF pulses along the x and y directions (Figure 

1A) to acquire an axial in-plane orientation. Outer volume suppression bands were placed to 

suppress signal from lipid-dominant regions and water suppression was done using a three-pulse 
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WET sequence 39. For all experiments, the slab thickness of the volume-of-interest (VOI) was set 

to 15 mm, and the matrix size was 32 × 32 with a field-of-view (FOV) of 320×320 mm2, resulting 

in a voxel volume of 1.5 mL.  

 

Figure 3-1: (A) Pulse sequence diagram for REPSI in which n t points are acquired during the 

readout train. A pair of adiabatic full passage (AFP) pulses are played after the first 90° excitation 

pulse to achieve volumetric localization of an axial slab. (B) Non-uniform undersampling (NUS) 

masks for a 2D Cartesian 32 × 32 k-space matrix with 21, 16, 11, and 8 ky-lines, corresponding to 

acceleration factors (AF) of 1.5, 2.0, 3.0, and 4. (C) Golden-angle radial undersampling 

distributions with 21, 16, 11, and 8 spokes, corresponding to AF’s of 1.5, 2.0, 3.0, and 4.0. 
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3.3.2 Data Acquisition 

Accelerated REPSI and EPSI data were obtained on a time-equivalent basis: for each 

acceleration factor (AF), the same number of radial spokes and ky lines (phase-encoding steps) 

were acquired, resulting in identical scan times for both sequences. Based on the Nyquist sampling 

criterion for 2D spatial encoding of an N × N image, the radial AF is a factor of  
𝜋

2
  larger than the 

Cartesian AF, which is 
𝑁

𝑘𝑦 𝑙𝑖𝑛𝑒𝑠
. Accordingly, a fully-sampled 32 × 32 k-space grid requires 50 

spokes and 32 ky-lines for REPSI and EPSI, respectively. However, for the sake of comparing 

accelerated REPSI and EPSI data, the AF is defined in terms of the reduced number of spokes or 

ky lines acquired relative to 32, which is the number of phase-encoding lines in a fully-sampled 32 

× 32 Cartesian k-space. This definition of the AF more accurately reflects a comparison between 

EPSI and REPSI in terms of the scan time instead of the number of sampled k-space points. 

 For undersampled REPSI acquisitions, six different numbers of spokes were acquired 

using the golden-angle view ordering scheme: 21, 16, 13, 11, 8, and 6. For EPSI, non-uniform 

sampling (NUS) patterns for the single ky phase-encoding dimension (Figure 1B) were generated 

from a Gaussian probability distribution function centered at ky = 0, with at least four fully-sampled 

central phase-encoding lines. Six Cartesian undersampling masks with 21, 16, 13, 11, 8, and 6 ky 

lines were implemented. The AF’s for 21, 16, 13, 11, 8, and 6 spokes or ky-lines are defined as 1.5, 

2.0, 2.5, 3.0, 4.0, and 5.0, respectively.  

  A phantom containing 17 representative brain metabolites at physiological concentrations 

was used to acquire fully-sampled data for retrospective undersampling experiments. The phantom 

data was acquired with a 16-channel brain coil, and the VOI was prescribed at isocenter with in-

plane dimensions of 80 x 80 mm2 encompassing a total of 64 voxels. For both REPSI and EPSI, 
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six retrospectively undersampled data sets were generated at all AF’s. In addition, ten fully-

sampled and ten prospectively undersampled REPSI and EPSI brain phantom data sets were 

acquired for each AF, giving a total of 70 data sets each for EPSI and REPSI. For each of these 

datasets, 25 voxels within the homogenous phantom were extracted, resulting in a total of 250 

quantified voxels per AF or fully-sampled set. For all phantom experiments, TR = 2 sec, TE = 40 

ms and 8 averages were acquired, resulting in fully-sampled scan times of 8 min 32 sec and 13 

min 20 sec for EPSI and REPSI, respectively. Accelerated phantom scan times were 5 min 36 sec, 

4 min 16 sec, 3 min 28 sec, 2 min 56 sec, 2 min 8 sec, and 1 min 36 sec for AF’s of 1.5, 2.0, 2.5, 

3.0, 4.0, and 5.0, respectively. Separately, fully-sampled water reference data was collected with 

1 average, taking 1 min 4 sec for EPSI and 1 min 40 sec for REPSI.   

Six healthy male volunteers and 1 female volunteer (ages 24 – 42 years) were scanned with 

approval of the UCLA institutional review broad and written informed consent from each 

volunteer. Fully-sampled REPSI and EPSI data sets were obtained for all volunteers. In addition, 

prospectively undersampled data with 11, 8, and 6 ky encodes or radial spokes were acquired for 3 

volunteers; prospectively undersampled datasets with 11 and 8 spokes or ky encodes were acquired 

for 2 volunteers; a prospectively undersampled dataset with 16, 11, and 8 spokes or ky encodes was 

acquired in one volunteer; and one prospectively undersampled dataset with 16, 13, and 11 spokes 

was acquired in one volunteer. All in vivo data was obtained using a 16-channel brain coil and TR 

of 1.5 sec, leading to fully-sampled scan times of 6 min 24 sec and 10 minutes for EPSI and REPSI, 

respectively, and accelerated scan times of 4 min 12 sec, 3 min 32 sec, 2 min 36 sec, 2 min 12 sec, 

1 min 36 sec, and 1 min 12 sec for AF’s of 1.5, 2.0, 2.5, 3.0, 4.0, and 5.0, respectively. Single-

average, fully-sampled water reference scans were acquired in 48 sec for EPSI and 1 min 15 sec 

for REPSI.  
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3.3.3 Reconstruction  

Optimization Algorithm  

Due to the piecewise-smooth nature of spectroscopic images, especially for low-resolutions 

common in MRSI, the total variation (TV) acts as a natural sparsifying transform for the 2D spatial 

planes (x-y) of the acquired data (kx-ky-t). The TV transform was not applied along the spectral 

dimension because this dimension was already fully-sampled and is typically not piecewise-

smooth, since 1D spectra may consist of several broad, crowded peaks with many non-trivial 

frequency components. We posed the compressed sensing (CS) reconstruction as the following 

unconstrained minimization problem: 

 min 1

2
𝑢

‖𝐹𝑢 − 𝑑‖2
2 + 𝜆 ∙ 𝑇𝑉(𝑢) (3-1) 

where F is the fast Fourier transform or the non-uniform fast Fourier transform (NUFFT) 40 for 

Cartesian and non-Cartesian data, respectively, u is the data in x-y-f space, d is the acquired 

undersampled data in polar k-space or ky-kx space, TV is the isotropic total variation transformation, 

and λ is a regularization parameter that balances the minimization between the data fidelity term 

and the sparsity-based functional.  

 The monotone fast iterative soft-thresholding algorithm (MFISTA) 41 was used to solve the 

above CS reconstruction problem, and the dual formulation of the isotropic TV minimization was 

implemented as described in 26,41. The TV transform was applied to each spatial plane in the x-y-f 

space – separately for each frequency point along the spectral dimension. For all experiments, the 

CS reconstruction was performed coil-by-coil and all input data was normalized by 𝑚𝑒𝑎𝑛(𝑢) +

 2 ∙ 𝑠𝑡𝑑(𝑢), where 𝑢 is the acquired data in k-t space and 𝑠𝑡𝑑 is the standard deviation. The CS 

iterations continued until the normalized iterative update (defined as ‖𝑢𝑛+1 − 𝑢𝑛‖2 ‖𝑢𝑛+1‖2⁄  , 
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where n is the iteration index) was less than 10-3 or until the number of iterations reached a 

maximum of 100. 

 For radial-based CS, the data was reconstructed using the NUFFT algorithm from a 

MATLAB-based (The Math Works, Inc., Natick, MA, USA) image reconstruction toolbox made 

available by Fessler et al 42. At each iteration, the algorithm transformed the data from image to 

polar k-space using the NUFFT, and from the temporal to frequency domain using the standard 

FFT. For density compensation, a ramp filter inversely proportional to the magnitude of the k-

space radius, ‖𝑘⃗ ‖
2
, was applied to each spoke. 

Regularization Parameters 

The regularization parameter λ for each coil was defined as λ = 𝛼∙𝜎, where 𝜎 is the coil 

noise standard deviation and 𝛼 is a proportionality factor. The parameter λ essentially defines the 

value by which the image is denoised in each iterative soft-thresholding step of MFISTA, so λ was 

adjusted in proportion to the level of the noise in each coil. Accordingly, the proportionality factor 

𝛼 was determined based on estimates of 𝜎 for each coil, which were obtained from an in-built pre-

scan noise measurement.  

 Using the fully-sampled phantom and in vivo brain data and estimates of 𝜎, the factor 𝛼 was 

found by minimizing the l2-norm of the difference between the fully-sampled spectra and the 

reconstructed spectra from retrospectively undersampled data: 

 min
𝛼 √ ∑ [𝑠𝑖

𝑓𝑢𝑙𝑙
− 𝑠𝑖

𝑟𝑒𝑐(𝛼)]2

𝑖 ∈𝑉𝑂𝐼

 (3-2) 
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where 𝑠𝑖
𝑓𝑢𝑙𝑙  and 𝑠𝑖

𝑟𝑒𝑐 are the fully-sampled and reconstructed spectra between 0.5 – 4.3 ppm 

at the 𝑖𝑡ℎ voxel within the VOI, respectively. The minimization was performed by iterating over a 

range of 𝛼 values linearly spaced between 0.01 and 1. For both REPSI and EPSI and for all 

acceleration factors, the value of 𝛼 that minimized the above metric was approximately 0.10. Thus, 

the regularization parameter was defined as λ = 𝜎 ∙ 10-1 for all REPSI and EPSI reconstructions. 

Spectral Pre- and Post-processing 

Prior to CS reconstruction, the odd and even echoes from the bi-polar readout were 

separated into two datasets, and the odd echo data was time-reversed. After Fourier transforming 

the temporal dimension, a linear phase ramp was applied along the readout in order to correct for 

chemical-shift displacement caused by the phase accrual of each resonance during kx-t sampling 

43. Afterward, the data was Fourier transformed back to the time domain, and both the water and 

non-water suppressed data were averaged. The undersampled, water-suppressed even and odd 

echo datasets were reconstructed separately. Eddy current and zero-order phase corrections 

computed from the fully-sampled non-water-suppressed data were applied to the CS-reconstructed 

data 44. Coil combination was performed using the singular valued decomposition (SVD) method 

45. After applying a first-order phase correction to the even echoes to account for the difference in 

echo time relative to the odd echo, and then performing frequency and phase alignment using the 

FID-A toolbox 46,47, the coil-combined reconstructions from the even and odd echoes were 

averaged. Finally, the residual water peak was removed using the Hankel-Lanczos SVD method 

48.  

 All reconstructed spectral metabolite maps and quantitation were obtained using LC model 

(version 6.2-0T) 49. The basis set for the phantom data was simulated using the VESPA software 
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package 50 and included the following metabolites: N-acetyl-aspartate (NAA), N-

acetylaspartylglutamate (NAAG), γ-aminobutyric acid (GABA), aspartate, choline (Cho), creatine 

(Cr), glucose, glutamate (Glu), glutamine (Gln), glutathione, myo-inositol (mI), lactate, 

phosphocholine (PCh), phosphoryl-ethanolamine, alanine,  taurine, and threonine. The basis set 

for in vivo datasets included the previously listed metabolites in addition to 

glycerophosphorylcholine (GSH) and scyllo-inositol. 

Comparison across Acceleration Factors 

To evaluate the performance of REPSI and EPSI for each AF, five metrics were considered. 

For retrospectively undersampled data, the reconstruction accuracy was compared using 

normalized root mean square errors (nRMSE) of the reconstructed spectra and metabolite maps 

derived from LC Model quantitation. Maps showing the Cramer-Rao lower bounds (CRLB) of the 

metabolite concentrations for voxels within the VOI were compared, as well as the percent 

absolute difference (PAD) maps between the fully-sampled and reconstructed metabolite maps. 

For prospectively undersampled data, the metabolite maps were compared qualitatively with those 

from the separately-acquired fully-sampled maps, and the CRLB maps for each AF were compared 

to determine the reliability of the quantified spectra from REPSI versus EPSI reconstructions.  

 Spectral nRMSE maps were obtained by computing the following metric for each voxel: 

 𝑛𝑅𝑀𝑆𝐸(𝑠𝑖
𝑟𝑒𝑐) =

100

√𝑁𝑠

 ∙  
‖𝑠𝑖

𝑟𝑒𝑐 − 𝑠𝑖
𝑓𝑢𝑙𝑙

 ‖
2

‖𝑠𝑖
𝑓𝑢𝑙𝑙

‖
2

 (3-3) 

where 𝑠𝑖
𝑟𝑒𝑐  and 𝑠𝑖

𝑓𝑢𝑙𝑙
are the (complex-valued) reconstructed and fully-sampled spectra, 

respectively, at the 𝑖𝑡ℎvoxel within the VOI. Only the range between 0.5 – 4.3 ppm was considered 
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for this computation and 𝑁𝑠 is the number of spectral points within this range. The metabolite map 

nRMSE value was defined as follows:  

 𝑛𝑅𝑀𝑆𝐸(𝑚) =
100

√𝑁𝑉𝑂𝐼

 ∙ √ ∑ (
𝑚𝑖

𝑟𝑒𝑐 − 𝑚𝑖
𝑓𝑢𝑙𝑙

 

𝑚𝑖
𝑓𝑢𝑙𝑙 )

2

𝑖 ∈𝑉𝑂𝐼

 (3-4) 

where 𝑚𝑖
𝑟𝑒𝑐 and 𝑚𝑖

𝑓𝑢𝑙𝑙
 is the concentration estimate of metabolite 𝑚 from the reconstructed 

and fully-sampled data, respectively. Percent difference maps were also computed as a way to 

visualize the reconstruction error across the VOI, and the PAD value was computed for each voxel 

as follows:  

 𝑃𝐴𝐷(𝑚𝑖
𝑟𝑒𝑐) = 100 ∙  

|𝑚𝑖
𝑟𝑒𝑐 − 𝑚𝑖

𝑓𝑢𝑙𝑙
|

𝑚𝑖
𝑓𝑢𝑙𝑙  (3-5) 

Finally, the average SNR values of spectra for voxels within the VOI, as measured by LC 

Model quantitation, were compared.  

Comparison between Time-Equivalent Fully-Sampled and Accelerated Acquisitions  

To determine the benefit of CS, we compare fully-sampled data acquired with fewer averages 

to CS reconstructions of time-equivalent, accelerated data obtained with 8 or fewer numbers of 

averages. One in vivo data set was retrospectively undersampled with different numbers of 

averages to match the scan times of fully-sampled data (AF = 1.0) with 4, 3, 2, and 1 average(s). 

The following time-equivalent combinations were tested: (1) AF = 1.0 with 4 averages versus AF 

= 1.5 with 6 averages and AF = 2.0 with 8 averages; (2) AF = 1.0 with 3 averages versus AF = 2.0 

with 6 averages; (3) AF = 1.0 with 2 averages versus AF = 1.5 with 3 averages, AF = 2.0 with 4 

averages, AF = 2.5 with 5 averages, AF = 3.0 and 6 averages, and AF = 4.0 with 8 averages. 
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Finally, single-average fully-sampled data is time-equivalent to data acquired at AF = 2.0 with 2 

averages, AF = 3.0 with 3 averages, and at AF = 4.0 with 4 averages. For REPSI, fully-sampled 

data was reduced from 50 to 32 spokes to match the scan time of a fully-sampled EPSI. For each 

combination, the nRMSE’s of the metabolite maps of tNAA, Cr, tCho, Glx, and mI were computed. 

We applied only TV-denoising to the low-averaged fully-sampled data to compensate for lower 

SNR, using the same regularization parameter choice as described in Section 2.3.2. The ground 

truth reconstruction used for computing nRMSE’s was taken from the fully-sampled data with 8 

averages.  

  tCho  Cr  mI tNAA  Glx  

 AF EPSI REPSI  EPSI REPSI  EPSI REPSI EPSI REPSI  EPSI REPSI 

C
o

n
ce

n
tr

at
io

n
 (

m
M

) 1 1.2 ± 0.1 1.2 ± 0.1  4.3 ± 0.4 4.2 ± 0.3  4.8 ± 0.6 4.7 ± 0.5 7.2 ± 0.7 7.1 ± 0.6  13.6 ± 1.7 13.5 ± 1.5 

1.5 1.2 ± 0.1 1.1 ± 0.1  4.1 ± 0.4 4.0 ± 0.3  4.5 ± 0.5 4.3 ± 0.4 7.0 ± 0.7 6.8 ± 0.6  12.9 ± 1.7 12.5 ± 1.4 

2 1.0 ± 0.1 1.1 ± 0.1  3.8 ± 0.4 3.9 ± 0.3  3.9 ± 0.5 4.1 ± 0.4 6.5 ± 0.7 6.7 ± 0.6  11.4 ± 1.7 12.1 ± 1.4 

2.5 1.0 ± 0.1 1.1 ± 0.1  3.6 ± 0.3 3.8 ± 0.3  3.8 ± 0.4 4.0 ± 0.4 6.2 ± 0.6 6.6 ± 0.5  10.7 ± 1.2 11.9 ± 1.5 

3 1.0 ± 0.1 1.0 ± 0.1  3.5 ± 0.5 3.7 ± 0.4  3.7 ± 0.5 3.9 ± 0.4 6.1 ± 0.7 6.4 ± 0.6  10.8 ± 1.4 11.4 ± 1.6 

4 0.9 ± 0.1 1.0 ± 0.1  3.4 ± 0.5 3.5 ± 0.5  3.7 ± 0.5 3.6 ± 0.5 5.9 ± 1.0 6.2 ± 0.7  10.5 ± 1.5 10.6 ± 1.6 

5 0.9 ± 0.1 0.9 ± 0.1  3.2 ± 0.6 3.3 ± 0.5  3.5 ± 0.5 3.3 ± 0.5 5.4 ± 0.9 5.8 ± 0.7  9.90 ± 1.4 9.50 ± 1.5 

C
R

L
B

s 
(%

) 

1 10.4 ± 2.4 8.7 ± 2.2  7.6 ± 1.6 6.6 ± 1.6  12.0 ± 2.7 10.2 ± 2.6 6.4 ± 1.4 5.6 ± 1.5  10.3 ± 2.4 8.9 ± 1.7 

1.5 9.9 ± 2.1 9.1 ± 2.1  7.4 ± 1.5 6.8 ± 1.6  11.6 ± 2.4 10.8 ± 2.4 6.1 ± 1.3 5.7 ± 1.4  9.9 ± 1.8 9.2 ± 1.7 

2 10 ± 2.1 9.2 ± 2.1  7.3 ± 1.4 6.8 ± 1.6  11.8 ± 2.5 10.8 ± 2.5 5.9 ± 1.2 5.6 ± 1.4  10.1 ± 1.8 9.3 ± 1.7 

2.5 10 ± 1.8 9.2 ± 2.0  7.2 ± 1.3 6.7 ± 1.5  11.7 ± 2.3 10.8 ± 2.4 5.9 ± 1.2 5.5 ± 1.5  10.1 ± 1.5 9.2 ± 1.7 

3 9.8 ± 1.8 9.2 ± 2.0  7.1 ± 1.3 6.7 ± 1.5  11.5 ± 2.1 11.0 ± 2.3 5.7 ± 1.2 5.5 ± 1.4  9.8 ± 1.8 9.4 ± 1.7 

4 9.6 ± 1.9 9.4 ± 1.9  6.9 ± 1.3 6.7 ± 1.3  11.3 ± 2.1 11.3 ± 2.1 5.6 ± 1.2 5.4 ± 1.3  9.8 ± 1.7 9.7 ± 1.8 

5 9.0 ± 1.6 9.8 ± 1.8  6.6 ± 1.0 6.8 ± 1.2  10.6 ± 1.9 11.5 ± 2.2 5.4 ± 0.9 5.4 ± 1.2  9.3 ± 2.1 10.2 ± 2.4 

Table 3-1: Concentration estimates and corresponding CRLB (shaded) percentage 

values of tCho, Cr, mI, tNAA, and Glx quantified from CS reconstructions of 

prospectively undersampled REPSI and EPSI brain phantom data, for all AFs.  
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Table 3-2: The SNR and FHWM values of 

spectra from CS reconstruction of 

prospectively undersampled brain phantom 

data. 

 

 

 

 

 

3.3.4 In vivo Free-Breathing Liver Scans  

Using a body array coil and the same scan parameters used for the in vivo brain scans, free-

breathing REPSI and EPSI liver datasets were acquired from two healthy male volunteers. For 

both REPSI and EPSI, 32 ky-lines or spokes were sampled to maintain the same scan time, so that 

the REPSI acquisition was technically undersampled, though at a relatively low acceleration factor 

of 1.5. These experiments were conducted in order to compare the spectral quality resulting from 

motion-corrupted REPSI and EPSI data. No CS reconstruction was applied to the undersampled 

REPSI data to avoid the influence of CS-related denoising on the spectrum.  

3.3.5 Lipid Contamination in Radial and Cartesian EPSI 

It is well-known that lipid signals can cause severe spectroscopic imaging artifacts due to the 

relatively low resolutions of MRSI and the high intensity of the lipid signal relative to other 

metabolites, which exacerbates Gibbs ringing artifacts. In order to test and compare the 

performance of CS-reconstructions of undersampled REPSI and EPSI data to lipid contamination, 

we performed a separate set of experiments on two subjects in which we expanded the size of 

volume-of-interest (VOI) to include areas of the intracranial lipid layer (Figure 3A-4). In one 

subject, we acquired fully-sampled and prospectively-undersampled REPSI and EPSI data, at an 

acceleration factor (AF) of 3. In another volunteer, we retrospectively undersampled the fully-

 SNR FWHM (Hz) 

AF EPSI REPSI EPSI  REPSI 

1 13.6 ± 1.7 14.5 ± 1.3 2.3 ± 1.0 2.8 ± 1.4 

1.5 14.7 ± 1.9 15.5 ± 1.4 2.3 ± 0.9 2.4 ± 1.2 

2 15.3 ± 1.9 15.9 ± 1.7 2.2 ± 1.2 2.4 ± 1.3 

2.5 15.3 ± 2.2 15.9 ± 1.9 2.2 ± 1.2 2.5 ± 1.7 

3 15.2 ± 2.0 16.0 ± 1.7 2.4 ± 1.2 2.5 ± 1.4 

4 14.8 ± 2.3 15.9 ± 2.3 2.4 ± 1.2 2.6 ± 1.5 

5 14.9 ± 2.4 15.5 ± 2.7 2.6 ± 1.4 2.9 ± 2.0 
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sampled data at an AF of 2.5. After CS reconstruction of the lipid-contaminated data using our 

TV-based regularization, we used a post-processing-based lipid suppression technique 65 to 

remove the spectral lipid component from each voxel. The lipid and metabolite mask required for 

Bilgic’s L2-based minimization problem were selected manually, and the regularization parameter 

was set to 1∙10-3 after normalizing the data as described in subsection 3.3.3 of this chapter.  

3.3.6 REPSI acquisitions in Obstructive Sleep Apnea  

Obstructive Sleep Apnea (OSA) affects over 15% of the adult population and is associated 

with brain dysfunction. Although the dysfunction is well-identified and presents brain 

morphological changes as shown with structural imaging, it is unclear what pathology underlies 

these neural alterations. Magnetic resonance spectroscopic imaging (MRSI) can non-invasively 

measure several metabolites from multiple brain regions in vivo. However, the clinical practicality 

of the standard MRSI techniques (Cartesian phase-encoding or echo-planar [EP]) is hindered by 

long scan times. In order to assess clinical populations, our group developed an alternative MRSI 

technique, “radial” EP-MRSI. To assess the feasibility and calculate effect sizes we did a pilot 

study of brain metabolites in OSA using radial EP-MRSI. 

Radial EP-MRSI data with a speed-up (undersampling) factor of 2.5 (compared to a fully-

sampled Cartesian MRSI scan) were acquired in 5 OSA patients (3 males, 37±11 yrs., Apnea 

Hypopnea Index (AHI): 8.2±5.5) and 10 healthy controls (5 males, 28±7 yrs.). Spectra from twelve 

brain regions were selected from each subject and five metabolites–total choline, myo-inositol 

(mI), total N-acetylaspartate, glutamine+glutamate (Glx) and lactate (Lac)–were quantified as 

ratios with respect to creatine (Cr), using LC Model. The brain regions include left/right of: basal 

ganglia, insula, and gray/white of the frontal and occipital regions. Mean group differences were 

calculated and compared with independent samples t-tests. 
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3.3.7 Accelerated REPSI in Healthy Prostate with a Reduced Field-of-View  

Radial echo planar spectroscopic imaging (REPSI) is applied in healthy prostate and 

compared to Cartesian EPSI acquisitions. Due to the small spatial extent of the anatomy-of-interest, 

REPSI is well-suited for acceleration in a reduced-field-of-view context. In this proof-of-concept 

study, we acquired both prospectively and retrospectively undersampled REPSI and Cartesian 

EPSI datasets in prostate phantom and in vivo, at multiple acceleration factors, and we compared 

both quantitative and qualitative results. 

Monitoring of prostate tumor grade and progression is important for both the diagnosis and 

treatment of prostate cancer. Multi-parametric MRI and biopsy are widely used for detection and 

grading of prostate cancer although both techniques can be limited by small tumor size and 

sampling error bias66,67, respectively. Magnetic resonance spectroscopy (MRS) can complement 

these modalities by providing further chemical characterization of prostate tumors. In contrast to 

single-voxel techniques, spectroscopic imaging (MRSI) measures a greater spatial coverage within 

a single scan, yet requires long acquisitions times which can be clinically impractical68. Faster 

alternatives based on echo planar (EPSI) trajectories have been proposed to decrease the scan time 

by an order of magnitude11. More recently, radial EPSI has been proposed as an alternative which 

can tolerate higher degrees of under-sampling compared to Cartesian EPSI4. Additionally, radial 

acquisitions in prostate are well-suited for reduced field-of-view (FoV) imaging51, since the 

anatomy-of-interest is constrained to a relatively small region. In such cases, reduced FoV 

spectroscopic imaging can further decrease the scan time by enabling greater acceleration factors. 

In this proof-of-concept study, we accelerate REPSI in the prostate by reducing the number of 

acquired spokes and applying compressed sensing (CS) with total variation (TV) regularization, 

resulting in reduced FoV’s and shortened scan times that are within clinically-feasible durations. 
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Prospectively under-sampled radial data sets from in vivo prostate and in a phantom were acquired, 

as well as data using the more conventional Cartesian EPSI for comparison. 

In both the in vivo and prostate phantom experiments, a radial echo planar spectroscopic 

imaging (REPSI) sequence with semi-LASER volume excitation was used to acquire a 40 × 40 × 

15 mm3 volume-of-interest (VoI) within a 320 × 320 mm2 field-of-view, using a 32 × 32 matrix 

size (1.5 mL voxel volume), a flyback gradient echo train69 (1562.5 Hz spectral width and 512 

time points), TE = 100 ms, TR = 1.5 s and 8 averages. No lipid suppression modules were included 

in the sequence, however, the lipids were removed from the reference water signal in post-

processing using HLSVD48 for eddy current phase correction. Fully-sampled Cartesian EPSI and 

REPSI datasets acquired in three healthy male volunteers were retrospectively undersampled with 

acceleration factors (AF) of 1.5 (21 ky-lines/spokes), 2 (16 ky-lines/spokes), and 2.5 (13 ky-

lines/spokes). An external body coil with a maximum of 30 coils was used for the in vivo 

acquisitions. At AF = 1.0, time equivalent datasets with 32 ky-lines or spokes were acquired. One 

prospectively undersampled REPSI dataset was acquired in a fourth volunteer with AF’s of 1.5, 2, 

and 2.5. Fully-sampled and prospectively undersampled Cartesian EPSI and REPSI datasets (AF’s 

of 1.5, 2, 2.5) were acquired in a prostate phantom containing choline (Cho), citrate (Cit), creatine 

(Cr), myo-inositol (mI), and spermine (Spm) at physiological concentrations. All undersampled 

data was reconstructed with a CS-TV algorithm4. Scan times for AF's of 1, 1.5, 2, and 2.5 were 7 

min 30 sec, 5 min, 3 min 45 sec, and 3 min, respectively. The prostate phantom reconstructions 

were quantified in LCModel49 using simulated basis sets generated in VESPA50. Ratios with 

respect to Cho were computed in the prostate phantom and compared as a function of AF, and the 

percent difference with respect to the fully-sampled Cho ratio was also determined. Citrate maps 
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and multi-voxel spectra were reconstructed in the retrospectively and prospectively undersampled 

in vivo data sets and were compared qualitatively. 

 Results 

3.4.1 Accelerated REPSI and EPSI Reconstructions  

Table 3-1 shows the means and standard deviations (SD) of the estimated concentrations of 

tNAA (total NAA: NAA + NAAG), tCho (total Cho: Cho + PCh), Glx (Glu + Gln), Cr and mI 

from reconstructions of prospectively undersampled brain phantom data, as well as the means and 

SD’s of the corresponding CRLB’s. Generally, the concentrations were more underestimated as 

the AF increased, but for REPSI, the estimates remained closer to those from the fully-sampled 

data. For example, the difference between the fully-sampled and reconstructed Cr concentration 

were 0.4 mM and 0.7 mM for REPSI and EPSI undersampled with 13 spokes or ky-lines, 

respectively. REPSI also had lower SD’s of the concentration values, indicating a greater 

consistency in the quantitation compared to EPSI. It can be inferred that the coefficients of 

variation (CV) of the concentration estimates from REPSI were lower for all metabolites and AF’s. 

The lower CRLB values confirmed that the concentration estimates from REPSI were more 

reliable than those from EPSI. Increased SNR from radial acquisitions is shown in Table 3-2. For 

all AF’s, REPSI CS reconstructions data had greater SNR, although the estimates of the full-width-

at-half-maximum (FWHM) values of reconstructed REPSI spectra were slightly higher than those 

of the EPSI spectra.  
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Figure 3-2: (A) Localization image for brain phantom acquisitions. (B) Maps of the Cramer-Rao 

lower bounds (CRLBs) as percentages of the estimated total NAA concentrations (tNAA), from 

fully sampled and compressed sensing (CS)–reconstructed REPSI and echo-planar spectroscopic 

imaging (EPSI) brain phantom data. (C) Percent absolute difference (PAD) maps of tNAA from 

CS reconstructions of retrospectively undersampled REPSI and EPSI brain phantom data, for all 

AFs corresponding to 21 (1.5×), 16 (2×), 13 (2.5×), 11 (3×), and 8 (4×) radial spokes or ky-lines. 

All maps are interpolated by a factor of two.  

 

 Figure 3-2C displays the PAD maps of tNAA from CS reconstructions of retrospectively 

undersampled REPSI and EPSI data. Clearly, the REPSI tNAA maps contain lower values across 

most of the VOI. Due to effects from chemical shift displacement, the edges of the VOI are more 

susceptible to error in both radial and Cartesian acquisitions, but as the AF increases, EPSI has 

higher reconstruction errors as measured by the PAD, particularly in the central portion of the VOI. 



65 

 

In contrast, REPSI reconstructions maintain relatively low PAD values within the center of the 

VOI, even for data acquired with as few as 8 spokes. Figure 3-2B shows the CLRB maps for the 

tNAA concentrations. Similar to the PAD maps, the CRLB maps show overall lower values across 

large portions of the VOI in comparison the EPSI tNAA CRLB maps, except for the highest AF’s 

corresponding to 8 spokes and in some peripheral voxels.  

Table 3-2 lists the nRMSE’s of the metabolite maps of tNAA, tCho, Cr, Glx, and mI from 

CS reconstructions of in vivo data. For almost all AF’s considered, the nRMSE values from REPSI 

reconstructions were much lower, indicating higher reconstruction accuracy. Figure 3-3(A,B) 

shows the spectral nRMSE maps for CS reconstructions of retrospectively undersampled REPSI 

and EPSI in vivo data. As with the PAD, CRLB, and metabolite map nRMSE’s, the spectral 

nRMSE maps show that the REPSI spectra have higher reconstruction accuracy for all acceleration 

factors. For both in vivo brain datasets, the spectral nRMSE values from REPSI do not increase as 

sharply as those from EPSI, which demonstrates that REPSI is much more robust to higher AF’s. 

Similarly, Table 3-3 shows lower CRLB values for REPSI, indicating more reliable in vivo 

quantitation compared to EPSI for all AF’s.  

  tNAA tCho Glx mI  Cr 

  AF REPSI EPSI REPSI EPSI REPSI EPSI REPSI EPSI REPSI EPSI 

Mean 

nRMSEs 

1.5 11.9 10.3 16.4 32.5 22.7 31.6 75.4 36.5 14.1 14.6 

2 13.6 18.7 18.6 34.1 25.3 76.8 75.1 46.4 16 23.7 

2.5 15.3 24.2 19.7 31.1 26.7 37 72.1 49.1 18.4 29.7 

3 18.3 26.2 22.8 32.4 28.9 37.3 46.1 56.9 20.6 30.6 

4 21.9 22.5 26.4 28.8 34.5 38.1 69.7 48.2 24.4 30.5 

5 25.9 32.2 27.8 36.3 35.1 42.3 85.8 56.5 25.6 41 

Mean 

CRLBs 

1 8.4 9 11.6 13.7 16.9 19.8 37.8 28.2 7.8 9.5 

1.5 8 8.5 12.3 13.3 17.6 18.7 22.3 30.2 7.7 8.8 

2 8 11.1 12.3 15.7 18.6 20.6 19.5 41.9 7.7 9.9 

2.5 8.1 11.8 12.4 17 16.8 22.8 24.3 64.2 7.6 11.8 

3 8.3 11.6 13.8 17.3 17.1 24.6 29.5 40.8 7.9 10.5 

4 8.8 10 13.8 15 17.5 23.1 33.1 32.8 8.1 9.5 

5 9.5 11.1 15 17 18.9 23.8 34.9 36.4 8.8 9.6 
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Table 3-3: Mean nRMSE values of metabolite maps obtained from LCModel quantitations of 

CS-reconstructed, retrospectively undersampled, in vivo brain data (top) and mean CRLB 

values from both REPSI and EPSI CS reconstructed, averaged across 7 healthy volunteers 

(bottom). Note: The mean values across 7 healthy volunteers are shown for AFs of 1.5, 2, 2.5, 

3, 4 and 5. The bold numbers in the top half indicate a lower mean nRMSE value for that 

particular AF and metabolite. The bold numbers in the bottom half indicate a lower mean 

CRLB for that particular AF and metabolite.  

 

Figure 3-3: (A) Maps of the spectral normalized RMS error (nRMSE) computed from CS 

reconstructions of retrospectively undersampled REPSI and EPSI in vivo data from a 26-year-

old healthy volunteer, shown for AFs corresponding to 21 (1.5×), 16 (2×), 13 (2.5×), 11 (3×), 

and 8 (4×) radial spokes or ky-lines. (B) Spectral nRMSE maps from CS reconstructions of 

retrospectively undersampled REPSI and EPSI in vivo brain data acquired from a healthy 33-

year-old male volunteer, shown for AFs of 1.5, 2, 2.5, 3, and 4. All maps are interpolated by 

a factor of two 

 

 Metabolite and CRLB maps from reconstructions of prospectively undersampled in vivo 

REPSI and EPSI brain data are shown in Figure 3-4. The tNAA map from EPSI reconstructions 

degraded significantly starting at the relatively low AF of 2 (16 ky-lines), while the maps from 
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REPSI retain the underlying brain morphology, such as the outlines of the ventricles, even at the 

highest AF’s. Overall, reconstruction artifacts were significantly less prominent in the REPSI 

tNAA maps. The corresponding CRLB maps in Figure 3-4B show that the concentration estimates 

from REPSI data have lower CRLB’s across most of the VOI, except in voxels near the frontal 

cortex where EPSI also has increased CRLB’s. In both areas surrounding the ventricles and in the 

posterior regions of the brain, REPSI maintains more reliable estimates of the tNAA 

concentrations.  

 

Figure 3-4: Brain MRSI scan of a 33-year-old healthy male volunteer. (A) The tNAA maps 

from fully sampled (AF = 1.0) REPSI and EPSI brain data (leftmost column), and tNAA maps 

from CS reconstructions of prospectively undersampled brain data acquired with 16, 13, and 

11 radial spokes or ky-lines. (B) The CRLB maps for the tNAA maps shown in (A). The 

phase-encoding direction is indicated by the yellow arrow in the leftmost image of the EPSI 

row in (A). All maps are interpolated by a factor of two. 
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Figure 3-5: Representative spectra from fully sampled and CS reconstructions of prospectively 

undersampled in vivo brain data from a 32-year- old healthy male volunteer. Spectra extracted 

from four brain locations are shown: 1, right putamen to corona radiata; 2, occipital gray matter; 

3, left posterior insular cortex; and 4, frontal white matter. Both the REPSI and EPSI data were 

prospectively undersampled with 11 (AF = 3), 8 (AF = 4), and 6 (AF = 5) acquired radial spokes 

or ky-lines, respectively. Baselines of the REPSI and EPSI spectra between 0.5 and 4.3 ppm 

were matched. The NAA peak (2.01 ppm) intensity from fully sampled REPSI spectra (red) had 

an approximately 16% increase in peak intensity compared with the EPSI spectra (blue) from 

the selected voxels. All spectra are shown in real mode (phase sensitive) and share the same 

scale. 

 

 Figure 3-5 shows extracted spectra from CS reconstructions of prospectively undersampled 

data in four brain areas – (1) right putamen to corona radiata, (2) occipital gray matter, (3) left 

posterior insular cortex, and (4) frontal white matter, as indicated in the axial brain localization 

image. As mentioned previously, REPSI has a greater SNR advantage over EPSI, which is evident 

from the higher peak amplitudes of REPSI spectra relative to those from EPSI. Due to the 

denoising effect from the CS reconstruction, both REPSI and EPSI spectra, however, were able to 

provide spectra with well-resolved NAA, Cr, mI and tCho peaks up to the highest AF factors, 

although, expectedly, the peak intensity decreased as the AF increases. This slight reduction in 
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intensity is caused by a decrease in SNR due to fewer k-space points sampled as the AF increases, 

although the central k-space remains densely sampled. However, the radial undersampling patterns 

at high AF’s retain a greater concentration of the lower spatial frequency data compared to the 

undersampled Cartesian masks for high AF’s, in which more samples are taken along the kx 

direction and fewer along ky.  For the spectra shown in Figure 3-5, the tNAA peak height above 

the noise floor reduced by approximately 10% and 16% in REPSI and EPSI spectra at AF = 3.0, 

respectively, compared to the fully-sampled spectra.  

Figure 3-6 shows metabolite maps of tNAA, Cr, tCho, Glx, and mI from fully-sampled (A) 

and CS reconstructions (B) of accelerated (AF = 2.5) REPSI and EPSI data. The morphological 

features in the accelerated REPSI maps more closely match those of the fully-sampled data, while 

the EPSI maps show severe degradation. Figure 3-7 demonstrates the degree of reconstruction 

error, where the PAD maps clearly indicate that CS reconstructions from undersampled REPSI 

data are more accurate. Figure 3-10 shows the fully-sampled metabolite maps (A) and the 

corresponding CRLB maps (B), indicating that REPSI is better able to reliably estimate the 

concentrations of tNAA, Cr, tCho, Glx, and mI.  



70 

 

 

Figure 3-6: (A) Metabolite maps of tNAA, Cr, total choline (tCho), Glx (glutamate + 

glutamine), and myo-inositol (mI) from fully sampled REPSI (top row) and EPSI (bottom row) 

reconstructions of in vivo brain data from a healthy 24-year-old healthy female volunteer. (B) 

Metabolite maps of tNAA, Cr, tCho, Glx, and mI from CS reconstructions of retrospectively 

undersampled (AF = 2.5) REPSI (top row) and EPSI (bottom row) data. Note that the REPSI 

reconstructions at AF = 2.5 show greater similarity to the fully sampled metabolite maps, 

compared with the EPSI reconstructions. The nRMSEs of the metabolite maps are also shown. 

All maps are interpolated by a factor of two. 

 

 Table 3-4 shows the metabolite map nRMSE’s from reconstructions of time-equivalent, 

fully-sampled and accelerated REPSI and EPSI data with different numbers of averages. Generally, 

the CS-reconstructed data, particularly from REPSI, had lower metabolite map nRMSE’s than the 

time-equivalent, denoised fully-sampled data. Additionally, the nRMSE values from REPSI were, 

in most cases, lower than those from the time-equivalent EPSI reconstructions. Therefore, it may 
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be more beneficial to apply CS reconstruction to data with more averages than to acquire a time-

equivalent, fully-sampled data with fewer averages.  

 

Figure 3-7: Metabolite maps of tNAA, Cr, tCho, Glx, and mI (top row) from CS reconstructions 

of retrospectively undersampled in vivo brain data (AF = 2.5) from a 34-year-old healthy male 

volunteer. The corresponding percent absolute difference (PAD) maps are shown in the bottom 

row. The maps in (A) correspond to an AF of 2.5 for REPSI reconstructions. (B) Metabolite 

maps of tNAA, Cr, tCho, Glx, and mI (top row) and corresponding PAD maps (bottom row) 

from EPSI reconstructions of retrospectively undersampled data (AF = 2.5). The nRMSEs of 

the metabolite maps are also shown. All maps are interpolated by a factor of two. 

 

3.4.2 In vivo Free-Breathing Liver Scans  

The motion-robustness of REPSI is shown in Figure 3-8. Breathing motion causes severe 

artifacts in the fully-sampled EPSI spectrum (Figure 3-8). These spurious, oscillating peaks mostly 

emanate from the water signal and decrease in intensity toward the opposite end of the spectrum 
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near the poly-methylene lipid peak in the high-field region. The dominant lipid peak also appears 

to have a broadened line width and surrounding peak artifacts similar to those near the water signal. 

Although the REPSI spectrum is reconstructed from (spatially) undersampled data (Figure 3-8), it 

is clear that the motion-related artifacts are much less severe and that the line width of the main 

lipid peak is relatively smaller compared to the EPSI spectrum. It is also possible to observe traces 

of other peaks in the spectrum such as choline at 3.2 ppm, since there are no overlapping motion-

induced spectral artifacts in that range. Finally, the water and lipid maps from EPSI show severe 

motion-related artifacts along the phase-encoding dimension, whereas the REPSI water and lipid 

maps remain relatively artifact-free (Figure 3-9). These results demonstrate that radial sampling 

can produce more reliable measurements in motion-prone organs. 

 

Figure 3-8: (Left) VOI localization for a free-breathing REPSI and ESPI liver scan from a healthy 

33 year-old male volunteer. (Right) REPSI (red) and EPSI (blue) liver spectra extracted from four 

voxel locations numbered in yellow on the left. 
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Figure 3-9: (Left) VOI localization for a free-breathing REPSI and ESPI liver scan from a healthy 

42 year-old male volunteer. (A) REPSI and EPSI maps of the poly-methylene lipids at 

approximately 1.35 ppm, measured in the liver. (B) Water maps of the liver from REPSI (left) and 

EPSI (right). Note the strong ghosting artifacts present along the phase-encoding dimension in the 

EPSI maps.  

 

3.4.3 Comparison between Time-Equivalent Fully-Sampled & Accelerated Acquisitions  

Table 3-4 shows the nRMSE’s of metabolite maps from reconstructions of time-equivalent, 

fully-sampled and accelerated REPSI and EPSI data with varying numbers of averages. Generally, 

the CS-reconstructed data, particularly from REPSI, had lower nRMSE’s than the time-equivalent, 

denoised fully-sampled data. The nRMSE values from REPSI were also, in most cases, lower than 

those from the time-equivalent EPSI reconstructions. Based on the improved nRMSE values in the 

CS-reconstructed data, it is preferable to reconstruct accelerated REPSI with more averages than 

to acquire a time-equivalent, fully-sampled dataset with fewer averages.  It can also be seen that 

REPSI retains lower nRMSE values than EPSI in essentially all cases. Figure 3-13 shows EPSI 

and REPSI tNAA maps resulting from the following time-equivalent cases: (A) Fully-sampled 
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with 2 averages versus AF = 2.5 with 5 averages, and (B) Fully-sampled with 2 averages versus 

AF = 4.0 with 8 averages. The CS-reconstructed maps in both cases showed improved SNR and 

greater similarity to the fully-sampled reference (8 averages) compared to the denoised fully-

sampled data, especially for REPSI.   

 

Table 3-4: Normalized root-mean square error (nRMSE) values of reconstructions from time-

equivalent, fully-sampled EPSI and REPSI acquisitions versus nRMSE values from CS 

reconstruction of time-equivalent accelerated data with different numbers of averages. 
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Figure 3-10: (A) Metabolite maps of tNAA, Cr, tCho, Glx, and mI (upper row) from fully-sampled 

reconstructions of REPSI brain data from a healthy 34 year-old male volunteer, and the respective 

CRLB maps (bottom row). (B) Fully-sampled EPSI reconstructions of tNAA, Cr, tCho, Glx, and 

mI metabolite maps (upper row) with the corresponding CRLB maps (bottom row). Note the 

higher intensities in the EPSI CRLB maps, indicating that REPSI produces more reliable 

metabolite concentration estimates, in part due a relatively high SNR’s. All maps are interpolated 

by a factor of two.  

 

3.4.4 Lipid Contamination in Radial and Cartesian EPSI  

We show the tNAA map and a representative spectrum before and after the lipid-

suppression from the EPSI (Figure 3-11(A)) and the REPSI (Figure 3-11(B)) reconstructions. As 

seen in both cases, the metabolite maps improve in both the CS-reconstructed and fully-sampled 

data, where more frontal voxels in the REPSI tNAA maps were able to be quantified by LC model 
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after the lipid-suppression. The spectra also show significant reductions of the lipid peak near 

NAA, especially in the REPSI case. Notably, the tNAA maps before and after lipid-removal are 

qualitatively very similar, for both the fully-sampled and CS reconstructions, and the lipid signal 

did not result in prominent artifacts. The CS algorithm applied to the lipid-contaminated data did 

not produce spectra in which the non-lipid signals are excessively attenuated. Since the proposed 

CS method avoids applying the TV operation along the spectral domain, the tendency of the 

reconstruction to weight the larger lipid or residual water signals more strongly than the lower 

SNR metabolites is reduced. This can be seen by the REPSI reconstruction of the prospectively 

undersampled data in Figure 3-12 (and Figure 3-5), where the CS-reconstructed spectra retain good 

fidelity to the fully-sampled spectra, before and after lipid-removal. 

 



77 

 

 

Figure 3-11: (A) (Left column): Fully sampled and accelerated (AF = 3x) non-lipid-suppressed 

EPSI tNAA metabolite map reconstructions from an in vivo brain dataset acquired with a larger 

VOI that encompasses the intracranial lipids at the corners. (Middle column): metabolite maps 

reconstructed after using an L2-minimization-based lipid suppression algorithm by Bilgic et al. 

(Right column): reconstructed spectra for fully-sampled and accelerated acquisitions (AF = 3x) 

before and after lipid-suppression in post-processing. (B) Same as (A) except for REPSI.  The 

metabolite maps are interpolated by a factor of two.  
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Figure 3-12: Overlaid in vivo brain spectra from the voxels within the volume-of-interest 

(highlighted in red), shown on the localization image (left). (A) Spectra with no eddy current or 

frequency drift corrections. (B) Spectra shown with only eddy current phase correction using 

Klose’s method. (C) Spectra shown with eddy current phase correction and with frequency and 

phase drift corrections using FID-A.  
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Figure 3-13: (A) (Left) REPSI and EPSI metabolite maps of tNAA from the fully-sampled 

reference (8 averages) compared to the maps from the fully-sampled, denoised reconstructions 

(middle) with 2 averages (denoised), and the maps from CS-reconstructions (right) at AF = 2.5 

with 5 averages (B) (Left) Fully-sampled reference metabolite maps of tNAA (8averages), 

compared to the fully-sampled, denoised map (middle) with 2 averages versus the map from CS-

reconstruction at AF = 4.0 with 8 averages. The CS-reconstructed maps in both cases showed 

improved SNR and greater similarity to the fully-sampled reference (8 averages) compared to the 

denoised fully-sampled data, especially for REPSI. All maps are interpolated by a factor of two.  
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3.4.5 REPSI acquisitions in Obstructive Sleep Apnea  

Glx/Cr was significantly decreased (27%; p<0.05) in OSA vs. control in the left posterior 

insula. Other metabolites did not show significant differences. mI/Cr trends were consistent with 

previous findings (higher in OSA) and Lac/Cr trended higher in OSA.  

This feasibility study showed that it is possible to measure multiple metabolites in multiple 

regions and detect effects of OSA. The accelerated technique enabled measurements to be 

completed in under 4 minutes. 

3.4.6 Accelerated REPSI in Healthy Prostate with a Reduced Field-of-View  

Table 3-5 shows that the Cho ratios from prospectively undersampled REPSI acquisitions are 

more consistent with those from the fully-sampled scans, compared to Cartesian EPSI. In a few 

cases, the percent errors are higher for REPSI but overall this error does not exceed 14%, whereas 

the percent error from Cartesian EPSI are as high as 76%. Overestimation and underestimation of 

the Cho ratios (e.g, Cr/Cho ~ 2.0 and Cit/Cho ~ 17) is possibly due to T1 saturation and T2 losses 

in the phantom. Figure 3-14 shows good REPSI and EPSI reconstructions from prospectively 

undersampled data, however the peak intensity decreases less in the REPSI case when AF = 2.0 & 

2.5. The in vivo spectra and citrate maps in Figure 3-15 and Figure 3-16 also show greater stability 

in the reconstructions from retrospectively undersampled REPSI, with more benign undersampling 

artifacts in REPSI. The Cartesian EPSI maps degrade faster as the AF increases, particularly along 

the phase-encoding dimension, and can be more susceptible artifacts from subject motion. In 

Figure 3-15, the spectra and the citrate map in the VoI show good consistency with the fully-

sampled results. Even at AF = 2.5, the REPSI citrate maps in Figure 3-16 and maintains the basic 

structures in the fully-sampled map, whereas the EPSI map at AF = 2.5 suffers an obvious signal 

loss in the lower right region. 
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Table 3-5: (A) Ratios of citrate (Cit), spermine (Spm), creatine (Cr), and myo-inositol (mI) with 

respect to choline (Cho), and their standard deviations, computed from CS-TV reconstructions of 

fully-sampled and prospectively undersampled REPSI and Cartesian EPSI datasets acquired in a 

prostate phantom. Note that the REPSI values are more consistent across all acceleration factors 

(AF). (B) Percent differences for the Cho ratios, taken with respect to the fully-sampled value. 

 

 

Figure 3-14: (Left panel) Localization image for the prostate phantom, showing a 320 x 320 

mm2 field-of-view and the inner 40 x 40 mm2 volume-of-interest (VOI). The red box contains the 

inner 2 x 2 region whose spectra are shown at the right, to avoid signal variations at the edges of 

the VOI. (Middle and right panels) Multi-voxel spectra from CS-TV reconstructions of 

prospectively undersampled REPSI and EPSI phantom datasets, respectively, acquired at 

acceleration factors (AF) of 1.0 (fully-sampled), 1.5 (21 ky-lines/spokes), 2 (16 ky-lines/spokes), 

and 2.5 (13 ky-lines/spokes). 

 



82 

 

 

Figure 3-15: (A) Multi-voxel spectra from CS-TV reconstructions of prospectively undersampled 

REPSI data from an in vivo healthy prostate (31 year-old healthy volunteer), acquired with 

acceleration factors (AF) of 1.5, 2, and 2.5. The spectra correspond to the 3 x 4 region shown in 

the localization image, where the fat signal is least dominant. (B) Citrate maps (with baseline of 

fat subtracted) from CS-TV reconstructions of prospectively undersampled REPSI data, acquired 

with AF's of 1.5, 2, and 2.5. 

 

 

Figure 3-16: (Left) Localization image of the prostate from a 65 year-old healthy 

volunteer. (Right) Citrate maps from CS-TV reconstructions of retrospectively undersampled 

REPSI (top) and Cartesian EPSI (bottom), with acceleration factors (AF) of 1.0 (fully-sampled), 

1.5, 2, and 2.5. The red arrows show that EPSI reconstructions have prominent aliasing artifacts 

across the phase-encoding dimension, especially as the AF increases, whereas the REPSI 
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reconstructions show relatively benign streaking. The REPSI citrate maps appear more consistent 

with the fully-sampled map. 

 

 
Figure 3-17: (Left) Localization images of the prostate from a 28 year-old healthy volunteer. The 

2 × 4 box shows the region in which the spectra are shown (at right), where signal is least 

dominated by fat. (Right) Multi-voxel spectra from CS-TV reconstructions of retrospectively 

undersampled REPSI (top) and Cartesian EPSI (bottom), with acceleration factors (AF) of 1.0 

(fully-sampled), 1.5, 2, and 2.5. Note that the REPSI spectra show and more prominent citrate 

peaks and are more consistent with the fully-sampled acquisition. 

 

Evidently, REPSI can tolerate more acceleration and therefore may be better suited for faster 

acquisitions in the prostate, in which the anatomy is small compared to the nominal FoV. In the 

examples shown in the study, the scan time of 2D REPSI can be decreased from 7.5 minutes to 3-

3.5 minutes without much loss in spectral quality, demonstrating the potential of reduced FoV 

MRSI for clinical prostate scans. 
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 Discussion 

3.5.1 Validation of REPSI for Accelerated 1H Spectroscopic Imaging  

We have shown that, in combination with CS, REPSI is able to tolerate greater reductions in 

scan time compared to EPSI. The findings confirm the potential of utilizing radial echo-planar k-

space trajectories and compressed sensing for accelerated spectroscopic imaging. Quantitation of 

metabolites and spectroscopic imaging results from radial data were compared with those from 

CS-reconstructions of undersampled Cartesian echo-planar spectroscopic data, on a time-

equivalent basis. Thus, the degree of reconstruction and quantitation accuracy as well as 

spectroscopic image quality of CS-reconstructions from undersampled EPSI and REPSI data were 

determined as a function of the scan time duration. All reconstruction and quantitation metrics – 

including spectral nRMSE maps, metabolite map nRMSE values, percent absolute difference maps, 

and concentration and CLRB estimates – show that accelerated REPSI provides a better trade-off 

between imaging speed and spectroscopic imaging quality, compared to the EPSI approach. 

 The comparisons are in the context of 2D spatial MRSI. Highly undersampling the 2D k-

space along the single phase-encoding dimension produces imaging artifacts that spread 

predominantly along that dimension. In contrast, the undersampled radial k-space results in 

streaking artifacts that are distributed uniformly outside of a reduced field-of-view 51. Thus, 

radially-undersampled 2D k-space is better suited for CS reconstruction, since these streaking 

artifacts are more similar to incoherent noise 22. An additional advantage of radial sampling is that 

each spoke contains equal amounts of low and high spatial frequencies over ky-kx, unlike in 

Cartesian sampling which consistently samples the lowest spatial frequencies only along the 

readout direction. For these reasons, it is expected that the CS reconstructions of REPSI data would 

produce better results than those from EPSI data, particularly in the 2D case. However, radial 
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imaging is relatively more susceptible to spatial blurring due to off-resonance effects 52. The 

slightly higher FWHM values of REPSI, particularly for fully-sampled data, is probably due to 

this limitation. Future studies need to be conducted to compare results from accelerated radial 

undersampling with those of Cartesian undersampling of two phase-encoding dimensions in 3D 

MRSI. 

The in vivo brain REPSI results demonstrate the applicability of radial echo-planar 

trajectories for fast MRSI on a clinical scanner. Qualitatively, the tNAA metabolite map from the 

CS-reconstruction of radial data undersampled with 13 spokes still appears very similar to the 

fully-sampled tNAA map, while the EPSI result contains severe spatial artifacts. Further 

reductions in spokes or ky-lines worsens both the REPSI and EPSI reconstructions. This 

observation implies that spectroscopic 2D imaging time can be reduced by approximately a factor 

of 2.5 relative to a fully-sampled Cartesian acquisition, but this can only be achieved with radial 

undersampling. Moreover, as shown in free-breathing liver acquisitions, the motion-robustness of 

radial sampling allows for measuring spectra with minimal motion-related artifacts from a free-

breathing liver scan. This property, along with the self-navigating ability of radial sampling, allows 

for the possibility of mitigating spectral artifacts in applications affected by motion-induced phase 

errors, such as diffusion-weighted spectroscopic imaging 21. 

 One limitation of this work is that the reconstructions were done coil-by-coil, and separately 

for each odd and even echo. The reconstruction time was approximately 1.5 – 2 hours for a single 

16-channel in vivo dataset. Previous reports in accelerated MRSI, such as in Chatnuntawech et al. 

30 and Nassirpour et al. 29 utilized a combination of parallel imaging (PI) and CS to obtain good 

quality, high-resolution MRSI at high acceleration factors in relatively short reconstruction times. 

The work in  30 used spiral undersampling schemes to measure 3D MRSI at AF’s of 4 – 4.5 with 
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high-resolution (voxel size 0.5 cc) and in 29 Cartesian undersampled FID-MRSI was applied to 

reconstruct matrices of up to 64 × 64 in 3 – 3.75 minutes. In our case, it is possible to use parallel 

computing and coil-compression 53 to reduce the computation overhead, and to adopt flyback 

trajectories 54,55 to avoid separate echo reconstructions. Future implementations will utilize a joint 

CS-PI approach 56, which requires a calibration scan. An advantage of radial sampling is that it is 

self-calibrating because it densely samples the central k-space, which is the most important data 

for estimating the coil sensitivities 57.  

 Another limitation of this work is that errors due to field inhomogeneity were not corrected 

in the CS reconstruction. Correction for B0 inhomogeneity in non-Cartesian undersampled data 

has been shown in 58–61, in which the B0 map can be incorporated into the undersampling operator 

to simultaneously correct for field inhomogeneity while performing the CS iterations. This 

approach requires a good low-resolution estimate of the field inhomogeneity map, which can be 

computed from the densely sampled central region of radial k-space. Future implementations will 

incorporate the B0 map into the CS reconstruction pipeline. Some effects of B0 inhomogeneity, 

such as frequency drift, can be corrected during post-processing 62,63(p),64. In Figure 3A-5 in the 

Appendix, we show that a combination of Klose’s correction for eddy-current-induced phase 

distortion, and frequency and phase alignment using the FID-A toolbox, can significantly improve 

the quality of the spectra and remove the frequency drifts among all spectra.  Although lipid 

contamination is largely preventable with VOI-based excitation, it is possible to remove the lipid 

signal in post-processing using the L2-based minimization technique by Bilgic et al. 65.  In Section 

2 of the Appendix, we demonstrate the robustness of our CS technique to lipid signals originating 

from large prescriptions of the VOI that include the intracranial lipid layer.  
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3.5.2 Other Potential Acceleration Techniques using REPSI: Parallel Imaging  

While this chapter demonstrated a compressed sensing technique for undersampled REPSI 

reconstructions, there are other acceleration methods that can be applied, such as parallel imaging. 

Parallel imaging techniques are often categorized as operating either in the image domain or in the 

k-space domain. Both types of approaches are related by the use of coil sensitivities or linear 

relationships among local k-space neighborhoods to estimate the missing k-space samples. With 

respect to the k-space based methods, calibration data is often required to estimate the k-space 

kernels that are used for synthesizing the missing data. This calibration data is usually acquired 

from the central k-space region, which corresponds to the lowest spatial frequencies that are also 

the most important for characterizing coil sensitivities. Therefore, since radial trajectories provide 

highly densely sampled central k-space acquisitions, REPSI is highly compatible with any type of 

parallel imaging method, without necessitating a separate calibration scan.  

In the Appendix, we discuss an image domain-based parallel imaging method that exploits the 

local correlations among the coil images. The local correlations are modeled an enforced as low 

rank matrices. Since these image correlations are based on the underlying coil sensitivities, whose 

dominant spatial information is contained within the central, low-frequency k-space region, the 

application of this type of this parallel imaging approach is highly suitable for radial acquisitions, 

for which the balance between data consistency and local low-rankness can be more readily met 

due to the dense radial sampling of the central k-space. Although the Appendix focuses on the 

application of this technique to MRI acquisitions, the same conceptual framework can be applied 

for REPSI acquisitions, in which the low-rank enforcement of local coil images can be iterated 

across the spectral dimension. Chapter 6 proposes future work for adopting this locally low-rank, 

image domain-based parallel imaging method for accelerated spectroscopic imaging. 
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 Conclusion 

We demonstrated the potential benefits of accelerated 2D spectroscopic imaging using 

radial k-space undersampling and compressed sensing reconstruction with total variation 

regularization. Compared to CS-reconstructions of undersampled Cartesian EPSI data, REPSI 

provided greater reconstruction accuracy and more reliable quantitation for essentially all 

acceleration factors. Reconstruction results in the brain indicate that EPSI-based metabolite maps 

are much more degraded at the acceleration factor corresponding to 13 acquired ky-lines, while 

REPSI still maintains reasonable image quality from the same number of spokes. The consequence 

is that the minimum scan time can be reduced by using the REPSI sequence, in the present example 

from 6 min 24 sec to 2 min 36 sec. Compared to the standard Cartesian approach and in 

combination with CS, radial undersampling is a promising approach to reduce scan time for 2D 

spectroscopic imaging.  
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Chapter 4 Single-Shot Diffusion Trace-Weighted MR 

Spectroscopy: Comparison with Unipolar and Bipolar DW-

PRESS 

 

  Abstract 

Purpose: Demonstrate the feasibility and performance of the PRESS-based, single-shot 

diffusion trace-weighted sequence in quantifying the trace apparent diffusion coefficient (ADC) 

in phantom and in vivo using a 3T MRI/MRS scanner, and compare results to trace ADC’s derived 

from conventional diffusion-weighted PRESS sequences acquired with unipolar and bipolar 

diffusion gradient configurations.  

Methods: The single-shot diffusion trace-weighted PRESS sequence was implemented and 

compared to DW-PRESS variants using bipolar and unipolar diffusion-sensitizing gradients, in 

vivo and in phantom. Nine phantom data sets were acquired using each sequence, and seven 

volunteers were scanned in three different brain regions to determine the range and variability of 

trace ADC values, and to allow a comparison of trace ADC’s among the sequences.  

Results: The single-shot trace sequence results in relatively stable range of trace ADC values 

that are statistically significantly higher than those produced from the unipolar and bipolar DW-

PRESS sequences. Only tNAA, tCr, and tCho were reliably estimated in all sequences with 

CRLB’s of at most 20%. The larger trace ADC from the single-shot sequences are likely due to 

the shorter diffusion time relative to the other sequences.  
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Conclusion: This study presents the first demonstration of the single-shot diffusion trace-

weighted sequence in a clinical scanner at 3T, and we compare the trace ADC values obtained 

with this sequence to those computed from conventional DW-PRESS sequences with bipolar and 

unipolar diffusion gradients. Results show excellent agreement of phantom trace ADC’s computed 

with all sequences, and in vivo ADC’s agree well with the expected differences between gray and 

white matter. The diffusion trace-weighted sequence could provide an estimate of the trace ADC 

in a much shorter scan time (by nearly a factor of three) compared to conventional DW-PRESS 

approaches that require three separate orthogonal directions.  

  Introduction 

Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) is a powerful tool that is 

capable of non-invasively measuring the diffusion properties of various intra-cellular metabolites 

in vivo. Unlike water, which permeates both the intra- and extra-cellular spaces, most metabolites 

are confined within the intracellular space, so that their diffusion reflects the structure and function 

of tissues at the microscopic scale. Quantifying metabolite diffusion therefore provides 

information pertaining to cellular compartment size and chemical transport, and the degree of 

tissue tortuosity and viscosity 70,71.  Single voxel DW-MRS has shown changes in the apparent 

diffusion coefficients (ADC) of metabolites due to various pathologies such as ischemia and brain 

tumors 72–75, multiple sclerosis 76,77, and psychiatric disorders 78.  

One of the major confounding factors in measuring the ADC is the effect of diffusion anisotropy. 

Generally, the ADC along any diffusion direction depends on the orientation of the subject with 

respect to the scanner frame of reference. To eliminate this bias, several studies have instead 

reported the trace of the diffusion tensor, which is an invariant quantity independent of the relative 
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orientation between the gradient axes and the volume of interest 79–81. Conventional DW-MRS 

methods require at least three separate measurements along orthogonal diffusion directions to 

determine the trace ADC. This can be accomplished by applying the diffusion gradients separately 

along each gradient axis or by scaling the amplitude simultaneously along multiple axes according 

to the desired directions 74,79–82.  

The additional diffusion-weighting from cross-term interactions between the diffusion-

sensitizing, localization, and other background gradients can also bias the ADC quantitation 83,84. 

One straightforward, although time-consuming, technique for removing this bias is to acquire an 

additional measurement with diffusion gradient amplitudes of opposite polarities 82. The geometric 

mean of the diffusion-weighted signal from both polarities eliminates the cross-term contribution 

to the signal attenuation 84, thereby improving the accuracy of the estimated ADC. This approach 

can be used for any conventional DW-MRS sequence, including those incorporating bipolar 

(Figure 4-1A) or unipolar (Figure 4-1B) diffusion-sensitizing gradients within the PRESS 37 

localization module. The bipolar scheme is known to minimize the cross-term contributions as 

well as eddy current effects, whereas the unipolar configuration (Figure 4-1B) generally does not 

share the same benefits 85–87.  A PRESS-based variant of the bipolar DW-MRS sequence has also 

been implemented using semi-LASER localization 81.  

DW-MRS sequences based on PRESS, as opposed to sequences that use other localization 

schemes such as STEAM 88, are of particular interest because this class of sequences allows for a 

diffusion gradient configuration that generates a signal weighted by the trace of the diffusion tensor, 

within a single shot or TR.  This single-shot diffusion trace-weighted scheme was originally 

proposed by Mori et al. for DW-MRI 89, and was later extended for DW-MRS by de Graaf 90. The 

single-shot diffusion trace-weighted MRS sequence (from here on also referred to as “Trace DW-
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PRESS”) is able to eliminate all cross terms between diffusion gradients and any background 

gradients while providing a diffusion trace-weighted signal that is suitable for directly estimating 

the trace ADC, without any additional measurements along orthogonal diffusion directions. A 

version of this sequence using localization by adiabatic selective refocusing (LASER) was 

proposed by Valette et al. 2 using a small bore animal scanner. However, to date, the validation 

and performance of trace DW-MRS in humans has not been shown, although it has been 

implemented on a clinical scanner for DW-MRI only 91.  

Another important consideration in DW-MRS is the dependence of the measured ADC on the 

diffusion time.  Shorter diffusion times are known to produce higher estimates of metabolite 

ADC’s in vivo. As the diffusion time decreases, the impact of structural restrictions on diffusion 

is reduced, and the mean displacements of the metabolites tend to approach those found in 

environments with unrestricted, free diffusion, resulting in a greater degree of signal attenuation 

92. Several reports have explored DW-MRS at short diffusion times (typically 1 – 10 ms or less) 

using oscillating sinusoidal gradients and have measured this relative increase in the trace ADC 

compared to DW-MRS with long diffusion times 93–95.  In the category of DW-MRS using pulsed 

gradients, the trace DW-MRS sequence is capable of much shorter diffusion times relative to the 

bipolar and unipolar alternatives, especially at long echo times. Generally, the echo times for trace 

DW-MRS must be relatively long (~140 ms) in order to accommodate the diffusion-sensitizing 

gradients within the PRESS localization module, and consequently the number of reliably detected 

metabolites is limited to the main groups of total n-acetylaspartate (tNAA), total creatine (tCr), 

and total choline (tCho).   

In this chapter, we validate the single shot diffusion-trace pulse sequence in vivo and in a 

phantom on a clinical 3T scanner. This study presents the first demonstration of DW-MRS using 



93 

 

the single-shot diffusion trace sequence proposed by de Graaf 90, but which until recently had not 

been testable in humans due to earlier hardware limitations of clinical scanners.  We report the in 

vivo trace ADC values of three main metabolite groups – total NAA, total Cr, and total Cho – and 

water, as well as six metabolites (NAA, Cr, Cho, Glu, mI, Lac) from a brain phantom, and compare 

these values to those measured with unipolar and bipolar PRESS DW-MRS schemes acquired with 

three orthogonal diffusion directions and positive and negative gradient polarities. In vivo results 

are shown from three different brain regions, and we tested for differences in trace ADC values 

across the different brain regions and pulse sequence variants.   
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Figure 4-1: Pulse sequence diagrams for the (A) Bipolar, (B) Unipolar, and (C) the single-shot 

diffusion trace-weighted (Trace) DW-PRESS sequences. The configuration for direction 1 ([1.0, 

1.0, -0.5]) is shown here for the Bipolar and Unipolar DW-PRESS sequences. In general, TE = 

TE1 + TE2 for PRESS sequences. For the Bipolar and Trace DW-PRESS sequences, TE1 = TE2 = 

TE/2. The unipolar sequence was implemented with the minimum TE1 and the rest of the time 

evenly distributed within the TE2 period. 
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  Theory 

4.3.1 The b-matrix and the Diffusion Tensor 

The degree of signal attenuation from diffusing molecules is achieved by varying the b-

value, which is primarily a function of the durations, amplitudes and temporal separations between 

the diffusion-sensitizing gradients, as well as all other localization and crusher gradients. A key 

component of the b-value computation is the gradient moment 𝐹⃑(𝑡′):  

𝐹⃑(𝑡′) =  ∫ 𝐺⃑(𝑡) 𝑑𝑡

𝑡′

0

   (4-1) 

where 𝐺⃑(𝑡) ≔  〈𝐺𝑥(𝑡), 𝐺𝑦(𝑡), 𝐺𝑧(𝑡)〉 is defined as the vector of the applied time-varying gradients 

96.  The matrix of b-values, 𝒃, can then be defined as  

where ⨂ denotes the outer product operation. Using this definition, the signal attenuation 𝑆(𝜏), 

after a time 𝜏, can be described as  

ln (
𝑆(𝜏)

𝑆0
) = − ∑𝒃𝛼𝛽𝑫𝛼𝛽

𝛼,𝛽

        𝛼, 𝛽 ∈ {𝑥, 𝑦, 𝑧} (4-3) 

where 𝑆0 is the signal amplitude without diffusion-weighting and 𝑫 is the diffusion tensor. It is 

important to note that both 𝒃 and 𝑫 are defined with respect to the same reference frame. For any 

arbitrary rotation, represented by matrix 𝑹, the trace of the rotated diffusion tensor 𝑫′ is preserved: 

𝑇𝑟(𝑫′) = 𝑇𝑟(𝑹𝑫) =  𝐷′𝑥𝑥 + 𝐷′𝑦𝑦 + 𝐷′𝑧𝑧 = 𝐷𝑥𝑥 + 𝐷𝑦𝑦 + 𝐷𝑧𝑧 = 𝑇𝑟(𝑫) 4-5 

𝒃 =  𝛾2 ∫ 𝐹⃑(𝑡′) ⨂ 𝐹⃑(𝑡′) 𝑑𝑡′
𝜏

0

 (4-2) 
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This invariance under any unitary transformation makes the trace of the diffusion tensor a 

quantity which can more consistently reflect the diffusion characteristics of metabolites, regardless 

of the relative orientation of the patient with respect to the scanner frame of reference.  

4.3.2 Cross Term Contribution to Diffusion-weighting 

Apart from the applied diffusion-sensitizing gradients, other background gradients, such as 

those from B0 inhomogeneity and susceptibility, as well as localization and crusher gradients, can 

cause an additional, unwanted diffusion-weighting. The total gradient 𝐺⃑(𝑡) can be represented as 

a summation of the diffusion-sensitizing (𝐺⃑𝑑(𝑡)) and the localization and background gradients 

(𝐺⃑𝑎(𝑡)): 𝐺⃑(𝑡) =  𝐺⃑𝑑(𝑡) + 𝐺⃑𝑎(𝑡).  In Equation 4-2, the b-matrix becomes  

𝒃 =  𝛾2 ∫ [𝐹⃑𝑑(𝑡′) ⨂ 𝐹⃑𝑑(𝑡′) + 𝐹⃑𝑎(𝑡
′) ⨂ 𝐹⃑𝑑(𝑡′)  +  𝐹⃑𝑑(𝑡′) ⨂ 𝐹⃑𝑎(𝑡

′)  + 𝐹⃑𝑎(𝑡
′) ⨂ 𝐹⃑𝑎(𝑡

′)] 𝑑𝑡′ 
𝜏

0

 (4-6) 

The two inner terms are commonly referred to as cross terms between the diffusion and all 

other background gradients, which further contribute to the diffusion-weighting of the signal. The 

last term is usually relatively small and is considered negligible in practice 97. Therefore, the b-

matrix simplifies to  

𝒃 =  𝒃𝒅 + 𝒃𝒄𝒕 (4-7) 

where 𝒃𝒅 = 𝛾2 ∫ 𝐹⃑⃗𝑑(𝑡
′) ⨂ 𝐹⃑⃗𝑑(𝑡

′)𝑑𝑡′
𝜏

0
 and 𝒃𝒄𝒕 = 𝛾2 ∫ [𝐹⃑𝑎(𝑡

′)⨂ 𝐹⃑𝑑(𝑡′) + 𝐹⃑𝑑(𝑡′)⨂ 𝐹⃑𝑎(𝑡
′)]

𝜏

0
𝑑𝑡′ . The 

procedure for undoing this extra term in the diffusion-weighting is to compute the geometric mean 

of the signals (peak integrals) acquired with diffusion-sensitizing gradients of opposite polarities, 

since the sign of the 𝒃𝒄𝒕 term becomes negated and cancels out:   
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𝑆𝑔𝑒𝑜(𝑏) =  [𝑆𝑝𝑜𝑠(𝑏) ∙ 𝑆𝑛𝑒𝑔(𝑏)]
1/2

= [𝑆0𝑒
−(𝑏𝑑

++𝑏𝑐𝑡)𝐷 ∙ 𝑆0𝑒
−(𝑏𝑑

−−𝑏𝑐𝑡)𝐷]
1/2

= 𝑆0𝑒
−
1
2(𝑏𝑑

++ 𝑏𝑑
−)𝐷

 

(4-8) 

The effective b-value for the geometric mean is the average of the b-values from the negative and 

positive diffusion gradient polarities, 𝑏𝑑
− and 𝑏𝑑

+, respectively.  

4.3.3 Diffusion Trace-weighted PRESS 

Signal-weighting by the trace of the diffusion tensor provides an orientation-independent 

ADC measurement. Conventional DW-MRS approaches require relatively long scan times to 

acquire separate measurements along three orthogonal diffusion directions to determine the trace 

ADC. On the other hand, the single shot technique achieves diffusion-trace weighting in only one 

measurement, thereby reducing the total necessary scan time for trace ADC measurements.  

The scheme first introduced by Mori et al. 89 applies sets of bipolar diffusion gradients of 

specific polarities such that any signal weighted by off-diagonal diffusion tensor elements is 

cancelled within a single TR. It can be shown that the particular configuration of the 12 sets of 

bipolar gradient lobes (interleaved with the PRESS localization) leads to the cancellation of signal 

weighted by off-diagonal terms in the diffusion tensor, i.e., in Equation 4-3, diffusion-weighting 

involving terms in the set {𝑫𝛼𝛽 | 𝛼 ≠  𝛽} are cancelled. Further details and examples of how these 

off-diagonal terms are cancelled in the computation in Equation 4-3 can be found in the 

aforementioned reports 2,89,90.  

The contribution to the total diffusion-weighting from the cross terms between the 

diffusion-sensitizing and the localization and crusher gradients can heavily bias the ADC 

estimation, so it is important to minimize or eliminate this confounding factor when measuring 
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this quantity, especially in vivo. Since the bipolar diffusion gradient pairs in the Trace DW-PRESS 

sequence are isolated from the localization and crusher gradients, and the gradient-induced phase 

is rebalanced after each pair, the diffusion-weighting originating from cross-terms due to 

localization and crusher gradients is effectively null. Another feature of Trace DW-PRESS is that 

the inclusion of a second refocusing pulse allows for the elimination of any cross-terms originating 

between the static background gradients (such as those arising from B0 inhomogeneity and 

susceptibility) and the diffusion-sensitizing gradients. The bipolar DW-MRS sequence (Figure 4-

1A) also is known to minimize (not eliminate) cross terms 98, while the unipolar DW-MRS retains 

a large contribution from cross-terms due to any static background gradients (Figure 4-5).  

4.3.4 Computing the b-matrix with respect to a given frame of reference 

As mentioned previously, the conventional approach for estimating the trace ADC requires 

measurements along three orthogonal diffusion directions. For a given diffusion-sensitizing 

gradient amplitude 𝐺𝑑, a particular diffusion direction is achieved by scaling this amplitude along 

each gradient axis according to a directional vector, 𝑛⃑⃗  =  (𝑛𝑥, 𝑛𝑦, 𝑛𝑧). As such, the diffusion 

gradient along the direction specified by 𝑛⃑⃗  can be written as 𝐺⃑𝑑 =  𝐺𝑑 ∙ 𝑛⃑⃗. When scaling the 

diffusion gradient amplitudes on each axis according to each vector within a given basis set, the 

diffusion tensor and b-matrix are consequently described with respect to that basis. 

Usually, the three directional vectors are chosen to be an orthogonal basis, with a common 

set being 𝛽 =  { (1.0, 1.0, −0.5), (1, −0.5, 1), (−0.5, 1.0, 1.0)}. This set makes more efficient 

use of the gradients to reach a given b-value, compared to other choices such as the standard basis 

𝛽0  =  {(1,0,0), (0,1,0), (0,0,1)}, for which the diffusion gradient is applied only along a single 

gradient axis per measurement. This standard basis is equivalent to the scanner frame of reference 
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in which the physical gradients are defined. The unitary transformation (change of basis) matrix 

[𝑄]
𝛽0

𝛽
 from the 𝛽0 to 𝛽 frame is  

[𝑄]
𝛽0

𝛽
= 

1

3
(

2 2 −1
2 −1 2

−1 2 2
) 

The b-matrix, 𝒃 , for the trace DW-PRESS sequence, computed with respect to 𝛽0 , is a 

diagonal matrix when neglecting all non-diffusion-sensitizing gradients, since all off-diagonal 

diffusion tensor terms are cancelled. Inclusion of localization and crusher gradients only adds 

extremely small off-diagonal terms as the amplitudes of these gradients are usually much smaller 

than those of the diffusion-sensitizing gradients.  

However, it is important to note that when performing the computation in Equation 4-2 

with respect to the 𝛽 frame, by replacing 𝐺⃑(𝑡) with 𝐺⃑′(𝑡) = 𝑄𝐺⃑(𝑡), the b-matrix for the trace DW-

PRESS is preserved. That is,  

[𝒃]𝜷 = 𝛾2 ∫ (∫ 𝑄𝐺⃑(𝑡)𝑑𝑡
𝑡′

0

) ⊗ (∫ 𝑄𝐺⃑(𝑡)𝑑𝑡
𝑡′

0

)  𝑑𝑡′
𝑇𝐸

0

= 𝛾2 ∫ (∫ 𝐺⃑(𝑡)𝑑𝑡
𝑡′

0

) ⊗ (∫ 𝐺⃑(𝑡)𝑑𝑡
𝑡′

0

)  𝑑𝑡′
𝑇𝐸

0

= [𝒃]𝜷𝟎
 

This is generally not the case for the b-matrices computed for the bipolar and unipolar DW-

PRESS sequences. The b-matrix for these sequences have diagonal and off-diagonal entries when 

computed in the standard 𝛽0 frame, although these matrices naturally become diagonal in the 𝛽 

frame, with only one diagonal entry, depending on the particular diffusion direction 𝑛⃗  ∈  𝛽 

assumed in Equation 4-2.  



100 

 

4.3.5 Diffusion times and b-values for the Bipolar, Unipolar, and Trace DW-PRESS  

Based on the formalism presented in 96, and referring to Figure 4-1, the analytic b-value 

for the bipolar sequence (neglecting the localization and crusher gradients) can be derived (see 

Appendix) as 

𝑏 =  𝛾2‖𝐺⃑𝑑‖
2
(2𝛿)2 {(Δ − 

2𝛿

3
− 

𝜏

2
) −

𝜁

6𝛿
[( 3𝛿 + 

𝜁

2
)  − 

𝜁2

5𝛿
] } (4-9) 

where ‖𝐺⃑𝑑‖ is the magnitude of the diffusion gradient vector applied along the direction specified 

by 𝑛⃑⃗ (𝐺⃑𝑑 =  𝐺𝑑 ∙ 𝑛⃑⃗), and 𝐺𝑑 is the amplitude.  Based on this formula, the effective diffusion time 

is 

𝑡𝑑 = (Δ − 
2𝛿

3
− 

𝜏

2
) −

𝜁

6𝛿
[( 3𝛿 + 

𝜁

2
) − 
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The following formula 

𝑏 =   𝑁 𝛾2‖𝐺⃑𝑑‖
2
𝛿2 [(Δ − 
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𝜁
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gives the analytic b-value for the unipolar (N = 1) and the single-shot trace-weighted (N = 4) 

sequences. For the trace-weighted sequence, the directional vector is always 𝑛⃑⃗ = (1.0, 1.0, 1.0), 

since the diffusion gradient amplitudes must be the same along all axes. For the unipolar and trace-

weighted sequences (Figure 4-1B and 4-1C), the diffusion time can be derived analytically from 

the generic b-value equation for a pair of trapezoidal gradients 6:  

𝑡𝑑 = (Δ − 
𝛿

3
) −

1

6
(
𝜁

𝛿
)
2

(𝛿 − 
𝜁

5
) (4-12) 
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The analytic b-value formulas presented above assume no localization and crusher gradients. The 

diffusion times given above are effectively the “reduced” diffusion times that are appropriate for 

trapezoidal diffusion-sensitizing gradients 99,100.  

   Methods 

All measurements were made using a Siemens Prisma 3T scanner (Siemens Healthcare, 

Munich, Germany) with a maximum net slew rate limit of 200 mT/m/ms and a maximum gradient 

amplitude limit of 80 mT/m per axis. A 16-channel receive head coil was used for both the phantom 

and in vivo acquisitions. Localization of the entire phantom or brain volume was achieved with 

T1-weighted axial, coronal, and sagittal two-dimensional MRI’s acquired with TR/TE = 250 

ms/2.49 ms, FOV = 240 × 240 mm2, 1.25 × 1.25 mm2 in-plane resolution, and 35 slices of 4 mm 

thickness each.  

For all DW-PRESS acquisitions, the voxel size was 25 × 25 × 25 mm3, TR = 2 s, and TE 

= 140 ms. The spectral width was 1250 Hz with 1024 time points. The offset frequency for the RF 

pulses was set at -2.3 ppm relative to water to minimize chemical shift misregistration. Global 

water suppression was achieved using a WET module 39. Non-water suppressed data was acquired 

for eddy current phase correction 44, coil sensitivity estimation, and for computing the water ADC.  

For Bipolar and Unipolar DW-PRESS, three orthogonal diffusion directions were 

measured. These directions correspond to the vectors [1.0, 1.0, -0.5] (direction 1), [1.0, -0.5, 1.0] 

(direction 2), and [-0.5, 1.0, 1.0] (direction 3). To eliminate bias due to cross terms, both negative 

and positive gradient polarities were acquired. The average of the b-values from the negative and 

positive gradient polarities were taken for calculating the cross-term compensated trace ADC’s 
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from the geometric means of the signals. All b-values were computed with numerical integration 

using the actual chronograms and gradient parameters implemented in the sequences.  

 

b-values (s/mm2) 

b0 
b1 b2 

pos neg pos neg 

BIPOLAR 

dir 1 

4 

1006 1026 1704 1731 

dir 2 1005 1027 1703 1732 

dir 3 1006 1026 1705 1731 

UNIPOLAR 

dir 1 

4 

1034 954 1749 1644 

dir 2 1034 953 1750 1643 

dir 3 1034 953 1750 1644 

TRACE 4 1020 1707 

Table 4-1: Table of b-values for each sequence used in this study. Note the relatively large 

difference in the computed b-values between the positive and negative diffusion gradient polarities 

for the Unipolar DW-PRESS sequence. For calculating the ADC in each direction, the average of 

the b-values from the positive and negative gradient polarities were used for fitting the geometric 

mean of the corresponding diffusion-weighted signals. 

4.4.1 Phantom Data Acquisitions 

The GE “Braino” phantom (GE Medical Systems, Milwaukee, WI, USA), containing N-

acetylasparate (NAA, 12.5 mM), creatine (Cr, 10.0 mM), choline (Cho, 3.0 mM), Glutamate (Glu, 

12.5 mM), myo-inositol (mI, 5.0 mM), and Lactate (Lac, 5.0 mM) was used for all phantom 

acquisitions. The ADC’s of the GE Braino metabolites were reported by Landheer et al. 101. The 

voxel was positioned at the center of the phantom which was placed at isocenter.  

Three b-values – null (b0), medium (b1), and high (b2) – were measured for phantom scans: 

b0 = 4 s/mm2, b1 = 994 – 1,021 s/mm2, and b2 = 1,697 – 1,718 s/mm2. For these b-values, the 

corresponding diffusion-sensitizing gradient amplitudes for each sequence were as follows: (i) 
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Bipolar – 0, 24.9, 32.4 mT/m; (ii) Unipolar – 0, 52, and 68 mT/m; (iii) Trace – 0, 51, 66 mT/m. 

For a fixed TE, the trace-weighted sequence is less efficient at reaching higher b-values than the 

other sequences. The unipolar sequence has marked differences in the computed b-value from the 

negative and positive diffusion gradient polarities (Table 4-1).  

The diffusion gradient parameters for each sequence (Figure 4-1) were as follows: (i) 

Bipolar – ζ = 700 μs, δ = 6.7 ms, Δ = 70 ms, τ = 17.6 ms; (ii) Unipolar – ζ = 1.5 ms, δ = 9.5 ms, Δ 

= 28.6 ms; (iii) Trace – ζ = 1.5 ms, δ = 6.5 ms, Δ = 13 ms. At the largest b-value, the bipolar and 

unipolar DW-PRESS sequences had net slew rates of 69.4 mT/m/ms and 68 mT/m/ms, 

respectively, while the trace-weighted sequence had a net slew rate of 76.2 mT/m/ms.  For the 

given gradient amplitudes, the ramp times were chosen to in order to limit the slew rate of the 

Unipolar and Trace DW-PRESS sequences, which could not exceed 79.6 mT/m/ms due to scanner-

imposed nerve stimulation limits for in vivo scans.  

The diffusion times for the bipolar and unipolar sequences were 58.8 ms and 25.2 ms, 

respectively, and the diffusion time for the trace-weighted sequence was 10.8 ms.  

The water-suppressed acquisitions had 20, 36, and 52 averages with corresponding non-

water suppressed averages of 4, 6, and 8 averages, for the null, medium, and high b-values, 

respectively. The average linewidth of the water magnitude peak after manual shimming was 4.6 

Hz.  
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Figure 4-2: In vivo localization images for (A) frontal gray matter (FG) (B) occipital gray matter 

(OG), and (C) occipital (subcortical) white matter (OW). The panel in (D) shows voxel 

placement in the GE Braino phantom. 

 

4.4.2 In Vivo Data Acquisitions 

A total of 14 healthy volunteers (6 females and 8 males, ages = 39.9 ± 16 years) were recruited 

to participate in this study and gave informed consent according to local institutional review board 

guidelines. A subset of these volunteers was scanned no more than two times but in different brain 

regions. Three different brain regions (Figure 4-2) were probed with each sequence – the frontal 

gray (FG) matter from the prefrontal lobe, occipital gray (OG) matter, and occipital (subcortical) 

white (OW) matter.  
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Data from all three sequences were acquired during the same scan session. Only two b-

values were acquired from the Bipolar and Unipolar DW-PRESS sequences, due to scan time 

limitations – one null b-value of approximately 4 s/mm2 (b0) and a higher b-value (b2) of 1,697 – 

1,718 s/mm2. The null b-value data (with diffusion gradients set to zero) were acquired with 28 

and 4 averages for water-suppressed and non-water-suppressed data, respectively. Diffusion-

weighted spectra were acquired with 56 and 8 averages for the water-suppressed and non-water-

suppressed data, respectively. For the Bipolar and Unipolar DW-PRESS sequences, spectra from 

three orthogonal directions and with negative and positive diffusion gradient polarities were 

acquired, resulting in a scan time of 13 minutes, 52 seconds for 7 measurements (1 null and 6 

diffusion-weighted).  

In contrast, three b-values were acquired for the diffusion trace-weighted sequence – one 

null b-value of approximately 4 s/mm2 (b0), a medium b-value of 1,021 s/mm2 (b1), and a higher 

b-value (b2) of 1,707 s/mm2. The same number of averages were acquired as for the Bipolar and 

Unipolar DW-PRESS sequences for b0 and b2.  For b1, 44 and 6 averages were acquired for the 

water-suppressed and non-water-suppressed data, respectively. The scan time for the Trace DW-

PRESS acquisition was 4 minutes, 45 seconds.  

The average linewidths of the water magnitude peak after manual shimming was 18.2 Hz, 

13.8 Hz, and 12.8 Hz, for the frontal gray, occipital gray, and occipital (subcortical) white matter 

brain regions, respectively.  

The total scan time for one in vivo session (Bipolar, Unipolar, and Trace DW-PRESS 

acquisitions) - including localization, shimming, and other sequence preparations – was 

approximately 50 minutes 
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4.4.3 Determining the effects of eddy-currents 

The extent of the influence of eddy currents on the signal was quantified by measuring the 

standard deviation (SD) of first order phase correction for the NAA peak before subtracting the 

reference water phase from the FID, and before coil-combination. The spectrum from the dominant 

coil element was used. The maximum coil element was determined as the coil with the greatest 

water peak integral in the water-unsuppressed data, which also had sufficient NAA SNR to allow 

a reliable phase determination. A similar approach for measuring eddy current effects was taken 

recently by Hanstock et al. 102.   

This analysis was done on phantom data from all sequence types, since the phantom 

measurements were not influenced by confounding factors such as thermal noise, motion, and 

variability in localization – all of which could present additional sources of phase variation in vivo. 

Additionally, only the spectrum from the coil with maximum signal was used, since this analysis 

was done on uncombined coil data. Using a least-squares algorithm, the optimal phase 𝜑0 for 

placing the real part of the NAA peak in absorptive mode was formulated as the minimization 

𝜑0 = argmin
𝜑

1

2
‖|𝑌| − 𝑌𝑒𝑖𝜑‖

2

2
 (4-13) 

where Y is the portion of the measured spectrum in the range of the NAA singlet (1.8 – 2.2 

ppm) and |𝑌| is the magnitude. Prior to the least-squares procedure, linear baseline was subtracted. 

The SD of the zero-order phase 𝜑0 was computed from across all measurement for each type of 

sequence and for each b-value.  
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4.4.4 Determining the effects of diffusion-weighting from cross terms 

The water-unsuppressed phantom data from the bipolar and unipolar DW-PRESS 

sequences was used for determining the degree to which cross-terms cause additional signal 

attenuation. The water peak in magnitude mode was integrated over a frequency range containing 

a water signal level above at least 1% the maximum peak height. This integral was computed for 

all three directions and for both polarities. Large differences in the water peak area between 

negative and positive polarities would indicate a strong contribution from cross terms. This 

approach for determining the effects due to cross terms is similar to those found in other reports 

82,103.  

4.4.5 Post-processing 

Several reports have emphasized the importance of correcting the diffusion-weighted signal 

before any quantitative analysis 79,80,104–109. The diffusion-sensitizing gradients, along with 

pulsatile motion in the brain, render the signal more susceptible to large phase variations from shot 

to shot. Therefore, it is crucial to apply 0th order phase corrections as well as frequency drift 

corrections to the data before signal averaging (Figure 4-3). The residual water or another 

dominant peak, such as the NAA singlet, can serve as a reference for phasing the signal and 

determining the amount of frequency drift. No cardiac gating or ECG triggering was used in this 

study, similar to other reports 79,80,102.  

Initially, eddy current phase correction was implemented using the non-water-suppressed 

data 44. Using a least squares algorithm [Equation 4-13], the optimal zero-order phase for the NAA 

peak was determined for each average and coil, and this constant phase was subsequently applied 

to the entire spectrum. The coil sensitivities were estimated from the water peak integrals of the 

water-unsuppressed data. Generalized least squares coil combination 110 was then applied. The 
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amount of frequency shift was estimated using a cross-correlation algorithm with the NAA peak 

from the first average as a reference. Following the frequency drift correction, the individual 

averages with NAA peak SNR’s less than 90% of the average NAA peak SNR were removed. 

Before averaging, a final frequency drift Δ𝑓𝑖 and zero-order phase 𝜑𝑖 correction for each average 

were computed using a non-linear least squares algorithm 46 

Δ𝑓𝑖 , 𝜑𝑖 = argmin
Δ𝑓,𝜑

1

2
 ‖𝑦̃ − 𝑦𝑖𝑒

𝑖𝜑+𝑖2𝜋Δ𝑓𝑡‖
2

2
 (4-14) 

where 𝑦𝑖 is the time signal of the 𝑖𝑡ℎ average, and 𝑦̃ is the average that is most similar (in 

terms of room mean square error) to the other averages within the same set.  

Finally, the signals were averaged and the residual water was removed using the Hankel-

Lanczos singular value decomposition algorithm 48. These corrective procedures were necessary 

to phase and frequency align each individual spectrum to maximize the SNR before the final 

averaging and quantitation and to remove, by signal SNR thresholding, spectra overly affected my 

motion and other artifacts. All spectra were processed using MATLAB (MathWorks, Natick, MA, 

USA).  
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Figure 4-3: Post-processing procedures: (A) Separation of the low- and high-SNR averages. (B) 

Comparison of the averaged spectra from the sets of low-SNR and high-SNR averages, showing 

that a reduction in peak intensities will result if the low-SNR averages are not removed. (C) The 

threshold criterion based on the SNR of the NAA singlet determines which specific averages to 

remove. (D) Raw spectra before zero-order phase correction. (E) The spectra after zero-order 

phase correction. (F) Frequency-drift correction after zero-order phasing. (G) Comparison 

between the uncorrected and corrected spectra. 
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4.4.6 Signal Quantitation and Determination of ADC  

Prior-knowledge basis spectra were simulated with VESPA50, using the exact sequence 

timings of each DW-PRESS variant, but with ideal 90° and 180° RF pulses. For in vivo data sets, 

the basis set included the following metabolites: alanine, ascorbate, aspartate, choline (Cho), 

creatine (Cr), γ-aminobutyric acid, glucose, glutamine (Gln), glutamate (Glu), 

glycerophosphorylcholine, glutathione, lactate (Lac), myo-inositol (mI), n-acetylaspartate (NAA), 

n-acetylaspartylglutamate (NAAG), phosphorylcholine (PCh), phosphocreatine (PCr), 

phosphorylethanolamine, scyllo-inositol, and taurine.  

The post-processed MRS signal was quantified using LC Model (version 6.2-0T) 111 and 

the resulting LC model concentration estimates, which are proportional to the metabolite peak 

integrals, were assumed to fit the general model: 

𝑆(𝑏𝑘
±) = 𝑆(𝑏0)𝑒

−𝑏𝑘
±∙𝐴𝐷𝐶𝑘

±
 (4-15) 

where 𝑏𝑘
± and 𝐴𝐷𝐶𝑘

± is the b-value and the ADC in the 𝑘𝑡ℎ direction, for either the positive 

or negative polarities, respectively. Only estimates with Cramer-Rao lower bounds (CRLB’s) ≤ 

20% were considered for further analysis. For DW-PRESS acquisitions with three directions and 

two polarities, the ADC’s from the negative, positive, and geometric means of the two polarities 

were also determined. The geometric mean, 𝑆𝑔𝑒𝑜(𝑏𝑘), of the peak area values was computed as:  

𝑆𝑔𝑒𝑜(𝑏𝑘) =  √𝑆(𝑏𝑘
+) ∙ 𝑆(𝑏𝑘

−) (4-16) 

The final trace ADC from positive, negative, or geometric means was computed as the average 

of the corresponding ADC’s from all three directions.  
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𝑇𝑟𝑎𝑐𝑒 𝐴𝐷𝐶{+,−,𝑔𝑒𝑜}  =  
1

3
∑ (𝐴𝐷𝐶𝑘

{+,−,𝑔𝑒𝑜}
)

3

𝑘=1

 (4-17) 

The above model also holds for the trace DW-PRESS sequence, where 𝑘 = 1 and a single 

polarity is applicable. 

For estimation of water ADC’s, the water peak from the non-water suppressed data was 

first zero-order phased into absorptive mode. The peak was then 4× interpolated followed by 

numerical integration to estimate the area. These water peak areas were subsequently used for 

computing the ADC using the same model stated above.   

4.4.7 Statistical Analysis  

Phantom 

A repeated measures analysis of variance was conducted to determine any significant 

differences in the trace ADC values of NAA, Cr, Cho, Glu, mI, and Lac from the brain phantom, 

among the Bipolar, Unipolar and Trace DW-PRESS sequences. Differences were considered 

statistically significant if p < 0.05.  

Paired samples t-test were conducted to determine any statistically significant differences 

in the trace ADC values of NAA, Cr, Cho, Glu, mI, and Lac from the brain phantom, between 

acquisitions with negative (ADC-) and positive (ADC+) gradient polarities. This analysis was 

done separately for the Bipolar and Unipolar sequences.  

In vivo 

A repeated measures analysis of variance was conducted to determine any significant 

differences in the trace ADC values of tNAA, tCr, tCho and Water, for each brain region (FG, OG, 
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and OW), among the Bipolar, Unipolar and Trace DW-PRESS sequences. Differences were 

considered statistically significant if p < 0.05, with Bonferroni correction for multiple comparisons.  

Paired samples t-tests were conducted to determine any statistically significant differences 

in the trace ADC values of tNAA, tCr, tCho, and Water between the occipital gray (OG) and 

occipital white (OW) matter, for each type of pulse sequence. A p-value of 0.05 was set for 

statistical significance.   

Paired samples t-test were conducted to determine any statistically significant differences 

in the trace ADC values of tNAA, tCr, tCho, and water measured from acquisitions with negative 

(ADC-) and positive (ADC+) gradient polarities. This analysis was done separately for the Bipolar 

and Unipolar sequences, and for each brain region (FG, OG, and OW).  

Two volunteers were each scanned three separate times – one in the frontal gray (FG) 

matter and the other in the occipital gray (OG) matter. The means, standard deviations, and 

coefficients of variance (CV) of the trace ADC’s of tNAA, tCr, tCho, and water were computed 

across the three sessions. 

  Results 

The importance of post-processing procedures is illustrated in Figure 4-3, where SNR-

based thresholding was key in excluding averages that were significantly affected by motion. 

Frequency drift and phase corrections prior to summation also ensured that the diffusion-weighted 

signal was not overly biased towards higher ADC’s. Without these corrective procedures, the 

signal quantitation would inaccurately reflect the actual signal attenuation due to diffusion.  
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Figure 4-4: (A) Representative spectra acquired with the Bipolar, Unipolar, and diffusion-trace 

weighted (Trace) DW-PRESS sequences. Spectra from all three b-values (b0, b1, b2) are shown. 

The spectra from the Bipolar and Unipolar DW-PRESS sequences acquired at all three directions 

with positive (dir1+, dir2+, dir3+) and negative (dir1- , dir2-, dir3-) polarities are shown. (B) The 

standard deviations (SD) of the zero-order phase corrections for the NAA peak (before 

application of eddy current phase correction). This SD is a measure of the effect of eddy currents 

on the acquired signal. (C) Percent difference of the water peak integral values between water 

spectra acquired with negative and positive polarities – mean and standard deviations (error bars) 

are shown for all three directions and for the two b-values greater than the b0. The unipolar 

sequence has markedly higher differences in b-values between the two polarities. 

 Figure 4-4A presents representative spectra acquired with the bipolar, unipolar, and trace-

weighted sequences in the GE Braino phantom. The amplitudes of the NAA peaks in the unipolar 

sequences tend to vary more compared to the NAA spectra from the bipolar sequence, both as a 

function of direction and polarity.  In Figure 4-4B, the standard deviations of the zero-order phase 

correction on the NAA singlet, shows that the bipolar sequence experiences a lower degree of eddy 

current-induced phase fluctuations. However, the unipolar and trace sequences have a larger 

standard deviation, indicating greater influence of eddy currents, as expected since these sequences 

require a greater diffusion amplitude to reach a given b-value, compared to the bipolar sequence.  

Figure 4-4C also shows that the unipolar sequence does not compensate for cross-terms as well as 
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the bipolar sequence, as the percent differences between the water peaks acquired with positive 

and negative polarities is greater than the bipolar sequence.  

 

Table 4-2: GE Braino trace ADC values averaged over 9 measurements from DW-PRESS 

acquisitions using the Bipolar, Unipolar, and Single-shot Trace-weighted sequences. All phantom 

measurements agree well with reference values 101.  

 

Figure 4-5: Effect of cross-terms originating from the interaction of the diffusion-sensitizing 

gradients with a static background gradient G0 (shown in green). The diffusion direction 

  

GE Braino Trace ADC values:  mean ± standard deviation [μm2/ms] 

Bipolar Unipolar Trace 
Reference Values 

ADC- ADC+ ADC* ADC- ADC+ ADC* ADC 

NAA 0.59 ± 0.01 0.61 ± 0.02 0.6 ± 0.01 0.6 ± 0.02 0.6 ± 0.02 0.6 ± 0.02 0.6 ± 0.02 0.59 ± 0.01 

Cr 0.77 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.03 0.78 ± 0.02 0.78 ± 0.02 0.78 ± 0.02 0.78 ± 0.02/0.84 ± 0.1 

Cho 0.93 ± 0.01 0.94 ± 0.02 0.93 ± 0.01 0.95 ± 0.04 0.95 ± 0.03 0.95 ± 0.03 0.93 ± 0.03 0.91 ± 0.03 

Glu 0.78 ± 0.06 0.77 ± 0.04 0.78 ± 0.04 0.64 ± 0.06 0.65 ± 0.06 0.64 ± 0.06 0.73 ± 0.07 0.76 ± 0.03 

Lac 0.75 ± 0.13 0.8 ± 0.14 0.78 ± 0.12 0.82 ± 0.08 0.8 ± 0.08 0.81 ± 0.06 0.76 ± 0.1 0.64 ± 0.13 

mI 0.78 ± 0.16 0.79 ± 0.13 0.79 ± 0.14 0.72 ± 0.12 0.72 ± 0.14 0.72 ± 0.13 0.76 ± 0.11 0.76 ± 0.1 
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corresponding to the vector [1.0, 1.0, -0.5] is shown. The gradient moments (F0, Fx, Fy, and Fz) are 

plotted along with the cross terms (F0Fx, F0Fy, and F0Fz), for the Bipolar, Unipolar, and Trace 

(diffusion trace-weighted) DW-PRESS sequences. The cross terms FxFy, FyFz, and FxFz that 

contribute to off-diagonal elements in the b-matrix are also shown. Note that the Bipolar and Trace 

DW-PRESS sequences have equal contributions of negative and positive areas in the F0Fx, F0Fy, 

and F0Fz plots, leading to cancellation of cross terms originating from the G0. The Unipolar DW-

PRESS sequences, in contrast, retains a large net cross term contribution. For simplicity, the 

localization and crusher gradients were omitted in the computation of F0, Fj, and F0Fj (j = x, y, z). 

 

As seen in Figure 4-5, cross terms due to static background gradients are compensated for 

in the Bipolar and Trace DW-PRESS sequences. However, the Unipolar sequence has an inherent 

greater net signal attenuation due to cross terms from the background gradient. This effect explains 

the large differences in the computed b-value between the negative and positive diffusion gradient 

polarities in the Unipolar DW-PRESS sequences (Table 4-1). The cross terms FxFy, FxFz, and FyFz 

correspond to the off-diagonal elements of the b-matrix. Evidently, the time integrals of these 

terms are essentially nulled only for the Trace DW-PRESS sequence. Figure 4-6 shows 

representative spectra in the FG, OG, and OW regions, indicating good linewidths (averages of 

12-18 Hz for the magnitude water peak in vivo) and SNR’s suitable for quantitation, as well as 

Cramer-Rao lower bound values (CRLB’s) no greater than 20% (Table 4-4). Spectra from Trace 

DW-PRESS experience the largest drop in signal amplitude at the highest b-value tested, compared 

to the Bipolar and Unipolar DW-PRESS acquisitions.  
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Figure 4-6: In vivo spectra from Bipolar, Unipolar, and Trace DW-PRESS sequences, shown from 

acquisitions in frontal gray matter (FG), occipital gray matter (OG), and subcortical white matter 

(OW). For Bipolar and Unipolar DW-PRESS, spectra are shown for both gradient polarities and 

all three directions, at b0 (null) and b2. An additional b-value (b1) was acquired for Trace DW-

PRESS. 

Figure 4-7 demonstrates the average trace ADC’s computed from the three sequences in 

each brain region. The difference in ADC’s between the Trace and Unipolar and Bipolar DW-

PRESS sequences were statistically significant for most metabolites (see subsection below). The 

significantly increased trace ADC values of water is quite evident in the Trace DW-PRESS 

acquisitions, indicating the effect of the shorter diffusion time. This effect is also seen in Figure 4-

9, where the signal ratios S(b)/S0 in the Trace DW-PRESS sequence are evidently lower than the 

Bipolar and Unipolar DW-PRESS acquisitions, for any given b-value.  
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Figure 4-7: Average trace ADC values for the three main metabolite groups (tNAA, tCr, and tCho) 

and Water in (A) frontal gray (FG) matter, (B) occipital gray (OG) matter, and (C) occipital 

(subcortical) white (OW) matter. Note the overall larger trace ADC’s of water and metabolites 

from Trace DW-PRESS compared to the other sequences (Bipolar and Unipolar). 

Figure 4-8 illustrates representative spectra for each sequence in the occipital gray matter 

region of the brain. The difference in the spectra from negative and positive polarities, as well as 

from different diffusion directions, is quite small, as seen from the NAA singlet from the Bipolar 

and Unipolar DW-PRESS acquisitions. However, the extent of signal attenuation is less than that 

of the Trace DW-PRESS sequence, which shows more reduction at the highest b-value (1707 

s/mm2) compared to the other sequences. This effect is largely due to the shorter diffusion time of 

the Trace DW-PRESS sequences. In contrast to the in vivo spectra, the phantom spectra from all 

sequences experience a similar reduction of signal intensity as a function of b-value, as seen in 
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Figure 4-10A. In vivo, these relative signal intensity reductions are not the same as a function of 

the lowest (b0) and highest (b2) b-value, between the Bipolar and Unipolar and the Trace DW-

PRESS sequence (Figure 4-10B), showing that the restriction of the metabolites is affected 

differently depending on the diffusion time.  

 

Table 4-3: Table of in vivo ADC values for the Bipolar, Unipolar, and Trace DW-PRESS 

sequences. For the Bipolar and Unipolar DW-PRESS sequences, the trace ADC’s from negative 

(ADC-) and positive (ADC+) polarities were computed, as well as the trace ADC from the 

geometric mean, ADC (geo), of the signals from positive and negative diffusion gradient polarities. 

In the rightmost column, the trace ADC values from the Trace DW-PRESS sequence are shown. 

 

In Vivo Trace ADC values:  mean ± standard deviation [μm2/ms] 

BIPOLAR UNIPOLAR TRACE 

ADC- ADC+ ADC (gm) ADC- ADC+ ADC (gm) ADC 

FG 

tNAA 0.11 ± 0.04 0.11 ± 0.04 0.11 ± 0.04 0.12 ± 0.03 0.15 ± 0.04 0.13 ± 0.03 0.26 ± 0.04 

tCr 0.11 ± 0.06 0.12 ± 0.06 0.12 ± 0.06 0.12 ± 0.04 0.14 ± 0.06 0.13 ± 0.05 0.23 ± 0.03 

tCho 0.12 ± 0.05 0.14 ± 0.05 0.13 ± 0.04 0.18 ± 0.08 0.18 ± 0.07 0.18 ± 0.07 0.23 ± 0.04 

Water 1.03 ± 0.06 1.05 ± 0.06 1.04 ± 0.06 1.02 ± 0.07 1.02 ± 0.07 1.02 ± 0.07 1.19 ± 0.08 

OG 

tNAA 0.13 ± 0.05 0.13 ± 0.04 0.13 ± 0.04 0.16 ± 0.03 0.17 ± 0.03 0.16 ± 0.03 0.27 ± 0.03 

tCr 0.14 ± 0.05 0.14 ± 0.05 0.14 ± 0.05 0.15 ± 0.03 0.15 ± 0.05 0.15 ± 0.04 0.3 ± 0.05 

tCho 0.11 ± 0.05 0.11 ± 0.04 0.11 ± 0.04 0.14 ± 0.04 0.11 ± 0.06 0.12 ± 0.05 0.29 ± 0.06 

Water 1.02 ± 0.05 1.04 ± 0.06 1.03 ± 0.05 1.01 ± 0.04 0.99 ± 0.03 1.00 ± 0.03 1.20 ± 0.06 

OW 

tNAA 0.16 ± 0.02 0.17 ± 0.02 0.16 ± 0.02 0.16 ± 0.04 0.17 ± 0.04 0.17 ± 0.03 0.34 ± 0.05 

tCr 0.17 ± 0.03 0.17 ± 0.04 0.17 ± 0.03 0.17 ± 0.03 0.17 ± 0.02 0.17 ± 0.02 0.35 ± 0.06 

tCho 0.11 ± 0.04 0.11 ± 0.03 0.11 ± 0.03 0.10 ± 0.04 0.11 ± 0.03 0.1 ± 0.03 0.29 ± 0.05 

Water 0.77 ± 0.06 0.77 ± 0.06 0.77 ± 0.06 0.78 ± 0.07 0.76 ± 0.07 0.77 ± 0.07 1.06 ± 0.08 
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Figure 4-8: (A) Representative spectra from the Bipolar, Unipolar and Trace DW-PRESS 

acquisitions, from a healthy volunteer in the occipital gray (OG) matter region. (B) Plots of the 

NAA singlet at 2.01 ppm. For the Unipolar and Bipolar DW-PRESS sequences, the various spectra 

from both gradient polarities and three diffusion directions (dir1
-, dir1

+, dir2
-, dir2

+, dir3
-, dir3

+) are 

overlaid. The NAA singlet is shown for the Trace DW-PRESS sequence at three b-values. (C) The 

water peak from the null to the highest diffusion-weighting. Note the greater degree of signal 

attenuation in the Trace DW-PRESS acquisitions, for the same b-value range (b0 and b2) as those 

shown for the Unipolar and Bipolar DW-PRESS spectra. (D) Zoom-in on the water spectra, 

indicating the greater reduction in water signal in the Trace DW-PRESS acquisitions. 

 

4.5.1 Statistical Analysis  

Phantom 

No significant differences were found in the trace ADC values of NAA, Cr, Cho, Lac, and 

mI among the Bipolar, Unipolar, and Trace DW-PRESS phantom acquisitions (Table 4-2). The 

trace ADC values of Glu were significantly different only between the Bipolar (0.78 ± 0.05 μm2/ms) 

and Unipolar (0.64 ± 0.06 μm2/ms) sequences (p = 0.006). For Unipolar DW-PRESS, the trace 

ADC of Glu from the negative gradient polarities (ADC- = 0.64 ± 0.06 μm2/ms) is significantly 

different (p < 0.001) from the one from the positive polarities (ADC+ = 0.65 ± 0.07 μm2/ms). For 
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the Bipolar sequence, the trace ADC+ of Glu (0.77 ± 0.04 μm2/ms) was also significantly different 

from the trace ADC- (0.78 ± 0.07 μm2/ms). All other trace ADC+ and ADC- values are not 

statistically significantly different for any other metabolites from either the Unipolar or Bipolar 

sequences.  

Coefficients of variance percentages (CV%) are largest for the trace ADC estimates of Glu 

(6 – 10%), Lac (8 – 18%), and mI (15 – 21%) in all sequences, while the CV%’s of NAA, Cr, and 

Cho are all below 4%. The CV%’s of trace ADC estimates of Lac and mI are largest from the 

Bipolar acquisitions (16-19% and 19-21%, respectively). The CV% value for Lac is lowest from 

the Unipolar sequence (8-10%).  
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Figure 4-9: Signal Ratios (S/S0) for the Bipolar, Unipolar, and Trace DW-PRESS acquisitions in 

(A) frontal gray (FG) matter, (B) occipital gray (OG) matter, and (C) occipital (subcortical) white 

(OW) matter. For the Bipolar and Unipolar sequences, the ratios of the high to null b-value signals 

(S(b2)/S(b0)) are shown for all three diffusion directions. The ratios of S(b1)/S(b0) and S(b2)/S(b0) 

are shown for the trace DW-PRESS sequence in the third column Only the lowest (null – b0 = 4 

s/mm2) and the highest (b2 = 1,697 – 1,718 s/mm2) b-values were acquired for in vivo Bipolar and 

Unipolar DW-PRESS. The Trace DW-PRESS measurements were acquired with an additional b-

value (b1 = 994 - 1021 s/mm2). Note the lower signal ratios in the Trace DW-PRESS measurements 

compared to the Bipolar and Unipolar DW-PRESS acquisitions, indicating a greater reduction of 

the metabolite and water signals for the same b-value range. 

 

In vivo 

In the frontal gray matter, the trace ADC of tNAA from Trace DW-PRESS (0.26 ± 0.04 

μm2/ms) is significantly different from the trace ADC’s of tNAA measured with the Unipolar (0.13 

± 0.03 μm2/ms) and Bipolar (0.11 ± 0.04 μm2/ms) sequences (p = 0.002 for both). The trace ADC 

of tCr from Trace DW-PRESS (0.23 ± 0.03 μm2/ms) sequence is also significantly different from 

the trace ADC’s of tCr measured with the Unipolar (0.13 ± 0.05 μm2/ms) and Bipolar sequences 

(0.12 ± 0.06 μm2/ms), with p = 0.023 and p = 0.027, respectively. For tCho, the trace ADC’s are 

only significantly different between the Bipolar and Trace DW-PRESS acquisitions (p = 0.029). 

Water trace ADC’s were significantly different between the Unipolar and Trace (p = 0.047), 

between the Unipolar and Bipolar (p = 0.005), and between the Bipolar and Trace DW-PRESS 

acquisitions (p = 0.001).  

In the occipital gray matter, the trace ADC of tNAA from the Trace DW-PRESS sequence 

was significantly different from the trace ADC’s of tNAA measured with the Unipolar (p = 0.001) 

and Bipolar sequences (p < 0.001). The trace ADC of tCr from the Trace DW-PRESS sequence 

was also significantly different from the trace ADC’s of tCr measured with the Unipolar and 

Bipolar sequences (p = 0.002 and p < 0.001, respectively). The trace ADC’s of tCho from Trace 



122 

 

DW-PRESS are significantly different from the values measured with Unipolar and Bipolar DW-

PRESS (p = 0.006 and p = 0.001, respectively). The same pattern occurs with the water trace ADC, 

as the values from Trace DW-PRESS are significantly different from those measured with the 

Unipolar and Bipolar acquisitions (p < 0.001 and p = 0.001, respectively).  

In the occipital white matter, the trace ADC of tNAA measured with Trace DW-PRESS 

was significantly different from the trace ADC’s of tNAA measured with the Unipolar and Bipolar 

sequences (both at p < 0.001). The trace ADC of tCr from the Trace DW-PRESS sequence is also 

significantly different from the trace ADC’s of tCr measured with the Unipolar and Bipolar 

sequences (both at p < 0.001). Similarly, the trace ADC’s of tCho from Trace DW-PRESS are 

significantly different from the values measured with Unipolar and Bipolar DW-PRESS (both at 

p < 0.001). The same pattern occurs with the water trace ADC, as the values from Trace DW-

PRESS are significantly different from those measured with the Unipolar and Bipolar acquisitions 

(both at p < 0.001) in OW.  

When comparing the trace ADC’s between the OG and OW regions, statistically significant 

differences were found in the trace ADC’s of water in OG vs. OW, measured with all three 

sequences (Table 4-3). Only the trace ADC of tNAA measured with Trace DW-PRESS was 

significantly different in OW vs. OG (p = 0.040).  

In occipital white matter, statistically significant differences were found in the trace ADC+ 

and ADC- values of water measured with Bipolar and Unipolar DW-PRESS (p = 0.025 and p = 

0.002, respectively). In occipital gray matter, only the water trace ADC+ and ADC- values were 

statistically significant in the measurements using Unipolar DW-PRESS (p = 0.004), although the 

water trace ADC+ and ADC- values were nearly significantly different in the Bipolar DW-PRESS 
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acquisitions (p = 0.066). In frontal gray matter, the difference in the trace ADC+ and ADC- of 

water measured with Bipolar DW-PRESS was significant (p = 0.008), and only the trace ADC+ 

and ADC- values of tNAA were significantly different in the Unipolar DW-PRESS measurements 

(p = 0.048). 

 

Table 4-4: Average CRLB values (and standard deviations) for the three main singlets measured 

with each sequence. Due to the long TE (140 ms) the CRLB values for mI and Glx (Glu+Gln) 

often exceeded 20%. These values are recorded for the three b-values used in this study (b0, b1, 

and b2). Only the lowest (b0) and the highest (b2) b-values were used for the in vivo Unipolar and 

Bipolar DW-PRESS acquisitions due to scan time limitations. 

 

Figure 4-10: (A) Diffusion-weighted phantom spectra at three b-values b0, b1, and b2. Only the 

lowest (null – b0 = 4 s/mm2) and the highest (b2 = 1,697 – 1,718 s/mm2) b-values were acquired for 

in vivo Bipolar and Unipolar DW-PRESS. The Trace DW-PRESS measurements were acquired 

 

In Vivo CRLB Values:  mean ± standard deviation 

BIPOLAR UNIPOLAR TRACE 

b0 b2 b0 b2 b0 b1 b2 

FG 

tNAA 3.5 ± 1.2 2.2 ± 0.5 3.2 ± 1.4 2.3 ± 0.5 3.6 ± 1.4 2.8 ± 0.6 2.6 ± 0.7 

tCr 4.8 ± 1.1 3.2 ± 0.5 4.6 ± 1.7 3.5 ± 0.8 4.7 ± 1.6 3.9 ± 0.8 3.6 ± 0.9 

tCho 7.7 ± 1.8 5.6 ± 1.3 6.4 ± 2.3 5.6 ± 1.4 8.4 ± 2.8 7.4 ± 2.6 6.3 ± 2.2 

OG 

tNAA 3.0 ± 0 2.1 ± 0.3 2.8 ± 0.4 2.6 ± 0.5 3 ± 0 3.3 ± 0.5 3.4 ± 1.2 

tCr 4.3 ± 0.7 3.4 ± 0.5 3.9 ± 0.6 3.9 ± 0.6 4.1 ± 0.3 4.9 ± 0.8 5.1 ± 1.8 

tCho 12 ± 4.1 9.7 ± 2 11.3 ± 3.3 10.5 ± 3.3 9.8 ± 3 13.2 ± 5.4 12.6 ± 6.3 

OW 

tNAA 2.3 ± 0.8 2.1 ± 0.5 2.4 ± 0.8 2.1 ± 0.5 2.1 ± 0.4 2.3 ± 0.5 2.4 ± 0.5 

tCr 3.6 ± 0.8 3.4 ± 0.7 3.6 ± 0.8 3.3 ± 0.7 3.6 ± 0.8 3.8 ± 0.4 4.1 ± 0.7 

tCho 6.6 ± 2.3 4.7 ± 1.5 7.1 ± 3.3 5.3 ± 1.8 6.7 ± 2.1 5.5 ± 2.1 5.1 ± 1.1 
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with an additional b-value (b1 = 994 - 1021 s/mm2). Note that the signals from all sequences have 

similar reduction in signal intensity for all b-values. (B) Diffusion-weighted in vivo spectra from 

the occipital white matter. Note that the in vivo Trace DW-PRESS signal acquired at b2 has a 

greater attenuation than the corresponding spectra from Bipolar and Unipolar DW-PRESS 

acquired at b2, showing that the restriction of the metabolites is affected differently depending on 

the diffusion time. 

 

4.5.2 Repeatability of three in vivo measurements in two volunteers  

The repeatability of measuring the trace ADC’s of tNAA, tCr, tCho, and water was 

estimated with the coefficient of variance (CV). Table 4-5 lists the means, standard deviations, and 

CV’s (%) of these metabolites measured across three sessions in two volunteers, one in the frontal 

gray and the other in the occipital gray matter. Water has the lowest CV’s (3-4%) in all methods 

and regions. The FG region generally had higher CV’s compared to the OG region for nearly all 

metabolites, except tCho. The trace ADC of tCho also carried the highest CV within both the FG 

(45-58%) and OG (15-62%) regions. In the FG region, the Trace DW-PRESS measurements had 

the lowest CV’s except for water, while in the OG region, they were also lowest except for tNAA, 

where Bipolar DW-PRESS resulted in the lowest CV (8% vs. 11%). 

 

Table 4-5: Trace ADC values of the main metabolite groups and water from two volunteers across 

three scan sessions, one measured in the frontal gray (FG) and the other in the occipital gray (OG) 

matter. Means, standard deviations, and coefficients of variance (CV%) are reported for each 

volunteer. The CV is a measure of the repeatability of the trace ADC values over the three 

measurements.  

 

Trace ADC's across 3 sessions in two volunteers 

mean ± standard deviation (CV%) (μm2/ms) 

BIPOLAR UNIPOLAR TRACE 

FG 

tNAA 0.10 ± 0.04 (36%) 0.11 ± 0.05 (41%) 0.32 ± 0.06 (19%) 

tCr 0.11 ± 0.04 (36%) 0.08 ± 0.03 (44%) 0.26 ± 0.03 (11%) 

tCho 0.11 ± 0.06 (58%) 0.09 ± 0.05 (51%) 0.18 ± 0.08 (45%) 

Water 1.12 ± 0.03 (3%) 1.11 ± 0.03 (3%) 1.32 ± 0.05 (4%) 

OG 

tNAA 0.12 ± 0.01 (8%) 0.13 ± 0.02 (19%) 0.28 ± 0.03 (11%) 

tCr 0.12 ± 0.01 (12%) 0.14 ± 0.02 (18%) 0.32 ± 0.02 (8%) 

tCho 0.15 ± 0.04 (24%) 0.10 ± 0.06 (62%) 0.34 ± 0.05 (15%) 

Water 1.04 ± 0.03 (3%) 1.02 ± 0.02 (2%) 1.23 ± 0.05 (4%) 

 



125 

 

 

  Discussion 

Trace ADC values were estimated in vivo and in phantom using the single-shot diffusion 

trace-weighted sequence in a clinical scanner at 3T, and these values were compared to those 

computed from the conventional DW-PRESS techniques using bipolar and unipolar diffusion 

gradients applied at three orthogonal diffusion directions with positive and negative gradient 

polarities. All sequence variants are generally in agreement with one another in terms of average 

trace ADC values in phantom, except for Glu for which the Bipolar and Unipolar sequence have 

slightly different ADC’s (Table 4-2). Overall, the trace ADC’s in phantom agree remarkably well 

with those reported previously in the same standardized phantom 101, except for mI, Lac, and Glu, 

since the report by Landheer et al. used shorter TE values (minimum of 74 ms) at which the signals 

from these metabolites are more distinguishable and have higher SNR’s. The phantom trace ADC 

values for NAA, Cr, Cho have low coefficients of variance while those for mI, Glu, and Lac are 

higher, due to long TE.  

 One of the limitations of the single-shot sequence is that the long TE leads to reliability in 

only tNAA, tCr, tCho. Strong diffusion gradients could potentially render any DW-MRS sequence 

more susceptible to motion, possibly leading to more signal loss and resulting in an overestimation 

of ADC. However, the phantom results indicate that eddy current effects may not be a significant 

factor for the particular sequence parameters used in the experiments, since the values from the 

Trace, Bipolar, and Unipolar DW-PRESS sequence are stable and agree well with reference values. 

The combination of large gradients and long TE also puts a constraint on the highest achievable 

b-value for the single-shot trace-weighted sequence.  
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Cross-terms found from the water signal indicated a greater cross-term contribution in the 

unipolar DW-PRESS sequence compared to the bipolar variant. The standard deviations of the 

zero-order phase correction show that the Trace and Unipolar sequences are more susceptible to 

eddy-current induced phase fluctuations. The report by Hanstock 102 did not use a water reference 

in order to reduce the scan time and because of the high b-values tested which greatly attenuate 

the water signal. In that report, the phase variation was also measured via the standard deviation 

of the zero-order phase correction on a reference peak. However, in this study, the eddy current 

phase correction 44 using the water data apparently corrects for these effects in all the sequences, 

since the phantom data remains relatively stable (low CV%) for all sequences. Additionally, for 

the Unipolar DW-PRESS acquisitions, the taking of the geometric mean of the signals from both 

polarities evidently reduces the effect of the cross terms, as the trace ADC values in the phantom 

are quite stable and comparable to those from the Bipolar and Trace DW-PRESS acquisitions. 

A general limitation of this study is that no cardiac gating or ECG triggering was 

implemented, which could avoid further signal losses. However, other DW-MRS reports 79,80,102 

have similarly excluded the use of triggering and gating without overestimating the ADC’s by 

implementing careful post-processing procedures, as was done in this study. Another limitation is 

chemical shift displacement which is inherent to the basic PRESS sequence and causes 

misregistration of the metabolite signals with respect to the target volume-of-interest. Also, no 

more than two b-values were able to be practically acquired in one scan session for the Bipolar 

and Unipolar DW-PRESS in vivo measurements, as opposed to Trace DW-PRESS, for which there 

was sufficient time to acquire three b-values. A similar, two b-value approach for Bipolar DW-

PRESS was taken in the report by Deelchand et al. 80, however, three b-values could further 
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improve the estimation of the ADC’s for the Bipolar and Unipolar DW-PRESS acquisitions, albeit 

at a considerable increase in scan duration.  

Results show that the trace ADC of water in white matter is significantly higher than the 

trace ADC of water in gray matter, as measured with the unipolar, bipolar, and trace-weighted 

sequences. Also, the tNAA trace ADC value in white matter is significantly higher that the value 

in gray matter for Trace DW-PRESS acquisitions only. The tCr trace ADC value measured with 

Unipolar DW-PRESS is nearly significantly higher in OW vs. OG (p = 0.088), indicating that more 

subjects are needed to establish this difference. The difference in ADC’s in OW and OG are due 

to structural differences in the composition between gray and white matter, and higher ADC’s of 

the three main metabolite groups in white matter compared to gray matter have been reported 103. 

The trace ADC’s in frontal gray matter have greater coefficients of variation (CV%), likely due to 

challenges experienced with acquiring the spectra near the sinus regions, where effects from B0 

inhomogeneity are greater and water suppression is less effective. It is known that tCho tends to 

have lower trace ADC’s than tCr and tNAA 103. This trend can be seen from all acquisitions in 

occipital gray and white matter, as the trace ADC of tCho are lower in those regions, except for 

Trace DW-PRESS in OG where it is comparable to the values for tNAA and tCr.  The trend is also 

apparent in the frontal gray matter for Trace DW-PRESS, but not for the Bipolar or Unipolar 

measurements, likely partly due to the complicating factors in frontal lobe MRS acquisitions 

mentioned above.  

With a diffusion time of 10.8 ms, the trace-weighted sequence implemented for this study 

approaches the short diffusion time regime (td ≈10 ms or less), resulting in higher estimates of 

ADC’s compared to those found with the Unipolar (td = 25.6 ms) and Bipolar (td = 58.8 ms) DW-
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PRESS. Figures 4-8, 4-9, and 4-10 show that the in vivo metabolite and water spectra measured 

with Trace DW-PRESS sequence experience a larger signal drop compared to the other sequences, 

for the same b-value range. Previous reports have shown this trend in animals and to some extent 

in humans 92–95,112. Although the diffusion time of Unipolar sequence is only slightly greater than 

twice that of Trace DW-PRESS, the signal attenuation of the spectra more closely resembles that 

of the Bipolar sequence, even for water.  This finding indicates that there may be a certain threshold 

in the diffusion time under which the metabolite diffusivity becomes less restricted.  The general 

range of trace ADC values found in this study are within a reasonable range of those reported at 

shorter diffusion times (0.20 to 0.30 μm2/ms), although the values in occipital white matter tend 

to be higher, with the highest average at approximately 0.35 μm2/ms (Table 4-3). These higher 

values, however, may be expected as the ADC’s in white matter tend to be higher than those found 

in the gray matter regions, for which the highest average trace ADC value found is approximately 

0.30 μm2/ms.  

  Conclusion 

This study presents the first demonstration of the single-shot diffusion trace-weighted 

sequence in a clinical scanner at 3T, and we compare the trace ADC values obtained with this 

sequence to those computed from the conventional bipolar and unipolar DW-PRESS sequences 

acquired with three orthogonal directions and negative and positive diffusion gradient polarities. 

Results show excellent agreement of phantom trace ADC’s computed with all sequences, and in 

vivo ADC’s agree well in both the difference between OG and OW matter, as well as the 

overestimation of metabolite and water ADC’s due to a shorter diffusion time. The diffusion trace-

weighted sequence could provide an estimate of the trace ADC of the main metabolite groups 



129 

 

(tNAA, tCr, and tCho) in a much shorter scan time (by nearly a factor of three) compared to 

conventional DW-PRESS acquisitions.  

   Appendix 

4.8.1 Derivation of b-value formula for Bipolar DW-PRESS  

Referring to Figure 4-1A, the diffusion-sensitizing gradient 𝐺(𝑡) along a single gradient axis, 

with maximum amplitude G, can be defined in a piecewise fashion over 15 time intervals.  Each 

time interval 𝑇𝑖 (𝑖 = 1, 2, … , 15) is defined as the set  

𝑇𝑖 = {𝑡 | 𝑡𝑖−1 ≤ 𝑡 ≤  𝑡𝑖} 

and each segment 𝐺𝑖(𝑡) of the piecewise gradient function 𝐺(𝑡) is defined over the interval 

𝑇𝑖. 

 

For simplicity of the calculation, assume the starting time point 𝑡0 =  0, which is at the start 

of the first gradient lobe before the first 180° RF pulse. The set of time points 𝑡𝑖 can then be listed 

as follows: 

𝑡0 = 0, 𝑡1 =  𝜁, 𝑡2 =  𝛿, 𝑡3 = 𝛿 + 𝜁, 𝑡4 =  𝛿 + 𝜏 + 𝜁, 𝑡5 =  𝛿 + 𝜏 + 2𝜁, 𝑡6 =  2𝛿 + 𝜏 +

𝜁, 𝑡7 =  2(𝛿 + 𝜁) + 𝜏, 𝑡8 =  Δ, 𝑡9 = Δ + ζ, 𝑡10 = Δ +  𝛿, 𝑡11 = Δ +  𝛿 +  𝜁, 𝑡12 = Δ +  𝛿 +  𝜏 +

 𝜁, 𝑡13 = Δ +  𝛿 +  𝜏 +  2𝜁, 𝑡14 = Δ +  2𝛿 + 𝜁 + 𝜏, 𝑡15 = Δ +  2(𝛿 + 𝜁) +  𝜏 

The piecewise gradient is then defined as 

𝐺1(𝑡) =  
𝐺

𝜁
𝑡, 𝐺2(𝑡) = 𝐺, 𝐺3(𝑡) = −

𝐺

𝜁
(𝑡 − (𝛿 + 𝜁)), 𝐺4(𝑡) = 0, 𝐺5(𝑡) = −

𝐺

𝜁
(𝑡 − (𝛿 + 𝜁 +

𝜏)), 𝐺6(𝑡) = −𝐺, 𝐺7(𝑡) = −
𝐺

𝜁
(𝑡 − (2(𝛿 + 𝜁) + 𝜏)), 𝐺8(𝑡) = 0, 𝐺9(𝑡) =

𝐺

𝜁
(𝑡 − Δ), 𝐺10(𝑡) = 𝐺, 

𝐺11(𝑡) = −
𝐺

𝜁
(𝑡 − (Δ + 𝛿 + 𝜁)), 𝐺12(𝑡) = 0, 𝐺13(𝑡) = −

𝐺

𝜁
(𝑡 − (Δ + 𝛿 + 𝜁 + 𝜏)), 𝐺14(𝑡) = −𝐺, 

𝐺15(𝑡) =
𝐺

𝜁
(𝑡 − (Δ + 2(𝛿 + 𝜁) + 𝜏)) 

The corresponding gradient moments 𝐹𝑖(𝑡) =  ∫ 𝐺𝑖 (𝑡
′)𝑑𝑡′ are computed for each interval 𝑇𝑖 

as 

𝐹1(𝑡) =  
𝐺

2𝜁
𝑡2 , 𝐹2(𝑡) =  𝐺(𝑡 − 

𝜁

2
) , 𝐹3(𝑡) = −

 𝐺

2𝜁
[(𝑡 − (𝛿 + 𝜁))2 − 2𝛿𝜁] , 𝐹4(𝑡) =  𝐺𝛿 , 

𝐹5(𝑡) =
 𝐺

2𝜁
[(𝑡 − (𝛿 + 𝜁 + 𝜏))2 + 2𝛿𝜁], 𝐹6(𝑡) = 𝐺 [𝑡 − 

1

2
(3𝜁 + 2𝜏)], 𝐹7(𝑡) = −

 𝐺

2𝜁
[(𝑡 − (2(𝛿 +
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𝜁) + 𝜏))2 − 4𝛿𝜁], 𝐹8(𝑡) =  2𝐺𝛿, 𝐹9(𝑡) = −
 𝐺

2𝜁
[(𝑡 − Δ)2 − 4𝛿𝜁], 𝐹10(𝑡) = −𝐺 [𝑡 − 

1

2
(2Δ + 𝜁 +

4𝛿)] , 𝐹11(𝑡) =
 𝐺

2𝜁
[(𝑡 − (Δ + δ + ζ))2 + 2𝛿𝜁] , 𝐹12(𝑡) =  𝐺𝛿 , 𝐹13(𝑡) = −

 𝐺

2𝜁
[(𝑡 − (Δ + δ + ζ +

τ))2 − 2𝛿𝜁] , 𝐹14(𝑡) = −𝐺 [𝑡 − 
1

2
(2(Δ + τ) + 3𝜁 + 4𝛿)] , 𝐹15(𝑡) =

 𝐺

2𝜁
(𝑡 − (Δ + 2(δ + ζ) +

τ))2 

For simplicity, no reversal of sign due to the refocusing pulses is considered in the gradient 

moment expressions above, as the b-value calculation in the end only involves the squares of the 

gradient moments, 𝐹𝑖
2(𝑡). 

Now, the following integral can be defined, which is the integration of the square of the 

gradient moment 𝐹𝑖(𝑡) over the appropriate time interval 𝑇𝑖: 

𝐻𝑖 = ∫ 𝐹𝑖
2(𝑡)𝑑𝑡

𝑡𝑖

𝑡𝑖−1

 

The b-value is then the summation 

𝑏 = ∑𝐻𝑖

15

𝑖=1

 

The values of 𝐻𝑖 can found by straightforward integration and are listed as follows:  

𝐻1 = 
𝐺2𝜁3

20
, 𝐻2 = 

𝐺2(𝛿−𝜁)

3
[𝛿2 +

𝜁2

4
− 

𝛿𝜁

2
] , 𝐻3 = 𝐺2𝜁 [𝛿2 +

𝜁2

20
− 

𝛿𝜁

3
] , 𝐻4 = 𝐺2𝛿2𝜏 , 𝐻5 =

 𝐺2𝜁 [𝛿2 + 
𝜁2

20
+

𝛿𝜁

3
] , 𝐻6 = 

𝐺2(𝛿−𝜁)

3
[7𝛿2 +

𝜁2

4
− 

𝛿𝜁

2
] , 𝐻7 = 𝐺2𝜁 [4𝛿2 +

𝜁2

20
− 

2𝛿𝜁

3
] , 𝐻8 =

 4𝐺2𝛿2(Δ − 2(𝛿 + 𝜁) − 𝜏) , 𝐻9 = 𝐻7 , 𝐻10 = 𝐻6 , 𝐻11 = 𝐻5 , 𝐻12 = 𝐻4 , 𝐻13 = 𝐻3 , 𝐻14 =

 𝐻2, 𝐻15 = 𝐻1 

Adding these terms, the final formula for the b-value of the Bipolar DW-PRESS sequence is 

𝑏𝐵𝑖𝑝𝑜𝑙𝑎𝑟 = 𝛾2𝐺2(2𝛿)2 {Δ − 
2𝛿

3
− 

(𝜏 − 𝜁)

2
−

1

12
(
𝜁

𝛿
)
2

( 𝛿 − 
𝜁

5
) } 

The above formula assumed a gradient applied along a single axis. If the diffusion-sensitizing 

gradient is applied along all axes, with a directional scaling vector 𝑛⃑⃗  =  (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧), then the 

squared gradient amplitude above is replaced by 𝐺2 = ‖ 𝐺 ∙ 𝑛⃑⃗‖2 = ‖𝐺⃑𝑑‖
2
, giving the general 

formula shown in the main text.  
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4.8.2 Derivation of b-value formula for Unipolar and Trace DW-PRESS  

For Unipolar DW-PRESS (Figure 4-1B), the diffusion-sensitizing gradient 𝐺(𝑡)  along a 

single gradient axis, with maximum amplitude G, is defined a piecewise fashion over 7 time 

intervals, where each time interval 𝑇𝑖 (𝑖 = 1, 2, … , 7) is defined as the set  

𝑇𝑖 = {𝑡 | 𝑡𝑖−1 ≤ 𝑡 ≤  𝑡𝑖} 

and each segment 𝐺𝑖(𝑡) of the piecewise gradient function 𝐺(𝑡) is defined over the interval 

𝑇𝑖. 

For simplicity of the calculation, assume the starting time point 𝑡0 =  0, which at the start of 

the first gradient lobe. In the Unipolar DW-PRESS case, no reversal of sign due the refocusing 

pulse is considered in the expressions for the gradient moments, since the b-value calculation will 

only consider the square of the gradient moments, 𝐹𝑖
2(𝑡). 

In the case for Trace DW-PRESS (Figure 4-1C), the same time intervals apply for a single 

bipolar gradient pair, of which there are four along a single gradient axis. Therefore, the following 

derivation applies for both types of sequences, except that the final result is multiplied by 4 for 

Trace DW-PRESS.  

The set of time points 𝑡𝑖 are listed as follows: 

𝑡0 = 0, 𝑡1 =  𝜁, 𝑡2 =  𝛿, 𝑡3 = 𝛿 + 𝜁, 𝑡4 =  Δ, 𝑡5 = Δ + ζ, 𝑡6 = Δ +  𝛿, 𝑡7 = Δ +  𝛿 +  𝜁 

The piecewise gradient is then defined as 

𝐺1(𝑡) =  
𝐺

𝜁
𝑡 , 𝐺2(𝑡) = 𝐺 ,  𝐺3(𝑡) = −

𝐺

𝜁
(𝑡 − (𝛿 + 𝜁)) , 𝐺4(𝑡) = 0 , 𝐺5(𝑡) = −

𝐺

𝜁
(𝑡 − Δ) , 

𝐺6(𝑡) = −𝐺, 𝐺7(𝑡) =
𝐺

𝜁
(𝑡 − (Δ + 𝛿 + 𝜁)) 

The corresponding gradient moments 𝐹𝑖(𝑡) are the computed for each interval 𝑇𝑖 as 

𝐹1(𝑡) =  
𝐺

2𝜁
𝑡2 , 𝐹2(𝑡) =  𝐺(𝑡 − 

𝜁

2
) , 𝐹3(𝑡) = −

 𝐺

2𝜁
[(𝑡 − (𝛿 + 𝜁))2 − 2𝛿𝜁] , 𝐹4(𝑡) =  𝐺𝛿 , 

𝐹5(𝑡) = −
 𝐺

2𝜁
[(𝑡 − ∆)2 − 2𝛿𝜁], 𝐹6(𝑡) = −𝐺 [𝑡 − (∆ + 𝛿 +

𝜁

2
)], 𝐹7(𝑡) =

 𝐺

2𝜁
(𝑡 − (Δ + 𝛿 + 𝜁))

2
,  

Using the same definition of 𝐻𝑖 given in the previous section, the b-value is the summation 

𝑏 = ∑𝐻𝑖

7

𝑖=1

 

The values of 𝐻𝑖 can found by straightforward integration and are listed as follows:  
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𝐻1 = 
𝐺2𝜁3

20
, 𝐻2 = 

𝐺2𝛿3

3
−

𝐺2𝜁3

12
+

𝐺2𝜁2𝛿

4
−

𝐺2𝜁𝛿2

2
, 𝐻3 = 

𝐺2𝜁3

20
−

𝐺2𝜁2𝛿

3
+ 𝐺2𝜁𝛿2 , 𝐻4 =

 𝐺2𝛿2(Δ − 𝛿 − 𝜁), 𝐻5 = 𝐻3, 𝐻6 = 𝐻2, 𝐻7 = 𝐻1 

Adding these terms, the final formula for b-value of the Unipolar DW-PRESS sequence is 

𝑏𝑈𝑛𝑖𝑝𝑜𝑙𝑎𝑟 = 𝛾2𝐺2𝛿2 [(Δ − 
𝛿

3
) −

1

6
(
𝜁

𝛿
)
2

(𝛿 −
𝜁

5
) ] 

Again, the above formula assumed a gradient applied along a single axis. If the diffusion-

sensitizing gradient is applied along all axes, with a directional scaling vector 𝑛⃑⃗, then the squared 

gradient amplitude above is replaced by 𝐺2 = ‖ 𝐺 ∙ 𝑛⃑⃗‖2 = ‖𝐺⃑𝑑‖
2
, giving the general formula 

shown in the main text.  

 The b-value formula for Trace DW-PRESS is 4 times the b-value formula for the Unipolar 

case, since there are 4 bipolar pairs of gradients along each gradient axis, as compared to only one 

for Unipolar DW-PRESS. Hence, if the diffusion gradient is played along all axes, the b-value for 

Trace DW-PRESS is 

𝑏𝑇𝑟𝑎𝑐𝑒 =  4𝛾2‖𝐺⃑𝑑‖
2
𝛿2 [(Δ − 

𝛿

3
) −

1

6
(
𝜁

𝛿
)
2

(𝛿 −
𝜁

5
) ] 
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Chapter 5 Single-Shot Diffusion Trace Spectroscopic 

Imaging using Radial Echo Planar Trajectories 

 

  Abstract 

Purpose: Demonstrate the feasibility and evaluate the performance of single-shot diffusion 

trace-weighted radial echo planar spectroscopic imaging (Trace DW-REPSI) for quantifying the 

trace apparent diffusion coefficient (ADC) in phantom and in vivo using a 3T clinical scanner.  

Methods: Trace DW-REPSI datasets were acquired in ten phantom and ten healthy volunteers, 

with a maximum b-value of 1,601 s/mm2 and diffusion time of 10.75 ms. The self-navigation 

properties of radial acquisitions were used for corrections of shot-to-shot phase and frequency shift 

fluctuations of the raw data. In vivo trace ADCs of total N-acetyl-aspartate (tNAA), total creatine 

(tCr), and total choline (tCho) extrapolated to pure gray and white matter fractions were compared, 

as well as trace ADCs estimated in voxels within white or gray matter-dominant regions.  

Results: Trace ADCs in phantom show excellent agreement with reported values, and in vivo 

ADC’s agree well with the expected differences between gray and white matter. For tNAA, tCr, 

and tCho, the trace ADCs extrapolated to pure gray and white matter ranged from 0.18–0.27 and 

0.26–0.38 μm2/ms, respectively. In sets of gray and white matter-dominant voxels, the values 

ranged from 0.21–0.27 and 0.24–0.31 μm2/ms, respectively. The overestimated trace ADCs from 

this sequence can be attributed to the short diffusion time.  
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Conclusion: This study presents the first demonstration of the single-shot diffusion trace-

weighted spectroscopic imaging sequence using radial echo planar trajectories. The Trace DW-

REPSI sequence could provide an estimate of the trace ADC in a much shorter scan time compared 

to conventional approaches that require three separate measurements. 

  Introduction 

Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) is able to explore the 

microstructural characteristics of in vivo tissues due to the predominantly intracellular 

compartmentalization of metabolites. In contrast, DW-MRI is only capable of probing water 

diffusion, which occurs throughout both the intra- and extra-cellular spaces. Since the majority of 

detectable metabolites reside within the cell where most biochemical processes occur, metabolite 

diffusion can directly reflect the tissue-specific structural and, to some extent, functional 

environment at the cellular level70,71. This compartment-specific assessment of tissue structure 

enables a clearer understanding of the cellular-level conditions and alterations that underlie various 

pathologies, such as cerebral ischemia and tumors72–75, multiple sclerosis76,77, and psychiatric 

disorders78. Therefore, DW-MRS provides a promising tool for further improving the etiology, 

diagnosis and monitoring of disease.  

DW-MRS is challenging due to the diffusion-sensitization of the inherently low-SNR 

metabolite signals, requiring careful shot-to-shot phase and frequency corrections and multiple 

signal averages for accurate ADC quantification. Singe-voxel DW-MRS has generated 

reproducible in vivo ADC’s of several major metabolites in human brain such as N-acetyl aspartate, 

creatine, and choline79,103,113. However, a major limitation of the single-voxel approach is that it 

can only be applied to relatively small anatomical regions per measurement. Few reports have 
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explored diffusion-weighted MR spectroscopic imaging (DW-MRSI), either using conventional 

phase-encoding or echo-planar k-space trajectories114–116. Compared to single-voxel methods, 

DW-MRSI faces greater technical challenges as it requires longer acquisition times and is more 

susceptible to motion-induced phase inconsistencies and other temporal instabilities among the 

spatially-encoded signal averages. Large diffusion gradients can also induce strong eddy currents 

that may influence the fidelity of phase and frequency encoding. 

 Both acquisition-based and post-processing procedures have been implemented for DW-

MRSI to avoid and/or correct the corrupted signal averages and inconsistencies in phase- and 

frequency-encoding105,114,115. During acquisition, cardiac gating or electrocardiogram (ECG) 

triggering discards signal averages corrupted by pulsatile motion in real time, thus avoiding further 

signal attenuation not caused by the diffusion-sensitizing gradients alone81. Line-scan acquisitions 

with echo-planar readouts were implemented to more easily track and correct for phase 

inconsistencies in the diffusion-weighted data117. Navigator echoes can also be implemented in the 

pulse sequence to monitor the signal for relative phase inconsistencies, which can be 

retrospectively corrected in post-processing104,114,115. Further processing steps include those also 

commonly implemented for single-voxel DW-MRS, such as SNR thresholding, zero- and first-

order phase corrections, and frequency drift corrections on the individual spectra79,80,102,106,109. The 

majority of these DW-MRSI techniques have relied on Cartesian sampling of k-space, including 

those using conventional phase-encoding or echo-planar trajectories.  

Recently, radial 1H echo planar spectroscopic imaging (REPSI) was demonstrated in the 

human brain and was shown to be more compatible with higher under-sampling factors compared 

to Cartesian EPSI for two-dimensional (2D) spatial acquisitions4. A key advantage of REPSI is 

that the radial trajectory allows for self-navigation of the readout signal and is less sensitive to 
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motion, due to the repeated traversal of the low spatial frequency region and k-space origin. The 

central k-space points (kx = ky = 0) are considered free of any spatial encoding and can therefore 

be used to construct a navigator signal to monitor the intershot phase and frequency inconsistencies 

of the radial projections. This approach was first shown by Kim et al. for motion-correction of 

spiral MRSI118, and it was applied by Boer et al. for diffusion-weighted 2D REPSI with semi-

LASER localization21. Therefore, unlike Cartesian DW-MRSI, it is possible to track the readout 

data without implementing a separate navigator echo within the pulse sequence. This self-

navigation feature of radial sampling has been exploited for many MRI applications as well24,119,120.  

Apart from the acquisition and signal processing challenges in DW-MRSI, diffusion 

anisotropy of tissues can bias the in vivo ADC quantitation. Generally, the estimated ADC along 

any diffusion direction depends on the orientation of the subject with respect to the gradient frame 

of reference. To avoid this confounding factor, several studies have instead reported the trace of 

the diffusion tensor, which is an invariant quantity independent of the relative orientation between 

the gradient axes and the anatomy of interest79–81,89,90. Conventional methods require 

measurements along three orthogonal diffusion directions to determine the trace ADC74,80,82, which 

could be time-consuming. Another potential source of bias is the additional, unintended diffusion-

weighting caused by the interactions (cross terms) between the diffusion-sensitizing gradients and 

the localization, crusher, and other background gradients83. Such cross-term contributions can be 

eliminated by acquiring additional measurements with gradients of opposite polarity80,82,84, 

however, also at the cost of longer scan time.  

DW-MRSI based on PRESS localization37, as opposed to other localization schemes such 

as STEAM88, allows for a particular diffusion gradient configuration that can generate a signal 

weighted by the trace of the diffusion tensor within a single shot or TR. First proposed by Mori et 
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al. for DW-MRI89 and later extended to single voxel DW-MRS by de Graaf et al.90, the single-shot 

diffusion trace-weighted sequence is able to eliminate all cross terms between diffusion gradients 

and any background gradients while providing a diffusion trace-weighted signal that is suitable for 

directly estimating the trace ADC, without any additional measurements along orthogonal 

diffusion directions. A version of this sequence using localization by adiabatic selective refocusing 

(LASER) was proposed by Valette et al.2 using a small bore animal scanner. However, to date, the 

validation and performance of this sequence for DW-MRSI in humans has not been shown, 

although it has been implemented on a clinical scanner for DW-MRI only91,121.  

In this work, we validated single shot diffusion-trace weighted MRSI using radial echo 

planar trajectories, both in vivo and in a phantom on a clinical 3T scanner. This study presents the 

first demonstration of DW-REPSI using the single-shot diffusion trace-weighted scheme proposed 

by de Graaf et al.90, but which until recently had not been testable in humans due to earlier 

hardware limitations of clinical scanners. We report the in vivo trace ADC values of three main 

metabolite groups – total NAA, total Cr, and total Cho – and water, as well as six metabolites 

(NAA, Cr, Cho, Glu, mI, Lac) from a brain phantom. We also demonstrate the utility of self-

navigation of the radial spokes, and demonstrate corrections for gradient delays based on 

calibration scans.  A preliminary account of this work has been previously presented as an 

abstract122.  
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   Theory 

5.3.1 Signal weighting with the b-matrix and the diffusion tensor 

The b-matrix is primarily a function of the durations, amplitudes and timing parameters of the 

diffusion-sensitizing gradients, as well as all other localization, crusher, and background gradients. 

A key component of the b-matrix computation is the zero-order gradient moment 𝐹⃑(𝑡′) 

𝐹⃑(𝑡′) =  ∫ 𝐺⃑(𝑡) 𝑑𝑡

𝑡′

0

 (5-1) 

where 𝐺⃑(𝑡) ≔  〈𝐺𝑥(𝑡), 𝐺𝑦(𝑡), 𝐺𝑧(𝑡)〉 is defined as the vector of the applied time-varying gradients 

96.  The matrix of b-values, 𝒃, can then be defined as  

where ⨂ denotes the outer product operation. Using this definition, the signal attenuation 𝑆(𝜏), 

after a time 𝜏, can be described as  

ln (
𝑆(𝜏)

𝑆0
) = − ∑𝒃𝛼𝛽𝑫𝛼𝛽

𝛼,𝛽

        𝛼, 𝛽 ∈ {𝑥, 𝑦, 𝑧} (5-3) 

where 𝑆0 is the signal amplitude without diffusion-weighting and 𝑫 is the diffusion tensor 89. 

5.3.2 Diffusion-sensitizing gradient configuration for trace-weighting in PRESS 

Building on the theory first proposed by Mori et al., Graaf et al. showed that a particular 

configuration of 12 sets of bipolar diffusion-sensitizing gradient lobes interleaved within the 

PRESS localization (Figure 5-1) leads to: (1) cancellation of signal weighted by off-diagonal terms 

in the diffusion tensor, and (2) elimination of any cross-terms originating between any static 

𝒃 =  𝛾2 ∫ 𝐹⃑(𝑡′) ⨂ 𝐹⃑(𝑡′) 𝑑𝑡′
𝜏

0

 (5-2) 
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background gradients (such as those arising from B0 inhomogeneity) and the diffusion-sensitizing 

gradients. In contrast to spin-echo slice selection, the second refocusing pulse in the volumetric 

PRESS excitation is crucial for eliminating the cross-term contribution from background gradients. 

The resulting sequence achieves diffusion-trace weighting in only one measurement while 

simultaneously avoiding bias from cross-term contributions in the diffusion-weighting.  Further 

details and examples of how these off-diagonal terms are cancelled in Equation 5-3 can be found 

in the aforementioned reports2,89,90.  

In a subsequent section, it is shown that the b-matrix for this trace-weighted sequence 

(excluding localization and crusher gradients) is invariant with respect to any unitary 

transformation, most importantly rotations. This key property is largely dependent on the fact that 

the off-diagonal terms in the b-matrix, i.e., 𝒃𝛼𝛽 (𝛼 ≠ 𝛽) , are zero when only the diffusion-

sensitizing gradients are considered. Inclusion of localization and crusher gradients adds only a 

very small contribution since these gradients are usually much smaller than the diffusion-

sensitizing gradients.   
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Figure 5-1: Pulse sequence diagram for Trace DW-REPSI. The water suppression module and 

outer volume saturation bands preceding the excitation pulse are not shown. Four pairs of bipolar 

diffusion-sensitizing gradients are placed along each gradient axis (12 in total) in a particular 

configuration that cancels the contribution of off-diagonal diffusion tensor elements to the signal 

attenuation. Cross terms between static background gradients and the diffusion-sensitizing 

gradients are also eliminated. The bipolar readout gradients spatially encode the signal along a 

radial projection while temporally encoding the chemical shift. For a single bipolar pair, the 

separation between the two trapezoidal gradients of opposite polarity is Δ. The gradient ramp time 

is ζ, and the flat top duration is (δ - ζ). This sequence requires that 𝑇𝐸1  = 𝑇𝐸2 with symmetric 

placement of the diffusion-sensitizing gradients around each 180° refocusing pulse. 

5.3.3 Diffusion time and b-value for Trace DW-REPSI 

The b-value for this sequence was reported for rectangular bipolar pairs in the original work 

by Mori et al.89. For trapezoidal gradients, used in this work (Figure 5-1), the b-value for the trace-

weighted sequence (neglecting localization and crusher gradients) can be derived as  

𝑏 =   12 𝛾2𝐺2𝛿2 [(Δ − 
𝛿

3
) −

1

6
(
𝜁

𝛿
)
2

(𝛿 − 
𝜁

5
)] (5-4) 
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where 𝐺 is the amplitude of the diffusion-sensitizing gradient, 𝜁 is the ramp time, and (𝛿 − 𝜁) is 

the flat top duration.   

The use of bipolar diffusion-sensitizing gradient pairs leads to a relatively short diffusion 

time compared to other diffusion-weighted PRESS sequences that use bipolar pairs around each 

refocusing pulse80,103, or a single unipolar pair around one of the refocusing pulses102,115. The 

diffusion time 𝑡𝑑 can be inferred from the expression for the b-value, and is given by  

𝑡𝑑 = (Δ − 
𝛿

3
) −

1

6
(
𝜁

𝛿
)
2

(𝛿 − 
𝜁

5
) (5-5) 

5.3.4 Invariance of the b-matrix for Single-Shot Diffusion Trace-weighted PRESS 

Given the diffusion-sensitizing gradients 𝐺𝑥(𝑡) , 𝐺𝑦(𝑡) , and 𝐺𝑧(𝑡)  with the particular 

configurations shown in Figure 5-1, it can be shown from Equation 5-2 that the off-diagonal terms 

in the b-matrix are zero when neglecting crusher and localization gradients, i.e., 𝒃𝛼𝛽 = 0 (𝛼 ≠

 𝛽). This property can be easily seen in Figure 5-2, which shows the gradient moments 𝐹𝑥(𝑡), 𝐹𝑦(𝑡), 

and 𝐹𝑧(𝑡), as well as the associated cross multiplicative functions 𝐹𝑥(𝑡) ∙ 𝐹𝑦(𝑡), 𝐹𝑦(𝑡) ∙ 𝐹𝑧(𝑡), and 

𝐹𝑥(𝑡) ∙ 𝐹𝑧(𝑡). For the trace-weighted sequence, the key property is that the functions 𝐹𝛼(𝑡) ∙ 𝐹𝛽(𝑡) 

(for 𝛼 ≠  𝛽 ) have equal contributions of positive and negative areas that sum to zero after 

integrating over the TE period89: 

𝒃𝛼𝛽 = 𝛾2 ∫ 𝐹𝛼(𝑡) ∙ 𝐹𝛽(𝑡)
𝑇𝐸

0

𝑑𝑡 = 0      (𝛼 ≠ 𝛽)  (5-6) 

Because the gradient amplitudes are equal along all axes, it is straightforward to note that  
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𝒃𝑥𝑥 = 𝒃𝑦𝑦 = 𝒃𝑧𝑧 = 𝛾2 ∫ 𝐹𝛼
2(𝑡)

𝑇𝐸

0

𝑑𝑡      {𝛼 = 𝑥, 𝑦, 𝑧}  (5-7) 

Hence, the b-matrix is a diagonal matrix with identical entries, again provided that only the 

diffusion-sensitizing gradients are considered in Equation 5-2.  

Now, suppose that the matrix 𝑄Ω0

Ω′
 represents a unitary transformation, such as a rotation from 

the scanner frame Ω0 to a new frame Ω′. The vector of time-varying gradients 𝐺⃑(𝑡) can then be 

represented in the Ω′ frame as 𝐺⃑′(𝑡) = 𝑄𝐺⃑(𝑡). Correspondingly, the vector of gradient moments 

is transformed in the same manner: 𝐹⃑′(𝑡) = 𝑄𝐹⃑(𝑡) . So, in this new frame, the elements of 

transformed b-matrix 𝒃′ = [𝒃]𝛀′ are:  

𝒃′𝛼𝛽 = 𝛾2 ∫ 𝐹′𝛼(𝑡) ∙ 𝐹′
𝛽(𝑡) 𝑑𝑡

𝑇𝐸

0

= 𝛾2 ∫ (∑𝑄𝛼𝜖 ∙ 𝐹𝜖(𝑡)

𝜖

)(∑𝑄𝛽𝜎 ∙ 𝐹𝜎(𝑡)

𝜎

)  𝑑𝑡
𝑇𝐸

0

 (5-8) 

Expanding these terms and using Equation 5-6 and Equation 5-7,   

𝒃′𝛼𝛽 = 𝛾2(𝑄𝛼𝑥𝑄𝛽𝑥+ 𝑄𝛼𝑦𝑄𝛽𝑦 + 𝑄𝛼𝑧𝑄𝛽𝑧)∫ 𝐹𝛼
2(𝑡)

𝑇𝐸

0

𝑑𝑡     (5-9) 

Now, a general property of any real unitary matrix 𝑄 is that 

∑𝑄𝛼𝜖𝑄𝛼𝜖

𝜖

 = 1 

∑𝑄𝛼𝜖𝑄𝛽𝜖

𝜖

 = 0 

(5-10) 

Hence, from Equation 5-9, 𝒃′𝛼𝛽 = 0  for 𝛼 ≠ 𝛽 , and 𝒃′𝛼𝛼 = 𝛾2 ∫ 𝐹𝛼
2(𝑡)

𝑇𝐸

0
𝑑𝑡 = 𝒃𝛼𝛼 . 

Therefore, 
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[𝒃]Ω0
=  [𝒃]Ω′     (5-11) 

This shows that the b-matrix for any PRESS-based single-shot trace-weighted sequence is 

preserved under any rotation or unitary transformation of the scanner frame of reference. Because 

the b-matrix is diagonal, the signal weighting in Equation 5-3 involves only the diagonal elements 

of the diffusion tensor.  

 

Figure 5-2: Gradients (Gx, Gy, and Gz) and zero-order gradient moments (Fx, Fy, and Fz) are 

shown along with the functions FiFj (i, j = x, y, z), whose integrals determine the diagonal and off-

diagonal entries of the b-matrix (slice-select and crusher gradients are omitted). Note that the 

functions FxFy, FyFz, and FxFz (shown in red) have equal portions of negative and positive areas, 

which lead to a net integral of zero for these functions at the TE. Consequently, the off-diagonal 

terms bxy, byz, and bxz of the symmetric b-matrix are zero. Only the functions FxFx, FyFy and FzFz 

(shown in blue) have non-zero net positive integrals that contribute to the diagonal terms bxx, byy, 

and bzz, respectively.  
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  Methods 

All measurements were made using a Siemens Prisma 3T scanner (Siemens Healthcare, 

Munich, Germany) with a maximum net slew rate limit of 200 mT/m/ms and a maximum gradient 

amplitude limit of 80 mT/m per axis. A 16-channel receive head coil was used for both the phantom 

and in vivo acquisitions. Localization of the entire phantom or brain volume was achieved with 

T1-weighted axial, coronal, and sagittal two-dimensional MRI’s acquired with TR/TE = 250 

ms/2.49 ms, field-of-view (FOV) = 240 × 240 mm2, 1.25 × 1.25 mm2 in-plane resolution, and 35 

slices of 4 mm thickness each.  

Both phantom and in vivo acquisitions were acquired with TE = 144 ms and TR = 2.25 s, 

FOV of 320 × 320 mm2 with a 32 × 32 matrix size (in-plane resolution = 1 × 1 cm2), and PRESS-

based volumetric excitation37,90. The slab thickness and in-plane dimension of the volume-of-

interest (VOI) differed between phantom and in vivo acquisitions, and these details are reported in 

subsequent sections. Global water suppression was achieved using a WET module39. Non-water 

suppressed data was acquired for coil sensitivity estimation, eddy current phase correction, and for 

computing water ADC maps.  

Spectroscopic imaging data was sampled with radial echo-planar trajectories using a 

symmetric bipolar gradient echo train. The ADC bandwidth was 100 kHz with 32 radial k-space 

points acquired per spoke. Each readout gradient lobe had a ramp time of 50 μs and flat top duration 

of 320 μs, leading to spectral width of 1190 Hz after separation of odd and even echoes. Radial 

datasets consisted of 33 spokes with uniform angular sampling, i.e., the angular spacing between 

the spokes was 180°/33 ≈  5.45°. This acquisition is technically undersampled at an acceleration 

factor (AF) of 1.52, as the required number of spokes for a Nyquist-sampled 32 × 32 k-space 
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matrix is 
𝜋

2
(32) ≈ 50. An odd number of uniformly-spaced spokes reduces coherent aliasing and 

thereby further reduces the degree of undersampling artifacts123, which are anyway constrained 

outside of the resulting (reduced) circular field-of-view51. The nominal reduced circular FOV with 

this number of spokes has a diameter of  
33

32
∙
2

𝜋
∙ 320 𝑚𝑚 ≈ 210 𝑚𝑚, which is more than sufficient 

to resolve the signal without streaking artifacts within the VOI whose maximal dimension was 120 

mm in the anterior-posterior direction.  

All diffusion-weighted acquisitions used trapezoidal gradients with ramp time ζ = 1.9 ms 

and flat top duration of 4.6 ms (δ = 6.5 ms). The time gap between the two lobes of a single bipolar 

pair was 4.6 ms (Δ = 13 ms). The diffusion time (td) was 10.75 ms.  

5.4.1 Phantom Experiments 

The GE “Braino” phantom (GE Medical Systems, Milwaukee, WI, USA), containing N-

acetylasparate (NAA, 12.5 mM), creatine (Cr, 10.0 mM), choline (Cho, 3.0 mM), Glutamate (Glu, 

12.5 mM), myo-inositol (mI, 5.0 mM), and Lactate (Lac, 5.0 mM) was used for all phantom 

acquisitions.  

 The in-plane dimensions of the VOI for phantom acquisitions was 10 × 10 cm2 and the slab 

thickness was 1.5 cm, resulting in an individual voxel volume of 1.5 mL (Figure 5-3). Two b-

values were acquired: one null b-value (no diffusion-sensitizing gradients) and the other at b = 

1,500 s/mm2, corresponding to a gradient amplitude of 63.4 mT/m. For the null b-value, the 

number of averages was 5 and 1 for water-suppressed and non-water-suppressed acquisitions, 

respectively. For the high b-value, the number of averages was 10 and 2 for water-suppressed and 

non-water-suppressed acquisitions, respectively. The average linewidths of the water magnitude 
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peak after manual shimming was 5.2 Hz. The total scan time for one measurement was 

approximately 30 minutes.  

 The means and standard deviations of the phantom ADC values were determined in five areas 

within the VOI to assess the degree of the homogeneity of ADC values across the VOI (Figure 5-

6(B)). The VOI matrix was divided into 5 central subregions with 10×10, 8×8, 6×6, 4×4, and 2×2 

voxels to measure the variation of ADC values over these areas within the VOI.  

To further assess the accuracy of ADC estimates from Trace DW-REPSI, ten 

measurements from a single-voxel variant of the diffusion trace-weighted sequence (Trace DW-

PRESS) were acquired in the phantom to compare against the ADC values derived from the Trace 

DW-REPSI sequence.  The voxel size was 2.5 × 2.5 × 2.5 cm3 and three b-values were acquired: 

4 s/mm2, 1,021 s/mm2, and 1,707 s/mm2 with a corresponding number of 18, 36 and 52 averages 

and 2, 4, and 6 averages for the water and non-water-suppressed acquisitions, respectively. All 

ADC values in the GE Braino phantom were compared with the reference values reported by 

Landheer et al.101.  
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Figure 5-3: (A) Localization the volume-of-interest (VOI) in a healthy volunteer. With a 

transversal orientation, the VOI was placed superior to the ventricle region, partially covering the 

corpus callosum. The slab thickness was 2 cm in the superior-inferior (SI) direction, and the 

dimensions in the left-to-right (LR) and anterior-posterior (AP) directions was typically 75-80 mm 

and 115-120 mm, respectively, resulting in an individual voxel volume of 2 mL. Outer volume 

saturation bands (centered at -3.4 ppm from water) were placed around the VOI and over the 

intracranial lipid layer to suppress contamination from fat signal. (B) Localization for the GE 

Braino phantom. The VOI in-plane dimensions were 10 × 10 cm2 with slab thickness of 1.5 cm 

(voxel volume of 1.5 mL). 

 

5.4.2 In Vivo Experiments 

Twelve healthy volunteers (4 females and 8 males, ages = 39.9 ± 16 years) were recruited to 

participate in this study and gave informed consent according to local institutional review board 

guidelines. Of these twelve, data from two volunteers was excluded due to inadequate spectral 

quality.  
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 The in-plane dimensions of the VOI for in vivo acquisitions ranged from 75 – 80 mm in the 

left-to-right dimension (x), and 115-120 mm in the anterior-posterior dimension (y). The slab 

thickness was 2 cm, resulting in an individual voxel volume of 2 mL. The VOI orientation was 

transversal and the slab was placed superior to the ventricle region, partially covering the corpus 

callosum (Figure 5-3). Six outer volume saturation bands, centered at -3.4 ppm from water, were 

placed around the VOI to suppress the predominant fat signal from the intracranial lipid layer. The 

average linewidth of the water magnitude peak after manual shimming was 22.1 Hz. Sufficient in 

vivo water signal was available at the highest b-value to allow for adequate eddy current phase 

corrections, water ADC estimations, and navigator-based corrections95. 

Data sets for two b-values were acquired: one low b-value at 51 s/mm2 and a higher b-

value at 1,601 s/mm2, corresponding to diffusion-sensitizing gradient amplitudes of 11 mT/m and 

64 mT/m, respectively. For the low b-value, the number of averages was 6 and 1 for water-

suppressed and non-water-suppressed acquisitions, respectively. For the high b-value, the number 

of averages was 14 and 2 for water-suppressed and non-water-suppressed acquisitions, 

respectively. The total scan time – including localization, shimming, water suppression 

adjustments and other preparatory procedures – was approximately 50 minutes. Due to scan time 

restrictions, an additional single voxel Trace DW-PRESS acquisition was infeasible within the 

same scan session.  

Trace DW-REPSI data from one healthy volunteer was scan twice to determine the 

reproducibility of metabolite and ADC maps across the two scan sessions.  

5.4.3 Data Processing 

Gradient Delay Calibration and Correction 
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Uecker and Block presented a method for determining the k-space shifts caused by gradient 

delays along the y and x gradient axes124. Two pairs of calibration spokes were acquired: one pair 

at the projection angles of 0° and 180° and the other at 90° and 270° to determine the k-space shifts 

∆𝜅𝑥  and ∆𝜅𝑦 , respectively, for each channel and for all even and odd echoes along the entire 

bipolar readout. The values of ∆𝜅𝑥 and ∆𝜅𝑦 for the echoes over the first 12 ms (corresponding to 

approximately 16 time points) were averaged and then used for correcting the k-space shift of rest 

of the time points. This extrapolation was done to avoid the influence of noise and other 

instabilities (e.g., motion) in the cross-correlation analysis used for computing the relative offset 

between the echo peaks of spokes acquired at opposite angles (Figure 5-4).  

 Let 𝑆(𝑘𝜌, 𝜃) be the k-space signal for the spoke at projection angle 𝜃, and let ℱ𝜌 denote the 

forward Fourier transform along the spatial dimension. The spatial projection at angle 𝜃 can then 

be written as 𝑠(𝜌, 𝜃) =  ℱ𝜌
−1 (𝑆(𝑘𝜌, 𝜃)). The raw data can be corrected for k-space shifts due to 

the gradient delay as follows: 

𝑠(𝜌[𝑚], 𝜃[𝑛])𝑐𝑜𝑟𝑟 =  𝑠(𝜌[𝑚], 𝜃[𝑛]) ∙ 𝑒−𝑖2𝜋 (∆𝜅(𝜃[𝑛])∙𝜌[𝑚]) (5-12) 

where 𝜌 represents the vector of spatial coordinates, 𝑚 represents the number of samples per 

projection, and 𝑛 represents the number of projection angles. The k-space shift ∆𝜅(𝜃[𝑛]) for the 

spoke at angle 𝜃[𝑛], is computed from ∆𝜅𝑥 and ∆𝜅𝑦 as follows 

∆𝜅(𝜃[𝑛]) =  ∆𝜅𝑥 ∙ cos2(𝜃[𝑛]) + ∆𝜅𝑦 ∙ sin2(𝜃[𝑛]) (5-13) 

This correction was applied for all time points and channels, separately for the even and odd 

echoes125. Afterwards, the signal was transformed back to the k-space domain, i.e., 𝑆(𝑘𝜌, 𝜃)
𝑐𝑜𝑟𝑟

=

 ℱ𝜌(𝑠(𝜌, 𝜃)𝑐𝑜𝑟𝑟), and the even echoes were then time-reversed relative to the odd echoes.  
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Figure 5-4: (A) Gradient echo trains used for acquiring spokes at 0° (red) and 180° (blue) to 

calibrate the k-space shift Δκx caused by gradient delay in Gx. The gradient Gy is maintained at 

zero. The same procedure is done for determining Δκy where Gx = 0 and the Gy echo train samples 

spokes at angles 90° and 270°. The difference in echo peak maxima from echoes of spokes at 

opposing angles is used for computing the k-space shift. (B) Gradient delay per channel as a 

function of time (only the odd echoes of the symmetric bipolar readout are shown for simplicity). 

Each color represents a separate coil out of a total of 16. The average gradient delay per channel 

is determined from the first 16 ms (up to the dotted line), and this value is used for the correcting 

all 512 time points echoes for each spoke. The total readout duration is approximately 430 ms. 

 

Echo-Planar Phase Correction and Combination of Even and Odd Echoes 
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Besides the phase evolution induced by the readout gradients, phase accrual due to chemical 

shift is also present throughout the frequency-encoding period.  Consequently, the even and odd 

echoes acquire an apparent spatial shift in opposite directions. To correct for this effect, a linear 

frequency-dependent phase correction is applied to the spokes acquired from the even and odd 

echoes43,126,127, 𝑆𝑒𝑣𝑒𝑛(𝑘𝜌[𝑚], 𝜃[𝑛], 𝑡[𝑞])  and 𝑆𝑜𝑑𝑑(𝑘𝜌[𝑚], 𝜃[𝑛], 𝑡[𝑞]) , respectively, where  𝑞 

represents the number of time points.  

 Let ℱ𝜏  denote the forward Fourier transform along the time dimension. Then, for a 

particular spoke at angle 𝜃[𝑛] , the raw data matrix in the 𝑘 − 𝑓dimensions is 𝑠̂(𝑘𝜌, 𝜃, 𝑓) =

 ℱ𝜏(𝑆(𝑘𝜌, 𝜃, 𝜏)). The correction is then applied as follows: 

𝑠̂𝑒𝑣𝑒𝑛(𝑘𝜌[𝑚], 𝜃[𝑛], 𝑓[𝑞])
𝑐𝑜𝑟𝑟

= 𝑠̂(𝑘𝜌[𝑚], 𝜃[𝑛], 𝑓[𝑞]) ∙ 𝑒+𝑖2𝜋 (𝑚∆𝑡∙𝑓[𝑞]) 

𝑠̂𝑜𝑑𝑑(𝑘𝜌[𝑚], 𝜃[𝑛], 𝑓[𝑞])
𝑐𝑜𝑟𝑟

= 𝑠̂(𝑘𝜌[𝑚], 𝜃[𝑛], 𝑓[𝑞]) ∙ 𝑒−𝑖2𝜋 (𝑚∆𝑡∙𝑓[𝑞]) 

(5-14) 

where 𝑓 is the vector of spectral frequencies and ∆𝑡 is the ADC dwell time. 

 Following this correction (done for all spokes, channels, and averages), a time shift is 

applied to the even echoes in order to coherently add the signals from the even and odd echoes. 

The time shift between the odd and even echoes is exactly half the spectral dwell time 𝛥𝜏, therefore, 

the time signal from the even echoes is shifted by this amount before addition with the odd echo 

signal 
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𝑠̂(𝑘𝜌[𝑚], 𝜃[𝑛], 𝑓[𝑞])𝑐𝑜𝑟𝑟

= 
1

2
(𝑠̂𝑒𝑣𝑒𝑛(𝑘𝜌[𝑚], 𝜃[𝑛], 𝑓[𝑞])

𝑐𝑜𝑟𝑟
∙ 𝑒𝑖2𝜋 (

1
2
∆𝜏∙𝑓[𝑞])

+ 𝑠̂𝑜𝑑𝑑(𝑘𝜌[𝑚], 𝜃[𝑛], 𝑓[𝑞])
𝑐𝑜𝑟𝑟

) 

(5-15) 

Subsequent processing is done on the resulting signal in the time domain: 𝑆(𝑘𝜌, 𝜃, 𝜏)𝑐𝑜𝑟𝑟 =

 ℱ𝜏
−1(𝑠̂(𝑘𝜌, 𝜃, 𝑓)

𝑐𝑜𝑟𝑟
).   

Self-Navigation 

The self-navigation property of REPSI derives from the periodic traversal of the radial 

trajectory through the k-space origin during the readout118. The navigator FID’s are extracted from 

the central k0 points (Figure 5-5). The navigator FID for the spoke acquired at angle 𝜃 is written 

as 

𝑆̃𝜃(𝜏[𝑞]) =  𝑆(𝑘0, 𝜃, 𝑞∆𝜏)𝑐𝑜𝑟𝑟 (5-16) 

where 𝑘0 = 𝑘𝜌[0]  is the k-space origin. The 𝑗𝑡ℎ  average of each spoke therefore has a 

corresponding navigator signal 𝑆̃𝜃,𝑗(𝜏[𝑞]) . For each channel, the (corrected) raw data 

𝑆𝑗(𝑘𝜌, 𝜃, 𝜏)𝑐𝑜𝑟𝑟 undergoes further corrections in two stages.  

 The first stage involves phase alignment of the averages for a single spoke. This is done by 

first selecting the navigator signal 𝑆̃𝜃,𝑃(𝜏) of the single average (denoted by 𝑃) which is most 

similar, in a least squares sense, to the median of the navigator signals of all averages, 

𝑚𝑒𝑑(𝑆̃𝜃(𝜏)) =  𝑚𝑒𝑑𝑖𝑎𝑛({𝑆̃𝜃,𝑗(𝜏), 𝑗 = 1,… , 𝑁𝑎𝑣𝑔}), where 𝑁𝑎𝑣𝑔 is the number of averages per 

spoke. Then the zero-order phase correction 𝜑𝜃,𝑗 is: 
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 𝜑𝜃,𝑗 = argmin
𝜑

1

2
 ‖𝑆̃𝜃,𝑃  −  𝑆̃𝜃,𝑗𝑒

𝑖𝜑‖
2

2
 (5-17) 

This phase correction is applied to the 𝑗𝑡ℎ average of the raw data as follows: 

𝑆𝑗
(1)

(𝑘𝜌, 𝜃, 𝜏) =  𝑆𝑗(𝑘𝜌, 𝜃, 𝜏)𝑐𝑜𝑟𝑟 ∙ 𝑒𝑖𝜑𝜃,𝑗 (5-18) 

where 𝑆(1)(𝑘𝜌, 𝜃, 𝜏) denotes the corrected data after the first stage. The navigator FID’s must 

be re-calculated after the first stage, 𝑆̃𝜃(𝜏) → 𝑆̃𝜃
(1)(𝜏). 

 The second stage involves phase and frequency alignment of the spokes. For this step, a 

reference spoke at angle 𝜃[𝑀] is chosen with which to phase and frequency align the rest of the 

spokes. In this work, the spoke at angle 𝜃 = 0°  was chosen, although other spoke angles are 

possible, although this choice must be consistent. The navigator FID’s for this reference spoke at 

angle 𝜃[𝑀] are averaged, and the rest of the averaged navigator FID’s for all other angles are phase 

and frequency aligned with respect to the averaged reference navigator FID, 𝑆̃𝜃[𝑀]
(1),𝑎𝑣𝑔(𝜏). For the 

spoke at angle 𝜃[𝑛], the zero-order phase and frequency shifts, 𝜑𝜃[𝑛] and ∆𝑓𝜃[𝑛], are found as 

follows46:  

Δ𝑓𝜃[𝑛], 𝜑𝜃[𝑛] = argmin
Δ𝑓,𝜑

 
1

2
 ‖𝑆̃𝜃[𝑀]

(1),𝑎𝑣𝑔(𝜏)  − 𝑆̃𝜃[𝑛]
(1),𝑎𝑣𝑔

𝑒𝑖𝜑+𝑖2𝜋Δ𝑓∙𝜏‖
2

2
 (5-19) 

These phase and frequency corrections are applied to the 𝑗𝑡ℎ average and spoke at angle 𝜃[𝑛] 

of the raw data (following the 1st stage) as follows 

𝑆𝑗
(2)

(𝑘𝜌, 𝜃[𝑛], 𝜏[𝑞]) =  𝑆𝑗
(1)

(𝑘𝜌, 𝜃[𝑛], 𝜏[𝑞]) ∙ 𝑒𝑖𝜑𝜃[𝑛] ∙ 𝑒𝑖2𝜋(Δ𝑓𝜃[𝑛])∙𝜏[𝑞] (5-20) 

Subsequent reconstruction is performed on the averaged signal, 𝑆(2),𝑎𝑣𝑔(𝑘𝜌, 𝜃, 𝜏).  
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Figure 5-5: (A) The navigator FID for each spoke consists of the central k-space points (k0) from 

all Nt time points, sampled with dwell time Δτ. The number of odd and even echoes is Nt = 512 

and Δτ = 840 μs (B) (Top) Navigator FID’s from each average. The navigator FID’s are built from 

the central k-space points (k0) sampled at the dwell time increment Δτ. Only the time points from 

0 – 70 ms are shown, although the total readout duration is approximately 430 ms. The necessary 

values for the phase and frequency drift corrections are determined from these navigator FID’s, 

and these values are applied to the raw data. (Middle) The spectra corresponding the navigator 

FID’s before and after corrections. To exclude averages overly corrupted by motion, signals with 

NAA SNR’s below 1.2 standard deviations of the average SNR of the NAA peak were removed 

prior to further processing. (Bottom) The averaged uncorrected and corrected spectra. Note that 
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the uncorrected spectra suffer a loss of signal intensity due to the varying phases and frequency 

shifts of the individual averages. 

Reconstruction and Post-Processing 

After phase and frequency alignment of the averages in the first stage of pre-processing 

described above, the signal-to-noise ratio (SNR) of the NAA peak was determined, and the 

individual averages with NAA SNR’s below 1.2 standard deviations away from the average NAA 

SNR were excluded from the data. This SNR threshold, similar to the methodology presented in 

other studies80, ensures that averages overly corrupted by motion are excluded from further 

reducing the signal intensity in the reconstructed data. Following this step, the second pre-

processing stage was preformed and the data was finally averaged and reconstructed on a coil-by-

coil basis. The radial data was reconstructed using the non-uniform Fourier transform (NUFFT)40. 

The interpolation kernel size for the NUFFT was 5 × 5 and a ramp filter inversely proportional to 

the k-space radius was applied for density compensation. After reconstruction, eddy-current phase 

correction was applied using the water unsuppressed data44. Coil sensitivities were estimated from 

the water peak integrals of the low or null b-value acquisitions, followed by generalized least 

squares coil combination110.  

On a voxel-by-voxel basis, the reconstructed spectra were zero-order phase corrected to 

bring the NAA singlet at 2 ppm into absorptive mode and, for the in vivo data, the residual water 

signal and any remaining fat lipids around 1.35 ppm were removed using the Hankel-Lanczos 

singular value decomposition method48. Subsequently, a linear baseline, estimated from the noise 

regions between -0.5-1 ppm and 7.5-9 ppm, was subtracted from the spectrum.  
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5.4.4 Quantitation 

Spectra were quantified using LC Model49 (version 6.2-0T) with basis sets simulated in 

VESPA50. Exact timings with ideal 90° and 180° RF pulses were used in the pulse sequence 

simulation. For in vivo data sets, the basis set included the following metabolites: alanine, 

ascorbate, aspartate, choline (Cho), creatine (Cr), γ-aminobutyric acid, glucose, glutamine (Gln), 

glutamate (Glu), glycerophosphorylcholine, glutathione, lactate (Lac), myo-inositol (mI), n-

acetylaspartate (NAA), n-acetylaspartylglutamate (NAAG), phosphorylcholine (PCh), 

phosphocreatine (PCr), phosphorylethanolamine, scyllo-inositol, and taurine. In vivo spectra were 

fitted between 0.8 to 4.2 ppm. 

 The LC Model concentration estimate, 𝑆𝑚, which is proportional to the peak integral of the 

particular metabolite 𝑚, was assumed to fit the standard model 

𝑆𝑚(𝑏𝑘) = 𝑆𝑚
0 𝑒−𝑏𝑘∙𝐴𝐷𝐶𝑚 (5-21) 

where 𝑏𝑘 is the kth b-value and 𝑆𝑚
0  is the non-diffusion-weighted signal. With two b-values, 

the ADC for metabolite 𝑚 was computed as  

𝐴𝐷𝐶𝑚 = −
ln[𝑆𝑚(𝑏2) 𝑆𝑚(𝑏1)⁄ ]

(𝑏2 − 𝑏1)
 (5-22) 

For in vivo data, only concentration estimates with Cramer-Rao lower bounds (CRLB’s) ≤ 

20% were considered for further analysis. Voxels in the metabolite maps that did not intersect with 

the water VOI were also excluded in order to avoid spectra with inadequate eddy current phase 

corrections114.  
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For phantom data, all estimates were taken into consideration and the average CRLB’s 

across all measurements for each metabolite and b-value are reported in Table 5-1 and briefly 

summarized in the Results section.  

  

Measurements 1- 10: Phantom CRLB Values 

(%) 

Null b-value (4 

s/mm2) 

High b-value (1,500 

s/mm2) 

NAA 5 ± 1 (16%) 5 ± 1 (15%) 

Cr 6 ± 1 (14%) 7 ± 1 (12%) 

Cho 7 ± 1 (13%) 10 ± 1 (13%) 

Glu 24 ± 6 (25%) 31 ± 12 (38%) 

Lac 20 ± 5 (26%) 27 ± 8 (31%) 

mI 31 ± 10 (33%) 38 ± 13 (35%) 

Table 5-1: Means, standard deviations, and coefficient of variance (CV%) of Cramer-Rao Lower 

Bound (CRLB) values of metabolite quantitation in the GE Braino phantom.  

The water ADC map was derived from the non-water suppressed reconstructions. For each 

voxel, the water peak was zero-order phased into absorptive mode and 4× interpolated followed 

by numerical integration to estimate the area. These water peak areas were then used for computing 

the voxel-wise ADC’s using the above model.   

Estimates of ADCs in Pure White and Gray Matter  

 Voxel-wise estimations of the gray and white matter fractions were made based on the T1-

weighted localization images, using an in-house MATLAB (Mathworks, Natick, MA, USA) 

routine.  Cerebral ventricle regions, containing dominant water signal from cerebral spinal fluid, 

were segmented and excluded from further quantitative analysis of metabolite ADC’s. Regions on 

the T1-weighted images corresponding to each voxel within the VOI were individually extracted 
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and segmented between the white and gray matter regions (Figure 5-10).  The masks for 

distinguishing between the gray and white matter regions were determined automatically based on 

a pixel value threshold that separated these two regions. Based on these masks, the number of 

pixels 𝑛𝐺𝑀  and 𝑛𝑊𝑀  in the gray and white matter, respectively, were counted in each 

spectroscopic voxel. The fractions for gray and white matter were then defined as 𝑓𝐺𝑀 =

 𝑛𝐺𝑀 (𝑛𝐺𝑀 + 𝑛𝑊𝑀)⁄  and 𝑓𝑊𝑀 = 𝑛𝑊𝑀 (𝑛𝐺𝑀 + 𝑛𝑊𝑀)⁄ , respectively. For total NAA (tNAA = 

NAA + NAAG), total creatine (tCr = Cr + PCr), total choline (tCho = Cho + PCh), and water, 

linear regression was applied to estimate each respective metabolite ADC as a function tissue gray 

or white matter fraction114,128,129. Based on this regression, the ADC values for pure gray matter 

was estimated based on an extrapolation to  𝑓𝐺𝑀 = 1. The values for pure white matter correspond 

to ADC’s extrapolated to 𝑓𝐺𝑀 = 0. 

Distribution of ADCs in selected voxels in Gray and White Matter Regions 

 Eight specific voxels were selected to determine the distributions of ADC values in gray 

and white matter-dominant locations, as an alternative to the above analysis which provided 

extrapolated pure gray and white matter ADC values based on the correlations between the multi-

voxel ADC’s and corresponding gray and white matter fractions in those voxels.  

 Four voxels in gray matter- and four in white matter-dominant regions were extracted 

(Figure 5-10). In gray matter, these voxels were located in the following regions: (1) – right 

anterior cingulate cortex (RACC), (2) – left anterior cingulate cortex (LACC), (3) – right superior 

precuneus (RSP), and (4) – left superior precuneus (LSP). The white matter voxels were located 

in the following regions: (5) – right anterior corona radiata (RACR); (6) – right posterior corona 

radiata (RPCR); (7) – left anterior corona radiata (LACR); and (8) – left posterior corona radiata 
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(LPCR). The average ADC’s and WM and GM fractions in each of these voxels are listed in Table 

5-4.  

 The ADC’s of tNAA, tCr, tCho, and water were compared between the white and gray 

matter locations, and with the values obtained from the regression analysis.  

5.4.5 Statistical Analysis 

Phantom 

One-way ANOVA’s were performed separately for each metabolite to assess the homogeneity 

of values across the five VOI subregions, and multiple comparisons tests with Bonferroni 

corrections were done to determine the specific regions that were significantly different from each 

other. An alpha level of α = 0.05 was adopted to test of significance   

 Two-sample t-tests were conducted for each metabolite to determine any significant 

differences between the ten Trace DW-REPSI measurements of the 2×2 subregion (with 

cumulative volume of 6 mL and 40 individual values in total), and 10 measurements from single 

voxel DW-PRESS (voxel volume 15.6 mL).  

 Coefficients of variance for NAA, Cr, Cho, Glu, Lac, and mI were determined from the ten 

Trace DW-REPSI measurements in phantom. Percent errors were computed between the ADC 

values derived from the Trace DW-REPSI and the reference values reported in the literature.  

In Vivo 

For the ADC values extrapolated to pure gray and white matter fractions, separate one-way 

ANOVA’s were performed to test for differences among the ADC’s of tNAA, tCr, and tCho in 

gray matter and in white matter. A multiple comparisons analysis with Bonferroni correction was 
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done to determine the specific significant differences in the ADC values from these three 

metabolites. Paired t-tests were done separately for tNAA, tCr, and tCho to determine any 

significant differences in ADC’s between gray and white matter.  

 For the ADC values extracted from the gray and white matter-dominant voxels, separate 

one-way ANOVA’s were performed to test for difference among the ADC’s of tNAA, tCr, and 

tCho in gray matter and in white matter locations. A multiple comparisons analysis with 

Bonferroni correction was done to determine the specific significant differences in the ADC values 

from these three metabolites. Paired t-tests were done separately for tNAA, tCr, and tCho to 

determine any significant differences in ADC’s between gray and white matter.  

 To test for reproducibility of Trace DW-REPSI, the Pearson correlation coefficients were 

computed for the metabolite and ADC maps for tNAA, tCr, and tCho between two scan sessions 

for the same volunteer.  

 Results 

5.5.1 Phantom 

The ADC values of all six metabolites from Trace DW-REPSI acquisitions in phantom are 

shown in Table 5-2. The average ADC values of NAA, Cr, Cho, and Glu, and mI over the entirety 

of the VOI (10×10 voxel region) are consistent with values reported in the literature101 and with 

values obtained with the single-voxel DW-PRESS. Mean values from other subregions (8×8 to 

2×2) agree with values from valued derived from the entire VOI.  
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Figure 5-6: (A) Trace ADC maps computed from single shot diffusion trace-weighted REPSI in 

the GE “Braino” phantom. The NAA, Cr, and Cho maps have the least spatial inhomogeneity of 

trace ADC values, while the maps for Glu, mI, and Lac show greater variations across the volume-

of-interest. (B) The 5 regions in which average ADC values were computed for assessing the 

degree of spatial homogeneity of the ADC values across the volume-of-interest.  (C) 

Representative diffusion-weighted spectra, acquired with a null (4 s/mm2) and high b-value (1,500 

s/mm2), are shown within the 4×4 voxel region within the yellow box on the ADC map of tNAA 

shown in (A). The average linewidths of the water magnitude peak after manual shimming was 

5.2 Hz. 

 

The means and standard deviations of the CRLB percentage values for NAA, Cr, Cho, Glu, 

Lac, and mI from the null b-value acquisition were 5 ± 1%, 6 ± 1%, 7 ± 1%, 24 ± 1%, 20 ± 1%, 
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and 31 ± 1%, respectively, and at the higher b-value, these values were 5 ± 1%, 7 ± 1%, 10 ± 1%, 

31 ± 12%, 27 ± 8%, and 38 ± 13%, respectively.  

 With respect to reference values, the percent errors for NAA, Cr, Cho, Glu, mI, and Lac 

(from values averaged over the 10×10 region) are 2%, 1%, 1%, 4%, 29%, and 4%, respectively. 

The three main peaks of NAA, Cr, and Cho are the best quantified of all the metabolites, and their 

ADC’s agree well with expected values and show the most homogeneity across the VOI, as shown 

in Table 5-2.  

 

Table 5-2: Mean, standard deviation, and coefficient of variance (CV%) values of brain phantom 

trace ADC’s, estimated from Trace DW-REPSI data. These values are calculated from sets of 

voxels within five subregions (Figure 5-6) of the volume-of-interest (VOI) – 10×10 (entire VOI: 

white box), 8×8 (red box), 6×6 (blue box), 4×4 (yellow box), and 2×2 (purple box). Reference 

values are shown in the rightmost table. 

The coefficients of variance (CV%) are highest for Glu, mI, and Lac, ranging between 22 

– 31%, 33 – 37%, and 19 – 24%, respectively. The larger standard deviation of mI ADC’s is 

apparent in the ADC maps shown in Figure 5-6 as well as in the histogram in Figure 5-7, even 

though the mean value agrees well with the reference, as indicated by a percent error value of 4%. 

This pattern is the same for Glu, however the CRLB and CV values for this metabolite indicate a 

better quantitation compared to mI. The ADC’s of Lac are more elevated relative to the reference 

  

Measurements 1-10:  Braino Trace ADC values  

[mean ± standard deviation (CV%)] (μm2/ms) 
Measurements 1-10: 

Single voxel ADC 

values 

Reference ADC 

values Voxel subregions within Volume-of-interest (VOI) 

10×10  8×8 6×6 4×4 2×2 

NAA 
0.58 ± 0.05 

(8%) 

0.58 ± 0.05 

(8%) 

0.57 ± 0.05 

(9%) 

0.57 ± 0.05 

(9%) 

0.58 ± 0.04 

(7%) 

0.61 ± 0.02 

(3.89 %) 
0.59 ± 0.01 

Cr 
0.77 ± 0.06 

(8%) 

0.76 ± 0.06 

(7%) 

0.76 ± 0.06 

(8%) 

0.76 ± 0.06 

(8%) 

0.76 ± 0.06 

(8%) 

0.78 ± 0.02 

(3%) 

0.78 ± 0.02 

(Cr3.1)/0.84 ± 

0.1 (Cr3.9) 

Cho 
0.92 ± 0.07 

(8%) 

0.91 ± 0.07 

(8%) 

0.91 ± 0.08 

(9%) 

0.9 ± 0.08 

(9%) 

0.92 ± 0.08 

(8%) 

0.93 ± 0.03 

(3%) 
0.91 ± 0.03 

Glu 
0.73 ± 0.16 

(22%) 

0.74 ± 0.18 

(24%) 

0.75 ± 0.21 

(28%) 

0.74 ± 0.23 

(31%) 

0.77 ± 0.23 

(30%) 

0.73 ± 0.07 

(10%) 
0.76 ± 0.03 

Lac 
0.84 ± 0.17 

(20%) 

0.84 ± 0.16 

(19%) 

0.82 ± 0.17 

(21%) 

0.81 ± 0.2 

(24%) 

0.82 ± 0.2 

(24%) 

0.77 ± 0.11 

(14%) 
0.64 ± 0.13 

mI 
0.73 ± 0.26 

(36%) 

0.75 ± 0.26 

(35%) 

0.77 ± 0.27 

(35%) 

0.76 ± 0.28 

(37%) 

0.72 ± 0.24 

(33%) 

0.76 ± 0.11 

(15%) 
0.76 ± 0.1 
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and Trace DW-PRESS values by approximately 30% and 9%, respectively, although its CRLB’s 

at both b-values are lower than those for Glu and mI.  

 

Figure 5-7: (A) Histograms of trace ADC values in the GE Braino phantom for NAA, Cr, Cho, 

Glu, mI, and Lac. (B) Histograms of in vivo brain trace ADC values. These include the ADC’s of 

all voxels (with CRLB’s ≥ 20% and outside of ventricle regions) in the volume-of-interest (VOI). 

 

Statistical Analysis 

Within the 10 x 10 voxel region of the VOI and all its subregions, the highest CV’s found for 

NAA, Cr, Cho, Glu, Lac, and mI were 9%, 8%, 9%, 31%, 24%, and 37%, respectively. For the 

single voxel acquisition, the CV’s were 4%, 3%, 4%, 10%, 14%, and 15%, respectively. 

 The one-way ANOVA’s for testing differences in the means among all VOI subregions, 

taken across 10 measurements (done for each metabolite), showed no statistically significant 

differences for Cho (p = 0.4364), Glu (p = 0.4277), Lac (p = 0.0552), and mI (p = 0.1519). For 
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NAA, the values between the 10×10 and 4×4 subregions were significantly different (p = 0.0252). 

For Cr, the values between the 10×10 subregion and the 8×8, 6×6, and 4×4 subregions were also 

significantly different with p-values of 0.0236, 0.0432, and 0.0023, respectively.  

 The two-sample t-tests between the 10 measurements within the smallest 2 × 2 subregion 

of the VOI (4×10 values for each metabolite) and the 10 single-voxel DW-PRESS measurements 

indicated no statistically significant difference in the means from these two acquisition types. The 

closest indication of any potential significant difference occurred for NAA (p = 0.054).  

5.5.2 In Vivo 

The effect of navigator-based phase and frequency shift corrections are shown in Figure 5-

5. The zero-order phase and frequency shift values needed to phase and frequency align all 

averages are determined from the set of navigator spokes from the averages. These values are then 

subsequently applied to the corresponding raw data, ensuring that the radial spokes are coherently 

averaged for maximum signal retention, as seen in the averaged uncorrected and corrected 

navigator spectra. Before averaging, the SNR thresholding step typically eliminated 1-3 averages 

out of total of 14 in vivo. 

Figure 5-8(A) shows in vivo NAA metabolite maps, taken with b = 1,600 s/mm2, before 

and after corrections.  Without any navigator-based corrections on the raw data, the final NAA 

map shows a marked decrease in signal intensity and greater appearance of streaking artifacts. 

After corrections, the spectral signal intensity is restored and the degree of streaking is greatly 

reduced. Improvements in spectral intensities of NAA, Cr, and Cho, and an overall increase in 

SNR is also evident in the spectra shown in Figure 5-8(B).  
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Figure 5-8: (A) (Left) NAA map from reconstructions without navigator-based phase and 

frequency shift corrections. The raw data was uncorrected although eddy-current phase correction 

was still applied using the (uncorrected) water-unsuppressed data. (Right) NAA map after 

navigator-based corrections. The signal intensity is increased and the degree of streaking artifacts 

is substantially reduced in the corrected NAA map. (B) Uncorrected (red) and corrected (blue) 

diffusion-weighted spectra taken with b-value of 1,601 s/mm2, shown within the yellow box 

indicated in the NAA maps. The spectral linewidths and signal intensities are greatly improved 

after applying the navigator-based phase and frequency drift corrections on the raw data before 

reconstruction.   

 

Figure 5-9 shows trace ADC maps of tNAA, tCr, tCho and water. The water VOI was 

displaced relative to the metabolite maps due to chemical shift misregistration. Voxels in the 

metabolite maps that overlapped with the water VOI were considered for further analysis of ADC’s 
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in white and gray matter regions. The metabolite ADC maps share common regions of high and 

low ranges of ADC values, and are consistent with the underlying anatomy, as also seen in the 

water ADC map. Typically, the CRLB’s in the periphery of the VOI, particularly in the leftmost 

column and bottom row had values greater than 20%.  Across the 10 healthy volunteers, the 

average proportion of voxels excluded for tNAA, tCr, and tCho was 5%, 8%, and 10%, 

respectively.  

 

Figure 5-9: (A) Trace ADC maps of total NAA (tNAA), total Creatine (tCr), total Choline (tCho), 

and water. Estimated tNAA ADCs ranged between 0.25-0.35 μm2/ms, which agree with reports 

probing short diffusion times. Most water trace ADC’s ranged between 1.0 – 1.4 μm2/ms. The 

water VOI (white box) is displaced relative to the metabolite maps due to chemical shift 

misregistration. Regions where CRLB values exceeded 20% usually occurred in the leftmost 

column and lowest row of the multi-voxel VOI grid.  (B) Representative diffusion-weighted 

spectra within the yellow box placed on the tNAA ADC map in (A) are shown. The diffusion-

weighted spectra from the low (51 s/mm2) and high b-value (1,601 s/mm2) are overlaid for 

comparison.   

 

Estimates of ADCs in Pure White and Gray Matter  
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Figure 5-10(B) shows fits of the ADC values of tNAA, tCr, tCho, and water as a function of 

gray matter fraction, for a single volunteer. The Pearson correlation coefficient ρ shows moderate 

correlation (0.47 – 0.53) between the GM fraction and metabolite ADC’s. The water ADC has the 

low degree of correlation with ρ = 0.17. Extrapolations to pure WM or GM were made by 

evaluating the linear fit at the values of 𝑓𝐺𝑀 to 0 and 1, respectively. Table 5-3 shows the ADC 

estimates of pure GM and WM, based on these extrapolations. The corresponding Pearson 

correlations coefficients and associated p-values less than α = 0.05 are also listed. In general, the 

metabolite ADC’s in GM tend to be greater than those in WM, except for water, which has white 

matter ADC’s slightly than those in gray matter. The ranges of ADC’s in pure GM for tNAA, tCr, 

tCho and water were 0.23 – 0.27, 0.20 – 0.33, 0.18 – 0.26, and 0.96 – 1.24 μm2/ms, respectively, 

and for pure WM, the ADC ranges were 0.31 – 0.38, 0.29 – 0.38, 0.26 – 0.34, and 0.97 – 1.08 

μm2/ms, respectively.  

 

Table 5-3: Mean, standard deviation, and CV% values of estimated in vivo brain trace ADC’s in 

pure gray matter (GM) and pure white matter (WM). These estimated values were extrapolated 

from linear regression fits of ADC vs. GM or WM fraction. The correlation coefficient (ρ) and the 

corresponding p-value is also shown. 

  

Extrapolated ADC's to Pure Gray and White Matter (μm2/ms) 

tNAA tCr tCho Water 

GM WM ρ (p-value) GM WM ρ (p-value) GM WM ρ (p-value) GM WM ρ (p-value) 

1 0.24 0.32 -0.28 (0.015) 0.22 0.32 -0.22 (NS) 0.2 0.27 -0.22 (NS) 1.05 1.05 0.09 (NS) 

2 0.23 0.38 -0.44 (< 0.001) 0.29 0.36 -0.21 (NS) 0.22 0.31 -0.28 (NS) 1.1 1.02 0.09 (NS) 

3 0.24 0.33 -0.43 (< 0.001) 0.22 0.35 -0.48 (< 0.001) 0.22 0.31 -0.28 (0.044) 1.05 1.08 0.1 (NS) 

4 0.24 0.32 -0.17 (NS) 0.24 0.33 -0.14 (NS) 0.24 0.34 -0.14 (NS) 1.03 1.04 0.11 (NS) 

5 0.27 0.33 -0.26 (0.032) 0.26 0.34 -0.24 (NS) 0.2 0.32 -0.32 (0.021) 1.19 1 0.29 (0.012) 

6 0.26 0.33 -0.29 (0.012) 0.28 0.36 -0.23 (0.048) 0.26 0.3 -0.08 (NS) 1.08 1.07 0.1 (NS) 

7 0.27 0.35 -0.35 (0.002) 0.2 0.32 -0.38 (0.001) 0.21 0.31 -0.32 (0.009) 1.13 0.98 0.37 (< 0.001) 

8 0.24 0.33 -0.33 (0.012) 0.33 0.29 -0.19 (NS) 0.21 0.32 -0.21 (NS) 1.06 0.97 0.12 (NS) 

9 0.25 0.36 -0.53 (< 0.001) 0.24 0.38 -0.47 (< 0.001) 0.18 0.33 -0.53 (< 0.001) 0.96 1.05 0.17 (NS) 

10 0.26 0.31 -0.2 (NS) 0.29 0.33 -0.15 (NS) 0.24 0.26 -0.06 (NS) 1.24 1.07 0.4 (< 0.001) 

Group* 

0.25 

± 

0.01 

(6%) 

0.34 ± 

0.02 

(6%) 

-0.33 ± 0.11 

(35%) 

0.26 

± 

0.04 

(16%) 

0.34 

± 

0.03 

(8%) 

-0.27 ± 0.13 

(47%) 

0.22 

± 

0.02 

(11%) 

0.31 

± 

0.02 

(8%) 

-0.24 ± 0.14 

(56%) 

1.09 

± 

0.08 

(7%) 

1.03 

± 

0.04 

(4%) 

0.18 ± 0.12 

(66%) 

NS: not significant 

* Data from two volunteers was excluded due to inadequate spectral quality 
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Statistical Analysis 

For ADC estimates in pure GM, one-way ANOVA test indicated no significant differences in 

the mean values between tNAA (0.25 μm2/ms) and tCr (0.26 μm2/ms) (p = 1.0), nor between tNAA 

and Cho (0.22 μm2/ms) (p = 0.0511). However, the mean pure GM ADC’s of tCr and tCho were 

significantly different (p = 0.0135). 

  For ADC estimates in pure WM, no significant differences in the mean values between 

tNAA (0.34 μm2/ms) and tCr (0.34 μm2/ms) (p = 1.0) were found. However, the mean ADC’s of 

tNAA and tCho (0.31 μm2/ms) in pure WM were significantly different (p = 0.0357). In addition, 

the mean ADC’s of tCr and tCho in pure WM were also significantly different (p = 0.0229). 

 Paired t-test showed significant differences in the ADC’s of tNAA, tCr, and tCho between 

GM and WM, all with p < 0.001. However, no significant differences were found in the water 

ADC’s between gray and white matter (p = 0.0928).  

Distribution of ADCs in selected voxels in Gray and White matter regions 

Table 5-4 shows the means, standard deviations, and coefficients of variance of the ADC’s of 

tNAA, tCr, tCho, and water in the four gray matter-dominant and four white matter-dominant 

voxels selected as indicated in Figure 5-10(C). The respective average gray matter and white 

matter fractions are also reported for each of these voxel locations. Consistent with the trend seen 

in the extrapolated ADC’s for pure GM and WM, the ADC’s in the gray matter are higher than 

those in white matter, except for water where the values fall within a similar range.  For example, 

for tNAA, tCr, and tCho, the range of ADC’s in the gray matter voxels was 0.25 – 0.27, 0.22 – 0.3, 

and 0.21-0.27 μm2/ms, respectively, whereas in the white matter voxels the ADC ranges of these 
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metabolites were 0.28 – 0.31, 0.27-0.31, and 0.24 – 0.30 μm2/ms, respectively. The ADC’ of tCho 

have the highest coefficients of variance, ranging from 33-50% in gray and 21-30% in white matter, 

while the CV’s of tNAA and water tend to me the lowest, not exceeding 19% in either gray or 

white matter locations. 

 

Figure 5-10: (A) Segmentation process for determining the relative contributions of white and gray 

matter within the VOI. Only a representative slice from the set of T1-weighted images is shown. 

The areas of white and gray matter within the VOI is delineated within each voxel. The relative 

number of pixels in the white and gray matter regions is then used for determining the gray matter 

(GM) and white matter (WM) fraction. (B) Linear regression fits of ADC values as a function of 

the GM fraction. The Pearson correlation coefficient ρ is shown next the linear fit. (C) Specific 

voxels in gray matter (1-4) and white matter (5-8) dominant locations were selected for further 

analysis of the relative ADC distributions of tNAA, tCr, tCho, and water within and between GM 

and WM regions. The specific voxels are located in: (1) – right anterior cingulate cortex (RACC); 

(2) – left anterior cingulate cortex (LACC); (3) – right superior precuneus (RSP); (4) – left superior 

precuneus (LSP); (5) – right anterior corona radiata (RACR); (6) – right posterior corona radiata 

(RPCR); (7) – left anterior corona radiata (LACR); and (8) – left posterior corona radiata (LPCR). 
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Statistical Analysis 

Paired t-tests, for each metabolite, indicated significant differences in the ADC’s of tNAA (p 

< 0.001) and tCr (p = 0.0264) between gray and white matter. However, no statistically significant 

differences between GM and WM were found in the ADC’s of tCho or water.  

 In gray matter voxels, one-way ANOVA tests showed no significant differences in the 

ADC values of tNAA, tCr, tCho and water. However, in white matter voxels, the only significant 

difference found was between the ADC’s of tNAA and tCho (p = 0.039).  

 

Table 5-4: Mean, standard deviation, and CV% values of in vivo brain trace ADC’s in the four 

selected voxels in the gray matter (GM) locations and in the four selected voxels in the white 

matter (WM) locations. The corresponding GM and WM fractions within each respective voxel in 

the gray or white matter regions are shown in the rightmost portion of the table. The locations of 

the voxels are shown in Figure 5-10(C), and the abbreviations are defined as follows: RACC – 

right anterior cingulate cortex; LACC – left anterior cingulate cortex; RSP – right superior 

precuneus; LSP – left superior precuneus; RACR – right anterior corona radiata; RPCR – right 

posterior corona radiata; LACR – left anterior corona radiata; LPCR – left posterior corona radiata 

 

Reproducibility across two scan session for a single volunteer 

 

ADC's in Selected Voxel Locations (μm2/ms)   

tNAA tCr tCho Water 

Gray Matter 

Fraction 

White Matter 

Fraction 

Gray Matter 

Locations 

RACC 0.27 ± 0.03 (13%) 

0.22 ± 0.08 

(34%) 

0.23 ± 0.08 

(33%) 1.13 ± 0.14 (12%) 0.74 ± 0.16 (22%) 0.26 ± 0.16 (62%) 

LACC 0.25 ± 0.04 (17%) 

0.24 ± 0.09 

(40%) 

0.21 ± 0.06 

(29%) 1.18 ± 0.15 (12%) 0.74 ± 0.22 (30%) 0.26 ± 0.22 (86%) 

RSP 0.27 ± 0.02 (9%) 

0.3 ± 0.07 

(23%) 

0.27 ± 0.1 

(39%) 1.16 ± 0.25 (21%) 0.8 ± 0.16 (20%) 0.2 ± 0.16 (79%) 

LSP 0.27 ± 0.05 (19%) 

0.26 ± 0.05 

(20%) 

0.27 ± 0.13 

(50%) 1.15 ± 0.2 (18%) 0.84 ± 0.15 (17%) 0.16 ± 0.7 (43%) 

White Matter 

Locations 

RACR 0.31 ± 0.03 (9%) 

0.31 ± 0.04 

(13%) 

0.24 ± 0.07 

(30%) 1 ± 0.11 (11%) 0.04 ± 0.03 (61%) 0.96 ± 0.03 (3%) 

RPCR 0.31 ± 0.04 (14%) 

0.29 ± 0.04 

(13%) 

0.29 ± 0.06 

(19%) 1.11 ± 0.17 (15%) 0.2 ± 0.1 (50%) 0.8 ± 0.25 (32%) 

LACR 0.31 ± 0.04 (14%) 

0.31 ± 0.07 

(24%) 

0.3 ± 0.06 

(21%) 1.01 ± 0.12 (12%) 0.06 ± 0.03 (50%) 0.94 ± 0.1 (11%) 

LPCR 0.28 ± 0.04 (13%) 

0.27 ± 0.05 

(17%) 

0.26 ± 0.08 

(29%) 1.24 ± 0.17 (14%) 0.35 ± 0.17 (49%) 0.65 ± 0.28 (43%) 
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One volunteer was scanned twice on separate days and the Pearson’s linear correlation 

coefficient, ρ, was taken as measure of reproducibility of the ADC and metabolite maps between 

the scan sessions.  

For the low b-value (11 s/mm2) metabolite maps, ρ = 0.86, 0.84, and 0.80, and 0.94 for 

tNAA, tCr, tCho and water, respectively. For metabolite maps acquired at the higher b-value 

(1,600 s/mm2), the correlation coefficient for tNAA, tCr, tCho, and water was ρ = 0.86, 0.86, 0.81, 

and 0.92, respectively.  

For ADC maps, the correlation coefficient was 0.43, 0.35, 0.31, and 0.68, for tNAA, tCr, 

tCho, and water, respectively.  

 Discussion 

This study evaluated diffusion-weighted spectroscopic imaging using the single-shot trace-

weighted scheme with radial echo-planar trajectories, in both in vivo and phantom data. The radial 

acquisition enabled a self-navigating approach for retrospective corrections on the raw data before 

reconstruction. These corrections improved SNR retention and fidelity of spatial encoding, 

allowing for multi-voxel in vivo trace ADC estimations that show consistent trends with previous 

DW-MRS/MRSI reports. The trace DW-REPSI sequence also enables the estimation of the trace 

ADC within a single measurement, potentially reducing the influence of motion and other 

inconsistencies on the trace ADC estimation from three separate measurements, as done in 

conventional DW-MRSI sequences.  

5.6.1 Phantom validation 
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The trace ADCs in phantom agree remarkably well with reported values, except for 

overestimation of Lac. The coefficients of variance are also higher in Lac, mI, and Glu compared 

to the NAA, Cr, and Cho, indicating that the former three metabolites are not as reliably quantified.  

These discrepancies could be due to the TE of 144 ms, which is much longer than the (minimum) 

TE of 74 ms used in the report by Landheer et al.101. At long TE’s, the effects of SNR loss, T2 

decay and phase modulations due to J-coupling are more pronounced and can cause the signals of 

mI, Glu, and Lac to have lower inherent SNR and to add incoherently during the averaging process.  

These effects explain the relative inhomogeneity of values across the ADC maps of mI, Lac, and 

Glu compared to non-J-coupled main singlets of NAA, Cr, and Cho, all of which retain fairly 

homogenous mean ADCs and low CVs for the various VOI subregions. Overall, the accurate ADC 

estimation from Trace DW-REPSI validates the performance of this sequence in phantom.  

5.6.2 In vivo validation and comparison of ADCs with other studies 

In vivo ADC’s from this study are generally slightly higher than those reported in the 

literature. One key contribution to this effect is the diffusion time td. Most other reports have used 

diffusion-weighted single-voxel or spectroscopic imaging sequences with long diffusion times 

greater or equal to 36 ms114–116. The current study used a diffusion time of 10.75 ms, which is one 

the shortest reported for DW-MRSI to the best of our knowledge. It is well known that in vivo 

brain ADCs are larger when measured with short diffusion times. Several studies have reported 

this ADC overestimation at short diffusion times in rodent and human brain in vivo92,93,95.  

In healthy adults, the single-voxel study by Ellegood et al.79 (td = 117 ms) reported trace 

ADC ranges of 0.15–0.20 μm2/ms in gray matter and 0.19–0.30 μm2/ms in white matter for tNAA, 

tCr, and tCho. The report by Ercan et al.114 (td = 50 ms) found these metabolites to have trace ADC 

ranges of 0.11–0.13 μm2/ms in gray matter and 0.13–0.17 μm2/ms in white matter. Fotso et al.115 
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(td ≈ 36.6 ms) reported an ADC range of 0.17–0.20 μm2/ms or 0.09–0.11 μm2/ms (for gray-white 

mixtures), depending on the degree of corrections for phase-encoding ghosting. In contrast, in our 

study, the trace ADC values in extrapolated to pure GM and WM ranged between 0.18–0.27 and 

0.26–0.38 μm2/ms, respectively. However, in the selected gray and white matter-dominant voxels, 

ranges of 0.21–0.27 and 0.24–0.31 μm2/ms, respectively, were quantified. The larger ADC values 

in white matter found in our study is consistent with the report by Kan et al.103 and the trends found 

in the aforementioned reports. We found significant differences in the extrapolated ADCs of tNAA, 

tCr, and tCho between pure GM and WM. For the selected gray and white matter locations, only 

tNAA and tCr were significantly different between in gray versus white matter.  

With regard to water, our study shows that the differences in ADC’s between gray and 

white matter are not significant. However, there is a trend of higher mean values in the extrapolated 

water ADCs of gray matter (1.09 μm2/ms) versus white matter (1.03 μm2/ms). In the analysis of 

selected gray and white matter voxels, this trend also holds, with an average water trace ADC of 

1.16 and 1.09 μm2/ms in gray and white matter, respectively. The higher water ADCs in gray 

compared to white matter is consistent with literature130.  

5.6.3 Limitations 

The diffusion trace-weighted pulse sequence has several limitations. Firstly, the TE must be 

relatively long to accommodate the diffusion-sensitizing gradients and consequently the number 

of reliably detected metabolites is limited to tNAA, tCr, and tCho. Secondly, high b-values require 

large gradients amplitudes, which could increase the influence of eddy currents and potentially 

exceed scanner slew rate and nerve stimulation limits. With all other parameters fixed, the current 

sequence could reach b-values up to approximately 3,100 s/mm2, however, only at the maximum 
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amplitude of 80 mT/m. The b-value of 1,601 s/mm2 was chosen for two reasons: (1) to allow 

sufficient water for eddy current phase correction of the high b-value data, and (2) to allow enough 

residual water for the navigator-based corrections. Thirdly, the PRESS localization uses non-

adiabatic pulses which are not robust to chemical shift displacement, and volumetric excitation 

prevents whole-brain coverage.  

  Regarding other limitations, firstly, the in vivo voxel size is large at 2 mL, which could 

worsen the partial volume effects in the spectra. This large volume was selected to maximize the 

SNR. Although the linear correlation of ADC vs. gray and white matter fraction could somewhat 

compensate for partial volume effects, it is difficult to isolate the ADC coming from only gray or 

white matter. Secondly, the scan time is rather long, taking approximately 25-30 minutes alone for 

the diffusion-weighted acquisitions. The long scan time is partially due to the use of a relatively 

large number of spokes and the need for averaging.  However, the high concentration of radial 

samples within the higher-SNR central k-space helps to increase the sensitivity of the signal. 

Alternatively, golden angle acquisitions could be used for prospectively undersampled data, 

however, in this study, we chose uniform undersampling with a prescribed odd number of spokes 

as this type of sampling minimizes the azimuthal gaps between the spokes compared to a non-

Fibonacci number of spokes in a golden angle distribution22. A third limitation is that only two b-

values were able to be practically acquired within a one-hour scan session. The use of three or 

more b-values could further improve the ADC estimation. Lastly, no cardiac gating was 

implemented, although other studies have also omitted its use by depending on post-processing 

methods to minimize the effects of pulsatile motion in the brain79,80,102. In this study, the acquired 

radial data itself was used via a self-navigating approach to retrospectively remove data that was 
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overly corrupted by motion. This approach is in contrast to other studies that report the importance 

of cardiac gating for accurately estimating the ADC81.  

5.6.4 Other Considerations in Trace DW-REPSI  

 Besides self-navigation, other types of signal tracking have been implemented for DW-

MRSI, in addition to those first introduced by Posse et al.104,105, which involve separate built-in 

readout gradients interspersed within the sequence to track shot-to-shot phase and frequency 

changes114,115.  Motion correction approaches using real-time and volumetric navigators131,132 

could also be used for diffusion-weighted MRSI. In contrast to other DW-MRSI reports mentioned 

above, this study exploited the self-navigating properties of radial trajectories to retrospectively 

correct or remove data, as done in other reports in radial MRI24,119,120. 

In addition to navigator-based pre-processing corrections, gradient delay corrections were 

also applied on the raw data. The gradient delay calibration and correction in this study only 

considers the k-space offset parallel to the radial direction, and does not account for the 

perpendicular displacement of the spoke away from the k-space center133. However, the overall 

apparent effect of this gradient delay correction may be minimal at low spectroscopic imaging 

resolutions. Further improvements in trajectory misalignment can be done by estimating the actual 

trajectory with additional calibration scans134. 

To improve the potential clinical applicability of this sequence, future studies are needed 

to determine the effects of radial undersampling on the ADC estimation. In this study, the amount 

of under-sampling was conservative (acceleration factor of 1.52 with 33 spokes) in order to acquire 

the data during a time comparable to that of a fully-sampled Cartesian acquisition with the same 

matrix size (32×32), and to ensure a sufficiently large reduced FOV unaffected by undersampling 
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artifacts, such as streaking51. In principle, compressed sensing reconstruction may be used for this 

mildly undersampled radial data4. However, in some cases with suboptimal parameter tuning, the 

compressed sensing algorithm could inadvertently introduce a further reduction in the diffusion-

weighted spectral amplitudes, especially as the lower concentrated diffusion-weighted spectra may 

be already highly attenuated and near the noise level. Future work involves evaluating the use of 

CS and parallel imaging techniques for accelerated DW-MRSI and their effects on ADC 

quantitation.  

   Conclusion 

This study presents the first demonstration of the single-shot diffusion trace-weighted 

spectroscopic imaging sequence using radial echo planar trajectories in a clinical scanner at 3T. 

We evaluate the performance of this sequence in phantom and in vivo, and demonstrate the utility 

of self-navigation-based corrections of the radial data. Results show excellent agreement of 

phantom trace ADC’s computed with Trace DW-REPSI and reference values. In vivo ADC’s agree 

well in both the difference between gray and white matter, as well as the overestimation of 

metabolite and water ADC’s due to a shorter diffusion time. The diffusion trace-weighted 

sequence could provide an estimate of the trace ADC of the main metabolite groups (tNAA, tCr, 

and tCho) in a much shorter scan time compared to conventional diffusion-weighted spectroscopic 

imaging techniques that require separate measurement along three orthogonal diffusion directions.  
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Chapter 6 Conclusion 

In this dissertation, we implemented radial echo planar spectroscopic imaging and 

demonstrated its application for accelerated MRSI acquisitions and its utility for diffusion-

weighted MRSI owing to its robustness to motion, self-navigation capability, and excellent 

tolerance to high undersampling factors. In Chapter 3, accelerated REPSI was applied for 2D brain 

1H MRSI and was compared to time-equivalent Cartesian EPSI acquisitions, showing that the 

REPSI with compressed sensing reconstruction can outperform Cartesian EPSI in terms of 

quantitation and imaging quality as a function of acceleration factor and in terms of its robustness 

to motion-induced artifacts. In Chapter 4, we implemented a single voxel version of the single-

shot diffusion trace-weighted pulse sequence and were the first to demonstrate this technique for 

in vivo trace ADC estimates in human brain. In Chapter 5, we extended the single voxel diffusion 

trace-weighted sequence for diffusion-weighted spectroscopic imaging using REPSI and 

demonstrated the inherent capability of the self-navigated radial trajectories for implementing 

crucial post-processing corrections of the diffusion-weighted spatially-encoded data. Finally, in 

the Appendix, a study improving the computation efficiency of locally low-rank-based parallel 

imaging reconstruction is presented. 

   Summary of Technical Development  

6.1.1 Accelerated Radial Echo Planar Spectroscopic Imaging 

In Chapter 3, we demonstrated one of the first studies of 1H radial echo planar spectroscopic 

imaging using acceleration based on compressed sensing reconstruction with total variation 

regularization. Comparisons of results with reconstructions of undersampled Cartesian EPSI 

acquisitions, at various reduction factors, show that REPSI is more tolerant of high acceleration of 
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2D MRSI and can be applied to free-breathing liver and prostate acquisitions with minimal motion-

induced artifacts, which can more significantly affect Cartesian EPSI. Reconstruction results in 

the brain indicate that EPSI-based metabolite maps are much more degraded at the acceleration 

factor corresponding to 13 acquired ky-lines, while REPSI still maintains reasonable image quality 

from the same number of spokes. The consequence is that the minimum scan time can be reduced 

by using the REPSI sequence, in the present example from 6 min 24 sec to 2 min 36 sec. Compared 

to the standard Cartesian approach and in combination with CS, radial undersampling is a 

promising approach to reduce scan time for 2D spectroscopic imaging.  

6.1.2 Single-shot Diffusion Trace-weighted DW-PRESS 

In chapter 4, we present the first demonstration of the single-shot diffusion trace-weighted 

sequence in a clinical scanner at 3T, and we compare the trace ADC values obtained with this 

sequence to those computed from the conventional bipolar and unipolar DW-PRESS sequences 

acquired with three orthogonal directions and negative and positive diffusion gradient polarities. 

Results show excellent agreement of phantom trace ADC’s computed with all sequences, and in 

vivo ADC’s agree well in both the difference between OG and OW matter, as well as the 

overestimation of metabolite and water ADC’s due to a shorter diffusion time. The diffusion trace-

weighted sequence could provide an estimate of the trace ADC of the main metabolite groups 

(tNAA, tCr, and tCho) in a much shorter scan time (by nearly a factor of three) compared to 

conventional DW-PRESS acquisitions.    
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6.1.3 Single-shot Diffusion Trace-weighted REPSI  

In Chapter 5, we present the first demonstration of the single-shot diffusion trace-weighted 

spectroscopic imaging sequence using radial echo planar trajectories in a clinical scanner at 3T. 

We evaluate the performance of this sequence in phantom and in vivo, and demonstrate the utility 

of self-navigation-based corrections of the radial data. Results show excellent agreement of 

phantom trace ADC’s computed with Trace DW-REPSI and reference values. In vivo ADC’s agree 

well in both the difference between gray and white matter, as well as the overestimation of 

metabolite and water ADC’s due to a shorter diffusion time. The diffusion trace-weighted 

sequence could provide an estimate of the trace ADC of the main metabolite groups (tNAA, tCr, 

and tCho) in a much shorter scan time compared to conventional diffusion-weighted spectroscopic 

imaging techniques that require separate measurement along three orthogonal diffusion directions. 

6.1.4 Improved Computation Efficiency of Locally Low-Rank Parallel Imaging 

Reconstruction 

In the Appendix, we show that locally low rank reconstruction using random iterative patch 

adjustments (LLR-IRPA) retains the same level of image reconstruction and quantitative 

parameter mapping results compared to overlapping patch-based LLR regularization, in terms of 

image quality and normalize root mean square error, but with the distinct advantage of 

substantially reduced computational load. We describe this patch adjustment strategy for LLR 

regularization and set a theoretical framework for formulating this novel development in the 

context of patch-based image reconstruction techniques. This technique is an improvement over 

conventional LLR-based algorithms such as CLEAR, since the computational load is substantially 

reduced without promoting block artifacts. Experimental results and theoretical analysis of the 

proposed method, including a proof of convergence for this algorithm, support these findings. The 
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implications of LLR-IRPA is to facilitate the application of LLR-based regularization for clinical 

MRI applications.    

   Future outlook 

6.2.1 Accelerated Radial Echo Planar Spectroscopic Imaging 

In this work, we implemented a radial echo planar spectroscopic imaging sequence along with 

undersampling scheme based on golden angle view ordering and reconstruction with compressed 

sensing using total variation regularization. This sequence can be applied currently, although only 

for accelerated two-dimensional MRSI in human brain. Although promising results were shown 

in free-breathing liver and prostate scans, further validation is needed to assess the repeatability of 

metabolite quantitation for these types of acquisitions. The same sequence can be extended for 

three-dimensional MRSI by including phase-encoding steps for the slice dimension, resulting in a 

stack-of-stars acquisition. However, the optimization algorithm would need to be modified to 

reconstruct two non-Cartesian (kx-ky) and one Cartesian (kz) dimensions. For three-dimensional 

acquisitions, there is also the challenge of requiring a long scan time to acquire the water reference 

scan, therefore an interleaved water acquisition would be the most practical way to obtain water 

reference data for eddy current phase correction.  

6.2.2 Single-shot Diffusion Trace-weighted DW-PRESS  

In this work, we mainly focused on demonstrating the feasibility of the single voxel diffusion 

trace-weighted PRESS sequence (Trace DW-PRESS) for in vivo human brain acquisitions, and on 

comparing trace ADC estimates from this sequence to those obtained from conventional DW-

PRESS acquisitions using bipolar and unipolar diffusion-sensitizing gradient configurations. 

Compared to current protocols for measuring the trace ADC, the Trace DW-PRESS sequence can 
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in principle reduce the necessary scan time for estimating the trace ADC, however, due to the long 

TE, only the main singlets of total N-acetyl aspartate, total choline, and total creatine can be 

reliably estimated, thus limiting the ability of this technique to probe other metabolites of interest 

such as glutamate + glutamine and myo-inositol. For this sequence to be clinically practical, the 

in-built scanner software must include advanced phase- and frequency-aligning subroutines to 

ensure optimal signal combination for reliable trace ADC estimation. Further optimization of these 

sequence in terms of the optimal trade-off between TE and b-value may also need to be explored.  

6.2.3 Single-shot Diffusion Trace-weighted REPSI 

In this work, we demonstrated that Trace DW-REPSI is able to provide estimates of the trace 

ADCs of the three main metabolite groups of total N-acetyl aspartate, total choline, and total 

creatine, similar to the single voxel case, using only two measurements as opposed to the six that 

would be required using conventional DW-MRSI. However, the acquisition is still quite long at 

approximately 30 minutes for 2 b-values, largely due to the acquisition of a relatively high number 

of 33 spokes, corresponding to an acceleration factor of roughly 1.52. Therefore, future studies 

must be conducted to show the effect of further undersampling on the resulting trace ADC 

estimation. This study used a high number of spokes, although still short of the 50 required to meet 

the Nyquist sampling criterion, to validate the technique while minimizing the influence of spatial 

undersampling. Further undersampling could make this technique more clinically feasible, 

although other complications due to chemical shift misregistration which is inherent to the 

foundational PRESS sequence are less avoidable. 
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6.2.4 Improved Computation Efficiency of Locally Low-Rank Parallel Imaging 

Reconstruction 

In this work, the locally low rank (LLR) technique for image domain-based parallel imaging 

is improved by significantly reducing the computational load without promoting block artifacts. 

In fact, the amount of acceleration from using random shifting of image patches has been shown 

to reach up to a factor of 3 to 4. The iterative random patch adjustment strategy is experimentally 

shown to suppress block artifacts while retaining the convergence rate of more computationally 

expensive conventional LLR algorithms. The implications of LLR-IRPA is to facilitate the 

application of LLR-based regularization for clinical MRI applications. Currently, a similar 

techniques is offered as a standard function within the Berkeley Advanced Reconstruction  

Toolbox (BART)135.  

For accelerated spectroscopic imaging, the same LLR-IRPA framework can be applied for 

each frequency component of the spectrum. The computational load can be reduced by 

reconstructing only the undersampled spatial data within the spectral range of interest. It is also 

possible to simultaneously reconstruct multiple low-rank matrices for a broad range of frequencies 

using parallel computing techniques, making the LLR-IRPA method more feasible for fast MRSI. 

Since the resolutions for MRSI are relatively low compared to MRI, it would also be possible to 

increase the patch size without further compromising the low rank property of the matrices formed 

by the local image patches. Hence, the LLR-IRPA method can use a much reduced number of 

local patches, thereby offsetting the increased number of frequency-by-frequency reconstruction 

that are needed in the context of MRSI.  
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APPENDIX: Improved Computational Efficiency of Locally 

Low Rank MRI Reconstruction Using Iterative Random 

Patch Adjustments  

A.1 Abstract 

This chapter presents and analyzes an alternative formulation of the locally low-rank (LLR) 

regularization framework for magnetic resonance image (MRI) reconstruction. Generally, LLR-

based MRI reconstruction techniques operate by dividing the underlying image into a collection 

of matrices formed from image patches. Each of these matrices is assumed to have low rank due 

to the inherent correlations among the data, whether along the coil, temporal, or multi-contrast 

dimensions. LLR regularization has been successful for various MRI applications such as parallel 

imaging and accelerated quantitative parameter mapping. However, a major limitation of most 

conventional implementations of LLR regularization is the use of multiple sets of overlapping 

patches. Although the use of overlapping patches leads to effective shift-invariance, it also results 

in high computational load, which limits the practical utility of LLR regularization for MRI. To 

circumvent this problem, alternative LLR-based algorithms instead shift a single set of non-

overlapping patches at each iteration, thereby achieving shift-invariance and avoiding block 

artifacts. A novel contribution of this paper is to provide a mathematical framework and 

justification of LLR regularization with iterative random patch adjustments (LLR-IRPA). This 

method is compared with a state-of-the-art LLR regularization algorithm based on overlapping 

patches, and it is shown experimentally that results are similar but with the advantage of much 

reduced computational load. We also present theoretical results demonstrating the effective shift 
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invariance of the LLR-IRPA approach, and we show reconstruction examples and comparisons in 

both retrospectively and prospectively undersampled MRI acquisitions. 

A.2 Introduction  

Current medical magnetic resonance imaging (MRI) largely depends on undersampled data 

acquisitions, combined with specialized reconstruction techniques, to reach the levels of spatio-

temporal resolutions and volumetric coverage necessary for practical clinical purposes136–138. 

These accelerated imaging methods recover images from highly reduced k-space samples by 

implementing optimization schemes that incorporate a priori knowledge of the underlying image 

information. Parallel imaging takes advantage of the inherent data redundancy available from 

multiple coil measurements, while compressed sensing (CS) exploits the low-dimensional 

representation of spatiotemporal image characteristics with respect to suitable sparsifying 

transforms or matrix decompositions139,140. One of the most recently developed ideas in CS 

includes the notion of low-rank constrained reconstruction, which is based on the fact that image 

data tends to be highly correlated across, for example, the temporal and/or coil dimensions141. In 

the globally low-rank (GLR) model, a time series or multi-coil image set, when treated jointly in 

matricized form, can be accurately represented by a matrix of much lower rank relative to the 

number of time points or coils142. The reconstruction of such an undersampled image set is 

generally posed as a low-rank constrained matrix completion optimization problem. Several 

researchers have demonstrated significant advantages in image quality and improved temporal 

resolution from utilizing this low-rank optimization framework in dynamic imaging143–145, parallel 

imaging146, functional imaging147, real-time imaging148, and accelerated quantitative parameter 

mapping149. 
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 Despite the success of the GLR approach, recent studies have shown that adopting a 

locally low-rank (LLR) model---which assumes correlations across multiple images only within a 

relatively small neighborhood of pixels---yields more favorable results and involves less 

computational load than the GLR approach.  Studies by Trzasko et al.150 have shown that the LLR 

framework may provide better performance in terms of the trade-off between imaging speed and 

data fidelity. This framework has been applied in parallel imaging, where Tzrasko and Manduca 

introduced an image domain-based calibration-free method that is based on the observation that 

coil sensitivities vary smoothly in space, such that images are locally-correlated along the coil 

dimension151. Zhang et al.152 demonstrated accelerated T1 and T2 mapping using a similar concept, 

except that the local image correlations are assumed to exist across images taken with different 

pulse-sequence parameters. Locally low-rank constraints have facilitated the combination of both 

compressed sensing and parallel imaging reconstruction techniques, most notably in the case of 

dynamic cardiac and contrast-enhanced imaging153. Importantly, LLR-based reconstruction has 

the distinct advantage of requiring considerably less computational load and memory requirements 

than its GLR counterpart151.  

 The LLR approach, although very useful and effective, has certain drawbacks that result 

from the particular way of defining the set of patches into which the underlying image is 

decomposed. The collection of patches, or partition, delineates the local regions in the image series 

where low-rank ‘submatrices’ may be formed. Like most patch-based reconstruction methods, 

LLR-based reconstruction can be implemented by using sets of either overlapping or non-

overlapping patches. A partition consisting of overlapping patches can minimize the appearance 

of block artifacts as the transform becomes approximately shift-invariant, but it comes with the 

disadvantage of high computational cost due to the large number of patches involved. In contrast, 
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a partition composed of non-overlapping, covering patches can greatly reduce the computational 

load, but it inevitably leads to block artifacts. Both of these strategies, therefore, limit the utility 

of LLR regularization for practical MRI applications. 

 Here, we present an implementation of LLR regularization with iterative random patch 

adjustments (LLR-IRPA) that utilizes an effectively shift-invariant, patch-based transform without 

high computational cost. This paper promotes the case of using partitions consisting of non-

overlapping patches, since these types of partitions require the computation of a much smaller 

number of singular-value matrix decompositions (SVD)154, in comparison to using partitions 

formed from overlapping patches. Inspired by the work of Xu and Yin155, we propose to randomly 

shift the partition at each iteration of the iterative singular value soft-thresholding algorithm that 

is used for solving the associated optimization problem156. We compare LLR-IRPA with one of 

the state-of-the-art LLR regularization methods, CLEAR151, which uses multiple sets of 

overlapping patches. We show that LLR-IRPA performs equivalently or even better than CLEAR 

but with the added advantage of substantially reduced computational load. This strategy is not 

limited strictly to parallel MRI, but can be extended within the context of MR quantitative 

parameter mapping. As also shown in the results, the LLR-IRPA approach applies equally well to 

accelerated T1 mapping from undersampled, calibrationless k-space data. 

 We provide theoretical support to justify LLR-IRPA, based on results related to cycle 

spinning in the wavelet-based iterative soft-thresholding algorithm (ISTA)157. A proof of 

convergence of the LLR-IRPA algorithm is given within the ISTA framework, although all 

reconstructions are implemented with FISTA, an accelerated version of ISTA. Similar to non-

cycled wavelet-based ℓ1-regularization, locally low-rank regularization based on a fixed partition 

lacks the necessary shift invariance to prevent residual block artifacts. A key advantage of LLR-
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IRPA is the simultaneous suppression of block artifacts and reduction of computational load 

through iterative random shifts. 

This chapter is organized as follows: In sections A.3 we describe the theoretical framework 

for locally low-rank reconstruction with and without iterative random patch adjustments including 

a proof of shift invariance for the LLR-IRPA algorithm. Section A.4 presents the experimental 

methods for undersampled parallel imaging and quantitative parameter mapping reconstructions. 

In section A.5, numerical and imaging results are presented which show equivalent or comparable 

performance of LLR-IRPA in relation to CLEAR. In Section A.6, we discuss potential 

implications and extensions of the method, followed by concluding remarks in Section A.7. 

A.3 Theory 

A.3.1 Locally Low Low-Rank Regularization (LLR) Based on a Fixed Partition of Non-

Overlapping Patches 

 

 For simplicity, we consider the case of multi-coil two-dimensional (2D) imaging, 

although this framework can be adapted to more general 3D or multi-contrast imaging. In the case 

of 2D multi-coil images, the 𝑀 × 𝑁images from all 𝐶 coils are vectorized into 𝒙 ∈ ℂ𝑀𝑁𝐶 . The 

forward model of the data acquisition is then represented by  

𝒚 =  ℱ𝒙 + 𝒏 (A-1) 

where ℱ: ℂ𝑀𝑁𝐶 → ℂ𝐾𝐶  is the Fourier undersampling operator, 𝑦 ∈ ℂ𝐾𝐶  is the undersampled k-

space data, and 𝑛 ∈ ℂ𝐾𝐶is a vector of i.i.d Gaussian noise, where 𝐾 <  𝑀𝑁. The reduction factor 

(RF) for the acquisition is defined as 𝑀𝑁/𝐾.   



188 

 

To form locally low-rank submatrices, the fixed-partition LLR framework divides the 

underlying image into a partition Ω of non-overlapping, covering patches. The number of patches 

within Ω is denoted by |Ω|, and each is labeled as 𝑞 ∈  Ω, where 𝑞 = 1,2, … , |Ω|. For a given set 

of patch dimensions, the image plane can be divided in a number of different ways by shifting the 

partition by different pixel amounts along each dimension. Therefore, we denote any particular 

shift of the partition Ω by Ω𝑘, where 𝑘 ∈ {1,2, … , NΩ}, and NΩ is the total number of distinct shifts. 

Each patch is assumed to have dimensions 𝑚 × 𝑛 where at the image boundaries either (i) periodic 

boundary conditions are imposed, or (ii) the patch is zero-padded in regions beyond the boundary. 

This report adopts the latter approach.  

 

Figure A-1: (A) The patch location 𝑞 ∈ Ω𝑡  from each image 𝒙(𝑗) in the multi-coil set 𝒙 (𝑗 =
1, 2, … , 𝐶) is extracted to form the columns of the locally low rank matrix 𝑃𝑞(𝒙). The adjoint 

operator is applied to reconfigure this matrix onto the original image space. (B) Illustration of the 

FISTA scheme with a random shift of the partition Ω𝑡 (blue) at iteration 𝑡 to partition Ω𝑡+1 (red) 

at iteration 𝑡 + 1. The patch is zero-padded in locations outside the image boundary.  
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Let 𝑃𝑞: ℂ
𝑀𝑁𝐶 → ℂ𝑚𝑛×𝐶   be the linear operator that extracts from 𝒙  the image data 

corresponding to the 𝑞𝑡ℎ patch of the partition Ωand forms a matrix 𝑃𝑞(𝒙) whose 𝑘𝑡ℎcolumn is the 

vectorized patch from the 𝑘𝑡ℎcoil image, 𝑘 =  1, 2, . . . , 𝐶  (Figure A-1). The underlying image is 

modeled as locally correlated within a relatively small region across the coil dimension. The key 

assumption is that the coil sensitivities are locally smooth, so that the cumulative coil sensitivity 

within a sufficiently small region, i.e. patch, has a low-order representation with respect to some 

basis. Therefore, in cases where the image patches do not consist entirely of noise, the matrix 

𝑃𝑞(𝒙) will be low rank151. This locally-low rank property is central to the LLR regularization 

scheme for reconstruction from undersampled data. 

Using the inner product 〈𝐴, B〉ℂ𝑚𝑛×𝐶 =  𝑅𝑒(𝑡𝑟(𝐴𝐻𝐵)) over ℂ𝑚𝑛×𝐶 , the adjoint operator 𝑃𝑞
∗ 

satisfies 

〈𝑃𝑞(𝒙), 𝑌〉ℂ𝑚𝑛 ×𝐶 = 〈𝒙, 𝑃𝑞
∗(𝑌)〉2 (A-2) 

for any 𝒙 ∈ ℂ𝑀𝑁𝐶 and 𝑌 ∈ ℂ𝑚𝑛×𝐶. Specifically, it is defined as the linear operator 𝑃𝑞
∗: ℂ𝑚𝑛×𝐶 →

ℂ𝑀𝑁𝐶 that maps all vectorized patches in 𝑃𝑞(𝒙) back to their respective locations in a vector in 

ℂ𝑀𝑁𝐶, where all the entries in this vector are zero except those corresponding to the 𝑞𝑡ℎ patch. 

With these operations, we can now define the linear operator 𝒯Ω: ℂ𝑀𝑁𝐶 → 𝜒 , where 𝜒 ≡

ℂ|Ω|×𝑚𝑛×𝐶  , and each component of 𝒯Ω𝒙 is given as 

[𝒯Ω𝒙]𝑞 = 𝑃𝑞(𝒙) (A-3) 

for 𝑞 = 1,2, … , |Ω|. For 𝐗, 𝐘 ∈  𝜒, the inner product is  
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〈𝐗, 𝐘〉𝜒 = ∑ Re(tr(𝐘𝑞
𝐻𝐗𝑞))

|Ω|

𝑞=1

 (A-4) 

and norm ‖𝐗‖𝜒 = √〈𝐗, 𝐗〉𝜒, where the components 𝐗𝑞, 𝐘𝑞  ∈ ℂ𝑚𝑛×𝐶. The adjoint 𝒯Ω
∗: 𝜒 → ℂ𝑀𝑁𝐶 

is the linear operator that satisfies 

〈𝒯Ω𝒙, 𝐘〉𝜒 = 〈𝒙, 𝒯Ω
∗(𝐘)〉2 (A-5) 

for any 𝐘 ∈  𝜒 and 𝒙 ∈ ℂ𝑀𝑁𝐶, and it is defined as   

𝒯Ω
∗𝑌 = ∑ 𝑃𝑞

∗𝑌𝑞

|Ω|

𝑞=1

 (A-6) 

Because all possible partitions consist only of non-overlapping, contiguous patches that 

completely cover the entire image155 we also have that  

𝒯Ω
∗(𝒯Ω𝒙) = 𝒙 (A-7) 

𝒯Ω(𝒯Ω
∗𝐘) = 𝐘 (A-8) 

Since the rank of a matrix is a non-convex function and minimization of rank is an NP hard 

problem, matrix rank is approximated by the Schatten 1-norm, also known as the nuclear norm. 

This norm is the closest convex relaxation of matrix rank. We recall the definition of the Schatten 

p-norm158 of a matrix 𝐴 ∈ ℂ𝑛1×𝑛2 as  

‖𝐴‖𝑆𝑝
= ‖𝜎(𝐴)‖𝑝 (A-9) 
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where 𝜎(𝐴) is the vector of singular values of 𝐴, 𝜎𝑖(𝐴)is the 𝑖𝑡ℎ singular value, and ‖∙‖𝑝 is the ℓ𝑝-

norm. Based on the Schatten 1-norm, the patch-based locally-low rank regularization term can be 

defined in terms of the mixed ℓ1 − 𝑆1 norm159 which, for an element 𝐗 ∈  𝜒, is defined as 

‖𝐗‖1,1 = ∑‖𝐗𝑞‖𝑆1

|Ω|

𝑞=1

 (A-10) 

Accordingly, the optimization problem is formulated as  

𝒙̂ =  argmin
𝒙∈ℂ𝑀𝑁𝐶

1

2
‖𝒚 −  ℱ𝒙‖2

2 +  𝜆‖𝒯Ω𝒙‖1,1 (A-11) 

where 𝜆 ≥ 0 is a regularization parameter that balances the trade-off between data fidelity and the 

locally low-rank representation of the image. Equation A-11 represents the general formulation 

for recovering a locally-low rank image 𝒙  from its undersampled measurements, assuming a 

particular partition Ω of non-overlapping, covering patches. 

A.3.2 Optimization Algorithm 

We use the ISTA formalism160,161 to solve Equation A-11, since the regularization functional 

is convex but non-smooth159. ISTA and its variants are majorization-minimization (MM) 

algorithms that successively minimize a sequence of surrogate functions that upper bound the 

original objective function. Using an initial estimate 𝒙0, a quadratic upper bound 𝑓of the objective 

function in Equation A-11 can be written as  

𝑓(𝒙, 𝒙0) =  
𝛼

2
‖𝒙 − 𝒛‖2

2 +  𝜆‖𝒯Ω𝒙‖1,1 (A-12) 
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where 𝒛 = 𝒙0 +
1

𝛼
ℱ𝐻(𝑦 − ℱ𝒙0) and 𝛼 ≥ 𝜆max(ℱ

𝐻ℱ) . The algorithm proceeds by iteratively 

minimizing Equation A-12, setting 𝒙0 to the solution of the previous iteration. To minimize the 

function in Equation A-12, we use the fact that the dual of the mixed ℓ1 − 𝑆1 norm is the mixed  

ℓ∞ − 𝑆∞ norm159,162. Thus, for 𝐗 ∈  𝜒, the ℓ1 − 𝑆1 norm can be written equivalently as  

‖𝐗‖1,1 = max
𝚿∈𝐵∞,∞

〈𝚿, 𝐗〉𝜒 (A-13) 

where the set 𝐵∞,∞ denotes the ℓ∞ − 𝑆∞ unit norm ball 

𝐵∞,∞ = {𝚿 ∈  𝜒 ∶  ‖𝚿𝑞‖𝑆∞
≤ 1, ∀𝑞 = 1, 2, … , |Ω|}  (A-14) 

Using these definitions and the adjoint operator 𝒯Ω
∗, the minimization of Equation A-12 can 

be expressed equivalently as  

𝒙̂ =  argmin
𝒙∈ℂ𝑀𝑁𝐶

1

2
‖𝒙 −  𝒛‖2

2 + 
𝜆

𝛼
∙ max
𝚿∈𝐵∞,∞

〈𝒯Ω
∗𝚿,𝒙〉2 (A-15) 

Because the objective function in Equation A-15 is strictly convex in 𝒙 and concave in 𝚿, an 

optimal saddle-point (𝒙̃, 𝚿̃) exists159 at which the objective function attains a common value, and 

the order of minimization and maximization does not affect the solution. Thus, defining ℒ(𝒙,𝚿) =

 
1

2
‖𝒙 − 𝒛‖2

2 + 
𝜆

𝛼
〈𝒯Ω

∗𝚿, 𝒙〉2,  

min
𝒙∈ℂ𝑀𝑁𝐶

 max
𝚿∈𝐵∞,∞

ℒ(𝒙,  𝚿)  =  𝓛(𝒙̃, 𝚿̃) = max
𝚿∈𝐵∞,∞

 min
𝒙∈ℂ𝑀𝑁𝐶

ℒ(𝒙,  𝚿)  (A-16) 

From Equation A-16, one can identify the primal objective function 𝜌(𝒙)  and the dual 

objective function 𝑠(𝚿) as 
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 𝜌(𝒙) =   max
𝚿∈𝐵∞,∞

ℒ(𝒙,  𝚿) =  
1

2
‖𝒙 − 𝒛‖2

2 + 
𝜆

𝛼
‖𝒯Ω𝒙‖1,1 (A-17) 

𝑠(𝚿) = min
𝒙∈ℂ𝑀𝑁𝐶

ℒ(𝒙,  𝚿) =  
1

2
(‖𝑧‖2

2 − ‖𝑧 − 
𝜆

𝛼
𝒯Ω

∗𝚿‖
2

2

) (A-18) 

Accordingly, one can find the minimizer 𝒙 ̃of 𝜌(𝒙) by finding the maximizer 𝚿̃ of 𝑠(𝚿), 

using the relation 

𝒙̃ =  𝑧 − 
𝜆

𝛼
𝒯Ω

∗𝚿̃ (A-19) 

From Equation A-18, one can see that by using Equations A-5, A-7, and A-8,    

max
𝚿∈𝐵∞,∞

𝑠(𝚿) = min
𝚿∈𝐵∞,∞

1

2
 ‖𝒛 − 

𝜆

𝛼
𝒯Ω

∗𝚿‖
2

2

= min
𝚿∈𝐵∞,∞

1

2
 ‖ 

𝛼

𝜆
𝒯Ω𝒛 − 𝚿‖

𝜒

2

  (A-20) 

Therefore, the maximizer of Equation A-18 can be found by projecting 
𝛼

𝜆
𝒯Ω𝒛 ∈ 𝜒 onto the 

𝐵∞,∞ unit norm ball. This projection onto 𝐵∞,∞ can be done by projecting each of the components 

of 
𝛼

𝜆
𝒯Ω𝒛 onto the unit norm ball 𝐵𝑆∞

159, the space of matrices with Schatten ∞-norm ≤ 1. If the 

singular value decomposition of the component matrix 
𝛼

𝜆
[𝒯Ω𝒛]𝑞 = 𝐔𝑞diag (𝜎 (

𝛼

𝜆
[𝒯Ω𝒛]𝑞))𝐕𝑞

𝐻 , 

then its projection onto 𝐵𝑆∞
 is  

𝑃𝐵𝑆∞
( 
𝛼

𝜆
[𝒯Ω𝒛]𝑞) =  

𝛼

𝜆
𝐔𝑞diag (min (σ([𝒯Ω𝒛]𝑞),

𝜆

𝛼
𝟏))𝐕𝑞

𝐻 = 𝚿̃𝒒 (A-21) 

Based on Equation A-19 and Equation A-21, we conclude that  

𝒙̃ = 𝑧 − 
𝜆

𝛼
𝒯Ω

∗𝚿 = 𝒯Ω
∗ (𝒯Ω𝒛 −

𝜆

𝛼
𝚿 )  (A-22) 
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⟹ 𝒙̃ = ∑ 𝑃𝑞
∗ (𝐔𝑞𝑑𝑖𝑎𝑔 (𝒮𝜆

𝛼

[σ([𝒯Ω𝒛]𝑞)]) 𝐕𝑞
𝐻)

|Ω|

𝑞=1

  

 

where 𝒮𝛽[𝜎(𝐗𝑞)] = max (𝜎(𝐗𝑞) − 𝛽, 0)  is defined as the soft-thresholding operator, applied 

component-wise on the vector of singular values σ(𝐗𝑞) . Importantly, we note that the 

minimization of 𝜌(𝒙) is the proximal mapping of the patch-based regularizer 𝜆‖𝒯Ω𝒙‖1,1: 

𝒙̃ =  min
𝒙∈ℂ𝑀𝑁𝐶

 𝜌(𝒙) = prox𝜆‖𝒯Ω∙‖1,1
(𝐳; 

1

𝛼
) (A-23) 

Summarizing the above, the overall iterative soft-thresholding scheme proceeds as  

𝒛𝑡 = 𝐰𝑡 − 𝛾𝑡ℱ
𝐻(ℱ𝐰𝑡 − 𝐲) (A-24) 

𝒙𝑡 = prox𝜆‖𝒯Ω∙‖1,1
(𝒛𝑡; 𝛾𝑡) (A-25) 

ℓ𝑡+1 ← 
1 + √1 + 4ℓ𝑡

2

2
 (A-26) 

𝒘𝑡+1 ← 𝒙𝑡 +
ℓ𝑡 − 1

ℓ𝑡+1

(𝒙𝑡 − 𝒙𝑡−1) (A-27) 

where 𝛾𝑡 ≤
1

𝛼
 is the gradient descent step size and 𝒘1 = ℱ𝐻𝒚 . In short, Equation A-22 represents 

reconstructing the image after singular-value thresholding of each matrix formed from each patch 

in the partition. The iterations in Equation A-24 to A-27 represent the ISTA technique for solving 

Equation A-11, using a fixed partition Ω. 

A.3.3 Locally Low-Rank Regularization (LLR) Based on Overlapping Patches 

 LLR regularization based on overlapping patches is well-represented by the state-of-the-

art CLEAR algorithm151. In this method, the entire image is covered by patches that are overlapped 
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by a certain factor of the image patch dimensions.  Specifically, suppose that patches of dimensions 

𝑚 × 𝑛 are used to cover a 𝑀 × 𝑁 image matrix, where 𝑚|𝑀 and 𝑛|𝑁. The amount of overlap 

along the first dimension is designated by a factor 0 < 𝑟 ≤ 1 of 𝑚, i.e., patches overlap each 

successive patch by 𝑟𝑚 pixels. Similarly, along the other dimension, patches are overlapped by 

𝑠𝑛 pixels 0 < 𝑠 ≤ 1). Then the total number of overlapping patches P that cover the image is 

P =  (
N + n(1 − s)

sn
) (

M + m(1 − r)

rm
) (A-28) 

Let Γ be the set of non-overlapping partitions that, when taken together, correspond to the 

entire collection of P overlapping patches. Then the optimization problem of CLEAR can be 

expressed within the framework described in the previous section as 

𝒙̂ =  argmin
𝒙∈ℂ𝑀𝑁𝐶

1

2
‖𝒚 −  ℱ𝒙‖2

2 +  𝜆 ∙ 𝑟𝑠 ∑‖𝒯Ω𝒙‖1,1

Ω∈Γ

 (A-29) 

Note that this problem entails solving for a significantly higher number of SVDs, as compared 

to Equation A-11 in which at most only (
𝑀

𝑚
+ 1) (

𝑁

𝑛
+ 1)  are computed. In addition, the 

regularization term must be multiplied by a factor 𝑟𝑠 in order to compensate for taking the SVDs 

of multiple overlapping patches. Due to overlapping patches, each image patch is actually not 

independent of the others, since any particular patch in the output image contains contributions 

from the image patches that surround it. Therefore, including this factor in the regularization term 

essentially represents a heuristic approach to reconstructing the final image from sets of 

overlapping patches163. 
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A.3.4 Locally Low-Rank Regularization with Iterative Random Patch Adjustments (LLR-

IRPA) 

 In the LLR regularization approach described in section B, the partition Ω remains fixed 

throughout all iterations. As an alternative strategy, the proposed LLR-IRPA method updates the 

partition at each iteration. This modification leads to a reduced appearance of block artifacts while 

exhibiting similar behavior to CLEAR in terms of reconstruction error and convergence rate. The 

partition is shifted by random amounts in each direction. The FISTA iterations are modified such 

that the partition updates as Ω𝑘𝑡+1 ← Ω𝑘𝑡
 where 𝑘𝑡 ∈ {1,2, … ,𝑁Ω is chosen at random for each 

iteration 𝑡, and Ω𝑘𝑡
runs through the 𝑁Ω possible partitions as the iterative process continues. Note 

that in this case, each image patch is independent of the others throughout the reconstruction 

process, in contrast to CLEAR. A major feature is that LLR-IRPA achieves the property of shift-

invariance without the need of overlapping patches, leading to a greatly reduced computational 

load compared to CLEAR.  

Although at each iteration we obtain a solution using a different patch arrangement, and 

thus a different decomposition of the image, we provide a proof which shows that the LLR-IRPA 

iterations converge to a solution that represents the outcome from averaging the singular value 

thresholdings from all unique patch-based SVDs of the entire image matrix, i.e., the regularizer is 

effectively shift-invariant. These results are inspired by the variational justification for cycle 

spinning using the wavelet transform157, and a proof of convergence is provided in the next section. 

For simplicity, this proof is given in the context of ISTA.  
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A.3.5 Proof of Shift Invariance 

 In order to justify the shift invariance that results from random iterative patch 

adjustments, we prove the result for the deterministic case, in which the iterations traverse all 

possible partition shifts. Similar to the case of cycle spinning using the wavelet transform, in the 

context of patch-based LLR-IRPA regularization, the partition Ω is changed by shifting it by some 

amount at each iteration. For simplicity, this proof of convergence is given in the context of 

ISTA161. The ISTA iterations are given by  

𝒛𝑡 = 𝐱𝑡−1 − 𝛾𝑡ℱ
𝐻(ℱ𝐱𝑡−1 − 𝐲) (A-31) 

𝒙𝑡 = prox𝜆‖𝒯Ω∙‖1,1
(𝒛𝑡; 𝛾𝑡) (A-32) 

Using the notation introduced in the Theory section, we write the cost function associated with 

the partition Ω𝑘 as 

𝐻𝑘(𝒙) =
1

2
‖𝒚 − ℱ𝒙‖2

2 +  𝜆‖𝒯Ω𝑘
𝒙‖

1,1
= 𝐷(𝒙) + 𝐺Ω𝑘

(𝒙) (A-33) 

where the component functions are defined, for notational simplicity, as 

𝐷(𝒙) ≡
1

2
‖𝒚 − ℱ𝒙‖2

2  

𝐺Ω𝑘
(𝒙) ≡  𝜆‖𝒯Ω𝑘

𝒙‖
1,1

    

We write the cost function whose regularization term represents the average of the nuclear 

norms of all locally low-rank matrices formed from the 𝑁Ω unique shifts of Ω:  
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ℎ(𝒙) =  
1

𝑁Ω
∑ 𝐻𝑘(𝒙)

𝑁Ω

𝑘=1

=  𝐷(𝑥) + 
1

𝑁Ω
∑ 𝐺Ω𝑘

(𝒙)

𝑁Ω

𝑘=1

 (A-34) 

The following assumptions are made:  

• The feasible set 𝒞 ⊆  ℂ𝑀𝑁𝐶is nonempty, convex, closed and bounded, i.e., ∃ 𝑑 > 0 such 

that ∀ 𝒙, 𝒚 ∈  𝒞, ‖𝒙 − 𝒚‖2 ≤ 𝑑. 

• The data fidelity term 𝐷 is continuously differentiable with Lipschitz continuous gradient, 

i.e., ∃ 𝐿 > 0 such that ∀ 𝒙, 𝒚 ∈  𝒞, ‖∇𝐷(𝑥) − ∇𝐷(𝑦)‖2 ≤ 𝐿‖𝒙 − 𝒚‖2. 

• The gradient of 𝐷 is bounded and the subgradients of 𝐺Ω𝑘
 are bounded, i.e., ∃ 𝑆 > 0 such 

that ∀ 𝒙 ∈  𝒞, ‖∇𝐷(𝒙)‖2 ≤ 𝑆 and  ‖𝜕𝐺Ω𝑘
(𝒙)‖

2
≤ 𝑆 

 Referring to Theorem 1 of the report by Kamilov et al.157, if 𝐿 ≥ 𝜆max(ℱ
𝐻ℱ) and the 

step size 𝛾𝑡 ≤
1

𝐿√𝑡
, then we claim that the sequence {𝒙𝑡} generated according to Equations A-31 

and A-32 satisfies 

lim
𝑡→∞

ℎ(𝒙𝑡) =  ℎ∗ (A-35) 

where ℎ∗ = min
𝒙∈𝒞

ℎ(𝒙). The claim in Equation A-35 essentially says that shifting the partitions 

throughout the iteration process leads to the minimization of the cost function that simultaneously 

minimizes the nuclear norms of the submatrices formed from all partition shifts.  Therefore, the 

underlying regularizer in Equation A-34 is effectively shift-invariant.  

 For simplicity, we consider the case of an image with square dimensions 𝑁 × 𝑁 and 

square patch sizes (𝑚 = 𝑛) , such that 𝑛  divides 𝑁  (results for arbitrary dimensions can be 

obtained through similar arguments). In this case 𝑁Ω = 𝑛2 and the number of patches |Ω𝑘| within 

any partition Ω𝑘  falls within [(
𝑁

𝑛
)
2
, (

𝑁

𝑛
)
2
+ 2

𝑁

𝑛
+ 1 ] . We also note that in patch-based LLR 

regularization, it is generally assumed that each of the (𝑁 − 𝑛)2  possible (overlapping) patch 
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locations lead to low-rank submatrices. Therefore, all submatrices 𝑃𝑞(𝒙) formed by q ∈  Ω𝑘 for 

any 𝑘, are assumed low-rank.  

 We first characterize the subdifferential of the function  

𝐺Ω𝑘
(𝒙) ≡  𝜆‖𝒯Ω𝑘

𝒙‖
1,1

  to show that the subgradients are indeed bounded164. To do so, we find the 

conjugate function of the mixed ℓ1 − 𝑆1 norm. Denote the function 𝐹(𝐗) = ‖𝐗‖1,1    for 𝐗 ∈  𝛘 

and denote the function 𝑔(𝒙) =  𝒯Ω𝑘
𝒙 for 𝒙 ∈  ℂ𝑀𝑁𝐶. Using the duality between the ℓ1 − 𝑆1 norm 

and the ℓ∞ − 𝑆∞ norm, it is straightforward to show the conjugate function 𝐹∗ of 𝐹 is  

𝐹∗(𝐗) = {
0      ‖𝑋‖∞,∞ ≤ 1

∞       otherwise
 (A-36) 

i.e., the conjugate is the indicator function of the ℓ∞ − 𝑆∞ unit norm ball. Recalling the well-

known fact from convex analysis164,165 that if 𝐺 ∈  𝜕𝐹(𝐗) then  

𝐹∗(𝐆) + 𝐹(𝐗) =  〈𝐆, 𝐗〉𝜒 (A-37) 

and noting that 𝐺Ω𝑘
(𝒙) =  𝜆 (𝐹 ∘ 𝑔)(𝒙) =  𝜆 𝐹(𝑔(𝒙), one can use the chain rule to characterize 

the subdifferential of 𝐺Ω𝑘
 at 𝒙 as the set 

 𝜕𝐺Ω𝑘
(𝒙) = {𝜆𝒯Ω𝑘

∗ 𝐘 ∈  ℂ𝑀𝑁𝐶| ‖𝐘‖∞,∞ ≤ 1,  〈𝒯Ω𝑘

∗ 𝐘, 𝒙〉2 = ‖𝒯Ω𝑘
𝒙‖

1,1
}   (A-38) 

This characterization implies that the subgradients of 𝐺Ω𝑘
(𝒙) ≡  𝜆‖𝒯Ω𝑘

𝒙‖
1,1

  are indeed 

bounded. We also recall the important fact from convex analysis that if 

𝒙 = prox
𝜆‖𝒯Ω𝑘

∙‖
1,1

(𝒛; 𝛾𝑡) (A-39) 

then 𝒛 − 𝒙 ∈   𝜆 𝜕 (‖𝒯Ω𝑘
𝒙‖

1,1
).   
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Given these observations, we can follow the steps as in the proof of Lemma 1 in the report by 

Kamilov et al.157 to conclude that ∀𝒙∗ ∈ 𝒞 

𝐻𝑘𝑡
(𝒙𝑡) − 𝐻𝑘𝑡

(𝒙∗) ≤  
1

2𝛾𝑡

(‖𝒙𝑡−1 − 𝒙‖2 − ‖𝒙𝑡 − 𝒙‖2) + 6𝛾𝑡𝑆
2 (A-40) 

For convenience, we restate Lemma 2 of the report by Kamilov et al. 157 in this context as  

lim
𝑛 →∞

{
1

𝑛𝑁Ω
∑ 𝐻𝑘𝑡

(𝒙𝑡)

𝑛𝑁Ω

𝑡=1

} = ℎ(𝒙̅) (A-41) 

where {𝒙𝑡} is a sequence in ℂ such that 𝒙𝑡 → 𝒙̅. 

In a similar manner to the proof of Theorem 1 in the report by Kamilov et al.157, if we let 𝒙∗ 

denote a minimizer of the function ℎ and sum the bound in Equation A-40, then 

∑ (𝐻𝑘𝑡
(𝒙𝑡) − 𝐻𝑘𝑡

(𝒙∗))

𝑛𝑁Ω

𝑡=1

≤ 
𝑑2

2𝛾𝑛𝑁Ω

+ 6𝑆2 ∑ 𝛾𝑡

𝑛𝑁Ω

𝑡=1

 (A-42) 

Choosing the step size 𝛾𝑡 ≤
1

𝐿√𝑡
 and dividing both sides of Equation A-42 by 𝑛𝑁Ω, the above 

inequality can be simplified to  

1

𝑛𝑁Ω
∑ 𝐻𝑘𝑡

(𝒙𝑡) − ℎ(𝒙∗) ≤
C

√𝑛

𝑛𝑁Ω

𝑡=1

 (A-43) 

for a constant C depending on the parameters 𝑑, 𝑆 and 𝐿 defined above. Therefore, using Equation 

A-41 and Equation A-43,  
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0 ≤  ℎ(𝒙̅) −  ℎ(𝒙∗) = lim
𝑛 →∞

{
1

𝑛𝑁Ω
∑ 𝐻𝑘𝑡

(𝒙𝑡)

𝑛𝑁Ω

𝑡=1

} − ℎ∗ ≤ 0 (A-44) 

where the first inequality is due to the optimality of 𝒙∗ . This result shows that the sequence 

generated by Equations A-31 and A-32 converges to a minimizer 𝒙∗ of the function ℎ, which is 

the cost-function that incorporates the effective shift-invariant regularizer that penalizes the 

nuclear norms of all submatrices that can be formed from all the 𝑁Ω shifts of the partition Ω. As 

stated above, this argument considers the deterministic shifting strategy in which all possible 𝑁Ω 

partitions are traversed throughout the iteration process.  However, as is the case for wavelet-based 

cycle spinning, the most practical method to implement this technique is to shift the partition 

randomly at each iteration. Although it considers the deterministic case, this proof serves as a 

justification for the more practical method of iterative random shifting. 

A.4 Methods 

The effectiveness of the proposed algorithm was tested with retrospectively-undersampled 

data in parallel imaging and quantitative parameter mapping experiments, as well as with 

prospectively undersampled contrast-enhanced magnetic resonance angiography (CE-MRA) data. 

Both the CLEAR and LLR-IRPA algorithms, including the reconstruction experiments, were 

implemented `in-house' using MATLAB (The Mathworks, Natick, MA) and run on a Linux 

workstation with a 4.4 GHz CPU and 96 GB memory. 

 Two types of undersampling schemes were tested: (1) reducing the number of samples 

along a single phase-encoding direction (1D undersampling), and (2) reducing the number of 

samples along two phase-encoding directions (2D undersampling). For the 2D undersampling 

case, variable-density, Poisson-disk undersampling masks of various reduction factors (RF) were 
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applied to the fully-sampled k-space to simulate accelerated acquisitions. The 2D probability 

density function that characterizes the sampling density was set as a normalized Gaussian with 

standard deviations 𝜎𝑥 and 𝜎𝑦 equal to one-fourth of the corresponding image dimensions 𝑁𝑥 and 

𝑁𝑦, in pixels.  For the 1D undersampling case, the random sampling density was determined by a 

one-dimensional normalized Gaussian probability density function with standard deviation equal 

to one-fourth of the corresponding largest image dimension. For the cases involving quantitative 

parameter mapping, this standard deviation was set equal to one-fourth the size of the actual phase-

encoding dimension. For the CLEAR algorithm, the extent of overlapping was set as one-half the 

dimensions of the image patch, so that 𝑟 = 𝑠 =  
1

2
  in Equation A-28. This choice of overlapping 

ratio provides a balanced trade-off between computational load and the extent of shift-invariance 

of CLEAR's patch-based regularizer. 

We used the first-order, fast iterative soft-thresholding algorithm (FISTA) to solve the 

associated nuclear-norm regularized optimization problem. We also take ISTA as the algorithmic 

framework with which to show theoretical results concerning the per-iteration random shifts of the 

image partitions. All reconstructions were performed with a maximum number of 100 iterations, 

due to the sublinear rate of convergence Ο(
1

𝑡
), where 𝑡 is the iteration counter. Moreover, we set a 

stopping criterion dependent on the relative error between successive solutions, namely 

‖𝑥𝑡+1 − 𝑥𝑡‖ ‖𝑥𝑡‖⁄  <  10−5 . The regularization parameter 𝜆 for both CLEAR and LLR-IRPA 

was set as the estimated standard deviation of the collection of singular values from all matrices 

formed from all image patches, computed at each iteration.  This estimate was obtained using the 

median absolute deviation of the collection of singular values. 
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 The quality of the reconstruction was quantified using the normalized root mean square 

error (nRMSE), defined as  

nRMSE =  
1

max (𝑋0)

‖𝑋0 − 𝑋‖2

√𝑁
 

(A-

30) 

where 𝑋0 is the true image and 𝑋 is the reconstruction image, and N is the number of 

pixels. The algorithmic performances were compared on the basis of image quality and nRMSE 

values. Difference images were computed and the rate of convergence was characterized by 

plotting nRMSE as a function of iteration. The criteria to determine the image quality includes the 

extent of visible blocky artifacts and preservation of edge-features. 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 
 

 

 
 

 
 

 
 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 
 

 
 

 
 

 
 

 

 

 

 

 

 
 

 
 

 
 

 

 
 

 
 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 
 

 

 
 

 
 

 
 

 
 

 

 

 

 

Table A1: nRMSE results of retrospective undersampling along two phase-encoding directions, 

for the brain and knee data sets, at various reduction factors (RF) and patch sizes (PS). Results for 

CLEAR, LLR-IRPA, and CLEAR using iterative patch adjustments (CLEAR-IRPA) are shown.  

 

A.4.1 Parallel Imaging – Retrospective Undersampling 

 Two fully-sampled data sets, one of the knee and the brain, were acquired from a healthy 

volunteer after Institutional Review Board (IRB) approval. The data set of the knee was acquired 

with a 3T Skyra (Siemens Healthcare, Erlangen, Germany) MRI scanner, using a 3D GRE 

sequence with the following acquisition parameters: matrix size 160 × 160, isotropic resolution 

of 1 mm2, TE = 3.78 ms, TR = 8.6 ms, flip angle 15°, and bandwidth of 810 Hz/px. The brain data 

set was acquired with the same scanner and sequence, using the following parameters:  matrix size 
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224 × 224, isotropic resolution of 1 mm2, TE = 3.5 ms, TR = 8.5 ms, flip angle 12°, and bandwidth 

of 400 Hz/px. The knee and brain data sets consisted of 15 and 20 channels, respectively.  

 These 3D data sets were retrospectively undersampled at reduction factors (RF) of 3, 4, 

5, 6, and 7, and were reconstructed using square patch sizes (PS) of side lengths of 4, 6, 8, 10, 12, 

and 14 pixels. For 2D undersampling, a fully-sampled, square region with a 12-pixel side was 

retained in each undersampling mask. In the 1D undersampling case, 16 fully sampled central 

phase-encoding lines were retained for undersampling the k-space of the brain data set, while 12 

fully-sampled central lines were kept in the mask for undersampling the k-space of the knee data 

set.  Each data set was reconstructed for each combination of reduction factor and patch size.  

To emphasize the advantage of LLR-IRPA in terms of both computational efficiency and 

reconstruction accuracy, these data sets are also reconstructed with CLEAR using iterative random 

patch adjustments (CLEAR-IRPA). Reconstruction times and nRMSE values resulting from this 

additional reconstruction approach are compared with LLR-IRPA. 

  RF = 2 RF = 2.5 RF = 3 

           PS CLEAR  LLR-IRPA CLEAR  LLR-IRPA CLEAR  LLR-IRPA 

B
ra

in
 

6 2.99E-02 3.03E-02 3.74E-02 3.69E-02 5.32E-02 5.38E-02 

8 3.02E-02 3.03E-02 3.69E-02 3.71E-02 5.36E-02 5.30E-02 

10 3.08E-02 3.07E-02 3.72E-02 3.76E-02 5.39E-02 5.37E-02 

12 3.13E-02 3.11E-02 3.80E-02 3.74E-02 5.40E-02 5.46E-02 

K
n

ee
 

6 2.57E-02 2.60E-02 3.10E-02 3.14E-02 3.55E-02 3.53E-02 

8 2.59E-02 2.61E-02 3.10E-02 3.13E-02 3.56E-02 3.57E-02 

10 2.68E-02 2.61E-02 3.17E-02 3.19E-02 3.63E-02 3.60E-02 

12 2.66E-02 2.66E-02 3.17E-02 3.17E-02 3.59E-02 3.60E-02 

Table A-2: CLEAR and LLR-IRPA nRMSE results of retrospective undersampling along a single 

phase-encoding direction, for the brain and knee data sets, at various reduction factors (RF) and 

patch sizes (PS). 
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A.4.2 Parallel Imaging – Prospective Undersampling 

 Multi-phase, contrast-enhanced cardiac- and ventilator-gated MR angiography data166 was 

acquired with prospective variable density Poisson-disk undersampling pattern on a 6-month-old 

pediatric patient with congenital heart disease. The data was acquired with a 3T Trio (Siemens 

Healthcare, Erlangen, Germany) scanner. The acquisition matrix size was 480 × 266 × 128, with 

a total of 12 channels, and a fully-sampled central 24 × 24  square region. Further image 

acquisition details are as described in the report by Han et al.166. This data was prospectively 

undersampled with RF = 6.5, and was subsequently reconstructed using CLEAR and LLR-IRPA 

with PS = 4, 6, 8, 10, 12, and 14. 

A.5 Results 

A.5.1 Parallel Imaging – Retrospective Undersampling 

 As shown in Figure A2, reconstructions from the retrospectively undersampled data sets 

show that LLR-IRPA leads to similar reduction in block artifacts and comparable fidelity to the 

actual images, in relation to the results from CLEAR. This observation can be seen from the 

reconstructed and difference images, in which LLR-IRPA exhibits minimal block artifacts and 

recovers structural features just as well or better than CLEAR. We observe also that, in terms of 

nRMSE, the larger patch sizes (PS = 10,12,14) lead to better recovery of images undersampled at 

the higher reduction factors (RF = 5,6,7). For comparison, we also include in the figures images 

reconstructed with LLR regularization using non-overlapping patches. 
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Figure A-2: Brain images reconstructed with RF = 5 and PS = 10×10. Reconstruction times 

included. (A) Reference image, (B) result using non-overlapping patches (nRMSE = 0.0333), (C) 

CLEAR (nRMSE = 0.0317).  (D) LLR-IRPA (nRMSE = 0.0310). (E)-(H) corresponding zoom-in 

images. (I) Absolute difference image between the reference and zero-filled reconstructed image. 

(J), (K), and (L) are absolute difference images for non-overlapping patch-based, CLEAR and 

LLR-IRPA reconstructions, respectively. Note the reduction in block artifacts (indicated by yellow 

arrows) using CLEAR and LLR-IRPA in (G) and (H). Window level: 2.4 – 5.6% of the maximum 

reference signal in (A).  

 

 Numerical results listed in Table A1 and Table A2 show that LLR-IRPA is as stable as 

CLEAR with respect to changes in patch size, in terms of nRMSE. The nRMSE values from LLR-

IRPA regularization follow CLEAR's trend as the reduction factor increases, for any given patch 

size Figure A3. Similarly, at a fixed reduction factor, the nRMSE values obtained from LLR-IRPA 

are as low or slightly lower than those produced from CLEAR. Finally, it is evident that the LLR-
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IRPA strategy leads to convergence of the algorithm to a final value that is very close or equal to 

that of images reconstructed by CLEAR, although at a much faster rate.  These results are 

consistent with what is expected because, similar to the case of wavelet cycle spinning, the use of 

various shifted patch arrangements reduces the appearance of block artifacts and avoids the extra 

computational cost of overlapping patches. In terms of the time per iteration for 2D multi-coil 

reconstruction experiments, Table A3 demonstrates that LLR-IRPA is computationally more 

efficient than CLEAR, being approximately 3-4 times faster per iteration.  

To show that LLR-IRPA is indeed shift-invariant at no extra computational cost, we also 

include in Table A2 and Table A3 nRMSE values and computation times from the CLEAR 

algorithm implemented with per-iterative random shifting. As seen from the tables, the use of per-

iterative random shifting in addition to overlapping patches in the CLEAR algorithm results in 

almost the same performance compared to LLR-IRPA. However, the computational time per 

iterations is similar to that of conventional CLEAR. Thus, LLR-IRPA achieves a performance that 

would result from combining the benefits of overlapping patches and random shifting, but with no 

extra computational cost. Thus, LLR-IRPA retains a definite advantage in both computational 

efficiency and reconstruction accuracy. 
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Figure A-3: (A) Algorithmic convergence in terms of nRMSE, at RF = 7 and with PS = 8 and 12. 

(B) nRMSE values as a function of reduction factor for PS = 8 and 12, using 2D undersampling  

(C) Algorithmic convergence in terms of nRMSE, at RF = 4 and with PS = 4 and 10. (D) comparing 

the difference in the effect of patch size on the resulting nRMSE value for RF = 4 and 7. Plots 

based on reconstruction results from restrospectively undersampled 2D brain image data. 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

Table A3: Average time (seconds) per iteration for CLEAR, LLR-IRPA, and CLEAR using 

iterative random patch adjustments (CLEAR-IRPA) at various reduction factors (RF) and patch 

sizes (PS), for retrospective undersampling experiments. The matrix sizes for the brain and knee 

images are 224 × 224 × 20 and 160 × 160 × 15, respectively. 
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Figure A4: Reconstruction results and times for the prospectively undersampled MRA data set, at 

a reduction factor of 6.5. (A) CLEAR result and (B) LLR-IRPA result using PS = 10. (C) 

undersampled variable-density k-space sampling. (D) difference between (A) and (B).  Cropped 

image series (E) shows the progression of CLEAR imaging results as patch size increases from 4 

to 14. Red arrows indicate block artifacts in the CLEAR reconstruction. (F) Cropped image series 

from LLR-IRPA, in which block artifacts are more suppressed in comparison to CLEAR. (G) 

Difference images between (E) and (F). Window level scaled to 0 – 7.6% of the maximum signal 

in (A). 

 

A.5.2 Parallel Imaging – Prospective Undersampling 

 Similar to the results from retrospective undersampling, the prospectively undersampled 

MRA data set shows comparable results in image quality, except that CLEAR displays more 
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apparent block artifacts than LLR-IRPA within the myocardium and along its edges, as shown in 

Figure A4. Due to the shift invariance induced from using different image partitions, the LLR-

IRPA reconstructed images remain relatively stable and less prone to block artifacts as a function 

of patch size. We also see in the difference images between LLR-IRPA and CLEAR that various 

residual, block artifacts that remain due to the overlapping patches used by CLEAR. One can also 

observe that LLR-IRPA also avoids artifacts along edges of the anatomy. Importantly, note that 

the difference images in Figure A4 indicate the contrast in the levels of residual blocks artifacts 

produced by CLEAR.  This result shows that LLR-IRPA can avoid these types of artifacts without 

compromising image quality. Unlike the retrospectively undersampled experiments, this data 

retained a much larger central sampling region of size 24 × 24, and slightly more dense sampling 

in the central region of k-space. Even in such a case, LLR-IRPA still provides an advantage in 

terms of robustness to differences in patch size. 

 

A.6 Discussion 

Although the imaging results show   the   similarity   of the LLR-IRPA and CLEAR 

reconstruction approaches, it is important to note that these results are affected by the choice 

of sampling pattern, the sampling density, and the extent of the fully sampled central region, 

both in the 2D and 1D undersampling experiments. Even though the shift invariance due the 

random shifting of the patch grid can be reasonably expected to provide consistent improvement 

in image quality, it may provide more advantageous results in other instances where the sampling 

density or fully sampled region may not be so favorable. This type of case may arise in a pure 

calibrationless setting in which no fully sampled region may be acquired, or in cases where the 

sampling scheme does not produce an incoherent sampling pattern. In these cases, LLR-IRPA 

may still have an advantage due to the added redundancy and shift invariance that results from 

iterative shifting of the image partition. It is important to note that the method reported by Zhang 

et al.152, which also shifts partitions at each iteration, depends on an auto-calibration acquisition, 
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so that it may not be as applicable to general sampling schemes as the calibrationless LLR-

IRPA technique, or CLEAR. The LLR-IRPA algorithm is applicable for arbitrary undersampled 

k-space trajectories without incurring the higher computational cost of CLEAR. Although CLEAR 

yields equivalent results, its algorithmic framework implicitly assumes that each patch is 

independent when applying singular-value thresholding and reconstructing each patch, which is 

not necessarily the case because this method uses overlapping patches. The step of dividing the 

resulting image by the number of times that each pixel is overlapped, as done in the report by 

Han et al.166 is at best a heuristic approach for reconstructing the final image from multiple 

overlapping patches163. This approach only renders the optimization problem of CLEAR more 

mathematically tractable. In contrast, the LLR-IRPA algorithm treats each patch independently 

from the others throughout the iterative process, and the framework described in the Theory 

section provides a mathematically justifiable basis for solving the optimization scheme with 

shifting, non-overlapping patches. 

As mentioned in the Theory section, each partition Ω can be shifted in a number of 𝑁Ω 

different ways. In contrast to the wavelet cycle spinning strategy, each shift is performed randomly 

and the number of shifts is dependent on the prescribed patch size. The number of iterations needed 

to traverse all possible shifts is at least 𝑁Ω, and this number increases as the patch size becomes 

larger. In the reconstruction performed in this study, the limit of 100 iterations can be 

approximately sufficient for patch sizes ≤ 10 × 10. However, results for patch sizes of 12×12 and 

14 ×14 may not reflect those that would be obtained using the corresponding greater number of 

iterations. Despite the lower number of iterations used, the reconstruction results for these patch 

sizes still demonstrate considerable improvement, as seen in the MRA images where block 

artifacts are clearly suppressed in reconstructions with LLR-IRPA. This result shows the 
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robustness of the LLR-IRPA strategy, which maintains improved computational efficiency 

compared to CLEAR without introducing block artifacts.  

In terms of computational complexity, LLR-IRPA has a significant advantage over 

CLEAR, without sacrificing algorithmic performance or image quality. In terms of computational 

cost, to reconstruct a 2D multi-coil 𝑀 ×  𝑁 ×  𝐶 image set using 𝑚 × 𝑛 patches (where 𝑚|𝑀 and 

𝑛|𝑁), LLR-IRPA would require at most 𝑄 =  (
𝑀

𝑚
 +  1)(

𝑁

𝑛
+  1) SVD computations of 𝑚𝑛 × 𝐶 

matrices per iteration, whereas CLEAR requires 𝑃 = ( 𝑁 +
𝑛(1−𝑠)

𝑠𝑛
 )( 𝑀 +

𝑚(1−𝑟) 

𝑟𝑚
 ), where 𝑟 and 

𝑠 are as given in (28). Suppose, as adopted in the experiments, that 𝑟 =  𝑠 =  12, and that 
𝑀

𝑚
 =

 𝑎 and 
𝑁

𝑛
 =  𝑏. Then 𝑄 =  𝑎𝑏 +  𝑎 +  𝑏 +  1 while 𝑃 =  4𝑎𝑏 + 3(𝑎 + 𝑏) +

9

4
≈  4𝑎𝑏 + 3(𝑎 +

𝑏) + 3. To quote the result given in [16], the number of floating point operations (FLOPS) required 

for one thin SVD calculation would be  

FLOPS =  min (14𝑚𝑛𝐶2 + 8𝐶3, 6𝑚𝑛𝐶2 + 20𝐶3) 

 

Thus, as seen from the comparison of P and Q, this means that CLEAR would require 

approximately 3 to 4 times more FLOPS than LLR-IRPA. This estimation also agrees with the 

results in Table A3, which show that the average per-iteration time of LLR-IRPA can be roughly 

3 to 4 times shorter than that of CLEAR. Evidently, this makes LLR-IRPA a much more efficient 

reconstruction scheme that produces comparable if not better imaging results to CLEAR. However, 

it is important to note that the use of graphical processing units (GPU) would highly accelerated 

these iteration times, yet the efficiency of LLR-IRPA would still outperform CLEAR.  

In the context of local, patch-based methods for accelerated quantitative parameter 

mapping, we also note that alternative SVD-based techniques such as dictionary learning for blind 
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compressive sensing also show promise in reducing the computational load of locally low-rank 

regularized reconstruction167,168. In the absence of a learning step, however, LLR-IRPA represents 

a highly efficient class of algorithms for implementing effectively shift-invariant locally low-rank 

reconstruction in a calibrationless setting. Globally low rank regularization techniques, such as the 

k-space domain-based SAKE method for parallel imaging146, can also operate in a calibrationless 

setting, yet they may entail significantly more FLOPS per iteration than the locally low rank LLR-

IRPA and CLEAR methods, as discussed in the report by Trzasko et al.151.  

Further considerations include examining the performance of LLR-IPRA in more diverse 

acquisition and reconstruction settings, for example in dynamic reconstructions using more 

advanced algorithms based on constrained formulations and accelerated convergence schemes. 

However, while more advance algorithms may improve the convergence rates of LLR-IRPA and 

CLEAR, the relative computational efficiency between the two methods would not change because 

CLEAR would still require the computation of many more SVD’s per iteration than LLR-IRPA. 

Therefore, the reconstruction speed of each method may increase, but the relative improvement of 

LLR-IRPA over CLEAR would remain valid. 

A.7 Conclusion 

In this chapter, we have shown that LLR-IRPA retains the same level of image 

reconstruction and quantitative parameter mapping results compared to overlapping patch-based 

LLR regularization, in terms of image quality and nRMSE, but with the distinct advantage of 

substantially reduced computational load. We describe this patch adjustment strategy for LLR 

regularization and set a theoretical framework for formulating this novel development in the 

context of patch-based image reconstruction techniques. This technique is an improvement over 
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conventional LLR-based algorithms such as CLEAR, since the computational load is substantially 

reduced without promoting block artifacts. In fact, the amount of acceleration from using random 

shifting has been shown to reach up to a factor of 3 to 4. The iterative random patch adjustment 

strategy is experimentally shown to suppress these artifacts while retaining the convergence rate 

of the more computationally expensive CLEAR algorithm. Experimental results and theoretical 

analysis of the proposed method support these findings. The implications of LLR-IRPA is to 

facilitate the application of LLR-based regularization for clinical MRI applications.  
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