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Design of Coupled Harmonic Oscillators
for Synchronization and Coordination

Xinmin Liu and Tetsuya Iwasaki

Abstract—Synchronization and coordination of coupled oscil-
lators are fundamental behaviors in complex dynamical systems.
This paper considers the design of coupled harmonic oscillators
to generate an orbitally stable limit cycle of prescribed oscillation
profile. Based on the Floquet theory and averaging techniques,
necessary and sufficient conditions are obtained for nonlinear
coupling functions to achieve local exponential convergence to
a desired orbit. Unlike globally convergent methods based on
contraction analysis, the result applies to oscillators without
flow invariance properties. Insights into coordination mechanisms
are gained through interpretation of the coupling structure as
a directed graph. The theory is illustrated by simple tutorial
examples.

I. INTRODUCTION

Coupled oscillators are found in various contexts in na-
ture; e.g., synchronization of flashing fireflies [1], formation
flight of migrating birds with coordinated flapping motions
[2], pathological synchronization of neural oscillations in
Parkinson’s disease [3], and coordinated oscillations of the
central pattern generator (CPG) in animal locomotion [4].
Feedback control theories to achieve/break synchronization
and coordination of coupled oscillators would be useful for
designing bio-inspired engineering systems and for developing
treatments and assistive devices for certain medical condi-
tions, including walking rehabilitation [5], dental training, and
speech therapy [6].

Synchronization problems have been formulated and solved
in the literature. Given a set of interconnected n subsystems
(or agents) with outputs y1, . . . , yn, the agents are said to be
synchronized if all the outputs converge to a single (nontrivial)
trajectory, i.e., there exists yo(t) such that

|yi(t)− yo(t)| → 0 as t→ ∞, ∀ i = 1, . . . , n.

The notion of coordination is an extension of synchronization.
With prescribed constants γi, φi ∈ R, the agents are said to
be coordinated if there exists yo(t) such that

|yi(t)−γiyo(t+φi)| → 0 as t→ ∞, ∀ i = 1, . . . , n.

For coupled oscillator problems, the steady state output yo is
a periodic signal, while constant yo has also been considered
for synchronization of arbitrary (not necessarily oscillatory)
subsystems, and the property is often termed consensus. The
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problem is to determine under what condition the synchro-
nization or coordination occurs.

Within the linear system framework, synchronization (or
consensus) of coupled harmonic oscillators [7], integrator
agents [8], and general subsystems [9] have been considered,
where the agents are homogeneous and share common dy-
namics. It was shown that, essentially, synchronization occurs
when each agent is marginally stable and the directed graph
underlying the inter-agent coupling has positive weights and
contains a spanning tree. These results have been extended
to deal with heterogeneous agents [10–12]. In all these refer-
ences, the magnitude of the synchronized output yo has to de-
pend on the initial state since the system is linear autonomous.
For certain coupled oscillator applications [13], however, it is
important to have convergence to a prescribed amplitude with
orbital stability, which requires nonlinear dynamics.

Weakly coupled nonlinear oscillators have been analyzed
using perturbation and averaging techniques [14]. The orbit
of each oscillator remains close to its intrinsic limit cycle
after weak coupling with other oscillators. Hence, stability
of the amplitude is not an issue, and the behavior of each
oscillator can be described by a scalar phase variable after a
state coordinate transformation [15–17]. The resulting model,
called the phase coupled oscillators, provides a deep insight
into phase coordination mechanisms, but the method does not
seem directly useful for the design of coupled oscillators since
it is difficult to convert the coupling function of the phase
variables back to that of the original variables.

The framework of the master stability equation [18, 19]
is directly useful for both analysis and design of coupling
functions with a specific (e.g. diffusive) structure for syn-
chronization with orbital stability [20]. The method is further
extended to guarantee robust synchronization for intervals of
diffusive coupling gains through averaging under time-scale
separation by weak or strong coupling [21]. While the general
framework is very powerful, it applies only to synchronization
of homogeneous subsystems since the decomposition leading
to the master stability equation requires such setting. The
method does not work if the subsystems are heterogeneous or
if the analysis/design of coordinated oscillations is considered.

The method of harmonic balance has been applied for an-
alyzing coordinated oscillations of CPGs — neuronal circuits
for controlling rhythmic body movements. In particular, the
explicit relationship is revealed between the neuronal cou-
pling structure and the resulting oscillation profile (frequency,
amplitude, phase) [22, 23]. The result is simple and useful
not only for the analysis but also for the design of synthetic
CPGs. However, stability of the oscillation is not rigorously
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guaranteed due to the harmonic approximations, except for an
extension to the case of rational phases [13].

The contraction analysis [24] provides a rigorous method for
analyzing and synthesizing global convergence to a limit cycle
orbit. Convergence properties of specific coupled oscillators
are proven for synchronization by partial contraction analysis
[25] and for coordination by flow invariance [26]. While the
method is very powerful for certain systems, coordination of
coupled oscillators is difficult and has not been solved when
the flow invariance property is not available.

In this paper, we address the open problem of analyz-
ing/designing coupled nonlinear oscillators for synchroniza-
tion and coordination in the absence of the flow invariance
property. The coupled oscillator problem is motivated by
feedback control of mechanical systems, for which the flow
invariance property crucial in the contraction analysis is ab-
sent. We show how the nonlinear coupling function can be
constructed to achieve a periodic solution that is sinusoidal
with a prescribed oscillation profile. Moreover, orbital stability
of the limit cycle is theoretically proven and is guaranteed in
the design of the coupling function.

Section II formulates and motivates a coupled oscillator
problem, and describes an outline of our approach. Section III
provides analysis results to characterize orbital stability. We
first linearize the nonlinear system around the periodic so-
lution, then decompose the resulting linear periodic system
to remove the one-dimensional dynamics associated with the
phase shift on the orbit. The exponential stability of the re-
sulting reduced order linear periodic system is then equivalent
to orbital stability of the solution (Theorem 1). When the
oscillators are weakly coupled, we show through an averaging
theorem that the stability condition can be given by Hurwitz
properties of coupling matrices (Theorem 2). Based on these
analysis results, Section IV proposes a procedure for designing
coupling functions, where the graph theory is used to impose
structural constraints (Theorem 3), and coupling optimization
for fast convergence is discussed. Finally, the proposed method
is illustrated by numerical examples in Section V.

Notation: Define the set Zn := {1, 2, . . . , n}. The column
vector x and diagonal matrix X with entries x1, . . . , xn are de-
noted by x = col (x1, . . . , xn) and X = diag(x1, . . . , xn) =
diag(x). Trigonometric functions act on a matrix elementwise.
Define Cx := diag(cos(x)), Sx := diag(sin(x)), and 11 :=
col (1, . . . , 1). For matrices A and B of the same dimensions,
the element-wise product is denoted by A ·B.

II. PROBLEM STATEMENT AND APPROACH

A. Coupled oscillator problem

Consider a set of coupled harmonic oscillators

q̈ + ω2q = h(q, q̇), q(t) ∈ Rn (1)

where the left hand side defines a set of n harmonic oscillators
with frequency ω, and the right hand side defines their cou-
pling dynamics through a continuously differentiable function
h. Without the coupling term h, the system (1) has the general
solution q(t) = ξ(t), where

ξi(t) := γi sin(ωt+ φi), (2)

for i ∈ Zn with arbitrary amplitude γi ∈ R and phase φi ∈ R
that depend on the initial condition. Roughly speaking, our
objective is to design the coupling function h so that the
oscillation ξi occurs in the steady state, with prescribed values
of the amplitudes γi and phases φi. Clearly, the coupling term
must vanish on the periodic orbit, i.e.,

h(ξ, ξ̇) ≡ 0 (3)

is required for h when ξ is a solution of (1). In addition,
we require a stability property, that is, the oscillation ξ
should attract nearby trajectories. However, we do not require
convergence of q(t) to ξ(t). Instead, we consider the design
to be successful if convergence to ξ(t + c) is achieved for
some c ∈ R. This property corresponds to formation of an
oscillation pattern disregarding the time shift, and is known as
the notion of orbital stability as defined below.

Let us express system (1) in the state space as

ẋ = f(x), f(x) :=

[
x2

h(x1, x2)− ω2x1

]
, (4)

where x := col (q, q̇). The system (4) has a periodic solution
x = χ where χ := col (ξ, ξ̇) when (3) is satisfied. The periodic
orbit is a closed curve in the state space parametrized by
χ(t) with t ∈ R. The notion of orbital stability means that
any trajectory that comes sufficiently close to the orbit will
eventually converge to the orbit. More precisely, the periodic
solution χ is said to be orbitally stable if there exists ε > 0
with the following property: Whenever ∥x(t1) − χ(t2)∥ < ε
for some t1, t2 ∈ R, there exists a constant c such that

lim
t→∞

∥x(t)− χ(t+ c)∥ = 0. (5)

In this case, we also say ξ is orbitally stable, with a slight
abuse of language. If the convergence is exponential, a periodic
solution is said to be orbitally exponentially stable.

Now, the problem addressed in this paper can be stated
as follows: Find a necessary and sufficient condition on the
coupling function h such that ξ is a periodic solution to (1)
and is orbitally exponentially stable, and propose a systematic
procedure for designing the coupling function. This is a
problem of achieving coordinated oscillations of qi(t) with
prescribed amplitudes γi and specific timing to each other (i.e.
relative phase φi − φj). In the special case where γi = γj
and φi = φj for all i, j ∈ Zn, all the variables qi(t) should
converge to a single orbit, which we refer to as synchronized
oscillations.

For simplicity, we will impose the following.
Assumption 1: The target oscillation ξi(t) has normalized

amplitudes γi = 1 and frequency ω = 1 for all i ∈ Zn.
This assumption can be made without loss of generality. To
generate harmonic oscillations with arbitrary frequency ω and
amplitudes γi, we can simply scale the oscillators as follows.
Let function h(q, q̇) be designed for the target oscillation
qi(t) = sin(t+φi). Then the scaled coupling function ~(q, q̇)
given by

~(q, q̇) := ω2Γh(Γ−1q,Γ−1q̇/ω), (6)
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achieves orbitally stable solution qi(t) = γi sin(ωt + φi) for
(1) with h replaced by ~, where Γ is the diagonal matrix with
the (i, i) entry being γi.

The coupled oscillator problem can be motivated as coordi-
nation of multiple agents with the double integrator dynamics
arising from first principles of physics. For instance, move-
ments of a general class of m degrees-of-freedom mechanical
systems can be described by the Euler-Lagrange equation,
leading to a differential equation of the form

J(p)p̈+ g(p, ṗ) = B(p)u (7)

where p(t) ∈ Rm are the generalized coordinates, u(t) ∈ Rn

are the force inputs, J(p) is the moment of inertia matrix, and
g(p, ṗ) is a nonlinear function representing the Coriolis and
centrifugal forces, damping, and stiffness. Suppose m > n
and the n actuators independently drive the first n coordinates

q := Hp, H := [ In 0 ].

Multiplying H(p) := HJ(p)−1 from left, (7) gives

q̈ + g(p, ṗ) = B(p)u, g(p, ṗ) := H(p)g(p, ṗ),
B(p) := H(p)B(p)

A motion coordination problem is to find a feedback controller
to generate inputs u such that the generalized coordinates qi
converge to the prescribed harmonic oscillations ξi in (2) for
i ∈ Zn. Such controller can be found using a solution to the
coupled oscillator problem, i.e., by selecting u as the state
feedback

u = B(p)−1(h(q, q̇)− ω2q + g(p, ṗ))

such that the resulting closed-loop system is of the form (1).
We aim to achieve the desired oscillation as part of a

stable limit cycle of the autonomous closed-loop system
rather than as a forced response to harmonic reference inputs.
This is because the former method is expected to provide
fast and smooth convergence back to the desired orbit after
perturbations due to disturbances since the notion of orbital
stability allows for arbitrary time shift without insisting on a
preprogrammed reference signal as in the latter method. Also,
autonomous oscillations emerged from network interactions
may potentially be more robust against failures than forced
oscillations commanded by a centralized reference generator
if the design is made modular by distributed feedback.

B. Outline of approach

This section outlines our approach to the oscillator analysis
in a general setting. We will integrate a series of classical
results into a condition for orbital stability of a periodic
solution. The general framework will be applied to the coupled
oscillators (1) in the next section.

Consider an autonomous system ẋ = f(x), where x(t) ∈
Rn is the state vector, and f : Rn → Rn is a locally Lipschitz
function. Suppose the system has a T -periodic solution x = χ.
The linearization of the system around χ is given by

ż = A(t)z, A(t) :=
∂f

∂x
(χ(t)), z := x− χ. (8)

Note that A(t) = A(t + T ) holds for all t ∈ R due to the
periodicity of χ. The orbital stability of χ is related to stability
properties of the linear periodic system as explained below.

Let us first recall a basic notion. The Floquet multipliers
for linear T -periodic system ż = Az are defined as the
eigenvalues of the fundamental matrix Θ(T ), where

Θ̇ = AΘ, Θ(0) = I. (9)

When the system is obtained from the linearization around a
periodic orbit as in (8), one of the Floquet multipliers is always
on the unit circle because ż = Az admits a periodic solution
z = χ̇. The remaining n−1 Floquet multipliers determine the
orbital stability of χ.

Lemma 1: Consider the system ẋ = f(x) and suppose it
admits a T -periodic solution χ(t) ∈ Rn. The solution χ is
orbitally exponentially stable if and only if n − 1 Floquet
multipliers of the linearized system (8) lie strictly inside the
unit circle on the complex plane.

Proof: See Theorem 1.1 of [27].
The condition for orbital stability in Lemma 1 is numerically

verifiable, but is not directly useful for gaining insights into
the coordination mechanisms or for choosing the coupling
function to achieve desired oscillations. To proceed further,
one may examine a subsystem describing the dynamics in the
invariant subspace associated with the n−1 Floquet multipliers
not on the unit circle. For this purpose, we use the Lyapunov
transformation [28].

Let L(t) be a matrix-valued function such that L(t) is
nonsingular and continuously differentiable, and L(t), L−1(t),
and L̇(t) are bounded for t > 0. Then z = Lx is called a
Lyapunov transformation, converting the system (8) into

ẋ = A(t)x, A(t) = L−1AL− L−1L̇. (10)

If L(t) is T -periodic, the Floquet multipliers are preserved and
hence the two systems (8) and (10) share the same stability
properties. A careful choice of the Lyapunov transformation
can lead to isolation of the dynamics associated with the
Floquet multiplier on the unit circle. For instance, L may be
chosen so that the last column of A is zero, and removal of
the last row of the state equation gives a reduced-order system

ė = A(t)e, (11)

where e ∈ Rn−1 is the first n − 1 entries of x ∈ Rn. The
orbital stability of the periodic solution χ is then guaranteed
by exponential stability of this system.

Lemma 2: (Floquet theorem) The linear periodic system
ė = A(t)e is exponentially stable if and only if all Floquet
multipliers lie inside the unit circle on the complex plane.

Proof: See Theorem 4.2.3 of [28].
Finally, the stability property follows if the average of A(t)

over one period is Hurwitz, provided its norm is sufficiently
small, or the rate of change of the state ∥ė∥ is sufficiently
slow in comparison with the time scale of the cycle period T .
A precise statement is given below, where A(t) = εA(t) with
ε > 0 capturing the size of ė.

Lemma 3: Consider the linear periodic system

ė = εA(t)e, A(t+ T ) = A(t). (12)
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Define the average dynamics as

Ā :=

∫ T

0

A(t)dt.

Then there exists εo > 0 such that the system is exponentially
stable for all 0 < ε < εo if and only if Ā is Hurwitz.

Proof: See Theorem 3.3 of [29].
The Hurwitz property of Ā is often easier to deal with than

the Floquet multipliers since Ā depends linearly on the entries
of A(t) while the dependence of Θ(T ) is more complex. This
simplicity is gained at the expense of restricting our attention
to the case where ε is sufficiently small, which turns out to
correspond to weak coupling of oscillators as shown in the
next section.

III. COUPLING ANALYSIS FOR ORBITAL STABILITY

A. Basic theory

In this section, we will take the approach outlined in
the previous section and derive a condition on the coupling
function h for orbital exponential stability of the periodic
solution ξ in (2) for the coupled oscillators (1), or equivalently,
the periodic solution χ for the state space system (4). As
mentioned earlier, we impose Assumption 1 without loss of
generality.

Orbital stability of χ is guaranteed, through Lemma 1, by a
condition on the Floquet multipliers of the linearized system
(8) with

A(t) =

[
0 I

−I + K D

]
, (13)

K :=
∂h

∂q
(ξ, ξ̇), D :=

∂h

∂q̇
(ξ, ξ̇). (14)

While such condition is useful for analysis, it is not directly
useful for design of the coupling function h. For design, we
need to search for a Lyapunov transformation to isolate the
dynamics associated with the Floquet multiplier on the unit
circle. To this end, we consider the original nonlinear system
(1) and transform it into the polar coordinates. The idea is that
the Floquet mode on the unit circle can be identified as the one
that governs the absolute (as opposed to relative) evolution of
the phase variables. Below, we formally state the result and
then provide a detailed proof.

Theorem 1: Consider the coupled oscillators described by
(1). Let the target oscillation ξ(t) ∈ Rn be given by (2) with
desired frequency ω, amplitude γi, and phase φi for i ∈ Zn,
where Assumption 1 is imposed. Define K and D by (14), and
η(t) ∈ Rn by ηi(t) := t+φi for i ∈ Zn, and let P and Q be
arbitrary n× (n− 1) matrices satisfying

P T
[
Q 11

]
=

[
I 0

]
. (15)

The signal q = ξ is a solution of (1) if and only if (3) is
satisfied. In this case, the following statements are equivalent:
(i) The solution q = ξ is orbitally exponentially stable.

(ii) All the Floquet multipliers of ẇ = A(t)w with

A(t) :=

[
Cη

−Sη

] [
D K

] [ Cη −Sη

Sη Cη

]
, (16)

except for one at 1, are inside the unit circle.
(iii) All the Floquet multipliers of ė = A(t)e with

A(t) := PTA(t)Q,
P := diag(I, P ),
Q := diag(I,Q),

(17)

are inside the unit circle.
Proof: Consider the coordinate transformation (q, q̇) ↔

(r, θ) defined by

qi = ri sin θi, q̇i = ri cos θi, i ∈ Zn.

In the new coordinates, the limit cycle (2) is described as

ri(t) = 1, θi(t) = ηi(t), ηi(t) := t+ φi, (18)

and the system (1) can be transformed into[
ṙ

Rθ̇

]
=

[
0
r

]
+

[
Cθ

−Sθ

]
h(Sθr, Cθr) (19)

where R := diag(r). Linearizing the system around the orbit
and defining A as in (16), we obtain

ẇ = A(t)w, w :=

[
ρ
ϑ

]
,

ρi := ri − 1,
ϑi := θi − ηi,

(20)

It can be verified that the two linear systems, defined by
A(t) and A(t) in (13) and (16), are related by the Lyapunov
transformation

A = L−1AL − L−1L̇ , L :=

[
Sη Cη

Cη −Sη

]
and hence share the same set of Floquet multipliers, proving
(i) ⇔ (ii) through Lemma 1.

We now isolate the Floquet multiplier on the unit circle.
The trajectory w(t) is on the target orbit if and only if
ρi(t) ≡ 0 and ϑi(t) ≡ c for some constant c, in which case,
we have q(t) = ξ(t + c). This motivates us to consider the
transformation ϑ ↔ (ϕ, ψ), where ϕ ∈ Rn−1 are the relative
phases and ψ ∈ R is the absolute phase. For instance, a choice
is given by ϕi := ϑi − ϑn for i ∈ Zn−1 and ψ = ϑn. More
generally, ϕ and ψ can be defined by[

ϕ
ψ

]
:=

[
P T

pT

]
ϑ,

[
P T

pT

] [
Q 11

]
= I.

System (20) can then be described as

ẋ = A(t)x, x :=

[
e

ψ

]
, e :=

[
ρ
ϕ

]
, (21)

for an appropriately defined A, and the target orbit is described
by e(t) ≡ 0 and ψ(t) ≡ c. The coupling condition (3) ensures
that the orbit q(t) = ξ(t+c) is a solution of (1), which implies
that the constant trajectory (e, ψ) = (0, c) is a solution to (21).
This in turn indicates that the last column of A(t) is zero, and
the dynamics of ψ are characterized by the eigenvalue of A(t)
at the origin, giving rise to the Floquet multiplier at one [30].
The other 2n − 1 Floquet multipliers are associated with the
dynamics of e which are decoupled from ψ and given by (11),
where A(t) is the matrix in (17) obtained by removing the last
row and last column from A(t). Thus, from Lemma 1, orbital
exponential stability of χ is equivalent to exponential stability
of (11), which can be characterized as (ii) by Lemma 2.
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B. Weak parametric coupling

Through Theorem 1, the coupled-oscillator design problem
is reduced to the choice of the coupling function h in (1)
such that the vanishing condition (3) is satisfied and the linear
periodic system (11) is stable. An explicit parametrization of
all such h would be desired for systematic design, but is
difficult to obtain. Here we instead focus on a specific coupling
structure motivated by dynamics of mechanical systems, and
develop characterizations of feasible coupling functions that
are directly useful for the design.

We consider the following class of coupling functions

h(q, q̇) := −ε(ME (q, q̇)+D)q̇− ε(NE (q, q̇)+K)q, (22)

where D, K, M , and N are constant n×n matrices, ε ∈ R is
the coupling strength parameter, and E (q, q̇) is a matrix-valued
function. With this choice, system (1) resembles a mechanical
system and is described by

q̈+ε(ME (q, q̇)+D)q̇+(I+εNE (q, q̇)+εK)q = 0. (23)

The idea is to specify the mode shape (or the relative amplitude
and phase) by the linear stiffness and damping terms Dq̇ +
Kq, and stabilize the amplitude by the nonlinear damping and
stiffness terms ME (q, q̇)q̇+NE (q, q̇)q. The function E (q, q̇)
is chosen to vanish on the limit cycle ξ, i.e., E (ξ, ξ̇) ≡ 0, and
to provide the amplitude error in the neighborhood of ξ. In
particular, we propose matrix-valued function E (q, q̇) that is
diagonal with the (i, i) entry given by

Eii(q, q̇) :=
1

2
(r2i − 1) =

1

2

(
q2i + q̇2i − 1

)
. (24)

This function is motivated by classical amplitude-dependent
damping terms used in the Andronov-Hopf oscillator [26, 31]
and energy balance method [32]. If M is diagonal with positive
entries, the ith diagonal entry of damping term εME has a
positive/negative sign when the amplitude ri is larger/smaller
than one. Similarly, the term εNE adjusts the stiffness. Thus,
these terms can provide nonlinear effects that stabilize the
amplitudes at ri = 1. If M = N = 0, then the coupled
system is linear and orbital stability can never be achieved.

Assuming weak coupling and exploiting the averaging result
in Lemma 3, a fairly simple characterization useful for design
can be obtained for the coupling parameters (D,K,M,N)
that guarantee orbital stability of ξ. The following theorem is
the main result of this section.

Theorem 2: Consider the system (1) with the coupling
function (22), where E (q, q̇) is the diagonal function specified
by (24). Let the target oscillation ξ(t) ∈ Rn be given by
(2) with desired frequency ω, amplitude γi, and phase φi for
i ∈ Zn, where Assumption 1 is imposed. Define

∆ := Cφ ·D − Sφ ·K, Φ := Cφ ·M − Sφ ·N,
∇ := Sφ ·D + Cφ ·K, Ψ := Sφ ·M + Cφ ·N, (25)

where Sφ and Cφ are, respectively, the matrices with (i, j)
entries sin(φi−φj) and cos(φi−φj). Then the periodic signal
q = ξ is a solution of the system if and only if

∆11 = ∇11 = 0 (26)

holds. In this case, the following statements are equivalent:

(i) The periodic solution q = ξ is orbitally exponentially
stable for sufficiently small ε > 0.

(ii) All the eigenvalues of

Ā := επ

[
−(∆ + Φ) −∇
∇+Ψ −∆

]
(27)

except for one at the origin have negative real parts.
(iii) All the eigenvalues of

A := PTĀQ (28)

have negative real parts, with P and Q in (17) and (15).
Proof: Assuming that the vanishing coupling condition

(3) is satisfied, the linearization of the coupling term around
the limit cycle ξ is given by

h(q, q̇) ∼= K(q − ξ) +D(q̇ − ξ̇),

K :=
∂h

∂q
(ξ, ξ̇) = −εK − ε(MCη +NSη)Sη,

D :=
∂h

∂q̇
(ξ, ξ̇) = −εD − ε(MCη +NSη)Cη,

(29)

where we noted that

Eiiq̇i ∼= (cos ηi sin ηi)(qi − ξi) + (cos2 ηi)(q̇i − ξ̇i),

Eiiqi ∼= (sin2 ηi)(qi − ξi) + (sin ηi cos ηi)(q̇i − ξ̇i).

Define the new design parameters (∇,∆) and (Φ,Ψ) by[
∆ ∇

−∇ ∆

]
:= Ωφ

[
D K

−K D

]
ΩT

φ,[
Φ Ψ

−Ψ Φ

]
:= Ωφ

[
M N

−N M

]
ΩT

φ,

where

Ωφ :=

[
Cφ Sφ

−Sφ Cφ

]
.

These equations define bijective mappings (D,K) ↔ (∆,∇)
and (M,N) ↔ (Φ,Ψ). In particular, using the identities

Cφ ·X = CφXCφ + SφXSφ,
Sφ ·X = SφXCφ − CφXSφ,

the equations are equivalent to (25).
Using the new parameters and substituting (29) into (16),

matrix A(t) in (16) can be expressed as

A(t) =
1

π
f(t)Ā, f(t) :=

[
Cη

−Sη

] [
Cη

−Sη

]T

(30)

with Ā defined in (27). Now, by Theorem 1, the periodic
solution ξ is orbitally exponentially stable if and only if the
linear periodic system ė = A(t)e is exponentially stable,
where A(t) := PTA(t)Q is of order ε. When the harmonic
oscillators are weakly coupled, i.e., when ε > 0 is sufficiently
small, the stability of the linear periodic system is equivalent
to stability of its averaged dynamics due to Lemma 3. Noting
that the integral of f(t) over one cycle period T = 2π is given
by πI , we see that Ā is the average of A(t). Hence, it follows
from (17) that A in (28) is the average of A(t), proving (i) ⇔
(iii). The equivalence of (ii) and (iii) under (26) can be shown
through a simple similarity transformation involving P and Q.
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Finally, we show that (26) is equivalent to condition (3) for
the coupling to vanish on the target orbit. Note that

h(ξ, ξ̇) ≡ 0 ⇔ Dξ̇ +Kξ ≡ 0

⇔ (DCφ +KSφ)11 cos t

+(KCφ −DSφ)11 sin t ≡ 0.

It is straightforward to verify that the coefficients of the
sinusoids are zero if and only if (26) holds.

For the synchronization case φi = 0 for all i ∈ Zn,
all the entries of Cφ are one and Sφ = 0, and hence the
transformation in (25) reduces to

D = ∆, K = ∇, M = Φ, N = Ψ.

Thus, the parameters (∆,∇,Φ,Ψ) may be considered as a ver-
sion of the stiffness and damping parameters (D,K,M,N),
properly transformed in accordance with the coordination
requirement specified by φi for i ∈ Zn. Note from (25) that
M = Φ and N = Ψ are true for any phase specification φi

when Φ and Ψ are restricted to be diagonal.

C. Basic mechanisms underlying stable coordination

The purpose of this section is to uncover basic mechanisms
for orbital stabilization and coordination of the coupled os-
cillators in Theorem 2. For brevity, some special cases are
considered. We will also compare our result with one of the
leading results [26] and point out a nontrivial progress made
in our paper relative to the state of the art.

Recall from Theorem 2 that the average of the linearized
dynamics (11) for the amplitudes ρ and relative phases ϕ are
given by ė = Ae with e := col (ρ, ϕ) where A is defined by
(27) and (28). If we choose ∇ = Ψ = 0, then Ā in (27) is
block diagonal and decouples the dynamics as

ρ̇ = −επ(∆ + Φ)ρ, ϕ̇ = −επP T∆Qϕ.

Thus, the phase ϕ is stabilized by the coupling through ∆,
and the amplitude ρ is stabilized with the aid of the additional
nonlinear damping provided through Φ. The core of the
coupled oscillators design is the search for matrices ∆ and
Φ to stabilize these dynamics. We will consider this design
problem in Section IV-B exploiting the graph theory.

To gain a deeper understanding of the coordination mech-
anism, we will express the coupled oscillators in Theorem 2
in terms of the state yi := col (qi, q̇i) of each oscillator. First
note that an alternative form of (1) with ω = 1 is given by

ẏi = Syi+Fvi, S :=

[
0 1

−1 0

]
,

vi := col (∗, hi(y)),
F := diag(0, 1).

A major challenge stems from the fact that the each oscillator
can be influenced only through the channel specified by F .
But this structure of F is important for control of physical
systems such as (7) since the force input can directly affect the
acceleration, but not the velocity. If F = I , arbitrary coupling
of oscillators ẏi = Syi is possible, and the coordination
problem is much easier. To make this point clear, let us
consider the simple case where Φ = 2dI and ∇ = Ψ = 0 in
Theorem 2, and state the condition for coordinated oscillations
in comparison with the one from [26] which assumes F = I .

Corollary 1: Let ε, d ∈ R, φ ∈ Rn, ∆ ∈ Rn×n, F ∈ R2×2

be given, where ε and d are positive and ∆11 = 0. Consider
the coupled oscillators

ẏi = fo(yi) + hi(y), i ∈ Zn (31)

with the oscillator dynamics fo of yi(t) ∈ R2 and the coupling
function hi of y(t) := col (y1, . . . , yn) given by

fo(yi) := Syi + εd(1− ∥yi∥2)Fyi, (32)

hi(y) := ε

n∑
j=1

δijF
(
yi − Ωijyj

)
, (33)

where δij is the (i, j) entry of ∆, φi is the ith entry of φ, and

Ωij := ΩiΩ
T
j , Ωi :=

[
cosφi sinφi

− sinφi cosφi

]
.

The periodic signal y = x with

x := col (x1, . . . , xn), xi(t) :=

[
sin(t+ φi)
cos(t+ φi)

]
is a solution with the following properties:
(i) when F = diag(0, 1), the solution x is orbitally stable if

all the eigenvalues of P T∆Q have positive real parts, and
ε is sufficiently small;

(ii) when F = I , the solution x is globally orbitally stable1

if the symmetric part of P T∆Q− dI is positive definite;
where P and Q are the matrices satisfying (15) and P = Q.

Proof: Statement (i) is a special case of Theorem 2, where

yi := col (qi, q̇i), Φ = 2dI, Ψ = 0, ∇ = 0.

In particular, orbital stability of the periodic solution ξ is
equivalent to the Hurwitz property of A in (28). With the
above choices of Ψ and ∇, matrix A becomes block diagonal
and its eigenvalues are those of −επ(∆+Φ) and −επP T∆Q.
The matrix ∆ has an eigenvalue at 0 since ∆11 = 0, in
which case the matrix −P T∆Q is Hurwitz if and only if the
remaining n−1 eigenvalues of ∆ have positive real parts. This
can be seen from the similarity transformation[

Q 11
]−1

∆
[
Q 11

]
=

[
P T∆Q 0
pT∆Q 0

]
. (34)

Thus, if Φ in −(∆ + Φ) moves the zero eigenvalue of −∆
to the left half complex plane without making the other
eigenvalues migrate to the right half plane, then −(∆ + Φ)
would be Hurwitz. An obvious choice of such Φ is Φ = 2dI .

Statement (ii) essentially follows from the synchronization
condition for coupled subsystems based on the contraction
theory (eqn (10) in [26]), and global orbital stability of xi
for each subsystem ẏi = fo(yi) (Example 7.2 in [33]).

Clearly, (31) can be seen as a set of subsystems ẏi = fo(yi)
coupled through hi(y). Each subsystem is a nonlinear oscil-
lator having a periodic solution xi with an arbitrary phase
φi ∈ R. The nonlinear term in fo(yi) adds an amplitude-
dependent corrective effect to the linear oscillator ẏi = Syi

1Here we mean that, with an arbitrary initial state y(0) not on the stable
manifold of the unstable equilibrium at the origin, the solution yi(t) converges
to xi(t+ c) for some c ∈ R that depends on the initial state y(0).
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to regulate the amplitude at ∥yi∥ = 1. The coupling hi(y) is
diffusive and vanishes on the orbit y = x since xi = Ωijxj ,
but generates corrective inputs to each oscillator when the
inter-oscillator coordination has an error. Thus the similar
stabilization mechanisms work for cases of (i) and (ii), but
the proven stability property is only local for (i) but is global
for (ii) although our numerical experience indicates that x in
(i) may also be globally orbitally stable.

The difficulty associated with the singular structure of F
in (i) may be best illustrated by showing why the problem
simplifies when F = I . Note that (31) can be written as

ẏ = f(y) + h(y), (35)

where f(y) and h(y) are defined by stacking fo(yi) and hi(y)
for i ∈ Zn in columns, respectively. Coordinated oscillations
yi(t) = xi(t + c) are achieved with some c ∈ R when
ΩT

iyi = ΩT
jyj for all i, j ∈ Zn, or equivalently, when

y ∈ M where M is the subspace spanned by columns of
M := col (Ω1, . . . ,Ωn). The special property of (35) with
F = I is that M is a flow-invariant subspace2 of f, which
can be verified by noting that Ωifo(yo) = fo(Ωiyo) holds
for all yo ∈ R2. Since the coupling vanishes on M, i.e.,
h(y) = 0 for y ∈ M, we see that M is a flow-invariant
subspace of f + h. Now, it was shown in [26] that global
convergence to M is guaranteed by contraction3 of f + h in
the orthogonal subspace of M, which in turn is implied by the
diffusive coupling through ∆, sufficiently strong relative to the
amplitude-dependent damping d, as stated in Corollary 1.

On the other hand, the contraction method does not work
when F = diag(0, 1) due to the lack of the flow-invariance
property; M is no longer a flow-invariant subspace of f since
Ωifo(yo) ̸= fo(Ωiyo) in general. To see this difficulty more
closely, note that the coordinated oscillations of yi are equiv-
alent to synchronization of yi := ΩT

iyi. The dynamics of yi,
when uncoupled, are described by ẏi = fi(yi) := ΩT

ifo(Ωiyi).
If F = I , then fi = fo for all i ∈ Zn, and the coordination
problem is equivalent to the synchronization of identical
oscillators ẏi = fo(yi). In this case, f has a flow-invariant
subspace Mo spanned by col (I, . . . , I), which corresponds to
the synchronized state. If F = diag(0, 1), however, we have
fi ̸= fj for i ̸= j, and coordination of identical oscillators
ẏi = fo(yi) is equivalent to synchronization of heterogeneous
oscillators ẏi = fi(yi), which is more difficult than synchro-
nization of identical oscillators ẏi = fo(yi) since Mo is not a
flow-invariant subspace of f(y) := col (f1(y1), . . . , fn(yn)).

IV. DESIGN FOR SYNCHRONIZATION AND COORDINATION

A. General procedure

Based on the analysis results in the previous section, we now
propose a method for designing the coupling function h in (1)
to achieve a desired oscillation ξ(t) in (2) as a stable limit
cycle. In particular, we use the coupling function of the form
(22) with (24), parametrized by ε ∈ R and (D,K,M,N).

2A subspace M ⊂ Rn is said to be a flow-invariant subspace of function
f : Rn → Rn if f(x) ∈ M for all x ∈ M.

3A function f(x) is said to be contracting if the symmetric part of ∂f
∂x

(x)
is uniformly negative definite for x ∈ Rn.

We search for the coupling parameter (D,K,M,N) satisfying
the conditions in Theorem 2. Orbital stability can then be
guaranteed for sufficiently small ε > 0. The process yields a
coupling function h(q, q̇) for the normalized target oscillations
with ω = γi = 1 for i ∈ Zn. To achieve desired oscillations
with arbitrary frequency and amplitudes, the coupling function
can be modified as in (6). More specifically, we propose the
following.

Design Procedure
0. Set the frequency ω, amplitudes γi, and phases φi for

the desired oscillation ξi(t), i ∈ Zn, in (2).
1. Find n × n matrices (∆,∇,Φ,Ψ) such that condition

(26) is satisfied and A defined by (27) and (28) is
Hurwitz, where ε is an arbitrary positive number.

2. Find ε > 0 such that the maximum magnitude of the
Floquet multipliers of (11) with A(t) defined by (17)
and (30), and ηi := t+ φi, is less than one.

3. Set the coupling function h(q, q̇) as in (22) where
E (q, q̇) is defined by (24), and (D,K,M,N) are de-
termined from (∆,∇,Φ,Ψ) by solving (25) as

D = Sφ · ∇+ Cφ ·∆, K = Cφ · ∇ − Sφ ·∆,
M = Sφ ·Ψ+ Cφ · Φ, N = Cφ ·Ψ− Sφ · Φ. (36)

Determine the scaled coupling function ~(q, q̇) by (6)
using ω and γi for i ∈ Zn. Then q = ξ with (2) is
an orbitally exponentially stable periodic solution of the
coupled oscillators (1) with h replaced by ~.

In the design, Step 1 can be executed as follows. First note
that condition (26) is equivalent to

Ā11o = 0, 11o := col (0, 11).

It can be shown using standard results in linear algebra that
the set of all matrices Ā satisfying the linear equations

Ā11o = 0, A = PTĀQ

is parametrized by

Ā = (QA + 11oa
T)PT,

where a ∈ R2n−1 is an arbitrary vector. Hence, (∆,∇,Φ,Ψ)
can be found by choosing arbitrary Hurwitz matrix A and
vector a, calculating Ā as above, and solving (27) for
(∆,∇,Φ,Ψ). In Step 2, Theorem 2 guarantees that a suffi-
ciently small ε > 0 satisfies the Floquet multiplier condition.
To verify that a chosen value of ε is sufficiently small, one
can calculate the fundamental matrix Θ(t) defined by (9) with
A := A through numerical integration, and make sure that

τ(ε) < 1, τ(ε) := max
i

|λi[Θ(2π)]|, (37)

holds, where the maximum is taken over all 2n−1 eigenvalues
λi of Θ(2π). Finally, Step 3 is a straightforward computation.

The design steps proposed above progressively use the
desired oscillation profile (ω, φ, γ). In particular, (∆,∇,Φ,Ψ)
in Step 1 is completely independent of the design specifications
for ξ, and therefore, once a matrix quadruple (∆,∇,Φ,Ψ)
with a desired property (e.g. convergence speed of the average
dynamics A) is found, it can be used for different oscillation
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profiles. In Step 2, the value of ε is determined with the knowl-
edge of the phase parameters φi only. The values of the desired
amplitudes γi are not used until Step 3. Hence, the parameter
ε should be revised only when the desired phase values are
changed, and the parameters ε and (∆,∇,Φ,Ψ) fixed in the
first two steps can be used for various frequency and amplitude
specifications. The formula (36) in Step 3 shows that a change
of φi modifies the ith row/column of (D,K,M,N), and thus
requires adjustments only in the coupling gains between the
ith oscillator and those connected to it.

B. Structured coupling matrix

Design Procedure given in the previous section allows us to
find a coupling function h(q, q̇) to achieve desired oscillations
ξi with orbital stability. In general, the procedure leads to
a design with all-to-all coupling, i.e., each oscillator may
receive inputs from all the other oscillators. However, it may
be desired in certain applications that the coupling between
oscillators is constrained to have a specific structure (e.g.
oscillator 1 is allowed to receive input signals from oscillators
2 and 3, but not from oscillator 4). This section shows how
to incorporate such structural constraints into the coupling
function design.

The interconnection structure of the coupled oscilla-
tors is dictated by the structure of the coupling matrices
(D,K,M,N); the ith oscillator sends its state information
(qi, q̇i) directly to the jth oscillator when one of these matrices
has a nonzero (j, i) entry. The structure is preserved under the
change of variables between (D,K,M,N) and (∆,∇,Φ,Ψ)
as seen in (25) and (36). Therefore, a constraint on the
interconnection structure can be imposed by requiring each of
(∆,∇,Φ,Ψ) to belong to W in Step 1 of Design Procedure,
where W is a set of structured n× n real matrices with (j, i)
entry being zero when no direct connection is allowed from
the ith oscillator to the jth oscillator.

In what follows, we use the graph theory to show how
structured coupling matrices ∆,∇,Φ,Ψ ∈ W can be found to
satisfy the conditions in Step 1 of Design Procedure. To this
end, let us introduce the following simplifying assumption.

Assumption 2: The coupling matrix ∇ or ∇ + Ψ is zero,
and Φ is diagonal. Moreover, off-diagonal entries of ∆ are
nonpositive, and diagonal entries of Φ are nonnegative.

Under this assumption, A in (28) is block triangular, and
orbital stability of the target oscillations is guaranteed by the
choice of ∆ and Φ, independently of the choice of ∇ and Ψ. In
particular, the orbital stability condition is given by −(∆+Φ)
and −P T∆Q being Hurwitz, as in the special case ∇ = Ψ = 0
discussed in Section III-C. We will thus focus on the design
of ∆,Φ ∈ W to satisfy the Hurwitz properties.

To exploit the graph theory, let us introduce some basic
concepts. For a given coupling matrix ∆ satisfying (26), let
G be the directed graph (digraph) having ∆ as its Kirchhoff
matrix. That is, each oscillator is considered as a vertex of G,
and there is an edge eij directed from the ith vertex to the jth
vertex when i ̸= j and δji ̸= 0, i.e., the (j, i) entry of ∆ is
nonzero. The digraph G is said to contain a spanning tree if
removal of some (or no) edges from G defines a digraph such

that one of the vertices (called the root of the tree) receives no
inputs (no edge is directed toward it) and every other vertex
receives one input (exactly one edge is directed toward it).
The weight of edge eij is −δji for i ̸= j, and the weight of a
tree is the product of the weights of all the edges in the tree.

The following result gives necessary and sufficient condi-
tions for stability of the average system in (28).

Lemma 4: Let ∆,Φ ∈ Rn×n be given. Suppose Φ is
diagonal with nonnegative entries, and ∆ has nonpositive off-
diagonal entries and satisfies ∆11 = 0. Let G be the digraph
having ∆ as its Kirchhoff matrix, and P and Q be matrices
satisfying (15). The following statements are equivalent.
(i) −P T∆Q is Hurwitz.

(ii) The digraph G contains a spanning tree.
If these statements hold, the following two are equivalent.
(iii) −(∆ + Φ) is Hurwitz.
(iv) There exists an index j ∈ Zn such that vertex j is a root

of a spanning tree contained in G, and the (j, j) entry of
Φ is positive.
Proof: See the appendix.

The result in Lemma 4 shows that the average dynamics
(28) are stable when all the oscillators are connected by an
embedded tree structure (statement (ii)) and the oscillator at
the root of the tree is properly regulated by a nonlinear damp-
ing (statement (iv)). In general, existence of a spanning tree is
essential for coordination (and for synchronization as a special
case) which requires sharing of information among all agents.
The additional condition at the root ensures convergence of
amplitudes to prescribed values γi. The main result in this
section can now be stated as follows.

Theorem 3: Consider the coupled oscillators described by
(1), (22), (24), and (36). Suppose Assumptions 1 and 2 and
(26) are satisfied. Let G be the digraph with Kirchhoff matrix
∆. The periodic solution (2) is orbitally exponentially stable
for sufficiently small ε > 0 if and only if G contains a
spanning tree with root j ∈ Zn and the (j, j) entry of Φ
is positive.

Proof: By Theorem 2, the periodic solution is orbitally
stable for sufficiently small ε > 0 if and only if both −P T∆Q
and −(∆ + Φ) are Hurwitz. The result then follows from
Lemma 4.

The following result shows how to check existence of a
spanning tree and identify its root vertex.

Lemma 5: Consider a digraph G with the associated Kirch-
hoff matrix K. If vertex i is the root of a spanning tree of G,
the (i, i)-cofactor det (K−

i ) equals the sum of the weights of
all spanning trees rooted at i, where K−

i denotes the matrix
obtained by deleting the ith column and row from K. In
particular, if the weights of all edges are set to 1, then det (K−

i )
is the number of spanning trees rooted at i. If there is no
spanning tree rooted at vertex i, then det (K−

i ) = 0.
Proof: This is a dual version of the weighted matrix-tree

theorem for spanning (converging) trees (see Theorem 2.1 of
[34]) and can be proven by reversing the direction of every
edge while keeping the same weight.

To design a coupling function with a desired structure W,
we need to verify that the graph structure imposed by W
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contains a spanning tree because otherwise orbital stability
cannot be achieved as stated in Theorem 3. For this purpose,
Lemma 5 can be used. Let K ∈ W be the matrix such that
each off-diagonal entry is equal to −1 whenever a nonzero
entry is allowed by W, and diagonal entries are set to satisfy
K11 = 0. Let G be the digraph having K as its Kirchhoff
matrix. For each i ∈ Zn, if det (K−

i ) ̸= 0, then G contains a
spanning tree with its root at vertex i.

Once existence of a spanning tree is verified for a de-
sired coupling structure W, Step 1 of Design Procedure
in Section IV can be executed with structural constraints
(∆,∇,Φ,Ψ) ∈ W4 using Theorem 3. First, let ∆ ∈ W be an
arbitrary matrix such that each off-diagonal entry is negative
whenever a nonzero entry is allowed and diagonal entries are
set to satisfy ∆11 = 0. Let Φ be a diagonal matrix such that
the (j, j) entry is positive and the other diagonal entries are
nonnegative, where j ∈ Zn is the index of a root vertex.
Finally, let ∇,Ψ ∈ W be arbitrary matrices such that ∇11 = 0
holds and at least one of ∇ and ∇+Ψ is zero.

When each of Φ and Ψ is diagonal with a nonzero value
only at the (j, j) entry, the jth oscillator can act as the leader to
regulate the amplitudes at γ uniformly over the oscillators by
modifying E as Ejj(q, q̇) = ((rj/γ)

2 − 1)/2. This is because
the scaling by Γ = γI in (6) only affects E as indicated above.

C. Optimal design for fast convergence

The design process described in the previous sections leaves
large freedom in the choice of design parameters ε and
(∆,∇,Φ,Ψ) ∈ W. The design theory is based on weak cou-
pling of oscillators, and therefore corrective inputs from other
oscillators, when perturbed from the target orbit, are small,
resulting in slow convergence. This section discusses how to
optimize the design parameters to speed up the convergence
to the target oscillation.

Under weak coupling (small ε > 0), the maximum Floquet
multiplier of the linearized dynamics (11) with A(t) in (17)
is close to the unit circle, and hence convergence to the target
orbit is slow. To speed up, we can optimize ε instead of arbi-
trarily choosing ε to satisfy (37) in Step 2 of Design Procedure.
In particular, we can strengthen the coupling by minimizing
the maximum magnitude of the Floquet multipliers:

τo = min
ε>0

τ(ε), (38)

A practical way for solving the optimization is to grid the
ε parameter space, plot the function τ(ε) and look for the
minimum. The value of τ(ε) for a given ε can be obtained
through numerical integration of (9) with A := A .

The optimal value τo is guaranteed to be less than one
as required for orbital stability because Theorem 2 ensures
τ(ε) < 1 for sufficiently small ε > 0. In fact, it can be
shown using the Peano-Baker series [35] that τ(0) = 1 and
τ ′(0) = σ < 0 hold, where σ is the largest real part of the
eigenvalues of A . Hence, it is a reasonable option to minimize
σ during the search for (∆,∇,Φ,Ψ) ∈ W4 in Step 1. Let
us explore this idea for the special case ∇ = 0, which was
considered in Section IV-B under Assumption 2. In this case,
the matrix A := PĀQ is block triangular with −επ(∆ + Φ)

and −επP T∆Q on the diagonal, and hence the convergence
rate |σ| is determined by these two matrices. Since the effect
of Φ is to add nonlinear damping to speed up the convergence,
we choose to focus on −P T∆Q and attempt to minimize the
largest real part of its eigenvalues over ∆.

Recall from the standard Lyapunov theory that the largest
real part of the eigenvalues of −P T∆Q is less than γ/2 if and
only if there exists X such that

P T∆QX +X(P T∆Q)T + γX > 0, X = XT > I. (39)

Thus we may minimize γ over X and ∆ ∈ W subject to this
condition and ∆11 = 0, where a magnitude normalization, e.g.,
∥∆∥ < 1, should be added to the constraint to make γ bounded
below. This is a structured stabilization problem which is
difficult to solve with theoretical guarantee for optimality or
even feasibility in general. However, the graph theoretic result
in Lemma 4 shows exactly when it is feasible — when the
digraph underlying W has a spanning tree. Moreover, heuristic
numerical methods [36–38] appear to work reasonably well for
(39) due to relatively large design freedom in ∆ ∈ W. We will
illustrate this by numerical examples in the next section.

The maximum Floquet multiplier τo indicates the rate of
convergence only in the neighborhood of the desired orbit.
The convergence speed for an initial state away from the orbit
can be evaluated, through simulations after the design, in terms
of the instantaneous amplitude and phase errors defined by

eA(t) =

√√√√ 1

n

n∑
i=1

a2i , eP (t) =

√√√√ 1

n2

n∑
i=1

n∑
j=1

b2ij , (40)

where

ai = |pi|/γi − 1, bij = (∠pi − ∠pj)− (φi − φj),
pi := (q̇i/ω) +

√
−1 qi

with ∠(·) being the angle of a complex number defined so
that |bij | ≤ π.

V. ILLUSTRATIVE EXAMPLES

Consider the coupled harmonic oscillators in (1) with n = 5.
We design structured coupling functions h(q, q̇) following
Design Procedure, where the five oscillators are allowed to
couple as shown in the digraph in Fig. 1. The coupling
structure W is defined by

W := {R ·K : R ∈ R5×5 },

K :=


1 −1 0 0 0

−1 1 0 0 0
−1 −1 3 −1 0
0 0 −1 2 −1

−1 0 −1 −1 3

 , (41)

where K is the Kirchhoff matrix of the digraph, with all
weights set to 1. Note that W is the set of 5× 5 matrices that
share the location of zero entries with K. Simple calculations
show that det (K−

i ) = 11 for i = 1, 2 and det (K−
i ) = 0 for

i = 3, 4, 5. Hence, the digraph contains 22 spanning trees; half
of them are rooted at vertex 1, and the other half at vertex 2.
Therefore, from Theorem 3, orbital stability is achieved with
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weak coupling under Assumption 2 if Φ has a positive value at
the (1, 1) or (2, 2) entry, and ∆ ∈ W satisfies ∆11 = 0 and is
given by ∆ = R ·K for some R ∈ R5×5 with positive entries.

1

2

5

4 3

Fig. 1. Digraph for oscillator architecture. Each circle is an oscillator (vertex),
and arrows indicate allowable signal flow which corresponds to W.

We consider the following cases for the choice of
(∆,∇,Φ,Ψ) in Step 1 of Design Procedure:
(a) ∆ = K, Φ = diag(0, 0, 1, 1, 1), ∇ = Ψ = 0, where

Φii = 0 at all root vertices i = 1 and 2.
(b) ∆ = K, Φ = diag(1, 0, 0, 1, 0), ∇ = Ψ = 0, where

Φii > 0 at a root vertex i = 1.
(c) ∆ = R ·K and R is optimized by the D-K iteration [36]

to minimize γ subject to ∆11 = 0, ∥∆∥ < 1, and (39).
Same Φ as (b), and ∇ = Ψ = 0.

(d) Same (∆,Φ) as (c), with ∇ = ∆/5 and Ψ = I/5.
Orbital stability is not achieved for case (a) since, for any
spanning tree with its root at j ∈ Zn, the (j, j) entry of Φ is
zero. In particular, the amplitudes may not converge to desired
values due to the lack of damping, although the relative phases
will converge since the digraph contains a spanning tree with
positive weights. Stability of A is guaranteed by Lemma 4
for cases (b) and (c), but not for case (d) due to violation
of Assumption 2. For case (d), stability was verified after the
design with additional terms (∇,Ψ). The coupled oscillators
for cases (a)–(c) can be seen as the system in (31)-(33) with
F = diag(0, 1) and d in (32) replaced by Φii. For comparison,
we consider the same system with F = I and d = 1/2,
resulting in the coupled Andronov-Hopf oscillators [26]. We
label this case as (e):
(e) System (31)-(33) with d = 1/2 (corresponding to Φ = I

and ∇ = Ψ = 0), the same ∆ as (c), and F = I .
For the above five cases, we proceed to Step 2 and optimize

ε as in (38) where the maximum Floquet multiplier τ(ε)
defined in (37) is minimized for faster convergence to each
of the synchronized oscillations with φ = 0, and coordinated
oscillations with φ = col (0, 20, 50, 90, 140) degrees. The τ(ε)
curves are shown in Fig. 2. For case (a), τ(ε) ≥ 1 for all ε ≥ 0
and the orbit is not stable due to the lack of damping at root
vertices, consistently with Theorem 3. For all the other cases,
the curves start at τ(0) = 1 with negative slopes to achieve
orbital stability τ(ε) < 1 for sufficiently small ε > 0 as
guaranteed by Theorem 2. Case (c) is similar to case (b) but the
minimum of τ(ε) is smaller than that of (b) as a result of the ∆
optimization. The minimum of τ(ε) in case (d) is even smaller
than that of (c) due to the additional coupling ∇ and nonlinear
stiffness Ψ. For case (e), we have τ(ε) → 0 as ε → ∞ and
thus the stronger the coupling, the faster the convergence. We
do not see this property for cases (b)–(d) because4 the orbital

4The reasoning was justified by observing the absence of this property for
case (c) with modified Φ = I , which corresponds to case (e) with F =
diag(0, 1) (result not shown).
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Fig. 2. Maximum magnitude of Floquet multipliers, τ(ε), as a function of
ε. Left: synchronization. The optimizers are εo = 1.2, 2.4, 4.1 for cases (b),
(c), (d), respectively. Right: coordination. The optimizers are εo = 1.3, 1.9,
2.5 for cases (b), (c), (d), respectively.
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stabilization effect in (32) and (33) is through F = diag(0, 1)
and is not uniformly applied to the two entries of yi ∈ R2.
In fact, strong coupling (i.e. large ε > 0) destabilizes the
orbit (τ(ε) > 1) when coordination (φ ̸= 0) is considered.
The result illustrates difficulty of achieving coordination in
the absence of the flow-invariance property.

We now proceed to Step 3 to determine the coupling
function h(q, q̇). The amplitudes are uniform γ = 11 for
synchronization cases with ω = 1, and nonuniform γ =
col (0.2, 0.4, 0.6, 0.8, 1) for coordination cases with ω = 2π.
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The optimal values ε := εo are used for all the cases except
for (a) and (e) where ε is chosen as ε = 2. The nonlinear
oscillator thus designed for each case is simulated with random
initial conditions qi(0) and q̇i(0), sampled from the normal
distribution with mean zero and standard deviation 1. The
system is simulated for 100 samples of the initial condition,
and the amplitude and phase errors in (40) are calculated and
averaged over the 100 samples at each time instant The time
courses of the geometric average errors are shown in Fig. 3
and the time courses of q(t) are shown in Fig. 4 for a typical
sample case. We see that the orbit in case (a) is not stable,
without convergence to the specified unity amplitude. The
linear design of [7] assumes ∇ = Φ = Ψ = 0 and would
give an unstable synchronization result similar to case (a).
The other cases give stable orbits with the convergence rate
somewhat correlated with the linear analysis based on τ(ε).

VI. CONCLUSION

Synchronization and coordination problems are considered
for a set of linear harmonic oscillators interconnected through
nonlinear diffusive coupling. With a general coupling function,
a necessary and sufficient condition is presented for orbital
stability of a given harmonic oscillation, in terms of Floquet
multipliers. The general result is specialized to the case of
weak parametric coupling, where the coupling structure is
physically motivated by nonlinear stiffness and damping for
mechanical systems. Due to the weakness of the coupling,
the orbital stability condition reduces through averaging to
an eigenvalue condition for a constant coupling matrix. We
have also provided graph theoretic interpretations of the orbital
stability conditions under diffusive coupling. In particular, it
is shown that the phase convergence is guaranteed if the
digraph contains a spanning tree, in which case, the amplitude
convergence is guaranteed if an oscillator at the root of a
spanning tree has a nonlinear damping term. Based on the
analysis results, a systematic procedure is proposed for the
design of coupling functions to achieve amplitude regulation
and phase coordination. It is shown how the coupling structure
can be constrained and how the coupling parameters can be
optimized for faster convergence. The theoretical results are
illustrated by numerical examples. Finally, we remark that
it may be possible to extend our results for a general class
of weakly coupled Hamiltonian systems within the formal
framework of the Birkhoff normal form theory [41, 42].

Acknowledgment: The authors gratefully acknowledge
helpful discussions with Prof. J.J. Slotine.

APPENDIX

Here we provide a proof of Lemma 4. Let us first introduces
some notation. For each k ∈ Zn, define Zk

n to be the set of
all combinations of k indices from Zn, that is,

Zk
n := {(i1, . . . , ik) : 1 ≤ i1 < . . . < ik ≤ n }.

For a matrix F ∈ Cn×n and z ∈ Zk
n, the principal submatrix

obtained by deleting k rows and k columns specified by z :=
(i1, . . . , ik), is denoted by F−

z ∈ C(n−k)×(n−k). Similarly, the

submatrix obtained by retaining only those rows and columns
is denoted by F+

z ∈ Ck×k.
We now prove Lemma 4. In view of the proof of Corollary 1,

−P T∆Q is Hurwitz if and only if the eigenvalues of ∆ are all
in the open right half plane except for one at the origin. This
condition is then equivalent to (ii) due to Lemma 3.3 of [39].

Next we show (iii) ⇔ (iv) assuming that (ii) holds. By Ger-
shgorin circle theorem, every nonzero eigenvalue of −(∆+Φ)
has a strictly negative real part. Thus, −(∆ + Φ) is Hurwitz
if and only if −(∆ + Φ) has no eigenvalue at the origin, i.e.,
det (∆ + Φ) ̸= 0. By Theorem 2.3 of [40],

det (∆+Φ)=det (∆)+det (Φ)+
n−1∑
k=1

∑
z∈Zk

n

det (Φ+
z )det (∆−

z ).

(42)

Since every diagonally dominant real matrix with nonnegative
diagonal entries has a nonnegative determinant, we have
det (∆−

z ) ≥ 0 for all z ∈ Zk
n and k ∈ Zn, and hence every

term on the right hand side is nonnegative.
Suppose statement (iv) holds. Then, by Lemma 5, the prin-

cipal submatrix ∆−
j has a positive determinant, det (∆−

j ) > 0,
since all the edges of the graph are assumed to have positive
weights. By assumption, Φ+

j , the jth diagonal entry of Φ, is
positive. Therefore, the term det (Φ+

j )det (∆−
j ) appearing on

the right hand side of (42) is positive, and thus det (∆+Φ) >
0. This completes the proof of (iv) ⇒ (iii).

Suppose statement (iv) does not hold. By reordering the
vertices of the digraph, we may assume, without loss of
generality, the following structure for ∆:

∆ =

[
∆11 0
∆21 ∆22

]
,

where ∆11 ∈ Rm×m, vertices i ∈ Zm are the roots of
spanning diverging trees, and none of the other vertices is

TABLE I
VARIABLES AND PARAMETERS

q(t) Rn original oscillator variables
ξ(t) Rn target oscillation for q
ω R frequency of ξ
γi R amplitude of ξi
φi R phase of ξi
i Zn index for oscillators

x(t) R2n col (q, q̇)
χ(t) R2n col (ξ, ξ̇)
z(t) R2n perturbation x− χ
(r, θ) Rn × Rn polar coordinates for (q, q̇)
η(t) Rn target for θ(t), ηi = t+ φi

(ρ, ϑ) Rn × Rn perturbation (r − 11, θ − η)
w(t) R2n col (ρ, ϑ)
ϕ(t) Rn−1 relative phases ϕi = ϑi − ϑn
ψ(t) R absolute phase ψ = ϑn
e(t) R2n−1 col (ρ, ϕ)
x(t) R2n col (e, ψ)
yi(t) R2 col (qi, q̇i)
A(t) R2n×2n linearized dynamics for z
A(t) R2n×2n linearized dynamics for w
A(t) R2n×2n linearized dynamics for x
A(t) R(2n−1)×(2n−1) linearized dynamics for e
ε R coupling strength

(D,K) (Rn×n)2 linear damping and stiffness
(M,N) (Rn×n)2 nonlinear damping and stiffness

(∆,∇,Φ,Ψ) (Rn×n)4 φ-transformed (D,K,M,N)
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the root of any spanning diverging tree. The (1, 2) block is
zero by definition of a root because otherwise there is a root
i ̸∈ Zm (see Fig. 1 and (41) for an example with ∆ := K

and m = 2). Let us redefine Φ accordingly. Then Φ is still
diagonal, and the first m diagonal entries of Φ are zero since
(iv) is violated. Thus we have Φ = diag(0,Φ22), which
implies det (∆ + Φ) = det (∆11)det (∆22 + Φ22) = 0 since
det (∆11) = 0 due to ∆1111 = 0. Thus −(∆ + Φ) cannot be
Hurwitz, proving (iii) ⇒ (iv).
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