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ABSTRACT 

The analytic structure of helicity amplitudes is 

-derived from basic analyticity properties. Previous 

UCRL-17429 

derivations relied on crossing properties and extra assumptions . 
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I. INTRODUCTION 

The' problem of expressing scattering amplitudes in terms 

of functions of scalar invariants without introducing extra 

singularities has been solved by Heppl and Williams. 2 Their 

solution has a form that is not convenient, however, for 

many practical purposes. This is in part because it involves 

a reduction of the amplitude to its irreducible components. 

Though such a reduction is in principle straightforward, it is 

in practice cumbersome. Moreover, the irreducible components, 

though the natural mathematical quantities, are not.nice 

physically. For example, the irreducible components mix 

different parity eigenstates. This means that the condition of 

invariance under space reflection does not lead to any simple 

reduction in the number of irreducible components. It leads 

rather to complicated relations between different irreducible 

components. For this reason, among others, the elegant results of Hepp 

and Williams have had little or no practical application. 

For many purposes the most convenient form of the 

scattering amplitude is in terms of helicity amplitudes. 

The helicity amplitudes, like any others, become functions of 

scalar inva.riants when evaluated in the center-of-mass frame~. 

This is because the components of the momentum vectors become 
" I 

functions of scalar invariants. However, the functions that 

express these components in terms of the invarIants have 

. / 

II 

J 
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fnumerous kinematic singularities, which the amplitude itself is 

expected to inherit. 'Also~ the various rotations ~d boosts 

needed·to define the helicity amplitudes have kinematic singularities. 

Thus the analytic structure. of the helicity amplitudes, considered .. 
as functions of the scalar invariants, would be expected to be" 

very complicated. It turns out, however, that most of- the 

singularities cancel, leaving the helicity amplitudes with 

reasonably simple analyticity properties. The purpose of ·the 

present paper is to show this. 

The result is not new, having been obtained already by 

HaraJ and Wang, 4, Their method is, however, circuitous. Rather 

than starting directly from the basic momentum-space analyticity 

properties, or equivalently from the analyticity properties de-

duced by Hepp and Williams, they base their conclusions on 

consistency with well-known crossing relations for helicity 

amplitudes. Since the crossing relations are themselves 'derived 

from the basis momentum-space analyticity properties, their 

procedure is evidently permissible. But it is roundabout. One 

would expect it to be simpler to work directly with the basic 

properties, and this is indeed the case. 

There is a second reason for reconsidering the question. 

The method of Wang makes essential us'e of an extra assumption. 

This assumption is that if certain singular kinematic functions 

with zeros are divided out of the helicity amplitude, then the 

resulting function has no kinematic singularities in certain 
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variables. Any such singularities necessarily arise from a " 

failure of a generalized Legendre expansion to converge, and 

it is asserted that this is a dynamical, question. While this 

seems reasonable, it is not absolutely convincing, since we 

do not yet fully understand the dynamics of elementary-particle 

systems. Thus it is not absolutely inconceivable that a 

kinematic singularity could cause the series to diverge. In 

any case the question arises whether this assumption is a 

dynamical assumption that goes beyond the basic analyticity, 

properties used by Hepp and Williams. We find that this 

extra assumption is not really needed. 

An assumption essentially equivalent to the extra 

assumption of Wang is made also by Hara, who relies heavily 

on perturbation theory. 

As in the work of Hara and Wang, only four-particle 

reactions are considered. It is further assumed that the two 

initial particles have unequal masses, and that the two final 

particles have unequal masses. The passage to equal mass 

limits has been discussed by Wang. 

...:::. ...... . 
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. II • SINGULARITIES AT s = 0 

The helicity amplitude is given by 

H = RS, (2.1) 

where S is the S matrix and R is a product of rotation 

operators Rj' one for each final particle. The center of 

mass frame is used and the z-axis is taken to lie along the 

. direction of one of the incoming particles. The helicity ~l 

of this particle is just the z-component of its spin. The 

other incoming particle has helicity ~2' which is minus the 

z-component of its spin. The two fin~lparticles move in 

the x-zplane, the first moving in the direction e, the 
I 

second in the opposite direction. 

The two rotations act on the spin spaces of the 

two final particles, and each.gives a rotation through angle 

e. Specifically, for either final particle j, one has 

where 

R . j 

is the y component of the spin vector J j 

acts in the spin space of the final particle j. 

The S matrix .is related to the M functio~ by5 

(2.2) 

that 

J . ~ 

.. 
; 

! , 
·f 
~. 
'-. 

J 
{ 

I 
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S = BM, (2.3) -

where B is a product of boosts, one for each particle. We 

work in the representation Where all indices are either lower 

dotted or lower undotted. For a particle associated with 

a lower~dotted index the boosts for particle j 

in terms of its covariant veloc1 ty v j ,,; p J mj 

is expressed 

J 1 
B

j 
= D j [(v .(;)2J , 

\..j J 

by 
'\. 

\)5" "J ~ 

(2.4) 

which acts on M by multiplication from the left. For a particle 

associated with a lower~otted index the boost is given by 

the same function of its velocity acting on M by multiplication 

from the right. For any unitary 2-by-2 matrix A the matrix 

DJ [AJ is just the (2 J + 1)-b;J-(2 J + 1) matrix that re­

presents the rotation specified by A in the (2 J +1)-

6 dimensional irreducible representation of the rotation group. 

The matrix elements of the DJ[A] are homogeneous polynomials 

in the matrix elements of A, and DJ[A] for general A is 

defined by analytic continuation. 

Consider first a system consiSting of one spin-~ 

particle and one spin-zero particle. Then the boosts Bj take 

the form 

t 
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<1. 
::- • Ii. -<+ 

j ";. 

1 [0 1 
=. - (v + l)~ --y;; j \ 

The rotation matrix Rf has 

I,. 

f ,~. \ 
'. j ,'"" 

J i 
)'. '.' 

(2.6) 

where the sign is minus for A - ~ = -1 and plus otherwise. 

The basic analyticity assumption is that the M functions' 

are analytic functions of the components of the momentum vectors, 

except at dynamical singularities.5 It follows from this, and 

Lorentz invariance" that M can be written in the form7,8 

M = a v ·cr 
f 

V" 

+ff1f5ij} 
-

+~(J@~, 

where the coefficients a, b, c, and.d are meromorphic 

fUnctions of the scalar invariants with, at most, simple poles 
. '!.~~. 

I' 
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at ¢ = O. Here ¢ is given by71,4 

¢ = (stu- s,,2 - tb2 - uc2 + 2 'abc) , (2.8) 

where s, t, and u are the Mandelstam variables and 

is the set of points where the 

than three, includes the 

boundaries of the physical regions. The possibility of poles 

at ¢ = 0 is the problem considered by Hepp and Williams: the 

M function itself has no such poles, but the linear dependence 

of the, various .terms of Eq. (2.7) at ¢ = 0 allows the 

individual terms to have them. 

The vector w in Eq. (2.7) is the total energy v,ector 

and Vi and vf are the covariant velocities of the initial 

and final fermions. The expansion Eq. (2.7) is obtained by 

first ~iting M in the form7
1 8 
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where the vect,or' [PI P2 P3J is the box product defined using 

the alternating symbol € Evaluation of the constants 
IlvpA. 

ci by means of trace formulas 7,8 shows that they are hOlomorph~c 
except for dynamical singularities and for possible poles at 

" 

¢ = O. A rearrangement of terms then gives the meromorphy of 

the coefficients in Eq. (2'0,7),' 

The nondynamical singularities o~ H fall into three 

categories. First, there are the possible singularities at 

¢ = 0.' Second, there are singularities where some 

And finally, there are possible singularities where the components 

of the vectors vi' vf ' and .w, when expressed as functions of 

the scalar invariants, have singularities. Evaluating the energy­

momentum vectors in the center of mass frame one has3,4 

r 

= (s + m 2 
a 

(2.10a) , 

(2.10b) 

cose _ [2st +82 - s ~ m
i

2 + (m 2 
i a 

2 2. 2 -I' 
~ )(mc - md ) J )( (4spp')" 

(2~lOc) 
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and· 

Thus for ¢ -f 0 ,the singularities of the components occur 

only at s ~ w2 = 0, where their behavior is as follows: 

0 1 
Pj '" W ' 

- l,Rjl 
1 

Pj '" W ' 

cose '" 1 , 
and 

sine "', w. 

(2.10d) 

-1 . .0 Accordingly M itself has terms in W and w = 1. Each boost 

has terms like ljVW and -vw , ,and RAI-t goes like wi ;\-1-11. 

Thus H appears to have a nasty behavior at w = O. 

Using the relations9 

,-(2.l1a) 

and 

(2~11b) 
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one obtains, in the center of mass frame, 

Let the, fermion be the, initial particle that moves along the z, 

(2.13a) 

and 

(2 .13b) 

one 'obtains 

(2.14) 

where , t ,( #, 

" 
\1 1 , - ) 

'\ \', \ -
" ( \ \ \1 
\ , 
I t ~ , i .... 

r 

" r, \ 
, , 
\, , 

\. 

" 

.... 

\ 

", 

, " 

" ' 

: .. '. ~ 

<J~, r" 
, ). 

" ' '\ 

'" 

: .,.;. 

L 
.. 't" 

, ','~, ;. 

... ,' 

'. 
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r . 1.. 1\0 11 r 1.. /\" 0 1..1 
+ d WI..(Vf

O 
+ 1)2 + A.f(V

f 
- 1)2J Lev

i
O + 1)2 + A.i(V

i 
- 1)2J. 

(2.15) 

Here Observe that 

O 1 0 1.. .,.1 + 2 
(v + 1)2 ± (v - 1)2 = W~ f-(W-) (2.16) 

and that 

for 

for 

. Combining Eqs. (2.14) through (2.17) we see that H is analytic 

in s = if at W = 0, ¢ f. 0, except at dynamical singularities. 

This proof is only for the simplest case of a spin-! 

particle scattering on a spin zero particle .. Yet it allo\vs 

us to immediately conclude that the result holds also in 

general: If the two initial masses are different and the two 

final masses are different then the four-particle helicity 
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amplitude is analytic in s and t at s = 0, except 

perhaps on ¢ = ~ and at dynamical singularities .. To get 

the general_result, one merely observes that at ¢ lo the 

higher-spin particles are kinematic~ly equivalent to sets 

of spin-~'particles combined by Clebsch-Gordan coefficients. 

That is, as long as the phys~cal vectors provide a non­

singular set of basic vectors, one may pass freely between 

'the two forms by using' Clebsch-Gordan coefficients. The' fact 

that the spin-~ particle parts are 'analytic at s = 0 then 

implies that the entire function is analytic at s = 0., The 

technicalities are given in the appendix. 

• 
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III. SINGULARITIES AT v j 0 = ±l 

Let the reaction be a + b .... c + d. Then in the center 

of mass frameon~ ha~ G,," -t \ )-t/Vo"- ( ) 

, \ o ' , 
(v - 1) =1 (W - m - m. ) W - m + In. /2Wm ,. 

a ~ _B: / ~ . 0 _ __ a _~ a 

and four similar equations involving c and d. Thus the zeros 

of the functions Vj 
0 ±l lie at '. W = ±(m

j 
±~). 

As in the preceding section the physical particles of 

. spins Ja, Jb , Jc' and J d are considered to be combinations 

of Na' Nb, Nc' and Nd spin-! particl~s respectively. The 

N
j 

particles that combine to give particle j all have 

velocity v
j

. 

Applying to each spin ~ particle the manipulation that 

led to Eq. (2.14) one obtains 

H = R F 
Af Ai' Af Ai Af Ai 

-; R(e)A' A F[(Vao + l)!, '~'r)VaO - l)!; s, 
f i 
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Here R(e)A A 
f i 

is the matrix element of the rotation operator 
, I 

R(e) betwe~n the spin states specified bYAf and Ai' If 

the spins of the initial and final particles are different, 

then someClebsch-Gordan coefficients will occur. The exact 

expression is given in the appendix. The function F is a. 

combination of the F parts pf Eq. (2.14). It contains one 

factor of either (vaO + l)~ or ~(vaO - l)~ for each 

initial spin ~ particle; where A.
a 

is the helicity and va 

is the velocity of this particle. There is a similar factor 

"for each final spin-~ particle. 

The helicities A.a satisfy 

where is the helicity of particle j, and .,the j on the 

left represents the set of indices referring to the spin ~ 

particles that form particle j. The vi.tal property ofF. 
·0 1. 

is that each factor (va - 1)2 appears multiplied by the 

corresponding helicity A.a' and conversely, whereas the 
o 1. 

factors (va + 1)2 have no such factors. 

For each of the N
j 

particles that 

j there is, in each term ofF, one factor 

make up parti cle 
1 

(VjO + 1)'2 or 
, 0 1. + 

one f'actor (Vj - 1)2. Let N
j 

be the number of' f'actors 

(VjO + 1) in a given term, and let Nj be the number of' 
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factors (Vj 
0 -1) • Then one has 

N + 
. j 

+ Nj = Nj • 

Define also 

N ± + , N ± + N - -a b i 

and 

± +' + N + N - = N
f 

- .• 
c d 

Invariance under space inversion is assumed. This 

10 implies that 

where ~ is either +1 or -1. For simplicity we assume 

(3. 4) 

(3.5a) 

(3.5b) 

it is ,+1, since the argument in the other case is essentially 

the same. Equation (3.6) is obtained from Eqs.(43), (31) and 

(Al) of Jacob and WiCk,lO by noticing that the identity 

= 
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for the individual spin ~ particles implies. 

,.: ' " 

. since. the sum of rnagneticquantum numbers is preserved under 

C1ebsch-Gordan composition. The ± sign in Eq.(3.8) is 
, " j' +J -J -J 

shown in the appendix to be (-1) abc d. 

Parity-conserving amplitudes are defined by 

± -
FA A = FA A ± F-Af Ai 

f i f i· 

- -N 
.= t[l Nf -+ Ni Ni -] 

+ (-1)· ± (-1) f ± (-1) . F 
Af A. 

~" 

", 

= ~[l <-ltt][l ' N-] 
± ± (-1) i FA A 

f i' 
(3.9) 

where the numbers Nf - and Ni - defined in Eq.' (~.5f are 

regarded as! operators in Eq. (3.9). The next to last line in 

Eq. (3.9) follows from the fact that a term of F having N. 
J 

. 1 

factors (vj
O 

- 1)2 has also Nj -' factors ~a' as mentioned 

earlier. The sign of Aj is reversed by reversing the sign 

of all of these, 'as shown in the appendix. From Eq. (3.9) we 

see that Nf - and N
i

- are both even for terms contributing 

...... 

.. 
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+ to 'F, and both odd for terms contributing to F-. 

Consider first the singularities at sums and 

differences of the initial particle mass. These are con-

tained in the factor 

. . N +/2 N -/2 
( ) i . ( .) i = W + ma + ~ , W- ma - ~ 

. (N + + N
b
-)/2 (N - + N

b
+)/2 

x (W + m a - ~) a (W - ma +~) a 

(N +N
i

-
x(W + ma _~)a . 

2N -)/2 (Nb+Ni - - 2Nb-)/2 
a (W - ma + ~) . 

C~·10 ) 

The cases BB, FF, and FB, for which the two initial particles 

are bosons, fermions, and one of each, are considered separately. 

Bearing in mind that Ni - is even for + -F but odd for F, 

one immediately sees that the square-root singularities for 

the various cases are as follows: 
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, . "' "2 1 

"F- (BB) ~ [8 - (me.' .. ~), J2 [S 

, +' 2 1 
F ,(F~) "" [s ... (ma ,~ ~) J2, 

'" [S - (ma +,~)2J~ , 

. , 

where in the FB case the fermion is particle a. If the 

factor indicated in Eq. (3.11) is divided out,along ~ith the . ' 

analogous factor coming from the final particles, then the, 

o resulting functions are analytic at Vj = ±l. For cases BB, 

and FF· the factors divided out are analytic in s at 

s = 0 ' and hence the helici ty a.mpli tude remains analytic in 

s. In the FBcase one retains only analyticity in W at 

W = O. 

.' 

, 
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IV. SINGULARITIES AT ¢ = 0 . 

The singularities at ¢ = 0 were the only ones that 

. occurred in the expansions considered by Hepp and Williams; 

'these were the cause of all the difficulty. In the present 
. , 

approach singularities are introduced in W at zero, and 

at sums and differences of masses. The compensation is 

simplicity at ¢ = O. 

The behavior of M at points of ¢ = 0 not lying 

on dyriamical singularities is given by 

(4.1) 

Here ~ means equal to within a factor holomorphic in sandt, 
C1M(.... , o except at s = 0, at Vj = ±1, ~~at dynamical singularities~ 

On~ way to verify Eq. (4.1) is to consider the power-series 

expansion 11 

+ 
M = Z c .£m 

where the are matrices in spin space. 

invariance property of M, 

The Lorentz-
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special.ized to rotations about the z axis and exPressed in 

differential. form, gives12 

(4.4) 

where J and . L are the spin and orbi tal.-angular-momentum 

operators respectively. Application of (4.4) to (4.2) gives 

That is, erery term in t?e power-series expansion of M~about 

p = p = 0 contains the components p and. p' in the x y . x y 

pr~cise form (px± iPy)la-~I, 'where the tis the sign of 

. f:3 - O!. Equation (4.1) then follows from Eq. (2.10). The 

boost has the same singularity stru~ture at sine = 0 that 

M has. One observes that a product of two matrice,s ~aving 

this structure al.so has this structure. Here one uses the fac~ 

that 2 sin e is regular in s and t, which follows from 

(2.l0d) and (2.8). Thus the product EM = S has the same 

structure at ¢ = 0 that M has: 

'~~~ .... "" (4.6) 

,. 
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The singularities of R(e) at ¢ = 0 4· are given by 

The right side is essentially the same as that of Eq. (4.1). 

The apparent differences comes from the fact that A. is minus 

the ~ component of spin at e 
cos'2 = o. 

Using again the fact that any product of matrices having 

the sirigularity structure of Eq. (4.1) also has this singularity 

stru'cture, we see that, apart from dynamical singularities, the function 

is regular ins and t at points of ¢ = 0 where W is not 

equal to zero or to sums or d.lfferences of masses. 



-22-

, 
V.' COMBINED RESULT 

The function 
, e ' .' '1 

sin2 behaves like ,a.multiple of W =S2 

at s = 0 , ¢ ,; 0, where'as cos~ is regular. Thus, apart 

from dynamical singularities, the function 

(5.1 ) 

lAf-Ai l 1 f" 

is, when multiplied by W , , analytic in t and ' s at' 
j 

lVj 01 
.... 

s == '0 for' ,¢ 1= 0 and 1=1. It is also analytic in t 

and s at ¢= 0 for s 1= 0 and ,lvj 
0 I 1= 1. Thus by virtue, 

of the ,theorem on isolated singulariti~s13it is analytic in 

-

s 'and t except at Iv j 0 I = ,1, apart from dynamical singularities. 

Thus if m is the maximum of I Af-Ai I ,and I Af+Ai I and G± 

are the functions given by (3.11), then the function 

.' 

is analytic in t and s (W for the FB case) except at 

dynamical Singularities. 

, 
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APPENDIX A. REDUCTION TO SPIN ~ PARTICLES 

What must be shown is that the set of M functions 

M(ab ~ cd) representing the physical process ab ~ cd can 

be represented in terms of spin-t particles in a way such 

that the scalar coefficients of the expansion are analytic 

at ¢ I 0, except at the dynamical singularities of M 

itself . 

. Asystem of n spin-t particles is described by 4n 

matrix elements. At a point ¢ I ° the set of matrices 

span a single-particle spin space .. Thus one can express the 

4n 
t t matrix elemen s .MOl~ a & "'a & in terms of he 

. .L 1 2 2 n n 

4n 'coefficients 

The transformation between the .C's M • IS a ... (3 
1 n 

and the is 

. nonsingular at ¢ I 0, and hence for ¢ I ° the coefficients 

C are analytic fUnctions of the scalar invariants 
~'''A'n 

wherever the M . I' S are analytic fUnctions of the a.. "'(3 . .L n 
7 1 2 momenta. " The problem is therefore solved if one can 
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construct functions M ,that, when contracted with 
'ex "'t3 ' ,1 n 

appropriate Clebsch-Gordari coefficients, give the physical 

functions M( ab ~ cd), and mor~over are analytic in the 

momenta wherever the functions' M(ab ~ cd) are, A set of 

such functions M 'can be constructed by imposing 
0: '" t3 1, n 

extra conditions on the Mo:"" ~, in such a way that these 
1 n 

functions become unique analytic functions of the functions 

M(ab ~ cd), 

The extra conditions we impose can be regarded as the 

conditions that would arise if the M • 
~ .. ,t3

ri 
were made to 

; 

,describe also certain additional fictitious reactions. Assume 

for, the moment that J a + J
b 

= J c + J d' Then the physical 

particles a, b ,c, and d are formed by Clebsch .. Gordan 

composition on the sets of spin-l particles Pa , Pb , Pc' 

and P
d

, respectively, where the number of particles ~n 

, Pj 
is N

j = 2J
j

, The N. ,:particles of Pj 
can be combined 

J 

in only one way to give a particle of spin J j = Nj /2 .. 

However, they can be combined in a variety of ways to give 

particles of lesser spin. To be specific, 'let, the particles 

of P
j 

- first be numbered in some arbitrary way. Then the 

first and second particles of r~ can be combined togiye 
" ' " J-

systems of spins I J+ = t+ t' and J = t - t., ,The third 

particle can be added in various possible ways to give three possible 

systems, having spins ++ ,+ 1 +-'. + 1 -+ 1 J = J + ' '2, J = J - '2, and ,J ,= '2, 

• 
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respectively. Continuing, one finally obtains a single system 

of spin J j ; Nj -1 systems of spin J j - 1, !(Nj ~l) (Nj - 2)-1 

systems of spin ,J" j-2, and so on. Th~:·'total number of spin 

states of all ,these systems is 

(A.2) 

2 It can be shown that there is an orthogonal transformation 
,Nj Nj . relating these 2 states to the ,2 ' basic states of the 

Nj particles of r j • Thus one can consider that the functions 

M . describe a whole set of reactions. And because the 
'\" 'f3n 

relevant transformation is orthogonal, the Ma ... ~ 
1 n 

are 

analytic functions of the functions describing these various 

processes. Therefore if one takes all the auxilliary processes 

to vanish, then the Ma"'~ 's will be uniquely defined 
, 1 I--'n 

analytic functions of physical scattering amplitudes M(ab - cd), 

which is want we wanted. 

The Clebsch-Gordan composition that takes 2J spin-! 

particles into one spin-J particle is given by forming the 

completely symmetrized sum of the states of the proper z 

component of angular momentum. Thus reversal of the elementary 

helicities simply reverses the total helicity. ' 

" 
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' .. 
The above discussion.cpvered the case 

, 
J + J. .; - J + J • 

a .. b .c' d . 
If thi's con'di ti9nis not satisfied, then for certain . j we 

have'. N
j 

... 2Jj ;-' ej ' > 0.' , The la.bels 9., b, c,. and 0., can 

be chosen so that theej are even for all 'j. Then a 

physical particle . j 'with ,e j , > 0 is ,i'ormed by contracting 

each of the' first e j/2 pairs to. spin zero. Now the heliCi ty 

Aj can·be reversed by reversing the helicities oi' merely the, 

+ last Nj - ej particles oi' rj.The numbers Nj' N
j

, and 

, N j used in Section III rei'er only to these last 

Nj ... e j =2Jj particles. Because Nj ... 2Jj iS even, it can 

be ignored in (3.10). 

The i'unctions M(ab -+ cd) are constructed i'rom the 

M ' '. byClebsch-Gordan composition. Let this relation a .•. ~ 
1 ' n 

be represented by 

M( ab -+' c. d) = C a C' M • C C b ex. •• 'f3cd 
~ .in 

(A.3) 

The 'rotation operator RA A (e) is given by the identical . 
i' i 

composition; 

R ' A' (e) = Cat b[ ~ RL '). ( e )l C' C C-d 
Ai' i ' p=l ''"l'p 'ip J ' (A.4) 

, ' 

/ 
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In cases where J a + Jb = J c + J d, Eq. (A.4) shows that 

(3.7)im;Plies (3.8). In the other cases, however, each pair 

of particles that is contracted to the singlet state, which 

is antisymmetric, gives an extra minus sign. , The sign (3.8) 
J + J - J - J 

is therefore (-1) a b, c d. This sign 'must be 

included in the ~ of (3.6), which becomes, therefore, simply 

the product ~c'~dfil'a"b • 

The dYnamical singularities lie on surfaces defined by 

invariants.5 The domain of regularity is therefore 

I+-saturated, in the terminology of Hepp.l This means that 

any regular point is the image of some point in momentum space 

for which the rank of the gramdetermin.:an,t, lki 'kj 1 is equal 

to the number of linearly independent vectors. The power-series 

expansion (4.2) can be considered an expansion about such a 

point. The (~ ~ ~) are the relative momenta in a frame .t"x' .t"y' .t"z 

where the total energy-momentum vector p~ is a pure time-like 

vector. The existence of such a frame is assured by Lemma 2 

14 0 of Hall and Wightman. ~e component P is fixed by the 

mass constraints and is an analytic function of the (px' py' pz) 

at = ° except when 2 2 for j. Thus Px = py 1'3 =' m some 
j 

except possibly at these points, and at dynamical singularities, 

the M function is analytic in the (px' py' pz) at 

Px = py =0, and the power-series expansion (4.2) is valid. 

Accordingly the relation (4.1) is valid except possibly when 

2 
'1' 

2 
- - m - j' or equivalently, as one sees from (2.l0a) when 
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2 ' 2 2 
(ma -",~) . or 

2 '2 2 
(mc "'. - md ) .', ButM, considered 

as a function of invariants is not singuJ.ar ,on these surfaces," 

as one'also sees' from (2.l0a). Thus (4.1) holds everywhere, . " 

except " , at dynamical singulari ties ~ 

,l , 

, " 
,,' 

,. 

" 

\' 

.' 
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