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ABSTRACT

The anaiytic structure of helicity amplitudes is
.derived from basic analyticity properties. Previous

derlvations relied on crossing properties and extra assumptions.
1
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I. INTRODUCTION

The problem of expressing scattering amplifudes in terms
bf functions of 3calar invariants without introducing extra
singularities has been solved by Heppl and Williams.2 Their

- solution has a form that is not convenient, however, for B
many practical purposés. This is in part because it involves
a reduction of. the amplitude to ité irreducible components.
Théugh such a'redqction'is in principle straightforward, it is_;
in practice cumbersome. Moreover; the irreducible components,
théugh the natural mathematiéal quantities, are not nice
physically. For example, the irreducible components mix
different parlty eigenstates. This means that the conditidn of
invariance under space reflection does not lead to any simple
reductlion in the number of irreducible components. It leads
rather to complicated relations between different irreducible
components. For this reason, among others, thé elegent results of Hepp

| and Wiiliams have had little or no practical application.

For many purposes the most convenien; form of the

scattering ampiitude 1s in terms of helicity amplitudes.
The helicity amplitudes, like any others, become functions of
scalar invarianté when evaluated in the center-of-mass frame.
‘This is becsuse the components of the momentum vgctors become
fuhctions of scalar invarients. However, the functions that

express these components in terms of the invariants have
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4numérous kinematic singulariﬁies, which the ampliﬁude'itselfvis |
expected to inherit.--Also; the verious rotations and boosts
needed -to define the helicity amplitudes have kinematic singularitiés.
Thus the analytic sﬁructure of the helicity amplitudes, considered
as functions of the scalar invariants, wouldvbe expected to be
very complicafed. It turns out, however, that most of the
singularities cancel, leaving the helilcity amﬁlitudes with

_reasonably simplé analyticity properties. The purpose of the
present paper is to show this.

The result is not new, having been obtained alréadylby
Hara5 ana Wang.u. Thelr method is, however, circuitous. Rather
than starting diregtly froﬁ the basiec momentum-spéce anglyticity
properties, or equivalently'from the analyticity properties de-

. duced by Hepp and Williams, they base their conclusions on
consistency ﬁith well-known crossing relations for helicity
explitudes. Since the crossing relations are themselv¢3'defived
from the basis momentum—space analyticity properties, %heir
procedure is.evidently permissible. But it is roundabout. Ohe
would expect it to be simpler to work directly with the basic
properties, and this 1s indeed the case.

Thgre is a second reason fdr reconsidering the question.
The method of Wang makes essential use of an extra assumption.
This assumption 1s thaﬁ if certain singular kinematic functioné
with zeros are divided out.of the helicity amplitude, then the |

resulting function has no kinematic singularities in certain
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variables. Any such singularities necessarily arise from a.
failure of‘a generalized Legendre'expansion to converge, énd
it is asserted that this is a dynamical question. While this
_'seems resgsonable, it is not absolutely convincing; since we
do'not yet fully understand the dynamics of’elementary-pértiéle
systems. Thus it is nqt absolutely inconceivable that &
kinemgatic singularity could cause the series to diverge. In
any case the qﬁestion arises whether this assumption is é
dynamical assumption that goes beyond the basic analyticity -
" properties used by Hepp and Williams. We find that this.
extra assumption is not really needed.

Anlassumption essentially equivalent to the extra
essumption of Wang is madé also by Hars, who relies heavlily
on perturbation theory. ' |

As in the work of Hars and Wang, only four-particle“
resctions are considered. It 1s further assumed that the two
initial particleé have unequal masses, and that the two final
particles have unequal masses. The passage to equal mass

limits has been diséussed by Wang.
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II. SINGULARITIES AT s = 0O

The helicity amplitude is'given.by
H'=R®, (2.1)

where S is the S matrix and R 1s a produét of rotation

operators R, , one for each final patticle, The center of

J

mass frame is used and the z-axis 1s taken to lie along the

. direction of one of the incoming parﬁicles. The helicity Kl

of this particle is just the z-compbnent df its spin. The

other incoming particle has heliciﬁy xev, which is minus thev
z-component of ité spin. Thé two fingi“particles move in
the x-z iplane; the first moving in the direction 6, the
second in.the opposite direction. |

The two rotations R, act on the spin spaces of the
two final particles, and each.gives a rotation through angle

0. Specifically, for either final particle J, one has

By = exp(ie7, ) , o S (2.2)

where ij is the y component of the spin vector Jj that

acts in the spin space of the final particle J.

The S matrix is related to the M function by5

SAT e e

- ———— e, 2 -
i e R, i AT

B
U

AL o,
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where B 1is a product of boosts, one fof,each rarticle. We
work in the representation where all indices are either lower
dotted or lower undotted. For & particle associated with

a 1ower(ﬁ§dotted index the boosts for particle J 1is expressed

! ' in terms of its covariant velocity v = p.'m by < Vi =
,, | S 7™ Vi)
Jj ol -
By = D [(vj-c)gJ , ’ ' (2.4)
, ' o .

.which_acts on M by multiplication from the left. For a'ﬁarticle ,
associated with a loﬁerﬁggdotted index the boost is given by

the same function of its velocity acting on M by multiplication
from the right. For aﬁy unitary 2-by-2: matrix. A the matrix
DJ[A] is Just the (2 J + 1)-by-(2 J + 1) matrix that re- |
presents thevfotgtibn'specified by A in the (2 J +'l>-
dimensionél irreducible representdtion of the rotation group.

The matrix elements of the .DJ[A]' are homogeneous polynomialé

in the matrix elements of A, and DJLA] for general A is

defined by ansalytic continuation.

Consider first a sysﬁem consisting of one spin—%
particle and one spin-zero particle. Then the boosts Bj take

4 the form



: The’rotation,matrix Rf has elements

. {; f<

(v 3)F =L e

AR AT LIS

1 6 kA W1 o
-1 + 1)2 - ('V - 1)21 Ol (2.5)
Al el e
- v'~ N RAVAR Ny

( &. ) %g LA

| e | | [ l :
R, = #(cos -g-), l(sn—) " - (2.8)

where the sign is minus for A - p = ,-l and pluS'ofherwise.'

The basic enalyticity assumption is that the M functions“'

are analytic functions of the components of the momentum vectors,

, exeept at dynemical singularities..5 It follows from this, and

7,8

Lorentz invariance, that M can be written in the form

N

M = avyo + b0 +“gﬂ§ﬂzl - .
S e

where the coefficients a, b, c, and 4 are meromorphic

functions of the scalar invarients with, at most, simple poles

/

e
s
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et @ =0. Here § is given by7’%

g = f{stu - 522 = tb° - uc® + 2 abe) , (2.8)

where s, t, and u are the Mandelstam variables and .

PR
[}

(2 s n? - m32 _w2)/2

o'
i

~ . : (m12 * m52 - m22 'vmhg)/g

<m12 N mhz } m22 ) m32)/2 .

g = 0, which Ls the set of points where the

rank of the{gram determinentis less than three, includes the.
boundaries of the physical regions. The possibility of poles
at ¢ =0 is thg problem considered by Hépp‘and.Williams: the
M function itself_haé no such poles, but the linear dependence
of the. various terms of Eq. (2.7) at ¢ - 0 allows the |
individual terﬁs to have themn.

The vector w in Eq. (2.7) is the total energy vector
and v, and Ve are the covariant velocities of the initial

i
and final fermions. The expansion Eq. (2.7) 1s obtained by

. first writing M in the form »8,
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= . . ..

M = ;i; ¢y D0 + ch[pl Py p33~c‘;

v

where the vector- [pl P, p3] is the box product defined using

the alternating symbol euvph . Evaluation of the constanté

Sy
except for dynamical singularities and for possible poles at

¢ = 0. A rearrangement of terms then gives the meromorphy of

the coefficients in Eq. (2.7).:

The nondynamical singularities of H fall into three

categories. TFirst, there are the possible singularities at

¢ = 0. Second, there are singularities where sbme vjo = #1,

(2.9)

by means of trgce formulas7’8 shows that they are holomorphic -

‘And finally, thére are possible singularities where the cbmponents

of the vectors Vis vf,._and w, when expressed as functions of

the scalar invarlants, have singularitiés. Evaluating fhe‘energy-.

3,k

momentum vectors in the center of mass frame one has

1
Pao"= (s + mgg - mbe)/Es2 ’ (2.10a)

p? = [s - (m, + mb)gJ'[s - (m, - mb)gl/hs ’ (2.10v)
cose = (286 + % -5 ) m2+ (n? - m,2)(n,? - ng%) < (hapo) %

i

(2.10¢)



and -

‘stne = ofs  g(s,t)F heppt. T (2.100)

Thus for @ # O the singularities of fhé components occur

only at s = W2 = 0, where their behavior is as follows:

and
aing ~ W.
Accordingly M itself has terms in Wl anda W° = 1. Each boost

has terms like 1AW end VW, and R goes like wlrel

_ _ At
Thus H aﬁpears to have a nasty behavior at W = O.
Using the relations9
(Vf'd) Vpro = (vf-c) C , \:(2.11&)
and.
~yE N “ (2.11b)
vyro (vy0)2 = (vy0)3, R A g



one obtains; in the center of ﬁass;frame, S
CERRE N N
8 =.BM = a(vffg)z_(vi°q)2 +Ab(vffc)2‘(vi{0)?
SR QPSP VEIUT S
+ ¢ W(vf-c) (vi-q) + d W(vf-c) »(yi~c) .

Let ‘the. fermion be the initial particle that moves along the z.

axis. Then Eq (2 5) gives

e C%;)/J - . o
o \T% ~ \ﬁssﬁ
+ 1)a - xi(vi - 1)2 : | (2 lBa)

e - B [

]
13_ |

where Ki = 2Xi

. ° N
Noting that Rf = Rf B(vf) = B(v ) Rp, With v.' = Ixf] e, s
one obtains ' 5 ‘ :
H R F , (2.1k)
MM MM MM |
where ' b, =",
. . . LA |
- ‘ - ,. ” ’
v\\' ’ \\ < \ ~ l\ \\I.'1
i 4 \\ - : \;\ f ! 4 R '
s ' Y
\ - \ .
] ‘ NP
'\ AN
v
‘

(2.'125" o



~ 1 117 1
alv @ s 1V 2D (v O - 1YEl (v © 5 A o _
ngf A aL(vf 1)2 + xf(rf 1) _,L(vi + 1) xi(vl
+b[(vo +1)2 - (v.0 - l)%“r(vO + 1) + %, (v.° -
£ £\ Ve de 1\3
1
" @) 5 o I A o)
c W{(vf + 1)2 - xf(vf - 1) }Lﬁv +1)2 - xi(vl
T a 177 FRS
pan(v® + 107« A0 - 1F(x,° 1P 2 R (v,
(2.15)
Here“%j = 25, = L. Observe that
| 1 1 1 71 |
P+ 1)E e (W° - 1) = WE 25 WR) = WE £H(s) (2.16)
end that

(
; .
. ! T
- |1ofor A=
R, .~ 4 : . (2.17)
£ M _ ;
: Wofor A # Ag

AN

“Combining Egs. (2.1L) through (2.17) we see that H is enalytic

ins=W at W= 0, @ # 0, except at dynamical singularities.

This proof is only for the simplest case of a spin-%
particle scattering on-a- spin zero particle. Yet it allows
us t‘or’immedia.tely éonc]_.udebthat the result holds also in
genekra‘l: I:f‘. the ‘two ini‘tialvmasses' are different and the two

final masses are different then the four-particle helicity
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amplitude is snalytic in s and + at s _ o, except
perhaps on @ = 0 and at dynamicel éingularities.»bTb get
fhe'general,resu;t;ione merely observes that at ¢ # 0 the
higher-spin particles are kinematically equivélent to;sets

of spin-%’pafticles:combiﬁedﬁby Clebsch-Gordan coefficients.
That 1s, asvlong as the physical vectors providé a non-

- singular seﬁ of bésic vectors, one may ﬁass freeiy between
‘the two forms by using Clebsch-Gordan coef_fiéiénts. The" fact:
that the spin-%-particlé parts are analytic at s =0 then
implies tﬁat the entire function is analytic at s = 0. Thgi

technicalities are given in the appendix.
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IIT. SINGULARITIES AT 30 = 1

Let the reaction be a + b -+ ¢ + 4. Thén in the center
of mass frame one has <&;{*\/)4(KL:F-f)

——

ot (3287

L (e

(0 +1) = O+ my +m)(0 +my < m)/om ,  (5.000)
(1) = (= my - w0 - my + w2, ()

end four similar equations involving c¢ and 4. Thﬁs the zeros

o) : . )
of the functions v, 1 1lle at "W = i(mj + mk).

As In the préceding section the physical particles of
spins Ja’ Jb"Jc’ and Jd are consldered to be combinations

of N, N, N, end N spin-4 particles respectively. The

a
Nj particles that combine to give particle J all have
‘velocity' VJ. »

Applying to each spinné particle the manipulation that

led to Eq. (2.14) one obtains

F{(be.+ l)%; Nz(vao - l)%; s, t].'
| (3.2)
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"Here R(S)A is the matrix element of the rotation operator
. . . .. !

A
R(6) betwegn.ihe spin states specified by A, and A,. If e
the spins of the}initial and final partic;es are differenf, |
then some‘Clebsch-Gérdan coefficlents will occur. Thevexact;
expression is‘éiven in the appendix. The function F is a.
combination of the F parts of Eq. (2.14).. It contains one
factor of either (v&°_+ l)% or Aa(vdo - l)% for each |
initial spin-%‘particle; whe&a Ny 18 the helicity and v,
is the velocity of this particle. There is a similar factor

‘for each final spin-1 particle.

The helicities A, satisfy |

oel

where A, 1s the helicity of particle J, and the J on the

J
left represents the set of indices referring to thevépin-%
particles that form particle J. The vital property of F.
is that each factor (an - l)% appears multipiied by the
. corresponding heliclty Aa , eand conversely, whereas the
factors (vd? + l)% have no sucﬁ factors.

For each of the N, particles that make up particle

J

1
J there is, in each term of F, one factor (VJO +1)2 or

. 1 _
one factor (vjo - 1)2. Let N3+ be the number of factors

(vj0 + 1) in a glven term, and let Nj- be the number of

.
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factors ,(VJO -1). Then one has

oo - N o
- Define also

vE o mE e N | L (3ese)
and

.Ni“-;- Wi oo ow it ~ (3.5D)

Invariance under space inversion is assumed. This

impliest that

| (3.6)

where 17 1is either +1 or -1. For simplicity we assume
it is . +l, since the argument in the other case is essentielly

the same. Equation (3.6) 1s obtained from Eqs.(43), (31) and

10

(AL) of Jacob and Wick, " by noticing that the identity

(xf-xi) _
-1 R ) .
) -xf’-Ki( } (3.7)
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- for the individual spin-3 particles implies .

R, .A;(e> = i(‘l)éf-Ai

(e) T
b § Af’ A

since the sum of magnetic quantum numbers is preserved under
Clebsch Gordan composition. The + sign in Eq..(3.8) is

. J +J J J '
‘shown in the appendix to be (-1) .

‘ Parityeconserving amplitudes'are defined by -

> 4
ni
k=
.
=

1 e M The My

£7270
= _1.’- + (= £ | Ni- - .Nf— ol ) Ni-}
= 2-]. ( l) * ( l) .= ( l) F{\f Al
' ro N 4 N - o .
=ijra(a)f }[1 £ (-1) * }FA n, - (3.9)

where the numbers Nf- and Ni- defined in Eq.'(§.5)ﬁare

regarded as operators in Eq.'(§.9). The next to last line in
Eq. (3.9) follows from the fact that a term of F having Nj'

: 1 }
factors (vjo - 1)2 has also N, ' factors Ay &S mentioned

-d

‘egrlier, The sign of A is reversed by reversing the sign

J .
of all of these, ‘as shown in the appendix. From Eq. (3.9) we

see that Nf- and Ni_ are both even for terms contributing

i

e



an

to -F', and both odd for terms contributing to F .
Conéidér first the singularitles at sums and
differencés‘Of the initial particle mass. These are céno
teined in the faétor
o N;+/2 o N2 N2 NT/2 N, /2 N, /2
(va‘+l)' (va -1) (vb‘+l)  (v5 -1) . (2wma) (2wma)
. :

/2 N, /2
(W-m -m)*

' N
(W + ma‘;+ mb) i
_ (v "+ x ')/2.- .,(N T en /e

X(W+ma-mb)_a‘ b (W-'ma'*'mb) & b .

wom vy T T 'y

i

4N, - —_ | (N +N,” - 2N, " )/2
T A L >/‘ |

(3.16)

The cases BB, FF, and FB, for which the two initial particles
are bosons, fermions, and one of each, are consldered separately.

Bearing in mind that N, 1s even for F' but odd for ¥,

i
one immediately sees that the square-root singularities for

the various cases are as follows:
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7T (EB) ~1 .

7 (o) gts;- (m -'-mb> s - (m, +mb> 2t
| -TF+-'.(FE) ~[5 - (m - mb) ]%‘

7 (7F) ~ [5 - (m +mb)]

A
2

l.F+ (FB) ~ LW+ m, mb) (W + m - mb)J

P
2 .

CF () . (W = m_ -mb> <W-m )17,

whefefin ﬁhe FB case the fermion isrpérticlé a. _If_thé
factor indicated in Eq;' (j.ll)-is divided out, along with the .
analogous factor coming from thé finel particies, then the .
resulting fUnctionS'are analytic at yjo = 1. For cases BB.

‘ end ¥FF .the factors divided out are analytic In s at

s

1

O - and hence the helicity amplitude remains analytic in

8. In the FB 'case one retains only analytiqity in W at

W=0.

C(3.11) B

-t
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IV. SINGULARITIES AT ¢ = 0.

The singularities at ¢ = O were the only ones that

‘oceurred in the expansions considered by Hepp and Williams;

"these were the cause'of all the difficulty. In the present

apprbach singularities are introduced in W at zero, and
at sums and differences of masses. The compensation is
simplicity at ¢ = 0.

The behavior of M at points of ¢‘= 0 not lying

" on dynamical singularitles 1s given by

My ~ (sine) 2Bl o (L.1)

Here ~ means equal to within a factor holoﬁorphic.in s and,t{

o amc\ l '

except at s =0, at v, = tl, er,at dynamical singularities.

J

One way to verify Bq. (4.1) is to consider the power-series

11
expansion
+ RSV m - =Nl .m
M=xec, (pg-D;)" (o, +ip )" + T ey (pg - 25)" (2 - in )" 5

(4.2)

where the . ci
im

invariance property of M,

's are matrices in spin space. The Lorentz-

A M(A™K) = Mm(x), . | (k.3)
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specialized to rotations ebout the 7 exis and expressed in

differential form, gives12

(Tpp = 35, M) + (g, = 1,) M) = 0, (v4)

wherée J and 'L are the spin and orbital-angular-momentum

operatorsbrespectively. Application of (h.h).to_(ﬁ.z) gives

*
(sz)aa

| Cy ® m,g-c1" o : (k.5)
Thgt is, every term in thé power-series exbansion of MdB ‘about
D, = py = 0 gonta;ns the compogents Py e.nd.,py in thg |
precise form (px + ipy)la_al, where the + 1s the sign of

"B - 0. Equation (4.1) then follows from Eq. (2.10). The

boost has the same singularity structure &4t sin® = 0 that

. M has. One observes that a product of two matrices having
this structure also hes this structuré. Here one uses the fact
thet sin“e is regular in s and t, which follows from

(2.104) end (2.8). Thus the product BM = S has the same

\

structure at ¢ =0 thet M has:

s ~(sine)|9‘"f3]. S | : (4.6)
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The singularities of R(6) at @ =0 are given.byh'

v

R(G)Ku o~ (sing)ixuul (cosg)lh+ut;

The right side is essentially the same as that of Eq. (L.1).
The apparént differences.comés‘from.the fact that A 1s minus

\

the =z componeﬁt of spin at cosg = 0.
Using again the fact that any product of matfices having
the singularity structure of Eq. (4.1) also has this singularity
.structure,-we see that, apart from dynamical singularities, the function
B VR W N VeV
e l £ (A -
HAf A /Qsing) coss

is regular in s and t at points of @ = O where W is not

equal to zero or to sums or differences of masses.
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V. COMBINED RESULT

-

coe : _ Co 1 : .
‘The function sin% behaves like a multiple of W = s? - .

at 8=0, ¢#0, whereas cos% is regular. Thus, apart

from dynemical singularities, the function

HAf,Ai'” | A ‘

. N | | L (5.1) .-

A=A A A :
 (sing) £ cosg £

jas]]
it

A

|-

].Af_'Ai I : » T
» snalytic In t end s ab

is, ﬁhenvmulfiplied by W
520 for' # £ 0 and ]vd'°| # 1. It is elso enalytic in_ £

and s at § =0 for s #0 and_,[vjol 41, Thus by virtue

of the theorem on isblated sinédlaritiésl3'it is enelytic in .. l
s cand. t éxpépt at lvjol =-1, apart from dynamical singularities.

Thus if m 1is the maximm of [AA;| end |AgA,| end o

‘are the functions given by (3.11), then the function

I+

=
=

- R = g 3) wm * .’ .. '
H (H oy + H-Af’Ai) /G | (5.2)

is enalytic in t and s (W for the FB case) except at

dynamical singularities.
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~ APPENDIX A. REDUCTION TO SPIN-3 PARTICLES

»Whét must be shown is fhat the éet;of5 M functioné
M(ab ; cd) représeﬁting-the physicél process ab »‘cd can |
‘be represented in terms of spin—% particles in a way-such'
‘ that_the scelar coefficients of the expansion are analytic.
at @ # 0, except ot the‘dy£amical singularities of M
itself. |

_A system of n spin-} particles is described by L7

matrix elements. At a point § # 0 t

he set of matrices
bl = Vo0, -b2 = V0, b3 = w-0, and bh = Vp'O WO V0
span a Single-particle spin space.  Thus one can express the

“4? matrix elements M in terms of the

, O‘l?lo‘zge TPy

4 coefficients SN
172 n
b : ,
MyA g T zl_‘ C, o L. /b N TN :
AP OP N} M3By N NPy
17 g | |
// - (A.1)
| /o |

Qi n

" nonsinguler at @ # O, and hence for @ # O the coefficients =

The transformation between the C's and the M - 's is

Cxl--'x are analytic functions of the scéiar invariants
=N
wherever the M_- . : 's are analytic functions of the -

o8,

Ts1,2 The problem is therefore solved if one can

nonmenta,.
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construct functlons Md '-;é‘ that when contracted W1th 4
1 '

n
vapproprlate Clebsch Gordan coeff1c1ents, glve the phys1cal

functions’ M(ab - cd), and moreover are analytlc in the o

‘momenta wherever the fUnctlons M(ab - cd) ‘are. A set of'f N »
‘Such functions Md ';'é" can be constructed by imposing
| 1 Pn o :
extra condltlons on the M, t;‘é in such a way‘that these
0t By

‘functions become unlque analytlc functlons of the functlons

| M(ab - cd).

t

The extra condltions we. 1mpose can be regarded as the

conditlons that would arise 1f ‘the: .Moi;*;ér were made’ to
,desorloelalso certaln addrtlonal fictitious#redctions;‘Assnme'
for the moment'that J ’+ I : ?' J, .+ J -ﬁﬁen the pﬁygiéal dff
_partdoles a;;b,'c,d and 4 ~are formed by Clebsch Gordan - -
composition on.the-sets:of Spln-—- partlcles T o Fb, F

- and Fd’ respectlvely, where the number of partlcles in

T, is X j = 29y The Nj ”partlcles of Fj_ can be combined

3 _
in only one way to give a'particle'of'spin 'Jj ='N /2;

However, they can be comblned in & varlety of ways to glve
partlcles of lesser spln ~ To beuspe01f;c,llet the part;c;es :

of T, first be numbered in some erbitrary way. ‘Then the

_ J ,

first end second particles of Tj can be combined to ‘give -
systems of spins ' J° =4+ % and J7 =% - 3. The thira .
particle can be added in various possible'w&ys to giwe three possible

' Lt + R ' -+
systems, having spins J =J_ +,%, J =J - %, and J .= %,
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of‘spin Jj; N
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respectively. Continuing, one finally obtains a single syStem

1, A, -
) 1, 3 S 1) (y - 2)a

systems of spin J

-l' systems of spin Jj

j‘ez, end so on. The total number of spin

states of all these systems 1s

- o : N
(2J3+1) + (Nj—l‘)(ZJj-l) + f—é—(Nj-l)(Nj-Q)d] (ZJJ-B)... -2,
(A.2)

Tt can be'showne that there is an orthogonal transformation

. N : N
"relating these 2 J states to the 2 J basic states of the

N .

P particles of T',. Thus one can consider that the functions

J

M . describe a whole set of reactions. And because the

RIS

relévant transformation is orthogonal, the Ma "'é are
1 n

analytic functions of the functions describing these various

processes. Therefore if one takes all the auxilliary processes

.to vanish, then the M - .« 's  will be uniquely defined

aln . 'Bn

- analytic functions of physical scattering emplitudes M(ab - cd),

which is want we wanted.

~ The Clebsch-Gordan composition that tekes 2T spin-}
particles into one spin-J particle is given.by forming the
complétely symmetrized sum of the states of the proper 2z
component of angular momentum} Thus reversal of the elementary

helicities simply reverses the total helicity.
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The'abefe diecuseion:eovefed“fhe case:'Jv +'Jb3: J + J
' If this condition is not satisfled then for. certain j we
_:ihave. Nd - an = e'j > 0. - The labels a,‘b,_c,;,apde de can-

be ehosen‘solthat the Nej' are even fer all TJQ Theﬁ'a  o
physical particle j.‘with' 4> 0 1is formed by contracting
vveach of the first - 3/2 pairs to spin zero. Now the helicity

AJ' can - be reversed by reversing the helicities of merely the '

last N, - ej particles of T,. The numbers. I\T‘j Nj',f and |

J_ J
. Nj used»in»Section III refer only to these last
Nj-' e, = j particles. Because Nj '.2Jj is even, it can

be ignored in (3 10). |
The functions M(ab - cd) are constructed from the

M, ... by Clebsch-Gorden composition. Let this relstion
B RS ¥ . :

‘be represented by

- M(ab - cd) (f Cf C '(Za;, o X (A-35 f

a]-uooﬁ'n c
‘The rotation operator R, (8) is given by the identical -
. £ i . :
composition;
R (0) =( ‘(L I R (e) R Y
e Mg a o=1 >‘:‘:p Mo a -



-27-

In cases vhere J, *T, = Tty Eq.:(A.h) shows that,”
" (3.7) implies (3.8). 1In the other cases, however, each pair -
of particles that is contracted to the singlet state, which

is antisymmetric} gives an extra minus sign."The sign (3.8)

Ja + Jb - Jc - Jd
is therefore (-1) ™ , - 7. This sign must be

included in'the n of (5,6); which becomes, therefore, simply
the product 1 ﬂdﬁT M -
The dynamical singularities lie on surfaces defined by

) invariants. 2 The domain of regularity 1s therefore
I+-saturated, in the terminology of Hepp.l This means that

any regular point 1s the image of some point in momentum spa.ce
for which the renk of the gram determinant [k 'kjl is equal

to the number of linearly independent vectors The‘power-series
expansion (4.2) can be considered an expension about such &
-point. The (px, Py’ P, ) are the relative momenta in a frame
- where the total energy-momentum vector Pu is a pure time-like
- vector. The existence of such a frame is assured by Lemma 2
of Hail and Wightman;lu The component P° ds fixed by the
mass constraints and is an analytic function ef the (nx, Py’ pz)
at P, = Py = 0 except when p52 =-mJ? vfor some _J. Thus .
.except possibly at these points, and at dynamical singularities,
the M function is analytic in the (px, Pys P, ) at
‘P, =D ='O{ and the power- series expansion (4.2) is valid.

Y
Accordingly the relation (h,l) is valid except possibly when

2
pS = - m

J 2

or equivaiently, as one sees from (2.10a) when



P S
. EPRTREP : Sy ;:2 5   .  ;i‘ S
5" is (ma‘.-;mb_) - or v(mc‘m- 3 ) ‘;tBut,uM¢ considered;.v'
as a function of invariants is not singﬁlar on these surfaces,
 as one'also sees from (2.10a). Thus (4.1) holds everywhere, ‘

- except..  ...:. at dynamical singulerities. - . o | .

o
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