
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
TCTL Inevitability Analysis of Dense-Time Systems: From Theory to Engineering

Permalink
https://escholarship.org/uc/item/8wv089vh

Journal
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 28(7)

ISSN
0098-5589

Authors
Wang, Farn
Huang, G D
Yu, Fang

Publication Date
2006-07-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8wv089vh
https://escholarship.org
http://www.cdlib.org/

TCTL Inevitability Analysis of Dense-Time
Systems: From Theory to Engineering
Farn Wang, Member, IEEE Computer Society, Geng-Dian Huang, and Fang Yu

Abstract—Inevitability properties in branching temporal logics are of the syntax 8}�, where � is an arbitrary (timed) CTL (Computation

Tree Logic) formula. Such inevitability properties in dense-time logics can be analyzed with the greatest fixpoint calculation. We

present algorithms to model-check inevitability properties. We discuss a technique for early decision on greatest fixpoint calculation

which has shown promising performance against several benchmarks. We have experimented with various issues which may affect

the performance of TCTL inevitability analysis. Specifically, our algorithms come with a parameter for the measurement of time-

progress. We report the performance of our implementation with regard to various parameter values and with or without the non-Zeno

computation requirement in the evaluation of greatest fixpoints. We have also experimented with safe abstraction techniques for

model-checking TCTL inevitability properties. The experiment results help us in deducing rules for setting the parameter for verification

performance. Finally, we summarize suggestions for configurations of efficient TCTL inevitability evaluation procedure.

Index Terms—TCTL, real-time systems, inevitability, non-Zeno, model-checking, greatest fixpoint, abstraction.

Ç

1 INTRODUCTION

SINCE the model-checking theory for timed automata were
invented roughly a decade ago [1], [17], many theoretical

workpieces have been reported and experimental tools have
been implemented [4], [6], [12], [13], [18], [19], [20], [21],
[24], [26], [27], [28], [29], [30], [31], [32], [34], [36]. However,
to apply these research results to engineering projects,
hardwork is still needed in order to understand how to
configure the proposed algorithms for efficient specification
evaluation. The goals of this work are to design new
efficient techniques for evaluating modal formulas like 8}�,
to use extensive experiments to observe how the evaluation
procedure performs, in practice, and to come up with
summarized suggestions for the configuration of the
procedure for efficient inevitability analysis.

In verification research, two types of specification
properties attract the most interest from academia and
industry. The first type specifies that “bad things will never
happen,” while the second specifies that “good things will
happen” [3]. In the branching temporal logics of (timed) CTL
(Computation Tree Logic) [1], [10], these two concepts can be
mapped to modal operators 8ut and 8}, respectively. 8ut
properties are called safety properties while 8} properties
are usually called inevitability properties, [14], [22]. In the
domain of dense-time system verification, people have
focused on the efficient analysis of safety properties [13],
[18], [20], [24], [28], [29], [30], [31], [32], [36]. Inevitability

properties in Timed CTL (TCTL) [1], [17] are comparatively
more difficult to analyze due to the following reason: To
analyze an inevitability property, say 8}�, we actually
compute the set of states that satisfy the negation of the
inevitability, i.e., 9ut:�, in symbols ½½9ut:���. We then
determine the inevitability by checking the intersection
emptiness between ½½9ut:��� and the set of the initial states.
The difficulty arises if property 9ut:� is violated by Zeno
computations, which are those counterintuitive infinite
computations whose execution times converge to a finite
value [17]. For example, a specification such as

“Along all computations, eventually a bus collision will
happen in three time units,”

can be violated by a Zeno computation whose execution
time converges to a finite timepoint, e.g., 2.9 time units. In
order to respect the TCTL semantics [1], [17], we have to
impose a non-Zeno requirement on computations that may
incur extra complexity to the evaluation of inevitability
properties. We present a symbolic TCTL model-checking
algorithm that can handle non-Zeno requirements in great-
est fixpoint evaluations. This algorithm involves nested
reachability analysis and demands a much higher complex-
ity than simple safety analysis.

To analyze TCTL inevitability properties in industrial
projects, it is important to integrate various techniques for
a performance solution. We investigate three approaches
for such a purpose. Our first approach is a speed-up
technique called Early Decision on the Greatest Fixpoint
(EDGF). In practice, inevitability usually happens with a
precondition. For example, we may want to specify
8utðcollision! y:8}ðy < 26 ^ idleÞÞ, meaning that, if
the precondition of collision is observed, the system
will inevitably enter the idle state within 26 time-units.
After negation for model-checking, we instead analyze the
reachability of collision ^ y:9utðy � 26 _ :idleÞ. In eval-
uating this negated formula, we want to see if the greatest
fixpoint for the 9ut-formula intersects with the collision

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2006 1

. F. Wang and G.-D. Huang are with the Department of Electrical
Engineering, National Taiwan University, BL 616, Nr. 1, Sec. 4,
Roosevelt Rd., Taipei, Taiwan 106, ROC.
E-mail: farn@cc.ee.ntu.edu.tw, gdhuang@ntu.edu.tw.

. F. Yu is with the Department of Computer Science, College of Engineering,
University of California, Santa Barbara, CA 93106.
E-mail: yuf@cs.ucsb.edu.

Manuscript received 9 Mar. 2005; revised 5 June 2006; accepted 13 June 2006;
published online xxxxxx.
Recommended for acceptance by M. Chechik.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0057-0305.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

state space. We do not actually have to compute the
greatest fixpoint to know if the intersection is empty.
Greatest fixpoint evaluation procedures usually start with
a set, say Y , of states and iteratively delete states from Y

until no more deletion can be made. Since the value of Y
shrinks iteratively, we can check if the intersection
between Y and the precondition state space has become
empty at each iteration of the greatest fixpoint construc-
tion. If, at an iteration, we find the intersection already
empty, further iterations for the greatest fixpoint are
unnecessary and we can immediately return the current
value of Y (or false) without affecting the model-checking
results. One nice feature of EDGF is that it does not
sacrifice the precision of model-checking. As reported in
Section 8, significant performance improvement is shown
against several benchmarks.

In the second approach, we investigate how to adjust a
parameter value in our greatest fixpoint evaluation algo-
rithms for better performance. The parameter is used for
measuring the time-progress in the non-Zeno requirement.
After experimenting with several benchmarks, we find that
the parameter value may significantly affect the verification
performances. To verify a given system and property, we may
enhance the verification performance more than 300 times by
carefully changing the parameter value. Another interesting
observation is that, for all our benchmarks, the performance
curves with regard to the parameter values are of similar
shapes, independent of the number of processes. In other
words, we may predict a good parameter value for para-
meterized systems with high concurrency by calculating
good ones for systems with low concurrency.

Our third approach is using abstraction techniques [9],
[35]. The just-mentioned second approach works fine with
parameterized systems. For general asymmetric systems, we
experimented with using abstraction techniques to predict
good parameter values. For many benchmarks, the perfor-
mance curves (with regard to the parameter values) for
abstract evaluation have shapes similar to those for exact
evaluation. We focus on the TCTL subclass TCTL8, in which
every formula can be analyzed with safe abstraction if
overapproximation is used in the evaluation of its negation.

One challenge in designing safe abstraction techniques in
model-checking is making them precise enough to discern
true properties while still allowing us to enhance verifica-
tion performance. In previous research, people have
designed many abstraction techniques for reachability
analysis [4], [24], [34], [35], [36]. For model-checking
formulas in TCTL8, abstraction precision can be a big issue
because abstraction-induced imprecision can potentially be
magnified when we use imprecise evaluation results of
nested modal subformulas to evaluate nesting modal
subformulas. In our experiments, we have checked the
precision of three previously published abstraction techni-
ques in the evaluation of TCTL inevitabilities.

In this paper, we also discuss abstract evaluation of
greatest fixpoints by omitting the requirement for non-Zeno
computations in TCTL semantics. As reported in Section 8,
many benchmarks can still be verified even without
exclusion of Zeno computations.

We have implemented these ideas in our model-
checker/simulator RED 4.1 [28], [29], [30]. We report here
extensive experiments designed to observe the effects of our
proposed techniques on inevitability analysis. We have also
compared our implementation with Kronos 5.1 [36], a
model-checker for full TCTL. The performance data not
only shows good promise for our techniques but also
provides hints for the configurations of efficient TCTL
model-checking algorithm for complex systems. We also
experimented with the L2CAP of Bluetooth [16] to see how
our techniques perform against industrial projects. Finally,
in Section 10, we summarize our experiment report and
make suggestions for the configuration of the efficient
inevitability evaluation procedure.

2 RELATED wORK

To model real-time systems, we may assume that time is
either discrete or dense [8]. In other words, the clock
readings are either nonnegative integers or nonnegative
reals. The discrete real-time model is appropriate for
synchronous systems, i.e., systems with a single global
clock that ticks every time unit. The state transaction can
only happen at ticks. In [7], a method for specifying and
verifying discrete real-time systems is proposed.

The timed automata model with dense-time clocks was
first presented in [2]. This model is natural for asynchronous
systems, i.e., systems with multiple clocks. In contrast to the
discrete real-time model, the state transaction can happen at
any time moment. In [1], Alur et al. showed that the TCTL
model-checking problem is in PSPACE-complexity and gave
an algorithm of TCTL model-checking. The algorithm is
based on the region graph, whose size is bounded by
jXj! � 2jXj � qx2Xð2cx þ 2Þ, where X is the set of clocks and cx
is the largest constant in the constraints for clock x.

The modeling of real-time systems is the first step to
applying model checking techniques. In [23], Ober et al.
proposed a timed Unified Modeling Language (UML) for
modeling real-time systems. They showed how to translate
timed UML into timed automata for analysis. In [33], Wang
and Yu proposed a timed C, a C-like language for designing
real-timed systems. They also showed how to translate
timed C into timed automata.

In [17], Henzinger et al. proposed an efficient symbolic
model-checking algorithm for TCTL. So far, several verifica-
tion tools for timed automata have been devised and
implemented [18], [20], [24], [28], [29], [30], [31], [32], [36].
UPPAAL [24] is a popular tool based on DBM1 technology.
Recently, Moller has applied abstraction techniques in
UPPAAL to analyze restricted inevitability properties with-
out using modal-formula nesting [21]. The idea is to make
model augmentations speed up the verification performance.
Moller also shows how to extend the idea to analyze TCTL
with only universal quantifications. However, no experiment
has been reported on the verification of nested modal-
formulas. In [5], Behrmann et al. proposed an abstraction
technique which is sound and complete with regard to

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2006

1. DBM is proposed in [12] for the representation of convex state spaces
of timed automata. A DBM is a two-dimensional matrix that records the
difference upper bounds between clock pairs up to a certain constant.

reachability analysis, based on distinquish maximal lower
and upper bounds. They report an experiment with regard to
reachability analysis in UPPAAL and no experiment has been
reported on the verification of nested modal-formulas.

Kronos [36] is a full DBM-based TCTL model-checker that
incorporates both forward and backward reasoning capabil-
ities. Experiments with Kronos on TCTL bounded inevitability
(inevitabilities with specified deadline) properties are re-
ported in [36]. No report has been made on how to enhance the
performance of the general inevitability analysis. In compar-
ison, our proposed techniques (e.g., EDGF and abstractions)
handle both bounded and unbounded inevitabilities.

Our tool RED (version 4.1) [30] is a full TCTL model-
checker/simulator with a BDD-like data structure, called
CRD (Clock-Restriction diagram) [28], [29], [30]. Previous
research with RED was focused on enhancing the perfor-
mance of safety analysis [26], [27], [28], [29], [30].

Abstraction techniques for safety analysis have been
studied in great depth since the pioneering work of
Cousot and Cousot [9]. For timed automata, convex-hull
overapproximation [35] has been a popular choice for
DBM technology. Many overapproximation techniques for
timed automata have also been reported in [4] for
BDD-like data structures and in [34] specifically for CRD.

Relationships between abstraction techniques and sub-
classes of CTL with only universal (or existential, respec-
tively) path quantifiers have been studied in [11]. As
mentioned, the corresponding framework in TCTL is noted
in [21].

3 TCTL MODEL-CHECKING

We use TCTL model-checking as our verification framework
in which we are given a timed automaton [2] as the
behavior description and a TCTL formula [1] as the
specification and aim to check whether the behavior
description satisfies the specification.

3.1 Timed Automata

A timed automaton is a finite-state automaton equipped
with a finite set of clocks that can hold nonnegative real-
values. It is structured as a directed graph whose nodes are
modes (control locations) and whose arcs are transitions. The
modes are labeled with invariance conditions while the
transitions are labeled with triggering conditions and a set
of clocks to be reset during the transitions. The invariance
conditions and triggering conditions are Boolean combina-
tions of inequalities comparing a clock with an integer. At
any moment, a timed automaton can stay in only one mode
(or control location). In its operation, one transition can be
triggered when a corresponding triggering condition is
satisfied. Upon being triggered, the automata instanta-
neously transits from one mode to another and resets some
clocks to zero. Between transitions, all clocks increase
readings at a uniform rate.

For convenience, given a set Q of modes and a set X of
clocks, we use BðQ;XÞ as the set of all Boolean combina-
tions of atoms of the forms q and x � c, where q 2 Q,
x 2 X [0, “� ” is either < , � , ¼ , > , or � , and c is an
integer constant. Every elements in BðQ;XÞ is called a state
predicate that represents a set of states (i.e., a state space). A

valuation of a set is a mapping from the set to another set.

Rþ denotes the set of nonnegative reals.

Definition 1. A timed automaton A is given as a tuple

hX;Q; I; �; T ; �; �i with the following restrictions: X is the

set of clocks. Q is the set of modes. I 2 BðQ;XÞ is the initial

condition. � : Q7!Bð;; XÞ defines the invariance condition of

each mode. T � Q�Q is the set of transitions. � :

T 7!Bð;; XÞ and � : T 7!2X, respectively, define the triggering

condition and the clock set to reset of each transition.

Definition 2. Given an � 2 BðQ;XÞ and a valuation � of X, we

say � satisfies �, in symbols � 	 �, iff it is the case that, when

the variables in � are interpreted according to �, � will be

evaluated as true.

Definition 3. A state � of A ¼ hX;Q; I; �; T ; �; �i is a valuation

of X [Q such that

. there is a unique q 2 Q such that �ðqÞ ¼ true and, for
all q0 6¼ q, �ðq0Þ ¼ false;

. 8x 2 X, �ðxÞ 2 Rþ, and 8q 2 Q; �ðqÞ) � 	 �ðqÞ.
Given state � and q 2 Q such that �ðqÞ ¼ true, we call q

the mode of �, in symbols �Q. For any t 2 Rþ, � þ t is a

state identical to � except that, for every clock x 2 X,

�ðxÞ þ t ¼ ð� þ tÞðxÞ. Given �X � X, � �X is a new state

identical to � except that, for every x 2 �X, � �XðxÞ ¼ 0.

Definition 4. Given a timed automatonA ¼ hX;Q; I; �; T ; �; �i,
a run is an infinite sequence of state-time pairs, ð�0; t0Þ
ð�1; t1Þ . . . ð�k; tkÞ , such that t0t1 . . . tk is a mono-

tonically increasing real-number (time) divergent sequence and,

for all k � 0,

. invariance conditions are preserved in each interval,
that is, for all t 2 ½0; tkþ1
 tk�, �k þ t 	 �ð�Qk Þ, and

. either no transition happens at time tk, that is, �Qk ¼
�Qkþ1 and �k þ ðtkþ1
 tkÞ ¼ �kþ1, or a transition
happens at tk, that is,

- there is such a transition, i.e., ð�Qk ; �
Q
kþ1Þ 2 T ; and

- the transition is satisfied, i.e., �k þ ðtkþ1
 tkÞ 	
�ð�Qk ; �

Q
kþ1Þ and

- the clocks are reset accordingly, i.e., ð�k þ
ðtkþ1
 tkÞÞ�ð�Qk ; �

Q
kþ1Þ ¼ �kþ1.

3.2 Timed Computation Tree Logic (TCTL)

TCTL [1], [17] is a branching temporal logic for the

specification of dense-time systems. The formal semantics

of TCTL model-checking could be defined as follows:

Definition 5. A TCTL formula � has the following syntax rules.

� ::¼ � j :�1 j�1 _ �2 jx:�1 j 9�1U�2 j 9ut�1:

Here, � 2 BðQ;XÞ and �1, �2 are TCTL formulas.

The modal operators are intuitively explained in the

following:

. x:� means that “if there is a clock x with reading
zero now, then � is satisfied.”

. 9 means “there exists a run.”

. �1U�2 means that, along a computation, �1 is true
until �2 becomes true.

WANG ET AL.: TCTL INEVITABILITY ANALYSIS OF DENSE-TIME SYSTEMS: FROM THEORY TO ENGINEERING 3

. ut�1 means that, along a computation, �1 is always
true.

Besides the standard shorthand of temporal logics [1], [17],
we adopt the following for TCTL: 9}�1 for 9true U�1, 8ut�1

for :9}:�1; 8�1 U�2 for :ðð9ð:�2Þ U:ð�1 _ �2ÞÞ _ ð9ut:�2ÞÞ,
and 8}�1 for 8trueU�1.

Two subclasses of TCTL, including TCTL8 and TCTL9,
will be used in Section 7. TCTL8 [21] is the universal fragment
of TCTL such that only universal path quantifications are
used and negations only appear before atoms. Similarly,
TCTL9 is the existential fragment of TCTL such that only
existential path quantifications are used and negations only
appear before atoms. Note that the negations of formulas in
TCTL8 fall correctly in TCTL9. A TCTL9 formula can express
a specification that can be witnessed by a run.

Definition 6. We write in notations A; � 	 � to mean that � is
satisfied at state � in a timed automaton A. The satisfaction

relation is defined inductively as follows:

. When �1 2 BðQ;XÞ, A; � 	 �1 according to Defini-
tion 2.

. A; � 	 �1 _ �2 iff either A; � 	 �1 or A; � 	 �2.

. A; � 	 :�1 iff A; � 6	 �1.

. A; � 	 x:�1 iff A; �fxg 	 �1. We introduce an addi-
tional clock x in A, which is reset to 0 at present.

. A; � 	 9�1U�2 iff there exists a run ð�1; t1Þð�2; t2Þ . . .
such that �1 ¼ � in A and there exist an i � 1 and a
� 2 ½0; tiþ1
 ti�, s.t.

- A; �i þ � 	 �2,
- for all j; �0, if either ð1 � j < iÞ ^ ð�0 2 ½0; tjþ1

tj�Þ or ðj ¼ iÞ ^ ð�0 2 ½0; �ÞÞ, thenA; �j þ �0 	 �1.

In other words, � satisfies 9�1U�2 iff there exists a run
from � such that along the run, �1 is true until �2 is

true.
. A; � 	 9ut�1 iff there exists a run ð�1; t1Þð�2; t2Þ . . .

such that �1 ¼ � in A, and for every i � 1 and
� 2 ½0; tiþ1
 ti�, A; �i þ � 	 �1. In other words, �
satisfies 9ut�1 iff there exists a run from � such that �1

is always true.

A timed automaton A satisfies a TCTL formula �, in symbols

A 	 �, iff for every state �0 	 I, A; �0 	 �.

4 MODEL-CHECKING ALGORITHM WITH NON-ZENO

REQUIREMENTS

Our TCTL model-checking algorithm uses backward reason-
ing. We need two basic procedures, xtion bckðÞ for the
computation of the weakest precondition of transitions and
time bckðÞ for that of backward time-progression. These two
procedures are important in the symbolic construction of
backward reachable state space representations. Various
presentations of the two procedures can be found in [17], [26],
[27], [28], [29], [30], [32]. Given a state space representation �
and a transition e, the first procedure, xtion bckð�; eÞ,
computes the weakest precondition

. in which every state satisfies the invariance condi-
tion imposed by �ðÞ and

. from which we can transit to states in ½½��� through e.

Note that ½½��� is the set of states that satisfy �. The second
procedure, time bckð�1; �2Þ, computes the space representa-
tion of states

. from which we can go to states in ½½�2�� simply by
time-passage and

. every state in the time-passage satisfies �1 and also
satisfies the invariance condition imposed by �ðÞ.

We have implemented the symbolic characterization of
time bckð�1; �2Þ presented in [17] as follows:

time bckð�1; �2Þ ¼
f�j9� 2 Rþð� þ � 	 �2 ^ 80 � �0 � �ð� þ �0 	 �1 ^ �ð�QÞÞÞg:

Note that the inner quantification rules out the case of path
condition discontinuity in time-passage. With these two
basic procedures, we can construct a backward reachability
procedure rch-bckð�1; �2Þ, as shown in [17], [26], [27], [28],
[29], [30], [32], which characterizes the backwardly reach-
able state space from states in ½½�2�� through runs along
which all states satisfy �1. rch-bckð�1; �2Þ can be defined as
the least fixpoint of the equation

Y ¼ �2 _ ðtime bckð�1; Y _ ð�1 ^
_

e2T
xtion bckðY ; eÞÞÞÞ;

i.e.,

rch-bckð�1; �2Þ � lfpY :ð�2 _ ðtime bckð�1; Y

_ ð�1 ^
_

e2T
xtion bckðY ; eÞÞÞÞÞ:

Our model-checking algorithm is extended from the
classical model-checking algorithm for TCTL [17]. The
design of our greatest fixpoint evaluation algorithm with
consideration of non-Zeno requirement is based on the
following lemma.

Lemma 7. Given d � 1,A; � 	 9ut� iff there exists a set Y of states,
that all satisfy � such that � 2 Y and, for all �0 2 Y , there is a
finite run segment from �0 of duration � d ending in Y.

Proof. ()) We first assume that A; � 	 9ut� is true.
According to the semantics of TCTL, there is an infinite
and divergent run � from � along which � is always true.
Let Y be the set of states in the run �. Clearly, � 2 Y and
for all �0 2 Y satisfies �. Considering a state �0 2 Y in the
run �, there is a finite run segment from �0 of duration
� d ending in a state �00 2 Y in the run �. Thus, this
direction of the lemma is proven.

(() We next assume that there is a set Y of states that
all satisfy � such that � 2 Y and, for all �0 2 Y , there is a
finite run segment from �0 of duration � d ending in Y.
Since � 2 Y , there are infinitely many finite run segments
of duration � d � 1 that can be concatenated together to
form an infinite and divergent run starting at �. More-
over, all states in the infinite and divergent run satisfy �.
We can see that A; � 	 9ut�. tu

With Lemma 7, 9ut� can be defined with the following
greatest fixpoint:

9ut� � gfpY : ZC: rch-bckð�; Y ^ ZC � dÞð Þ:

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2006

Here, clock ZC is an auxiliary clock variable specifically
used to measure the non-Zeno requirement. Note that d is a
parameter for measuring the time-progress. The following
procedure can construct the greatest fixpoint satisfying 9ut�
with a non-Zeno requirement.

gfpð�Þ /* d is a static parameter for measuring

time-progress */ {

Y :¼ �; Y 0 :¼ true;
repeat until Y ¼ Y 0, fY 0 :¼ Y ; Y :¼ clk elimð
ZC ¼ 0 ^ rch-bckð�; Y ^ ZC � dÞ; ZCÞ; g (1)

return Y ;

}
clk elimð�; xÞ {

for each x1 � x � c and x� x2 �0 c0, if � ^
x1 � x � c ^ x� x2 �0 c0 is not empty, {

�1 :¼ � ^ x1 � x � c ^ x� x2 �0 c;
� :¼ � ^ :�1; � :¼ � _ ð�1 ^ x1 � x2new ubð�; c;�0; c0ÞÞ;

}

return �;

}
new ubð�; c;�0; c0Þ {

if c ¼ 1_ c0 ¼ 1, return “<1”

else if c ¼ �1, { if c0 � 0, return “< �1”; else return

“< �CA:� þ c”; }

else if c0 ¼ �1, { if c � 0, return “< �1”; else return

“< �CA:� þ c”; }

cr :¼ cþ c0;
if � or �0 is “< ”, �r is assigned “< ”, else �r

is assigned “� ”

if cr > CA:� _ ð�r¼00<00 _cr ¼ CA:�Þ, return “<1”;

else if cr < �CA:� _ ð�r¼ } < } _ cr ¼ �CA:�Þ,
return “< �1”;

else return “�r cr”;

}

Here, clk elimðÞ applies Fourier-Motzkin elimination [15]
to remove a clock from a state predicate without losing
information on other clocks. We assume that � and �0
represent operations< or<¼ . Other operations, i.e.,¼ ,> ,
>¼ , can be handled similarly. c and c0 are integers in
f�1;�CA:�; . . . ; CA:�;1g, where CA:� is the maximum
constant in A and �. new ubðÞ computes the new upperbound
as the result of adding two. When the new upperbound
exceeds CA:�, we treat it as 1. For example, with CA:� ¼ 5,
new ubð<; 2;�; 3Þ ¼ 00<100 and new ubð�; 2;�; 1Þ ¼ 00� 3”.
gfpðÞ iteratively eliminates subspaces which cannot go to a
state in Y through finite runs of duration over d. In Section 8,
we show that, in many cases, d-values significantly influence
verification performances.

The following model-checkðA; �Þ, which uses gfpðÞ in the
labeling algorithm in [1], [17] to replace the evaluation of
9ut-formulas, stands for the complete model-checking
algorithm with non-Zeno requirement. EvalðA;�; �Þ com-
putes a state predicate representing the set of states that
satisfy �. Correctness follows from Lemma 7.

model-checkðA; �Þ { if EvalðA; ;;:�Þ ^ I is false, return true;

else return false. }

EvalðA;�; ��Þ /* � is the set of clocks in the scope of �� */ {

switch (��) {

case (false): return false;
case (p): return p ^

V
x2� x � 0;

case(x� y � c): return x� y � c ^x2� x � 0;

case(�1 _ �2): return EvalðA;�; �1Þ _ EvalðA;�; �2Þ;
case (�1 ^ �2): return EvalðA;�; �1Þ ^ EvalðA;�; �2Þ;
case (:�1): return :EvalðA;�; �1Þ;
case (x:�1): return

clk elimðx ¼ 0 ^ EvalðA;� [fxg; �1 ^ x � 0Þ; xÞ;
case (9�1U�2): return
rch-bckðEvalðA; �; �1Þ; EvalðA; �; �2ÞÞ;

case (9ut�1): return gfpðEvalðA;�; �1ÞÞ;
}}

5 EARLY DECISION ON GREATEST FIXPOINT

EVALUATION

As mentioned in Section 1, inevitability properties usually
appear together with preconditions, like 8utðp! 8}qÞ.
After negating for model-checking, we end up with the
reachability of p ^ 9ut:q and the greatest fixpoint evaluation
can stop when the intersection between p and 9ut:q
becomes empty. Based on this idea, we have developed
the speed-up technique of Early Decision on the Greatest
Fixpoint (EDGF). We first need to define several terms for
the presentation of the technique. A positive Boolean tree
predicate (PBTP) with n arguments is an expression
constructed from Boolean conjunctions, disjunctions, and
arguments �1; . . . ; �n. We can construct a parsing tree for a
PBTP. It can be shown that every interior node is either a
conjunction or a disjunction and each argument in a PBTP
corresponds to exactly one leaf in the parsing tree. A nice
property of PBTP is that it is monotonic. The following
lemma establishes this monotonicity.

Lemma 8. Given a PBTP pð�1; . . . ; �nÞ and state predicates
�1; . . . ; �n; �

0
1; . . . ; �0n, if �1 � �01; . . . , and �n � �0n, then

pð�1; . . . ; �nÞ � pð�01; ; �0nÞ.
Proof. This lemma can be proven with structural induction

on pðÞ. In the base case, there is only one argument and the
lemma is true according to the assumption. For the
induction, we assume that the lemma is true for all PBTPs
with no more than k arguments. Now, we are going to
prove that the lemma is true for a ðkþ 1Þ-arguments
PBTP pð�1; . . . ; �kþ1Þ. If the root of the parsing tree for
pð�1; . . . ; �kþ1Þ is a conjunction, pð�1; . . . ; �kþ1Þ must be of
the form p1ð�1; . . . ; �hÞ ^ p2ð�hþ1; . . . ; �kþ1Þ, where h � k.
According to the assumption, p1ð�1; . . . ; �hÞ�p1ð�01; . . . ; �0hÞ
and p2ð�hþ1; . . . ; �kþ1Þ � p2ð�0hþ1; . . . ; �0kþ1Þ. According to
the definition of conjunction, we then infer that

p1ð�1; . . . ; �hÞ ^ p2ð�hþ1; . . . ; �kþ1Þ
� p1ð�01; . . . ; �0hÞ ^ p2ð�0hþ1; . . . ; �0kþ1Þ:

Thus, the lemma is proven in this case. The proof when the
root is a disjunction is similar to the conjunction case. tu
Suppose we have the parsing tree � of a PBTP

pð�1; . . . ; �nÞ. A path �1�2 . . .�m in � is called a filtering
path for �i, 1 � i � n, iff �1 is the root of � and �m is the
parent of �i. A subformula � is called a filtering conjunct of
�i iff the root of its parsing tree is a sibling of one of

WANG ET AL.: TCTL INEVITABILITY ANALYSIS OF DENSE-TIME SYSTEMS: FROM THEORY TO ENGINEERING 5

�2; . . . ; �n and the parent of the root is a conjunction. If
�1; . . . ; �k are some filtering conjuncts of
i, then

V
1�i�k �i is

called a filtering subconjunction of
i. We have an example
PBTP ð
1 _
2Þ ^ ðð
3 ^
4Þ _
5Þ in Fig. 1. Path acd is a
filtering path for
3.
1 _
2 and
4 are both filtering
conjuncts of
3. Thus,
1 _
2,
4, and ð
1 _
2Þ ^
4 are all
filtering subconjunctions of
3.

For convenience of presentation, in the following, we
shall assume that we are interested in the filtering path of

n in a PBTP pð
1; . . . ;
nÞ. But, our lemmas and proofs can
be adapted to the general case by argument renaming.

Lemma 9. Suppose we are given a PBTP pð
1; . . . ;
nÞ such

that � ¼ fð
1; . . . ;
mÞ, m < n, is a filtering subconjunc-
tion of
n. Suppose that the greatest fixpoint evaluation of

9ut�1 yields 12 . . . g (g is the greatest fixpoint) in

successive iterations and �1; . . . ; �n
1 are state predicates. If
fð�1; . . . ; �mÞ ^ k ¼ false for some 1 � k � g, then

pð�1; . . . ; �n
1; gÞ � pð�1; . . . ; �n
1; falseÞ.
Proof. If we rewrite pð
1; . . . ;
nÞ in DNF, according to the

distribution law of Boolean algebra, fð
1; . . . ;
mÞ will
occur in every conjunction in which
n occurs.
According to the idempotence of conjunctions, we infer
that pð
1; . . . ;
nÞ � pð
1; . . . ;
n ^ fð
1; . . . ;
mÞÞ. Since
the evaluation of 9ut�1 shrinks in each iteration,
pð�1; . . . ; �n
1; gÞ � pð�1; . . . ; �n
1; kÞ according to Lem-
ma 8. If fð�1; . . . ; �mÞ ^ k ¼ false, we can infer that

pð�1; . . . ; �n
1; gÞ � pð�1; . . . ; �n
1; kÞ
� pð�1; . . . ; �n
1; k ^ fð�1; . . . ; �mÞÞ
� pð�1; . . . ; �n
1; falseÞ:

Since pðÞ has no negations, we also infer that
pð�1; . . . ; �n
1; falseÞ � pð�1; . . . ; �n
1; gÞ. This implies
that pð�1; . . . ; �n
1; gÞ � pð�1; . . . ; �n
1; falseÞ. tu
In the following, we take �� ¼ ða _ bÞ ^ ðð9utðp ^ 9ut:qÞ ^

rÞ _ sÞ as an example to illustrate the EDGF technique. The
space representation of states that satisfy �� can be
evaluated by

EvalðA; ;; ��Þ ¼
ða _ bÞ ^ ððEvalðA; ;; 9utðp ^ 9ut:qÞÞ ^ rÞ _ sÞ:

Remember that EvalðA; ;; aÞ, EvalðA; ;; bÞ, EvalðA; ;; rÞ, and
EvalðA; ;; sÞ equal a, b, r, and s, respectively. The evaluation
of �� can be expressed as the PBTP in Fig. 1 by substituting a,

b, EvalðA; ;; 9utðp ^ 9ut:qÞÞ, r, and s for
1; . . . ;
5, respec-

tively. Since ðða _ bÞ ^ rÞ is a filtering subconjunction of the

greatest fixpoint evaluation EvalðA; ;; 9utðp ^ 9ut:qÞÞ, we

can stop the greatest fixpoint evaluation whenever their

intersection becomes empty based on Lemma 9. We rewrite

procedure EvalðÞ by introducing a new parameter � to carry

the information of the filtering subconjunction. The new

procedures are in the following:

Eval-EDGFðA;	; �; ��Þ {

switch (��) {

case (false): return false;

case (p): return p ^
V
x2	 x � 0;

case (x
 y � c): return x
 y � c ^x2	 x � 0;
case (�1 _ �2):

return Eval-EDGFðA;	; �; �1Þ _ Eval-EDGFðA;	; �; �2Þ;
case (�1 ^ �2):

if �2 does not contain modal operator,{

�2 :¼ Eval-EDGFðA;	; �; �2Þ;
return �2 ^ Eval-EDGFðA;	; � ^ �2; �1Þ; } (2)

else {

�1 :¼ Eval-EDGFðA;	; �; �1Þ;
return �1 ^ Eval-EDGFðA;	; � ^ �1; �2Þ; } (3)

case (:�1): return :Eval-EDGFðA;	; true; �1Þ;
case (x:�1): return clk elimðx ¼ 0 ^ Eval-EDGFðA;
	 [fxg; true; �1 ^ x � 0Þ; xÞ;

case (9�1U�2): return rch-bckðEval-EDGFðA;	; true; �1Þ;
Eval-EDGFðA;	; true; �2ÞÞ;

case (9ut�1):

return gfp EDGFðEval-EDGFðA; 	; true; �1Þ; �Þ; (4)
} }

gfp EDGFð�; �Þ {

Y :¼ �; Y 0 :¼ true;
repeat until Y ¼ Y 0 or ðY ^ �Þ ¼ false, { Y 0 :¼ Y ; (5)

Y :¼ clk elimðZC ¼ 0 ^ rch-bckð�; Y ^ ZC � dÞ; ZCÞ; }

return Y ^ �; (6)

}

For the case ð�1 ^ �2Þ, we strengthen � depending on the

evaluation orders of the two conjuncts in (2) and (3).

Remember that a PBTP is an expression constructed from

Boolean conjunctions and disjunctions. The evaluations

of case ð:�1Þ, ðx:�1Þ, ð9�1U�2Þ, and ð9ut�1Þ must be

the arguments of a PBTP and the evaluations of

subformula �1 and �2 shall be expressed by other PBTPs.

Consequently, when evaluating �1 and �2, � is reset to true.

For example, as mentioned above, Eval-EDGFðA; ;; ða _ bÞ ^
r;9utðp ^ 9ut:qÞÞ is an argument of the PBTP for the

evaluation of ða _ bÞ ^ ðð9utðp ^ 9ut:qÞ ^ rÞ _ sÞ. When eval-

uating the subformula ðp ^ 9ut:qÞ, we reset � to true in (4).

Evaluation Eval-EDGFðA; ;; true; p ^ 9ut:qÞ is expressed by

another PBTP pð
1;
2Þ ¼
1 ^
2 with
1 ¼ p and
2 ¼
Eval-EDGFðA; ;; p;9ut:qÞ. In procedure gfp EDGFðÞ, we check

ðY ^�Þ¼false to decide for early termination in (5). In

(6), we return Y ^�, since pð
1; . . . ; gÞ�pð
1; . . . ; g^
fð
1; . . . ;
mÞÞ according to the proof of Lemma 9. The

following lemma helps establish the correctness of our

implementation, i.e., � does carry the information of the

filtering subconjunction.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2006

Fig. 1. The parsing tree of PBTP ð
1 _
2Þ ^ ðð
3 ^
4Þ _
5Þ.

Lemma 10. Assume that there is a formula �� and its evaluation
Eval-EDGFðA; ;; true; ��Þ constructs a PBTPpð
1; . . . ;
nÞ, i.e.,

i ¼ Eval-EDGFðA; ;; �i; �iÞ a n d Eval-EDGFðA; ;; true; ��Þ
leads to a call Eval-EDGFðA; ;; �i; �iÞ for all 1 � i � n. Then,
�i is a filtering subconjunction of
i.

Proof. We prove that �i is a filtering subconjunction of
i by
structural induction on the PBTP pð
1; . . . ;
nÞ. In the
base case, there is only one argument. According to
procedure Eval-EDGFðÞ, Eval-EDGFðA; ;; true; ��Þ is the
argument. Since true is a filtering subconjunction of
every subformula, the lemma automatically holds.

The inductive hypothesis is that this lemma holds for
pðÞ with k arguments. Now, we have to prove that, if
Eval-EDGFðA; ;; true; ��Þ constructs a PBTP pð
1; . . . ;
kþ1Þ,
where
i ¼ Eval-EDGFðA; ;; �i; �iÞ and Eval-EDGFðA; ;;
true; ��Þ leads to a call Eval-EDGFðA; ;; �i; �iÞ for all
1 � i � kþ 1, then �i is a filtering subconjunction of
i.
Assumethat�1�2 . . .�l is the filteringpathof
i and
j is the
sibling of
i. According to procedure Eval-EDGFðÞ, we have
the following two cases to analyze.

. �l is a disjunction: According to Eval-EDGFðÞ, we
know

Eval-EDGFðA; ;; �i; �j _ �iÞ ¼
Eval-EDGFðA; ;; �i; �jÞ _ Eval-EDGFðA; ;; �i; �iÞ:

We also know that Eval-EDGFðA; ;; true; ��Þ con-
structs a PBTP p0ðÞ with k arguments, which is the
same as pðÞ except the subtree rooted in �l in pðÞ is
a leaf Eval-EDGFðA; ;; �i; �j _ �iÞ in p0ðÞ. By induc-
tion hypothesis, �i is a filtering subconjunction for
Eval-EDGFðA; ;; �i; �j _ �iÞ. According to the defi-
nition, �i is a filtering subconjunction of
Eval-EDGFðA; ;; �i; �iÞ, i.e.,
i.

. �l is a conjunction: Let � ¼ Eval-EDGFðA; ;; �j; �jÞ.
There are two subcases. First, if �j is evaluated
before �i,

Eval-EDGFðA; ;; �0; �j ^ �iÞ ¼
� ^ Eval-EDGFðA; ;; �i; �iÞ;

where �i ¼ �0 ^ � according to Eval-EDGFðÞ. We
know that Eval-EDGFðA; ;; true; ��Þ constructs a
PBTP p0ðÞ with k arguments, which is the same as
pðÞ except that the subtree rooted in �l in pðÞ is a
leaf Eval-EDGFðA; ;; �0; �j ^ �iÞ in p0ðÞ. By induc-
tion hypothesis, �0 is a filtering subconjunction for
Eval-EDGFðA; ;; �0; �j ^ �iÞ. By definition, �i is a
filtering subconjunction of
i, since �l is a
conjunction and �i ¼ �0 ^ �. The case where �i is
evaluated before �j is similar. tu

6 GREATEST FIXPOINT COMPUTATION BY

TOLERATING ZENONESS

In practice, the greatest fixpoint computation procedures
presented in the last two sections can be costly in terms of
computing resources due to their characterizations having
a least fixpoint nested in a greatest fixpoint. Such

characterizations are necessary to guarantee that only
non-Zeno computations are considered. In reality, systems
with well-designed behaviors may satisfy certain inevit-
ability properties for both Zeno and non-Zeno computa-
tions. In such cases, we can benefit from the following less
expensive procedure for computing the greatest fixpoint:

9ut� � gfpY :ðtime bckð�; � ^
_

e2T
xtion bckðY ; eÞÞÞ:

We can also combine such an overapproximation with
EDGF as follows:

gfp Zeno EDGFð�; �Þ {

Y :¼ �;Y 0 :¼ true;
repeat until Y ¼ Y 0 or ðY ^ �Þ ¼ false, { Y 0 :¼ Y ;

Y :¼ Y ^ time bckð�; � ^
W
e2T xtion bckðY ; eÞÞ;}

return Y ^ �;

}

7 ABSTRACT MODEL-CHECKING WITH TCTL8

In the application of abstraction techniques, it is important
to make them safe [35]. That is to say, when the safe
abstraction analyzer says a property is true, the property is
indeed true. (But, when it says false, we do not know
whether the property is true.) There are two types of
abstractions: overapproximation, which means that the
abstract state space is a superset of the concrete state space,
and underapproximation, which means that the abstract state
space is a subset of the concrete state space. To make an
abstraction safe, we should overapproximate when evalu-
ating 9ut:� (the negation of the inevitability). However,
negations deeply nested in formulas can turn overapprox-
imations into underapproximations and, thus, make ab-
straction unsafe.

To guarantee safe abstraction in model-checking, people
focused on subclass TCTL8 of TCTL [11], [21]. For example,
we may write a TCTL8 formula 8utðrequest! 8ut
ðservice! 8}requestÞÞ. This formula says that if a request
is responded to by a service, then a request will follow the
service. The negation of the specification is a TCTL9 formula
9}ðrequest ^ 9}ðservice ^ 9ut:requestÞÞ. The following
lemma shows that overapproximation techniques with
TCTL9 formulas always yield overapproximation.

Lemma 11. Given a TCTL9 formula �, if we evaluate each
modal-subformula in � with overapproximation, then we still
get an overapproximation of the state set satisfying �.

Proof. This can be done by an inductive analysis on the
structure of �. If � is a literal expression of the forms p or
:p, then the evaluation does not involve any approxima-
tion. If � is like �1 _ �2 or �1 ^ �2, then the evaluation of �
still yields overapproximation with the inductive hy-
pothesis that the evaluations of �1 and �2 are both
overapproximations. If � is like 9�1U�2, then, since the
modal-formula is to be evaluated with overapproxima-
tion, with the inductive hypothesis, we know that � is
evaluated with overapproximation. The case for 9ut�1 is
similar. Thus, this lemma is proven. tu

WANG ET AL.: TCTL INEVITABILITY ANALYSIS OF DENSE-TIME SYSTEMS: FROM THEORY TO ENGINEERING 7

While restricting our specifications to TCTL8, we can

extend rch-bckðÞ with overapproximations as follows:

rch-bckOð�1; �2Þ �
lfpY :absð�2_ðtime bckð�1; Y _ ð�1 ^

_

e2T
xtion bckðY ; eÞÞÞÞÞ:

Here, absðÞ means a generic overapproximation procedure.

Procedure rch-bckOðÞ can be used in place of rch-bckðÞ in

procedures gfpðÞ, Eval-EDGFðÞ, and gfp EDGFðÞ. In our tool

RED 4.1, we have implemented a series of game-based

abstraction procedures suitable for BDD-like data structures

and concurrent systems [34]. We use the term “game”

because we envision the concurrent system operation as a

game. Those processes, which we want to verify, are treated

as players, while the other processes are treated as opponents.

More precisely, a process is a player iff its local variables

appear in the TCTL8 specification. In the game, the players

try to win (maintain the specification property) with the

worst (i.e., minimal) assumption on their opponents.

According to the well-observed discipline of modular

programming [25], the behavioral correctness of a func-

tional module should be based on minimal assumption on

the environment. These game-based abstraction procedures

omit opponents’ state-information to make abstractions.

. Game-abstraction: The game abstraction procedure
will eliminate the state information of the opponents
from its argument state-predicate.

. Game-discrete-abstraction: This abstraction procedure
will eliminate all clock constraints for the opponents
in the argument state-predicate.

. Game-magnitude-abstraction: A clock constraint like
x
 x0 � c is called a magnitude constraint iff either x
or x0 is zero itself (i.e., the constraint is either x � c or

x0 � c). This abstraction procedure will erase all
nonmagnitude constraints of the opponents in the
argument state-predicate.

More details of the abstraction techniques can be found in [34].

8 IMPLEMENTATION AND EXPERIMENTS

We have implemented the ideas in our model-checker/

simulator, RED version 4.1, for timed automata. RED uses the

new BDD-like data structure CRD (Clock-Restriction Diagram)

[28], [29], [30] and supports both forward and backward

analysis, full TCTL model-checking with non-Zeno computa-

tions, deadlock detection, and counterexample generation.

Users can also declare global and local (to each process)

variables of type clock, integer, and pointer (to identifier of

processes). Boolean conditions on variables can be tested and

variable values can be assigned. The TCTL formulas in RED

also allow quantification on process identifiers for succinct

specification. Interested readers can download RED for free

from http://cc.ee.ntu.edu.tw/~val/. We designed our ex-

periments in two ways. First, we ran RED 4.1 with various

options and benchmarks to test if our ideas could indeed

improve the verification performance of inevitability proper-

ties. Second, we compare RED 4.1 with Kronos 5.2 to check

whether our implementation is competitive.

In the following sections, we shall first discuss the design
of our benchmarks and then report our experiments. Data is
collected on a Pentium 4 1.7GHz with 256MB memory
running LINUX. Execution times are collected for Kronos,
while times and memory (for data-structure) are collected
for RED. “s” means seconds of CPU time, “k” means
kilobytes for memory space for data-structures, and “O/M”
means ”out-of-memory.”

8.1 Benchmarks

We used the following benchmarks.

. Bounded termination detection (TD) [30]: We have a
network of communicating processes. One of the
processes will finish execution with a deadline. The
other processes will periodically check if their
neighbors have finished. They will finish execution
if one of their neighbors has finished. Three network
configurations, linear lists, binary trees, and lattices,
are used in the experiment. The unbounded inevit-
ability property we want to check is that “Inevitably,
all processes will finish,” i.e., 8}8i; finishedi. The
biggest timing constant used is 10.

. PATHOS real-time operating system scheduling [4]: In the
system, each process runs with a distinct priority in a
period equal to the number of processes. The un-
bounded inevitability property we want to evaluate is
that “if the process with lowest priority is in the
pendingstate, then, inevitably, itwillenter therunning
state thereafter.” For a system with three processes,
this property is 8ut pending3 ! 8}running3ð Þ. The
nesting depth of the modal-operators is one.

. Leader election [30]: Each process has a local pointer
parent and a local clock. All processes initially come
with parent = NULL. Then, a process with its
parent = NULL may broadcast its request to be
adopted by a parent. Another process with itsparent
= NULL may respond. The process with the smaller
identifier will become the parentof the other process in
the requester-responder pair. The biggest timing
constant used is 2. The unbounded inevitability we
want to verify is that, eventually, the algorithm will
finish with a unique leader elected, i.e., 8}ðparent1 ¼
NULL^8i : i 6¼1;ðparenti 6¼NULL^parenti <iÞÞ. There
are no nested modal-operators. To guarantee the
inevitability, we assume that a process with parent

= NULL will finish an iteration in two time units.
. CSMA/CD protocol [28], [29], [36]: Basically, this is

the ethernet bus arbitration protocol with collision-
and-retry. The timing constants used are 26, 52, and
808. The following three inevitability specifications
have been checked.

(A) When two processes are simultaneously in the
transmission mode, then, in 26 time units, the bus
will inevitably go back to the idle state. That is,

8utððtransm1 ^ transm2Þ
! x:8}ðx < 26 ^ bus idleÞÞ:

This experiment allows us to observe how our
techniques perform with bounded inevitability.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2006

(B) If sender 1 is in its transmission mode for no
less than 52 time units, then it will inevitably
enter the wait mode, i.e.,

8utððtransm1 ^ x1 � 52Þ ! 8}wait1Þ:

Especially, this specification can be verified by
quantifying only on non-Zeno computations.

(C) If the bus is in the idle mode and later enters
the collision mode, then it will inevitably go
back to the idle mode, i.e.,

8utðbus idle

! 8utðbus collision! 8}bus idleÞÞ:

This property is special in that the nesting depth
of the modal-operator is two and can give us
some insight into how our abstraction techniques
scale to the inductive structure of specifications.

The nesting depth of the modal operators is zero for

termination detection and leader-election, one for PATHOS,

CSMA/CD (A), and CSMA/CD (B), and two for CSMA/CD

(C). The specifications for the benchmarks all fall in TCTL8.

8.2 Performance of the Algorithm Using Non-Zeno
Requirement and EDGF

In this experiment, we observed the performance of our
algorithm with the non-Zeno requirement and the EDGF
technique. Performance data is shown in Table 1. The data

shows that the EDGF could be useful in practice. When the
technique fails, it only incurs a small overhead. When it
succeeds, it significantly improves performance two to
three fold. Thus, we suggests that EDGF should always be
used in inevitability evaluations.

As for the non-Zeno requirement, we find that, with or

without the EDGF, a non-Zeno requirement does add more

complexity to the evaluation of the inevitability properties

against many benchmarks. For the three specifications of the

CSMA/CD model, exponential blow-ups were observed.

On the contrary, for the PATHOS benchmark, the

sessions with the non-Zeno requirement incur much less

complexity than without it. We have looked into the

execution of our algorithms for the explanation of these

complexity patterns. Procedures gfp() and gfp_EDGF()

both are constructed with an inner loop for the least fixpoint

evaluation of rch-bckðÞ and an outer loop for the greatest

fixpoint evaluation. After we had carefully traced the

execution of our model-checker, we found that this bench-

mark incurs very few iterations of outer loop with non-Zeno

requirement, although each iteration can be costly to run.

On the other hand, it incurs a significant number of

iterations of inner loop without non-Zeno requirement,

although each iteration is not so costly. The cumulative

effect of the loop iterations results in a performance that

contradicts our expectation. This benchmark shows that the

WANG ET AL.: TCTL INEVITABILITY ANALYSIS OF DENSE-TIME SYSTEMS: FROM THEORY TO ENGINEERING 9

TABLE 1
Performance of the Algorithm Using Non-Zeno Requirement and EDGF

efficiency of inevitability evaluations depends on many

factors.
Finally, benchmark CSMA/CD(B) shows that some

inevitability properties can only be verified with the non-
Zeno requirement.

8.3 Performance of the Algorithm Using the
Different d-Values for Measuring Time-Progress

In (1) of procedure gfp(), we use inequality ZC � d to check
time-progress in non-Zeno computations where “� ” is either
> or� and d is a parameter� 1. In our experiments, various
choices of “� d” were used, ranging from 1 to beyond the
biggest timing constants used in the system models. We
found that the choices of “� d” may greatly affect the
verification performance. It is our purpose to come up with
suggestions to make good choices through carefully obser-
ving the performance patterns. Experiment results are shown
in Tables 2 and 3. We have also drawn charts to show time-
complexity and memory-complexity with regard to various
choices in Fig. 2 and Fig. 3, respectively.

As can be seen from the performance curves, our
algorithms may respond to various model structures and
specifications with different complexity performance pat-
terns. For benchmarks termination-detection, leader-elec-
tion, and PATHOS, there is a vague pattern that the bigger
the d-value is, the better the performance that follows. For

the three CSMA/CD benchmarks, the best performance

happens when we choose d around 25 to 50.
Again, we looked into the execution of our algorithms for

the explanation of these complexity patterns. We found that

the outer loop converges faster with bigger d-values, while

the inner loop converges slower. With bigger d-values, we

may need fewer iterations of the outer-loop and, at the same

time, more iterations of the inner loop to compute greatest

fixpoints. The complexity shapes in the figures are thus

superposition of the complexities of the outer loop and the

inner loop.
It is hard to establish a general relation between the

choices of “� d” and performances. After all, the relation

may depend on the systems themselves. However, we were

still capable of finding the following observations true for

all experiments in this work.

. Observation 1: The choice of d-values may greatly
affect the inevitability analysis performances.

. Observation 2: Usually, “>¼ 1” (i.e., “� 1”) gives the
worst performance and should be avoided.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2006

TABLE 2
Performance of the Algorithm Using Different d-Values

(TD, Leader, and Pathos Benchmarks)

TABLE 3
Performance of the Algorithm Using Different d-Values

(CSMA/CD Benchmarks)

. Observation 3: For a parameterized system, curves for
different various choices of “� d” are of a similar
shape for different sizes of concurrency.

Observation 1 implies that the choice of “� d” can signifi-

cantly reduce both time and memory complexities. To clarify

the influences, we define theB=W -ratio (the Best complexity

over the Worst complexity) among the different choices. In

case the worst case runs out of memory, we denote the

B=W -ratio as a big “O.” In Table 4, we show theseB=W -ratios

of all benchmarks. The smaller theB=W -ratio is, the more we

WANG ET AL.: TCTL INEVITABILITY ANALYSIS OF DENSE-TIME SYSTEMS: FROM THEORY TO ENGINEERING 11

Fig. 2. Time-complexity charts with regard to choices of “� d” (Data collected with option EDGF). The Y-axis is with ”time in second,” while the X-axis

is with “� d” used in “ZC � d.” (a) TD(Linear). (b) TD(Latice). (c) TD(Tree). (d) Leader-election. (e) PATHOS. (f) CSMA/CD(A). (g) CSMA/CD(B).

(h) CSMA/CD(C).

can reduce cost by picking up good choices. For example, for

specification CSMA/CD(B) with two processes, the

B=W -ratio for time complexity is 0.3 percent and implies a

performance enhancement of over 300 times just by changing

from a bad choice to a good one.

Observation 2 implies that the choice of “� 1” may lead

to bad, if not the worst, performance. Interestingly, before

we had discovered this fact, our tool, RED, used this bad

choice by default. By changing this default setting, the

performance of our tool has been greatly enhanced in the

evaluation of many inevitability specifications.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2006

Fig. 3. Memory-complexity charts with regard to choices of “� d” (data collected with option EDGF). The Y-axis is with “memory space in kb,” while
the X-axis is with “� d” used in “ZC � d.” (a) TD(Linear). (b) TD(Latice). (c) TD(Tree). (d) Leader-election. (e) PATHOS. (f) CSMA/CD(A). (g) CSMA/
CD(B). (h) CSMA/CD(C).

Observation 3 implies that we can fairly accurately

predict good choices of “� d” for high concurrency

parameterized systems by calculating the good ones for

low concurrency parameterized systems. In the termination

detection benchmarks, choosing ZC > 10 leads all experi-

ments to the best performances. In the leader election

benchmarks, the best choice is ZC > 2, independent of the

process numbers. The observation also holds in the

CAMA/CD benchmark, where the best choice of the system

involving three processes is exactly the best choice of four.

This implication could be valuable since the verification

complexity is usually at least exponential in the concur-

rency sizes of the target systems.
From now on, we shall use the best choice of “� d”

reported in this subsection for the experiments yet to be

reported.

8.4 Performance of the Algorithm Using
Abstraction Techniques

In Table 5, we report the performance data of our RED 4.1

with respect to our three abstraction techniques. In general,

the abstraction techniques enhance the verification perfor-

mance. Notably, the game-discrete and game-magnitude

abstractions seem to have enough precision to discern true

properties.

It is somewhat surprising that the game-magnitude

abstraction incurs excessive complexity for the PATHOS

benchmark. After carefully examining the traces generated

by RED, we found that, because nonmagnitude constraints

were eliminated, some of the inconsistent convex state

spaces in the representation became consistent. These

spurious convex state spaces represented many more paths

in our CRD and greatly burdened our greatest fixpoint

calculation. For instance, the outer loop of procedure gfp()

takes two iterations to reach the fixpoint with the game-

magnitude abstraction. It only takes one iteration to do so

without the abstraction. In our previous experience, this

abstraction technique has worked efficiently with reach-

ability analysis. It seems that the performance of abstraction

techniques for greatest fixpoint evaluation can be subtle.

Another interesting issue is whether we can apply these

techniques to predict good choices of “� d.” Since the abstract

techniques have significantly influenced the performance for

the CSMA/CD benchmarks, we report the experiments in

Table 6 with regard to d-values and our three abstraction

techniques. All benchmarks using “bus + 4senders” run over

with non-Zeno requirement and EDGF on. For both specifica-

tions CSMA/CD(A) and CSMA/CD(C), the abstraction

techniques significantly reduced the complexity. Moreover,

the performance curves for abstract evaluation have shapes

similar to those for exact evaluation. The experiment data

WANG ET AL.: TCTL INEVITABILITY ANALYSIS OF DENSE-TIME SYSTEMS: FROM THEORY TO ENGINEERING 13

TABLE 4
The B/W Ratios

TABLE 5
Performance of the Algorithm Using Abstraction Techniques

suggested that we may be able to make a good choice by

experimenting with the less expensive abstract inevitability

evaluation for a given verification task. This suggestion could

be valuable for guessing good choices of “� d” when the

target systems are not parameterized.

8.5 Performance Comparison with Kronos

In Table 7, we report the performance of Kronos 5.2 with

regard to the five benchmarks. Here, we do not adopt

termination detection benchmarks since it’s hard to model

complex pointer relationships using low-level data-vari-

ables provided by Kronos. For PATHOS and leader

election, Kronos did not succeed in constructing the

quotient automata. But, our RED seems to have no problem

in this regard with its on-the-fly exploration of the state

space. Of course, the lack of high-level data-variables in

Kronos’ modeling language may also exacerbate the

problem. As for benchmark CSMA/CD(A), Kronos per-

forms very well. We believe this is because this benchmark

uses a bounded inevitability specification. Such properties

have already been studied in the literature on Kronos [36].

On the other hand, benchmarks CSMA/CD(B) and (C) use

unbounded inevitability specifications with modal-subfor-

mula nesting depths 1 and 2, respectively. Kronos does not

scale up to the complexity of concurrency for these two

benchmarks. Our RED prevails in these two benchmarks.

9 A CASE STUDY: L2CAP OF BLUETOOTH

To check our techniques against industrial verification

tasks, we have modeled and verified the Logical Link Control

and Adaptation Layer Protocol (L2CAP) of Bluetooth specifica-

tion [16]. The wireless communication standard of Blue-

tooth has been widely discussed and adopted in many

appliances since it was published. L2CAP is layered over

the Baseband Protocol and resides in the data link layer of

Bluetooth. This protocol supports message multiplexing,

packet segmentation and reassembly, and conveying

quality of service information to the upper protocol layer.

The protocol regulates the behavior between a master

device and a slave device.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2006

TABLE 6
Performance of the Algorithm Using Different d-Values and Abstraction Techniques

9.1 Modeling L2CAP

The L2CAP defines the actions performed by a master and a

slave. A master is a device issuing a request, while a slave is

the one responding to the master’s request. A message

sequence chart (MSC) that may better illustrate a typical

scenario of event sequence in L2CAP can be found in Fig. 4.

The two inner vertical lines represent the computation of

L2CAP layers in the master and the slave devices. The

scenario starts when the master’s upper layer issues an

L2CA_ConnectReq (Connection Request) through the

L2CA interface. Upon receiving the request, the master

communicates the request through the unreliable network

to the slave (with an L2CAP_ConnectReq), which will then

convey the request to the slave’s upper layer (with an

L2CA_ConnectInd).
The protocol goes on with messages bouncing back and

forth until the master sends an L2CAP_ConfigRsp

message to the slave. Then, both parties can start ex-

changing data. Finally, the master’s upper layer issues

message L2CA_DisconnectReq to close the connection

and the slave confirms the disconnection.

We used nine processes to model the entire activity in

L2CAP. They were the master’s upper layer, master’s

L2CAP layer, master’s L2CAP time-out process, master’s

L2CAP extended time-out process, slave’s upper layer,

slave’s L2CAP layer, slave’s L2CAP time-out process,

slave’s L2CAP extended time-out process, and the

unreliable network. More details can be found in [33].

We checked the inevitability property that once the

network receives the master’s data and stays in the

TRANSMITTED state, the slave’s upper layer will even-

tually receive the data. This property can be written as:

8ut transmittedn ! 8}receivedsð Þ.

9.2 Experiments with EDGF and Non-Zeno
Requirement

We first check the performance of our implementation with

regard to the non-Zeno requirement and the EDGF policy.

The performance data is shown in Table 8. In general, we

find the EDGF policy can reduce the verification cost in this

case study, especially when non-Zenoness is required. Also,

the inevitability property still holds without the non-Zeno

WANG ET AL.: TCTL INEVITABILITY ANALYSIS OF DENSE-TIME SYSTEMS: FROM THEORY TO ENGINEERING 15

TABLE 7
Performance of Kronos in Comparison

Fig. 4. A message sequence chart of L2CAP.

requirement. This may imply that for, well-designed

industrial products, dropping the non-Zeno requirement

could still lead to fast verification with enough precision.

9.3 Experiments with the Abstraction Techniques

In Table 9, we show how various choices of “� d” may
affect the verification performance. A locally optimal
inequality is “> 59.” Assuming this is the best choice for
performance, the B=W -ratio is then 36.33 percent for time
complexity and 38.71 percent for memory complexity. We
applied our abstraction techniques against different choices
of “� d.” Table 9 shows that the abstraction techniques
indeed reduce both time and memory cost. Moreover, the
good choices of “� d” for the abstract evaluations also help
us accurately predict the good choices for precise evaluaton.

10 SUMMARY OF SUGGESTIONS FOR EFFICIENT

CONFIGURATIONS

To promote model-checking technology in industrial pro-

jects, we need not only elegant theory but also suggestions for

the configuration of the efficient model-checking algorithms.

In this work, we report extensive experiments to observe how

the model-checking algorithms perform in the evaluation of

inevitability properties against dense-time systems. In

summary, we have the following suggestions.

. EDGF is a good speed-up technique and does not
sacrifice the precision of TCTL model-checking.
Thus, it should always be used in TCTL model-
checking.

. For well-designed industrial designs, it is worth-
while to first evaluate inevitabilities with no non-
Zeno requirement.

. For the inevitability analysis of parameterized
systems, we can use the good choices of “� d” for
low concurrency systems to predict the good ones
for their high concurrency counterparts.

. For nonparameterized systems, we can also use
abstraction techniques to help us predict the good
choices of “� d” for exact evaluation.

ACKNOWLEDGMENTS

A preliminary version of this manuscript appears in the

Proceedings of the Eighth International Conference on Implemen-

tation and Application of Automata, (CIAA ’03). The work is

partially supported by NSC, Taiwan, ROC under grants

NSC 90-2213-E-002-131, NSC 90-2213-E-002-132, and by the

Internet protocol verification project of the Institute of

Applied Science & Engineering Research, Academia Sinica,

2001.

REFERENCES

[1] R. Alur, C. Courcoubetis, and D.L. Dill, “Model Checking for Real-
Time Systems,” Proc. IEEE Fifth Symp. Logic in Computer Science,
pp. 414-425, 1990.

[2] R. Alur and D.L. Dill, “Automata for Modeling Real-Time
Systems,” Proc. Int’l Colloquium Automata, Languages, and Program-
ming, pp. 322-335, 1990.

[3] B. Alpern and F.B. Schneider, “Defining Liveness,” Information
Processing Letters, vol. 21, no. 4, pp. 181-185, 1985.

[4] F. Balarin, “Approximate Reachability Analysis of Timed Auto-
mata,” Proc. IEEE Real-Time Systems Symp., pp. 52-61, 1996.

[5] G. Behrmann, P. Bouyer, K.G. Larsen, and R. Pelanek, “Lower and
Upper Bounds in Zone Based Abstractions of Timed Automata,”
Proc. 10th Int’l Conf. Tools and Algorithms for the Construction and
Analysis of Systems, pp. 312-326, 2004.

[6] G. Behrmann, K.G. Larsen, J. Pearson, C. Weise, and W. Yi,
“Efficient Timed Reachability Analysis Using Clock Difference
Diagrams,” Proc. 11th Int’l Conf. Computer-Aided Verification,
pp. 341-353, 1999.

[7] S.V. Campos, “A Quantitative Approach to the Formal Verifica-
tion of Real-Time Systems,” PhD Thesis, Carnegie Mellon Univ.,
1996.

[8] E.M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT
Press, 2000.

[9] P. Cousot and R. Cousot, “Abstract Interpretation and Application
to Logic Programs,” J. Logic Programming, vol. 13, no. 2-3, pp. 103-
179, 1992.

[10] E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic Verifica-
tion of Finite-State Concurrent Systems Using Temporal-Logic
Specifications,” ACM Trans. Programming Languages and Systems,
vol. 8, no. 2, pp. 244-263, 1986.

[11] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counter-
example-Guided Abstraction Refinement,” Proc. 12th Int’l Conf.
Computer-Aided Verification, pp. 154-169, 2000.

[12] D.L. Dill, “Timing Assumptions and Verification of Finite-State
Concurrent Systems,” Proc. Int’l Workshop Automatic Verification
Methods for Finite State Systems, pp. 197-212, 1989.

[13] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, “The Tool
KRONOS,” Proc. Third Hybrid Systems, pp. 208-219, 1996.

[14] E.A. Emerson, “Uniform Inevitability Is Tree Automation Inef-
fable,” Information Processing Letters, vol. 24, no. 2, pp. 77-79, 1987.

[15] B.C. Eaves and U.G. Rothblum, “Dines-Fourier-Motzkin Quanti-
fier Elimination and an Application of Corresponding Transfer
Principles over Ordered Fields,” Math. Programming, vol. 53, no. 3,
pp. 307-321, 1992.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2006

TABLE 8
L2CAP with Regard to Non-Zeno Requirements

and the EDGF Technique

TABLE 9
L2CAP with Regard to the Abstraction Techniques

[16] J. Haartsen, “Bluetooth Baseband Specification, version 1.0,”
http://www.bluetooth.com/, 2006.

[17] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
Model Checking for Real-Time Systems, ” Proc. IEEE Seventh
Symp. Logic in Computer Science, pp. 394-406, 1992.

[18] P.-A. Hsiung and F. Wang, “User-Friendly Verification,” Proc. IFIP
Joint Int’l Conf. Formal Description Techniques & Protocol Specifica-
tion, Testing, and Verification, pp. 279-294, 1999.

[19] F. Laroussinie and K.G. Larsen, “CMC: A Tool for Compositional
Model-Checking of Real-Time Systems,” Proc. IFIP Joint Int’l Conf.
Formal Description Techniques & Protocol Specification, Testing, and
Verification, pp. 439-456, 1998.

[20] J. Moller, J. Lichtenberg, H.R. Andersen, and H. Hulgaard,
“Difference Decision Diagrams,” Proc. Ann. Conf. European Assoc.
for Computer Science Logic, pp. 111-125, 1999.

[21] M.O. Moller, “Parking Can Get You There Faster—Model
Augmentation to Speed Up Real-Time Model Checking,” Electro-
nic Notes in Theoretical Computer Science, vol. 65, no. 6, 2002.

[22] A.W. Mazurkiewicz, E. Ochmanski, and W. Penczek, “Concurrent
Systems and Inevitability,” Theoretical Computer Science, vol. 64,
no. 3, pp. 281-304, 1989.

[23] I. Ober, S. Graf, and I. Ober, “Validation of UML Models via a
Mapping to Communicating Extended Timed Automata,” Proc.
11th Int’l SPIN Workshop Model Checking of Software, pp. 127-145,
2004.

[24] P. Pettersson and K.G. Larsen, “UPPAAL2k,” Bull. European Assoc.
Theoretical Computer Science, vol. 70, pp. 40-44, 2000.

[25] R.S. Pressman, Software Engineering, a Practitioner’s Approach.
McGraw-Hill, 1982.

[26] F. Wang, “Efficient Data-Structure for Fully Symbolic Verification
of Real-Time Software Systems,” Proc. Sixth Int’l Conf. Tools and
Algorithms for the Construction and Analysis of Systems, pp. 157-171,
2000.

[27] F. Wang, “Region Encoding Diagram for Fully Symbolic Verifica-
tion of Real-Time Systems,” Proc. 24th IEEE Computer Software and
Applications Conf., pp. 509-515, 2000.

[28] F. Wang, “RED: Model-Checker for Timed Automata with Clock-
Restriction Diagram,” Proc. Workshop Real-Time Tools, Technical
Report 2001-014, Dept. of Information Technology, Uppsala Univ.,
Aug. 2001.

[29] F. Wang, “Symbolic Verification of Complex Real-Time Systems
with Clock-Restriction Diagram,” Proc. 21st IFIP Int’l Conf. Formal
Techniques for Networked and Distributed Systems, pp. 235-250, 2001.

[30] F. Wang, “Efficient Verification of Timed Automata with BDD-
Like Data-Structures,” Proc. Fourth Int’l Conf. Verification, Model
Checking, and Abstract Interpretation, pp. 189-205, 2003.

[31] F. Wang and P.-A. Hsiung, “Automatic Verification on the Large,”
Proc. Third IEEE Int’l Symp. High-Assurance Systems Eng., pp. 134-
141, 1998.

[32] F. Wang and P.-A. Hsiung, “Efficient and User-Friendly Verifica-
tion,” IEEE Trans. Computers, vol. 51, no. 1, pp. 61-83, Jan. 2002.

[33] F. Wang and F. Yu, “OVL Assertion-Checking of Embedded
Software with Dense-Time Semantics,” Proc. Ninth Int’l Conf. Real-
Time and Embedded Computing Systems and Applications, pp. 254-
278, 2003.

[34] F. Wang, G.-D. Hwang, and F. Yu, “Symbolic Simulation of Real-
Time Concurrent Systems,” Proc. Ninth Int’l Conf. Real-Time and
Embedded Computing Systems and Applications, pp. 595-617, 2003.

[35] H. Wong-Toi, “Symbolic Approximations for Verifying Real-Time
Systems,” PhD thesis, Stanford Univ., 1995.

[36] S. Yovine, “Kronos: A Verification Tool for Real-Time Systems,”
Int’l J. Software Tools for Technology Transfer, vol. 1, no. 1-2, 1997.

Farn Wang received the BS degree in electrical
engineering from National Taiwan University in
1982, the MS degree in computer engineering
from National Chiao-Tung University in 1984,
and the PhD degree in computer sciences from
the University of Texas at Austin in 1993. From
September 1986 to May 1987, he was a
research assistant at the Telecommunication
Laboratories, Ministry of Communications, Re-
public of China. From August 1993 to October

1997, he was an assistant research fellow at the Institute of Information
Science (IIS), Academia Sinica, Taiwan, Republic of China. From
October 1997 to July 2002, he was an associate research fellow at IIS.
In August 2002, he became an associate professor in the Department of
Electrical Engineering, National Taiwan University. In August 2005, he
became a professor in the Department of Electrical Engineering,
National Taiwan University. He is interested in automating human
verification experiences to develop verification tools with high abstract-
ness and efficiency. He architected and implemented several tools for
the verification of timed and hybrid systems. The tools include RED, a
model-checker for timed and hybrid systems, and SGM, an efficient and
user-friendly verification tool for timed systems. He is a member of the
IEEE Computer Society.

Geng-Dian Huang received the BS degree in
information management in 2000 and the MS
degree in information management in 2002 from
National Taiwan University. He has been a
research assistant in the Verification Automata
Laboratory at the Institute of Information
Science, Academia Sinica, for military service
since 2003. In August 2004, he became a PhD
student in the Department of Electrical Engineer-
ing, National Taiwan University. His research

interest is formal verification.

Fang Yu received the bachelor’s and master’s
degrees from the Department of Information
Management at National Taiwan University in
1998 and 2000, respectively. In January 2001,
he joined the Formal Verification Lab (VAL) at
the Institute of Information Science, Academia
Sinica, under the supervision of Dr. Farn Wang.
Since August 2005, he has been at the
University of California, Santa Barbara to pursue
the PhD degree is computer science. His

research interests include formal methods, software/hardware verifica-
tion, real-time systems, and membrane computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ET AL.: TCTL INEVITABILITY ANALYSIS OF DENSE-TIME SYSTEMS: FROM THEORY TO ENGINEERING 17

