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Quantifying Sex Differences in Behavior
in the Era of “Big” Data
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2Princeton Neuroscience Institute, Princeton, New Jersey 08540, USA
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Sex differences are commonly observed in behaviors that are closely linked to adaptive
function, but sex differences can also be observed in behavioral “building blocks” such as
locomotor activity and reward processing. Modern neuroscientific inquiry, in pursuit of
generalizable principles of functioning across sexes, has often ignored these more subtle
sex differences in behavioral building blocks that may result from differences in these behav-
ioral building blocks. A frequent assumption is that there is a default (often male) way to
perform a behavior. This approachmisses fundamental drivers of individual variability within
and between sexes. Incomplete behavioral descriptions of both sexes can lead to an over-
reliance on reduced “single-variable” readouts of complex behaviors, the design of which
may be based on male-biased samples. Here, we advocate that the incorporation of new
machine-learning tools for collecting and analyzing multimodal “big behavior” data allows
for a more holistic and richer approach to the quantification of behavior in both sexes. These
new tools make behavioral description more robust and replicable across laboratories and
species, and may open up new lines of neuroscientific inquiry by facilitating the discovery of
novel behavioral states. Having more accurate measures of behavioral diversity in males and
females could serve as a hypothesis generator forwhere andwhenwe should look in the brain
for meaningful neural differences.

SEX DIFFERENCES IN BEHAVIOR MAY BE
SIMULTANEOUSLY OVERLOOKED AND
OVEREMPHASIZED

Early in the studyof animal behavior, dramatic
sex differences observed in courtship and

mate selection behaviors launched the idea
that behaviors themselves were under evolution-
ary control, and enforced long-held assump-
tions that there might be “male” behaviors and
“female” behaviors (Darwin 1882). We now

know that sex differences in investment in re-
productive and mating strategies can lead to
clear and quantifiable sex differences in behav-
ior that directly affect the fitness of an individ-
ual. Historically, the study of sex differences
focused on the most extreme differences in
behavior including reproductive behaviors
(Ball et al. 2014) and aggression (Lischinsky
and Lin 2020). However, the absence of an ob-
vious link to parental or reproductive strategy
does not mean that there are not important
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sex differences in behavior, let alone in the un-
derlying neural dynamics or circuit architecture
that generate the behavior (De Vries and Boyle
1998). Although it may be obvious to look for
sex differences in social behaviors that are di-
rectly related to mating and aggression, there is
growing evidence that subtle sex differencesmay
have been systematically overlooked.

In contrast, although some sex differences in
behavior may have been ignored through a hy-
perfocus on behaviors with direct links to repro-
duction, described sex differences in behaviors
that “do” have direct links to reproductive strat-
egy may, in some cases, be overblown. For ex-
ample, in many species males but not females
use vocalizations to attract mates or compete
with other individuals. There has been a recent
appreciation that in some species females also
use vocalizations in competitive interactions
(Kelly 1993; Emerson and Boyd 1999). Thus,
descriptions of some behaviors as sexually di-
morphic may be reinforced by existing biases
about “male” and “female” behaviors, and de-
serve further scrutiny.

Implementing more complete descriptions
of behavior for both sexes is an important rem-
edy for overcoming these biases. We frequently
lack complete behavioral descriptions for both
sexes as, for many years, females were not in-
cluded in behavioral analyses due either to ne-
glect or misguided beliefs. Females were often
excluded from studies because of the concern
that hormone fluctuations across the reproduc-
tive cycle would obscure the neuroscientific ob-
jectives. This rationale has been discredited
(Prendergast et al. 2014; Becker et al. 2016)
and the consideration of “sex as a biological var-
iable” (SABV) by theNIH has been a critical and
necessary corrective to a decades-long imbal-
ance in neuroscience (but see Mamlouk et al.
2020). When this more balanced approach is
applied to more foundational behavioral “build-
ing blocks” such as reward learning or defensive
behavior, subtle sex differences in these behav-
iors are sometimes found hiding in plain sight.

One example of a “missed” behavior is the
recentfinding that female ratsmayuse adifferent
behavioral strategy thanmale rats during the ex-
pression of learned fear. Historically, learned

fear has been quantified by observing canonical
freezing behavior. In many fear conditioning
studies females show reduced freezing relative
to their male counterparts (Fig. 1A; Maren
et al. 1994; Pryce et al. 1999; Clark et al. 2019).
However, through careful analysis of video re-
cordings, researchers identified a new behavior
—“darting”—that was far more prevalent in fe-
males than inmales (Fig. 1B; Gruene et al. 2015).

Why does this matter? If a field, as a result of
several decades of exclusive research on the be-
havior of males, has been focused on freezing as
the de facto defensive reaction, then the re-
sponses of the females, who freeze less often,
appear aberrant. The fact that females use more
diverse strategies to defend against threat should
prompt a rethink about what it means when an
animal freezes (or does not freeze) and how this
behavioral diversity shouldbe taken into account
when assessing how animals learn. The identifi-
cation of darting behavior was in some ways ac-
cidental. Itwas theproduct of taking awider view
ofwhich behaviors individuals of both sexes per-
formedduring a routine experimental paradigm:
fear conditioning. The accidental nature of this
discovery raises the question of whether a more
systematic approach can be used to evaluate
whether there are important sex differences in
other behaviors. As we enter a new era in the
ability to collect and analyze behavior data with
more sophistication and quantitative rigor, it
may be time to ask how we can best harness
new technology to discover subtle, but potential-
ly important, patterns in behavior and reduce
our reliance on single-variable readouts for in-
ternal states.

Several recent reviewshave called for a return
to a more ethologically motivated study of be-
havior in neuroscience (Anderson and Perona
2014; Krakauer et al. 2017; Datta et al. 2019).
Implicit in these arguments is that there is new
knowledge to be gained bymoving the lens away
from the brain and instead becoming more fo-
cused on behavior, and that insights about be-
havior can be used to direct neuroscientific in-
quiry. However, many of the examples used in
these calls to action do not explicitly consider
behavior in males and females. To take a more
holistic look at behavior, individual differences
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Figure 1.New tools to facilitate the discovery of sex differences in behavior. (A) Common behavioral paradigms
used in neuroscience commonly rely on single-variable descriptions of complex behaviors for both sexes.
Examples include fear conditioning (left), social avoidance (center), and the “resident intruder” paradigm for
social behavior (right). (B) Recent examples of serendipitously discovered behaviors in these paradigms suggest
that single variables are insufficient to describe sex differences in behavior. Examples include increased social
vigilance in females (left), and increased “darting” behaviors in females during fear conditioning (right). (C)
Adopting machine-learning strategies for pose tracking and video analysis will facilitate behavioral discovery by
allowing the robust quantification of multiple behaviors, and may enable the discovery of new behaviors. One
example is using video acquisition and pose tracking (in this case, DeepLabCut), to reveal behavioral “features”
from supervised analyses (right top), but also applying unsupervised analyses (right bottom) to provide a more
nuanced view of sex differences in complex behavior. Difference heat map may reveal behavior clusters that are
enriched in one sex over the other.
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across both sexes must be measured, such that
appropriate behavioral readouts that fully repre-
sent the behavior of both sexes can be designed.

Single-variable measurements for complex
internal states abound in the scientific literature.
Initial developments in the computerization of
behavioral analysis automated a narrow set of
measurements allowing high-throughput be-
havioral analyses. However, simply measuring
time in the center of an open field, or time spent
in an interaction zone during a social interaction
test, can overlook other important behavioral
patterns (von Ziegler et al. 2021). Developments
inmachine vision andmachine learning provide
an opportunity to apply neuroethological ap-
proaches without losing the throughput of auto-
mated behavioral scoring. Often behavioral
analysis is used to infer an underlying state
such as fear ormotivation. Usingmore complete
descriptions of behavior in both sexes under
ethologically relevant conditions is likely to pro-
vide richer insights into these states. The reasons
for this are simple: Animals of different sizes,
physiology, or life experiencemight apply differ-
ent strategies for decidingwhich behaviors to use
and when. Using the same logic for why we
might use age-matched cohorts to study a par-
ticular behavior (because age-matched cohorts
shouldbeof comparable size and experience),we
can extend this same logic to looking at sex dif-
ferences in a broad range of behaviors. The use of
machine learning confers additional advantages,
since this approach may enable the detection of
behaviors or behavioral sequences that would be
difficult or impossible for humans to detect.His-
torically, behaviors have been classified by ex-
perts with deep knowledge of the species being
studied.However, even an expert could be biased
by the way the human sensory system perceives
motor patterns. The development of novel algo-
rithms that detect or classify behavior with min-
imal or no human intervention could provide
more unbiased descriptions of behavior and po-
tentially even identify previously undescribed
behaviors missed by experts.

Here, wewill survey a brief history of general
approaches to quantifying sex differences in be-
havior, and consider new directions for the field
as it incorporates new computational tools

to simplify increasingly high-dimensional and
multimodal data. In addition, we will propose a
model of how researchers might use this infor-
mation to guide neural circuit interrogation of
how these behavioral differences are enforced.

QUANTIFYING SEX DIFFERENCES
WITHOUT BIAS

Then and Now: A Brief History of Quantifying
Behavioral Difference

Studying sex differences in behavior has deep
roots in neuroethology, because some of the first
well-described behaviors, including egg-protect-
ing maneuvers famously described by Karl Lo-
renz, are sexually dimorphic. These discoveries
were based on human observations performed
either directly or through recordings. Several
methodologies were designed to account for the
limits of human abilities (Martin and Bateson
1994). To obtain more detailed observations, an
investigator could use “ad libitum” sampling and
note down whatever is visible or relevant during
an observation period. This approach provides
flexibility to record unusual behaviors, but is
prone to overlooking subtle responses, especially
in a group setting (Bernstein 1991).

An alternate approach is scan sampling, in
which individuals are observed at brief, regular
intervals and the observer uses a defined list of
behaviors to record. Scan sampling allows for the
monitoring ofmultiple individuals but at limited
depth. Furthermore, the brief scans will usually
miss infrequent behaviors. Focal sampling, in
which the investigator focuses observations on
a single individual, is more conducible to detect-
ing rare behaviors. Similar to scan sampling, the
behaviors to be scored are decided in advance,
and in laboratory settings the focal animal is
usually visible for the entire observation period.
If combined with video recordings, it is possible
for an investigator to intensively observe behav-
ior from multiple individuals interacting at the
same time. However, this approach is laborious,
as the investigatormust score the same recording
multiple times, each time focusing on a different
individual. Although it is usually possible for
multiple observers to be trained to score behav-

B.C. Trainor and A.L. Falkner

4 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a039164

Laboratory Press 
 at CALIFORNIA-DAVIS on October 4, 2021 - Published by Cold Spring Harborhttp://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


ior with high reliability, there is a limit to what
canbe realistically expected fromhumanobserv-
ers. In addition, some interactions between indi-
viduals may occur synchronously and may not
be readily identified by observers focused on in-
dividual actions rather than those of a group or
pair. Thus, even heroic efforts on the part exper-
imenters using existing methods are likely to
miss important behavioral sex differences that
could potentially provide significant insights
into observed neural differences. The adoption
of semi-automated and automated methods for
behavioral capture, including behavioral “pose”
tracking, could add a new level of rigor to behav-
ioral analyses that can identify newbehavior pat-
terns or overlooked sex differences.

Semi-Automated and Automated Methods

One of the first forms of automated behavioral
tracking was computerized tracking of beam
breaking as a measure of general locomotor “ac-
tivity.” This allows monitoring of more individ-
uals over a longer period of time.One example of
a sex difference in locomotor behavior is seen in
response to pharmacological compounds. Fe-
male rodents show an exaggerated locomotor
response to cocaine compared to males (Roth
and Carroll 2004; Van Swearingen et al. 2013),
a difference that appears to be established before
birth (Forgie and Stewart 1993). The develop-
ment of commercial video tracking systems led
tomorewidespreaduseof computerizedanalysis
of behavior as it allows more flexibility in the
types of apparatuses that can be used and for
more parameters to be quantified. One useful
variable is path length, which is laborious to cal-
culate by eye and provides a more accurate mea-
sure of search strategy in learning and memory
tests such as the water maze. For example, al-
though male rats took shorter paths to reach
the hidden platform than females, this difference
was eliminated if rats were given an initial train-
ing session to familiarize them with the require-
ments of the water maze tests (Perrot-Sinal et al.
1996). One drawback to video tracking methods
is that subtle or complex behaviors can be diffi-
cult to detect when data collection is limited to
x, y coordinates.

Although human-driven behavioral annota-
tion of more subtle or complex behaviors re-
mains a staple of behavioral analysis, the ability
to speed up this process has been assisted by
several pieces of software that facilitate video
“tagging,” including open source options like
the Behavioral Observation Research Interactive
software (Friard and Gamba 2016). These soft-
ware suites enable users to examine video frame-
by-frame and “tag” relevant behavioral mo-
ments (e.g., the onsets andoffsets of user-defined
behaviors). However, for aggressive behaviors,
there is significant variability in how individuals
score behaviors (Segalin et al. 2020). Further-
more, this approach is time consuming and relies
on behavior patterns defined by the experiment-
er, which themselves may be biased. Thus, these
methods may be less conducive for discovering
novel behaviors or sex differences.

A significant advance in our ability to quan-
tify complex behavior arrived in the formof pose
tracking, inwhich specific body parts are tracked
to define behavioral patterns. Although tracking
the pose of individuals is not a new idea (Marr
and Nishihara 1978), the ability to do it reliably,
inexpensively, and with limited computational
knowledge, is novel. Motivated by significant re-
cent advances in automated video analysis, in-
cluding the use of trained “deep” convolutional
neural networks to reliably identify the content
of an image, these methods have revolutionized
the ability of researchers to study animal behav-
ior in the laboratory and beyond (Graving et al.
2019; Li et al. 2020). In particular, machine-
learning-based methods, including user-friend-
ly software such as DeepPoseKit, LEAP, Deep-
LabCut, or MARS, allow users to perform auto-
mated detection of user-defined points (e.g., the
forelimb or nose of a mouse) across frames of a
given video data set (Mathis et al. 2018; Graving
et al. 2019; Pereira et al. 2019; Segalin et al. 2020).
These algorithms rely on a user-generated train-
ing data set, in which the user labels relevant
body parts (e.g., an animal’s forelimb or nose)
in a subset of videos to train the algorithm. After
training, the algorithm can then detect the pres-
ence or absence of those selected features in the
remaining data set. Depending on the video
quality and the discriminability of the features
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being tracked, pose tracking canbe implemented
with little or no algorithmic “proofreading,” the
process of iteratively refining the model. Impor-
tantly, the use of these methods is scalable. With
previous methods, manually tracking multiple
features or even multiple animals significantly
increases the time cost to the experimenter.
However, the use of automated pose-tracking
approaches allows the application of large num-
bers of labels to an ever-expanding video data
set.An important point tonote is that pose track-
ing, which ultimately results in a time series of
spatial locations of desired body parts, may not
directly yield usable behavioral data. Instead,
these spatial locations are often first converted
into relevant features that represent specific rela-
tionships between individual points (e.g., the
nose-to-nose distance between two interacting
rodents).Toextract additionalmeaningful infor-
mation from pose-tracking data, either super-
vised or unsupervised classification strategies
based on the fields of statistics and machine
learning can be applied. Several excellent recent
reviews thoroughly outline how these methods
may be used to quantify behavioral dynamics
(Mathis et al. 2020; Pereira et al. 2020), but we
will summarize their use briefly here.

Supervised strategies, including behavioral
classification, are frequently used to identify in-
stances of a behavior in a larger data set. These
strategies rely on a user-generated ground truth,
in which an expert labels instances of a user-
specified behavior (e.g., are mice fighting in
this frame?) to train the algorithm to link specific
poses with these behaviors on a frame-by-frame
basis. Recent examples of this method used sup-
port vector machines and random forest classi-
fication to assist in identifying instances of user-
defined behaviors from pose-tracking data
(Nilsson et al. 2020). A strength of this method
is that, because the user defines the behaviors to
be tracked, the end data are straightforward to
interpret. For example, the frequency, bout
length, or duration of a particular behavior can
be compared in two groups. However, this
strength is also a constraint: detected behaviors
are limited to what the user has already specified
as being important, which precludes the ability
to identify novel behavioral patterns. For exam-

ple, some sex differences in behavior may lie
outside our expectations (e.g., darting behavior).
A second drawback to these strategies is that they
perform poorly in situations in which data are
limited or behaviors of interest are extremely
rare or ambiguously defined by the user. There-
fore, additional methods may need to be used
that allow for the identification of “new” behav-
iors.

Unsupervised methods, which infer the
structure of the data without ground truth la-
beled outputswill likely yield additional insights.
Although supervisedmethods excel at extracting
patterns to assist in identifying the “known un-
knowns,” unsupervised methods can be used in
parallel to identify behaviors that might have
been missed by experimenters (the “unknown
unknowns”), or to identify latent structure in
the data. Successful examples of this approach
are beginning to emerge using pose-tracking
data as the input. For example, using a nonlinear
embeddingapproachonpose-trackingdata from
freely moving individuals revealed interpretable
behavioral “clusters” (Berman et al. 2014; Kli-
baite et al. 2017), inwhich each cluster represent-
ed an identified behavior (e.g., “turning left” or
“grooming”). Other clusters may represent be-
havioral states (e.g., two individuals interacting
socially are at a specific distance and orientation
relative to eachother) thatmaynot, to thehuman
observer, initially appear to be distinct “behav-
iors.”However, further analysis could prove that
motor patterns identified by unsupervised anal-
yses may, in fact, be informative about the inter-
nal state of the animals or how they pattern their
next choice of behavior. Open source tool kits,
includingB-SOiD, havemadeunsupervised data
explorationmore tractable for the end user (Hsu
and Yttri 2021). In head-fixed preparations for
imaging and electrophysiology, high-speed vid-
eo of the face and body is often collected along-
side neural data. Significant progress has been
made using supervised and unsupervised ap-
proaches to detect signatures of facial expression
or emotional state (Khan et al. 2020; Dolensek
et al. 2020), which previously could only be iden-
tified with painstaking frame-by-frame analysis
by human observers (Grill and Norgren 1978).
However, even with these automated methods,
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sex differences are rarely reported. Given the
strong evidence for sex differences in physiolog-
ical and behavioral responses to stress (Laman-
Maharg and Trainor 2017), it seems likely that
males and females could differ in the use of facial
expressions.

Although these tools provide new ways to
discover new behaviors, scientists with strong
training in behavioral analyses are still needed
to assess the importance of motor patterns iden-
tified by unsupervised methods and design ex-
periments to determine their function.

INCORPORATING MULTIMODAL DATA
STREAMS

Of course, not all behavior is detectable bodily
movement. Other multimodal data streams can
be integrated with pose tracking to create amore
holistic picture of behavior. Some forms of com-
munication, for example, are nearly impossible
to detect through limb tracking (although they
might be related). For many rodent researchers,
recording ultrasonic vocalizations (USVs) has
revealed critical insights about courtship, paren-
tal, and prosocial behaviors (Holy and Guo
2005). In addition to auditory streams of data,
other important behavioral variables, including
changes in body temperature (using tempera-
ture-sensitive cameras) or odor profile (using a
photoionization detector) can be integrated
with ongoing movement detection to provide
additional behavioral context.

In addition to their use in video data, super-
vised and unsupervised strategies have also been
successfully applied to the detection and seg-
mentation of “big” audio data, in particular to
the identification of rodent calls (Van Segbroeck
et al. 2017; Coffey et al. 2019; Vogel et al. 2019).
For communication signals emitted in groups of
animals, experimenters have to solve two specific
problems: (1)What is the call being emitted (call
classification), and (2) Who is making this call
(call identification)? These problems pose
unique challenges because audio data is fre-
quently collected from multiple spatially sepa-
rated microphones, and because calls are made
during social interactions, communication sig-
nals areoftenoverlapping frommultiple individ-

uals, making it difficult to determine which in-
dividual is vocalizing.

For call classification, using a combination
of manual call identification, supervised classi-
fied calls, and unsupervised classified calls, the
full repertoire of rodent communication signals
is starting to emerge. Although some algo-
rithms for USV segmentation (e.g., Deep-
Squeak and MUPET) use the acoustic features
of the audio signal to classify or segment the
sound, use of variational autoencoders to define
a latent space (a lower dimensional representa-
tion of the highly complex acoustic spectro-
gram) can be used to directly compare these
models (Goffinet et al. 2021). These models
have converged on a common set of vocal syl-
lables that make up the full mouse vocal reper-
toire, which allow the content of calls to be
compared between males and females. The abil-
ity to classify the content of calls can now be
combined with positional information or pose-
tracking data captured by video to allow record-
ed calls to be “assigned” to an individual. These
data, combined with behavioral analysis de-
scribed above, further allows additional insights
about which behaviors are correlated with spe-
cific vocalizations.

Vocal communication in rodents and birds
has long been believed to be strongly sexually
dimorphic, with females vocalizing rarely, if
ever. However, use of more unbiased methods
for audio analysis combined with positional in-
formation has revealed that female mice, rather
than being silent recipients ofmale communica-
tive signals, are active participants (Neunuebel
et al. 2015), in some cases contributing nearly
20%of the total vocalizations.Adetailed analysis
of the structure of female calls shows that theyare
largely similar to the calls of the male (Ham-
merschmidt et al. 2012), but are more likely to
call to other females than to males. This second
look at the prevalence of female song in rodents
is echoed in recent work in birds, which suggests
that birdsong in many species is not only preva-
lent in females, it is conserved across species
(Odom et al. 2014). This finding represents a
good example of how use of an unbiased behav-
ioral lens to look at sex differences decreases the
size of an assumed sex difference.
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AUTOMATED BEHAVIORAL PHENOTYPING
TO ASSESS INTERNAL AND AFFECTIVE
STATES

The use of machine-learning approaches to be-
havioral analysis can be used not only to assess
differences in moment-to-moment behaviors,
but also to make predictions about an individu-
al’s internal or affective state. Sex differences in
these metrics of well-being have already been
observed using automated and semiautomated
methods. For example, acute behavioral pheno-
typing in the home cage shows sex differences in
the stress responses of mice, in which females
show more depression-like phenotypes than
males such as reduced grooming and general
activity (Goodwill et al. 2019). These effects
were reversed by antidepressant treatment and
echoed more traditional tests of rodent depres-
sion-relatedbehavior such as sucrose anhedonia.
In a more long-term experiment, full-time “24/
7”monitoringofmiceofbothsexes in theirhome
cages across long timescales reveals sexdifferenc-
es in how individuals respond to a cage change
stress, withmales showing amore variable stress
response to cage changing (Pernold et al. 2019).
Thesemethods can also be used to further quan-
tify individual variabilitybothbetweenandwith-
in sexes. Such “behavioral phenotyping” has
been recently used in fish and mice to quantify
individual differences in behavior in response to
various pharmacological perturbations (Hoff-
man et al. 2016; Wiltschko et al. 2020) and can
be further extended to look at sex differences.

Understanding sex differences in theway in-
dividuals respond to stress is critical for develop-
ing behavioral methods to evaluate affective
state. In several species of rodents, both males
and females show strong approach responses to
an unfamiliar social context (Duque-Wilckens
et al. 2016; Yohn et al. 2019). The most widely
used method to measure this response is a social
interaction test (Fig. 1A) in which an unfamiliar
target mouse is placed into a small wire cage and
the time the focal mouse spends near this cage is
quantified (Golden et al. 2011). This single ap-
proach to capturing the stress response is likely
insufficient to capture behavioral variability
across sexes. Exposure to social stressors (in the

form of aggressive interactions) can induce dif-
ferent behavioral phenotypes in males and fe-
males. In California mice (Peromyscus californi-
cus), three brief episodes of social stress exposure
reduces social approach in females but notmales
(Trainor et al. 2011, 2013). If a large arena is used
for testing, additional behaviors can be observed.
When there is more space, stressed females ori-
ent toward the target mouse while simultane-
ously avoiding it, a response referred to as social
vigilance (Duque-Wilckens et al. 2018). Social
vigilance appears to function as a risk-assess-
ment behavior in adverse or changing social en-
vironments (Wright et al. 2020).

Like darting behavior, social vigilance was
largely discovered by accident. Heat maps pro-
duced from social interaction tests indicated that
many stressed females would spend large
amounts of time in the center of the arena (Fig.
1B; Greenberg et al. 2014). Initially this finding
was baffling, because anxiety-like states are asso-
ciated with decreased time spent in the center of
an open field. Only after measuring several dif-
ferent variables produced by computer tracking
software was it discovered that stressed females
were orienting to a stimulus mouse while simul-
taneously avoiding it (Fig. 1B). In California
mice, social stress exposure induces an enduring
increase in social vigilance in females but not
males 2 weeks later. The neural circuitry for so-
cial vigilance is intact inmale Californiamice, as
it is observed immediately after an episode of de-
feat. However, this effect is transitory (Duque-
Wilckens et al. 2020). Social vigilance has also
been observed in stress models using C57Bl/6J
mice. In one approach, sexually experienced
CFW females reliably showed aggression toward
femaleC57Bl/6J in a resident-intruder test (New-
man et al. 2019). C57/Bl6J females exposed to 10
such episodes of defeat showed reduced social
contact in thehomecage and increased social vig-
ilance in an unfamiliar arena. In the unfamiliar
arena, inclusion of social vigilancewas important
because standard measures of time spent in an
interaction zone did not differ between control
and stressed females. In an alternative approach,
male or female C57Bl/6J observes another male
experience social defeat (Warren et al. 2020).This
vicarious exposure to defeat stress induces social
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vigilance in both male and female C57Bl/6J, but
the effect is significantly stronger in females
(Duque-Wilckens et al. 2020).

This serendipitous discovery of social vigi-
lance suggests that more holistic, quantitative
descriptions of behavior could generate signifi-
cantlymore insight than the standard single-var-
iable measure of affective state or stress response
(e.g., measures of time spent in an interaction
zone). Machine-learning approaches could
open new doors for identifying important sex
differences in behavioral responses to stress. Be-
cause paradigms including chronic social defeat
and social interaction tests have been widely ap-
plied, standardization across laboratories in how
behaviors are quantified and scored could gen-
erate new opportunities for generating large data
sets that could be directly compared. For exam-
ple, if video recordings were standardized, pose
tracking could be used in a consistent way across
laboratories and fed into either supervised or
unsupervised algorithms to identify specific be-
havioral patterns that differ between sexes (Fig.
1C). Although social approach and vigilance can
be quantified using comparatively simple video
tracking software that tracks both the head and
thebase of the tail, other behaviorsmaybe subtle.
For example, rodents respond to both predators
(Hubbard et al. 2004) and social threats
(McCann and Huhman 2012) with a “stretch-
attend”posture inwhich the individual crouches
to reduce visibility and slowly approaches the
threat. Stretch-attend is traditionally scored by
trained observers and is more easily quantified
from a side view versus the overhead view that is
more typically used in social interaction tests.
Deep-learning approaches that track multiple
body points (Mathis et al. 2018; Pereira et al.
2019), combined with machine-learning tools
(Sturman et al. 2020), are better suited to detect-
ing these posture-specific behavior patterns than
standardized video tracking systems.

MAPPING SEX DIFFERENCES IN BEHAVIOR
TO SEX DIFFERENCES IN THE NERVOUS
SYSTEM

Comprehensive, quantitative descriptions of be-
havior can generate hypothesis for the neural

mechanisms that underlie putative differences.
For example, sex differences in behavior can oc-
cur on a spectrum from completely binary in a
single behavior, to extremely subtle and across a
diverse set of behaviors. Knowledge about effect
sizes across a range of behaviorsmay give clues to
theneuralmechanismunderlying thedifference.

When behaviors appear to have a bimodal
distribution, that may indicate that one sex
completely lacks the ability to perform this be-
havior, and clear sexual dimorphism might be
observed in motor processing circuits. This is
the case in some species of frogs in which males
but not females use advertisement vocalizations
to attract females and competewith othermales.
In African clawed frogs, the motor neurons and
muscle fibers that control vocalizations are an-
drogen-sensitive, and increased androgen levels
during puberty are essential for normal develop-
ment of the laryngealmuscles required for vocal-
izations (Tobias et al. 1993; Emerson and Boyd
1999). However, careful analysis revealed that in
some species of frogs, females also produce
advertisement calls (Kelly 1993; Emerson and
Boyd 1999). The mechanisms for advertisement
calls in females have been understudied (Wil-
czynski et al. 2017). A potentially important
neuropeptide is arginine vasotocin, which can
induce advertisement calls in female tree frogs
even in the absence of androgen treatment
(Penna et al. 1992). Although these calls have
different frequencies than those of males, this
example shows the importance of considering
both sexes, even in cases inwhichbehavioratfirst
glance appear to be strongly sexually dimorphic.

However, for most sex differences in behav-
ior there is continuous variability in frequency,
intensity, or duration. One example is aggres-
sion. Despite the fact that in most species, males
aremore aggressive than females, this appears to
be a matter of degree and not kind. Although
males are in factmore aggressive inmost species,
female aggression is often displayed in different
contexts. Instead, female aggression is most fre-
quently displayed during lactation. Key brain
areas for patterning aggressive motivation and
action, including the ventromedial hypothala-
mus, ventrolateral area (VMHvl), and the peri-
aqueductal gray (PAG), appear to be largely
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similar in males and females (Lin et al. 2011;
Hashikawa et al. 2017; Falkner et al. 2020).
Rather than showing large structural differ-
ences, aggression circuits instead appear to dif-
fer in the number of neurons that are coactivated
by same- and opposite-sex social partners. Al-
though males have a “shared” population of
VMHvl neurons that responds to both male
and female conspecifics, VMHvl neurons in fe-
males that respond to males and females are
functionally and anatomically separated (Falk-
ner et al. 2014; Hashikawa et al. 2017). These
subtle, yet critical differences may underlie sex
differences in when and how aggression is de-
ployed by changing how sensory information is
integrated within these circuits.

There can also be sex differences in howneu-
ral circuits respond to the environment, rather
than in the neural circuits that directly produce
behavior. Forexample, analyses ofneural circuits
modulating social approach in California mice
reveal few sex differences. In unstressed males
and females, oxytocin receptors within the nu-
cleus accumbens (Williams et al. 2020) and va-
sopressinV1a receptors in the bed nucleus of the
stria terminalis (BNST) promote social ap-
proach. Indeed, across numerous analyses of
gene expression or neuropeptides in the nucleus
accumbens (Campi et al. 2014) and BNST
(Greenberg et al. 2014; Duque-Wilckens et al.
2016, 2018; Steinman et al. 2016), few sex
differences are observed. However social defeat
induces sex-specific effects in these circuits
(Steinman et al. 2019). For example, social defeat
increases oxytocin synthesis as well as the reac-
tivity of oxytocin neurons within the BNST
(Steinman et al. 2016). Oxytocin synthesis in
the BNST is necessary for stress-induced vigi-
lance in female California mice, whereas oxyto-
cin infusions into the BNST are sufficient to in-
crease vigilance and reduce social approach in
both males and females (Duque-Wilckens et al.
2020). Thus, it appears that a sex difference in
the effects of stress on oxytocin neurons within
the BNST drives sex differences in social ap-
proach and vigilance. Sex differences in tran-
scriptional responses to social defeat have
also been observed in the nucleus accumbens
(Hodes et al. 2015; AVWilliams et al., in prep.).

These sex-specific effects of stress on tran-
scription within the brain contribute to impor-
tant sex differences in behavioral responses
following stress.

Beyond looking for “which” brain regions
might have a role in mediating sex differences,
comprehensive behavioral phenotypingwill also
allow us to assess “when” sex differences in be-
havioroccurs. Sex differences in behaviormaybe
seasonal (Henningsen et al. 2016) or may have
different trajectories of expression across the life
span (Schulz and Sisk 2016; Choleris et al. 2018).
Collecting video data at different time points is
now relatively low cost, and may reveal new in-
sights about development.

CONCLUSION: SEX DIFFERENCES ARE
“INDIVIDUAL” DIFFERENCES

The arc of neuroscience research is starting to
bend back toward behavior. The development
and distribution of new tools for animal pose
tracking, in conjunction with the ability to re-
cord and integrate other multimodal streams of
information, now allow us to capture a more
holistic picture of animal behavior in the labora-
tory than has ever been possible. Broad access to
these tools and the adoption of evolving strate-
gies for analyzing these data may propel the next
generation of neuroscientific researchers to fully
characterize behavior, including sex differences
in behavior, before launching a study. Not only
will this approach yield novel behavioral in-
sights, enabling the discovery of new behaviors
and internal states, it will prevent potential ex-
perimental pitfalls, including oversimplistic sin-
gle-variable readouts for complex states. Last,
understanding the richness of behavioral vari-
ability (individual differences) is a long sought-
after experimental goal. The quest to understand
sex differences in behavior should be framed in
this light, rather than in the rather narrow and
often inaccurate confines of “maleness” and “fe-
maleness.”Striving to constantlyand thoroughly
evaluate population-wide individual variability
in behavior will pay dividends in the ability to
interpret neuroscientific data, and to design in-
sightful behavioral readouts of complex internal
and affective states.
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