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Abstract: Pregnancy alters many physiological systems, including the maternal gut microbiota. Diet
is a key regulator of this system and can alter the host immune system to promote inflammation.
Multiple perinatal disorders have been associated with inflammation, maternal metabolic alterations,
and gut microbial dysbiosis, including gestational diabetes mellitus, pre-eclampsia, preterm birth,
and mood disorders. However, the effects of high-inflammatory diets on the gut microbiota during
pregnancy have yet to be fully explored. We aimed to address this gap using a system-based ap-
proach to characterize associations among dietary inflammatory potential, a measure of diet quality,
and the gut microbiome during pregnancy. Forty-seven pregnant persons were recruited prior to
16 weeks of gestation. Participants completed a food frequency questionnaire (FFQ) and provided
fecal samples. Dietary inflammatory potential was assessed using the Dietary Inflammatory Index
(DII) from the FFQ data. Fecal samples were analyzed using 16S rRNA amplicon sequencing. Differ-
ential taxon abundances with respect to the DII score were identified, and the microbial metabolic
potential was predicted using PICRUSt2. Inflammatory diets were associated with decreased vitamin
and mineral intake and a dysbiotic gut microbiota structure and predicted metabolism. Gut microbial
compositional differences revealed a decrease in short-chain fatty acid producers such as Faecalibac-
terium, and an increase in predicted vitamin B12 synthesis, methylglyoxal detoxification, galactose
metabolism, and multidrug efflux systems in pregnant individuals with increased DII scores. Dietary
inflammatory potential was associated with a reduction in the consumption of vitamins and minerals
and predicted gut microbiota metabolic dysregulation.

Keywords: diet; inflammation; pregnancy; gut microbiota; dietary inflammatory index; galactose;
food frequency questionnaire

1. Introduction

In pregnancy, an under- or oversupply of nutrients can have deleterious impacts on
both maternal and fetal health. For instance, a lack of adequate folic acid intake during
pregnancy is one of the leading causes of neural tube defects during fetal development [1].
Similarly, iron utilization increases during the course of pregnancy, and an inadequate sup-
ply is associated with poor fetal outcomes, including intrauterine growth restriction and low
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birth weight [2]. Conversely, an oversupply of dietary nutrients, including carbohydrates
and saturated fats, common in Western diets, are associated with chronic inflammation
and can lead to obstetric complications, from gestational diabetes mellitus (GDM) [3,4] to
preterm birth [5]. This is especially important for minoritized women of color who may
have a poor nutritional intake due to structural inequalities [6–8] and experience a higher
burden of adverse pregnancy outcomes [9]. Thus, understanding the pro-inflammatory
nature of diets could serve to reduce negative obstetrics and delivery outcomes [10].

Diet is a major regulator of the gut microbiota [11,12]. The gut microbiota encompasses
the bacteria, fungi, viruses, and protists living inside the human gastrointestinal tract. It is
estimated that the combined genomes of all gut bacteria comprise >5 million genes [13],
with the potential to metabolize a vast number of different substrates. An Over- or un-
dersupply of dietary nutrients (such as fats or fiber) can provide competitive advantages
or disadvantages for different gut microbial species based on their individual metabolic
capabilities [14,15]. The dynamic nature of pregnancy alters almost every system in the
body, including the maternal gut microbiota [16] and immune system [17], which adapts
in time with a tightly regulated clock to maintain the immune protection of the mother
while simultaneously avoiding the autoimmune rejection of the growing fetus [17,18]. The
structure of the gut microbiota changes as the pregnancy progresses [19–21]. In fact, the
transplantation of gut microbiota from pregnant individuals into germ-free animals renders
common pregnancy phenotypes of obesity, insulin resistance [19,22], and adaptations in
immunity [23]. A poor diet quality leading to a pro-inflammatory state can alter the normal
dynamic changes in the gut microbiota [14] and immune system during pregnancy [24],
increasing the risk of common perinatal complications, including GDM [25], iron defi-
ciency [26], and mood disorders [27]. It is thus essential to understand how maternal diet
quality during pregnancy impacts the gut microbiota.

The Dietary Inflammatory Index (DII) is a literature-derived population-based index
used to quantify the inflammatory potential of diets among diverse populations [28]. The
index was developed by leveraging global dietary studies to assign inflammatory effect
scores (Ss) to common dietary nutrients based on their ability to increase pro- or decrease
anti-inflammatory biomarkers, such as cytokines IL-1β, IL-6, IL-4, and IL-10 [28–30]. Previ-
ous studies have shown that the DII is positively associated with inflammatory markers
during pregnancy [31], increased rates of cesarean delivery in obese mothers [32], and
decreased fetal growth [33]. Furthermore, the DII has also been negatively linked with
microorganisms that produce short-chain fatty acids (SCFAs), which are beneficial anti-
inflammatory metabolites [34–37]. Thus, the normal gut microbial compositional changes
occurring during the gestational period may be negatively altered by a poor diet quality,
which could be assessed using the DII score, and may mediate obstetric complications.

Dysbiosis refers to the imbalance in the gut microbiota, where the equilibrium between
beneficial and harmful microorganisms is disrupted by factors such as poor diet, antibiotics,
or illness [25]. Microbial dysregulation, closely related to dysbiosis, describes when the
regulation of these microbial populations is disturbed, leading to health issues [27] that
can manifest as an impaired immune response or altered metabolic processes [21]. Both
dysbiosis and microbial dysregulation are crucial concepts in understanding conditions like
obesity and gestational diabetes, where the gut microbiota plays a significant role in disease
progression or mitigation [21]. Understanding how diet regulates the gut microbiota during
pregnancy could potentially lead to avenues of early interventions to reduce the risk of
pregnancy comorbidities associated with systemic inflammation. Here, we aimed to assess
the relationship between dietary inflammatory potential and the maternal gut microbiota
during the first trimester of pregnancy in a cohort mostly composed of minoritized women
of color living in a large diverse urban community in the United States. We hypothesized
that there would be an increase in bacterial species and predicted microbial metabolic
potential associated with inflammatory processes in subjects reporting high DII scores.
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2. Materials and Methods
2.1. Participant Recruitment

This work is a secondary data analysis of a longitudinal cohort study (MoMent) in
which participants were recruited from the outpatient obstetric clinics at a public university
hospital, the University of Illinois Chicago (Chicago, IL, USA), from 2017 to 2020 [38]. This
study was approved by the University of Illinois Chicago Institutional Review Board (IRB
#2014-0325, 4 September 2014). Written informed consent was obtained prior to study
enrollment and sample collection. To be eligible for the study, participants had to be less
than 16 weeks pregnant and speak English. Women were excluded for the following
criteria: less than 18 or over 64 years of age, current multi-gestational pregnancy, a prior
history of gastrointestinal surgeries, oral antibiotic, antiviral, or antifungal use in the last
6 months, use of medication or supplements to treat any chronic disorder (e.g., diabetes,
hypertension, mood disorders), history of substance abuse (excluding marijuana, alcohol,
and tobacco; self-report) within the last 6 months, use of in vitro fertilization treatments
for current pregnancy, active diagnosis of cancer, or HIV or eating disorders or chronic
diarrhea within the last 6 months. For this secondary study, we selected participants who
completed a diet food frequency questionnaire before 28 gestational weeks and provided a
fecal sample at their first study visit (<16 gestational weeks), rendering a total of 47 subjects.
See Supplemental Figure S1 for the participant enrollment flowchart.

2.2. Stool Collection

Study participants self-collected rectal swabs (n = 42), avoiding touching the rectal
tissue, or provided stool samples (n = 5) for gut microbiota assessment. Stool samples were
homogenized and aliquoted in cryogenic vials without additives for unaltered sequencing.
Rectal swabs and aliquoted stool samples were stored at −80 ◦C before being sent for 16S
rRNA amplicon sequencing. Biological samples were collected with an average estimated
gestational age of 10.9 ± 3 weeks.

2.3. Dietary Assessment

Participants completed one of two validated FFQs: Vioscreen (n = 24) [39] or the Diet
History Questionnaire II (DHQII) (n = 23) [40] with an average estimated gestational age
of 14.7 ± 5.9 weeks. Vioscreen is a web-based platform that can assess up to 90 days
of intake using nutrition information from the Nutrition Coordinating Center (NCC)
Food and Nutrient Database [39]. The DHQII is a paper-based questionnaire that asks
134 food and 8 supplement questions [40]. This platform was created by the National
Cancer Institute. Participants were asked about the previous month of dietary intake. The
Vioscreen questionnaire was completed electronically at home by participants, with some
receiving calls from research staff to complete the survey. The DHQII was completed
in-person with a certified registered dietitian within an average of 4.4 ± 5.5 weeks of
microbiome sample collection. The Dietary Inflammatory Index (DII) was calculated using
the DII components common of both FFQs, with a total of twenty-seven variables (60%
of total DII parameters), which is within the DII’s developer’s suggested limit [28]. Indi-
viduals were checked to ensure a daily caloric intake of <500 or >5000 kcal/day). The DII
variables included were their daily intake of alcohol (g), vitamin B12 (µg), vitamin B6 (mg),
β-carotene (µg), caffeine (g), carbohydrates (g), cholesterol (mg), energy (kcal), total fat (g),
fiber (g), folic acid (µg), iron (mg), magnesium (mg), monounsaturated fatty acids (myris-
toleic acid, MUFA 14:1) (g), niacin (mg), total protein (g), polyunsaturated fatty acids
(PUFA) (g), riboflavin (mg), saturated fat (g), selenium (µg), thiamin (mg), trans-saturated
fat (g), vitamin A (retinol equivalents), vitamin C (mg), vitamin D (µg), vitamin E (mg),
and zinc (mg). Individual DII scores were calculated using Equation (1):

DII = ∑n
i=1

[([
ϕ

(
µxi

− µyi

σi

)]
× 2 − 1

)
× S

]
(1)
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where n represents the total number of common DII parameters between the VioScreen
and DHQII; µxi is the mean daily intake of food parameter i obtained from the FFQ; µyi
is the global mean (average daily intake across global populations) and σi is the global
standard deviation of parameter i, both derived from the reference table; Φ is the cumulative
distribution function; and S represents the inflammatory effect score. Scores can range from
−8.87 to +7.98 with the latter being the most inflammatory [28]. After calculating DII scores
for each participant, individuals were grouped into tertiles.

2.4. Dietary Statistics

Differences in patient demographics by DII tertile were assessed using Chi-square
(qualitative) or ANOVA (quantitative) assessments. Correlations among DII parameters
(continuous scale) were identified using Spearman’s correlation using energy-corrected nu-
tritional values. Energy correction was performed by scaling each subjects’ food parameter
by their reported daily caloric intake. Differences in nutrient parameters by tertile were
assessed using ANOVA, and between Tertile 1 and Tertile 2/3, using the student’s t-test.
All analyses were completed in R.

2.5. Microbiota Assessment

Rectal and fecal samples underwent 16S rRNA amplicon sequencing in four different
batches at the University of Chicago (Chicago, IL, USA) and at the University of California
San Diego (San Diego, CA, USA) together with control samples to account for possible
reactant and environmental contaminations. Forward raw FASTQ sequences were pro-
cessed using the DADA2 pipeline independently using default parameters [41] and passed
to the R package phyloseq [42]. After primer removal, reads were truncated to 150 base
pairs and denoised using standard parameters, and chimeras were removed. A taxonom-
ical assessment of the trimmed, cleaned reads was performed using the Silva reference
database version 132 [43]. Contaminating amplicon sequence variances (ASV) found in
blank controls were removed from each batch using the prevalence method in the R decon-
tam package [44]. A threshold of 0.5 was used to identify contaminants that were more
prevalent in negative controls than in clinical samples. Samples with a library size below
10 reads were excluded from downstream analysis. Subsequently, batch-effects were re-
moved using the R package ComBat-seq [45]. The count table and taxonomic assignments for
each batch were then merged, keeping all the amplicon sequencing variants (ASVs). ASVs
with a relative abundance of less than 1% relative to the sample library size were removed
from downstream analysis. After prevalence filtering, taxa counts were normalized using
cumulative sum scaling (CSS) [46].

2.6. Microbiota Diversity Assessment

Alpha diversity was calculated using the Shannon [47] and Simpson indexes [48].
Statically significant differences in mean alpha diversity between DII tertiles were assessed
using the Wilcoxon rank-sum test [49]. Beta diversity was determined with the Bray–Curtis
index [50] and unweighted, normalized UniFrac distance [51]. Significant differences in
beta diversity distances based on the DII scores were assessed using PERMANOVA [52],
correcting for participant BMI, gestational weeks (EGA), food frequency questionnaire type
(DHQII or Vioscreen), sample type (stool or rectal), and maternal age.

2.7. Microbiota Differential Abundance

Associations between the DII and CSS-normalized ASVs were identified by fitting
a zero-inflated Gaussian model with the R package metagenomeSeq [53]. Models were
adjusted using the same covariates as before. Multiple comparisons were corrected using
the Benjamini–Hochberg method [54].
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2.8. Microbiota Predicted Metabolic Potential

Finally, gut metabolic potential was predicted via PICRUSt 2.0 (Phylogenetic Investiga-
tion of Communities by Reconstruction of Unobserved States) [55]. Associations between
metabolic pathways, microbial enzymes, and DII scores were assessed with zero-inflated
Gaussian models, corrected using the same covariates as above and multiple compar-
isons were adjusted using the Benjamin–Hochberg method. Gene set enrichment analysis
(GSEA) was performed using all microbial enzymes, identified as significant before FDR
adjustment using the R package MicrobiomeProfiler [56]. Finally, associations among the
identified enzymes and each food parameter used in the DII estimation were quantified
with zero-inflated Gaussian models, corrected using the same covariates as above, and
multiple comparisons were adjusted using the Benjamin–Hochberg method. A total of
27 models were fit with Z-scored energy-corrected food parameters per subject with the
outcome and microbial enzymes as predictors.

3. Results
3.1. Our Sample Was Composed of Minoritized Women of Color with a Large Percentage
Consuming a Vitamin-Depleted Pro-Inflammatory Diet

A total of 47 participants completed an FFQ and provided a fecal sample. The study
cohort was primarily comprised of non-Hispanic Black (44%) and Hispanic (15%) pregnant
persons with an average estimated gestational age of 10.9 ± 3 weeks at fecal sample
collection, an average maternal age of 29 ± 6 years, and 72% reporting an annual household
income below $31,000 per year (Table 1). Notably, most participants reported use of Federal
Aid Health Insurance (74.5%), a proxy for low socioeconomic status [57]. A similar number
of participants completed the Vioscreen (n = 24) and DHQII (n = 23) FFQs. Based on the
27 food parameters common between both the FFQs (60% of the total DII parameters),
the DII scores were spread across low and higher inflammatory scores with the lowest
tertile (Tertile 1) mean of −2.3 ± 0.9 and highest (Tertile 3) mean DII of 3.3 ± 0.5 (Table 1).
Socio-demographic characteristics were similar across all three groups (Table 1, p > 0.05). A
less inflammatory diet was associated with higher intakes of vitamin B12, B6, A, riboflavin,
niacin, iron, folic acid, magnesium, and zinc (Table 2, p < 0.05). These DII parameters
were positively associated with each other (Figure 1, p < 0.05). Of the nutrients used to
calculate the DII score, the biggest contributors were those vitamins and minerals negatively
associated with the DII (Figure 1, p < 0.05).

Table 1. Study cohort demographic characteristics did not differ as a function of the DII scores.
Participants were stratified into DII tertiles. There were no differences in study characteristics by DII
tertile (p > 0.05).

Tertile 1 Tertile 2 Tertile 3 p

DII Mean (SD) −2.3 (0.9) 1.0 (0.9) 3.3 (0.5)

Gestational Weeks Mean (SD) 11.2 (3.7) 11.2 (2.9) 10.0 (2.6) 0.46

Age Mean (SD) 29.4 (7.5) 28.6 (5.3) 30.2 (5.5) 0.74

BMI Mean (SD) 29.4 (7.3) 30.4 (6.6) 28.5 (7.7) 0.76
Race/Ethnicity Hispanic 2 (13.3) 4 (25.0) 1 (6.2) 0.31

Non-Hispanic Black 9 (60.0) 6 (37.5) 6 (37.5)
Other/Unreported 4 (26.7) 6 (37.5) 9 (56.2)

Health Insurance Federal Aid 13 (86.7) 10 (62.5) 12 (75.0) 0.3
Private 2 (13.3) 6 (37.5) 4 (25.0)

Education Above College 1 (6.7) 4 (25.0) 5 (31.2) 0.24
Below College 5 (33.3) 4 (25.0) 7 (43.8)

College 9 (60.0) 8 (50.0) 4 (25.0)

Employment Employed Part/Full Time 10 (66.7) 8 (50.0) 9 (56.2) 0.64
Unemployed 5 (33.3) 8 (50.0) 7 (43.8)



Nutrients 2024, 16, 935 6 of 15

Table 1. Cont.

Tertile 1 Tertile 2 Tertile 3 p

Income $31–76 k 2 (13.3) 3 (18.8) 2 (12.5) 0.83
$76 k+ 1 (6.7) 3 (18.8) 2 (12.5)
<$31 k 12 (80.0) 10 (62.5) 12 (75.0)

Relationship Status Married/Relationship 7 (46.7) 11 (68.8) 10 (62.5) 0.44
Single 8 (53.3) 5 (31.2) 6 (37.5)

Planned Pregnancy No 6 (40.0) 1 (6.2) 2 (12.5) 0.13
Unreported 7 (46.7) 10 (62.5) 11 (68.8)

Yes 2 (13.3) 5 (31.2) 3 (18.8)

Table 2. Differences in nutritional intake by DII tertile. Reported mean (SD) nutrient values were
normalized using the total energy intake per day (kcal/day). Vitamin A is reported in retinol
equivalents (REs).

Tertile 1 Tertile 2 Tertile 3 p

Alcohol 0.1 (0.3) 0.1 (0.2) 0.1 (0.5) 0.82

Vitamin B12 (µg) 3.2 (1.1) 2.9 (1.2) 2.2 (0.9) 0.04

Vitamin B6 (mg) 1.2 (0.4) 1.0 (0.3) 0.9 (0.2) 0.03

β Carotene (µg) 2094.3 (1552.1) 1547.3 (1698.9) 1551.1 (1112.2) 0.5

Caffeine (g) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.49

Carbohydrate (g) 127.5 (25.9) 129.0 (28.0) 128.2 (34.8) 0.99

Cholesterol (mg) 140.6 (66.9) 145.8 (64.5) 163.6 (117.6) 0.74

Energy (kcal) 3001.5 (954.9) 1801.1 (409.1) 970.5 (344.7)

Total fat (g) 39.6 (9.9) 40.3 (9.5) 40.1 (11.8) 0.98

Fiber (g) 11.0 (2.5) 10.1 (3.3) 9.1 (2.2) 0.15

Folic acid (µg) 165.3 (87.0) 165.8 (86.0) 134.1 (74.9) 0.47

Iron (mg) 9.2 (3.5) 7.9 (2.8) 6.3 (1.7) 0.02

Magnesium (mg) 173.4 (35.6) 147.1 (35.7) 144.4 (41.7) 0.07

MUFA (g) 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.56

Niacin (mg) 11.8 (3.2) 10.1 (2.1) 9.1 (2.8) 0.03

Protein (g) 39.3 (6.3) 35.6 (7.0) 36.1 (11.7) 0.44

PUFA (g) 8.1 (2.4) 7.9 (2.7) 8.2 (4.9) 0.96

Riboflavin (mg) 1.3 (0.4) 1.1 (0.4) 1.0 (0.3) 0.04

Saturated fat (g) 13.5 (3.6) 14.2 (4.1) 13.4 (4.4) 0.85

Selenium (µg) 52.5 (10.4) 49.5 (11.6) 51.9 (19.8) 0.82

Thiamin (mg) 0.9 (0.3) 0.8 (0.2) 0.8 (0.2) 0.19

Trans fat (g) 1.7 (0.5) 1.8 (0.6) 1.6 (0.7) 0.74

Vitamin A (RE) 537.0 (191.2) 437.0 (191.1) 368.2 (150.0) 0.04

Vitamin C (mg) 87.8 (42.8) 71.7 (47.2) 66.7 (54.0) 0.46

Vitamin D (µg) 4.0 (2.0) 3.6 (2.0) 2.6 (1.7) 0.15

Vitamin E (mg) 5.2 (2.1) 3.9 (1.2) 4.1 (1.9) 0.11

Zinc (mg) 6.6 (1.9) 5.9 (1.4) 5.1 (1.4) 0.04
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Figure 1. Components and drivers of the DII scores. Spearman correlation (p < 0.05) among the
27 parameters used to calculate the DII scores for each subject. Dot size is proportional to the
absolute correlation coefficient. See Table 2 for units. PUFA: polyunsaturated fatty acids; MUFA:
monounsaturated fatty acids.

3.2. Gut Microbiota Composition and Predicted Metabolic Potential Were Associated with
Proinflammatory Diets in Early Pregnancy

There were no statistically significant differences in the alpha or beta diversities by
DII tertile (Figure S2A–D, p-value > 0.05). A total of 13 ASVs were identified as differ-
entially abundant in terms of the DII score (Table S1, false discovery rate (fdr)-adjusted
p-value < 0.05). Among the top 10 ASVs, those mapped to Solobacterium moorei, Gemella
asaccharolytica, Gardnerella vaginalis, Atopobium vaginae, and unclassified members of the
Eggerthellaceae family and the Corynebacterium genera were positively associated with the
DII (Figure 2, adjusted p < 0.05), while those mapped to Parabacteroides distasonis, unclassi-
fied members of the genus Faecalibacterium, Prevotella, and the family Erysipelotrichaceae
(Figure 2, adjusted p < 0.05) were negatively associated with dietary inflammatory potential.

Next, we examined which PICRUSt2-predicted microbial enzymes and metabolic
pathways were associated with the DII scores. We identified four pathways, including two
aerobic adenosylcobalamin (vitamin B12) synthesis pathways, a methylglyoxal detoxifica-
tion pathway, and a nucleotide synthesis pathway (Figure 2b, p < 0.01), and 58 enzymes
were significantly associated with the DII score (Table S2, fdr-adjusted p-value < 0.05).
The significantly enriched predicted enzymes were all positively associated with the DII
(Table S2), with several being involved in a bacterial two-component system related to mul-
tidrug efflux pumps (K07642, BaeS) and drug efflux pumps/resistance (K18889, K18148),
nutrient transport (K17330, K17329), and galactose degradation and transport (K10111,
K12112, K0894) (Figure 3a, fdr-adjusted p < 0.05). The gene set enrichment analysis of the
DII-associated predicted enzymes before multiple comparisons (n = 192, p-value < 0.05) also
revealed increases in two-component system terms [58] primarily related to nitrogen and
sugar metabolism, genes involved in nitrogen metabolism (specifically nitrate reduction to
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ammonia), biofilm formation, glycolysis, and galactose metabolism (Figure 3b, adjusted
p < 0.05, Table S3).
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Figure 2. Differentially abundant gut taxa and predicted gut-produced enzymes as a function of
DII scores. Top 10 CSS normalized taxa (a) and all predicted pathways (b) that were identified
as statistically significant differentially abundant based on the DII after correction for participant
age, estimated gestational weeks (EGA), BMI, and food frequency questionnaire type (DHQII or
VioScreen), and sample type (adjusted p < 0.05 & p-value < 0.01). Taxa names are the lowest identifiable
rank. A full list of enriched ASVs can be found in Table S1. PWY-7376: Cob(II)yrinate a,c-diamide
biosynthesis II; PPGPPMET-PWYI: ppGpp metabolism; P381-PWY: adenosylcobalamin biosynthesis
II (aerobic); METHGLYUT-PWY: methylglyoxal detoxification super pathway.
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Figure 3. Predicted microbial gene set enrichment analysis in terms of DII scores. (a): Top 15 predicted
enzymes that were identified as differentially abundant based on the DII (adjusted p < 0.05).
(b): Gene set enrichment of enzymes grouped by those positively (n = 192, p < 0.05) associated
with the DII score. A full list of enriched enzymes can be found in Table S2. A full list of enzymes by
gene set term can be found in Table S3.

3.3. Several Individual DII Components Were Associated with Predicted Microbial Enzymes

Finally, we investigated the relationships between DII components and DII-associated
enzymes (Figure 4). Several DII-associated enzymes, such as nutrient transporters, and
enzymes pertaining to the galactose metabolism, were also associated with 25 individual
DII food parameters including vitamins B12, A, D, and E and cholesterol. K07642 (a
two-component signaling system for efflux pumps) was strongly associated with the
largest number of DII components, including a positive relationship with nutrients such as
vitamins A, C, and D and negative relationship with others like vitamin E and zinc. The
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second group of enzymes associated with individual DII nutrient parameters included ABC
transporters (K10240, K17329, K17330) and galactose metabolism (K12112) and metabolite
transport (K01894) enzymes. These were mostly negatively associated with key perinatal
nutrients such as selenium, vitamin B6, and folic acid, some of which were decreased in
higher DII individuals (Table 2).
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4. Discussion

Dietary intake is an essential aspect of maternal health. Food choice is often related to
the dietary preferences of an individual, their environment, and their socioeconomic status.
The under- or oversupply of certain nutrients can have direct impacts on maternal health
and the growing fetus [59,60]. This study demonstrated that diet inflammatory potential, an
indicator of poor diet quality, is associated with lower vitamin and mineral intake, altered
maternal gut microbiota composition, and dysregulated microbial metabolic potential
in early pregnancy. As diet is one of the main regulators of the gut microbiota [11,12],
poor diet quality during pregnancy could disrupt the normal dynamic adaptations of the
maternal gut microbiota through altered substrate availability.

In our study, the overall gut microbiota diversity did not differ in individuals con-
suming higher inflammatory diets. All DII scores were within the normal limits specified
by the DII score authors [29]. While distinct patterns of beta diversity composition in
pregnant individuals with better diet quality have been previously reported [61,62], recent
microbiome–pregnancy cohorts have not identified alterations in beta diversity based on
diet quality [63,64], supporting our study observations. At the taxonomic level, several
ASVs varied with dietary inflammatory potential. Higher DII scores were associated with
the enrichment of pro-inflammatory bacterial species, including S. moorei, a producer of
pro-inflammatory sulfur compounds [65], and those associated with inflammatory peri-
natal conditions such as preterm birth and GDM, including G. vaginalis, A. vaginae [66]
and members of the Corynebacterium genera [67]. In contrast, microbiome members that
were depleted in individuals reporting high DII scores included known producers of anti-
inflammatory SCFAs such as Faecalibacterium [68]. This suggests that pro-inflammatory
diets are associated with deleterious alterations in the gut microbiota composition.

The influence of maternal diet quality on the gut microbiota extends to their metabolic
potential, as our study reveals a link between the predicted metabolic capabilities of gut mi-
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crobes in individuals with higher inflammatory diets and community-wide metabolic dys-
regulation. The Cob(II)yrinate a,c-diamide and adenosylcobalamin biosynthesis metabolic
pathway (part of the adenosylcobalamin/vitamin B12 pathway) [69] were increased in
participants reporting higher DII scores. Vitamin B12 deficiency can lead to the upreg-
ulation of the cytokine TNF-α [70] and has been linked to multiple perinatal disorders
including pre-eclampsia and neonate growth retardation [71]. The increase in this bacterial
pathway may be related to the insufficient vitamin B12 intake of the high DII group and a
subsequent shift toward microbial communities capable of producing this essential vitamin
to compensate for the unbalance. The second pathway associated with high DII scores
was a microbially regulated methylglyoxal detoxification pathway. Methylglyoxal is a
toxic oxidizing substance derived from sugar metabolism, a DII enriched process in this
study, and is known to be elevated in perinatal metabolic disorders such as gestational
diabetes mellitus [72,73]. Methylglyoxal detoxification can occur through the glyoxalase
system [74,75], a common microbial detoxification pathway [76,77]. This finding highlights
the pro-inflammatory nature of poor diet quality as well as the compensatory shift in the
gut microbiota to reduce toxic metabolic species. Finally, the nucleotides ppGpp (guanosine
3′-diphosphate 5’-diphosphate) and pppGpp (guanosine 3′-diphosphate 5′-triphosphate)
are metabolized in the ppGpp metabolism pathway [78]. These nucleotides are known mi-
crobial responses to conditions such as nutrient starvation and are associated with virulence
mechanisms [78].

DII scores were also associated with the upregulation of microbial virulence enzymes,
such as drug resistance, biofilm formation, and nitrogen and sugar/galactose metabolism.
The sugar and galactose metabolisms, overall, were enriched in individuals reporting high
DII scores. Galactose metabolism has been shown to be enriched in perinatal inflammatory
conditions such as gestational diabetes [79,80] and specifically associated with elevated
methylglyoxal [81]. Notably, S. moorei and G. vaginalis were both positively linked with
DII scores and have been reported to contribute to galactose fermentation [65,82]. The
enrichment of microbial multidrug resistant efflux pump enzymes (K07642,18889, K18148)
could be promoted by host pro-inflammatory diets. Recent work has shown that bacterial
multidrug efflux pumps are involved in nutrient signal processing, cellular adaptations
to anaerobic respiration, and the colonization of eukaryotic cells [83]. Poor maternal diet
quality may promote the expression of these gut microbial enzymes in response to nutri-
ent alterations. The predicted gut microbial enzymes related to galactose metabolism as
well as disaccharide transporters (K10240, K17329, K17330) were also mostly negatively
correlated with vitamins and minerals (i.e., vitamins B12 and A and iron, magnesium,
niacin, and zinc) that were decreased in high DII individuals. Taken together with the
upregulated microbial pathways, our results suggest that a vitamin- and mineral-depleted
perinatal diet is associated with a shift in the gut microbiota toward a more pathogenic/pro-
inflammatory community. This work would suggest that vitamin and mineral intake
during the gestational period should continue to be of high importance in terms of
pregnancy nutrition.

Our cohort primarily comprised low-income Black and Latinx pregnant persons. The
intake of highly processed foods is a hallmark of a Western diet, a diet pattern that is more
common among disadvantaged minorities in the U.S., as these foods are more affordable
and attainable for individuals with high financial burdens [84]. Previous studies on large
perinatal cohorts, such as the 30-year longitudinal AVON study, have shown that women
with lower access to high quality foods, have decreased vitamin and mineral intake [6].
Our results support the hypothesis that poor diet quality is linked to insufficient vitamin
and mineral dietary intake and is accompanied by pro-inflammatory adjustments in the
gut microbiome composition and metabolic structure.

5. Strengths and Limitations

Our work focused on an understudied population at high risk of multiple health
disorders, such as hypertension and GDM [6,85]. Associations between diet inflammatory
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potential and gut microbiota during pregnancy are underexplored, and our research indi-
cates that there is a significant link between microbial composition and metabolic functions
and dietary inflammatory potential. A notable limitation in using the DII for this work
is it utilizes total nutrient values such as total protein. However, the gut microbiota may
respond differently to different types of dietary protein (animal vs. plant). Our work could
be further improved in several ways: (1) by employing a more comprehensive dietary as-
sessment approach that can assess all the 45 dietary parameters to calculate the DII instead
of just a portion of them (27 used for this study); (2) by including a larger sample of a more
diverse population in terms of DII scores that is followed longitudinally to determine the
effects of the gut microbiome later in pregnancy and perinatal disease development on
the DII; (3) by employing a single-stool sampling method; (4) by utilizing the same diet
assessment for all participants and at the same collection time; (5) by employing sequencing
technologies that enable the measurement of the abundance of microbial genes, such as
shotgun sequencing (metagenomics) instead of relaying in metabolic predictions; (6) by
further characterizing the host immune and metabolic profiles; and (7) by including dietary
data from multi-site centers to reflect different communities diets as ours was primarily
limited to Western diets.

6. Conclusions

A pro-inflammatory diet, measured using the DII, characterized by the low intake of
vitamins B12, B6, and A and iron, magnesium, niacin, riboflavin, and zinc, during early
pregnancy is associated with a pro-inflammatory shift in the gut microbiota and metabolism
as indicated by increases in the galactose metabolism and methylglyoxal detoxification and
multidrug efflux pump expression. The further characterization of gut metabolic status as
a function of dietary alterations can provide opportunities for future research and targeted
intervention strategies for at-risk perinatal populations.
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www.mdpi.com/article/10.3390/nu16070935/s1: Table S1: DII differentially abundant ASVs using
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using zero-inflated generalized linear models; Table S3: Microbial enzymes per term identified via
gene set enrichment by DII; Figure S1: Participant flowchart; Figure S2: Alpha and beta diversities
were not associated with assessment by DII score.
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