
UC Davis
UC Davis Previously Published Works

Title
FPGA versus GPU for Speed-Limit-Sign Recognition

Permalink
https://escholarship.org/uc/item/8ww3d2gg

Authors
Yih, Matthew
Ota, Jeff
Owens, John
et al.

Publication Date
2018-09-09

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8ww3d2gg
https://escholarship.org/uc/item/8ww3d2gg#author
https://escholarship.org
http://www.cdlib.org/

FPGA versus GPU for Speed-Limit-Sign Recognition

Matthew Yih∗1, Jeffrey M. Ota2, John D. Owens1, and Pınar Muyan-Özçelik∗3

Abstract— We implement a speed-limit-sign recognition task
using a template-based approach on the FPGA using the Intel
FPGA SDK for OpenCL. Then we evaluate its throughput,
power consumption, accuracy, and development effort against
a GPU implementation that is based on a system presented in
our previous study. This paper also discusses implementation
differences between the FPGA and GPU systems, provides a
methodology for translating the GPU system to the FPGA
system, and explains optimizations used in the FPGA version.
While implementing the FPGA system, we build an efficient
FFT engine for image processing on the FPGA which can
be utilized by other developers to perform related tasks. In
this paper, we also provide our insights on building the FPGA
versus GPU system, which we hope can be useful for designing
upcoming versions of FPGA-focused OpenCL development
environments. We conclude that the FPGA implementation
provides better power consumption for the same detection
accuracy, while the GPU supports better programmer efficiency.

Index Terms— FPGA, GPU, Autonomous Vehicle, FFT,
Speed-Sign detection

I. INTRODUCTION

As self-driving cars are becoming a reality, we increas-
ingly see a need for efficiently implementing different types
of autonomous driving (AD) tasks. Most AD applications
require high efficiency (e.g., image processing applications
such as road sign recognition). This efficiency can be
achieved by heterogeneous computing systems that provide
parallel processing. Heterogeneous computing provides dif-
ferent software and hardware alternatives for implementing
AD tasks. Hence, understanding advantages and trade-offs
of these alternatives is essential for implementing efficient
AD applications.

GPUs are frequently used in heterogeneous systems to
provide the desired parallel processing power. More recently,
FPGAs are proving to be competitive in some aspects,
especially in energy efficiency. As high-level programming
tools for FPGAs such as OpenCL [11] began to mature,
FPGA programming effort may become comparable to that
of GPU programming.

This paper presents a system-level evaluation of building
an FPGA platform for an autonomous driving task that
involves image processing and compares the performance

∗Corresponding authors
1Matthew Yih and John D. Owens are with the Department of Electrical

and Computer Engineering, University of California, Davis, CA 95616
{myih,jowens}@ucdavis.edu

2Jeffrey M. Ota is with the Autonomous Driving and
Sports Research Group, Intel Labs, Santa Clara, CA 95054
jeffrey.m.ota@intel.com

3Pınar Muyan-Özçelik is with the Department of Computer Science, Cal-
ifornia State University, Sacramento, CA 95819 pmuyan@csus.edu

of this FPGA implementation to that of the GPU implemen-
tation. Specifically, we have implemented a template-based
speed-limit-sign recognition algorithm using OpenCL on an
FPGA and compared it with the CUDA [13] implementation
of the same algorithm running on a GPU. We discuss the
implementation differences between the FPGA and GPU sys-
tems that stem from architectural differences as well as the
optimizations used in the FPGA, which present understudied
areas of research in the field as will be further explained in
Section II. While discussing the implementation differences,
we also provide the design flow to translate a GPU/CUDA
system to an FPGA/OpenCL system. The methodology can
be utilized by future studies that require similar translation.
Then, we compare the performance and trade-offs of the
FPGA and GPU implementations in terms of throughput,
power consumption, accuracy, and development effort. We
choose these performance indices because throughput rep-
resents the computing ability of the real-time AD system;
power consumption is an essential attribute for AD tasks
as the power on a vehicle is limited; accuracy verifies the
correctness of the systems (i.e., with the same approach and
same dataset, we should achieve similar accuracy results);
and development effort reflects the time and cost required
to build such a system. In order to provide a thorough
power comparison, we report not only the whole PCIe card
power as in previous studies, but also the processor’s power
which eliminates power overhead from the board. We believe
comparing the processor power is meaningful since it scales
up proportionally as the design grows larger.

While developing the FPGA implementation, we have
realized that currently there is no efficient FFT library for
image processing on FPGAs. Hence, we improve Intel Al-
tera’s OpenCL FFT design to build an efficient FFT engine.
This engine can be utilized by other developers to perform
image processing tasks. In this paper, we also provide our
insights on building the FPGA versus GPU system, which we
hope can be considered while designing upcoming versions
of FPGA software development kits.

To sum up, contributions of this study include: comparing
the difference between the implementation and performance
of the FPGA system and that of the GPU system; developing
a methodology to translate a GPU/CUDA system to an
FPGA/OpenCL system; building an efficient FFT engine
for image processing using OpenCL; and providing our
recommendations on the Intel FPGA SDK for OpenCL based
on our experience.

The remainder of this paper is organized as follows:
Section II briefly reviews related work which is followed
by the presentation of background in Section III. Section

IV provides implementation of our systems and the design
flow we use to translate the GPU/CUDA system to the
FPGA/OpenCL system. This section also explains optimiza-
tions used in the FPGA system and introduces the efficient
FFT engine we develop. Next, experimental settings, results,
discussion, and insights (Section V), are given. Finally, we
conclude in Section VI.

II. RELATED WORK

The template-based speed-limit-sign recognition approach
we utilize in this study is based on our previous work [12],
which performs a GPU-based real-time recognition with
limited hardware and power. By performing a series of
correlations in the frequency domain, this approach achieved
real-time speed-sign detection and classification on a low-
end GPU with over 90% accuracy on 45 minutes of video
footage. In this study, we have updated the GPU implemen-
tation presented in our previous work to make it compatible
with the newer GPU architecture and latest CUDA version.
Our FPGA implementation is also using the template-based
approach presented in this prior work (which we detail in
Section IV).

OpenCL-related development tools for FPGAs are rela-
tively new and are growing to maturity only in recent years.
Hence, only a limited number of related studies compare
GPU and FPGA programming approaches that use high-level
development tools. One such study is presented by Zohouris
et al. [15], who present a comparison between GPU and
FPGA using the Rodinia benchmark suite [1] programmed
in CUDA and OpenCL, respectively. By optimizing OpenCL
code for the FPGA, they achieved 3.4 times better power
efficacy using an Intel Altera Stratix V in comparison to an
NVIDIA K20c. Their focus of power and performance on
the FPGA versus GPU is similar to our study. While they
used open-source benchmarks designed for heterogeneous
computing and focused on numbers, we instead deploy an
autonomous vehicle application with contexts and scenarios
as benchmarks and address how to construct such a platform
in detail.

III. TECHNICAL BACKGROUND

Real-time object recognition is one of the fundamental
functions of autonomous vehicle systems as it is the main
input to the system to collect information from the real world.
In this work, we focus on a template-based speed-limit-
sign recognition algorithm and implement it on two different
types of platforms. In this section, we provide background
on template-based speed-limit-sign recognition and the Intel
FPGA SDK for OpenCL platform.

A. Template-Based Real-Time Speed-Limit-Sign Recognition

This speed-sign-recognition approach uses speed-sign im-
ages as templates and computes a series of correlations
between these templates and input frames in the frequency
domain. FFT correlation is done by taking the FFTs of
both the template and input frame, then multiplying the
complex conjugate of both, then performing inverse FFT

Fig. 1. Speed-sign recognition pipeline

on the result. Matching in the frequency domain allows
us to compute the result with only one FFT multiplication
as opposed to performing matching in the spatial domain,
which involves several convolution-type operations. Hence,
performing matching in frequency domain is efficient and
fits the requirement of low-power and real-time processing.
Another benefit of FFT correlation is that it allows us to
perform additional processing to improve matching (e.g., kth-
Law).

The template-based speed-sign-recognition pipeline pre-
sented in our prior study [12] has pre-processing, detection,
classification, and temporal integration stages, as illustrated
in Fig. 1. The computation-intensive stages are the detection
stage and the classification stage. In the detection stage, we
use speed-limit signs 00 and 100 to generate a composite
template to detect two-digit and three-digit speed signs. The
detection stage returns the position of the potential speed-
limit sign position. Then, based on that information, the
region of the image will be passed to the classification stage.
The classification stage has a different set of composite
templates consisting of all possible speeds to recognize the
specific number. When consecutive frames output the same
classification result, the system will conclude that the result
is valid.

The template-based pipeline returns a 90% accuracy with
no false positives. With video size of 640x240, it yields real-
time performance of 18 fps on low-end GPU GeForce 9600M
GT.

B. Intel FPGA SDK for OpenCL

OpenCL is a cross-platform API for writing programs
for heterogeneous computing devices such as CPUs, GPUs,
FPGAs, and the like. Unlike CUDA, which only targets
NVIDIA GPUs, OpenCL does not target any specific vendor
or hardware type and allows developers to migrate their
designs from one type of OpenCL-compatible hardware to
another with minimal modification.

The Intel FPGA SDK for OpenCL is a C-based program-
ming suite that compiles OpenCL kernel code to an FPGA
bitstream without having to program in a low-level language
such as Verilog. The OpenCL execution model for Intel
FPGA is illustrated in Fig. 2.

Multi-threading is an important part of the OpenCL pro-
gramming model and it is implemented differently on FPGAs
as opposed to GPUs. Because of the nature of FPGAs, it is
not realistic to run a massive number of parallel threads on
FPGAs in the same way as on GPUs. The Intel FPGA SDK

Fig. 2. Intel FPGA SDK for OpenCL execution model

issues the threads iteratively through the kernel pipeline to
save hardware resources and achieve pipeline parallelism.
Full parallel computing across threads is still possible by
making duplicate computing units in the expense of hardware
resources. Another major difference of the Intel FPGA
SDK from GPU SDKs is the channel function. The Intel
FPGA SDK allows kernels to communicate with each other
through predefined channels, which eliminates the latency of
reading and writing data to global memory. Similar kernel
communications are very limited in a GPU implementation.

In summary, writing an OpenCL program based on an ex-
isting CUDA program and targeting FPGA is not a straight-
forward task because these two are running on different
execution models at instruction level. Therefore, programs
cannot be transformed into OpenCL mechanically. In order
to optimize the FPGA’s energy consumption and computing
efficiency, we need to have smartly written OpenCL kernels
that are dedicated to achieve these goals.

More details on multi-threading, channels, and writing
FPGA-efficient OpenCL code are presented in Section IV.

IV. APPROACH AND IMPLEMENTATION

We modify the template-based speed-limit sign recogni-
tion implementation presented in our previous study [12]
to make it compatible with the NVIDIA GTX1060 GPU
and CUDA 9.0. We also implement the same approach on
an Intel Arria 10 GX FPGA using the Intel FPGA SDK
for OpenCL 17.1. Both implementations are developed on
Windows OS and used an Intel Core i7 CPU as the host
device. For our comparison, we choose to use the Arria 10
and GTX1060 due to their following similarities: they are
both mid-range models in their product lines and both PCIe-
based. To implement the same approach on the FPGA, we
need to translate kernel code from CUDA to OpenCL. If the
OpenCL code would also need to be run on the GPU, this
translation would be simple and intuitive. However we need
to run the OpenCL code on the FPGA, which complicates
the translation of the kernel code: due to the architectural
differences between the devices, such as the number of

processing cores and memory model, optimized code for the
GPU will not be efficient on the FPGA and vice versa. Our
design and optimization of FPGA kernels are presented in
the following subsections. We also provide implementation
details of the efficient FFT engine we have developed at the
end of this section.

A. Design flow

Our design flow of translating the GPU/CUDA system to
FPGA/OpenCL system is shown in Fig. 3. Image processing
kernels written in CUDA aim to use massive parallelism,
which might be inefficient for the FPGA due to architec-
tural differences. According to Intel’s programming guide,
because of the FPGA architecture, the FPGA is most suitable
for coarse-grained parallelism in complex applications. We
rewrite the kernels in a serial fashion for the first step. For
example, a parallel reduction for finding a maximum value
would be an inefficient algorithm on the FPGA since half of
the hardware resources are not used on every new iteration.
Thus, the kernel should be rewritten to use multiple linear
search kernels to better suit the FPGA, as implemented in
our design. In addition to reduction, we rewrite other kernels
which perform complex point multiplication (used in FFT
multiplication), kth-Law (used to improve template matching
performance), and conversion between char4 and float types
(used in the pre-processing stage). We change the kernel
execution model from parallel execution to serial execution
of multiple copies while the arithmetic operations remain the
same.

CUDA code that runs on the GPU and OpenCL code
that runs on the FPGA can be called by the same host
and executed on both devices simultaneously. This allows
us to conduct the conversion from CUDA to OpenCL one
kernel at a time, which simplifies the development process.
Frequent modification may be needed during the early phase,
and compiling for the FPGA may take hours each time. Thus,
we use the emulator provided by the SDK to test functional
correctness. The emulator emulates the FPGA’s behavior on
the CPU, which allows us to check functional correctness
without waiting hours for compilation of FPGA bitstreams.
However, the emulator provided in the SDK version that
we use has several potential shortcomings: it cannot emulate
concurrent memory accesses, the autorun function does not
work correctly, and an NDRange-launched kernel will not
release memory. We need to run the program on the FPGA,
instead of the emulator, to handle these problems.

B. Kernel optimization

The FPGA has limited hardware resources for kernels
w.r.t. the GPU. For a real-time application, run-time recon-
figuration is not an option since it takes several seconds
to finish. Thus, hardware resources should be assigned to
each kernel with a balanced load. In order to get the best
performance out of limited resources, we should improve
the performance of the bottleneck kernel.

There are two major techniques to improve performance
of FPGA kernels, namely vectorization and multiple com-

Fig. 3. Converting CUDA/GPU design to OpenCL/FPGA

pute units. Vectorization is done by specifying attribute
“num simd work items”, which allows the compiler to treat
the datapath and arithmetic operations as vector opera-
tions and thus perform computation in SIMD fashion. This
should be done whenever it is possible as this can in-
crease performance with minimal hardware usage. Multiple
computing units can be achieved by specifying attribute
“num compute units” or manually writing multiple kernel
copies under different names. By making multiple kernel
copies, the computation runs in parallel, and can have a
speed-up of N for N kernel copies before the bandwidth
reaches the limit.

In our FPGA system, vectorization does not benefit our
kernels much because a single task kernel is more efficient in
our application, and vectorization requires an NDRange ker-
nel. On the other hand, two copies of complex-multiplication
kernels allow the throughput to increase by 96% and four
copies of linear search kernels allow the throughput to
increase by 280%.

There are several other techniques programmers can do
to optimize performance and resource usage, such as loop
unrolling, avoiding nested loops, eliminating data dependen-
cies when possible, utilizing on-chip memory, and taking
advantage of dedicated hardware like accumulators (available
in Arria 10 and newer Intel FPGAs).

C. 2D FFT engine for Image processing

FFT processing is widely used in CPU/GPU systems; thus,
several libraries support CPUs/GPUs such as FFTW [5],
cuFFT [3], and clFFT [2]. Because GPUs mostly deal with
image processing, these libraries naturally have optimized
algorithms for image-processing-related FFT operations. On
the other hand, the existing FFT engines for the Intel FPGA

Fig. 4. Intel design example 2D FFT

that come from Intel Altera IP cores and are used in
OpenCL design examples [8] are not specifically designed
for 2D real-time image processing. Though clFFT is an FFT
library designed for OpenCL, it targets GPUs only and is
not targetable to an FPGA. We addressed this problem by
building an FFT engine that performs efficient FFT for image
processing with reasonable hardware usage and comparable
throughput to GPU implementations.

Based on the radix-2k FFT architecture proposed by Gar-
rido et al. [6], the Intel OpenCL design example performs
2D FFT by taking FFTs of the horizontal rows, transposing
the output and repeating the horizontal FFTs, and then, trans-
posing the output for a second time to get the final output,
as shown in Fig. 4. This approach yields an acceptable
30 GFLOPS with less than 40% of Arria 10 FPGA resources
for a 1024x1024 complex input. As stated by Parker et
al. [14], it is possible to achieve higher throughput with
multiple cores and more hardware usage.

However, for image processing, the input data consists of
real numbers, and this complex-to-complex FFT algorithm
wastes half of its throughput and resources on the all-zero
complex part. To address this issue, we apply the Hermitian-
symmetric reduction approach to build a real-to-complex and
complex-to-real FFT engine [7]

Since an FFT input with all-zero imaginary data would
yield a Hermitian-symmetrical output (the second half of
the output’s real part is symmetrical to the first half and
imaginary part is conjugated), we can process the 2N -
point FFT input with an N -point FFT engine and express
the output with N + 1 numbers. First, we pack the 2N -
real-input x[n] into an N -complex-sequence y[n], shown in
Equation (1). We take the N -point Fast Fourier transform of
y[n] to get the temporary output Y [k], shown in Equation (2).
Then, as Jones proved [10], an equation for the 2N-point FFT
output of x[n] can be written as shown in Equations (3) and
(4), where Xr[k] and Xi[k] stand for the real and imaginary
part of X[k], Re() stands for real part of and Im() stands
for imaginary part of.

y[n] = x[2n] + ix[2n+ 1] (1)

Y [k] =

N−1∑
n=0

y[n]e−j(2π
N)nk (k = 0, 1...N − 1) (2)

Xr[k] =
1

2
Re(Y [k] + Y [N − k])

+
1

2
cos(kπ/N)× Im(Y [k] + Y [N − k])

− 1

2
sin(kπ/N)×Re(Y [k]− Y [N − k])

(3)

Xi[k] =
1

2
Im(Y [k]− Y [N − k])

+
1

2
sin(kπ/N)× Im(Y [k] + Y [N − k])

− 1

2
cos(kπ/N)×Re(Y [k]− Y [N − k])

(4)

The N -th data is the singular point in the symmetrical
output sequence, which is computed by Equation (5).

X(N) = Re(Y (0))− Im(Y (0)) (5)

The rest of the output can be computed by Equations (6) and
(7).

Xr(2N − k) = Xr(N) (6)

Xi(2N − k) = −Xi(N) (7)

Equations (3) and (4) give us the result of the first N outputs
of a 2N -point FFT. Combining equations (5), (6) and (7),
we can compute the output of a 2N -point FFT with only one
N -point FFT transformation. We implement this approach on
the horizontal row FFTs. On the other hand, vertical column
FFTs remain the same as those are complex-to-complex
FFTs. Implementation of the above equations requires the
FFT engine to finish the N-point transformation as it involves
Y [N] and Y [N−k] simultaneously. Thus, we implement the
extra computation in the transpose kernel. Implementing the
computation in the transpose kernel also avoids extra global
memory bandwidth usage. To reduce run-time computation,
we use pre-computed factors containing the cos and sin
components. The dataflow of our design is shown in Fig. 5.
This design fits the FPGA because the modularized kernels
improve the resource usage as the modules can be used
several times in one 2D-transform and inverse-FFT.

One difficulty of constructing this method is that we need
to write Equation (5) as an extra output in the transpose
kernel as the original design has store units only enough for
Equations (1) and (2). If we use the normal write-to-global
method, it will cause the number of store units inside the
if-then-else branch for Hermitian-symmetric reduction and
the branch of normal transpose to be different. Moreover,
the compiler will then try to combine the store units of
both branches, and the extra unit will be constructed in
concatenated form, as illustrated in Fig. 6. This will result
in a large amount of extra latency. With a lack of control
over the compiler, and without a way to balance the number
of store units in both branches, we addressed this problem
by passing the extra data through the channel function to
another kernel. This solution makes the latency negligible.

Fig. 5. Data flow of 2D real-to-complex FFT

Fig. 6. Load/store unit diagrams provided by the System Viewer tool of
the Intel FPGA SDK for OpenCL

Using this Hermitian-symmetric reduction, we achieve
approximately two times speed-up over the original complex-
to-complex FFT design with no loss in accuracy.

V. EXPERIMENTAL SETTINGS, RESULTS, AND
DISCUSSION

Our system configuration is given in Table I. To compare
the FGPA and GPU systems, we use the video clips from
the LISA Traffic Sign Dataset [9] and from the EU dataset
that was utilized in our previous study [12], which presented
the initial GPU implementation of the template-based speed-
limit-sign recognition approach. The LISA dataset includes
604x326 video captured from on-vehicle cameras. We ex-
tract 30 clips with 828 frames of road image containing
38 US-speed-limit signs. The EU dataset includes gray-
scale 640x240 video from different types of European roads
(e.g., highway, city, and country) under varieties of weather
conditions (e.g., sunny, foggy, rainy, and snowy). It has 69
clips totaling 45 minutes of driving video that includes 120
EU-speed-limit signs.

A. Comparing the FPGA to the GPU

We measure the execution time by calculating the number
of frames processed per second based on the timing infor-
mation of each frame and observe that both GPU and FPGA
systems have a similar throughput. Power consumption of

TABLE I
SYSTEM CONFIGURATION

Host GPU FPGA

Hardware Intel Core i7 NVIDIA
GTX1060 Intel Arria 10 GX

Software Visual Studio
15.2 CUDA 9.0 Intel FPGA SDK

for OpenCL 17.1

TABLE II
PERFORMANCE COMPARISON OF THE FPGA AND THE GPU

GPU FPGA

Average FPS 33 30
Board and processor power 24 W 17 W
Processor power 19 W 12.5 W
Joules per frame 0.72 J 0.56 J
Accuracy on EU dataset 90% 90%
Accuracy on LISA dataset 92% 92%

the FPGA is estimated using PowerMonitor.exe provided
by Quartus 17.1 and that of the GPU is estimated using
NVIDIA NVML library [4], where both tools report the
power consumption based on on-board sensors. In order to
provide thorough comparisons between the two systems, we
include power comparison between the whole PCIe cards’
power, and the comparison between the processors’ power,
which eliminates power overhead from the boards. The
processor power comparison is meaningful because it scales
as the design grows larger. The FPGA processor power
consumption is calculated by subtracting the idle power
before configuration from the computing status power. On
the other hand, the GPU processor power is calculated by
subtracting the idle power from the computing status power.
Our results show that the FPGA system provides a better
power consumption than the GPU system. In addition, we
observe that the difference between the values of the FFT
outputs computed using NVIDIAs CUFFT library on the
GPU and using our efficient FFT engine on the FPGA is
negligible (i.e., about 10−8). Thus, the GPU and FPGA
systems have the same computation accuracy results on both
datasets, which indicate the percentage of correctly classified
speed-limit signs. As expected, the accuracy of our FPGA
and GPU systems on EU signs are the same as that of
our previous study [12] since they use the same template-
based approach and video clips from the same EU dataset.
In addition, accuracy of our systems on US-speed-limit signs
that are extracted from LISA dataset is close to that of
on EU-speed-limit signs, which indicates the scalability of
the template-based approach across different types of road
signs. Throughput (i.e., average number of frames per second
[FPS]), power consumption, and accuracy (i.e., correctness
of the detected position and the speed-limit number) of the
GPU and FPGA systems are provided in Table II.

To gain further insights, in addition to executing all kernels
together that constitute the systems, we also execute each
kernel individually on the FPGA and the GPU and compare

Fig. 7. Energy and run time comparison of individual kernels

their performance. The energy usage and latency of the
kernels for computing a single frame are given in Fig. 7.
Energy usage is computed by multiplying the power and the
run time of the kernel. In order to do a fair comparison, while
executing the kernels individually, the kernel on the FPGA
is not allowed to utilize all FPGA resources. The kernel is
set to the same configuration that is used in the execution of
all kernels that constitute the system.

Results show that FPGA kernels for a single workload can
achieve better power efficiency and similar throughput. Al-
though each kernel has significantly better power efficiency,
the FPGA has 34% better power efficiency over the GPU
due to the overhead of the static current that supports the
configured FPGA.

B. Insights on building the FPGA versus the GPU system

As new and diverse workloads are emerging around new
applications, FPGAs have a major advantage over ASIC
chips in terms of development effort and scalability. More-
over, with current high-level programming tools such as
OpenCL, FPGAs are becoming comparable to general pur-
pose computing units like CPUs and GPUs. This section
presents our insights to the differences between developing
an FPGA system and a GPU system.

Nowadays, computing device complexity has become so
large, it is not efficient to design them in an RTL language.
OpenCL for FPGA is designed to mitigate this inefficiency.

However, since available OpenCL libraries are usually de-
signed for GPUs, it is not efficient or even not possible to
apply these libraries to FPGAs. In addition, the available
APIs are much more complete for GPUs. Although FPGA
programming has been around for a while, it is mostly
used for chip prototyping or specific DSP products. Hence,
the FPGA development support is not as advanced as that
of GPU, which features an ecosystem of popular general-
purpose computing tools that mostly evolved in the past
decade. Intel Altera has a collection of RTL design resources
called Altera IP cores, and it is possible to combine them
with an OpenCL development environment. But it is by
no means an easy task for a software programmer who
has limited background in this area because it requires
knowledge about RTL code and interface. Thus, for software
programmers new to this area, finding pre-built resources
or libraries that fit their needs is difficult, as we have
experienced in this study with our search for the FFT support.

Another factor that differentiates GPU programming from
FPGA programming is the optimization process. As GPU
compilers and schedulers are getting more mature, the pro-
grammer can now focus on the algorithmic side of program-
ming. On the other hand, to optimize the performance of
FPGA systems, the programmer must know the strengths and
weaknesses of the FPGA, because the generated hardware
structure greatly affects the performance. For example, for
an image processing kernel on an FPGA that processes
pixels with interactions with neighboring pixels, using a
shift-register as a sliding window is much more efficient than
processing the pixels in parallel.

One of the difficulties we encountered is the lack of
flexibility in choosing the structure of the load-and-store
unit of a kernel. Intel’s FPGA SDK for OpenCL does most
of the optimization part for low-level details, but many
times the compiler would choose a structure that is not the
most efficient alternative. For example, the compiler will
use a burst-coalesced mode load unit for accessing global
memory when it deems that it is large enough to benefit from
this mode, but this mode is not as efficient as a prefetch
mode load unit. This is because that the compiler has no
information about the host code and data. In the current
version of the SDK, the programmer has no control over
the load-and-store unit mode.

Another example is that the compiler will try to combine
the load/store units in different branches, and add a second
layer of units concatenated to the shared units if either branch
has extra load/store units, as depicted in Fig. 6. This will
ultimately lead to longer latency than not sharing the units at
all. This happened with our 2D real-to-complex FFT kernel
and we had to work around it by passing the extra units to
another kernel using channel functions. Both problems can
potentially be solved if the SDK provides more options to let
the user control the design structures. However, more options
and controls over the design means developer would be
required to acquire more knowledge. This may be difficult for
new programmers to deal with and conflicts with the purpose
of a simple high-level tool like OpenCL. Nevertheless, since

optimizations must be done when possible, it is still desirable
to let the programmers have options than let them try to work
around it.

VI. CONCLUSION
In this paper, we presented our experience in translating a

template-based speed-limit-sign recognition application run-
ning on the GPU to its counterpart running on the FPGA. In
addition, we explained the techniques we have used to design
and optimize the computing kernels on the FPGA and intro-
duced an efficient FFT engine which can also be utilized by
other image processing applications running on the FPGA.
Then, we compared the performance and power efficiency of
the Intel Arria 10 FPGA and an NVIDIA GTX1060 GPU for
performing the same approach by presenting a methodology
for comparing FPGA and GPU results. Finally, we shared
our insights of using Intel FPGA SDK for OpenCL.

Our results indicate that GPUs are, in general, better
suitable for fine-grained parallelism without data sharing
whereas FPGAs are most suitable for coarse-grain paral-
lelism. Our study shows that FPGAs can achieve throughput
and accuracy comparable to GPUs with a significantly lower
power consumption. Moreover, with the introduction of
advanced programming tools, building FPGA systems for
autonomous vehicles and other applications are becoming
more efficient. Hence, the improved FPGA programming en-
vironment can speed up the development process compared
to FPGA systems programmed in RTL languages.

The future plan for our study includes comparing more
FPGA board models and more optimization techniques,
such as full-channel utilization between more kernels and
approximate computing using lower-precision floating point
computing (not supported by Arria 10 yet) to reach theo-
retical throughput limits. Also, we plan to evaluate other
road sign detection approaches such as the ones that involve
deep-learning-based algorithms and develop hybrid systems
that combine template-based approaches (for performing de-
tection) and deep-learning-based approaches (for performing
classification) running on both FPGAs and GPUs. With
these additional efforts, we plan to further investigate the
performance and programmability of FPGAs.

ACKNOWLEDGMENT
Thanks to Intel Labs for both funding this project and

providing technical support for it.

REFERENCES

[1] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A bench-
mark suite for heterogeneous computing. In Proceedings of the
2009 IEEE International Symposium on Workload Characterization
(IISWC), IISWC ’09, pages 44–54, Washington, DC, USA, 2009. IEEE
Computer Society.

[2] clFFT. A software library containing FFT functions written in
OpenCL, 2014. [Online; accessed 28-December-2017].

[3] NVIDIA Corporation. CUDA CUFFT Library, 2017.
[4] NVIDIA Corporation. NVML API Reference Guide, 2017. [Online;

accessed 28-December-2017].
[5] Matteo Frigo and Steven G. Johnson. The fastest Fourier transform in

the west. Technical Report MIT-LCS-TR-728, Massachusetts Institute
of Technology, September 1997.

[6] Mario Garrido, J. Grajal, M. A. Sánchez, and Oscar Gustafsson.
Pipelined Radix-2K Feedforward FFT Architectures. IEEE Trans. Very
Large Scale Integr. Syst., 21(1):23–32, January 2013.

[7] Texas Instrument. Efficient FFT Computation of Real Input, 2014.
[Online; accessed 28-December-2017].

[8] Intel. OpenCL 2D Fast Fourier Transform Design Example, 2016.
[Online; accessed 28-December-2017].

[9] Morten Bornø Jensen, Mark Philip Philipsen, Andreas Møgelmose,
Thomas Baltzer Moeslund, and Mohan Manubhai Trivedi. Vision
for looking at traffic lights: Issues, survey, and perspectives. IEEE
Transactions on Intelligent Transportation Systems, 17(7):1800–1815,
2016.

[10] Keith Jones. The Regularized Fast Hartley Transform: Optimal
Formulation of Real-Data Fast Fourier Transform for Silicon-Based
Implementation in Resource-Constrained Environments. Springer
Publishing Company, Incorporated, 2012.

[11] Aaftab Munshi. The OpenCL Specification Version: 1.2. Khronos
OpenCL Working Group, 19 edition, 11 2012.

[12] Pınar Muyan-Özçelik, Vladimir Glavtchev, Jeffrey M. Ota, and
John D. Owens. Real-time speed-limit-sign recognition on an em-
bedded system using a GPU. In Wen-mei W. Hwu, editor, GPU
Computing Gems, volume 1, chapter 32, pages 497–516. Morgan
Kaufmann, February 2011.

[13] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2017.
Version 9.1.

[14] M. Parker, S. Finn, and H. S. Neoh. Multi-GSPS FFTs using
FPGAs. In 2016 IEEE National Aerospace and Electronics Conference
(NAECON) and Ohio Innovation Summit (OIS), pages 430–436, July
2016.

[15] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko
Matsuda, and Satoshi Matsuoka. Evaluating and optimizing opencl
kernels for high performance computing with fpgas. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’16, pages 35:1–35:12, Piscataway,
NJ, USA, 2016. IEEE Press.

