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Abstract

Brain growth in early childhood is reflected in the evolution of proportional cerebro-

spinal fluid volumes (pCSF), grey matter (pGM), and white matter (pWM). We study

brain development as reflected in the relative fractions of these three tissues for a

cohort of 388 children that were longitudinally followed between the ages of 18 and

96 months. We introduce statistical methodology (Riemannian Principal Analysis

through Conditional Expectation, RPACE) that addresses major challenges that are of

general interest for the analysis of longitudinal neuroimaging data, including the spar-

sity of the longitudinal observations over time and the compositional structure of the

relative brain volumes. Applying the RPACE methodology, we find that longitudinal

growth as reflected by tissue composition differs significantly for children of mothers

with higher and lower maternal education levels.
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1 | INTRODUCTION

Longitudinal brain development through early childhood can be

assessed through magnetic resonance imaging (MRI), with scans

repeatedly performed for the children in a cohort at different ages.

Useful features such as brain volumes reflecting brain development

can then be extracted from the MRI brain images. However, the situa-

tion in many longitudinal neuroimaging studies is that for many chil-

dren one may have available only very few scans and different

children are usually scanned at different ages, as participants may miss

scans or join the study at different ages. The analysis of such data falls

in the realm of sparse longitudinal data analysis. We focus here on rel-

ative tissue volumes to quantify brain development. Focusing on rela-

tive volumes automatically adjusts for differences in total brain

volumes, for example between boys and girls which are known to

have different total volumes.

The most prominent distinguishable sub-volumes of brain that

can be extracted from MRI scans are labeled as cerebrospinal fluid

(CSF), grey matter (GM), and white matter (WM). It is customary to

adjust the observed volumes of CSF, WM, and GM by total brain vol-

ume, which leads to recordings of proportional cerebrospinal fluid

volumes (pCSF), proportional grey matter (pGM), and proportional

white matter (pWM) (Chen et al., 2021). These are compositional data

as the fractions sum to 1 and are nonnegative (Aitchison, 1982). The

use of proportional brain volumes is very common throughout neuro-

science, for example, for the diagnosis of neurological diseases (Khan

et al., 2021; Mito et al., 2020; Richter et al., 2021), yet systematic

methodology to adjust for the compositional nature of such neuroim-

aging data has been at best sparsely adopted if at all. One of the goals

of this article is to remedy this situation and to demonstrate how

adequate compositional methods can be deployed in longitudinal

studies.

Modeling and inference for longitudinal compositional data are

challenging, especially when, as is the case in many neuroimaging

studies, the trajectory of brain growth for each child is only observed

at a few randomly located time points. Another difficulty is that the

compositional space in which the proportional volumes reside is non-

linear and conventional arithmetic operations are not available, as pro-

portions always need to remain nonnegative and add up to

1. Longitudinal compositional data analysis is therefore inherently of

interest for the analysis of brain development. Although both compo-

sitional data and longitudinal data command a substantial respective

literature, work on their intersections is scarce, especially for neurode-

velopmental data, where the compositional structure has been largely

ignored. For compositional data analysis in general, we refer to Aitchi-

son (1982); Hadjipantelis et al. (2015); Scealy and Welsh (2011); Li

(2015); Pawlowsky-Glahn et al. (2015) among others.

To handle longitudinal data without considering the composi-

tional nature of observations, the most commonly used approaches

are based on mixed effects modeling, where one uses fixed effects for

population effects and random effects for individual differences

(Bernal-Rusiel, Greve, et al., 2013; Bernal-Rusiel, Reuter, et al., 2013;

Lindstrom & Bates, 1990; Pinheiro & Bates, 2006; Sanford

et al., 2018). An alternative and often preferable approach is func-

tional data analysis Chen et al. (2021) where random effects are

included in the form of functional principal component scores. An

extension of mixed effects modeling to longitudinal compositional

data was developed in Chen and Li (2016) with a focus on microbiome

data. Since brain development trajectories follow nonlinear patterns

(Bray et al., 2015; Gennatas et al., 2017; Giorgio et al., 2010;

Gogtay & Thompson, 2010; Lebel et al., 2008; Lebel &

Beaulieu, 2011; Tamnes et al., 2017; Yu et al., 2020), parametric

approaches based on mixed effects modeling are often suboptimal

due to model misspecification.

To capture nonlinear trends without a priori assumptions about

the nature of the time courses as is required for parametric random

effects models, we first map the compositional vectors containing

pCSF, pGM, and pWM to a sphere, by applying a pointwise square

root transformation (Scealy & Welsh, 2011). Once the data have

been mapped to the sphere, Riemannian functional principal compo-

nent analysis through conditional expectation (RPACE) (Dai

et al., 2021) can be adopted for modeling longitudinal compositional

data on the sphere. This utilizes the fact that the sphere is a smooth

Riemannian manifold with a well-known geometric structure. The

application of RPACE makes it then possible to predict a child's

entire trajectory of pCSF, pGM, and pWM over all ages. Subse-

quently, comparisons of trajectories of pCSF, pGM, and pWM

between groups of children can be conducted conveniently using

existing methods. We demonstrate this by comparing the trajecto-

ries of groups of children differentiated by maternal education,

where we detected significant differences in relative brain volume

development.

2 | METHODS AND MATERIALS

2.1 | Subject details and demographics

The brain image data used in this work were collected in the frame-

work of the RESONANCE study, based at Brown University in Provi-

dence, RI, United States. RESONANCE is an ongoing longitudinal

study of early brain and cognitive development for children from early

childhood to preadolescence (Bruchhage et al., 2020). Different

approaches including online advertisements, newspaper, handbill, and

pediatric hospitals referrals were used to recruit children from Provi-

dence and surrounding areas. Longitudinal neurodevelopment mea-

sures such as multi-modal MRI, cognitive and behavioral functioning

and anthropometry are taken at each visit. The RESONANCE study

focuses on healthy brain development and prescreening was con-

ducted at the study enrollment to exclude children with known risk

factors for developmental abnormalities. Specific exclusion criteria

include: alcohol, cigarette smoking or illicit substance exposure in

utero; preterm before 37 weeks gestation; weight less than 1500 g at

gestation age; APGAR scores <8; complicated pregnancy and delivery;

abnormalities on ultrasound; neurological disorder; and psychiatric or

learning disabilities.
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In this work, we used the data of 343 typically-developing chil-

dren from the RESONANCE cohort, where 227 children's mothers

have a bachelor's degree and above, 116 children's mothers do not

have a bachelor's degree and the educational information of 34 chil-

dren's mothers are missing or unknown. The observed trajectories of

pCSF, pGM, and pWM are shown in Figure 2, illustrating the longitu-

dinal nature of the data. Participant demographics are summarized in

Figure 1 using histograms, and Table 1 using frequency tables. There

are in total 621 repeats, of which 391, 178, and 52 repeats are for

children of mothers with a bachelor's degree or above, without bache-

lor's degree, and of missing or unknown educational information,

respectively (Figure 2).

2.2 | Ethics statement

Research ethics oversight was provided by the host institutions,

including the Brown University and Lifespan institutional review

F IGURE 1 Histograms for the number of repeated measurements per child (top) and for age at visit (bottom), for the group of children whose
mothers have a bachelor's degree (left) and children whose mothers do not have a bachelor's degree (right).
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boards. For all children, written informed consent was obtained from

their parents or legal guardians.

2.3 | MRI acquisition and analysis

Children were scanned during natural sleep, or when watching a

favorite video. The MRI acquisition has been described in Chen et al.

(2021). In brief, for each child and imaging session, a T1-weighted

anatomical inversion-recovery spoiled gradient-recalled echo

sequence (IR-SPGR) was acquired using a 3 T Siemens Trio scanner

(with a repetition time 16 ms, echo time 6.9 ms, inversion time

950 ms and a flip angle of 15 degrees). The acquisition matrix and

field of view were varied according to child head size in order to main-

tain a constant voxel volume and spatial resolution across all ages as

in Deoni et al. (2015). To segment the regions of interest (grey matter,

white matter and CSF) from a standard space, each anatomical

T1-weighted image was aligned using a multistep registration proce-

dure (Chen et al., 2021; O'Muircheartaigh et al., 2014). This included a

registration of the raw T1-weighted image to an age-specific tem-

plate, and an additional registration from the age specific template to

a study specific template (Deoni et al., 2008). Using these

F IGURE 2 Plots of observed
trajectories.
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registrations, a grey, white and CSF segmentation in standard space

was projected back to native space. This allowed the calculation of tis-

sue volumes for native space brains. The estimated WM, GM, and

CSF volumes are divided by their sum to calculate the proportional

fraction (i.e., pWM = WM/[WM + GM + CSF]). The design plot

(Carroll et al., 2021; Yao et al., 2005) in Figure 3 illustrates all pairwise

measurements with age differentiated by maternal education level.

Most of the children have only one measurement (Figure 1).

2.4 | Statistical methods

Joint modeling and inference for the growth curve of proportions of

pCSF, pGM, and pWM is challenging due to the longitudinal and com-

positional nature of the data. Longitudinal designs where the propor-

tions are sparsely observed and at different ages for each child are

quite common in neuroimaging data collections. The compositional

structure of the data comes from the fact that each observed vector

of pCSF, pGM, and pWM sums to 1, which cannot be ignored in an

efficient statistical analysis.

2.4.1 | RPACE modeling

The Riemannian Functional Principal Analysis through Conditional

Expectation (RPACE) approach is a dimension reduction and imputa-

tion method for longitudinal repeated measurements that assume

values on a smooth Riemannian manifold (Dai et al., 2021). RPACE

modeling is an extension of principal components analysis through

conditional expectation (PACE) for longitudinal and functional data

when observations lie in Euclidean space (Carroll et al., 2021; He

et al., 2018; Wang et al., 2016). The main idea of RPACE is to transfer

the manifold values to a linear tangent space, in which the classical

PACE method (Yao et al., 2005) can be applied, and then to project

the resulting values back to the manifold.

Through RPACE modeling, the longitudinal observations on the

manifold can be summarized using scalar valued Riemannian func-

tional principal component scores. To study brain development during

the period of early childhood, longitudinal observations of propor-

tional cerebrospinal fluid (pCSF), grey matter (pGM), and white matter

(pWM) are collected. Then, for each child, we map each observed vec-

tor of pCSF, pGW, and pWM to the two-dimensional sphere S2 using

the pointwise square root transformation. The sphere is a smooth

manifold with a well-studied geometric structure so that it is conve-

nient to apply the RPACE modeling. An implementation of RPACE is

available in an R package RFPCA on GitHub at https://github.com/

CrossD/RFPCA.

A more technical description of RPACE is as follows. Let ℳ be a

smooth, connected and geodesically complete Riemannian manifold

with intrinsic distance dℳ and X tð Þ, t� T , be a ℳ-valued stochastic

TABLE 1 Demographics in frequency tables.

(a) Frequency table for number of

repeats per child Frequency

Number of repeats/child w/bachelor w/o bachelor

1 131 76

2 56 26

3 21 9

4 10 3

5 9 1

6 0 1

(b) Frequency table for age at visit Frequency

Age at visit w/bachelor w/o bachelor

1≤ age < 2 43 22

2≤ age < 3 64 33

3≤ age < 4 53 31

4≤ age < 5 61 27

5≤ age < 6 65 24

6≤ age < 7 53 21

7≤ age ≤8 52 20

F IGURE 3 Design plot of all paired ages where observations are
recorded. If a child has two measurements, the coordinates of the
point in the scatterplot correspond to the ages at which the two
measurements were made. If a child has one measurement, it does
not produce a point in the scatterplot. If a child has three or more
measurements, then each possible pair of measurements is reflected
as a separate point in the plot, where the coordinates are the two
ages at which the measurements are made. The plot indicates that our
method is applicable for these data. Red points correspond to children
with mothers who have a bachelor's degree and blue points indicate
children whose mothers do not have any bachelor's degree, indicating
no major design differences between these two groups.
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process supported on the time index set T . Then the Fréchet mean

function μ tð Þ is defined as μ tð Þ¼ argminp �ℳE d2ℳ pð ,X tð ÞÞ
h i

. Denote

the tangent space attached to a point p on ℳ by Tpℳ. For any

v� Tpℳ, there exists a unique geodesic γv : 0,1½ �!ℳ such that

γv 0ð Þ¼ p and γv0 0ð Þ¼ v. The Riemannian exponential map,

Exp :Tpℳ!ℳ, is defined as Exp vð Þ¼ γv 1ð Þ, and the Riemannian loga-

rithm map, Log :ℳ! Tpℳ, is the inverse of Riemannian exponential

map. For further details, we refer to Lee (2018).

By applying the Riemannian logarithm map, RPACE maps the

ℳ-valued process to the corresponding vector valued process

as L tð Þ¼ Logμ tð ÞX tð Þ. The covariance function of L tð Þ can be

defined as Γ s,tð Þ¼ E L sð ÞL tð ÞT
h i

,s,t� T , with eigendecomposition

Γ s,tð Þ¼
P∞
k¼1

λkϕk sð Þϕk tð ÞT , where the eigenfunctions ϕk : k¼1,2, � � �,f

∞g are orthonormal and the eigenvalues λk : k¼1,2, � � �,∞f g satisfy

conditions λk ≥0 for any k, λ1 ≥ λ2 ≥ � � � and
P∞
k¼1

λk <∞. This leads to the

Karhunen–Loève representation

L tð Þ¼
X∞

k¼1

ξkϕk tð Þ, ξk ¼
ð
T
L tð ÞTϕk tð Þdt,

where ξk are the uncorrelated Riemannian functional principal compo-

nent scores such that E ξk½ � ¼0 and E ξ2k
� �

¼ λk . The RPACE modeling is

finalized by mapping the truncated version back to ℳ via the expo-

nential map

X tð Þ≈Expμ tð Þ
XK

k¼1

ξkϕk tð Þ
 !

,

for a given integer K.

To fit RPACE for longitudinal data, consider a sample

Xi : i¼1,2,…,nf g of an ℳ-valued Riemannian process X and assume

that each realized trajectory Xi is only observed at random times

Ti1,Ti2,…,Timi
� T . Furthermore, the measurements are assumed to be

corrupted by intrinsic errors so that one observes

Yij ¼Expμ Tijð Þ Lij
� �

where Lij ¼ Li Tij

� �
þϵij: Based on the observations

Yij : i¼1,2,…,n; j¼1,2,…,mi

� �
, the mean function μ and the eigen-

functions ϕk : k¼1,2,…,Kf g can be consistently estimated and for

each process Xi, the corresponding principal scores ξik : k¼1,2,…,Kf g
are estimated using the best linear unbiased predictions. Denoting

these estimates by μ̂, ϕ̂k and ξ̂ik , we approximate the trajectory Xi by

Xi tð Þ≈Expμ̂ tð Þ
XK

k¼1

ξ̂kϕ̂k tð Þ
 !

:

The randomness in each process Xi is captured by the corre-

sponding principal scores ξ̂ik : k¼1,2,…,K
� �

and further statistical

analysis can be conducted based the vector-valued sample

ξ̂ik : i¼1,2,…,n;k¼1,2,…,K
� �

. By default, the R package RPACE

works on a grid of 51 points that are equally spaced over the

observed domain, that is, all estimations and computations are done

on this grid, including mean and eigenfunctions. The default kernel of

RPACE is the Epanechnikov kernel for both mean and covariance. We

note that RPACE handles the estimation of densely and sparsely sam-

pled data differently, as the handling of sparse data is computationally

more expensive. Other relevant input arguments of RPACE from a

computational perspective include whether data contain noise and

the number of eigenfunctions to include in the estimation step.

2.4.2 | Connecting brain volumes with RPACE

Our goal is to understand the association between brain shape

growth as represented by relative brain volumes and predictors such

as sex and maternal education. A straightforward approach is to

divide the children into groups differentiated by sex or maternal

education and then to compare the trajectories of pCSF, pGM, and

pWM. Unfortunately, this naive approach is not applicable, as each

child's trajectory is only observed at a few time points and each

observation, that is, a vector of pCSF, pGM, pWM, is a composi-

tional data point.

To address the compositional constraint, we apply to each obser-

vation of the 3-vector pCSF, pGM, pWM a pointwise square transfor-

mation, that is, we form
ffiffiffiffiffiffiffiffiffiffiffiffi
pCSF

p�
,
ffiffiffiffiffiffiffiffi
GM

p
,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pWM

p
Þ, to map the three-

dimensional vector of brain volumes to the two-dimensional sphere

S2 and then apply the RPACE approach. In other words, all available

longitudinal compositional measurements are mapped to a sphere and

then fed into the RPACE model to reconstruct the predicted complete

trajectory of pCSF, pGM, and pWM for each child and each age. Since

the first two eigenfunctions explain more than 90% of the total

variation, we use just the first two Riemannian functional principal

components to approximate the trajectories. Each child's trajectory is

then summarized by the corresponding first two principal component

scores. We then conduct statistical tests by using the first two scores,

aiming to compare the trajectories of the relative volumes which are

viewed as trajectories on the sphere for different groups of children.

The score and eigenfunction plots are provided in Figure 4.

To assess the performance of RPACE, we compared it with fitting

linear mixed effect models (LMM). Specifically, we fitted a LMM

model for each of the raw brain volumes CSF, GM, and WM sepa-

rately, using the standard LMM

CSFi,j ¼ a0þa1tjþbiþϵi,j ,GMi,j ¼ c0þ c1tjþdiþ εi,j ,

WMi,j ¼ h0þh1tjþ fiþei,j,

where CSFi,j, GMi,j , WMi,j are the brain volumes for subject i at age tj;

bi,di , fi are random intercepts with mean zero and finite variance;

ϵi,j,εi,j ,ei,j
� �

are mutually independent mean zero finite variance ran-

dom errors; a0,a1,c0,c1,h0,h1 are non-random parameters. Here, add-

ing random slopes would result in identifiability issues due to

insufficient data and a model that includes these is not identifiable

and does not converge.

An interesting prediction problem is to predict the brain volume

proportions of a child at a future time given past measurements. To

mimic this situation, the proposed RPACE model and a standard LMM

ZHU ET AL. 3173



were fitted to data with the latest brain volume proportions of a

selected child dropped. We then used the fitted models to predict the

dropped proportions, so this is an out-of-sample prediction. The pre-

diction error is measured in terms of the Fisher-Rao distance between

predicted proportions and observed proportions. We repeated this

procedure for each participant with at least three scans and report the

average Fisher-Rao distance scaled by the maximum of the pairwise

Fisher-Rao distances between all observed brain volume proportions.

RPACE and LMM achieved scaled prediction errors of 0:093 and

0:122, respectively. Thus the prediction error of LMM is substantially

larger, which supports the application of RPACE for brain

compositional data.

2.4.3 | Energy distance

Energy distance (ED) is a metric that quantifies the difference

between two given distributions (Chakraborty & Zhang, 2021; Szé-

kely & Rizzo, 2004; Zhu & Shao, 2021). For two vector-valued random

variables V,W �ℝp with distributions F and G respectively, energy dis-

tance is given by

ED F,Gð Þ¼2E
			V�W

			
h i

�E
			V�V0

			
h i

�E
			W�W0

			
h i

,

where
			 �
			 is the Euclidean distance and V0,W0ð Þ are independent cop-

ies of V,Wð Þ. Energy distance has the properties that

ED F,Gð Þ≥0andED F,Gð Þ¼0, F¼G:

To test the null hypothesis F¼G, the test based on energy dis-

tance can be conveniently implemented via permutations. The distri-

butional differences between two populations include but are by no

means limited to the differences in mean and covariance structures.

Here we are interested in evaluating the distributional differences in

brain growth for children with different biological sex or socioeco-

nomic status. This method has been implemented in the R package

energy (Rizzo & Szekely, 2021).

2.4.4 | Ternary plots

A ternary plot is a graphical technique for representing three variables

that sum to a constant. It has a triangular shape, where each tip of the

triangle represents one of the variables. Any observation of the three

variables can be represented as a point within the triangle and the

closer a point is to one of the tips, the higher the proportion of the

variable corresponding to this tip is; see Murrell (2005) for further

details.

2.5 | Data and code availability statement

Deidentified data are freely available upon request. Access to identifi-

able information will require a formal data sharing agreement and

appropriate ethical approval. Requests for data should be submitted

to Sean Deoni (sdeoni@mac.com). We use the R package RFPCA for

implementation of RPACE, which is publicly available on github at

https://github.com/CrossD/RFPCA, and also the R package energy

(Rizzo & Szekely, 2021) for the energy test.

3 | RESULTS

We first compare the trajectories of pCSF, pGM, and pWM between

boys and girls. Here, we are interested to test for differences

between not only the mean and covariance structure but also the

underlying distributions. Thus, the null hypothesis is that the two

groups of trajectories have the same underlying distributions. To

implement this test, we applied energy distance based tests to the

corresponding two groups of principal component scores. Only the

top two scores were used in the analysis and no significant differ-

ences were found (p-value: .40). Thus, there is no evidence that the

brain growth trajectories between boys and girls are substantially

different.

Next, we compare the brain growth trajectories of children whose

mothers have or do not have a bachelor's degree. The ternary plots of

the compositional observations across different age ranges are shown

F IGURE 4 Functional
principal component analysis with
first and second principal
component scores (left) and
estimated eigenfunctions (right).
Note that the eigenfunctions here
are trivariate vector functions.
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in Figure 5. We applied the energy distance based permutation test

with 9999 permutations for the first two principal components, which

yielded a p-value .033. This provides some indication that the generat-

ing distributions of the brain growth trajectories as reflected in rela-

tive volumes are different between children whose mothers do or do

not have a bachelor's degree. This also motivates to apply the RPACE

modeling separately for the two groups, as follows.

Applying RPACE modeling separately for the group of children

whose mothers have a bachelor's degree and the group of children

whose mothers do not, the estimated mean functions of pCSF, pGM,

pWM are shown in Figure 6 in the form of ternary plots. On average,

the proportion of white matter is found to be larger for the children

whose mothers have a bachelor's degree. Figure 6 also indicates that

the proportion of white matter increases as children grow, but the

proportion increases faster for the group of children whose mothers

have a bachelor's degree, especially in the age range 1.5 to 4.5 years.

In addition, 95% confidence regions are shown by dashed lines for

pre-selected ages 2.8, 4.1, 5.4, and 6.7 for each of the mean functions

in Figure 6. The confidence regions are constructed from the bivariate

densities of 400 bootstrap samples at each age, where the densities

are estimated using kernel density estimation by treating the points

on ternary plot as points on ℝ2 and anchoring the 95% regions on a

contour of the density estimates. The confidences regions indicate

that specific disparities between the two group occur around age 4.1.

In addition, RPACE modeling makes it possible to reconstruct the

predicted individual brain growth trajectories. Figure 7 shows the

reconstructed trajectories of pCSF, pGM and pWM for several chil-

dren with more than two observations. Trajectories of children whose

mothers have a bachelor's degree are shown in red, and all other tra-

jectories in blue.

F IGURE 5 Ternary plots of
pGM, pWM, and pCSF for
different age groups.

ZHU ET AL. 3175



4 | DISCUSSION

In this work, we demonstrate the usefulness of RPACE to estimate

and reconstruct brain growth trajectories in children in the presence

of sparse sampling in time. Specifically, we quantified brain growth by

using volume proportions of CSF, GM, and WM, and RPACE proved

suitable for modeling the resulting brain volume data.

This addresses two challenges: First, proportional volumes do not

lie in a vector space and thus ordinary arithmetic operations such as

addition and subtraction are not available; second, for most neuroim-

aging data, only very few measurements are collected over time for

each subject and different subjects may be measured at different time

points. To tackle these two issues, we map the proportional volumes

to a sphere by taking a pointwise square root transformation and uti-

lize the resulting geometrical structure.

We note that the transformations of brain volumes are con-

strained to be in the first octant of the sphere, more generally in the

first orthant that corresponds to the positive segment, that is, the seg-

ment of the sphere with positive coordinates. It is possible that the

predicted volumes of RPACE lie outside this segment. This is more

likely to happen if there are data points in the training set lying on or

near the boundary of the positive segment. For the brain volume pro-

portions used in this article, there are no points near the boundary,

the observed proportions are strictly away from 0 and therefore this

issue does not arise. But even if the training data include points on or

near the boundary, this issue can be easily addressed by projecting

any prediction that lies outside the positive segment back to the posi-

tive segment, that is, finding the boundary point of the segment that

is closest in the Fisher-Rao (or geodesic) metric to the point that is

outside of the segment, see Zhu and Müller (2022) for more discus-

sion on these projections.

More generally, the RPACE approach is suitable for modeling any

longitudinal data that lie on a smooth manifold and is not limited to

data on spheres. It employs local linearization by invoking the tangent

space of the smooth Riemannian manifold that is anchored at the Fré-

chet mean of the data.

We then compared brain growth trajectories between different

groups of children. There are many factors that can affect a child's

brain development such as genetic factors or surrounding environ-

ment. In this article, we focus on investigating the role of biological

sex and maternal education. While we found no evidence that brain

growth trajectories differ between boys and girls, we observed signifi-

cant differences in relative brain volumes for children whose mothers

do and those who do not have a bachelor's degree (Figure 5). Specifi-

cally, ternary plots of estimated mean functions of pCSF, pGM, pWM

demonstrate that the proportion of white matter was larger for the

children whose mothers have a bachelor's degree (Figure 6). While

proportional white matter increased with age for all children, it

increased faster for the group whose mothers had a bachelor's degree,

especially in the age range 1.5 to 4.5 years (Figure 6).

Structural brain development follows a nonlinear trajectory at

both whole-brain and regional brain structure levels, with gray matter

volume increasing rapidly during infancy, peaking within the first

3 years of life (Matsuzawa et al., 2001) and gradually decreasing

thereafter. In contrast, white matter volume increases much longer,

spanning childhood and early adolescence (Barnea-Goraly et al., 2005;

Blakemore & Choudhury, 2006; Dai et al., 2019) before decreasing in

older adulthood.

Healthy brain development has been identified as a key predictor

of current and future cognitive development (for a review, see

Gilmore et al., 2018), and therefore it is important to identify factors

that could influence early brain development. Indeed, childhood and

adolescence are sensitive developmental periods of dynamic behav-

ioral, cognitive and emotional development, paralleled by significant

changes in white matter micro- and macrostructure (Paus et al., 1999;

Pfefferbaum et al., 1994; Reiss et al., 1996; Schmithorst et al., 2002),

which are thought to be potential critical factors in supporting optimal

cognitive, behavioral, and emotional development. Interestingly, chil-

dren who suffered early neglect showed significant differences in

white matter integration and cognitive function when compared to

those raised in typical environments (Hanson et al., 2013), potentially

indicating high sensitivity of this structure to environmental factors

influencing early brain development.

Maternal education has previously been shown to strongly corre-

late with child physical and cognitive health and development

(Bradley & Corwyn, 2002; Chen et al., 2021; Desai & Alva, 1998;

Dollaghan et al., 1999; Yakovlev, 1967). In low income families, mater-

nal education has been shown to explain language disparities emerg-

ing during early childhood (Justice et al., 2020) and a recent study (Dai

et al., 2019) found the effect of maternal education to increase with

age when investigating longitudinal associations between white mat-

ter maturation and cognitive development across early childhood.

Specifically, this effect became significant by 1.5–2 years of age and

an additional positive association between maternal education and

cognition was shown, similarly increasing with child age. This aligns

with our findings of steep early increases in the discrepancy of pWM

F IGURE 6 Ternary plot of mean proportions. The highlighted
points on the mean trajectories (circles for mothers w/bachelor and
triangles for mothers w/o bachelor) correspond to the mean values at
ages 2.8, 4.1, 5.4, and 6.7. Also shown are 95% confidence regions at
each of these four ages (regions within the dotted curves).
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mean proportions between children with low maternal (no bachelor's

degree) and high maternal (with bachelor's degree) education (see

Figure 5). Furthermore, it could indicate an early “window of opportu-

nity” for 1.5–2 years of age, during which interventions could be most

effective at minimizing later disparities (Campbell & Ramey, 1994).

5 | CONCLUSIONS

The RPACE approach can handle longitudinal compositional data as

they are observed for growth trajectories in terms of volume propor-

tions of CSF, GM, and WM. Application of this method led to the

detection of significant differences in the underlying distributions of

brain growth trajectories between children based on maternal educa-

tion, while no significant difference was found between boys and girls.
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