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Abstract

How statistical and biological mechanisms shape the patterns and dynamics of

aggregation in host-parasite systems

by

Mark Quentin Wilber

Few hosts have many parasites while many hosts have few parasites – this axiom of

parasite ecology is known as parasite aggregation and is so pervasive that it is one of the

few general laws in disease ecology. The propensity of parasites to be aggregated has

important implications for both making inference about the mechanisms structuring a

host-parasite interaction as well as predicting population-level host-parasite dynamics.

In this dissertation I ask two questions: 1) How do the dynamics of parasite load and

aggregation affect disease transmission, epidemics, and endemics in wildlife disease? 2)

When can we make inference about the mechanisms structuring a host-parasite inter-

action from observed patterns of parasite load? I develop constraint-based theory for

host-parasite systems to identify when patterns of parasite aggregation provide informa-

tion about the mechanisms driving a host-parasite interaction. This approach shows that

common patterns of parasite aggregation are highly constrained (i.e. predictable) by a

simple set of constraints, providing a system-independent explanation for the ubiquitous

pattern of parasite aggregation across host-parasite systems. However, despite the highly

constrained nature of parasite aggregation, I show that particular mechanisms, such as

parasite-induced host mortality, can lead to deviations from constraint-based theory and

I develop statistical procedures to detect these deviations in cross-sectional parasite load

data. While constraint-based theory focuses on static patterns of parasite aggregation,

ix



parasite aggregation also influences host-parasite dynamics. I show that when parasite

aggregation is consistent with the predictions from constraint-based theory, the ability

of parasites to regulate the host population and stabilize the host-parasite equilibrium

is significantly reduced, compared to the canonical assumption of fixed parasite aggre-

gation. Finally, I develop a mathematical framework using Integral Projection Models

(IPMs) to model parasite load dynamics when parasite load is a continuous variable.

In combination with laboratory and mesocosm experiments, I apply this approach to

an amphibian species infected with a fungal pathogen and show that disease-induced

host extinction is far more sensitive to the load dynamics of the parasite than to the

transmission dynamics in the system. This work highlights the importance of consider-

ing parasite load dynamics when developing strategies to mitigate disease-induced host

declines. Broadly, this dissertation illustrates how both bottom-up, mechanistic ap-

proaches and top-down, statistical approaches can be used to provide unique insights

into the mechanisms structuring consumer-resource interactions.
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Introduction

The risk that a parasite poses to a host population depends on both the ability of a

parasite to invade and the propensity of that parasite to cause disease-induced host

declines. The within-host dynamics of a parasite are important for determining the

outcome of both these events. While within-host infection dynamics are comprised of a

multitude of interacting factors, such as host immunity (Woolhouse, 1992), intra-specific

parasite interactions (Barbour and Pugliese, 2000), inter-specific parasite interactions

(Fenton et al., 2010), and host behavior (Wilson et al., 2002), these interacting factors

are often manifested in the dynamics of parasite abundance (i.e. load) within a host.

In macroparasite infections, such as those from helminths and ectoparasitic arthropods

(Anderson and May, 1979), the importance of parasite load on the population-level

dynamics of hosts and parasites is well-known and it is typically accounted for in host-

macroparasite models (e.g. Anderson and May, 1978, 1991; Dobson and Hudson, 1992;

Morrill and Forbes, 2016). One of the reasons for the importance of parasite load in

macroparasite systems is that host vital rates directly relating to host fitness (e.g. host

survival rate and host reproductive rate) are often a function of parasite load. Therefore,

it is important to consider not only whether a host is infected, but also the parasite load

with which a host is infected. My dissertation seeks to answer two questions 1) How do

the dynamics and patterns of parasite load affect disease transmission, epidemics, and
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endemics in host populations? and 2) When can patterns of parasite load inform us

about the dominant mechanisms driving host-parasite interactions?

The distribution of parasite loads across hosts in a population can have significant

effects on host-parasite dynamics (Anderson and May, 1978; Rosà and Pugliese, 2002).

For example, depending on the shape of the distribution of parasites across hosts, this

distribution can promote or inhibit the ability of parasites to regulate the host popula-

tion and the stability of the host-parasite equilibrium (Anderson and May, 1978; May

and Anderson, 1978; Kretzschmar and Adler, 1993). Empirically, the distribution of

parasites across hosts tends to be aggregated (Crofton, 1971; Shaw and Dobson, 1995).

Colloquially, this means that few hosts have many parasites and many hosts have few

parasites. Statistically, this means that the variance of parasite load across hosts in a

population is often greater than the mean number of parasites per host and the distri-

bution is highly right skewed. This pattern of parasite aggregation is so ubiquitous that

it is one of the few general laws in disease ecology (Shaw and Dobson, 1995; Shaw et al.,

1998; Wilson et al., 2002; Poulin, 2007, 2013).

In addition to affecting the dynamics of host-parasite systems, aggregated parasite

distributions can also theoretically reflect something about the mechanisms driving a

host-parasite interaction (Crofton, 1971; Adjei et al., 1986; Ferguson et al., 2011; Grear

and Hudson, 2011). In Chapter 1, I develop a constraint-based theory for parasite ecol-

ogy that identifies when host-parasite distributions may contain information about the

mechanisms driving a host-parasite interaction and when they are simply a product of

inevitable statistical constraints. This chapter shows that simple statistical constraints

predict a large portion of the observed aggregation in host-parasite systems, such that

attributing specific mechanism to empirical patterns of parasite aggregation is challeng-

ing. However, this work identifies that particular mechanisms, such as parasite-induced

2
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host mortality, can leave a distinct signature on the host parasite distribution, even

after accounting for the statistical constraints on the system. In Chapter 2, I develop a

novel statistical method to detect parasite-induced host mortality from parasite distri-

butions and discuss the benefits and limitations of this approach compared to previous

approaches.

In Chapter 3, building on the results in Chapter 1, I ask the question: if parasite

distributions are generally consistent with predictions from constraint-based theory, how

does this affect the population-level dynamics of host-parasite systems? I extend the

standard host-macroparasite model of Anderson and May (1978) to include parasite

aggregation that follows the predictions of constraint-based theory and examine how this

addition affects the ability of parasites to regulate host abundance (i.e. prevent hosts

from increasing exponentially), suppress equilibrium host abundance, and stabilize the

host-parasite equilibrium. I find that constraint-based aggregation significantly reduces

the ability of parasites to regulate the host population and reduces the stability of the

host-parasite equilibrium, compared to canonical host-parasite models that assume that

parasite aggregation is fixed. This provides a potential theoretical rationale for the

scarcity of empirical evidence that parasites are the dominant factor regulating and

stabilizing the equilibria of host populations.

While aggregation and parasite load are key components of host-macroparasite mod-

els, models of microparasites often ignore parasite load (e.g. models of bacteria, viruses,

and fungus where hosts often mount a strong immune response and parasite replication

occurs directly within the host, Anderson and May, 1979). Instead, these models place

hosts into discrete groups of, for example, (S)usceptible, (I)nfected, and (R)ecovered

individuals. This is often a very reasonable simplification when within-host parasite dy-

namics are occurring quickly and there is not a strong, detectable relationship between

3
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parasite load and host vital rates. However, some fungal parasites that are typically

classified as microparasites show highly load-dependent dynamics (Briggs et al., 2010;

Fisher et al., 2012; Langwig et al., 2017). For example, in some systems, amphib-

ians infected with the chytrid fungus Batrachochytrium dendrobatidis (Bd) show highly

load-dependent mortality, such that mortality rate increases rapidly when load increases

above a certain threshold (Briggs et al., 2010; Stockwell et al., 2010; Vredenburg et al.,

2010). However, unlike traditional macroparasites where parasite load is measured as a

discrete count of parasites within a host, Bd load on an amphibian host is measured as a

continuous variable via molecular analysis (Boyle et al., 2004). Therefore, to adequately

model the population-level dynamics of hosts infected with parasites such as Bd, a new

modeling framework is needed that accounts for continuous levels of parasite load.

In Chapter 4, I use Integral Projection Models (IPMs) to develop a framework for

modeling host-parasite systems. Host-parasite IPMs link individual-based, continuous

measures of parasite load to population-level dynamics. In this chapter, I show how

the host-parasite IPM can be fit to standard data collected in amphibian-Bd systems

and describe the population-level projections that can be made from the parameterized

host-parasite IPM. In Chapter 5, I use the host-parasite IPM framework developed in

Chapter 4 to understand the role of resistance, tolerance, and transmission in disease-

induced host extinction. Using a mesocosm experiment on the amphibian host Rana

muscosa/sierrae infected with Bd, I first estimate the transmission function for this

amphibian-Bd system and show that it depends on both density-dependent host-to-host

contacts as well as transmission from an environmental pool of Bd zoospores. Using this

transmission function and an independent laboratory experiment, I then parameterize

a temperature-dependent host-parasite IPM to understand the relative importance of

transmission dynamics compared to host resistance and tolerance in driving disease-
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induced extinction in this system. I find that while changes in transmission dynamics

do affect the Bd-induced extinction risk of R. muscosa as predicted by previous theory

(e.g. De Castro and Bolker, 2005; McCallum, 2012), equivalent changes in host resistance

and tolerance have much larger effects on extinction. By explicitly modeling Bd load,

I show that managing Bd load, rather than Bd transmission, can be more effective for

mitigating disease-induced extinction risk in this amphibian species.

In conclusion, the five chapters in this dissertation contribute to our understanding

of 1) how parasite aggregation can affect the dynamics of host-parasite interactions and

2) when patterns of parasite aggregation can inform us about the dominant mechanisms

driving host-parasite systems. By combining theory, laboratory and mesocosm exper-

iments, and field data, this work shows that the dynamics of parasite load can have

significant and unexpected effects on disease-induced extinction, regulation, and sta-

bility dynamics in host-parasite systems. However, while these dynamical effects stem

from underlying host-parasite interactions that in turn lead to aggregated host-parasite

distributions, my work shows that the mechanisms themselves are often unidentifiable

from observed patterns of parasite aggregation. Broadly, this work illustrates how both

bottom-up, mechanistic approaches and top-down, statistical approaches can be used to

provide unique insights into the processes structuring consumer-resource interactions.
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1.1 Abstract

Few hosts have many parasites while many hosts have few parasites - this axiom of

macroparasite aggregation is so pervasive it is considered a general law in disease ecol-

ogy, with important implications for the dynamics of host-parasite systems. Because of

these dynamical implications, a significant amount of work has explored both the various

mechanisms leading to parasite aggregation patterns and how to infer mechanism from

these patterns. However, as many disease mechanisms can produce similar aggregation

patterns, it is not clear whether aggregation itself provides any additional information

about mechanism. Here we apply a “constraint-based” approach developed in macroe-

cology that allows us to explore whether parasite aggregation contains any additional

information beyond what is provided by mean parasite load. We tested two constraint-

based null models, both of which were constrained on the total number of parasites P

and hosts H found in a sample, using data from 842 observed amphibian host-trematode

parasite distributions. We found that constraint-based models captured ∼85% of the

observed variation in host-parasite distributions, suggesting that the constraints P and

H contain much of the information about the shape of the host-parasite distribution.

However, we also found that extending the constraint-based null models can identify

the potential role of known aggregating mechanisms (such as host-heterogeneity) and

disaggregating mechanisms (such as parasite-induced host mortality) in constraining

host-parasite distributions. Thus, by providing robust null models, constraint-based

approaches can help guide investigations aimed at detecting biological processes that

directly affect parasite aggregation above and beyond those that indirectly affect aggre-

gation through P and H.
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1.2 Introduction

Disease ecology has traditionally emphasized mechanistic descriptions of infection

patterns (Anderson and May, 1978; Duerr et al., 2003; Poulin, 2007). One particular

pattern observed in macroparasites, such as parasitic helminths and arthropods that

do not directly reproduce within their host (Anderson and May, 1979), is that many

hosts in a population tend to have few parasites and a few hosts tend to have many. In

statistical parlance this means that parasites tend to be aggregated within their hosts.

This pattern is so ubiquitous in parasites that is has been called one of the few general

laws in disease ecology (Poulin, 2007).

Canonical models of host-macroparasite dynamics have illustrated that a balance

between parasite pathogenicity and parasite aggregation plays an important role in the

ability of a parasite to regulate a host population (Anderson and May, 1978; Tompkins

et al., 2002). In general, the stability of a host-parasite system and the regulation of a

host population by parasites requires some level of parasite aggregation and that parasite

pathogenicity is not too high (Anderson and May, 1978). Because of the importance of

parasite aggregation, much empirical and theoretical work has sought to understand both

the mechanisms that can lead to aggregation in host-macroparasite systems (Anderson

and Gordon, 1982; Wilson et al., 2002; Raffel et al., 2011; Gourbière et al., 2015), and

how to infer the dominant mechanisms structuring a host-parasite system from observed

aggregation patterns (Duerr et al., 2003; Grear and Hudson, 2011; Wilber et al., 2016).

Traditionally, studies of macroparasite aggregation have relied on a process-based

approach where various aggregating and disaggregating mechanisms are sequentially

incorporated into unaggregated null models until observed levels of aggregation are ob-

tained (Anderson and Gordon, 1982; Isham, 1995; Chan and Isham, 1998; Pugliese et al.,
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1998; Rosà and Pugliese, 2002; Rosà et al., 2003; Grear and Hudson, 2011; Fowler and

Hollingsworth, 2016). While the process-based approach has usefully illuminated vari-

ous aggregating and disaggregating mechanisms in host-parasite systems (summarized

in Wilson et al., 2002), it suffers from the “many-to-one problem” inherent in much of

ecology (Frank, 2014): there are many process-based models that can result in similar

levels of parasite aggregation making it difficult to identify the specific processes leading

to aggregation from patterns alone. When lab or field experiments are not a viable

option to identify mechanism in host-parasite systems, it would be useful to have some

criteria to identify when observed patterns of parasite aggregation may provide some

information about the mechanisms influencing a host-parasite system or when most of

the information is provided in the mean parasite abundance.

Recently developed constraint-based models used in macroecology provide such a cri-

teria. These models are different from the process-based approach in that they attempt

to predict the most-likely form of a population- or community-level distribution using

only a known set of statistical constraints (Harte, 2011; Locey and White, 2013; Newman

et al., 2014; Xiao et al., 2015b). The constraint-based approach does not propose that

biological mechanisms are not acting in a system; it contends that many different com-

binations of these mechanisms lead to similar patterns of aggregation with predictable

statistical properties (Frank, 2009; McGill and Nekola, 2010; Frank, 2014). This is im-

portant because these models can then be used as robust null models (i.e. models that

do not trivially fail) to identify when a given observed distribution contains biological

information beyond that given by the constraints used to predict the distribution (Locey

and White, 2013; Harte and Newman, 2014). Similarly, null model approaches have been

used in community ecology to identify when signals of an ecological process can be dis-

cerned from observed changes in a community metric (e.g. changes in β diversity) when

12



When can we infer mechanism from parasite aggregation? A constraint-based approach to disease
ecology Chapter 1

a change in this metric can also be a concomitant result of changes in another metric (e.g.

changes in α diversity; Chase and Myers, 2011; Chase et al., 2011). These constraint-

based and null model approaches have had much success in understanding patterns in

free-living populations and communities (Leibold and Mikkelson, 2002; White et al.,

2012; Ulrich and Gotelli, 2013; Harte et al., 2015) and we argue that they can also be

useful in addressing mechanistic questions about parasite aggregation in disease ecology.

For example, any observed host-parasite distribution is constrained by the total

number of parasites P and the total number of hosts H in the sample. Given this, there

are only a finite number of shapes that this sampled host-parasite distribution can take

(i.e. the feasible set of the host-parasite distribution, Locey and White, 2013). If the

shape of this observed host-parasite distribution is similar to the most likely distribution

within this feasible set, then making inferences about the biological mechanisms leading

to the shape of this distribution is difficult as the observed distribution is simply the

most-likely distribution of all possible distributions (Haegeman and Loreau, 2009). In

other words, many different combinations of host and/or parasite-related processes will

lead to the same host-parasite distribution, and this is the distribution that is predicted

by the constraint-based model.

This has important implications for disease ecology where one often wants to under-

stand something about the mechanisms affecting a host-parasite system from the level

of aggregation observed (Anderson and Gordon, 1982). Having some robust criteria for

when a sampled host-parasite distribution shows “unusual” aggregation can help iden-

tify host-parasite systems where particular aggregating or disaggregating mechanisms

are disproportionately constraining the distribution beyond the inherent (but biologi-

cally important) constraints imposed by P and H. We define “unusual” aggregation as a

level of aggregation that is significantly different than the level of aggregation predicted
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by the most likely distribution in the feasible set (e.g. Locey and White, 2013; Harte

and Newman, 2014).

The traditional null model for the distribution of parasites across hosts follows a

Poisson distribution, which is typically derived from a death-immigration process (An-

derson and Gordon, 1982). The constraint-based approach for aggregation is asking a

different question than tests of the traditional Poisson null model. Rejecting the Poisson

null model indicates that this simple model is not capturing the important aggregating

or disaggregating mechanisms in a host-parasite system, however failing to reject the

Poisson null model is not proof that a system is following a simple death-immigration

process. In contrast, the constraint-based null models make no assumptions about the

particular processes leading to its predicted level of aggregation and simply predict the

most likely level of aggregation for a system with P parasites and H hosts. Unlike

the classic Poisson null hypothesis, failing to reject the constraint-based model tells us

something important: our empirical pattern of aggregation does not contain much infor-

mation about process beyond that already contained in P and H (Harte and Newman,

2014). Because this approach robustly identifies “unusual” aggregation, it can help us

better understand when the effects of processes, such as parasite-induced mortality or

host-heterogeneity, can be reliably inferred from observed host-parasite distributions.

This study has two goals. First, we use a dataset consisting of 22 unique amphibian

host-trematode parasite pairings with over 8000 amphibians sampled at 205 sites over

5 years to test whether constraint-based models used in free-living systems also provide

robust null models for host-parasite distributions. Second, we explore how, upon failing

to describe host-parasite distributions, these constraint-based models can be extended to

account for known aggregating mechanisms (such as host-heterogeneity) and disaggre-

gating mechanisms (such as parasite-induced host mortality) in host-parasite systems.
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We find that the shape of host-macroparasite distributions are generally well-predicted

by the constraint-based approach. These results show that to reliably infer something

about biological mechanism directly affecting patterns of parasite aggregation, one must

first account for the strong constraints imposed on aggregation by P and H.

1.3 Methods

The methods section is organized as follows. The first section gives an overview of

two constraint-based null models that have been recently used in the macroecological

literature (Haegeman and Etienne, 2010; Locey and White, 2013; Xiao et al., 2015a).

The second section describes how we generated predicted host-parasite distributions from

these two constraint-based null models. The third section describes how we compared

the constraint-based null models to data. Finally, the fourth section describes how

we extended these constraint-based null models to account for known aggregating and

disaggregating mechanisms in host-parasite systems. Table 1 contains a list of terms

and definitions used to define the constraint-based models.

1.3.1 Defining the weighted feasible sets for constraint-based

null models of parasite aggregation

The constraint-based null models that we consider have two constraints inherent in

any sampled host-parasite distribution: the total number of parasites sampled P and

the total number of hosts sampled H. Given these constraints, both models proceed

by enumerating the feasible set of all possible macrostates of P parasites and H hosts

(Locey and White, 2013). We define a macrostate as one possible unordered host-

parasite distribution resulting from distributing P parasites among H hosts (Table 1).
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For example, the feasible set of possible macrostates that we can observe given P = 3

parasites and H = 3 hosts is F ={{3, 0, 0}, {2, 1, 0}, {1, 1, 1}}. The macrostate {3, 0,

0} specifies that one host has three parasites and two hosts have zero parasites.

After specifying all of the possible macrostates in a feasible set constrained by P and

H, each macrostate is then assigned a weight. For example, some macrostates may be

combinatorially more likely to occur than others and thus will have a larger weight in

the feasible set. Determining how to weight each macrostate depends on whether hosts

and/or parasites are considered labeled or unlabeled (Table 1; Haegeman and Etienne,

2010).

One option is to specify that both hosts and parasites are unlabeled such that all

possible macrostates are equally likely to occur. This is equivalent to integer parti-

tions used in combinatorics (Bóna, 2006; Xiao et al., 2015a), so we call this model the

“partition model”. The partition model is process-independent and makes no assump-

tions about any potential mechanisms leading to a given macrostate (Locey and White,

2013). Therefore, no macrostate is more likely to occur than any other macrostate (Xiao

et al., 2015a). Assuming that each macrostate is equally likely is not equivalent to as-

suming that any single host is equally likely to have a parasite abundance from zero

to P . The probability of a single host having a parasite abundance of x = 0, . . . , P is

p(x|P,H) =
∑

m∈F p(x|m,P,H)p(m|P,H) where m is a macrostate in the feasible set F .

Using our example from above, the partition model assigns each of the three macrostates

in the feasible set an equal probability of 1 / 3. The probability of observing a single host

with x = 0, 1, 2, or 3 parasites is p(0) = 3/9, p(1) = 4/9, p(2) = 1/9, and p(3) = 1/9.

A second option for weighting macrostates is to again assume that parasites are

unlabeled, but now assume that hosts are labeled. This is equivalent to integer compo-

sitions used in combinatorics (Bóna, 2006; Xiao et al., 2015a), so we call this model the

16



When can we infer mechanism from parasite aggregation? A constraint-based approach to disease
ecology Chapter 1

“composition model”. Using the composition model, particular macrostates are more

likely to occur because they are associated with a larger number of possible configura-

tions. For example, given labeled hosts and unlabeled parasites, the macrostate {3, 0,

0} could be realized from three different configurations: (3, 0, 0), (0, 3, 0), and (0, 0,

3). Enumerating all the configurations for the other macrostates in our example feasible

set, we see that the macrostate {2, 1, 0} can occur six ways and {1, 1, 1} can occur one

way. Therefore, the macrostate {3, 0, 0} has a weight of 3 / 10, {2, 1, 0} has a weight

of 6 / 10, and {1, 1, 1} has a weight of 1 / 10. The probability of observing a single

host with x = 0, 1, 2, or 3 parasites is P (0) = 4/10, P (1) = 3/10, P (2) = 2/10, and

P (3) = 1/10.

More generally, for any macrostate m in a feasible set with P unlabeled parasites

and H unlabeled hosts there are a total of bm =
H!

Πi∈Ahi!
configurations with unlabeled

parasites and labeled hosts (Brualdi, 2010). A is a set containing the unique parasite

abundances found in macrostate m, i is a particular member of that set, and hi is

the number of hosts in macrostate m that have a parasite abundance i. Note that
∑

i∈A hi = H. The total number of possible configurations of all macrostates using the

composition model is given by D =
(H + P − 1)!

P !(H − 1)!
(Harte, 2011). Taken together, the

weight on any particular macrostate m using the composition model is
bm
D

.

In summary, both the composition and partition models place our observed host-

parasite distribution in the context of all possible observable host-parasite distributions.

In particular, this allows us to ask an important question in parasite ecology: does a

host-parasite distribution contain any information about biological mechanism beyond

that already contained in P and H? Because there is no general consensus on which

approach is preferable (Haegeman and Etienne, 2010; Xiao et al., 2015a), we consider

both the partition model and the composition model in this study. Figure 1.1 gives a
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visual comparison of these two models.

We could have also considered two other approaches: labeled hosts and labeled

parasites or unlabeled hosts and labeled parasites. We chose not to consider these

approaches because assuming labeled parasites is neither consistent with the pattern that

we are interested in (i.e. the host-parasite distribution) nor how host-parasite systems

are sampled. Assuming labeled parasites tracks the location of each individual parasite

in the host population, whereas we are interested in the population-level distribution of

parasites across hosts (see Xiao et al., 2015a, for the equivalent argument in free-living

individuals). Moreover, specifying labeled parasites assumes that the system could be

sampled by randomly choosing a parasite and assigning it a unique label and a label

corresponding to the host in which it was found (assuming labeled hosts). This process

would then be repeated until some number of P parasites were sampled. The total

number of hosts H would then be given by the number of unique host labels on our P

sampled parasites. This is not how host-parasite systems are sampled. Instead, H hosts

are randomly sampled and the P parasites within these hosts are counted. This is more

consistent with unlabeled parasites.

Despite these issues, the case with labeled hosts and labeled parasites is noteworthy

because it results in a Poisson distribution of parasites across hosts (see Section 1.A).

However, the model resulting in the Poisson distribution has exactly the same number

of assumptions as the partition and composition models, so there is no a priori reason to

favor one model over the other. The only way to discriminate between the approaches is

to compare them to empirical host-parasite distributions (Haegeman and Loreau, 2009;

Haegeman and Etienne, 2010; Xiao et al., 2015a), against which the Poisson almost

universally fails (Shaw and Dobson, 1995; Shaw et al., 1998; Wilson et al., 2002). Fig.

1.S1 illustrates the completely unsurprising result that the Poisson distribution also does
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not capture the level of parasite aggregation in the data we present here.

1.3.2 Moving from weighted feasible sets to constraint-based

null model predictions

The proceeding section described how we enumerated and weighted the feasible sets

for the partition and composition models. This section describes how we generate the

predicted host-parasite distributions from these two models.

Given a weighted feasible set of macrostates from either the partition or composition

model, the central tendency of this feasible set provides a prediction for the most likely

host-parasite distribution given the constraints P and H (Locey and White, 2013). We

define the central tendency of a weighted feasible set as the vector of marginal medians of

this feasible set (Section 1.B). For most realistic values of P and H it is computationally

intractable to enumerate all possible macrostates in the feasible set to compute this

central tendency. To address this problem, we used the algorithms provided by Locey

and McGlinn (2013) to randomly draw macrostates from all possible macrostates in a

feasible set defined by P andH. We then computed the central tendency of this sample as

an estimate of the central tendency of the full feasible set (Figure 1.1; Locey and White,

2013). To generate the predicted host-parasite distribution for the partition model, we

drew 1000 random macrostates from a feasible set defined by P and H and used the

central tendency of this sample as our predicted host-parasite distribution (Figure 1.1).

While we could have used the same approach to compute the predicted host-parasite

distribution for the composition model by weighting each randomly drawn macrostate m

by bm/D, we instead used the analytical result from maximum entropy theory that the

probability p(x|P,H) of a single host having x parasites under the composition model
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is (Haegeman and Etienne, 2010)

p(x|P,H) =

(
P − x+H − 2

P − x

)

(
P +H − 1

P

) (1.1)

The predicted rank abundance distribution of equation 1.1 is equivalent the central

tendency of the weighted feasible set for the composition approach (Section 1.B). More-

over, equation 1.1 shows us that the composition approach is equivalent to assuming

that host-parasite distributions follow a finite negative binomial distribution with k = 1

(Zillio and He, 2010). Note that we are not arbitrarily setting k = 1 – this is a direct

result from maximizing entropy with respect to the constraints P unlabeled parasites

and H labeled hosts. Moreover, the finite nature of this distribution is a direct result of

the constraint P , which can lead to better descriptions of aggregation in finite popula-

tions (Zillio and He, 2010). However, P is similar to the number of trials in a binomial

distribution and cannot be tuned to improved the fit of the model.

In summary, we used both a sampling based approach and an analytical formula to

generate predicted host-parasite distributions from the weighted feasible sets of our two

constraint-based null models. In the context of more commonly used distributions in

disease ecology, these two constraint-based null models have one less parameter than

a negative binomial model, which is a very flexible distribution that often fits host-

parasite distributions very well (Shaw et al., 1998). We stress that the goal of this study

is not to ask whether these distributions do better or worse than a negative binomial in

predicting a host-parasite distribution, but whether host-parasite distributions tend to

contain information beyond what is given by P and H.
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1.3.3 Comparing constraint-based models to empirical data

Description of empirical data

To test whether empirical host-parasite distributions contained information beyond

that given by the constraints P and H, we used an extensive dataset of all macroparasites

found in 8099 amphibian hosts across 205 ponds (sites) in the East Bay region of Califor-

nia (Alameda, Contra Costa and Santa Clara counties) from 2009-2014 (Johnson et al.,

2013). This included ponds from publicly accessible parks, open space preserves, mu-

nicipal watershed districts, and private ranches. In this field study, we sampled recently

metamorphosed amphibians, as these provide a reliable and standardized indicator of

infections acquired during aquatic development from the associated pond. In a given

survey event, we randomly collected at least 10 of each host species as they approached

metamorphosis using the methods described in Johnson et al. (2016). To measure para-

site abundance, we performed a systematic examination of all major tissues and organs

in the sampled hosts for parasites (Hartson et al., 2011). The sampled amphibians con-

sisted of Pseudacris regilla (Pacific chorus frog, n = 4431), Anaxyrus boreas (Western

toad, n = 1309), Lithobates catesbeianus (American bullfrog, n = 410), Taricha torosa

(California newt, n = 1568), and Taricha granulosa (Rough-skinned newt, n = 381).

We focused the following analyses on the five most common macroparasites in the

system in terms of both prevalence and abundance. These were the larval trematodes

Ribeiroia ondatrae (RION), Echinostoma sp. (ECSP), Alaria sp. (ALAR), Cephalo-

gonimus sp. (CEPH), and Manodistomum sp. (MANO). All of these trematodes have

complex life cycles in which their first intermediate hosts are pulmonate snails, their

second intermediate host can be amphibians, snails or fishes, and their definitive hosts

are water-associated vertebrates (reptiles, amphibians, birds, or mammals) (Johnson
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and McKenzie, 2008).

Comparing models to data

We determined whether the empirical distributions of parasites across hosts deviated

from the predictions of our two constraint-based models for each combination of host

species and parasite species at each site during each year. We included a year-by-site-

by-host-by-parasite distribution only if it had at least 10 parasites and 10 hosts. Given

this criterion, we were able to compare the constraint-based models to 842 host-parasite

distributions. As expected, 837 of these distributions were aggregated with a ln(variance

to mean ratio) greater than zero (Fig. 1.S1). For each of these distributions, we extracted

the total number of individuals of a given amphibian species (H) and parasites of a given

trematode species (P ) and calculated the corresponding rank abundance distribution

(RAD) for the constraint-based models as the central tendency of the weighted feasible

set (see Moving from weighted feasible sets to constraint-based null model predictions).

The RAD gives the predicted parasite abundances from a given distribution for H hosts

and assigns a rank of 1 to the host with highest abundance and a rank of H to the host

with the lowest abundance (Harte, 2011; White et al., 2012).

To determine whether an observed host-parasite distribution deviated from the cen-

tral tendency of a constraint-based model, we plotted the observed RAD (obsi) versus

the predicted RAD (predi). We then calculated the R2 value based on a fit to the 1:1

line using the equation (White et al., 2012; Xiao et al., 2015b)

R2 = 1−
∑

i(ln(obsi + 1)− ln(predi + 1)2

∑
i(ln(obsi + 1)− ln(obsi + 1))2

where i is the rank (i = 1, . . . , H) of each observed or predicted host in a distribution.

R2 to the 1:1 line describes how much variance in the observed data is described by the
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model prediction. If the model describes a large portion of the variation in the observed

data then the R2 value will be larger, with unity being a perfect prediction. If the model

is a poor fit, the R2 value will be much less then unity and possibly negative if the 1:1

line was a worse fit than assuming that each host had a parasite abundance equal to the

mean of the observed distribution (White et al., 2012). We calculated R2 values for each

distribution independently as well as for all distributions combined. We also explored a

number of alternative measures of goodness-of-fit that gave consistent results (Section

1.C).

1.3.4 Extending the constraint-based null models to account

for aggregating and disaggregating mechanisms

When an observed host-parasite distribution deviated from the central tendency of a

constraint-based null model, this provided evidence that additional constraints beyond

just P and H were disproportionately affecting the system (Harte and Newman, 2014).

We developed two ways to extend the constraint-based null models to detect whether

classic aggregating and disaggregating mechanisms may be affecting host-parasite dis-

tributions beyond P and H.

Accounting for disaggregating mechanisms

Disaggregating mechanisms such as parasite-induced host mortality can play an im-

portant role in structuring empirically observed host-parasite distributions (Anderson

and Gordon, 1982). The parasite Ribeiroia ondatrae is known to have a strong, intensity-

dependent effect on the survival of some amphibian hosts where increased parasite inten-

sity leads to increased limb-malformations and decreased survival (Johnson, 1999). This
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means that hosts with large parasite burdens are removed from the system, making the

parasite distribution more uniform. Therefore, Ribeiroia-induced host mortality may

interact with P and H to further constrain the shape of host-Ribeiroia distributions.

We included Ribeiroia-induced host mortality as an additional constraint on the

partition and composition null models. To do this, we used laboratory-derived survival

curves that describe how Ribeiroia intensity affects amphibian host survival probability

(Johnson et al., 2012). We focused on the amphibian species Pseudacris regilla because

Ribeiroia-induced mortality and malformations in this species have been documented

in the field and in the lab (Johnson, 1999; Johnson and McKenzie, 2008) and there

were a large number of P. regilla-Ribeiroia distributions in the dataset on which to test

the extended models (n = 133). The intensity-dependent survival curve specified the

probability of an amphibian host surviving from larva to recent metamorph with some

observed parasite intensity. We assumed that this curve followed a logistic function and

estimated the parameters of this function from independent laboratory data (Figure

1.2A; Section 1.D; Johnson, 1999).

We then used this result to further constrain the partition and composition model

predictions by assigning each macrostate a likelihood using the estimated survival func-

tion (Figure 1.2A). For each constraint-based model, the macrostates were then weighted

by this likelihood such that macrostates with small likelihoods (e.g. ones that contained

hosts with high parasite loads) were less likely to be observed than macrostates with large

likelihoods. Using this weighting scheme, we sampled from models that were constrained

on P , H and Ribeiroia-induced host mortality using a Metropolis-Hastings algorithm

(Figure 1.2B; see Section 1.D for a full description of the algorithm used).

Once we obtained estimates of the mortality-constrained partition and composition

models, we compared the resulting predictions to the observed P. regilla-Ribeiroia distri-
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butions using the methods described in Comparing models to data. In addition, we also

calculated an approximate AICc for the constraint-based model with and without an

additional mortality constraint. We compared these models using ∆AICc where we con-

sidered an absolute value of ∆AICc > 2 as evidence that one model was better than the

other (Burnham and Anderson, 2002). The AICc values were approximate because there

was no analytically defined likelihood for the mortality-constrained models. Therefore,

we approximated the likelihood by drawing a large number of samples (e.g. 500 samples)

from the mortality-constrained feasible set and computing the likelihood of a single host

having x parasites using the equation p(x|P,H) =
∑

m∈F̂ p(x|m,P,H)p(m|P,H), where

F̂ is the sampled feasible set. As we did not perform any additional model fitting to de-

rive the mortality-constrained model, it was not statistically inevitable that the central

tendencies of the mortality-constrained models would provide a better representation of

the data. Therefore, an improvement in agreement between model and data, reflected in

an increased R2 or decreased AICc for the models with mortality relative to the models

without mortality, is strong evidence that Ribeiroia-induced mortality is constraining

the distribution beyond P and H.

Accounting for aggregating mechanisms

Host heterogeneity, whether it be in susceptibility, parasite encounter rates, behavior

or other factors, is an important mechanism leading to aggregation in host-parasite sys-

tems (Cornell, 2010; Raffel et al., 2011). We accounted for this aggregating mechanism

by extending the constraint-based models to include empirically observed levels of host

heterogeneity. In particular, we explored discrete host heterogeneity where we assumed

that overaggregation relative to the predicted model was a result of mixing discrete

groups of hosts (Grafen and Woolhouse, 1993; Wilson et al., 2002). This approach is
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different than the standard practice of fitting a negative binomial distribution to over-

aggregated host-parasite distributions. If the goal of an analysis is to obtain the best

possible fit to an observed host-parasite distribution then it is well-known that fitting

a negative binomial distribution provides an excellent model of overaggregated host-

parasite distributions (Shaw et al., 1998; Calabrese et al., 2011). However, if the goal of

an analysis is to determine whether a host-parasite distribution contains any information

beyond what is contained in P and H, fitting a negative binomial model does not pro-

vide immediate insight into what constitutes unusual aggregation or the potential host

attributes leading to this overaggregation (but see Alonso and Pascual, 2006; Fowler and

Hollingsworth, 2016, for various mechanistic interpretations of the negative binomial k

parameter). Extending a constraint-based model to include discrete host-heterogeneity,

as is done here, can help generate more specific hypotheses as to the relative importance

of different levels of host-heterogeneity in structuring a host-parasite distribution.

To incorporate discrete host-heterogeneity, we used 5 observed host attributes by

which we could bin hosts into groups of heterogeneity. The first attribute was host

body size (i.e. snout-vent length), which is a well-known attribute affecting parasite

exposure and aggregation (Grutter and Poulin, 1998; Poulin, 2013). The other 4 host

attributes were the parasite abundances of the larval trematodes, excluding the focal

trematode, infecting an individual host (see Fig. 1.3 for an example). Coinfection can

potentially increase aggregation by increasing heterogeneity in host susceptibility to the

focal parasite (Cattadori et al., 2008), but can also decrease aggregation by increasing

intra-host parasite negative density dependence (Pacala and Dobson, 1988). Here we

consider coinfection as a mechanism leading to increased aggregation.

Using these 5 host attributes, we used regression trees in which the response variable

was the focal parasite abundance and the predictor variables were the 5 host attributes
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described above (Fig. 1.3). Separate regression trees were run for each of the 842

host-parasite distributions. For a given host-parasite distribution, we found the best

regression tree with 2-5 of groups of host heterogeneity and calculated the relative im-

portance of each predictor variable based on how much they reduced the sum of squared

error compared to the other predictor variables (Fig. 1.3). We restricted each group to

have at least 2 hosts. Within each of these j groups we determined the total number

parasites Pj and the total number of hosts Hj. The regression tree approach explores

how various predictor variables affect mean parasite load (James et al., 2013), which is

consistent with the constraint-based assumption that much of the information about the

host-parasite distribution is contained in P and H.

To generate a constraint-based model RAD from the results of the regression tree,

the RADs for each group j were computed with Pj and Hj and the predicted RAD

was given by the concatenation for these j vectors (Fig. 1.3). This predicted mix-

ture RAD could then be analyzed using the various methods described above. We also

computed approximate AICc values for each heterogeneity model that we applied to an

observed distribution. As described in the previous section, we did this by drawing 500

macrostates from the heterogeneity model to generate an estimate for the probability of

a single host having x parasites under either the partition or composition assumptions.

Finally, we employed a randomization test to ensure that any increase in R2 after in-

cluding host heterogeneity was due to the host attributes considered, rather than just

the act of grouping itself (described in Section 1.E).

In summary, while P and H alone may sometimes not sufficiently constrain an ob-

served host-parasite distribution, this approach is testing whether allowing P and H to

vary as a function of host heterogeneity can account for deviations from the constraint-

based null models. All analyses were performed in Python (version 2.7.11) and the code
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to replicate the analysis can be found at https://github.com/mqwilber/feasible_

parasites.

1.4 Results

1.4.1 Do host-parasite distributions contain information be-

yond that contained in P and H?

Overall, the partition model and composition model described 86% and 85% of the

variation in all of the observed host-parasite distributions combined, respectively (Fig.

1.4A, B). For any particular host-parasite distribution, the median R2 for the partition

and composition models was 0.78 and 0.76, respectively (Fig. 1.4A, B). Examining the

models with regard to host-by-parasite combinations, the median R2 for the constraint-

based models tended to be close to 80% for the various host-by-parasite combinations

(Fig. 1.S2), with some notable exceptions for the host Lithobates catesbeianus and the

parasites Alaria sp. and Cephalogonimus sp. (Fig. 1.S2-1.S5).

The partition model tended to describe more variation in host-parasite distributions

than the composition model (Fig. 1.4, Fig. 1.S6). The composition model is equivalent

to a finite negative binomial model with k = 1 and many of the observed host-parasite

distributions in this study had maximum-likelihood estimated k parameters (k̂) less than

one (Fig. 1.S6). While k̂ 6= 1 is not necessarily incompatible with the composition model

due to estimation error in the negative binomial k parameter (Lloyd-Smith, 2007), the

partition model did predict more aggregated distributions than the composition model

(Fig. 1.1). This led to the partition model accounting for a larger amount of the variance

in host-parasite distributions with k < 1 (Fig. 1.S6).
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1.4.2 Accounting for disaggregating and aggregating mecha-

nisms

Disaggregating mechanisms: Parasite-induced host mortality

Including independently-estimated Ribeiroia-induced parasite mortality into the constraint-

based models improved the overall fit of the models to Pseudacris regilla-Ribeiroia distri-

butions. This was seen in three different metrics. First, there was a significant increase in

the overall R2 when the mortality constraint was included (bootstrapped 95% confidence

interval for the difference in overall R2 between the mortality constraint-based model

and the null constraint-based model from 1000 re-samples: feasible set model, [0.019,

0.033]; maximum entropy model, [0.018, 0.035]; neither interval includes 0; Fig. 1.5A-

D). This improvement in fit can be visualized by observing the tightening of the points

to the 1:1 line when Ribeiroia-induced mortality was included in the model (Fig. 1.5A-

D). Second, the median R2 for individual Pseudacris-Ribeiroia distributions increased

and the variance around the individual R2 values decreased (Fig. 1.5B,D). Third, for

individual distributions that were better fit under either the mortality or no mortality

models based on the absolute value of ∆AICc > 2, a significant or marginally signifi-

cant proportion were better under the mortality model (partition model: Binomial test,

N = 26, better under mortality model = 21, p = 0.002; composition model: Binomial

test, N = 31, better under mortality model = 21, p = 0.07; Fig. 1.5B,D).

Aggregating mechanisms: Host-heterogeneity

There were 124 unique host-parasite distributions that had R2 < 0.5 and an observed

variance to mean ratio greater than the variance to mean ratio of one of the constraint-

based models. We considered these distributions to be overaggregated with respect to

the constraint-based models. Of these 124 distributions, 48 were Echinostoma (12% of
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all Echinostoma distributions) 29 were Alaria (35% of all Alaria distributions), 17 were

Cephalogonimus (24% of all Cephalogonimus distributions), 17 were Manodistomum

(33% of all Manodistomum distributions), and 13 were Ribeiroia (5% of all Ribeiroia

distributions).

Considering only these overaggregated distributions, we used the regression tree anal-

ysis described above to test whether further constraining P and H based on known host

attributes improved the fit of the constraint-based models to the observed host-parasite

distributions. The heterogeneity models built from the regression tree analysis improved

the fit of the constraint-based models to the empirical data beyond what would be ex-

pected by the inevitable increase in fit by simply grouping hosts (overall R2 greater than

the 95% interval from randomly permuting hosts into groups; Fig. 1.6). The improve-

ment in fit can be visualized in Figure 1.6 by noting how the data points compress to

the 1:1 line as more groups of heterogeneity are included. Note that this increase in

model fit was not achieved by minimizing or maximizing any criteria about how well

the heterogeneity model fit the observed host-parasite distribution. Finally, for three

or more groups of host-heterogeneity, including just host body-size heterogeneity as an

additional constraint yielded better models in terms of both higher R2 values and larger

AICc weights than including just heterogeneity in coinfection as an additional constraint

(Fig. 1.7A-D).

1.5 Discussion

The shape of a sampled host-parasite distribution is necessarily constrained by the

total number of hosts H and the total number of parasites P found in that sample

(Haegeman and Etienne, 2010; Locey and White, 2013). While there are indisputably
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biological mechanisms leading to the shape of this distribution (Wilson et al., 2002),

inferring anything about these mechanisms may be difficult without first accounting for

the constraints imposed by P andH. Here we use an extensive dataset of 22 host-parasite

combinations and 842 empirical host-parasite distributions to show that aggregated host-

parasite distributions tend to be consistent with the most likely distribution given P

and H. This suggests that when trying to make inference about biological mechanism

directly affecting patterns of parasite aggregation one must account for the mechanisms

indirectly affecting aggregation through changes to P and H.

This finding has three important implications for disease ecology. First, there is a

rich history in parasitology of using the shape of host-parasite distributions in combi-

nation with dynamic models and statistical techniques to infer which mechanisms may

be affecting a given host-parasite system (Crofton, 1971; Anderson and Gordon, 1982;

Grear and Hudson, 2011). While these approaches are in no way inappropriate, our

results show that the instances in which the shape of a host-parasite distribution con-

tains more information beyond what is contained in P and H may be more rare than

previously thought. This result is consistent with other findings showing that log mean

parasite load describes up to 88% of the variation in the log variance of parasite load,

leaving only 13% of the variation to be described by biological mechanisms acting on

something other than the mean (Shaw and Dobson, 1995; Poulin, 2013). Our results

take this a step further by using constraint-based models to explicitly predict the entire

host-parasite distribution given P and H. We find that, similar to Poulin (2013), much

of the variability in the entire host-parasite distribution (not just the variance) is well

predicted by mean parasite load and how many hosts are present in the sample. As

a next step, explicitly considering whether specific attributes of observed host-parasite

distributions systematically deviate from constraint-based predictions, such as the num-
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ber of predicted uninfected hosts, could shed additional light on when host-parasite

distributions contain much information beyond P and H.

The second implication is that the success of constraint-based models in disease ecol-

ogy will allow them to be adopted as robust null models against which empirical host-

parasite distributions can be compared. Constraint-based models are being increasingly

used as robust null models in community ecology to determine when ecological mecha-

nism may be disproportionately affecting the shape of population- and community-level

distributions (Ulrich and Gotelli, 2013; Newman et al., 2014; Xiao et al., 2015b). In

disease ecology, by using a constraint-based model to predict parasite aggregation given

P and H, we can determine when a host-parasite system is showing unusual levels of ag-

gregation to help direct modeling and experimental efforts. For example, future studies

could explore whether factors such as the complexity of parasite life cycles (Lester and

McVinish, 2016), self-reinfection processes (Grear and Hudson, 2011), or the composi-

tion of the host and parasite community in which a distribution is observed (Krasnov

et al., 2006) lead to consistent deviations from constraint-based predictions.

Third, the general success of constraint-based models in describing host-parasite dis-

tributions has important implications for understanding the dynamics of

host-macroparasite systems. Most macroparasite models explicitly model the state vari-

ables H and P (Anderson and May, 1978; Dobson and Hudson, 1992) and examine, in

addition to other biological factors, how either fixed (Anderson and May, 1978) or dy-

namic aggregation (Kretzschmar and Alder, 1993; Rosà et al., 2003) influences host and

parasite dynamics. Constraint-based models in turn predict that aggregation is largely

determined by exactly these state variables. Therefore, a constraint-based approach to

parasite ecology can be directly linked back to a more familiar mechanistic framework by

examining the implications of constraint-based, aggregation predictions on dynamics of
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the total number of hosts and parasites in a system. Linking constraint-based models for

describing aggregation to dynamic equations for the state variables of a system has often

been alluded to in macroecology (Supp et al., 2012; White et al., 2012), but has been

difficult to implement (Harte, 2011). The rich empirical and theoretical understanding

of biological factors affecting the total number of hosts and the total number of parasites

in a system (Kretzschmar and Alder, 1993; Hudson et al., 1992; Dobson and Hudson,

1992) makes disease ecology an ideal field in which to make this connection.

In addition to providing robust null models and a unique opportunity to link dynamic,

mechanistic models with a constraint-based approach, the constraint-based models can

also be extended beyond null models to test the importance of potential aggregating

and disaggregating mechanisms affecting host-parasite distributions. In this study, we

extended the constraint-based models to include independently estimated relationships

between parasite intensity and amphibian survival and found that accounting for the

well-described negative effect of Ribeiroia on P. regilla (Johnson, 1999; Johnson et al.,

2012) improved the fit of the constraint-based model to empirical host-parasite distri-

butions. While this improvement in model fit was not drastic as P and H already

accounted for 87% of the variation in the distributions, it was achieved using a survival

curve estimated from an independent dataset (Johnson, 1999), providing strong evidence

that parasite-induced mortality is influencing P. regilla-Ribeiroia distributions beyond

just changes to P and H.

Moreover, we also found that extending constraint-based models to include hetero-

geneity in host body size and coinfection with other trematode parasites accounted for

much of the overaggregation in observed distributions that were not well described by

the constraint-based null models. In particular, we found evidence that host body size

was generally a more important constraint on the host-parasite distribution than a host’s
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level of coinfection with other trematodes. This result is consistent with previous stud-

ies which have shown the importance of host age/body size heterogeneity for increasing

parasite aggregation due to changes in host immunity and/or exposure to parasites

with host age/body size (Pugliese et al., 1998; Poulin, 2013). Moreover, while previous

work has shown that coinfection can act as a type of host heterogeneity and increase

parasite aggregation (Cattadori et al., 2008), this same work has also shown that host

characteristics such as age/body size, sex, and breeding status can often be more impor-

tant factors affecting parasite aggregation and host-parasite dynamics than coinfection.

While we have considered host-heterogeneity and parasite-induced mortality separately

in this study, there is no reason that the constraint-based approach cannot be extended

to included multiple mechanistic constraints. However, this must be done judiciously as

imposing too many constraints could lead to trivial agreements between the model and

data (Haegeman and Loreau, 2009).

In conclusion, constraint-based models provide a powerful framework for understand-

ing when we can reliably infer mechanism from parasite aggregation. However, we are

not advocating that the constraint-based approach should replace the process-based

approach that has been so successful in disease ecology. Rather, the constraint-based

approach is another tool in the disease ecologist’s belt that can highlight when observed

parasite aggregation is telling us something novel about the mechanisms acting in our

system and when we should acknowledge the statistical inevitability that sometimes

host-parasite distributions simply look how they must look given P and H.
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Bóna, M. 2006. A Walk Through Combinatorics: An Introduction to Enumeration

and Graph Theory. Second edition. World Scientific Publishing Co., Toh Tuck LInk,

Singapore.

Brualdi, R. 2010. Introductory Combinatorics. Fifth edition. Pearson Education, Inc,

Upper Saddle River, New Jersey.

Burnham, K. P., and D. R. Anderson. 2002. Model Selection and Multimodel Inference:

A Practical Information-Theoretic Approach. Springer, New York.

Calabrese, J. M., J. L. Brunner, and R. S. Ostfeld. 2011. Partitioning the aggregation

of parasites on hosts into intrinsic and extrinsic components via an extended Poisson-

gamma mixture model. PloS one 6:e29215.

Cattadori, I. M., B. Boag, and P. J. Hudson. 2008. Parasite co-infection and interaction

as drivers of host heterogeneity. International Journal for Parasitology 38:371–380.

Chan, M. S., and V. S. Isham. 1998. A stochastic model of schistosomiasis immuno-

epidemiology. Mathematical Biosciences 151:179–198.

Chase, J. M., N. J. B. Kraft, K. G. Smith, M. Vellend, and B. D. Inouye. 2011. Using

null models to disentangle variation in community dissimilarity from variation in α-

diversity. Ecosphere 2:1–11.

36



When can we infer mechanism from parasite aggregation? A constraint-based approach to disease
ecology Chapter 1

Chase, J. M., and J. A. Myers. 2011. Disentangling the importance of ecological niches

from stochastic processes across scales. Philosophical Transactions of the Royal Society

B: Biological Sciences 366:2351–2363.

Cornell, S. J., 2010. Modelling stochastic transmission processes in helminth infections.

Chapter 5, pages 66–78 in E. Michael and R. C. Spear, editors. Modelling Parasite

Transmission and Control. Springer-Verlag New York.

Crofton, H. D. 1971. A quantitative approach to parasitism. Parasitology 62:179–193.

Dobson, A. P., and P. J. Hudson. 1992. Regulation and stability of a free-living host-

parasite system: Trichostrongylus tenuis in red grouse. II. Population models. Journal

of Animal Ecology 61:487–498.

Duerr, H. P., K. Dietz, and M. Eichner. 2003. On the interpretation of ageintensity

profiles and dispersion patterns in parasitological surveys. Parasitology 126:87–101.

Engmann, S., and D. Cousineau. 2011. Comparing distributions: the two-sample

Anderson-Darling test as an alternative to the Kolmogorov-Smirnoff test. Journal

of Applied Quantitative Methods 6:1–17.

Fowler, A. C., and T. D. Hollingsworth. 2016. The dynamics of Ascaris lumbricoides

infections. Bulletin of Mathematical Biology 78:815–833.

Frank, S. A. 2009. The common patterns of nature. Journal of Evolutionary Biology

22:1563–1585.

Frank, S. A. 2014. Generative models versus underlying symmetries to explain biological

pattern. Journal of Evolutionary Biology 27:1172–1178.

37



When can we infer mechanism from parasite aggregation? A constraint-based approach to disease
ecology Chapter 1

Gourbière, S., S. Morand, and D. Waxman. 2015. Fundamental factors determining the

nature of parasite aggregation in hosts. Plos One 10:1–17.

Grafen, A., and M. E. J. Woolhouse. 1993. Does the negative binomial distribution add

up? Parasitology Today 9:475–477.

Grear, D. A., and P. Hudson. 2011. The dynamics of macroparasite host-self-infection: a

study of the patterns and processes of pinworm (Oxyuridae) aggregation. Parasitology

138:619–27.

Grutter, A., and R. Poulin. 1998. Intraspecific and interspecific relationships between

host size and the abundance of parasitic larval gnathiid isopods on coral reef fishes.

Marine Ecology Progress Series 164:263–271.

Haegeman, B., and R. S. Etienne. 2010. Entropy maximization and the spatial distri-

bution of species. The American Naturalist 175:E74–90.

Haegeman, B., and M. Loreau. 2009. Trivial and non-trivial applications of entropy

maximization in ecology: A reply to Shipley. Oikos 118:1270–1278.

Harte, J. 2011. Maximum Entropy and Ecology: A Theory of Abundance, Distribution,

and Energetics. Oxford University Press, Oxford, United Kingdom.

Harte, J., and E. A. Newman. 2014. Maximum information entropy: a foundation for

ecological theory. Trends in Ecology & Evolution 29:384–389.

Harte, J., A. Rominger, and W. Zhang. 2015. Integrating macroecological metrics and

community taxonomic structure. Ecology Letters 18:1068–1077.

38



When can we infer mechanism from parasite aggregation? A constraint-based approach to disease
ecology Chapter 1

Hartson, R. B., S. A. Orlofske, V. E. Melin, R. T. Dillon, and P. T. J. Johnson. 2011.

Land use and wetland spatial position jointly determine amphibian parasite commu-

nities. EcoHealth 8:485–500.

Hudson, P. J., D. Newborn, and A. P. Dobson. 1992. Regulation and stability of a

free-living host-parasite system: Trichostrongylus tenuis in red grouse. 1. Monitoring

and parasite reduction experiments. Journal of Animal Ecology 61:477–486.

Isham, V. 1995. Stochastic models of host-macroparasite interaction. The Annals of

Applied Probability 5:720–740.

James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. Introduction to Statistical

Learning with Applications in R. Springer, New York, USA.

Johnson, P. T. 1999. The effect of trematode infection on amphibian limb development

and survivorship. Science 284:802–804.

Johnson, P. T. J., and V. J. McKenzie, 2008. Effects of Environmental Change on

Helminth Infections in Amphibians: Exploring the Emergence of Ribeiroia and Echi-

nostoma Infections in North America. Chapter 11, pages 249–280 in The Biology of

Echinostomes. Springer-Verlag New York.

Johnson, P. T. J., D. L. Preston, J. T. Hoverman, and K. L. D. Richgels. 2013. Biodi-

versity decreases disease through predictable changes in host community competence.

Nature 494:230–233.

Johnson, P. T. J., J. R. Rohr, J. T. Hoverman, E. Kellermanns, J. Bowerman, and K. B.

Lunde. 2012. Living fast and dying of infection: Host life history drives interspecific

variation in infection and disease risk. Ecology Letters 15:235–242.

39



When can we infer mechanism from parasite aggregation? A constraint-based approach to disease
ecology Chapter 1

Johnson, P. T. J., C. L. Wood, M. B. Joseph, D. L. Preston, S. E. Haas, and Y. P.

Springer. 2016. Habitat heterogeneity drives the host-diversity-begets-parasite-

diversity relationship: evidence from experimental and field studies. Ecology Letters

19:752–761.

Krasnov, B. R., M. Stanko, D. Miklisova, and S. Morand. 2006. Host specificity, parasite

community size and the relation between abundance and its variance. Evolutionary

Ecology 20:75–91.

Kretzschmar, M., and F. R. Alder. 1993. Aggregated distributions in models for patchy

populations. Theoretical Population Biology 43:1–30.

Leibold, M. A., and G. M. Mikkelson. 2002. Coherence, species turnover, and boundary

clumping: elements of meta-community structure. Oikos 97:237–250.

Lester, R. J. G., and R. McVinish. 2016. Does moving up a food chain increase aggre-

gation in parasites? Journal of the Royal Society, Interface 13:1 –11.

Lloyd-Smith, J. O. 2007. Maximum likelihood estimation of the negative binomial

dispersion parameter for highly overdispersed data, with applications to infectious

diseases. PLoS ONE 2:1–8.

Locey, K. J., and D. J. McGlinn. 2013. Efficient algorithms for sampling feasible sets of

macroecological patterns. PeerJ pages 1–23.

Locey, K. J., and E. P. White. 2013. How species richness and total abundance constrain

the distribution of abundance. Ecology Letters 16:1177–85.

McGill, B. J., and J. C. Nekola. 2010. Mechanisms in macroecology: AWOL or purloined

letter? Towards a pragmatic view of mechanism. Oikos 119:591–603.

40



When can we infer mechanism from parasite aggregation? A constraint-based approach to disease
ecology Chapter 1

Newman, E. N., M. E. Harte, N. Lowell, M. Wilber, and J. Harte. 2014. Empirical

tests of within- and across species energetics in a diverse plant community. Ecology

95:2815–2825.

Niinimaa, A., and H. Oja, 2006. Multivariate Median. Pages 1 – 9 in Encyclopedia of

Statistical Sciences. John Wiley & Sons, Ltd, Hoboken, New Jersey.

Pacala, S. W., and A. P. Dobson. 1988. The relation between the number of para-

sites/host and host age: population dynamic causes and maximum likelihood estima-

tion. Parasitology 96:197–210.

Poulin, R. 2007. Are there general laws in parasite ecology? Parasitology 134:763–76.

Poulin, R. 2013. Explaining variability in parasite aggregation levels among host sam-

ples. Parasitology 140:541–6.
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Table 1.1: Definitions of terms used to describe the constraint-based null models.
Term Definition

Labeled Hosts or parasites are distinguishable

Unlabeled Hosts or parasites are indistinguishable

Macrostate Unordered vector of unlabeled parasite abundances.
e.g. Given P = 3 and H = 2, the vector {3, 0} is a macrostate

Configuration Ordered vector of unlabeled parasite abundances.
e.g. Given P = 3 an H = 2, the macrostate {3, 0} has two
configurations: (3, 0) and (0, 3)

Feasible set All possible macrostates given P and H.
e.g. The feasible set given P = 3 and H = 2 is {{3, 0}, {2,
1}}

Weighted feasible set Feasible set in which macrostates have particular weights.

Partition model Weights each macrostate in the feasible set by assuming unla-
beled hosts and parasites. All macrostates have equal weights.

Composition model Weights each macrostate in the feasible set by assuming
labeled hosts and unlabeled parasites. Analogously, each
macrostate can be realized by multiple configurations.
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Figure 1.1: A. and B. show how the predictions from the partition model and com-
position model were generated. Random macrostates were drawn from the weighted
feasible set (light gray lines) and the predicted distribution was computed as the
central tendency of these randomly drawn weighted macrostates (thick lines with
dots). Each dot represents a host in the predicted distribution with a given parasite
abundance and rank. Hosts with low ranks (low ln(ranks)) have a larger number of
parasites than hosts with high ranks (high ln (ranks)). C. and D. compare the parti-
tion and composition models for two different values of P and H. The more familiar
Poisson model is also included for reference. The partition and composition models
predict more aggregated host-parasite distributions than the Poisson model and the
partition approach tends to produce more aggregated distributions than the compo-
sition model. The degree that the predictions from the partition and composition
models differ depends on the values of P and H.
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Figure 1.2: A. The black line and dots give the parasite-induced host mortality
data from Johnson (1999) where Pseudacris regilla hosts were infected with vary-
ing Ribeiroia intensities. Frogs were exposed to Ribeiroia cercariae as tadpoles and
the experiment was stopped after tadpoles metamorphosed. The dashed line gives
the mean predictions of the logistic regression model fit to the data. This logistic
regression was then imposed as a mortality constraint on the partition model and
the composition model. B. An example of the effect of including the laboratory-esti-
mated survival curve on the predictions of partition models with P = 500 parasites
and H = 20 hosts and P = 100 and H = 20. The symbols indicate a given host in a
predicted distribution with a particular parasite abundance and rank. Hosts with low
ranks (low ln(ranks)) have a larger number of parasites than hosts with high ranks
(high ln (ranks)). Depending on the values of P and H, the mortality constraint
could noticeably reduce aggregation (triangles) or have little effect on aggregation
(circles).
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Figure 1.3: A diagram showing how host-heterogeneity can be incorporated into constraint-based models.

Step 1: Consider, for example, a distribution for the parasite Echinostoma sp. in the host Pseudacris regilla

with H = 60 hosts and P = 7043 parasites. When no host heterogeneity is included, the central tendency of

the constraint-based model can be computed directly from H and P as described in the main text. To include

groups of heterogeneity, a regression tree analysis is performed in which the response variable is Echinostoma

abundance and the predictor variables are P. regilla body size (snout-vent length, SVL) and the abundance

of Ribeiroia ondatrae (RION), Alaria sp. (ALAR), Cephalogonimus sp. (CEPH), and Manodistomum sp.

(MANO) in a particular host. In the example above, the regression tree analysis shows that the “best” way

to make two groups of heterogeneity given the predictor variables is to split the 60 P. regilla individuals into

those with SVL ≤ 16.08 mm and those with SVL > 16.08 mm. To make three groups of heterogeneity, P.

regilla individuals with SVL ≤ 16.08 are again split into individuals with RION abundance ≤ 8.5. For each

of these regression trees, we can determine the relative importance of each variable in building the regression

tree by how much they decrease the sum of squared error compared to the other predictors. Step 2: We can

then compute the central tendency of the constraint-based model for each of these groups of heterogeneity

(the bold boxes above) using the total number of hosts and parasites in each heterogeneity group. Each

heterogeneity group has its own rank abundance distribution with hi,j being the ith ranked host with some

number of parasites in heterogeneity group j. Concatenating (‖) these rank abundance distributions together

and re-ordering the resulting vector gives the predicted constraint-based model after allowing for P and H to

vary with host heterogeneity. Step 3: These predicted distributions can then be compared to the observed

host-parasite distribution.
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Figure 1.4: Plots showing the fit of the partition model A. and the composition model
B. to all of the 842 observed host-parasite distributions considered in this study. The
black-dashed line gives the 1:1 line and the overall R2 gives the percent of variation
that the constraint-based models explain in all of the observed data. Each point
represents a single individual host from one of the 842 distributions with a given
predicted and observed parasite abundance. Darker colors indicate a higher density
of points in the region than lighter colors. The inset histogram shows the distribution
of R2 values calculated for each of the 842 individual host-parasite distributions.
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Figure 1.5: The effect of including empirically-estimated Ribeiroia-induced Pseu-
dacris regilla mortality into the partition and composition models. The first column
in this plot (A., C.) compares 133 observed rank abundance distributions (RAD) of
Ribeiroia-P. regilla with the RADs predicted by the constraint-based models before
they were constrained on parasite-induced host mortality. The second column (B.,
D.) compares the observed and predicted RADs after they were constrained on par-
asite-induced host mortality. The 1:1 line is given by the black, dashed line. Each
point represents a single host with a given predicted and observed parasite abun-
dance. Darker colors indicate a higher density of points in the region than lighter
colors. The inset dot plots in B. and D. show the first through third quartiles of
the R2 values from each of the 133 distributions without and with Ribeiroia-induced
mortality. The inset bar plots in B. and D. give the number of observed distributions
that were a worse fit with the mortality constraint, a better fit with the mortality
constraint, or were equally good with either (Indeterminate) based on ∆AICc.
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Figure 1.6: The effect of discrete heterogeneity on the 124 host-parasite distributions
that were overaggregated relative to at least one of the constraint-based models (all
hosts and parasites shown together). The first column in this plot shows the predicted
rank abundance distributions (RAD) compared to the observed RADs when no host
heterogeneity was included in either of the two constraint-based models. The black,
dashed line gives the 1:1 line and the overall R2 describes the amount of variation
the constraint-based models described in all 124 overaggregated distributions. Each
point represents a single host with a given predicted and observed parasite abundance.
Darker colors indicate a higher density of points in the region than lighter colors. The
histogram in the lower right hand side gives the distribution of R2 values for each
particular host-parasite distribution. The second and third columns in this plot show
the effect of adding 2 and 3 groups of host heterogeneity, respectively, on the predicted
host-parasite distributions based on the results from a regression tree analysis on
known host attributes in the dataset. The plots in the upper left hand corner show
the mean importance of a given host attribute in structuring the regression tree
for all the 124 overaggregated host-parasite distributions. The predictor variables
were body-size (svl), Echinostoma sp. (ECSP), Ribeiroia (RION), Cephalogonimus
(CEPH), Alaria (ALAR), and Manodistomum (MANO). The predictor importance
was the same for all models within a heterogeneity group and are therefore only
displayed once for each group. Finally, the 95% interval displayed in the plot gives
the 95% quantiles of overall R2 values based on randomly permuting parasites into
the groups predicted by the regression tree analysis. If the overall R2 is greater than
the interval, it shows that the increase in R2 from the regression tree is a result of
the predictors used in the regression tree analysis, rather than just grouping itself.
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Figure 1.7: Plots show the effects of adding groups of heterogeneity to the constrain-
t-based null models on two metrics: R2 and AICc weights. Three heterogeneity
models with different predictor variables were considered: only host body size, only
coinfection with other trematodes, and both body size and coinfection with other
trematodes. A. and B. show how the median R2 of the 124 overaggregated distri-
butions changes for the partition model (A.) and the composition model (B.) when
heterogeneity in body size and and/or coinfection with other trematodes was consid-
ered. The points represent the median R2 and the error bars give the approximate
95% confidence interval around the median. C. and D. show the median AICc weights
for all 124 distributions for a given group size and heterogeneity model. For example,
for the partition model every observed host-parasite distribution had 13 candidate
models: the no-heterogeneity model (1 group) and three heterogeneity models times
four groupings (2 groups, 3 groups, 4 groups, 5 groups). The AICc weights were
calculated for these 13 models for a single distribution and then the median AICc
weights for a given model was computed for all 124 overaggregated distributions.
The error bars give the approximate 95% confidence intervals around these medians.
These AICc weights are only comparing within a constraint-based model and are not
comparing the partition model (C.) to the composition model (D.).
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1.A From feasible sets to the Poisson distribution

The Poisson distribution is the canonical null hypothesis for host-parasite distribu-

tions. While there are many ways to obtain a Poisson distribution, the most common

derivation in parasite ecology is via a death-immigration process (Anderson and Gor-

don, 1982). However, one can also obtain a Poisson distribution using the feasible set

approach as described below.

As discussed in the main text, the shape of all observed host-parasite distributions

are inherently constrained by the total number of parasites in a sample P and the total

number of hosts in a sampleH. These are hard constraints on the system (Haegeman and

Etienne, 2010). Assume now that both hosts and parasites are labeled. For parasites,

this means that a given host can have the same parasite intensity (e.g. 1 parasite) in

different ways depending on the identity of the individual parasites (e.g. the host is

infected with parasite individual A or infected with parasite individual B). For example,

given P = 3 parasites and H = 3 hosts the possible macrostates for the feasible set

constrained by P = 3 and H = 3 are: {{3, 0, 0}, {2, 1, 0}, {1, 1, 1}}. Given labeled

hosts and labeled parasites the probability of seeing the macrostate {3, 0, 0} is 3 / 27,

the probability of seeing (2, 1, 0) is 18 / 27, and the probability of seeing (1, 1, 1)

is 6 / 27. The probabilities of seeing a single host with x = 0, 1, 2, or 3 parasites are

p(0) = 8/27, p(1) = 12/27, p(2) = 6/27 and p(3) = 1/27.

More generally, given H labeled hosts and P labeled parasites the total number of

possible configurations with labeled parasites is M = HP . Given a macrostate m from

the feasible set defined by H and P , there are µm = bm ∗
(

P
p1,p2,...,pH

)
ways to observed

this macrostate with labeled parasites and labeled hosts. bm is number of ways that

macrostate can be realized given unlabeled parasites and labeled hosts (see Methods in
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main text),
(

P
p1,p2,...,pH

)
is a multinomial coefficient, and pi is number of parasites in host

i. Taken together, the weight on any particular macrostate m given labeled hosts and

labeled parasites is µm/M .

Haegeman and Etienne (2010) showed that the probability of observing any partic-

ular configuration X of labeled parasites is

X ∼ Multinomial(P, p1 =
1

H
, p2 =

1

H
, . . . , pH =

1

H
) (1.2)

From this result, it is easy to see that the probability of a single host having x =

0, . . . , P parasites is given by a binomial distribution such that

x ∼ Binomial(P,
1

H
) (1.3)

Now as H increases (via a larger sample size of hosts) P will also increase (because

you are finding more parasites). Therefore, when H is reasonably large and P is reason-

ably large, the binomial distribution will be well-approximated by a Poisson distribution

based on the standard relationship between the Binomial and the Poisson (Zillio and

He, 2010).

1.B The central tendency of a feasible set

The central tendency of a feasible set could be found in many different ways, including

identifying the mean, median, or mode of the feasible set. While there are advantages

and disadvantages to each of these measures of central tendency, we chose to use the

vector of marginal medians as our measure for central tendency (Niinimaa and Oja,

2006). Take a feasible set F where F is a matrix with H columns and N rows, where

H is the number of hosts and N is the number of macrostates in the feasible set (or
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sampled macrostates in the sampled feasible set, Figure 1.S2). The marginal median is

computed by taking the median of each of the H columns.

We chose this measure for two reasons. First, because we are dealing with finite

samples from the feasible set, we found that the marginal medians were less variable

with sample size than the marginal modes (as used by Locey and White, 2013). That

being said, using the marginal modes or medians had no effects on our conclusions and

tended to yield very similar predictions (e.g. Figure 1.S2). Moreover, the marginal

medians were also less sensitive to skew than the mean of the feasible set. Second,

we found that the using the marginal median for the composition model yield nearly

identical predictions as the predicted rank abundance distribution from the analytical

solution for composition model (equation 1 in the main text; Figure 1.S3). This provided

further evidence that the marginal medians were a good measure of central tendency for

this study.

1.C Goodness-of-fit tests for constraint-based null

models

While the R2 statistic described in the main text provides an easy-to-understand

metric of how well a constraint-based model predicts the observed data, it does not

account for fact that one of the constraint-based models could have “generated” the

data, but the theory and the data might have a low R2 simply due to sampling error

(Xiao et al., 2015b). Therefore, we also explored two additional goodness-of-fit tests to

determine whether the observed host-parasite distribution differed from a constraint-

based null model.
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The first test we used was a two-sample Anderson-Darling test which compares the

observed RAD and predicted RAD and determines whether these two RADs come from

the same distribution (10,000 bootstraps with ‘kSamples’ R package; Scholz and Zhu,

2015). The null hypothesis of this test is that the two distributions come from the same

distribution and is rejected if p < α where α is the Type 1 error rate. Here we set

α = 0.05.

Using this test, we found that 93% percent of observed host-parasite distributions

were not significantly different than the partition model and 90% were not significantly

different than the composition model. In contrast, 58% were not significantly different

than the Poisson distribution. Fig. 1.S3 shows the proportion of distributions not

rejected by the constraint-based models for each host-parasite combination in this study.

Across host-parasite combinations, the proportion not rejected by the Anderson-Darling

test is largely above 80%. This is a similar pattern to Fig. 1.S2 showing the median R2

values for each host parasite combination.

While the non-parametric two-sample Anderson-Darling test has more power than

other goodness-of-fit tests such as the Kolmogorov-Smirnov test (Engmann and Cousineau,

2011), non-parametric tests inherently lack power compared to parametric alternatives.

Therefore, we also implemented a parametric bootstrap test in which we did the follow-

ing.

1. We computed the log-likelihood of seeing a given observed host-parasite distri-

bution based on the probability mass function p(x|p,H) of seeing a single host

with x = 0, . . . , P parasites for the partition model and the composition model.

For the composition model, we used in the analytical formula given in equation

1 in the manuscript. For the partition model, we approximated the probability
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mass function by randomly drawing 500 macrostates and computing p(x|P,H) =
∑

m∈F̂ p(x|m,P,H)p(m|P,H) where m is a macrostate in the sampled feasible set

F̂ .

2. For each observed host-parasite distribution with P and H, we then sampled 500

host-parasite distributions of length H by drawing from p(x|P,H) from the corre-

sponding constraint-based model.

3. For each of these 500 sampled host-parasite distributions, we computed the log-

likelihood of seeing the simulated data under the model. This gave us a distribution

of 500 log-likelihoods.

4. We then compared the observed log-likelihood to the distribution of sampled log-

likelihoods. If the observed log-likelihood did not fall between the the 0.025 and

0.975 quantiles on the sampled log-likelihoods, we rejected that the observed host-

parasite distribution was “generated” by the constraint-based model (Rominger

and Merow, 2016).

Using this parametric bootstrap approach we found that 99% of the observed host-

parasite distributions were not significantly different than the partition model and 96%

were not significantly different than the composition model, similar to the values we saw

for the Anderson-Darling test. In contrast, only 5% were not significantly different than

the Poisson model using this parametric test. This test provides even further support

that the observed-host parasite distributions are highly constrained by P and H.
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1.D Extending the constraint-based models to in-

clude parasite-induced host mortality

Ribeiroia has well-documented negative effects on amphibian survival in the lab and

in the field (Johnson, 1999; Johnson et al., 2012). Therefore, we might expect that in-

corporating the effect of Ribeiroia-induced host mortality as an additional constraint on

a predicted host-Ribeiroia distribution will improve the overall fit of a given constraint-

based model to the observed parasite distribution.

To account for Ribeiroia-induced mortality, we use the data from the laboratory

infection experiments described in Johnson (1999) and Johnson et al. (2012) to estimate

an intensity-dependent survival curve for Pseudacris regilla infected with Ribeiroia. We

use a standard logistic survival curve given by

logit(s(x)) = a+ bx (1.4)

where logit is the logistic function, s(x) is the probability of amphibian survival given a

Ribeiroia intensity of x, b is the effect of Ribeiroia intensity on the log-odds of amphibian

survival, and a is the “threshold” at which the host begins to experience parasite-induced

mortality. Using a generalized linear model with a binomial response and a logistic link,

we estimated the parameters of the P. regilla-Ribeiroia survival curve to be a = 1.67

and b = −0.05. See the file manuscript_analysis_parasite_mortality.py or Figure

2 in the main text for the data used to fit this GLM.

Using this estimated survival curve, we used a Metropolis-Hastings algorithm to draw

a weighted feasible set that accounted for the additional constraint of parasite-induced

host mortality. We did this using the following algorithm:
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1. Calculate the total number of Ribeiroia parasites P and Pseudacris hosts H in

given empirical host-parasite distribution.

2. Draw an initial candidate macrostate with P and H using the algorithms provided

by Locey and McGlinn (2013).

3. For the candidate macrostate, calculate the likelihood of observing this macrostate

given the host-survival curve described above (Equation 1.4). To do this, we as-

sumed that each host in a macrostate was independent and calculated the like-

lihood of observing the macrostate by multiplying the probabilities of observing

each host with a given parasite abundance under the estimated survival curve.

The assumption of independence is conditional on observing the macrostate, not

deriving the macrostate where each host is inherently non-independent given that

the total number of parasites in the system is fixed.

4. Propose a new macrostate and calculate its likelihood from equation 1.4. The

proposal distribution for drawing a new macrostate is symmetric due to fact that

the basic partition model assumes that each macrostate is equally likely (Locey

and White, 2013).

5. Take the ratio, r, of the proposed likelihood over the candidate likelihood. If r

is greater than 1, accept the proposed macrostate. Otherwise, accept the pro-

posed macrostate with probability r and accept the candidate macrostate with

probability 1− r.

6. Set the accepted macrostate as your new candidate macrostate and repeat steps 3-5

a large number of times. Discard the first half of the iterations as warm-up/burn-in

samples.
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The remaining samples give the weighted feasible set with the additional constraint of

parasite-induced mortality.

To sample from the composition model with parasite-induced host mortality we

used the same procedure described above, but in addition to assigning each proposed

macrostate a likelihood based on the survival function, we also assign each proposed

macrostate a likelihood based on composition weighting described in the main text.

This amounts to multiplying the two likelihoods. As above, the likelihood ratio of the

proposed macrostate and the candidate macrostate determines whether to accept or

reject the proposed macrostate.

We could also sample from a binomial distribution with a parasite-induced mortality

constraint. This is useful as the binomial distribution is the finite equivalent of a Poisson

distribution in this case (see Appendix A), which is the standard null model used in

parasite ecology (Anderson and Gordon, 1982). We could do this by changing our

proposal distribution to a multinomial distribution where the probability of any one

of the H hosts encountering a parasite is 1/H (Haegeman and Etienne, 2010). The

multinomial distribution from which we propose a new configuration X is then given by

X ∼ Multinomial(P, p1 =
1

H
, p2 =

1

H
, . . . , pH =

1

H
) (1.5)

We can draw proposal configurations from this multinomial model and, as described

above, assign them a likelihood based on both 1) their likelihood given by the estimated

survival function and 2) their probability under the multinomial model. Then we accept

or reject our proposed configuration based on the ratio of the likelihoods for the proposed

and candidate configuration times the probability ratio of the candidate and proposed

configurations under the multinomial model. This is the additional weighting on the

acceptance ratio imposed by the Metropolis-Hastings algorithm. In summary, this is a
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long-winded way of saying that if the survival function likelihood is 1 and there is no

effect of parasite mortality, the algorithm will sample from a multinomial distribution

whose predicted rank abundance distribution is equal to the predicted RAD from a

binomial distribution with P parasites and H hosts. These algorithms are implemented

and tested in the accompanying code.

We applied the algorithms and P. regilla-Ribeiroia survival curve to all 133 P. regilla-

Ribeiroia distributions in the dataset. For each constraint-based model with parasite

mortality, we ran the Metropolis-Hastings algorithm for 2000 iterations, discarding the

first 1000 iterations as warm-up/burn-in samples. We ran this analysis multiple times

from different random starting points to ensure the chains were converging to the same

stationary distribution. In general, visual inspection of the trace plots of the mortality-

constrained feasible set chains showed consistent convergence, good mixing, and gener-

ally had acceptance rates above 50%. This high acceptance rate was expected as these

chains were designed to have an acceptance rate of 1 (i.e. sampling from the uncon-

strained distribution) if parasite-induced mortality was not important. The chains of

the constrained maximum entropy model had an average acceptance rate of 0.34 and the

majority of the chains showed good mixing. However, 9 of the 133 constrained composi-

tion model chains had acceptance rates of less than 10% and showed high autocorrelation

between samples. Both excluding the distributions resulting from these chains from the

analysis and running the chains for longer had no effect on the conclusions we drew about

parasite-induced mortality improving the fit of the maximum entropy model. Moreover,

these chains were not problematic in the constrained partition model for which we also

concluded that parasite-induced host mortality improved the fit of the constraint-based

model. Because these under-sampled chains did not affect our inference or conclusions,

we included the distributions resulting from these chains in the analysis presented in the
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main paper.

1.E Randomization test for heterogeneity

To test whether the host-parasite distribution predicted by the heterogeneity model

was better than a host-parasite distribution generated by a randomly grouping hosts,

we randomly permuted hosts with their corresponding parasite intensities into groups

with the same number of hosts Hj as predicted by the regression tree analysis on a given

host-parasite distribution. We then calculated the total number of parasites in each

group j and used the procedure described in Figure 3 in the main text to generate the

predicted RAD for these randomly permuted mixture distributions. More specifically,

this is equivalent to finding the rank abundance distribution for the mixture model

g(x) =
∑G

j=1
Hi

H
p(x|Pj,rand, Hj) where Pj,rand indicates that the total number of parasites

in each group j varies with each random permutation. We repeated this randomization

200 times for every empirical host-parasite distribution for both the partition model

and composition model. This generated 400 permuted host-parasite distributions (200

using the partition model and 200 using the composition model) for every observed

host-parasite distribution. We could then use these permuted samples to determine

whether the host groupings produced by the regression tree analysis improved the fit of

the constraint-based models to the empirical distributions more than we would expect

by randomly permuting hosts into groups. If the mixture model from the regression

tree provided a significantly better fit to the host-parasite distribution then randomly

grouping hosts, we expected its R2 value to be significantly higher than the upper bound

of the 95% quantile of the R2 values from the randomly generated groupings.

61



When can we infer mechanism from parasite aggregation? A constraint-based approach to disease
ecology Chapter 1

1.F The levels of aggregation and predictions of constraint-

based null models for specific amphibian host-

trematode parasite distributions
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Figure 1.S1: Boxplots of the ln(variance to mean ratio) for each host by parasite
combination for all 842 host-parasite distributions used in this analysis. The black
dashed line indicates where the ln(variance to mean ratio) is zero, consistent with an
unaggregated Poisson distribution. As expected, nearly all of the host-parasite dis-
tributions have a ln(variance to mean ratio) greater than 0, indicating an aggregated
distribution.
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Figure 1.S2: Given a host-parasite system with P = 100 parasites and H = 20 hosts,
the feasible set can be approximated by drawing some number of random macrostates
from the full feasible set (200 in this example) and ranking the hosts in each drawn
configuration where the host with the most parasites has a rank of 1 and the host with
the fewest individuals has a rank of H. The plot shows the graphical representation
of this procedure where each gray line is a sampled configuration from the feasible
set and the dashed lines are different measures of the center of the sampled feasible
set.
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Figure 1.S3: Comparing rank abundance distributions (RAD) from the analytical so-
lution to the composition model (equation 1 in the main text) and the rank abundance
distribution (RAD) predicted from the marginal medians of the weighted feasible set
of the composition model. Each plot shows a different combination of P and H. Each
blue point is a particular host in the RAD with some ln(parasite abundance + 1).
The black dashed line is the one to one line. Other than some occasional sampling
error, these two methods of predicting the RAD give nearly identical results.
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of distributions for each host-parasite combination that were used to compute this
median R2 are shown in the figure. The x-axis gives the 5 trematode parasites
examined in this analysis: Ribeiroia ondatrae (RION), Echinostoma sp. (ECSP),
Alaria sp. (ALAR), Cephalogonimus sp. (CEPH), and Manodistomum sp. (MANO).
Taricha granulosa is not shown in this plot as it was never infected with ALAR, CEPH
or MANO.
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Figure 1.S5: The proportion of predicted host-parasite distributions that were not
rejected by the Anderson-Darling test (α = 0.05) when compared to the partition
model and the composition model. The number of distributions tested for any given
host-parasite combination are also displayed on the figure. The x-axis gives the 5
trematode parasites examined in this analysis: Ribeiroia ondatrae (RION), Echinos-
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infected with ALAR, CEPH or MANO.
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Figure 1.S6: Comparison of observed and predicted host-parasite distributions from
the partition model for each host-parasite combination. In each subplot, the x-axis
gives the model ln(predicted parasite abundance + 1) and the y-axis gives the
ln(observed parasite abundance + 1). Each point gives a particular host’s predicted
and observed parasite abundance. The color of the points represent the density of
points in that region. “Hotter” colors mean there are more points in that region
while “cooler” colors mean there are less points in that region. The dashed black
line gives the 1:1 line, along which we would expect the points to fall if the model
was a perfect fit. The overall R2 measures the proportion of variance in the data
described by the model. The text at the bottom of the plot gives the total number of
distributions that were tested and the proportion of them that were not rejected by
an Anderson-Darling test at α = 0.05. Finally, the histogram in the lower right hand
corner of each plot gives the histogram of the R2 values for each of the host-parasite
distributions for a given host-parasite combination.
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Figure 1.S7: Comparison of observed and predicted host-parasite distributions from
the composition model for each host-parasite combination. In each subplot, the
x-axis gives the model ln(predicted parasite abundance + 1) and the y-axis gives the
ln(observed parasite abundance + 1). Each point gives a particular host’s predicted
and observed parasite abundance. The color of the points represent the density of
points in that region. “Hotter” colors mean there are more points in that region
while “cooler” colors mean there are less points in that region. The dashed black
line gives the 1:1 line, along which we would expect the points to fall if the model
was a perfect fit. The overall R2 measures the proportion of variance in the data
described by the model. The text at the bottom of the plot gives the total number of
distributions that were tested and the proportion of them that were not rejected by
an Anderson-Darling test at α = 0.05. Finally, the histogram in the lower right hand
corner of each plot gives the histogram of the R2 values for each of the host-parasite
distributions for a given host-parasite combination.
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Figure 1.S8: A. gives the partition model R2 values plotted against the maximum
likelihood estimates of the k parameter from the negative binomial distribution (k̂)
for all 842 host-parasite distributions used in this study. Each point is a host-parasite
distribution and the color of each point indicates how many parasites (P ) were in
that distribution. The bold vertical line indicates where k̂ = 1 or 1/(1 + k̂) = 0.5,
which corresponds to the composition model. k̂ was transformed for visual clarity.
Also note that if R2 to the one to one line was less than 0, which is valid based on
equation 1 in the main text, we set it equal to 0 for visual clarity. B. provides the
same information, except that the R2 values are from the composition model. Note
that because of error in the estimate of k̂ due to finite sampling, k̂ may not equal one
and R2 can still be well above 0.5. Also note that the partition model, when compared
to the composition model, tends to yield in higher R2 values for distributions that
are more aggregated than k̂ = 1 or 1/(1 + k̂) = 0.5.
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2.1 Abstract

Parasites can significantly impact animal populations by changing host behavior,

reproduction and survival. Detecting and quantifying these impacts is critical for un-

derstanding disease dynamics and managing wild animal populations. However, for

wild hosts infected with macroparasites, it is notoriously difficult to quantify the fa-

tal parasite load and number of animals that have died due to disease. When ethical

or logistical constraints prohibit experimental determination of these values, examina-

tion of parasite intensity and distribution data may offer an alternative solution. In

this study we introduce a novel method for using intensity data to detect and quantify

parasite-induced mortality in wildlife populations. We use simulations to show that this

method is more reliable than previously proposed methods while providing quantitative

estimates of parasite-induced mortality from empirical data that are consistent with pre-

viously published qualitative estimates. However, this method, and all techniques that

estimate parasite-induced mortality from intensity data alone, have several important

assumptions that must be scrutinized before applying them to real-world data. Given

that these assumptions are met, our method is a new exploratory tool that can help

inform more rigorous studies of parasite-induced host mortality.

2.2 Introduction

Infectious agents can impact animal populations by changing population dynamics

and stability (Dobson and Hudson, 1992; Tompkins et al., 2002), altering predator-prey

interactions (Joly and Messier, 2004), and even causing species’ decline and extinction

(De Castro and Bolker, 2005; McCallum, 2012). Accurately estimating the impact of
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these infectious agents in wildlife is critical to understanding what regulates host and

parasite populations, making predictions about disease transmission, and managing dis-

ease outbreaks (Langwig et al., 2015). The impact of pathogens, such as rabies (Coyne

et al., 1989), bovine tuberculosis (Cox et al., 2005), and rinderpest (Tillé et al., 1991),

are typically modeled based on the presence or absence of disease, such that host sur-

vival is not generally considered to be a function of the number of infectious agents

present within the host. In contrast, models of macroparasites generally assume that

pathology increases with parasite burden and host survival probability must be treated

as a function of infection intensity (Anderson and May, 1978). Helminths exhibiting

this intensity-dependent pathology have significant impacts on human health (Brooker

et al., 2004), domestic livestock economics (Roeber et al., 2013), and wildlife survival

(Kirk, 2003; Logiudice, 2003). While it is generally assumed that some fraction of wild

host populations succumb to parasitic infection, it is notoriously difficult to actually

quantify parasite-induced host mortality (PIHM) in wild animal populations because it

is difficult to observe the dead or dying hosts most impacted by parasitism (McCallum,

2000).

Ideally, parasite-induced host mortality is quantified by experimentally infecting and

tracking individual hosts in the wild population; however, for logistical and ethical rea-

sons this method is rarely feasible (McCallum, 2000). Snapshot data of parasite intensi-

ties across multiple hosts is much easier to collect and has often been used to identify the

presence of PIHM (Crofton, 1971; Lester, 1977, 1984; Lanciani and Boyett, 1989; Royce

and Rossignol, 1990; Ferguson et al., 2011) and to quantify the relationship between

infection intensity and host mortality (Adjei et al., 1986).

Crofton (1971) first proposed that PIHM could be identified from parasite intensity

data by comparing the observed parasite distribution in sampled hosts to the distribution
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predicted in the absence of parasite-induced mortality. This method assumes that, prior

to host mortality, infection intensity in the host population follows a negative binomial

distribution and the tail of the distribution is truncated as intensity dependent pathology

removes the most heavily infected hosts. Assuming mortality occurs only in heavily

infected hosts, evidence of this parasite-induced mortality should then be detectable by

iteratively fitting a negative binomial distribution to hosts with lower and lower parasite

intensities, and comparing these truncated predicted distributions to the corresponding

truncated observed parasite data (Fig. 2.1, see Section 2.A for additional detail).

While the Crofton Method detects the presence of PIHM, it makes no attempt to

quantify the relationship between infection intensity and host survival probability; infor-

mation that is necessary for estimating parasite impacts on host populations (Anderson

and May, 1978; Tompkins et al., 2002). Adjei et al. (1986) suggested that this relation-

ship could be calculated by first using the Crofton Method to estimate the pre-mortality

parasite distribution and then using this distribution to calculate the probability of

host survival with increasing parasite intensity. To do this, Adjei et al. (1986) modeled

host survival as a logistic function and then used a generalized linear model (GLM) to

estimate the parameters of the host survival function (see Section 2.B for a technical

description of the Adjei Method). Although this method can predict the host survival

function, it has several technical drawbacks. When mean infection intensity is high or

sample sizes are small the observed intensity data must be subjectively binned into in-

tensity ranges in order to fit the GLM framework. Furthermore, for the Adjei Method

to work, any observed intensity values greater than predicted values must be modified

and set equal to the predict values (see Section 2.B for details); a questionable act of

data manipulation. These manipulations may introduce bias, reduce the precision and

limit the power of this method to detect and quantify parasite-induced host mortality.
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After 30 years, and despite clear limitations (McCallum, 2000), these methods (par-

ticularly the Crofton Method) are still discussed among parasitologists and are the pri-

mary techniques for examining population-level impacts of parasitism using parasite

intensity data. In these methods, PIHM can only be identified by visually examining

plots of the pre-mortality parameters predicted by the Crofton Method and determining

whether they show a “kink” over a range of truncation values (Fig. 2.1B; Lester, 1984;

Ferguson et al., 2011). These qualitative criteria makes it difficult to compare PIHM

between studies and a more rigorous and quantitative method is needed to both detect

and quantify host mortality. The survival function given by the Adjei Method may be

used to do this; however, it requires manipulating the original data and its accuracy

remains untested.

In this study, we propose a novel method for detecting and quantifying PIHM that

ameliorates many of the aforementioned deficiencies of the previous methods. Our

method does not require data alteration, is highly generalizable, and uses standard sta-

tistical techniques to quantitatively determine whether PIHM is occurring in a system.

We use simulations to compare our method with the Adjei Method to test the ability of

both to (1) detect occurrence of PIHM and (2) estimate the host survival function. We

then apply both methods to real datasets previously used in PIHM analyses and com-

pare the results. Finally, we discuss the limitations of inferring PIHM from intensity

data and how these methods fit in modern quantitative parasitology.
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2.3 Materials and methods

2.3.1 A novel, likelihood-based method for estimating PIHM

Our method (henceforth the Likelihood Method) begins with the same assumptions

as the Adjei Method: namely that infection has occurred and hosts with fatal parasite

loads have died prior to the population sampling. As discussed by Adjei et al., this is

not necessarily unrealistic as some parasite infections occur primarily in younger hosts

with parasite-induced mortality occurring soon after infection (e.g. Schotthoefer et al.,

2003; Johnson and McKenzie, 2008).

The Likelihood Method then assumes that prior to mortality the parasite distribution

can be described by the distribution g(x;φ), which specifies the probability of a host

having x parasites before mortality occurs. φ is a vector of parameters that describes

the shape of this distribution. The probability of a host surviving with x parasites from

infection until sampling is given by the host survival function h(survival; x, θ) where θ

specifies any additional parameters needed to define the host survival function.

With these two assumptions, we can define a distribution that gives the probability

of having a parasite load of x parasites conditional on host survival, P (x|survival). Using

standard rules of conditional probability this distribution can be written as

P (x|survival) =
P (survival|x) ∗ P (x)

P (survival)
(2.1)

P (survival|x) is the survival function h(survival; x, θ), P (x) is the pre-mortality par-

asite distribution g(x;φ) and

P (survival) =
∑∞

x=0 P (survival|x) ∗ P (x) =
∑∞

x=0 h(survival;x, θ) ∗ g(x;φ). Therefore,
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equation 1 can be written as

P (x|survival) =
h(survival; x, θ) ∗ g(x;φ)∑∞
x=0 h(survival; x, θ) ∗ g(x;φ)

(2.2)

Using this probability distribution, one can then find the parameters θ and φ that

maximize the likelihood of an observed host-parasite dataset. To estimate the signifi-

cance of PIHM in a host-parasite system, a likelihood ratio test can be used in which the

full model is given by equation 2 and the reduced model is given by the pre-mortality

distribution g(x;φ). If PIHM is not significant in the system, the resulting likelihood ra-

tio statistic should approximately follow a χ2 distribution with degrees of freedom equal

to the number of parameters in the full model with parasite-induced mortality minus the

number of parameters in the reduced model without parasite-induced mortality (Bolker,

2008).

The parameterization of equation 2.2 depends on the parasite system of interest.

Here, we assume that the pre-mortality parasite distribution g(x;φ) follows a negative

binomial distribution with two parameters mean parasite intensity (µp) and aggregation

(kp, where smaller kp indicates a more aggregated parasite population) before mortality

(Crofton, 1971; Anderson and May, 1978; Adjei et al., 1986). A variety of different

biological and statistical assumptions can result in an equilibrium parasite distribution

that follows a negative binomial distribution (Kendall, 1948; Boswell and Patil, 1970;

Calabrese et al., 2011). Furthermore, the negative binomial distribution is an incredi-

bly flexible distribution that fits many host-parasite systems even when the underlying

mechanisms determining the empirical distribution are unknown (Shaw et al., 1998).

The function for h(survival; x, θ) is also system specific. Many theoretical models of

parasite-induced host mortality assume that the parasite-induced death rate of hosts is

a linear function of parasite intensity (Anderson and May, 1978; Dobson and Hudson,
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1992; Barbour and Pugliese, 2000). In systems where there is truly a linear relationship

between infection intensity and survival probability it will be nearly impossible to use

intensity data to detect parasite-induced host mortality (Lanciani and Boyett, 1989).

However, some systems do exhibit non-linear host survival functions (Benesh, 2011), in

which case these methods would be applicable.

To compare the Likelihood Method and the previously proposed Adjei Method, we

adopt the non-linear, logistic host-survival function used in the earlier study given by

h(survival;x, a, b) =
exp (a− b log(x))

1 + exp (a− b log(x))
(2.3)

Generally, a larger b leads to a more rapid decline in the probability of host survival

as parasite intensity increases, with the maximum rate of decline having a value of

b/4 (Section 2.B). b is in many ways analogous to the pathogenicity parameter (α)

in classic macroparasite models that gives the parasite intensity dependent host death

rate (Anderson and May, 1978; Isham, 1995). When b is held constant, a larger a

allows for hosts to tolerate larger parasite intensities before experiencing parasite-induced

mortality. More specifically, for every one unit increase in a the log parasite intensity at

which any percent of hosts survive (e.g. 99% of hosts survive) increases by 1/b (Section

2.B).

The equation exp(a/b) can also be used to calculate the parasite LD50, here defined

as the infection intensity above which a host has greater than 50% probability of dy-

ing. Equation 3 is commonly used in toxicology and has the useful properties of being

bounded between 0 and 1 and being differentiable for all x (Collet, 2002). That being

said, it is phenomenological and is used simply because it tends to fit survival data.

However, given that a goal of these analyses is to compare the Likelihood Method’s

results to the Adjei Method, it is natural to adopt the same host-survival function to
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facilitate comparison. When applying the Likelihood Method to other systems more

mechanistic host-survival functions can be used in place of equation 3.

2.3.2 Evaluating the Adjei and Likelihood Methods

Question 1: Can we detect PIHM?

We used statistical power and Type I error to test the ability of the Adjei Method

and the Likelihood Method to correctly identify the presence of PIHM on simulated

data with known pre-mortality parameters. The power of a method is the probability of

correctly detecting PIHM given that it is occurring and the Type I error is the probability

of incorrectly identifying PIHM given that it is not occurring. If a method has low Type

I error we can be confident that when we detect PIHM it is actually occurring. If one

method has higher power for detecting PIHM than another, we will need to sample fewer

hosts to detect PIHM.

Consistent with the model assumption that parasite infection, host mortality, and

population sampling are temporally separate events, we first created a pre-mortality host

population by drawing Np randomly infected hosts from a negative binomial distribution

with parameters µp and kp. This represents a host population that has become infected

but not yet experienced parasite-induced mortality (Adjei et al., 1986). In the Adjei

Method and Crofton Method, Np is a necessary parameter defined as the number of hosts

in the population before parasite-induced mortality. More accurately, Np is the number

of hosts that would have been sampled had parasite-induced host mortality not occurred.

This parameter is not necessary when using the Likelihood Method because, unlike the

Adjei Method and Crofton Method which estimate parasite-induced mortality using

absolute numbers of hosts, the Likelihood Method estimates parasite-induced mortality
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using probabilities. However, to compare the results of the Likelihood Method with the

Adjei Method, we specified a value for Np for all simulations.

We next chose values of a and b for the host survival function and calculated the

probability of survival for all Np hosts using equation 3. Then, to simulate the period

in which hosts died due to infection, for each host we drew a random number from a

uniform distribution between 0 and 1 and if the calculated host survival probability was

less than this random number, the host experienced parasite-induced mortality. The

surviving individuals represent the post-mortality hosts that would be sampled in the

field.

We then used these simulated pre-mortality and post-mortality datasets to test the

ability of both methods to correctly determine whether or not PIHM was occurring when

the parameters Np, µp and kp were known. Although the parameters Np, µp, and kp are

always unknown in real systems, a method that fails under these ideal simulation condi-

tions with known parameters will certainly also fail when these values must be estimated

from empirical data. In practice, for the Adjei Method, Np, µp, and kp are estimated

using the Crofton Method (Adjei et al., 1986), while µp and kp in the Likelihood Method

can be estimated jointly with a and b or via the Crofton Method.

We compared the two methods using three different mean parasite intensity values

(µp = 10, 50, 100) and three different host survival functions (gradual, moderate, and

steep decreases in the host survival with increasing parasite intensity, Fig. 2.2A). For a

given µp, each survival function had the same LD50 ([µp = 10, LD50 = 7.39], [µp = 50,

LD50 = 35.57], [µp = 100, LD50 = 77.3]), but different values of a and b. We examined

each µp-survival function pair at three levels of parasite aggregation, kp = 0.1, 0.5, and

1 — realistic values of parasite aggregation in natural populations (Shaw et al., 1998).

For each of these 27 parameter combinations we simulated 150 datasets and tested the
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probability of each method correctly identifying PIHM in the post-mortality dataset

(power) and incorrectly identifying PIHM in the pre-mortality dataset (Type I error).

For each method, we used a likelihood ratio test to determine whether the full model

with PIHM provided a significantly better fit than the reduced model without PIHM at

significance level of 0.05. We also examined the impact of sample size by simulating each

parameter for pre-mortality sample sizes of Np = [50, 100, 200, 300, 400, 500]. Wild host

populations were assumed to be sampled after PIHM has occurred, thus we calculated

the sample size in the power simulations as the average number of surviving hosts over

all 150 simulations for each parameter combination. The distribution of surviving hosts

over the 150 simulations was generally symmetrical and the standard deviation was small

compared to the mean (maximum coefficient of variation was approximately 0.06 across

all parameter combinations), suggesting that the mean number of surviving hosts was

an adequate summary statistic of the number of hosts sampled post-mortality.

We then tested the ability of the Likelihood Method to correctly identify PIHM un-

der the more realistic condition of unknown pre-mortality parameters. Based on the

first set of simulations, we excluded the Adjei Method and only examined the power

of the Likelihood Method under “best-case” scenario parameter values, setting µp = 10

and k = 1 because PIHM is most detectable when parasites are less clumped and mean

intensity is low. We examined the impact of survival function shape and sample size on

the Likelihood Method’s ability to identify PIHM when the pre-mortality parameters

µp and kp and the survival function parameters a and b needed to be estimated. We

performed 500 simulations over a range of different samples sizes for gradual, moderate,

and steep survival functions, following the simulation procedure described above.

Question 2: Can we estimate properties of the host survival function?
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In the previous section we compared the ability of the Adjei Method and the Likeli-

hood Method to provide a “yes” or “no” answer for whether or not PIHM was occurring

in a system. In this section we compared the ability of the Adjei Method and the Like-

lihood Method to estimate properties of the survival function such as the parameters

a, b and LD50. Using the same simulation procedure and parameter combinations de-

scribed above, we simulated 150 datasets, estimated a, b, and LD50 and calculated the

standardized bias and precision for these estimates (Walther and Moore, 2005). Because

estimating properties of the host survival function requires more information than sim-

ply detecting PIHM, we used larger values of Np for this simulation (Np = [300, 500,

1000, 2000, 5000, 7500, 10000]). We used the average number of surviving hosts for each

set of 150 simulated datasets as our measure of sample size. Although both a and b

are necessary to estimate LD50, the two parameters showed similar patterns of bias and

precision so we only show the results for a.

2.3.3 Application to real data

We tested the ability of the Adjei Method and the Likelihood Method to identify

PIHM in six host-parasite datasets given in Crofton (1971) and four datasets given in

Adjei et al. (1986) (Table 1). Crofton analyzed infection patterns in the snail Gammarus

pulex infected with the acanthocephalan Polmorphus minutus. Adjei et al. analyzed

males and females of two species of lizard fish Saurida tumbil and S. undosquamis that

were infected by the cestode Callitetrarhynchus gracilis.

In both earlier studies, the authors reported PIHM in some of the datasets and we

tested whether the Adjei Method and/or the Likelihood Method also predicted PIHM.

For the six datasets from Crofton (1971), we used the general conclusions of the author
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and truncated the data at four parasites, applied the Crofton Method to estimate the

pre-mortality distribution, and then ran the Likelihood Method and Adjei Method using

these pre-mortality parameters. For the Adjei et al. (1986) datasets, we followed the

same procedure as the authors and first truncated the data at two parasites and then

fit the Crofton Method for the female fish of both species. Then, following the Adjei

et al.’s methods, we parameterized the male pre-mortality distributions for each species

with the results from the females. Finally, we applied the Adjei Method and the Like-

lihood Method to determine whether or not PIHM was significant for these species and

compared our results to those given by the authors. All code for the analyses is provided

in Section 2.C.

2.4 Results

2.4.1 Question 1: Detecting presence of PIHM

The power of the Adjei Method to detect PIHM in a system was close to unity

for larger sample sizes and tended to decrease as sample size decreased for all survival

functions (Fig. 2.2C; Fig. 2.S1-2.S3). The Likelihood Method had a power close to

unity for all parameter combinations and sample sizes considered. With gradual survival

functions, the power of the Likelihood Method decreased slightly for small samples sizes

(Fig. 2.2C, Fig. 2.S1-2.S3).

The Adjei Method had highly inflated Type I error rates (i.e. falsely detected PIHM)

for all parameter combinations that we considered (Fig. 2.2B; Fig. 2.S1-2.S3). This

method also showed the unintuitive pattern of decreasing Type I error rate with de-

creasing sample size. This occurred because, at small samples sizes, intensity data must
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be binned before the Adjei Method can be used (Section 2.B). In contrast, the Likelihood

Method showed a Type I error rate at or near the pre-set level of 0.05 for all parameter

combinations and sample sizes considered (Fig. 2.2B; Fig. 2.S1-2.S3).

When all parameters were jointly estimated, the Likelihood Method showed highly

context-dependent results even when detecting PIHM under the best-case scenario of

µp = 10 and kp = 1. For steep survival curves, PIHM could be detected with a power of

greater than 0.8 from a sample of less than 100 hosts (Fig. 2.3). However, for moderate

survival functions over 400 hosts had to be sampled to achieve the same power and for

gradual survival functions, no tested sample size ever achieved a power greater than 0.8

(Fig. 2.3).

2.4.2 Question 2: Estimating the LD50 and survival function

The Likelihood Method gave asymptotically unbiased estimates of the LD50 for all

combinations of parameters examined in this study (Fig. 2.4, Fig. 2.S4-2.S6). Even for

the smallest sample sizes we considered, the Likelihood Method’s estimate of LD50 was

largely unbiased, with small biases occurring for gradual host survival functions. The

precision of the Likelihood Method’s LD50 estimates decreased (increasing coefficient of

variation) as sample size decreased for all parameter combinations we examined (Fig.

2.4, Fig. 2.S4-2.S6).

The Adjei Method produced biased estimates of the LD50 across nearly all param-

eter combinations, tending to underestimate the true value of the parameter (Fig. 2.4,

Fig. 2.S4-2.S6). For µp = 10, the LD50 estimates from the Adjei Method were largely

unbiased for large samples sizes, but as µp increased, the Adjei Method produced biased

estimates of LD50 across all sample sizes, with bias increasing as sample size decreased
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(Fig. 2.4, Fig. 2.S4-2.S6). The LD50 estimates from the Adjei Method also showed

large decreases in precision with the steepest survival function across all values of µp

(Fig. 2.4, Fig. 2.S4-2.S6).

In terms of the host survival function, the Likelihood Method gave unbiased estimates

of survival function parameter a when sample sizes were large, however as sample size

decreased these estimates became severely biased (Fig. 2.4, Fig. 2.S7-2.S9) The Adjei

Method produced biased estimates of the host survival function across all sample sizes,

with consistently greater bias for steeper survival functions and higher mean parasite

loads. (Fig. 2.4, Fig. 2.S7-2.S9).

2.4.3 Application to real data

The previous authors qualitatively detected PIHM in 7 of the 10 datasets considered

(Table 1). The Likelihood Method parameterized from the pre-mortality parameters

of the Crofton Method detected significant PIHM in 6 of these 7 datasets at a signifi-

cance level of 0.05. The only dataset in which the Likelihood Method did not detect a

significant effect of PIHM was the Adjei dataset for female S. tumbil. For this dataset

there was a marginally significant effect of PIHM (χ2
df=2 = 5.34; p = 0.069). The Adjei

Method detected PIHM in 9 of the 10 datasets (Table 1), consistent with our simulation

results showing that the Adjei Method has a high Type I error rate. Moreover, the

Adjei Method estimates of the LD50 were quite variable for the Crofton data, consistent

with our simulation results that the Adjei Method LD50 estimates could be imprecise

for sample sizes of less than 1000 hosts (Fig. 2.S4-2.S6).
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2.5 Discussion

Our likelihood-based method to estimate parasite-induced host mortality from ob-

served parasite intensity data is a significant improvement over the previous methods.

In simulations, it had greater power for detecting PIHM over a wider range of parameter

values and also exhibited fewer false detection events (Type I errors) in both simula-

tions and when applied to published datasets previously used in PIHM analyses. The

Likelihood Method was also generally less biased and more precise when quantifying

parasite-induced mortality via the host survival function for the parameters we consid-

ered. The superior performance of the Likelihood Method over the Adjei Method can

be attributed to its fewer parameters, its lack of unnecessary data alteration, and its ap-

plicability across a variety of different parameter combinations. In short, the Likelihood

Method is a better method for detecting and quantifying PIHM than the previously

proposed Adjei Method.

Although superior to the Adjei Method, the Likelihood Method still cannot be ap-

plied to all real datasets. For host-parasite systems where host mortality occurs as a

steep, non-linear function of parasite intensity only 75 hosts must be sampled to have an

80% power in detecting PIHM. However, as the maximum slope of the survival function

decreases and the function becomes somewhat linear, hundreds, or possibly thousands

of hosts would have to be sampled to achieve the same result. This is consistent with

previous studies which illustrate the difficulty of detecting PIHM from linear host sur-

vival functions (Lanciani and Boyett, 1989). While it may be feasible to sample several

hundred invertebrates or small fish, even the smallest sample sizes are completely un-

feasible for many vertebrates, particularly the species of conservation concern where

addressing the impact of parasitism would be most important. An even larger sample
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size would be required to identify PIHM when parasites are highly aggregated, mean

infection intensity is high, or parasite prevalence is low, all of which are common in

many parasitic helminths. Moreover, while linear functions make PIHM undetectable,

at the other extreme, steep, non-linear survival curves produce severely biased estimates

of the survival function. Given the interaction between all of these different factors, the

Likelihood Method is probably limited to detecting PIHM in systems where greater than

100 hosts can be collected, parasites are common and only moderately aggregated, and

substantial host mortality occurs at relatively low parasite intensity.

While we have improved on the existing methods for quantifying PIHM from parasite

intensity data, all such methods require several fundamental assumptions. Nearly all

current methods derive from Crofton (1971) (but see Ferguson et al., 2011) and assume

that, prior to any PIHM, parasites are distributed in the host population following

a negative binomial distribution. But, it is fundamentally impossible to know what

the pre-mortality parasite distribution was in a wild host population and it is widely

recognized that different processes can lead to a variety of parasite distributions in hosts

(Anderson and Gordon, 1982; Duerr et al., 2003). However, the negative binomial is

extremely flexible and there is substantial empirical and theoretical evidence to support

the assumption that, prior to any PIHM, parasite distributions can be fit by a negative

binomial distribution (Shaw and Dobson, 1995; Shaw et al., 1998; Wilson et al., 2002).

It is important to note that the flexibility of the negative binomial distribution may

also reduce our ability to detect PIHM. If a negative binomial can be fit to the observed

post-mortality parasite distribution then, regardless of how lethal the parasite was, it

will be impossible to detect PIHM because there is no need for a more complex model.

Many observed parasite distributions are well-fit by the negative binomial distribution

(Shaw et al., 1998), suggesting that systems where these methods are applicable without
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any a priori knowledge may be uncommon. However, if one has a priori knowledge

about some aspect of the pre-mortality distribution (e.g. assumes/knows the value of

kp, Ferguson et al., 2011), then the Likelihood Method could be applicable even if the

the post-mortality distribution was well-fit by a negative binomial.

If one has evidence that the pre-mortality is not negative binomial, the generality of

our method easily allows another distribution to be specified for g(x, φ). For example,

one could use the resulting stationary host-parasite distribution from a stochastic host-

parasite model without parasite-induced host mortality (Anderson and Gordon, 1982)

to specify the form of g(x, φ) and then apply the techniques discussed in this paper to

detect PIHM. The general requirement for the Likelihood Method to detect PIHM in a

stochastic host-parasite process is that the stationary distribution of the process with

mortality is significantly different than the stationary distribution without mortality. It

is widely recognized that parasite-induced host mortality decreases the aggregation of

host-parasite distributions relative to those without mortality (Barbour and Pugliese,

2000), suggesting that the Likelihood Method could be generally applicable to host-

parasite systems that follow the assumptions of many stochastic host-parasite models.

This is an intriguing area for further research.

If the Likelihood Method is applicable and the truncation of the negative binomial

distribution is detected, one must be aware that the truncation pattern may be caused by

other processes such as within host density dependence, age dependent variation in host

resistance and/or heterogeneous infection rates (Anderson and Gordon, 1982; Rousset

et al., 1996; McCallum, 2000). This means that in the event that PIHM is detected, it

may actually not be the result of PIHM. Moreover, if host mortality depends on parasite

intensity and additional variables (e.g. host sex, host size), failure to identify these

important confounding variables could significantly affect the ability of these methods
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to correctly identify PIHM. However, both of these issues – inferring process from pattern

and confounding variables – are well-recognized limitations of most statistical inference

and are addressed via judicious model specification and selection (Seber and Lee, 2003).

As suggested by Lester (1984) these methods for estimating PIHM can provide pre-

liminary insight into whether or not PIHM is worth further exploration. However, we

stress that these methods are an exploratory tool for assessing the role of PIHM in

a system, and potential users should critically evaluate whether they think they have

a large enough sample size and an appropriate host survival function/post-mortality

distribution for the methods developed in this paper to be applicable. Even if they are

applicable, inferring PIHM from distributional data is no substitute for field experiments

and an in depth understanding of the natural history of the host-parasite system under

consideration.
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Figure 2.1: A schematic representation of the iterative approach of the Crofton
Method. (A) The light gray shows the pre-mortality distribution that the Crofton
Method is trying to estimate from the dark grey post-mortality distribution. The
Crofton Method proceeds by truncating the post-mortality data at different levels
(ti, e.g. i = 0, . . . , 6) and finding the pre-mortality host population size (Np), pre–
mortality mean parasite intensity (µp), and pre-mortality parasite aggregation (kp)
that best fit the truncated data. (B) The parameter Np is then plotted against the
truncation level ti to determine if a “kink” occurs in the parameter values (Lester,
1984). This “kink” indicates that PIHM is occurring in the system. In the above
example, PIHM is occurring in the system as visualized by the distinct “kink” at t4.
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Figure 2.2: The simulation results comparing the power and the Type I error of the
Adjei Method and the Likelihood Method across a range of different sample sizes.
(A) Five potential shapes for a host-survival functions. In the simulations we used
a gradual survival function (dotted line), and moderate survival function (dashed
line), and a steep survival function (solid line). The linear and immediate survival
functions represent two potential extremes that we do not include in the simulations.
For each of these survival functions and the parameter combinations described in the
main text, we tested the Type I error and power of the Likelihood (Like.) Method
and Adjei Method. (B) Gives the Type I error of each method over a range of
pre-mortality sample sizes with a pre-mortality mean parasite intensity (µp) of 50
and pre-mortality parasite aggregation (kp) at 0.5. The red line shows the pre-set
significance level of 0.05. (C) Gives the power of each method for detecting PIHM
over a range of post-mortality sample sizes for µp = 50 and kp = 0.5. In general,
the Likelihood Method has higher power and lower Type I error than the Adjei
Method. See the Fig. 2.S1-2.S3 for Type I error and power results for all parameter
combinations.
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Figure 2.3: The power of the Likelihood Method (Like.) to detect PIHM for grad-
ual, moderate, and steep survival functions when all four parameters µp, kp, a, and
b were jointly estimated. The curves were generated from 500 simulations for 10
pre-mortality sample sizes, Np. The vertical, dotted-dashed lines indicate the sample
size at which the power for the Likelihood Method with steep and moderate survival
functions is 0.8 (75 hosts for steep functions and 408 for moderate functions). The
Likelihood Method with a gradual survival function never has a power above 0.8.
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Figure 2.4: Bias and precision (coefficient of variation) for the Likelihood Method
(Like.) and Adjei Method estimates of the a parameter and the LD50 of the host
survival function based on simulated PIHM data over a range of post-mortality sample
sizes. As the coefficient of variation increases, precision decreases. The pre-mortality
parameters for this simulation were µp = 50 and kp = 0.5. The figure shows the
simulations for three different host survival functions (gradual, moderate, and steep),
each with the same LD50. Bias and precision results of LD50 and a for all other
parameter combinations can be found in Fig. 2.S4-2.S9.
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2.A Implementation of the Crofton Method

The algorithm for fitting the Crofton Method (Crofton, 1971) proceeds as follows.

First, obtain a dataset with n hosts where each host has some parasite intensity 0

to pmax. Starting with the full dataset, guess a vector of pre-mortality parameters

(Np1, µp1, kp1) where Np1 is the total number of hosts before mortality, µp1 is the parasite

intensity before mortality, and kp1 is the parasite aggregation before mortality. Given

these parameters, use a negative binomial distribution to calculate the predicted number

of hosts with 0, 1, 2, . . . pmax parasites. Compare the expected number of hosts with

0, 1, 2, . . . pmax parasites to the observed number hosts with 0, 1, 2, . . . pmax parasites and

calculate the χ2-squared statistic associated with the observed and predicted vectors. In

reality, one often has to bin the parasite intensity data because all parasite intensities

are not represented in the dataset. Continue to guess (Np1, µp1, kp1) vectors until a set

of parameters is found that minimizes the χ2- squared statistic.

Second, choose a truncation value (t2) such that t2 < pmax. Truncate the data such

that datatruncated ≤ t2 and repeat the above iterative procedure to calculate another set

of parameters (Np2, µp2, kp2) that minimizes the χ2-squared statistic on the truncated

data. Choose a new truncated value t3 < t2 and repeat the first two steps. Continue to

truncate the dataset until it only contains hosts with 0, 1, and 2 parasites (or 3 bins).

Because the method attempts to estimate three parameters, at least 3 classes are needed

for all 3 parameters to be identifiable (Royce and Rossignol, 1990).

Once the iterative procedure has been completed, parasite-induced host mortality is

traditionally identified by plotting the different truncation values ti against the different

values of Npi and looking for a distinct “kink” in the resulting plot. Once the “kink”

as occurred, the values of Npi will typically remain close to constant as ti is decreased

100



Detecting and quantifying parasite-induced host mortality from intensity data: method
comparisons and limitations Chapter 2

further. The “true” pre-mortality parameters Npt, µpt, and kpt are taken to be at the

point where the “kink” occurs.

We provide an implementation and unit tests of the Crofton Method in Section 2.C.

Figure 2.S10 visually shows that our implementation of the Crofton Method agrees with

results previously published by Crofton (1971).

2.B Implementation of the Adjei Method

The Adjei Method for estimating PIHM has two steps (Adjei et al., 1986). The

first step is to estimate the parameters of the pre-mortality host-parasite distribution

using the Crofton Method (see Section 2.A). The three parameters estimated are the

total number of hosts before mortality Np, the mean number of parasites per host before

mortality µp, and the aggregation of parasites before mortality given by the parameter kp

from a negative binomial distribution. When kp is small, parasites are highly aggregated

among hosts and when kp is large parasites are more evenly distributed across hosts

(Wilson et al., 2002). The implementation of the Crofton Method has been discussed

at length elsewhere (e.g. Royce and Rossignol, 1990; Lester, 1984, and in Section 2.A)

and we provide a tested implementation of the method in Section 2.C.

The second step of the Adjei Method is to make the assumption that infection, host

mortality, and sampling occur in that order and are temporally separate (Adjei et al.,

1986). Next, Adjei et al. assume that the host survival function follows the logistic form

h(survival;x, a, b) =
exp (a− b log(x))

1 + exp (a− b log(x))
(2.4)

where x is the parasite intensity in a given host and a and b are the two parameters

of the logistic function. Generally, a larger a allows for hosts to tolerate larger parasite
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intensities before experiencing parasite-induced mortality and a larger b leads to a more

rapid decline in the probability of host survival as parasite intensity increases. The value

exp(a/b) is referred to as the LD50. Individuals with loads higher than this will have a

greater than 50% chance of death.

By taking the first and second derivatives of equation 1, one can easily find that the

maximum rate of decline in host survival probability with increasing parasite intensity

occurs at the LD50 and has a value of b/4. This is in many ways analogous to the parasite

pathogenicity parameter α given in classic macroparasite models, which specifies the

slope of the linear relationship between between host death rate and parasite intensity

(Anderson and May, 1978; Isham, 1995). The parameter a is easily interpreted by

holding b constant and looking at how a one unit change in a affects the log parasite

intensity at which some percentage p of hosts experience mortality. Letting a1 and a2

be two different values of a and x1 and x2 be two different parasite intensities, a bit of

rearranging of equation 1 gives

log
p

1− p = a1 − b log x1

− log
p

1− p = a2 − b log x2

0 = a1 − a2 − b log x1 + b log x2

a2 − a1 = b(log x2 − log x1)

If a2 − a1 = 1, then the change in log parasite intensity at which p percentage of

hosts survive is 1/b.

To estimate the parameters in equation 1, the Adjei Method first calculates the ex-

pected number of hosts with a given parasite load x by using the equation g(x;µp, kp)∗Np,
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where g(x;µp, kp) is the negative binomial pre-mortality distribution. Second, the ob-

served and predicted number of hosts with x parasites are paired as a single data point

and the method then assumes that this data point follows a binomial distribution with

the total number of “trials” equal to the predicted number of hosts and the total num-

ber of “successes” equal to the observed number of hosts. In some cases, the observed

number of hosts is greater than the expected number of hosts and the Adjei Method

alters the data so that the observed is equal to the predicted (Adjei et al., 1986). Af-

ter this questionable manipulation, the (observed, predicted) pairs are fit to a standard

Generalized Linear Model (McCullagh and Nelder, 1989) with a binomial response vari-

able and a logistic link function given by equation 1. This model provides estimates for

parameters a, b and LD50.

While not included in the original implementation of the Adjei Method, a χ2 test

with a degrees of freedom of 1 can be used to assess whether a GLM model that includes

parasite intensity as a predictor of host survival probability is a “better” model than a

GLM without this predictor. This allows the Adjei Method to determine whether PIHM

is a significant factor in a host-parasite system.

The Adjei Method’s most glaring deficiency is the need to alter the observed data in

order to fit the model into the binomial GLM framework. A second more subtle problem

with the Adjei Method is the potential need to bin data in order to predict greater than

one host in a given parasite intensity class. For example, if the total number of hosts

pre-mortality was 50, the mean number of parasites per host pre-mortality was 100 and

the aggregation parameter was 1, applying the equation g(x;µp = 100, kp = 1)∗50 would

result in less than 1 individual in all parasite intensities x. In other words, the Adjei

Method cannot be applied to samples with either very high mean parasite loads, small

sample sizes, or both without some sort of binning of the data. While this is not a flaw
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per se, it does add a certain level of subjectivity (i.e. which bins should you use?) to a

method that already has serious potential issues. In this analysis, we always assume the

Adjei Method is not binning the data, though we provide code for applying the binning

method in Section 2.C.

2.C Code and unit tests for estimating parasite in-

duced host mortality

Python code, unit tests, and a help file for the Crofton Method, the Adjei Method

and the Likelihood Method can be found at https://github.com/mqwilber/parasite_

mortality
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Figure 2.S1: The type I error rate and the power of the Likelihood Method (black
lines) and the Adjei Method (green lines) when µp = 10 for various shapes of the
host survival function and levels of aggregation kp. The first column gives the type I
error rate of each method for falsely detecting PIHM when none is present. The red
line gives the the pre-set type I error rate of α = 0.05. The second column gives the
power of a given method to detect PIHM when it is actually occurring.
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Figure 2.S2: The type I error rate and the power of the Likelihood Method (black
lines) and the Adjei Method (green lines) when µp = 50 for various shapes of the
host survival function and levels of aggregation kp. The first column gives the type I
error rate of each method for falsely detecting PIHM when none is present. The red
line gives the the pre-set type I error rate of α = 0.05. The second column gives the
power of a given method to detect PIHM when it is actually occurring.
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Figure 2.S3: The type I error rate and the power of the Likelihood Method (black
lines) and the Adjei Method (green lines) when µp = 100 for various shapes of the
host survival function and levels of aggregation kp. The first column gives the type I
error rate of each method for falsely detecting PIHM when none is present. The red
line gives the the pre-set type I error rate of α = 0.05. The second column gives the
power of a given method to detect PIHM when it is actually occurring.
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Figure 2.S4: The bias and the precision of the Likelihood Method (black lines) and
the Adjei Method (green lines) when µp = 10 for various shapes of the host survival
function and levels of aggregation kp when estimating LD50. The first column gives
the bias of each method’s LD50 estimate over 150 simulations. The second column
gives the precision of each method’s LD50 estimate over 150 simulations.
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Figure 2.S5: The bias and the precision of the Likelihood Method (black lines) and
the Adjei Method (green lines) when µp = 50 for various shapes of the host survival
function and levels of aggregation kp when estimating LD50. The first column gives
the bias of each method’s LD50 estimate over 150 simulations. The second column
gives the precision of each method’s LD50 estimate over 150 simulations.
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Figure 2.S6: The bias and the precision of the Likelihood Method (black lines) and
the Adjei Method (green lines) when µp = 100 for various shapes of the host survival
function and levels of aggregation kp when estimating LD50. The first column gives
the bias of each method’s LD50 estimate over 150 simulations. The second column
gives the precision of each method’s LD50 estimate over 150 simulations.
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Figure 2.S7: The bias and the precision of the Likelihood Method (black lines) and
the Adjei Method (green lines) when µp = 10 for various shapes of the host survival
function and levels of aggregation kp when estimating the a parameter of the host
survival function. The first column gives the bias of each method’s a estimate over
150 simulations. The second column gives the precision of each method’s a estimate
over 150 simulations.
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Figure 2.S8: The bias and the precision of the Likelihood Method (black lines) and
the Adjei Method (green lines) when µp = 50 for various shapes of the host survival
function and levels of aggregation kp when estimating the a parameter of the host
survival function. The first column gives the bias of each method’s a estimate over
150 simulations. The second column gives the precision of each method’s a estimate
over 150 simulations.
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Figure 2.S9: The bias and the precision of the Likelihood Method (black lines) and
the Adjei Method (green lines) when µp = 100 for various shapes of the host survival
function and levels of aggregation kp when estimating the a parameter of the host
survival function. The first column gives the bias of each method’s a estimate over
150 simulations. The second column gives the precision of each method’s a estimate
over 150 simulations.
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Figure 2.S10: A comparison of this paper’s implementation (solid lines, circles) of the
Crofton Method with the results given in Crofton (1971) (dashed lines, diamonds).
(A) compares the predicted number of hosts in a population pre-mortality (Np). (B)
compares the predicted parasite aggregation pre-mortality (kp). (C) compares the χ2

statistic for each implementation. Three of the 6 stations fit by Crofton are shown
here and all show that our implementation gives very similar results to those given
by Crofton.
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Dynamic parasite aggregation

reduces parasite regulation of host

populations and the stability of

host-parasite interactions
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3.1 Abstract

Macroparasites can have significant effects on the dynamics of host populations that

include limiting the growth of a host population and altering the stability of a host-

parasite equilibrium. An important factor determining the dynamical effects that para-

sites have on host populations is how aggregated the distribution of parasites is across

hosts in the population. While canonical host-macroparasite models assume that para-

site aggregation is fixed, empirical and theoretical-work suggests that fixed aggregation

is likely the exception rather than the rule. Here I assumed that parasite aggregation

varies according to an empirically-supported constraint-based model, in contrast to the

canonical assumption of fixed parasite aggregation. I then explored how this assumption

alters the ability of parasites to regulate and suppress host populations, as well as stabi-

lize the equilibrium of host-parasite interactions. The model with dynamic aggregation

predicts that parasites are less likely to regulate host populations and the host-parasite

equilibrium is less likely to be stable compared to the models that assume fixed aggre-

gation. These results suggest that the theoretical ability of parasites to regulate host

populations and stabilize the host-parasite equilibrium may be more rare than previously

thought, providing an additional explanation for the general lack of empirical evidence

for parasites as a primary factor regulating host populations.

3.2 Introduction

Macroparasites can alter the dynamics of wildlife populations (Hudson et al., 1998;

Tompkins and Begon, 1999; Albon et al., 2002). One notable way that macroparasites

can do this is by suppressing host population abundance (Anderson and May, 1978; Rosà
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and Pugliese, 2002; Albon et al., 2002; Tompkins et al., 2002). In simplest terms this

means that the presence of a parasite reduces a host population to a lower abundance

than would be observed by a similar host population without the parasite. The ability of

a parasite to suppress a host population has important implications for managing wildlife

populations of conservation and economic interest (Murdoch et al., 1985; Peterson, 2004;

Tompkins et al., 2011).

In addition to suppressing the host population, particular macroparasite traits can

stabilize or destabilize a host-parasite equilibrium (May and Anderson, 1978; Rosà and

Pugliese, 2002; Tompkins et al., 2002). For example, density-dependent interactions

of parasites within a host can stabilize the host-parasite equilibrium (Anderson and

May, 1978), whereas parasite-induced reductions in host fecundity can destabilize the

equilibrium (May and Anderson, 1978; Diekmann O. and Kretzschmar, 1991). While

these different dynamical effects have been shown theoretically, empirical examples of

parasites directly affecting host dynamics remain limited to a few high-profile studies

(Scott, 1988; Hudson et al., 1998; Albon et al., 2002; Redpath et al., 2006). In part,

this is due to the logistical difficulties of manipulative experiments that are needed to

definitively link parasites to changes in host population dynamics (Tompkins et al., 2002,

2011). Because of this difficulty, epidemiological models are critical for predicting the

conditions under which parasites may be expected to suppress and stabilize host-parasite

systems (Dobson and Hudson, 1992; Albon et al., 2002; Tompkins et al., 2002).

In addition, epidemiological models can provide insight into the conditions under

which a parasite can regulate a host population. Following previous work in host-

macroparasite systems, I specifically define regulation as the ability of a parasite to

prevent a host population from growing without bound (Anderson and May, 1978; Rosà

and Pugliese, 2002). While in reality other ecological factors will limit host population
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size if parasites fail to do so, this simple definition of regulation is often used in host-

macroparasite models (Diekmann O. and Kretzschmar, 1991; Albon et al., 2002; Rosà

and Pugliese, 2002). In this study I distinguish regulation from suppression, which

refers to the ability of a parasite to reduce equilibrium host abundance, conditional

on regulation. Particular attributes of macroparasites affect their ability to regulate a

host population in models. For example, increasing parasite reproductive rate increases

the ability of parasites to regulate host populations, while increasing parasite virulence

decreases the ability of parasites to regulate host populations (Anderson and May, 1978).

Parasite aggregation is an attribute of host-macroparasite systems that has implica-

tions for the potential of a parasite to regulate a host population (i.e. prevent unbounded

growth), suppress a host population (i.e. reduce the equilibrium host abundance) and

stabilize the host-parasite equilibrium (Anderson and May, 1978; Kretzschmar and

Adler, 1993). Aggregation is the nearly ubiquitous pattern in parasite ecology that

many hosts have few parasites and few hosts have many parasites (Shaw and Dobson,

1995; Shaw et al., 1998). Specifically, this means that host-parasite distributions of-

ten have a variance to mean ratio greater than one and are highly right-skewed. In

host-parasite models, increasing aggregation decreases a parasite’s ability to regulate

a host population, but, if regulation is possible, then increasing aggregation increases

the stability of the host-parasite equilibrium, but decreases the suppression of the host

population by the parasite (Anderson and May, 1978). The effect of aggregation on

regulation, suppression, and stability also interacts with other processes operating in

the host-parasite system. For example, highly aggregated and highly virulent parasites

are unable to regulate a host population as many parasites are removed from the popu-

lation upon the death of a host, which occurs frequently (Anderson and May, 1978). On

the other hand, if parasites reduce host fecundity, then higher levels of aggregation are

118



Dynamic parasite aggregation reduces parasite regulation of host populations and the stability of
host-parasite interactions Chapter 3

needed to stabilize the host-parasite equilibrium (Tompkins et al., 2002). Thus aggrega-

tion plays an important role in host-parasite dynamics both independently and through

its interaction with other host- and parasite-related vital rates.

Many mechanisms can affect parasite aggregation, including clumped infections (Isham,

1995), parasite-induced mortality (Barbour and Pugliese, 2000), host heterogeneity (Wil-

son et al., 2002; Gourbière et al., 2015), and the balance between parasite immigration

rate and birth rate (Fowler and Hollingsworth, 2016). Due to multiple interacting mech-

anisms shaping patterns of parasite aggregation, one might assume that predicting ag-

gregation would require highly system-specific models. Surprisingly, this is not the case.

Recent work has shown that because many mechanisms interact to affect aggregation,

general statistical rules can predict observed patterns of aggregation across different

host-parasite systems (Wilber et al., 2017). For example, simple constraint-based mod-

els developed in community ecology can predict patterns of aggregation across a range of

amphibian (host)-trematode (macroparasite) systems (Wilber et al., 2017). Constraint-

based models are rooted in the concept of maximum entropy and predict the most likely

distribution given a set of constraints (Haegeman and Etienne, 2010; Harte, 2011; Locey

and White, 2013; Harte and Newman, 2014). In host-parasite systems, there are two

inherent constraints on any observed parasite distribution: the total number of para-

sites P and the total number of hosts H in the distribution (Wilber et al., 2017). This

means that the only possible distribution of P parasites amongst H hosts that could be

observed is one that is consistent with these constraints. The most-likely distribution

given these constraints is the one that can be realized in the largest number of ways

(Jaynes, 1982).

An important prediction from constraint-based models is that the level of parasite

aggregation changes as the total number of hosts H and parasites P change (Locey
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and McGlinn, 2013; Johnson and Wilber, 2017). This is important because theoretical

results have shown that when aggregation varies with H and P , the conditions for

a stable equilibrium in host-parasite systems are altered, compared to the canonical

assumption of fixed aggregation (Adler and Krestzschmar, 1992; Kretzschmar and Adler,

1993; Rosà and Pugliese, 2002). For example, Kretzschmar and Adler (1993) showed that

aggregation itself is not sufficient to stabilize a host-parasite system. Rather, aggregation

needs to be an increasing function of mean parasite load (P/H) to stabilize the host-

parasite equilibrium. Despite this well-known importance of aggregation that depends

on P and H, there is no theory that predicts the precise shape of this relationship.

Constraint-based theory provides such a prediction.

In this study I explore the effects of the constraint-based aggregation on the dynam-

ics of host-parasite systems. In particular, this study asks two questions. First, how do

constraint-based models for parasite aggregation affect the ability of a parasite to reg-

ulate and suppress a host population? Second, how does constraint-based aggregation

affect the stability of the host-parasite equilibrium? This study shows that accounting

for empirically-supported constraint-based models of aggregation reduces the parameter

space in which parasites are predicted to regulate host populations and stabilize the

host-parasite equilibrium, compared to the standard assumption of fixed aggregation.

3.3 Models

3.3.1 Overview

The goal of this study was to understand whether constraint-based aggregation

changed how aggregation affected host-parasite dynamics, compared to the canoni-
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cal assumption of fixed parasite aggregation. To this end, I extended a simple host-

macroparasite model developed in previous studies (described below, Anderson and May,

1978; Kretzschmar and Adler, 1993; Rosà and Pugliese, 2002). This simple model ex-

cludes important processes affecting host-macroparasite systems such as host heterogene-

ity (beyond that captured by heterogeneity in parasite intensity), clumped infections,

adaptive immunity, and logistic host growth, all of which have been explored previously

(Isham, 1995; Pugliese and Rosa, 1995; Pugliese et al., 1998; Rosà and Pugliese, 2002).

These processes were excluded to allow for direct comparison between the dynamics of

host-macroparasite systems following constraint-based aggregation and those predicted

by the canonical host-macroparasite model with fixed aggregation (Anderson and May,

1978; Rosà and Pugliese, 2002). By first analyzing the behavior of the simple model in

the absence of the mechanisms mentioned above, the impact of constraint-based aggre-

gation on host-parasite dynamics can be understood without the confounding effects of

other stabilizing and destabilizing mechanisms.

In the following sections I describe two host-macroparasite models, one with fixed

aggregation and one with aggregation following constraint-based predictions. I then

compare and contrast predictions from the two models regarding the ability of a parasite

to regulate and suppress the host population and stabilize the host-parasite equilibrium.

3.3.2 The host-macroparasite model

Consider the following host-macroparasite model where H is the abundance of hosts

in a population and P is the abundance of directly reproducing macroparasites across

all hosts in the population (Anderson and May, 1978; Diekmann O. and Kretzschmar,

1991; Rosà and Pugliese, 2002)
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dH

dt
= −dH − αP + bH

∞∑

i=0

ri(1− ξ)i (3.1)

dP

dt
= −(d+ µ)P + φH − αH

∞∑

i=0

i2ri (3.2)

b is host birth rate, d is host death rate, α is the rate of parasite-induced host mortality,

µ is parasite death rate, and φ is the rate at which parasites are acquired from the

environment. φ takes the functional form λP
H0+H

, which is a result of assuming that

dynamics of the free-living stage of the parasite occur on a much faster time scale than

the within-host dynamics (Anderson and May, 1978; Kretzschmar and Adler, 1993;

Rosà and Pugliese, 2002).
∑∞

i=0 i
2ri = E[i2] is the second moment of the host-parasite

distribution where ri is the probability of a host having i parasites. This term is a

result of the assumption that parasite-induced death rate increases linearly with the

number of parasites per host.
∑∞

i=0 ri(1 − ξ)i is the probability generating function of

the host-parasite distribution where 0 ≤ (1 − ξ) ≤ 1 is the multiplicative reduction of

host fecundity due to the parasite (ξ = 0 is no reduction). This two dimensional system

of equations is an approximation of an infinite series of ordinary differential equations

(ODEs) that tracks the number of hosts with i = 0, 1, . . . ,∞ parasites (Anderson and

May, 1978; Kretzschmar and Adler, 1993). The relationship between equations 1 and

2 and the infinite series of ODEs are discussed at length elsewhere (Rosà and Pugliese,

2002; Cornell, 2010).

This model makes a number of assumptions, two of which deserve immediate at-

tention. First, the model assumes that there is no density-dependence in host birth

or death rates. This means that host population size can only be regulated by para-

sites and, upon escaping parasite control, hosts will increase exponentially (for b > d,

Anderson and May, 1978). This is a useful simplification for precisely defining para-
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site regulation – preventing a host population from increasing exponentially (Rosà and

Pugliese, 2002). Second, the model makes the assumption that the host population is

homogeneous. In reality host populations have stage- and age-structure and hosts vary

in immunity and behavior, all of which have implications on host-parasite dynamics and

the patterns of parasite aggregation (Pacala and Dobson, 1988; Isham, 1995; Chan and

Isham, 1998; Wilson et al., 2002; Calabrese et al., 2011; Johnson and Hoverman, 2014).

However, because the goal is to make general conclusions about how constraint-based

models of aggregation can affect host-parasite dynamics, I follow the example of similar

theoretical studies and ignore host heterogeneity.

3.3.3 Modeling parasite aggregation

To close the system of equations given above, it is often assumed that the parasite

distribution follows a negative binomial distribution – a flexible two parameter distri-

bution that fits observed, aggregated host-parasite distributions (Anderson and May,

1978; Shaw et al., 1998). The second moment of a negative binomial distribution is

given by E[i2] = P
H

+ P 2

H2
k+1
k

, where k is the aggregation parameter of the negative

binomial distribution and decreasing k indicates increasing aggregation (k ∈ (0,∞)).

The probability generating function for a negative binomial distribution is given by

G(1− ξ) =
∑∞

i=0 ri(1− ξ)i =

(
kH

ξP + kH

)k
.

Plugging these two equations into 1 and 2 leads to the host-macroparasite model

with fixed k (henceforth the Fixed k Model; Diekmann O. and Kretzschmar, 1991; Rosà

and Pugliese, 2002)
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dH

dt
= −dH − αP + bH

(
kH

ξP + kH

)k
(3.3)

dP

dt
= −(d+ µ)P + φH − αH

(
P

H
+
P 2

H2

k + 1

k

)
(3.4)

While assuming a fixed k is a common simplifying assumption (e.g. Dobson and

Hudson, 1992; Townsend et al., 2009), it is well-known that parasite aggregation can

vary over time (Scott, 1987; Boag et al., 2001). Deterministic host-parasite models have

captured the dynamic nature of aggregation using two different approaches. The first

approach uses a three dimensional approximation of the infinite series of differential

equations such that aggregation (typically the variance to mean ratio) is explicitly mod-

eled as a dynamic state variable (Adler and Krestzschmar, 1992; Kretzschmar and Adler,

1993; Rosà and Pugliese, 2002). While useful, this approach does not obviate the need

to assume some distribution (often a negative binomial) to close the three-dimensional

system of equations (Rosà and Pugliese, 2002; Cornell, 2010).

Another approach is to use the two dimensional approximation given by equations

1 and 2, assume a negative binomial distribution, and then allow aggregation (given by

k) to be a generic function of the total number of parasites and the total number of

hosts in a population (Kretzschmar and Adler, 1993). The advantage to this approach

is flexibility – aggregation can be driven by both the dynamics of the system affecting

H and P and the assumed relationship between k, H and P . However, this flexibility

is also a disadvantage as the assumed relationship between k, P , and H is phenomeno-

logical (e.g. Kretzschmar and Adler, 1993). Because constraint-based models provide

an empirically- and theoretically-supported relationship for how aggregation varies with

P and H (Wilber et al., 2017), they can be used to explore how the varying nature of

aggregation affects the dynamics of a host-parasite system.
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3.3.4 Incorporating constraint-based aggregation

Here I consider the constraint-based model known as “the partition model” for ag-

gregation (Xiao et al., 2015; Wilber et al., 2017). The partition model predicts the

most likely host-parasite distribution given the constraints of total host abundance H

and total parasite abundance P , as well as unlabeled hosts and unlabeled parasites (see

Haegeman and Etienne, 2010; Wilber et al., 2017, for a complete description). In short,

this means that, given P parasites and H hosts, there are only a finite number of ways

that these parasites can be distributed among the hosts. One realized distribution of

parasites among hosts is a configuration. Assuming unlabeled hosts and parasites means

that each possible configuration is equally likely. While there is no known analytical so-

lution for the partition model, it can easily be estimated via simulation (Locey and

McGlinn, 2013). Fig 3.1A. shows five predicted host-parasite distributions from a parti-

tion model with different numbers of P parasites and H hosts. Perhaps not surprisingly,

fitting a negative binomial distribution to the expected prediction from a partition model

reveals that the general shape of the partition model can be approximately captured by

a negative binomial distribution where k varies as a function of P and H (Fig. 3.1A).

Assuming that the partition model can be approximated as a negative binomial

distribution where k is a function of P and H, I computed the k(P,H) surface using

the following steps. First, I drew 1000 random partitions (i.e. potential configura-

tions of P parasites among H hosts) from all the combinations of partition models with

P = 3, . . . , 500 and H = 3, . . . , 500 (248,004 combinations). For any given (P , H) pair,

this resulting draw of partitions resulted in matrix with 1000 rows (i.e. 1000 random par-

titions) and H columns. The probability distribution of a given host having x parasites

under the partition model with P and H is p(x|P,H) =
∑

m∈F p(x|m,P,H)p(m|P,H)
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where m is a single partition in the feasible set F . Given the 1000 samples, I approxi-

mated p(x|P,H) with a negative binomial distribution by first flattening the 1000 x H

matrix into a vector and then estimating the aggregation parameter k of the negative

binomial distribution from this n = 1000H “sample” using a corrected moment estimate

(Gregory and Woolhouse, 1993).

The above steps provided k̂ values for all discrete combinations of P and H on a 498 x

498 grid (P and H are both between 3 - 500). However, to use this surface with equations

1 and 2, k̂ needed to be defined when P and H were not integers. To do this, I increased

the resolution of the 498 x 498 grid such that P and H both had 10,000 equally spaced

points between 3 and 500. I used cubic polynomial interpolation to calculate k̂ for all 1 x

108 (P,H) on the high resolution grid (Jones et al., 2013). On this high resolution grid,

k̂ was less than two for 99.9% of the values and generally only greater than two when H

and P where less than or equal to 4. This is consistent the vast majority of host-parasite

systems where k < 2 (Shaw and Dobson, 1995; Shaw et al., 1998). After increasing the

resolution, I removed the simulation noise in k̂(P,H) by applying a Gaussian filter with

σ = 75 (Jones et al., 2013). The choice of σ led to a smooth surface and ensured that

all k̂ < 2. While the choice of σ affects the quantitative conclusions presented below

(e.g. the exact location of the boundaries in parameter space), the qualitative results

remain consistent across all values of σ that I explored. Finally, I assumed that any

points beyond the boundary of the surface had the same value as the nearest point on

the boundary. This assumption, along with σ = 75, led to k̂ ≈ 2 for all values of P < 3

and H < 3, which is equivalent to a fixed k assumption for these values of P and H.

Fig. 3.1B shows the predicted k̂(P,H) surface after increasing the resolution and

applying the Gaussian filter. The surface shows that the partition model predicts that

k decreases (aggregation increases) with increasing H and k increases (aggregation de-
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creases) with increasing P , unless P and H are small in which case k briefly decreases

with increasing P . Using this predicted k̂(P,H) surface, in combination with the second

moment of the negative binomial distribution given above, the second moment of the

partition model can be approximated as

E[i2] ≈ (P/H) +
P 2

H2

k̂(P,H) + 1

k̂(P,H)
(3.5)

and the generating function of the partition model as

G(1− ξ) ≈
(

Hk̂(P,H)

ξP +Hk̂(P,H)

)k̂(P,H)

(3.6)

Plugging equation 5 and 6 back into equations 1-2 the host-macroparasite model with

aggregation following the partition model (henceforth the Feasible k Model) is given by

dH

dt
= −dH − αP + bH

(
Hk̂(P,H)

ξP +Hk̂(P,H)

)k̂(P,H)

(3.7)

dP

dt
= −(d+ µ)P + φH − αH

(
P

H
+
P 2

H2

k̂(P,H) + 1

k̂(P,H)

)
(3.8)

To answer the questions regarding how constraint-based aggregation affects the host-

parasite dynamics, I compared the ability of parasites to regulate and suppress a host

population as well as the stability of host-parasite equilibrium under both the Fixed k

Model and the Feasible k Model. All analyses were performed in Python v. 2.7.12 and

the code to replicate the analyses is provided at

https://github.com/mqwilber/parasite regulation.
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3.4 Question 1: How do parasites regulate and sup-

press a host population?

To facilitate comparison with previous results, I first assumed that parasites had no

effect on host fecundity (ξ = 0) and only affected host mortality (α > 0). I relaxed this

assumption in the following section. Under this assumption, the Fixed k Model predicts

that parasites are able to regulate a host population when α 6= 0 and λ > b+µ+α+ (b−d)
k

(Anderson and May, 1978). As aggregation increases (k decreases) it becomes more

difficult for parasites to regulate the host population (Fig. 3.2).

To compare this result to the ability of the Feasible k Model to regulate the host

population, I simulated equations 7 and 8 using Euler’s method with ∆t = 0.01 and

updated P , H and k̂(P,H) for each ∆t time step. I ran the model until either the host

and parasite populations reached a finite attractor (regulation) or the host population

increased above some large upper limit (no regulation).

The ability of a parasite to regulate a host population under the Feasible k Model was

reduced compared the Fixed k Model (Fig. 3.2). However, when parasite reproductive

rate λ was low and parasites were highly aggregated under the Fixed k Model (e.g.

k = 0.2), there were regions of the parameter space in which the parasites in the Fixed

k Model did not regulate the host population, but those in the Feasible k Model did.

This was only a small portion of the parameter space and as the reproductive rate of

the parasite (λ) increased, the Feasible k Model again showed a reduced region in which

parasites could regulate the host population (Fig. 3.2A-C).

These differences between the Fixed k Model and the Feasible k Model can be under-

stood in terms of a positive feedback loop between aggregation and the total abundance

of hosts. Under the Fixed k Model, an increase in α increases the equilibrium host
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abundance H∗ (Fig. 3.3A), but has no corresponding affect on aggregation (Fig. 3.3C).

Under the Feasible k Model an increase in α also leads to an increase in H∗ (Fig. 3.3A),

which generally leads to a corresponding decrease in k (Fig. 3.3C). This increase in

aggregation reduces the ability of the parasite to suppress the host population which

leads to an increase in H∗, which in turn leads to a decrease in k. This eventually leads

to a complete inability of parasites to regulate the host population as small increases in

H lead to large decreases in k when H is relatively small (e.g. H < 100, Fig. 3.1B, Fig.

3.3C).

As noted above and shown in Fig. 3.3, the ability of the parasite to suppress equilib-

rium host abundance also varies between the Fixed k Model and the Feasible k Model.

For low values of parasite pathogenicity, the Feasible k Model predicts increased host

suppression (i.e. reduced equilibrium host abundance) compared to a Fixed k Model

with k = 1 (Fig. 3.3A). This is because the Feasible k Model predicts k > 1 for these

low levels of parasite pathogenicity (Fig. 3.3C), which leads to increased suppression

of the host population relative to k = 1. However, as pathogenicity increases the Fea-

sible k Model predicts that k generally decreases (Fig. 3.3C). Eventually k < 1 and

the Feasible k Model shows less suppression of host abundance than the Fixed k Model

with k = 1. This lack of suppression can be further understood by examining how par-

asite efficiency, defined as the negative log percentage of unparasitized hosts divided by

equilibrium parasite abundance (Singh et al., 2009), changes between the Fixed k and

Feasible k Model. Fig. 3.3D shows that while parasites are initially more efficient under

the Feasible k Model than the Fixed k Model with k = 1, their level of efficiency de-

creases faster under the Feasible k Model with increasing pathogenicity. This decreasing

efficiency with increasing pathogenicity leads to reduced host suppression under both

models, but the faster decrease in efficiency under the Feasible k Model leads to parasites
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failing to regulate host populations at lower levels of parasite pathogenicity (α).

3.5 Question 2: How does dynamic aggregation af-

fect the stability of the host-parasite equilib-

rium?

3.5.1 Stability properties without a parasite reduction in host

fecundity (ξ = 0)

To understand the nature of the dynamics in the regulated region of Figure 3.2, I

performed a local stability analysis on both the Fixed k Model and the Feasible k Model.

I did this by numerically calculating the equilibrium of a given model under a particular

set of parameters and then examining characteristics of the Jacobian matrix at that equi-

librium (Nisbet and Gurney, 1982). The results from the Fixed k Model are well-known

– when a parasite with aggregation 0 < k <∞ is able to regulate a host population, the

resulting system has a locally stable equilibrium (Fig. 3.2, Anderson and May, 1978).

The Feasible k Model showed similar behavior – when the host-macroparasite system

was regulated the resulting host-parasite equilibrium was locally stable for the entire pa-

rameter space considered (Fig. 3.2). Because the parameter space in which the parasite

can regulate the host population is reduced under the Feasible k Model compared to the

Fixed k Model (Fig. 3.2), the parameter space in which the host-parasite equilibrium is

stable is also reduced under the Feasible k Model.

The stability of the Feasible k Model is consistent with the observation that aggre-

gation is a stabilizing mechanism in host-macroparasite systems (Anderson and May,
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1978). While the Feasible k Model predicts that the parasite distribution varies with

P and H, the distribution is almost always aggregated (variance / mean > 1, k < 2,

Fig. 3.1). However, aggregation by itself is not sufficient to stabilize the equilibrium of

a host-parasite interaction. Rather aggregation must be an increasing function of mean

parasite load (Kretzschmar and Adler, 1993). The k̂(P,H) predicted by the partition

model largely satisfies this stability criterion and therefore, given an equilibrium exists

for a Feasible k Model and parasites do not affect host fecundity, this equilibrium should

be stable.

3.5.2 Stability properties with a parasite reduction in host fe-

cundity (ξ > 0)

In the previous section I considered the stability of the host-parasite interaction when

there was no parasite-induced reduction in host fecundity (ξ = 0). However, in many

host-macroparasite systems parasites have larger effects on host fecundity than on host

mortality (e.g. Tompkins and Begon, 1999). Therefore, I also consider the stability and

dynamics for both the Fixed k and Feasible k Model when ξ > 0.

Parasite-induced reduction in host fecundity is a destabilizing mechanism in host-

parasite systems (May and Anderson, 1978; Diekmann O. and Kretzschmar, 1991; Dob-

son and Hudson, 1992). Including parasite-induced reduction in fecundity into the Fixed

k Model leads to a region of the parameter space in which the host-macroparasite equi-

librium exists, but is unstable (to the left of the stability region in Fig. 3.4). Decreasing

k (increasing aggregation) reduces the region in which the equilibrium is unstable (re-

duces the area of the left hand region in Fig. 3.3), but increases the region in which

parasites are unable to regulate the host population (right hand region of Fig. 3.4). Thus
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aggregation promotes the stability of the host-macroparasite equilibrium, but decreases

the overall parameter space in which an equilibrium can occur. This result is consistent

with the similar Fixed k Model explored by Diekmann O. and Kretzschmar (1991).

In comparison to the Fixed k Model where k ≤ 1 (which is an empirically realistic

level of host-macroparasite aggregation, Shaw and Dobson, 1995; Shaw et al., 1998),

the Feasible k Model predicts a larger region in which the host-macroparasite has a

positive equilibrium that is unstable and, consistent with the results in the previous

section, a larger region in which the host population is unregulated (i.e. a finite, positive

equilibrium does not exist, Fig. 3.4). This unstable region of the parameter space either

showed stable limit cycles or unlimited host growth under the Feasible k Model, after

perturbation from the equilibrium (Fig. 3.4). The reason for the increased region of

instability in the Feasible k Model compared to the Fixed k Model with k ≤ 1 is

because of the dynamic link between the equilibrium number of hosts/parasites and

parasite aggregation. In the Feasible k Model, as parasite pathogenicity (α) decreases,

the equilibrium number of hosts also decreases (Fig. 3.3) and k generally increases

(aggregation decreases, Fig. 3.3C). Increasing k decreases the stability of the host-

macroparasite equilibrium (May and Anderson, 1978) leading to a reduced region in

which the host-macroparasite equilibrium is stable.

3.6 Discussion

This study couples constraint-based models of parasite aggregation with dynamic

host-macroparasite models to show that when parasites follow empirically- and theoretically-

supported predictions of aggregation the ability of a parasite to regulate host popula-

tions and stabilize the host-parasite equilibrium is reduced compared to the canonical
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assumption of fixed aggregation. These results build on previous studies that show that

assuming dynamic parasite aggregation can fundamentally change the behavior of host-

macroparasite systems (Kretzschmar and Adler, 1993; Rosà and Pugliese, 2002). How-

ever, it has been unclear whether there is a consistent way that real host-macroparasite

systems deviate from the assumption of fixed aggregation. Because constraint-based

models provide a empirically-supported prediction regarding how parasite aggregation

changes with P and H, they may provide a more reasonable starting point when mod-

eling host-macroparasite dynamics than a fixed level of aggregation.

While the Feasible k Model explored here reduced the parameter space in which par-

asites could regulate host populations, this does not necessarily mean that parasites are

less likely to regulate host populations in nature. This is because the reduced parameter

space may still be the parameter space in which most host-macroparasite systems reside.

In fact, many macroparasites have little effect on the survival probability of their hosts

and instead affect other host vital rates such as reproduction (e.g. Dobson and Hudson,

1992; Tompkins and Begon, 1999). Moreover, many macroparasites have high reproduc-

tive rates (Anderson and May, 1991), which makes it easier for parasites to regulate host

populations under the Feasible k Model. That being said, empirical evidence demon-

strating that parasites alone can regulate a host population is uncommon (Scott, 1988;

Tompkins et al., 2002, 2011). While this lack of empirical evidence is augmented by the

extreme logistical difficulties associated with empirically demonstrating that parasites

regulate a host population (Scott and Dobson, 1989; Tompkins et al., 2011), the models

presented here suggest that common patterns of parasite aggregation might make the

ability of parasites to regulate host populations more rare than previously thought.

In addition to reducing the ability of parasites to regulate a host population, the

Feasible k Model, compared to the Fixed k Model, also reduced the stability of the host-

133



Dynamic parasite aggregation reduces parasite regulation of host populations and the stability of
host-parasite interactions Chapter 3

parasite equilibrium when parasites reduced host fecundity. It is well-known that by

reducing host fecundity macroparasites can augment cycles in host populations (Dobson

and Hudson, 1992; Hudson et al., 1998; Rosà and Pugliese, 2002). The Feasible k Model

shows that when parasites reduce the fecundity of their host there is an increased region

of the parameter space in which an unstable host-parasite equilibrium exists, compared

to the assumptions from the Fixed k Model with k in an empirically realistic range of

less than 1 (Shaw et al., 1998). In some of this parameter space, perturbations from the

unstable Feasible k Model equilibrium resulted in population cycles when the Fixed k

Model predicted a stable host-parasite equilibrium.

The propensity of fixed k models to underestimate the region of host-macroparasite

cycles compared to more mechanistically based host-macroparasite models has been pre-

viously noted (Rosà and Pugliese, 2002). Rosà and Pugliese showed that fixed k models

under-predicted the parameter regions in which oscillatory dynamics were expected if

the true mechanism leading to aggregated parasite distributions was clumped infections.

However, Rosà and Pugliese (2002) also showed that if heterogeneity in host suscepti-

bility was the aggregating mechanism, then a Fixed k Model over-predicted the region

of oscillatory dynamics. The Feasible k Model differs from the extensions explored by

Rosà and Pugliese (2002) as the aggregation in the parasite distribution is not directly

attributable to a specific process. However, because many different processes result in

aggregation patterns that follow the partition model, the systematic under-prediction of

oscillatory dynamics by the Fixed k Model may be a general result. On the other hand,

both models ignore other well-known destabilizing mechanisms in host-macroparasite

systems, such as time delays in the macroparasite life cycle (May and Anderson, 1978),

such that a more mechanistic approach to parasite aggregation will be needed to under-

stand how often the Fixed k Model over-predicts or under-predicts the stability of the
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host-parasite equilibrium.

This highlights a notable short-coming of the Feasible k Model: it does not directly

model the mechanisms leading to parasite aggregation. This is a limitation because

it is well-established that many host-parasite mechanisms affect aggregation (Anderson

and Gordon, 1982). For example, increasing parasite pathogenicity α can in turn af-

fect the shape of the host-parasite distribution (Crofton, 1971; Barbour and Pugliese,

2000), above and beyond any effects on aggregation via changes in the total number of

parasites and the total number of hosts (Johnson and Wilber, 2017). While changes

in aggregation independent of changes in P and H do occur in host-parasite systems

(Johnson and Wilber, 2017), changes in aggregation are often well-described by changes

in P and H (Wilber et al., 2017). Therefore, the assumption that mechanisms affect

aggregation primarily through their affects on P and H may not be unreasonable. More-

over, the Feasible k Model assumption is less stringent than the commonly used Fixed

k Model (Anderson and May, 1978; Dobson and Hudson, 1992; Townsend et al., 2009).

By allowing the level of aggregation to change with P and H, while still maintaining

the flexible negative binomial distribution, the Feasible k Model is mimicking a three-

dimensional system of equations where the level of parasite aggregation is also included

as a dynamic variable (Adler and Krestzschmar, 1992; Kretzschmar and Adler, 1993;

Rosà and Pugliese, 2002).

All of these models (i.e. the Fixed k Model, the Feasible k Model, and the three

dimensional model) assume that parasites instantaneously redistribute themselves to

either maintain the same level of aggregation or change aggregation according to some

function. Considering the biological realism of this assumption, it is clearly impossible for

a intra-host helminth population to instantaneously redistribute itself following a change

in the host or parasite population. While the biological realism and implications of this
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assumed instantaneous redistribution of macroparasites is rarely considered in host-

macroparasite models, they are much-discussed topics in host-parasitoid systems (e.g.

Murdoch and Stewart-Oaten, 1989; Rohani et al., 1994). Depending on the assumptions

made about the time scale at which parasitoids redistribute themselves among patches of

hosts and whether this redistribution depends on host density, the strength of parasitoid

aggregation as a stabilizing mechanism can change (Murdoch and Stewart-Oaten, 1989;

Rohani et al., 1994). For example, while density-dependent aggregation is a putative

stabilizing mechanisms in discrete time host-parasitoid models (Hassell and May, 1973),

Murdoch and Stewart-Oaten (1989) and Rohani et al. (1994) showed that this stabilizing

effect was reduced when parasitoids were able to continually redistribute themselves

among patches in response to host density within a season. This interaction between the

stability properties of a system and the time scale at which putative stabilizing process

are assumed to act has been shown in other models as well (e.g. Singh and Nisbet, 2007)

and highlights that it is important to identify not just how macroparasite aggregation

changes with P and H, but also the time scale at which this change in aggregation occurs

after changes in P and H. Incorporating time delays in the response of aggregation to

changes in host and parasite abundance is one possible approach to account for this

mismatch in time scale. Depending on the nature of the time delay, it could potentially

increase or decrease the predicted stability of the host-parasite equilibrium in the Feasible

k Model (Nunney, 1985).

These aforementioned challenges stem for the fact that the Feasible k Model, just

like the Fixed k Model, is still only approximation of an “exact” model which explicitly

tracks the number of hosts with 0, 1, 2, . . . ,∞ parasites through time (either determinis-

tically or stochastically, Rosà and Pugliese, 2002; Rosà et al., 2003). Because of this the

Feasible k Model will inevitably not be able to capture some of the dynamical properties
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that are seen under an exact model. One open question is how much the dynamics of

these “exact” models differ from those of the Feasible k Model. Answering this ques-

tion is challenging as the Feasible k Model implicitly assumes that “many” mechanisms

are interacting to lead to emergent patterns of parasite aggregation predicted by the

partition model, but it is not entirely clear how to explicitly model these “many” mech-

anisms. One approach that could prove useful is to construct individual-based models

(IBMs) of empirically well-understood host-parasite systems where empirical parasite

aggregation follows partition model predictions. These IBMs could be used to explore

what combinations of mechanisms are needed to observe emergent patterns of aggrega-

tion consistent with the partition model and whether the resulting IBM dynamics are

consistent with the Feasible k Model.

In conclusion, variable parasite aggregation can have large effects on the predicted

dynamics of host-parasite systems. Constraint-based models provide an empirically and

theoretically-supported way to account for the variation in parasite aggregation and

show that models that assume fixed aggregation may over-predict both the ability of

parasites to regulate a host population and the stability of the host-parasite equilibrium.

Given the lack of evidence that macroparasites are the dominant factor regulating many

host populations (Tompkins et al., 2011), these results provide a theoretical rationale, to

complement the often-discussed logistical rationale (Scott and Dobson, 1989; Tompkins

et al., 2011), that may help explain some of these null results.
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Figure 3.1: A. Predicted parasite distributions from the partition model with dif-
ferent numbers of parasites P and hosts H (solid lines) The corresponding best-fit
negative binomial distributions are also plotted (dashed lines). The negative binomial
distribution with varying levels of k can generally capture the aggregation predictions
of the partition model. B. The surface k̂(P,H) as predicted by the partition model
after interpolation and smoothing. For visual clarity, B. shows k̂(P,H) interpolated
over 1000 x 1000 points with H and P between 3 and 500 rather than the 10,000 x
10,000 points used in the analyses.
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Figure 3.2: A. - B. The boundaries at which a parasite can regulate a host population
under the Fixed k Model and the Feasible k Model. Below the line of a particular
model is where a parasite can regulate a host population. For the parameter space
shown, when a parasite was able to regulate the host population the system had a
locally stable equilibrium (the host-parasite equilibriums in all gray shaded regions
are stable). The inset plots in A. and B. give examples of the host-parasite dynamics
when the models have values of λ and α given by the black star in the respective
plots. For clarity, the inset plots do not show the dynamical predictions for the Fixed
k Model with k = 0.2. All other parameters are µ = 0.1 and 3 time−1, H0 = 10,
b = 3 time−1, d = 1 time−1, and ξ = 0.
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Figure 3.3: A. The host equilibrium under the Fixed k Model and the Feasible k
Model with different values of parasite reproduction λ and varying levels of parasite
pathogenicity α. B. The parasite equilibrium under the Fixed k and Feasible k
Models. C. The equilibrium level of k under the Fixed k and Feasible k Models.
The k for the Fixed k Model, by definition, does not change. D. Parasite efficiency,
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parasite abundance, under the Fixed k and Feasible k Models. The other parameters
are µ = 0.1 time−1, H0 = 10, b = 3 time−1, d = 2 time−1, and ξ = 0.
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Figure 3.4: Stability properties and dynamics of the Fixed k and Feasible k Models when

parasites cause a multiplicative, load-dependent reduction in host fecundity. A., D., G.,

J. The parameter space in which the host-parasite equilibrium is stable for varying parasite

pathogenicity α, parasite reduction in fecundity ξ, parasite reproduction λ = 10 time−1, and

k for the Feasible k and Fixed k Model. The dark gray regions show where the Feasible k

Model has a stable equilibrium and the light gray regions show where the Fixed k Model

has a stable equilibrium. To the right of the shaded regions the parasite fails to regulate the

host population. To the left of the shaded regions the parasite can regulate the host, but the

resulting equilibrium is unstable. The dynamics from these different regions are shown in B.,

C., E., F., H., I., K., L. which correspond to the black circles and stars shown in A., D.,

G., J.. The y-axis is truncated on C. and I. for clarity. All other parameters are µ = 0.1

time−1, H0 = 10, b = 3 time−1, and d = 1 time−1.
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4.1 Abstract

1. Host parasite models are typically constructed under either a microparasite or

macroparasite paradigm. However, this has long been recognized as a false dichotomy

because many infectious disease agents, including most fungal pathogens, have attributes

of both microparasites and macroparasites.

2. We illustrate how Integral Projection Models (IPM)s provide a novel, elegant mod-

eling framework to represent both types of pathogens. We build a simple host-parasite

IPM that tracks both the number of susceptible and infected hosts and the distribution

of parasite burdens in infected hosts.

3. The vital rate functions necessary to build IPMs for disease dynamics share many

commonalities with classic micro and macroparasite models and we discuss how these

functions can be parameterized to build a host-parasite IPM. We illustrate the utility

of this IPM approach by modeling the temperature-dependent epizootic dynamics of

amphibian chytrid fungus in Mountain yellow-legged frogs (Rana muscosa).

4. The host-parasite IPM can be applied to other diseases such as facial tumor dis-

ease in Tasmanian devils and white-nose syndrome in bats. Moreover, the host-parasite

IPM can be easily extended to capture more complex disease dynamics and provides an

exciting new frontier in modeling wildlife disease.

4.2 Introduction

Following the influential papers by Anderson and May (Anderson and May, 1979;

May and Anderson, 1979), host parasite models have usually been constructed within one

of two model structures. In their simplest form, microparasite models classify individuals
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as susceptible, infected or recovered (SIR), with the implicit assumption that all infected

hosts can be considered similar because once a host is infected microparasites can rapidly

multiply within the host. Under this simple structure, prevalence, the proportion of

infected individuals, is therefore adequate to characterize the level of infection within

a host population. In contrast, macroparasite models generally assume that parasites

cannot complete their entire life cycle within an individual host. Therefore, infection

levels within a host are strongly influenced by the number of infective stages the host

has encountered, and parasite burden influences host survival, reproduction and the

transmission of infective stages. As a result, in macroparasite models, the proportion

of individuals infected is not adequate to characterize the level of infection within a

host population, and therefore it is necessary to model the frequency distributions of

parasites among individuals.

In some pathogens traditionally categorized as microparasites, pathogen within-host

reproduction occurs at a slow enough rate that it can be tracked from one time point to

the next (e.g. Briggs et al., 2010; Langwig et al., 2015a). In these instances, it is useful

to take a macroparasite approach and model the distribution of loads across hosts as

this measure is both more consistent with the type of data collected on these diseases

and allows for the prediction of additional epidemiological patterns such as the dynamics

of parasite aggregation (Scott, 1987). Fungal pathogens are increasingly recognized as

important threats to biodiversity, agricultural production and human health (Fisher

et al., 2012) and may exhibit this relatively slow, measurable on-host reproduction.

A modeling framework that accounts for both their microparasite and macroparasite

characteristics is critical for understanding their dynamics.

To this end, Briggs et al. (2010) developed an individual based model for the fungal

pathogen Batrachochytrium dendrobatidis in frog populations and were able to predict

151



Integral Projection Models for host-parasite systems with an application to amphibian chytrid
fungus Chapter 4

the biological criteria necessary for population persistence as well as the efficacy of differ-

ent treatment strategies during epizootics (Drawert et al., 2015). However, this model

required a separate equation for the fungal load on each individual and was difficult

to parameterize from field or experimental data. In general, there is a need for an

intermediate modeling framework for “slow” microparasites that accounts for the infor-

mation in the distribution of parasites across hosts, while allowing for straightforward

parameterization from laboratory or field data.

In this paper, we illustrate the potential for integral projection models (IPM)s to

address this need. Several recent papers have provided excellent overviews of the con-

struction and use of IPMs (Rees and Ellner, 2009; Coulson, 2012; Metcalf et al., 2013;

Merow et al., 2014a; Rees et al., 2014; Metcalf et al., 2015). In very general terms,

IPMs assume that demographic parameters of individuals are affected by one or more

continuous variables that describe some property of those individuals. The models then

iterate population dynamics in discrete time with state variables of the form N(x, t),

representing the frequency of individuals with continuous property x at the time t.

The models can be readily parameterized from data using linear or non-linear re-

gression based approaches. For population models, the continuous variable x is often

the size, such as body mass (e.g. Coulson, 2012), or age of an organism, but in prin-

ciple any continuous variable or variables could be used. Here we illustrate their use,

using a measure of parasite load. It has been pointed out that this approach may well

be suitable for modeling host parasite interactions (Cooch et al., 2012; Metcalf et al.,

2015), but we know of only one application of these models for wildlife pathogens: a

model of the fungal infection aspergillosis in sea fans (Bruno et al., 2011). The model

in that study categorized sea fans into either infected or uninfected categories, and the

continuous variable modeled by the integral projection approach was the size of the sea
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fan, and not the parasite load itself. Recently, Metcalf et al. (2015) have proposed a

general framework for using IPM models for disease in which they highlight some of the

benefits and challenges of fitting disease data to these models. Here we build on the

ideas proposed by Metcalf et al. by providing a detailed case study and other examples

of how these methods could be used to address key questions in disease ecology and

evolution. Where possible, we try to use similar notation as Metcalf et al..

4.3 Materials and Methods

The basic model we examine is a modification of a susceptible-infected-susceptible

(SIS) model. In our model, individuals that clear the infection immediately re-enter

the susceptible class, with no immunity. Including a recovered class simply requires

adding an additional discrete stage to the IPM (Metcalf et al., 2015). The model has

the following state variables:

S(t): Number of susceptible/uninfected hosts at time t

I(x, t): Frequency of infected hosts with load x at time t (where x 6= 0). i.e. The

number of hosts at time t with a load between lower bound (L) and upper bound (U)

is
∫ U
L
I(x, t)dx

In a traditional macroparasite model x is an integer, so the integral could be replaced

with a summation. However, an advantage of the IPM approach is that regression

techniques can be used to parameterize the model, rather than needing to estimate a

large number of individual matrix parameters. For most fungal infections and many

other parasites, data on infection intensity are generally measured using quantitative
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PCR (Boyle et al., 2004), and continuous measures of infection load are more appropriate

than discrete counts.

Following Rees et al. (2014), the system can be represented by the life history

flow chart in Figure 4.1. This can be written as the following equation for suscepti-

ble/uninfected hosts at time t+ 1

S(t+ 1) = S(t)s0(1− φ(I(x, t))+

∫ U

L

I(x, t)s(x)l(x)dx+

(
f0S(t) +

∫ U

L

f(x)I(x, t)dx

)
(4.1)

The first term in this equation gives the number of hosts who remain uninfected in a

time step. The second term gives the number of infected hosts who lose an infection and

enter the uninfected class in a time step. The third term gives the number of uninfected

hosts who are born from uninfected hosts in a time step. The fourth terms give the

number of uninfected hosts that are born from infected hosts in a time step.

The equation for infected hosts with load x′ at time t+ 1 is given by

I(x′, t+ 1) =

∫ U

L

I(x, t)s(x)(1− l(x))G(x′, x)dx+ S(t)s0φ(I(x, t))G0(x′) (4.2)

The first term in this equation gives the number of infected individuals with load x that

transition to load x′ in a time step. The second term gives the number of uninfected

individuals that transition to an infected individual with load x′ in a time step. Below

we more thoroughly discuss the terms in equations 1 and 2, how they relate to classic

macroparasite and microparasite models, and how they can be parameterized. When

parameterizing the functions below, we assume that each process obeys the Markov
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property such that only the load at time t predicts the event at time t+ 1 (e.g. growth

of the parasite, host survival, loss of infection, etc.) (Easterling et al., 2000).

4.3.1 The growth function: G(x′, x)

For continuous measures of parasite load, the growth function G(x′, x) specifies the

probability density of transitioning to load x′ at time t+ 1, dependent on having a load

of x at time t. In comparison to standard macroparasite and microparasite models,

this function allows for pathogen growth on a host to be driven by both within host

pathogen birth/rapid self-reinfection (e.g. microparasites and some macroparasites) and

from acquiring additional parasites from the environment or other infected hosts. The

dependence of G(x′, x) on the free-living stages of the parasites can be made explicit by

writing G(x′, x) as dependent on the number of free-living parasites at time t.

This function can be estimated with data on the parasite load of individual hosts at

time t and time t+ 1. Using standard regression techniques, load at time t, the number

of free-living parasites at time t, and/or the density and abundance of other infected

hosts can be regressed against load at time t + 1 and the resulting model can be used

to parametrize the growth function G(x′, x) (Easterling et al., 2000). For continuous

parasite loads, the load at time t + 1 could be described by a lognormal or gamma

distribution, while discrete disease loads could be fit by a negative binomial distribution

(Anderson and May, 1978; Shaw et al., 1998). The growth of a parasite on a host will

often depend on other abiotic variables that can be accounted for as additional fixed or

random effects in the regression model (Rees and Ellner, 2009).
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4.3.2 The survival function: s0 and s(x)

s0 specifies the survival probability of uninfected hosts. 1− s0 gives the probability

of a host dying without any infection, which parallels the death rate of uninfected hosts

in classic micro and macroparasite models. s0 can be estimated by the proportion of

uninfected hosts that survive from t to t+ 1.

The survival function s(x) specifies the probability of a host with a parasite load x

surviving from time t to time t+ 1. In classic macroparasite models, it is assumed that

parasite-induced host mortality increases linearly with load at rate α, where α specifies

the pathogenicity of the parasite (Anderson and May, 1978). In the IPM framework, a

commonly used function to measure survival probability is the logistic function given by

s(x) =
exp(b0 − b1x)

1 + exp(b0 − b1x)
(4.3)

where b1 is similar to the pathogenicity parameter α (Anderson and May, 1978; Wilber

et al., 2016). When b1 is held constant, b0 dictates the parasite load at which substan-

tial parasite-induced host mortality begins to occur (Wilber et al., 2016). The logistic

function could be replaced by other functions, as dictated by the data (Dahlgren et al.,

2011).

The survival function s(x) can be estimated with logistic regression using host sur-

vival and load data from laboratory or mark-recapture studies conducted at the appro-

priate time scale. If other biotic or abiotic factors are also thought to contribute to the

survival probability of a host from t to t+1, they can be included as additional predictor

variables in the survival function.
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4.3.3 The loss of infection function: l(x)

The loss of infection function l(x) specifies the probability of a host having a parasite

load of x at time t and losing the infection by time t + 1. In comparison with classic

microparasite susceptible-infected models, this function is analogous to the rate at which

infected individuals recover from infection and reenter the susceptible/uninfected class.

We similarly assume that individuals that lose an infection immediately reenter the

susceptible/uninfected class, though a resistant class could easily be included in this

modeling framework (Metcalf et al., 2015).

A logistic function (equation 3) could also be used for the loss of infection function

and could be parameterized using parasite load data at time t and t + 1 and fitting a

logistic regression where the response variable is whether or not a host lost an infection

by time t + 1 and the predictor variable is the infection intensity x at time t. As with

the survival function, if other biotic or abiotic factors also contributed to l(x) they could

be included as additional predictor variables in the logistic regression.

4.3.4 The transmission function: φ(I(x, t))

The transmission function φ(I(x, t)) specifies the probability of transitioning from the

uninfected class to the infected class. The transmission function is critically important

for the dynamics of a disease and can take a variety of different functional forms. Some

common examples include the density-dependent or mass action transmission function

βIS and the frequency-dependent transmission function βSI/N (McCallum et al., 2001).

Over a unit time interval, a density-dependent, mass action transmission function

results in the following probability of an individual host not being infected:

exp
(
−β
∫ U
L
I(x, t)dx

)
, where

∫ U
L
I(x, t)dx gives the total number of infected individuals.
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Allowing β to be a function of parasite load, φ(I(x, t)) can be written as

φ(I(x, t)) = 1− exp

(
−
∫ U

L

β(x)I(x, t)dx

)
(4.4)

where
∫ U
L
β(x)I(x, t)dx is the force of infection and β(x) specifies the effect of an individ-

ual with an infection load of x on the infection probability of an uninfected individual.

This formulation assumes that new infections occur following a Poisson process with

rate
∫ U
L
β(x)I(x, t)dx.

While this functional form may be appropriate for many microparasites in which

direct transmission among hosts is the primary mode of acquiring infection, the trans-

mission of some pathogens depends on the number of free-living parasites in a system as

well as the number of infected hosts (Briggs et al., 2010). If we assume that number of

free-living parasites is proportional to the total number of parasites in all infected hosts

in the system at time t, then we can modify β(x)I(x, t) to β(x)xI(x, t) to capture this

biology.

Finally, some pathogens have an environmental reservoir such that the probability

of infection is non-zero even when no infected hosts are present. This could be captured

by rewriting equation 4 as

φ(I(x, t)) = 1− exp

(
−(a+

∫ U

L

β(x)I(x, t)dx)

)
(4.5)

where 1−exp(−a) defines the probability of infection when no infected hosts are present

(e.g. from an environmental reservoir). This environmental reservoir could be more

explicitly accounted for by including an additional state variable in the IPM that tracks

how the number of parasites in the environment grows and decays in a time step (Rohani

et al., 2009).

158



Integral Projection Models for host-parasite systems with an application to amphibian chytrid
fungus Chapter 4

Methods for estimating the transmission function and/or its corresponding parame-

ters are well-described in the host-pathogen literature (e.g. McCallum, 2000; Smith et al.,

2009), though choosing between transmission functions is typically a data-intensive pro-

cedure (Rachowicz and Briggs, 2007; Smith et al., 2009).

4.3.5 The initial infection burden function: G0(x
′)

The function G0(x′) specifies the probability density of the infection intensity of a

host when it first becomes infected and can be a function of the total number of infected

hosts in the population, the total number of infectious agents in the population and/or

various other host or abiotic covariates. This function can be estimated by fitting a

regression model where the response variable is the pathogen load of infected hosts at

time t + 1 that were uninfected at time t. For continuous disease loads, a variety of

different distributions such as gamma, lognormal, and normal could be explored.

In comparison with standard stochastic macroparasite models, this function is analo-

gous to clumped infection distributions in which a host can acquire a random number of

free-living parasites in a small time step (Isham, 1995; Pugliese et al., 1998). However,

depending on the time step used to parameterize the IPM, G0(x′) will also be influenced

by the growth of the parasite on the host as a “clump” of parasites can infect a host

and then grow in the time interval t to t+ 1.

Moreover, the above host-parasite IPM assumes that after acquiring an initial in-

fection burden the growth of the parasite on a host is then driven by G(x′, x) and is

independent of the density of infected hosts. If one has reason to believe that transmis-

sion and the function G0(x′) are important drivers of disease dynamics on hosts after
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the initial infection, the growth function may be redefined as

G′(x′, x, I(x, t)) = (1− φ(I(x, t))G(x′, x) + φ(I(x, t) [G0(x′ − x) + higher order terms]

(4.6)

where an increase in load from x to x′ in a time step could be because of 1) no trans-

mission occurring and parasite load increasing due to within host growth (first term)

or 2) transmission occurring and a host acquiring a “clump” of infections of size y such

that y = x′ − x (second term) or 3) some combination of both within host growth and

transmission occurring such that parasite load increases from x to x′ in a time step.

This is given by higher order terms and will depend on the length of the time step t to

t+ 1 relative to the dynamics of the pathogen.

4.3.6 The fecundity function: f0 and f(x)

The fecundity function f(x) specifies the mean number of offspring produced by

individuals with a parasite load of x (or by susceptible/uninfected individuals f0) and

the host-parasite IPM assumes that all offspring enter the uninfected class. It is easy

to relax this assumption and include vertical transmission into the host-parasite IPM

by allowing newly born hosts to enter the infected class with a parasite load specified

by some probability density function. Standard macroparasite models assume that host

reproduction decreases linearly with increasing parasite load (May and Anderson, 1978).

However, as pointed out by May and Anderson, this is an over simplification as the

response of host reproductive effort to parasitism is often non-linear (e.g. Weatherly,

1971) and reproduction itself can never take on a negative value (Roberts et al., 1995).

Alternative formulations of parasite-induced reduction in host fertility that account for
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this non-linear relationship have been discussed (Roberts et al., 1995).

In the IPM framework, the fecundity function can be fit using Poisson or negative

binomial regression where the predictor variable is parasite load and the response variable

is the number of offspring produced by a host with that parasite load (Easterling et al.,

2000). If the response variable is a non-integer value, a continuous distribution such as

gamma or lognormal could be used. Depending on the link function, these regressions

can produce non-linear fecundity functions that are always positive. Similar to the other

vital functions discussed above, other factors that affect mean reproductive output can

be included in the regression.

For many host-parasite systems, host reproduction occurs on a much longer time

scale than the dynamics of the parasite and it may not be biologically realistic to include

host reproduction at each time step in the IPM model as is done in equation 4.1. For

example, if host reproduction occurs at a particular time during the year it may be

useful to break the year into separate IPMs (e.g. an IPM for summer, fall, winter

and spring; Caswell, 2001) such that load-dependent host reproduction only occurs in a

particular season or as a discrete pulse at the beginning of a particular season (e.g. host

reproduction is only non-zero in the spring and fall). One may also want to include host

age as an additional discrete or continuous host attribute (Childs et al., 2003) to account

for reproductive differences among hosts of different ages. On the other hand, if one is

particularly interested in the fate of a host population over a single seasonal epizootic

where host reproduction does not occur, the fecundity function may be excluded from the

host-parasite IPM as it will not affect host population persistence during the epizootic.

In this case, appropriately modeling vital rates such as the survival function s(x) and

the growth function G(x′, x) will be critically important for understanding host-parasite

dynamics. In general, how to include host reproduction into the host-parasite IPM will
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depend on the questions that are being addressed.

4.3.7 Application of model to amphibian chytrid fungus: Lab-

oratory experiment

We use the above IPM framework to examine the population dynamics of amphibian

hosts infected with the fungal pathogen Batrachochytrium dendrobatidis (Bd). Bd is a

devastating amphibian pathogen that has led to declines in many amphibian populations

around the globe (Skerratt et al., 2007; Kilpatrick et al., 2010). Bd is a cutaneous

fungus that disrupts the osmoregulatory ability of amphibian skin, eventually leading

to chytridiomycosis and amphibian mortality (Voyles et al., 2007, 2009). In contrast to

traditional macroparasities, Bd rapidly reinfects an infected host in a process analogous

to within host birth (Rollins-Smith, 2009). The generation time of Bd is between four

to ten days depending on temperature (Woodhams et al., 2008), such that the on-host

Bd growth dynamics can be captured via repeated swabbing of an animal every few

days, with the fungal load on the frog estimated as the number of copies of Bd DNA

detected on the skin swabs via quantitative PCR (Boyle et al., 2004). Quantitative

PCR provides a continuous measure of infection intensity between 0 (uninfected) and

an arbitrarily large Bd infection. These characteristics of Bd make it an ideal candidate

for applying the host-parasite IPM described above.

We use the IPM framework to gain insight into how temperature affects the epi-

zootic dynamics of Bd in populations of the Mountain yellow-legged frog complex (Rana

muscosa and Rana sierrae, henceforth R. muscosa). Rana muscosa are native to the

California Sierra Nevada mountains and have suffered severe Bd -induced population

declines (Vredenburg et al., 2010; Briggs et al., 2010). The severity of Bd infection is
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highly temperature dependent (Berger et al., 2004; Andre et al., 2008), with optimal

Bd growth occurring between 17 - 25 °C in laboratory conditions (Piotrowski et al.,

2004), but depending on host-Bd interactions (Piotrowski et al., 2004; Raffel et al.,

2012). While these are the temperatures at which amphibians often suffer more severe

chytridiomycosis and mortality, this pathology is species-dependent (Kilpatrick et al.,

2010).

We use data from a laboratory experiment in which 20 adult R. muscosa were housed

separately at 4 different temperatures (4 °C, 12 °C, 20 °C, 26 °C; 5 frogs per temperature),

exposed to approximately 106 zoospores of Bd and then monitored for 119 days. Every

three days starting eight days after exposing the frogs to Bd, the frogs were swabbed

and Bd zoospore load was estimated using quantitative PCR. Mortality that occurred

between swabbing events was recorded at the next swabbing event. Frogs housed at

26 °C were visibly distressed and suffered much higher Bd -independent mortality than

those housed at lower temperatures. For this reason, and because we wished to examine

how temperature affected R. muscosa-Bd dynamics at the much cooler temperatures

typically observed in the field (4-20 °C, Knapp et al., 2011), we excluded individuals at

26 °C.

4.3.8 Model description

To fit the IPM to Bd load data from laboratory experiments, we made two simplifying

assumptions. First, we excluded reproduction/recruitment because we lack data on the

effect of infection on reproduction. As a result, we used this model to address questions

regarding epizootic dynamics of Bd and R. muscosa over the course of a single summer

season, rather than to examine long-term population persistence with disease.
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Second, we assumed the probability of infection φ(T ) was temperature (T )-dependent,

but independent of the density of infected hosts (i.e. I(x, t) does not affect the prob-

ability of infection). In our experiments individual animals were housed in separate

containers and initial infection was solely due to an amphibian acquiring Bd zoospores

from the environment. We subsequently explore different transmission functions that do

include I(x, t) to understand their implications on Bd epizootic dynamics. With these

assumptions, the modified IPM is given by

S(t+ 1) = S(t)s0(T )(1− φ(T )) +

∫ U

L

I(x, t)s(x, T )l(x, T )dx (4.7)

I(x′, t+1) =

∫ U

L

I(x, t)s(x, T )(1−l(x, T ))G(x′, x, T )dx+S(t)s0(T )φ(T )G0(x′, T ) (4.8)

where the various vital functions are now dependent on temperature T . Note that x

refers to ln(x) (log zoospore load) when x 6= 0 and 0 (uninfected) when a frog was

uninfected. In this case, 0/uninfected represents a discrete state of the frog and is not

equivalent to ln(x) = 0. In this model, a single time step represents three days, which

was the time between swabbing events in the laboratory experiment.

4.3.9 Vital rate functions

We modeled the survival function s(x) of a frog with a log zoospore load of x as a

logistic regression with the link function given by

logit(s(x)) = b0,0 + b1,0x (4.9)

where b0,0 is the intercept of the link function on the logit scale, and b1,0 is the effect of

log zoospore load on the logit-transformed probability of survival. We could not estimate
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the effect of temperature on this vital rate function because no individuals died at 4 °C

or 12 °C (Fig. 4.2A). This result was surprising because individuals at 12 °C had loads

as high or higher than individuals at 20 °C and did not experience mortality. Based

on previous results in the field which show that R. muscosa suffer a roughly consistent

Bd -induced mortality across a variable lake temperatures in the field (i.e. the ≈ 10,000

zoospore threshold, Vredenburg et al., 2010), additional results in the laboratory that

show that frogs experience significant Bd -induced mortality at temperatures below 20 °C

(17 °C, Andre et al., 2008), and extensive field observations that decreased temperature

does not have a large protective effect on R. muscosa in the field (Knapp et al., 2011),

we think there is very little evidence that the survival curve of R. muscosa and Bd -

load interacts with temperature. Therefore, we assumed that Bd -induced mortality is

dependent only on load and not on temperature directly. We therefore parameterized

the survival function using only individuals at 20 °C (Fig. 4.2A, see Section 4.A for a

comparison with a survival function fitted with all of the temperature data), but assumed

a temperature-independent survival function. However, temperature influenced fungal

growth, as detailed next.

We modeled the growth function G(x′, x) as a normal distribution

X ∼ N(µ(x, T ), σ2(x)) where T is temperature. Mean fungal loads were modeled as

µ(x, T ) = b0,1 + b1,1x+ b2,1T (4.10)

where b0,1 is the intercept and b1,1 and b2,1 give the effect of a unit change in log zoospore

load and temperature on the log zoospore load at time t+1, respectively. We also allowed

the variance of G(x′, x) to be an exponential function of log zoospore load at time t

σ2(x) = ν0,1 exp(2c0,1x) (4.11)
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where ν0,1 is a constant and c0,1 dictates the effect of log zoospore load on the variance.

We modeled the loss of infection function l(x) as a logistic regression with the link

function

logit(l(x, T )) = b0,2 + b1,2x+ b2,2T (4.12)

where b0,2 is the intercept and b1,2 and b2,2 are the coefficients giving the effect of a unit

change in log zoopsore load and temperature on the logit-transformed probability of

losing an infection in a single time step, respectively.

We modeled the initial infection burden function G0(x′) as a normal distribution

X ∼ N(µ(T ), σ2(T )). We defined the mean of the distribution as µ(T ) = b0,3 + b1,3T

where b0,3 and b1,3 are defined similarly to the growth function. We modeled the variance

as σ2(T ) = ν0,3 exp(2c0,3T ) where ν0,3 and c0,3 are defined similarly as in the growth

function.

Finally, we modeled the probability of an individual becoming infected φ(T ) in a

time step as a function of temperature T using a logistic model logit[φ(T )] = b0,4 + b1,4T

where b0,4 and b1,4 are defined similar to the recovery function. We performed model

selection and validation various for each vital rate functions described above and these

results are given in Section 4.A. We fit the vital rate functions in R version 3.1.2 using

the functions gls, lme, and glm and all code used for this analysis can be found at

https://github.com/mqwilber/ipm_for_parasites.

4.3.10 Analyzing the IPM

After fitting the parameters of the vital rate functions, we analyzed the resulting IPM

(equation 7) by discretizing the continuous variable Bd load and using the midpoint rule
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to evaluate the IPM at each time step (Rees et al., 2014). For the infected portion of

the host-parasite IPM, we used 100 discretized bins (i.e. a mesh size of 100) and lower

and upper bounds of -5 and 18 log zoospore load, which we chose to minimize the effects

of eviction on the IPM predictions (loss of individuals from the model because their

predicted future loads are outside the model range, Section 4.B; Williams et al., 2012).

To put these bounds in context, the log zoospore range from our experiment was (-1.14,

13.15) and the approximate log zoospore load at which R. muscosa begin experiencing

substantial die-off in the field is at or above a log zoospore load of 9.21 (Vredenburg

et al., 2010). To incorporate the discrete, uninfected stage into the IPM, we appended

an extra row giving transitions of various infected individuals to an uninfected state

(top-most row) and an extra column specifying the transition of uninfected individuals

into various infected states (left-most column) to the 100 x 100 parasite load transition

matrix described above (Merow et al., 2014a).

We calculated the local elasticity of the population growth rate (λ) to the lower-

level regression parameters bi,j of the vital functions defined above by perturbing each

regression parameter by δ = 0.001 and calculating the elasticity as

ei,j = [(λperturbed − λfitted)/δ × bi,j] × (bi,j/λfitted) (Merow et al., 2014b). To propagate

the uncertainty in our estimates of the lower-level vital rate parameters through to our

estimates of the population growth rate and lower-level parameter elasticity, we took

the following parametric bootstrap approach. Using standard asymptotic likelihood

results (McCullagh and Nelder, 1989), we assumed that each parameter set from a vital

rate function followed a multivariate normal distribution with a mean and variance-

covariance matrix equal to the values given by the regression procedure used to fit

the vital rate function. Next, we ran 1000 simulations in which we randomly drew the

lower-level regression parameters from their respective multivariate normal distributions
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and parameterized the IPM using these parameters. We then calculated either the

population growth rate or the elasticity of a given lower-level parameter with these

randomly drawn values and stored the result. This provided us with estimates of the

population growth rate and lower-level parameter elasticity while accounting for the

uncertainty in the lower-level parameters used to build the IPM. We note that this

approach likely underestimates the uncertainty as it does not account for the uncertainty

in the variance estimates, does not account for covariance of parameters between vital

rate functions, and assumes multivariate normality. A fully Bayesian approach can

capture this uncertainty more completely (Merow et al., 2014b; Elderd and Miller, 2015).

4.3.11 Exploring density-dependent transmission dynamics

In equation 7, we assumed density and frequency independent transmission of Bd.

We also explored how a mass action, density-dependent transmission function affected

the epizootic dynamics of Bd. In particular we assumed the following transmission

function

φ(I(x, t)) = 1− exp

(
−(a+ β

∫ U

L

xI(x, t)dx)

)
(4.13)

which specifies that the probability of infection at time t is dependent on the total

number of zoospores present in the host population (
∫ U
L
xI(x, t)dx) at time t as well as a

constant probability of infection from an environmental reservoir ω = 1− exp(−a). We

followed the example of previous Bd modeling work and assumed that the Bd epizootic

dynamics depend on the number zoospores in the aquatic environment rather than just

the number of infected amphibians in a population (Briggs et al., 2010). The term
∫ U
L
xI(x, t)dx reflects this assumption, albeit ignoring potential dynamics of free-living
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zoospores. Moreover, we assumed that density dependence affects only the probability

of transitioning from uninfected to infected, such that once an amphibian is infected the

increase in Bd is independent of infected host density. This assumption is realistic if

the parasite reproduction on the host swamps out the effects of reinfection from other

individuals or the environment.

To explore the effects of this transmission function on epizootic dynamics, we first

parameterized the density-independent portion of the IPM model using the maximum

likelihood estimates of the vital rate function parameters discussed above. Because

we could not estimate the density-dependent transmission function from the data we

collected, we explored the effect of this function on population dynamics by choosing

(ω, β) pairs on a grid and using these values to parameterize the density-dependent

transmission function. The estimated values of ω used in the density-independent model

suggested that ω was between 0.22 and 0.6 depending on the temperature, so we explored

values of ω between 0.01 and 0.6. We did not have a good a priori estimate of β, so

we explored β within the range 0 to 1.17 x 10−3, where this upper bound was chosen

arbitrarily after preliminary simulations showed that larger values of β had little effect

on the population dynamics. For every (ω, β) pair, we iterated the density-dependent

IPM for 120 days, which is the approximate length of the summer in the Sierra Nevada

during which Bd epizootics tend to occur (Briggs et al., 2005, 2010). We initialized

each population with 100 uninfected individuals and for each combination of (ω, β) we

calculated the proportion of surviving amphibians and the prevalence of Bd infection at

the end of the epizootic.
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4.4 Results

4.4.1 Vital rate functions

Increasing log zoospore load x significantly decreased survival probability of amphib-

ians (Fig. 4.2A; χ2
df=1 = 12.197, p = 0.0005; Table 1).

Both temperature and log zoospore load at time t significantly increased log zoospore

load at time t + 1 (Likelihood Ratio Test (LRT) for load at time t: χ2
df=1 = 196.36,

p < 0.0001; LRT for temperature: χ2
df=1 = 13.56, p = 0.0002). Moreover, log zoospore

load at time t was important for describing the variance structure of the growth function,

as compared to a model with constant variance structure (LRT comparing full model to

model with constant variance: χ2
df=1 = 9.8, p = 0.0017; Table 1; Fig. 4.2B, Fig. 4.3).

Temperature and log zoospore load were both highly significant predictors of whether

an amphibian would clear Bd infection in a given time step (temperature: χ2
df=1 =

14.555, p = 0.0001; log zoospore load: χ2
df=1 = 23.701, p < 0.0001; Fig. 4.3). Amphib-

ians were more likely to clear infection at lower temperatures and when the load at time

t was smaller.

Increasing temperature significantly increased the mean and variance of the initial

infection load distribution G0(x′) (temperature effect on mean: tdf=41 = 2.53, p =

0.015; temperature effect on variance: LRT comparing model with variance structure to

without: χ2
df=1 = 6.00, p = 0.0143; Fig. 4.3).

Finally, increasing temperature significantly increased the probability of infection φ

(χ2
df=1 = 6.0361, p = 0.014; Table 1).
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4.4.2 Laboratory dynamics of amphibians and Bd

The parameterized IPM model predicted that individual amphibians at low temper-

atures would survive significantly longer than amphibians at high temperatures, with

the largest difference being when log zoospore loads were low (Fig. 4.4A). Over a sum-

mer epizootic, amphibian populations at low temperatures experienced a minimal effect

of Bd -induced population declines (λ ≈ 1), while amphibians at higher temperatures

experience substantially more rapid declines, with large uncertainty around these esti-

mates (Fig. 4.4B). Elasticity analysis on the lower-level parameters used in the vital rate

functions showed that overall population growth rate was most sensitive to proportional

changes in the growth rate of Bd (the parameters of the growth function; Fig. 4.S5) as

well as the pathogenicity of Bd and the threshold at which Bd -induced mortality began

to occur (the parameters of the survival function; Fig. 4.S5).

The IPM model also allowed us to examine how the stable log zoospore distribu-

tion of Bd on surviving hosts changed with temperature (Fig. 4.5). For surviving,

infected amphibians, the mean infection intensity increased with temperature, but the

variance to mean ratio decreased with temperature (Fig. 4.5), consistent with experi-

mental and model results showing that hosts experienced greater Bd -induced mortality

at higher temperatures. This is also consistent with previous theoretical results from

macroparasite models which predict that increased parasite-induced host mortality gen-

erally decreases the variance to mean ratio (Barbour and Pugliese, 2000).
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4.4.3 Effects of density-dependent transmission on epizootic

dynamics

The effect of density-dependent transmission on Bd -R. muscosa population dynamics

varied with temperature, the probability of infection from the environmental reservoir

(ω) and the transmission coefficient (β). In general, over the range of density-dependent

transmission values we examined, density-dependent transmission had little effect on

prevalence and the proportion of population decline over the course of a summer epizootic

(Fig. 4.S7-S8). In contrast, the probability of infection from the environment had a

large effect on both prevalence patterns and population decline (Fig. 4.S7-S8). Given

a probability of infection from the environment above approximately 0.15, increasing

density-dependent transmission had very little effect on Bd prevalence or R. muscosa

population decline. Over the parameter space we examined, the density-dependent

transmission model predicted that populations at 12 °C will experience a maximum of

a 20% population decline over the course of an epizootic with 70% prevalence, while

populations at 20 °C will experience a greater than 80% population decline with close

to 100% prevalence (Fig. 4.S7-S8).

4.5 Discussion

Integral projection models provide an ideal framework to model diseases that do not

fall neatly into the microparasite/macroparasite dichotomy. By taking an intermediate

approach between individual-based disease models which explicitly track the parasite

load on every individual in a population (Briggs et al., 2010) and classic macropara-

site/microparasite models which only track the total number of hosts and parasites in a
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population (Anderson and May, 1978), IPMs can elegantly investigate population out-

comes of infectious diseases while still incorporating critical information about disease

dynamics at the individual-level (Metcalf et al., 2015). While the IPM approach can

theoretically be used to explore the dynamics in any macroparasite or microparasite

system, we believe it will be practically most useful in host-parasite systems where the

growth rate of a parasite is slow enough that measurements of parasite load at time t

and t+ 1 are on the same time scale as the growth rate of the parasite. This allows for

empirical estimation of the vital rate functions and an investigation regarding how these

vital rate functions vary with environmental factors such as temperature and/or differ

between host populations in which a disease is established or invading.

We used the host-parasite IPM model to explore the consequences of different tem-

peratures on R. muscosa-Bd dynamics over the course of an epizootic. The effect of

temperature on Bd growth is well-known both in culture and on amphibian hosts (Long-

core et al., 1999; Piotrowski et al., 2004; Berger et al., 2004; Andre et al., 2008; Raffel

et al., 2012) and previous work has estimated the expected time to death of amphibians

infected with Bd over various different temperatures (Berger et al., 2004; Andre et al.,

2008). However, the effect of temperature-Bd interactions on amphibians at the popula-

tion level is much less clear (Rohr and Raffel, 2010; Knapp et al., 2011). Using an IPM

model, we were able to make specific, quantitative predictions about how temperature

and transmission dynamics affected population growth rates of Rana muscosa.

The density-independent IPM model predicted that population-level growth rate

decreased with increasing temperature and naive populations at or above about 18 de-

grees had a 50% chance of experiencing an 80% decline or greater over the course of

a summer epizootic. This result likely represents a best case scenario for Rana mus-

cosa as this density-independent model does not account for Bd transmission dynamics
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(Rachowicz and Briggs, 2007) or additional factors leading to increased frog mortality

or Bd -susceptibility in the field. Our elasticity analysis showed that the population-

level growth rate was most sensitive to proportional changes in parameters relating to

the Bd growth function and the survival function. If in situ factors slightly reduced

the Bd -load at which frogs began experiencing disease-induced mortality, for example,

R. muscosa populations could experience extirpation during a summer epizootic for a

wide range of temperatures, which would be consistent with the patterns observed in

the field (Knapp et al., 2011). In particular, we assumed a temperature-independent

survival function in the IPM model (described in Vital rate functions) and including

temperature-dependence into this function would have significant impacts the ability of

R. muscosa populations to persist through an epizootic.

We extended this density-independent IPM to explore how density-dependent trans-

mission and transmission from an environmental reservoir affected population dynamics.

Our results suggest that density-dependent transmission had a small effect on the pop-

ulation dynamics of Bd epizootics, particularly when an environmental reservoir was

present. While this result is largely due to our assumption that density-dependent

transmission does not effect the the growth of Bd on an already infected frog, it is con-

sistent with predictions from a fully individual-based model that predicts that density

manipulations (i.e. culling infected frogs) will likely have little effect on mitigating pop-

ulation outcomes during Bd epizootics in this system (Drawert et al., 2015). A natural

next step will be to use this IPM to investigate how varying temperature regimes and

R. muscosa demography affect the persistence of R. muscosa populations infected with

Bd over longer time scales. In general, the question of how temperature interacts with

Bd and in turn affects amphibian host persistence is a critical question in amphibian

conservation (Rohr and Raffel, 2010) and IPMs provide a novel means by which this
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question can be quantitatively addressed.

In addition to these population-level predictions, host-parasite IPMs also allow for

explicit predictions about how the distribution of parasites loads over hosts changes with

different vital parameters and/or over the course of an epizootic or enzootic. Macropara-

site models have long recognized the importance of the distribution of parasite loads over

hosts for determining the dynamics of host-parasite interactions (Anderson and May,

1978; Tompkins et al., 2002), and classic macroparasite models addressed this by using

a statistical distribution (often negative binomial, Shaw et al., 1998) and then looking at

how different levels of parasite aggregation affected host-parasite dynamics (Anderson

and May, 1978; Kretzschmar and Alder, 1993). These approaches have been extended

to include fluctuating aggregation (Rosà and Pugliese, 2002; Rosà et al., 2003), but still

rely on explicitly defining the shape of the host-parasite distribution. In contrast, IPMs

do not assume a host-parasite distribution, rather one emerges as a result of the vital

functions specified when parameterizing the model. Therefore, one can explore how

sensitive the aggregation of the host-parasite distribution is to different vital function

parameters, providing an intriguing way to parse the contribution of different processes

to parasite aggregation. Moreover, as it is straightforward to include seasonal fluctu-

ations and/or environmental stochasticity into the IPM framework (Rees and Ellner,

2009; Eager et al., 2013), more complex predictions of aggregation patterns, such as the

fluctuation of parasite aggregation over time (Scott, 1987; Rosà and Pugliese, 2002),

could be explored.

Using the parameterized IPM for Bd -R. muscosa we examined how the distribution

of Bd -loads changed with temperature. The IPM showed that fundamental insight from

macroparasite distributions also applies to Bd. For example, as predicted by macropar-

asite models (Barbour and Pugliese, 2000), increasing Bd -induced host mortality with
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increasing temperature decreased the aggregation of Bd across hosts and reduced posi-

tive skew as individuals with high Bd loads were removed from the population through

mortality. In fact, a sensitivity analysis of the variance to mean ratio of the Bd -load

distributions showed that this measure of aggregation became progressively more sen-

sitive to the survival function as temperature increased and more frogs experienced Bd

load-dependent mortality (Fig. 4.S6). In addition, the variance to mean ratio was more

sensitive to the variance in the growth function (ν0,1 and c0,1) than the variance in the

initial infection burden function (ν0,3 and c0,3, Fig. 4.S6), suggesting that explaining

the individual-level heterogeneity in Bd growth rate may be more important for un-

derstanding the shape of the Bd -load distribution than explaining the individual-level

heterogeneity in the load of Bd at initial infection. The IPM approach highlights the

importance of this unexplained variance in the Bd growth function and future studies

could identify whether this heterogeneity is due to biological factors such as differences

in immune responses among hosts or methodological factors such as quantitative PCR

error when measuring Bd load.

In addition to allowing for a more rigorous analysis of parasite aggregation, an IPM

approach can be used to examine a variety of different classic patterns in host-parasite

systems. For example, host age can easily be included as an additional host attribute

(Childs et al., 2003, 2004), such that IPMs could then be used to examine observed

patterns between parasite intensity and host age (i.e. age-intensity profiles, Duerr et al.,

2003). Similarly, host-heterogeneity in susceptibility could be included as an additional

host attribute such that IPMs could be used to explore non-linear dose-response rela-

tionships (Dwyer et al., 1997; Gomes et al., 2014). We also discuss in Section 4.C how

R0, a canonical epidemiological measure of the ability of a parasite to invade a fully

susceptible host population (Diekmann et al., 1990), can be calculated from the host-
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parasite IPM. While these are just a few examples, the theoretical application of IPMs

for exploring observed host-parasite patterns is extensive.

While this study focused on using IPMs to describe epizootic dynamics of amphibian

chytrid fungus, there are a variety of other wildlife diseases in which host-parasite IPMs

could be applicable to explore the population and evolutionary outcomes of infection.

For example, Tasmanian devils Sarcophilus harrisii are threatened with extinction by

an infectious cancer, Tasmanian devil facial tumor disease (McCallum et al., 2009). A

critical question for management is to predict the impact of the disease as it enters

currently uninfected populations and to investigate evidence of selection for increased

resistance to infection or reduced tumor growth rates. Intensive mark-recapture data are

available, enabling the estimation of survival rates of infected and uninfected animals,

together with transition rates from uninfected to infected states (Hamede et al., 2012).

In addition, measurements of tumor size are taken from all infected animals at every

capture opportunity and repeated tumor measurements are available for a substantial

number of individuals, which could be used to estimate the tumor growth function.

One could examine whether the death rate of infected devils is related to the size of

the tumor, and then use the IPMs to examine how differences in tumor growth among

populations or over time might alter the dynamics of devil populations. It is highly

likely that the death rate of infected devils is related to the size of the tumor. This

problem may therefore be well-suited for an IPM approach, permitting more accurate

modeling of the impact of the tumor on devil population dynamics.

Similarly, an IPM approach could also be taken to explore various aspects of the ecol-

ogy and evolution of bats affected by white-nose syndrome, an emerging fungal disease

of North American bats (Blehert et al., 2008). White-nose syndrome is characterized

by intense transmission, such that nearly 100% of bats of multiple species may become
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infected during the first winter after the fungus reaches a site (Langwig et al., 2015b).

Mortality, which occurs 70-100 days after initial infection in lab studies (Warnecke et al.,

2012), usually occurs in mid to late winter when fungal loads are highest (Langwig et al.,

2015a). IPMs could be fit to pathogen loads and population dynamics of bats to explore

how temperature and humidity influence pathogen growth and disease impacts (Langwig

et al., 2012). Through modification of the growth function and survival function, IPMs

could be used to determine whether persistence of some stabilizing populations could be

explained by resistance or tolerance, or other factors affecting host-parasite interactions.

In conclusion, the use of IPMs can answer important questions regarding host-

pathogen interactions in wildlife and plant disease. Moreover, IPMs can provide new

insight into many classic micro and macroparasite patterns such as the distribution of

parasites across hosts, age-intensity profiles, and the dynamics of infection prevalence.

By bridging the gap between micro and macroparasites, IPMs provide an exciting new

frontier in modeling wildlife disease.
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Susceptible, S(t)

Infected, I(x, t)

Susceptible, S(t+ 1)

Infected, I(x′, t+ 1)

Reproduces

f0

f(x)

Survives, s(x)

Survives, s0

Doesn’t lose infection
1 - l(x)

Loses infection
l(x)

Growth, G(x′, x)

Not infected
1 - φ(I(x, t))

Infected
φ(I(x, t))

Initial infection
G0(x

′)

Figure 4.1: Life history flow chart for the host-parasite Integral Projection Model.
The chart shows how an infected host with a parasite load of x at time t can transition
to an infected host or susceptible/uninfected host with a parasite load of x′ or 0,
respectively, at time t+ 1. The chart also shows how an susceptible/uninfected host
at time t can transition to an infected host or susceptible/uninfected host with a
parasite load of x′ or 0, respectively, at time t+ 1.
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Figure 4.2: A. The laboratory data used to estimate the survival function s(x). Each
panel gives a different temperature and each point gives the load of an individual
frog at time t and whether it survived to time t + 1. A value of 1 indicates that a
frog survived and a value of 0 indicates that it died. No frogs died in temperature
treatments 4 and 12 °C. The black line in the 20 °C plot gives the fit of the temper-
ature-independent survival function used in the analysis, plus or minus the standard
error about the prediction. B. The laboratory Bd growth data and corresponding
temperature-dependent growth function G(x′, x) from the Bd -Rana muscosa labora-
tory experiment. Each point gives the log zoospore load on an individual at time t
and time t+ 1. The different colors show different temperatures. The corresponding
lines give the predicted growth function for a given temperature along with the stan-
dard error about the predicted mean. Growth of Bd on an individual frog increases
with both temperature and the number of zoospores at time t. Alternative models
for this growth function are discussed in Section 4.A.
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Figure 4.3: The growth function G(x′, x), loss of infection function l(x), initial in-
fection burden function G0(x′) and the survival/growth kernel (G(x′, x)s(x)) used
to parameterize the Bd -Rana muscosa Integral Projection Model for temperatures
between 4 and 20 °C. The four temperatures shown were chosen to illustrate how
the various vital rate functions change with temperature. Because each vital rate
function shown is a linear function of temperature (see Vital rate functions) we were
not restricted to choosing the 3 temperatures used to fit the vital rate functions (4,
12, and 20 °C) and could chose any temperature between 4 and 20 °C. The black line
on the survival/growth kernel plots is a one to one line representing stasis: above this
line the Bd load on a host gets larger in a time step and below this line the Bd load
on a host gets smaller in a time step.
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Figure 4.4: The host-parasite Integral Projection Model predictions for A. how the
expected time to Bd -induced Rana muscosa death varies with log zoospore load
and temperature and B. how the population growth rate (λ) of R. muscosa varies
with temperature. The black points are the median population growth rate for 1000
simulations that account for the uncertainty in the vital rate function parameters.
The error bars give the first and third quartiles of λ from these simulations.
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Figure 4.5: The stable Bd load distribution for infected Rana muscosa as predicted
by the parameterized host-parasite Integral Projection Model for various different
temperatures. The inset plot shows that the variance to mean ratio of this distribution
decreases with temperature.
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4.A Model selection for vital rate functions

4.A.1 Survival function: s(x)

In the main text, we parameterized the survival function s(x) using only individuals at 20 °C. As

discussed in the main text, we chose to do this because individuals at this temperature were the only

frogs that experienced mortality and we have substantial alternative evidence that the load-survival

relationship between R. muscosa and Bd is not strongly temperature dependent. An alternative way

that we could have parameterized the model was using all of the temperature data (4, 12, and 20 °C),

but without including an effect of temperature. Given the link function logit[s(x)] = b0 + b1x, the

parameters change from b0,only 20 °C = 11.5973 (SE: 4.74) to b0,all temperatures = 11.8241 (SE; 4.16) and

b1,only 20 °C = −0.8873 (SE: 0.45) to b1,all temperatures = −0.8605 (SE: 0.39) (Figure 4.S1). Despite these

seemingly small differences, our elasticity analysis shows that small changes in this survival function

can have large effects on the ability of R. muscosa to persist through an epizootic.

4.A.2 Growth Function: G(x′, x)

We explored a variety of different models for the growth functions G(x′, x) (Table 4.S1, Figure

4.S2). We did identify a more complex model than the model described in the manuscript that included

a quadratic term for log zoospore size and an interaction between temperature and log zoospore load

(Table 4.S1; Model 6). We chose to use the linear model (Model 2) because 1) the quadratic model

was highly specific for the data used to fit the model and did not give a generalizable Bd growth curve

(e.g. exponential growth) and 2) for a given temperature the quadratic model did not allow for realistic

extrapolation beyond the range of the data used to fit the model because for small log-zoospore loads

the function predicts that increasing the log zoospore load at time t decreases log zoospore load at time

t + 1 (i.e. when you are on the decreasing arm of the quadratic function, Figure 4.S4). This is not a

biologically reasonable pattern.

Despite these drawbacks, we ran the IPM analysis described in the paper using this quadratic

growth model. We accounted for the zero derivative of the quadratic function by defining the growth

function as the following piecewise function
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G(x′, x) if
dµ(x, T )

dx
> 0 (4.14)

G(x′, x0) if
dµ(x, T )

dx
≤ 0 (4.15)

where x0 is the log zoospore load at which the derivate of µ(x, T ) = b0+b1x+b2x
2+b3T +b4xT is equal

to 0. Analyzing the IPM with this growth function in place of the growth function used in the main text

provided qualitatively similar results: population growth rate decreased with increasing temperature

and the population growth rate was most sensitive to proportional changes in the parameters in the

growth function G(x′, x) and the survival function s(x). The major difference between the two growth

functions is that the IPM model with the quadratic growth function predicted slower Bd -induced

population declines than the linear model.

4.A.3 Loss of infection function: l(x)

The various models we fit for the loss of infection function l(x) are given in Table 4.S2. Model 3 and

Model 5 are the best models based on AIC. Model 5 in which temperature is a factor has a marginally

lower AIC than Model 3 in which temperature is continuous. A likelihood ratio test shows that Model

5 does not provide an overwhelmingly better fit than Model 3 (χ2
df=1 = 3.676, p = 0.055) so we used

the Model 3 (the linear model) because it allowed us to interpolate over all temperatures between 4 and

20 °C.

When fitting Model 3, there were three highly influential data points in which individuals lost

infections after having a log zoospore of 8.3, 10.36, and 8.1. Individuals with these large losses had

similar pre-loss loads at the next swabbing event (Figure 4.S9), leading us to believe that these large

losses were likely due to experimental error. Therefore, we excluded these points when fitting the model.

4.A.4 Initial infection burden function: G0(x
′)

The various models we fit for the initial function burden function are given in Table 4.S3. The nor-

malized residuals of the full model were not significantly different than a normal distribution (Shapiro-

Wilk test for normality: p = 0.827), thereby justifying the assumption of normality for the initial

infection distribution. Similar to the loss of infection function, there were three outlying log-zoospore
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initial loads of 7.15, 8.26, and 11.81, which were the same spurious transitions observed in the loss of

infection function, but in this case the points were an unrealistic gain in zoospores after the unrealistic

loss of zoospores (Figure 4.S9). These points were again excluded from the analysis. After this exclu-

sion, there was only one transition from 0 to infected at 20 °C. Diagnostic plots for the model used in

the main text (given in bold in Table 4.S3) are given in Figure 4.S3.

4.A.5 Density-independent transmission function: φ(T )

We explored three different density-independent transmission models. In the first model, the prob-

ability of infection was independent of temperature (Model 1). In the second model, temperature was

a linear predictor of the probability of infection (Model 2). In the third model, temperature was a

factor predicting the probability of infection. The model with a linear effect of temperature was the

best model based on AIC criteria (Table 4.S4).

4.B The effect of eviction on the Bd-Rana muscosa

Integral Projection Model

Given the parameterized density-independent IPM described in the main text, we examined the

effects of eviction (loss of individuals from the model because their predicted future loads are outside

the model range) using the examples and code given in Williams et al. (2012). In Table 4.S5, we show

the maximum size-dependent eviction value ε(x) as given by equation 2 in (Williams et al., 2012) for

the host-parasite IPM model at four different temperatures. These values are non-zero, indicating that

eviction is occurring in our parameterized IPM with a lower bound of -5 and an upper bound of 18.

To assess the effect of eviction on the IPM predictions, we also show the value dλ which gives the

effect of eviction on the predicted population growth rate (Williams et al., 2012). For all temperatures

between 4 and 20 °C (4 temperatures shown in Table 4.S5), dλ is very small indicating that despite

eviction occurring in the parameterized IPM, it is having very little effect on the predictions of the

IPM. Therefore, we felt confident in interpreting the IPM with the given upper and lower bounds.
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4.C R0 for host-parasite Integral Projection Models

4.C.1 Derivation of R0 for IPMs

Calculating R0 for Integral Projection Models (IPM)s is challenging because IPMs can be used

to represent the dynamics of both microparasites and macroparasites. Therefore, R0 will need to

be computed and understood differently depending on the which type of parasite is being considered

and the structure of the IPM. For microparasites, R0 is defined as the average number of secondary

infections produced by a typical infectious individual over its infective lifetime (Diekmann et al., 1990).

For macroparasites, R0 is defined as “the number of new female parasites produced by an average

female parasite when there are no density-dependent constraints acting anywhere in the life cycle of

the parasite” (Tompkins et al., 2002). We adopt a microparasite definition of R0 for the remainder

of this discussion, bearing in mind that a host-parasite IPM could easily be formulated such that the

macroparasite definition of R0 is more appropriate.

To define a microparasite R0 for the host-parasite IPM described in the main text (equations 1

and 2), we start by considering density-dependent transmission such that the probability of becoming

infected in a time step t is

φ(I(x, t)) = 1− exp

(
β

∫ U

L

I(x, t)dx

)
(4.16)

We then note that the host-parasite IPM model can be analogously stated as a (S)usceptible-(I)nfected-

(S)usceptible model with a continuous I(x) class. When analyzing the IPM model, it is standard practice

to discretize the IPM into some number of n bins such that the IPM can be represented as a matrix

model with a large number of classes (Coulson, 2012). This could be thought of as re-expressing the SIS

model with a continuous I class as an S-I1-I2-I3-. . . -In-S model with many discrete I classes. Using this

discretized approach, R0 can be calculated using the methods described in Allen and van den Driessche

(2008) and Klepac and Caswell (2011). Following the notation of Klepac and Caswell (2011), the partial
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matrix representation of the IPM that we use to calculate R0 is given by




S

I




(t+ 1) =




0 0

M(I) N(I)







S

I




(t) = m(I(t))S(t) + UI(t) = I(t+ 1) (4.17)

where the top two entries are 0 because they are not needed when calculating R0 (i.e. R0 only depends

upon individuals entering the infected classes or individuals that are already in the infected classes),

not because they are actually 0 in the IPM model (Oli et al., 2006; Klepac and Caswell, 2011). I is

a vector of length n that gives the various infected parasite load classes. m(I) is a vector of length n

where each element gives the probability of transitioning from class S (uninfected/susceptible) to an

infected class with parasite load xi where i is between 1 and n. We use this notation loosely as it is

really the probability of transitioning to an infected class with a load in the interval xi ±∆/2 where xi

is the midpoint of this interval. ∆ arises from using the midpoint rule to evaluate the IPM (Easterling

et al., 2000). Each ith element of the vector m(I) is given by

mi(I(t)) = s0φ(I(t))G0(xi)∆ (4.18)

where s0 represents the probability of an uninfected individual surviving and G0(xi) is the probability

density function of transitioning from uninfected (S) to infected with a load of xi as defined in the main

text. ∆ is needed to convert the probability density G0(xi) to a probability.

U is a n x n matrix that specifies the transition probabilities of infected individuals among different

load classes. The element in the ith row and the jth column of the matrix is given by

uij = s(xj)(1− l(xj))G(xi, xj)∆ (4.19)

which gives the probability of an individual in the jth load class surviving (s(xj)), not losing its infection

(1− l(xj)), and transitioning to the load class of xi in a time step (G(xi, xj)).

To calculate R0, we then linearize I(t+ 1) about a vector n∗ which we set to be a host population

with only susceptibles (Rohani et al., 2009; Klepac and Caswell, 2011), N∗ = [S∗ 0] where 0 is a vector
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of zeros of length n. We then compute the Jacobian matrix evaluated at n∗

J =
dI(t+ 1)

dI(t)

∣∣∣∣
n∗

(4.20)

which allows us to compute R0 (Klepac and Caswell, 2011).

In the above case, one could compute J as follows. First compute,
dUI(t)

dI(t)

∣∣∣∣
n∗

which is simply U.

This is just the transition matrix for the infected individuals of various load classes. Next, compute

dm(I(t))

dI(t)

∣∣∣∣
n∗

, which results in a column vector m of length n where each element is given by

dmi(I(t))

dI(t)
= βs0S

∗G0(xi)∆ (4.21)

Now let M be an n by n matrix with each column being equal to m so that J = M + U. R0 is

then given by

R0 = max eig(M(1−U)−1) (4.22)

where 1 is the identity matrix and M is equivalent to the “fertility” matrix described in Klepac and

Caswell (2011). “max eig” refers to the maximum eigenvalue of this matrix.

A helpful approximation of this result can be derived by “collapsing” the various infected classes

I(t) into a single infected class I(t). The model is then reduced to a simple SIS model with the following

transition matrix (where we again include 0s where the transitions do not affect the calculation of R0)




S

I




(t+ 1) =




0 0

s0φ(I(t)) s̄I(1− l̄)







S

I




(t) = s0φ(I(t))S(t) + s̄I(1− l̄)I(t) = I(t+ 1) (4.23)

where s̄I is the survival probability for an average infected individual and l̄ is the probability of an

average infected individual losing an infection.

Using the sames steps as above the resulting value of R0 is

R0 =
βs0S

∗

1− s̄I(1− l̄)
(4.24)
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4.C.2 Application of R0 to Bd-R. muscosa

Using equations 4.22 and 4.24, we computed R0 for the Bd -Rana muscosa system described in

the main text as an illustrative example. Note that in this example, we assumed density dependent

transmission without any probability of acquiring an infection from the environmental reservoir as we

do in the main text. We make this simplification here because without accounting for the decay of the

pathogen in the environment, an R0 that accounts for both transmission due to the environment and

other infected individuals would be trivially ∞ (Rohani et al., 2009). An environmental reservoir could

be more explicitly incorporated in the host-parasite IPM by including an additional state variable Z(t)

which gives the total number of parasites in the environment at time t.

We set the transmission coefficient β = 9.82e10−4 which was the transmission coefficient estimated

in Rachowicz and Briggs (2007) for density-dependent transmission in Bd -Rana muscosa and assumed

an initial susceptible population of 100 frogs (S∗ = 100). Otherwise, all values for the hosts-parasite

IPM were as given in Table 1 the main text. To compute s̄I and l̄ in equation 4.24, we assumed a density-

independent host-parasite IPM (equations 7 and 8 in the main text) with φ = 1−exp(−β) and calculated

the stable parasite load distribution conditional on infection (p(x)) giving the probability density of

having some parasite load x. We used this probability distribution to compute the expected survival

and loss probability of an average infected individual as s̄I =
∫ U
L
s(x)p(x)dx and l̄ =

∫ U
L
l(x)p(x)dx,

respectively.

Figure 4.S10 shows the temperature dependence of R0 for this illustrative example parameterized

from the Bd -R. muscosa IPM. Notice that the approximation given by equation 4.24 is nearly identical

to the predictions for R0 from equation 4.22. At low temperatures, R0 is less than 1 and proceeds

to increase as temperature increases. At approximately 12 °C, R0 ¿ 1. However, around 17 °C the

R0 reaches a maximum and begins to decline. This is due to the average probability of losing an

infection l̄ quickly and non-linearly decreasing as temperature increases and the average probability of

surviving with an infection s̄I holding relatively constant with temperature and then rapidly decreasing

as temperature increases past 17 °C.
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Table 4.S1: Candidate models for the growth function G(x′, x). All models assumed
a normal distribution for the response variable. T is temperature, x is log zoospore
size at time t, and ri represents a random effect of an individual frog. The model
with the bold AIC value is the model used in the main text.

Model Mean Component Variance Component AIC

1 µ(x, T ) = b0 + b1x+ b2T σ2 1067.8

2 µ(x, T ) = b0 + b1x+ b2T σ2(x) = ν exp(2cx) 1060.0

3 µ(x, T ) = b0 + b1x+ b2T σ2(x, T ) = ν exp(2c1x +
2c2T )

1060.7

4 µ(x, T )i = b0 + b1x+ b2T + ri σ2(x) = ν exp(2cx) 1061.8

5 µ(x, T ) = b0 + b1x+ b2T + b3xT σ2(x) = ν exp(2cx) 1061.0

6 µ(x, T ) = b0 + b1x+ b2T + b3xT +
b4x

2

σ2(x) = ν exp(2cx) 1045.3

7 µ(x, T ) = b0 + b1x+ b2T + b3x
2 σ2(x) = ν exp(2cx) 1049.3
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Table 4.S2: Candidate models for the loss of infection function l(x). All models
assumed a binomial distribution for the response variable. T is temperature, Ti is
temperature as a factor, and x is log zoospore load at time t. The model with the
bold AIC value is the model used in the main text.

Model Mean Component AIC

1 logit(l(x)) = b0 + b1x 193.0

2 logit(l(T )) = b0 + b1T 202.1

3 logit(l(x, T )) = b0 + b1x+ b2T 180.4

4 logit(l(x, T )) = b0 + b1x + b2T +
b3xT

182.4

5 logit(l(x, T ))i = b0 + b1x+ Ti 178.7

203



Integral Projection Models for host-parasite systems with an application to amphibian chytrid
fungus Chapter 4

Table 4.S3: Candidate models for the initial infection burden function G0(x′). All
models assumed a normal distribution for the response variable. T is temperature,
Ti is temperature as a factor, and x is log zoospore load at time t. The model with
the bold AIC value is the model used in the main text.

Model Mean Component Variance Component AIC

1 µ(T ) = b0 + b1T σ2 149.2

2 µ(T )i = b0 + Ti σ2 148.5

3 µ(T ) = b0 + b1T σ2(T ) = ν exp(2cT ) 145.2
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Table 4.S4: Candidate models for the density-independent transmission function
φ(T ). All models assumed a binomial distribution for the response variable. T is
temperature and Ti is temperature as a factor. The model with the bold AIC value
is the model used in the main text.

Model Mean Component AIC

1 logit(φ) = b0 198.0

2 logit(φ(T )) = b0 + b1T 193.9

3 logit(φ(T )i) = b0 + Ti 195.8
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Table 4.S5: Table shows the effect of eviction on the Batrachocytrium dendroba-
tidis-Rana muscosa Integral Projection Model described in the main text at 4 differ-
ent temperatures. ε(x) specifies the maximum value of eviction occurring in the IPM
model as given by equation 2 in Williams et al. (2012). A value of zero indicates no
eviction is occurring while a non-zero value indicates that eviction is occurring in the
IPM. dλ gives the effect of this eviction on the predicted population growth rate. In
other words, how much would this growth rate change if no eviction was occurring.
Despite eviction occurring in the Bd -R. muscosa IPM, it is having little effect on the
predicted population growth rate.

Bd-R. muscosa IPM ε(x) dλ

at 4 °C 0.32 2.26e-05

at 10 °C 0.26 2.74e-05

at 15 °C 0.22 2.52e-05

at 20 °C 0.18 1.45e-08
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Figure 4.S1: Comparison of survival functions fit from two different subsets of the
data. The blue line shows the survival function used in the Integral Projection Model
(IPM) analysis described in the main text and only includes data from individuals
housed at 20 °C. The red line shows an alternative survival function that was param-
eterized using the data from all temperatures used in the experiment (4, 12, 20 °C).
The dashed vertical line gives the 10,000 zoospore threshold reported by Vredenburg
et al. (2010), which gives an approximate threshold at which R. muscosa begins to
experience Bd -induced mortality in the field. While the survival curves from the two
models are very similar, our elasticity analysis shows that even this small difference
can have large effects on whether an R. muscosa population can persist through an
epizootic at high temperatures.
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Figure 4.S2: Diagnostic plots for the Model 2 in Table 4.S1. The noticeable pattern in
the residual plot (red line) can be accounted for with a quadratic term in the growth
function (Model 6, Table 4.S1). As discussed in the subsection Growth Function:
G(x′, x) we chose to use this linear model for the growth function, but explored the
effects of the alternative, non-linear growth function on the IPM predictions.
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Figure 4.S3: Diagnostic plots for the Model 3 in Table 4.S3. The data point to the far
right in the residual plot shows the single data point for a transition of an individual
from 0 to infected at a temperature of 20 °C.
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Figure 4.S5: A local elasticity analysis of the population growth rate λ to the vital
rate parameters used in the Bd -Rana muscosa IPM. The x axis gives all the vital
rate parameters used in the Bd -R. muscosa IPM model. Each x axis label specifies
the vital rate function to which a parameter belongs as well as the identity of that
parameter. The parameters labeled as b0,j represent the intercepts of the given vital
rate functions. The parameters labeled as load and temperature identify the load and
temperature parameters of the given vital rate function. The parameters specified as
variance refer to the parameters affecting the variance of the vital rate function, where
ν0,j gives the variance of the vital rate function when the effect of other covariates on
the variance is 0. The points represent the median elasticity of λ to a given parameter
based on 1000 simulations and the error bars give the first and third quartiles of the
uncertainty around this elasticity.
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Figure 4.S6: A local elasticity analysis of the variance to mean ratio of the Bd load
distribution to the vital rate parameters used in the Bd -Rana muscosa IPM. The x
axis gives all the vital rate parameters used in the Bd -R. muscosa IPM model. Each x
axis label specifies the vital rate function to which a parameter belongs as well as the
identity of that parameter. The parameters labeled as b0,j represent the intercepts
of the given vital rate functions. The parameters labeled as load and temperature
identify the load and temperature parameters of the given vital rate function. The
parameters specified as variance refer to the parameters affecting the variance of
the vital rate function, where ν0,j gives the variance of the vital rate function when
the effect of other covariates on the variance is 0. The points represent the median
elasticity of the variance to mean ratio to a given parameter based on 1000 simulations
and the error bars give the first and third quartiles of the uncertainty around this
elasticity.
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Figure 4.S7: Prevalence of Bd at the end of a 120 day epizootic given different
transmission coefficients (β) and environmental infection probabilities (ω) for the
density-dependent transmission function. This plot shows 40 x 40 systematically
chosen pairs of β and ω for which the Bd -prevalence dynamics were examined. Each
panel shows the change in Bd prevalence in Rana muscosa populations with the
different parameter combinations for a given temperature between 12 and 20 °C.
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Figure 4.S8: Proportional population loss of Rana muscosa at the end of a 120 day
epizootic given different transmission coefficients (β) and environmental infection
probabilities (ω) for the density-dependent transmission function. This plot shows
40 x 40 systematically chosen pairs of β and ω for which the population dynamics
were examined. Each panel shows the change in proportional population loss for R.
muscosa with the different parameter combinations for a given temperature between
12 and 20 °C.
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Figure 4.S9: Infection trajectories of individual Rana muscosa housed at 4, 12, and
20 °C. Each line represents the Bd load trajectory of a particular Rana muscosa
individual.

215



Integral Projection Models for host-parasite systems with an application to amphibian chytrid
fungus Chapter 4

0.5

1.0

1.5

5 10 15 20
Temperature, C

R
0

Method

Collapsed R0

Full R0

Figure 4.S10: Plots of R0 for a Rana muscosa-Bd IPM with density dependent trans-
mission parameterized based on the parameters provided in Table 1 in the main text.
The only parameter that was not from Table 1 was the transmission coefficient β
which was set to be 9.82e10−4 based on Rachowicz and Briggs (2007). The number
of susceptible individuals in the initial population was set to S∗ = 100. R0 was com-
puted using both equation 4.22 (the blue line, Full R0) and equation 4.24 (the red
line, Collapsed R0)
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5.1 Abstract

While disease-induced extinction is generally considered rare, a number of recently emerging infec-

tious diseases with load-dependent pathology have led to extinction in wildlife populations. Transmis-

sion is a critical factor affecting disease-induced extinction, but the relative importance of transmission

compared to load-dependent host resistance and tolerance is currently unknown. Using a combination

of models and experiments on an amphibian species suffering extirpations from the fungal pathogen Ba-

trachochytrium dendrobatidis (Bd), we show that while transmission from an environmental Bd reservoir

increased the ability of Bd to invade an amphibian population and the extinction risk of that popu-

lation, Bd-induced extinction dynamics were far more sensitive to host resistance and tolerance than

to Bd transmission. We demonstrate that this is a general result for load-dependent pathogens, where

non-linear resistance and tolerance functions can interact such that small changes in these functions

lead to drastic changes in extinction dynamics.

5.2 Introduction

Disease-induced extinction of a host population is considered rare (De Castro and Bolker, 2005;

Smith et al., 2006; McCallum, 2012). This is because in many systems disease transmission is an

increasing function of the density of infected hosts (i.e. density-dependent transmission) such that de-

creasing host density reduces disease transmission and prevents disease-induced extinctions (McCallum

and Dobson, 1995; Gerber et al., 2005). Theoretical models suggest that to drive a host population

extinct, a disease needs to have alternative transmission dynamics such that declining host density does

not prevent further disease transmission (De Castro and Bolker, 2005; Smith et al., 2006; McCallum

et al., 2009). For example, frequency-dependent transmission, in which hosts have a density-independent

number of contacts with other hosts per unit time (McCallum et al., 2001), or abiotic/biotic reservoirs

for the pathogen are two transmission scenarios that can lead to disease-induced host extinction. In both

cases, decreasing host density does not necessarily lead to a decrease in disease transmission. Despite

the rarity of disease-induced host extinction (Smith et al., 2006), a number of wildlife diseases, such as

chytridiomycosis in amphibians, white-nose syndrome in bats, and facial tumor disease in Tasmanian

devils, have recently been identified as the causative agents of host declines and population extinctions
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(Skerratt et al., 2007; Blehert et al., 2008; McCallum et al., 2009).

While the characteristics of the transmission function in these emerging infectious diseases may

ultimately determine whether a population experiences disease-induced extinction (McCallum, 2012),

extinction dynamics will also be influenced by how resistant (i.e. the ability of a host to reduce or

eliminate a pathogen conditional on exposure; Boots et al., 2009; Medzhitov et al., 2012) and/or tolerant

(i.e. the ability of a host to persist with a pathogen load that is typically lethal for non-tolerant

individuals; Roy and Kirchner, 2000; Medzhitov et al., 2012) a host is to the pathogen. Therefore,

when managing disease-induced declines and extinctions, it may be important to manage not only for

the transmission dynamics, but also the level of host tolerance and resistance in a population (Kilpatrick,

2006; Langwig et al., 2015, 2017; Epstein et al., 2016). However, the conditions under which it might

be more effective to manage for resistance and tolerance instead of transmission are currently unknown.

Understanding the relative importance of resistance and tolerance compared to transmission in

driving extinction dynamics has important implications for managing the emerging amphibian disease

chytridiomycosis. Chytridiomycosis is caused by the amphibian chytrid fungus Batrachochytrium den-

drobatidis (Bd) and has resulted in widespread amphibian declines and extinctions (Daszak et al., 2003;

Skerratt et al., 2007). Bd is a cutaneous fungus that disrupts the osmoregulatory ability of amphibian

skin, leading to the potentially fatal disease chytridiomycosis (Voyles et al., 2007, 2009). While a number

of transmission-related factors, including an environmental pool of Bd zoospores and biotic reservoirs,

are hypothesized to contribute to disease-induced extinction of amphibian populations (Rachowicz and

Briggs, 2007; Mitchell et al., 2008; Briggs et al., 2010; McCallum, 2012; Doddington et al., 2013), few

studies have attempted to quantify the transmission function itself (but see Rachowicz and Briggs

(2007) and Bielby et al. (2015)). Quantifying the transmission function is important when considering

disease-induced extinction because it determines the ability of a pathogen to invade a population as

well as drive a host population extinct (De Castro and Bolker, 2005; Gerber et al., 2005).

In addition to the transmission function, extinction dynamics in amphibian-Bd systems also depend

on the dynamics of Bd load on an amphibian host (Briggs et al., 2010). Varying Bd load dynamics

among amphibian populations, potentially induced by varying resistance and tolerance mechanisms,

can promote population-level persistence following epizootics (Retallick et al., 2004; Briggs et al., 2010;

Grogan et al., 2016; Savage and Zamudio, 2016). This variation in resistance and tolerance could be due

to a number of different mechanisms including innate and acquired immune responses (Ellison et al.,
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2015), differences in host susceptibility (Knapp et al., 2016), variation in the amphibian microbiome

(Harris et al., 2009; Jani and Briggs, 2014), temperature-dependent Bd growth (Forrest and Schlaepfer,

2011; Knapp et al., 2011), and variable virulence in Bd strains (Rosenblum et al., 2013; Jenkinson et al.,

2016). Load dynamics are important in Bd systems because disease-induced mortality of amphibians

is highly load-dependent, with survival probability sometimes decreasing rapidly at high Bd loads

(Stockwell et al., 2010; Vredenburg et al., 2010). This attribute of load-dependent survival leads to

a simple, but largely untested hypothesis in host-pathogen systems: host populations that are either

able to prevent large increases in pathogen load (via resistance mechanisms) or tolerate high pathogen

loads (via tolerance mechanisms), will experience reduced disease-induced extinction risk, even when

the transmission rate is high. This is a general hypothesis for load-dependent wildlife diseases and

amphibian-Bd interactions provide an ideal system in which to test it.

The above hypothesis can be phrased as the following question: How important is transmission

compared to host tolerance and resistance for mitigating disease-induced extinction? Answering this

question requires quantifying the transmission function, something rarely done in amphibian-Bd systems

(Kilpatrick et al., 2010). Moreover, understanding the role of this transmission function in the ability of

Bd to invade an amphibian population will be important for accurately understanding any subsequent

Bd-induced extinctions (Gerber et al., 2005). Therefore, we also ask two additional questions: What is

the nature of the transmission function in amphibian-Bd systems? How does this transmission function

affect the ability of Bd to invade an amphibian population? We use a combination of experiments

and dynamical models to show that empirical patterns of Bd transmission are best modeled using an

environmental Bd pool and that this pool significantly increases the ability of Bd to invade a population

and the population-level extinction risk. However, despite this large effect of the environmental pool,

we show that host resistance and tolerance are far more influential on Bd-induced extinction dynamics

than transmission. This is likely a general property of load-dependent diseases in which non-linear

resistance and/or tolerance functions interact such that managing for resistance and tolerance can more

effectively mitigate disease-induced extinction than managing for transmission.
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5.3 Methods

To answer the questions posed above, we focused on Bd-induced extinction dynamics in the Moun-

tain yellow-legged frog complex (Rana muscosa and Rana sierrae, henceforth R. muscosa). R. muscosa

are native to California’s Sierra Nevada mountains and have experienced significant Bd-induced popu-

lation declines and extinctions over the last four decades (Briggs et al., 2005; Vredenburg et al., 2010;

Briggs et al., 2010; Knapp et al., 2016). Using this host-parasite system, the Methods section is organized

as follows.

First, we used a laboratory experiment to quantify the well-known importance of temperature-

dependent Bd growth dynamics on R. muscosa (Andre et al., 2008; Wilber et al., 2016). Second, we

used a mesocosm experiment to quantify the nature of the transmission function in the R. muscosa-Bd

system, testing for both density-dependent transmission, frequency-dependent transmission, and trans-

mission from an environmental zoospore pool. Third, we used the results from these experiments to

build a discrete-time, host-parasite Integral Projection Model (IPM) and derived R0 with an environ-

mental zoospore pool. We used this result to explore the effects of the zoospore pool on Bd invasion.

Finally, to answer our primary question regarding the relative importance of transmission compared to

resistance and tolerance on extinction risk, we extended our model to consist of a within-year compo-

nent in which Bd transmission and disease-induced amphibian mortality occurred and a between-year

component in which R. muscosa demographic transitions occurred (Figure 5.1). Using this hybrid

model, we explored the sensitivity of Bd-induced extinction to transmission, resistance, and tolerance.

5.3.1 Laboratory and mesocosm experiments

We used laboratory and mesocosm experiments to quantify the temperature-dependent load dy-

namics and the transmission dynamics in the R. muscosa-Bd system. The laboratory experiment is

fully described in Wilber et al. (2016) and consisted of 15 adult frogs housed at 3 different temper-

atures (4 °C, 12 °C, 20 °C; 5 frogs per temperature). Wilber et al. (2016) used this experiment to

parameterize four functions relating to Bd load dynamics: a load-dependent host survival function and

a temperature-dependent Bd growth function, loss of infection function, and initial infection function

(Fig. 5.S1, see Table 1 for function descriptions).

To quantify the nature of the transmission function in this system, we performed a mesocosm
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experiment that consisted of four different density treatments: 1, 4, 8, and 16 uninfected adult frogs per

mesocosm (volume ≈ 1 m3). Each treatment was replicated four times for a total of 16 mesocosms (see

Section 5.A). In addition to the uninfected adults, each mesocosm started with five infected tadpoles,

which could release Bd zoospores into the environment and subsequently infected adults. All of the

adults in a mesocosm were uniquely identifiable by pit tags, but the five tadpoles were not. The

experiment ran for 74 days and every 4-8 days all adults and tadpoles in a mesocosm were swabbed

and the zoospore load on each was determined using quantitative PCR (Boyle et al., 2004). Frogs and

tadpoles within a mesocosm were always swabbed on the same day.

To estimate the transmission function, we measured the load transitions on all adult frogs from

time t to t+ ∆t over the first 32 days of the experiment (∆t = 4-8 days depending on the time between

swabs in the experiment). We only used the first 32 days of the experiment as after this time point all

amphibians experienced an unexplained decline in zoospore loads (see Fig. 5.S2). However, because

the load trajectories over these first 32 days were consistent with other experiments (e.g. Wilber et al.,

2016) and transitions from uninfected to infected tended to occur before day 32, we felt confident in

estimating transmission dynamics from only the first 32 days. Moreover, we replicated the experiment

in silico to demonstrate that we could recover known transmission functions over the first 32 days of

the experiment (Section 5.A). As transmission is the probability of an uninfected individual gaining an

infection in a time step, we only included transitions where Bd load was 0 at time t (n = 333). If the

load at time t+ ∆t was positive we assigned this data point a value of 1 (infected) and if the load was

still zero we assigned it a value of 0 (uninfected).

Uninfected frogs can acquire Bd infection through contact with other infected frogs and through

contact with zoospores in an environmental Bd pool (Courtois et al., 2017). To account for these

different pathways, we fit two sets of transmission models to the data. The first set of models as-

sumed a constant level of infection from the zoospore pool and either density-dependent or frequency-

dependent transmission from conspecifics (Table 2). The second set of models allowed transmission

to be a function of how many zoospores were in the zoospore pool at time t in addition to either

density-dependent or frequency-dependent transmission. In Section 5.A, we describe how we defined

and fit our transmission models with a dynamic zoospore pool. In short, we used the transmission

function φ(t) = 1 − exp(−Λ(Z(t), I(t))∆t) and allowed for the zoospore pool Z(t) at time t to be an

unobserved, dynamic variable that lost zoospores due to environmental decay and gained zoospores
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due to production from infected adults and tadpoles at every time step. I(t) is the number of infected

adults at time t. Table 2 gives the transmission functions and the resulting fits to the data from the

mesocosm experiment.

5.3.2 The host-parasite IPM and R0

The host-parasite IPM

Using the aforementioned laboratory and mesocosm experiments, we parameterized a host-parasite

Integral Projection Model (IPM) where Bd load on an individual frog was the continuous trait being

modeled (Fig. 5.1B; Metcalf et al., 2015; Wilber et al., 2016). Bd load on a frog is estimated as the

number of copies of Bd DNA detected on standardized skin swabs via quantitative PCR (Boyle et al.,

2004) and provides a continuous measure of infection intensity between 0 (uninfected) and an arbitrarily

large Bd infection. The IPM is a discrete time model and here a single time step is three days. This time

step is on the same scale as the generation of time of Bd, which ranges between 4-10 days depending on

temperature (Piotrowski et al., 2004; Woodhams et al., 2008). We used the discrete-time IPM because

it is easily parameterized from laboratory data which is collected at discrete time intervals.

This IPM tracks two discrete stages at time t: the density of susceptible adults SA(t) in the

population and the density of zoospores in the environment Z(t). This model also tracks a continuous,

infected stage IA(x, t) where x is ln Bd load and
∫ Ux

Lx
IA(x, t)dx gives the density of adult frogs with

a ln Bd load between a lower bound Lx and an upper bound Ux at time t. This continuous, infected

stage tracks the distribution of Bd loads at any time t in the population.

Considering these discrete and continuous stages, the amphibian-Bd IPM can be written as follows

(Fig. 5.1B)

SA(t+ 1) = SA(t)s0(1− φ) +

∫ Ux

Lx

IA(x, t)sA(x)lA(x)dx (5.1)

IA(x′, t+ 1) =

∫ Ux

Lx

IA(x, t)sA(x)(1− l(x))G(x′, x)dx+ SA(t)s0φG0(x′) (5.2)

Z(t+ 1) = Z(t)ν + µA

∫ Ux

Lx

exp(x)IA(x, t)dx− ψ(SA(t), Z(t)) (5.3)

SA(t+ 1) describes the density of susceptible adults at time t+ 1 and is determined by the number
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of adults that survive and do not become infected in a time step (first term in equation 1) and the

number of infected adults that survive and lose their infection in a time step (second term in equation 1).

IA(x′, t+1) describes the density of infected adults with a ln Bd load x′ at time t+1 and is determined

by infected adults who survive with load x, do not lose their load x, and experience a change in load

from x to x′ in a time step (first term in equation 2) and from uninfected adults who survive, become

infected, and gain an initial Bd load of x′ in a time step (second term in equation 2). The vital rate

functions contained in equations 1-3 are described in Fig. 5.1B and Table 1.

The equation Z(t + 1) gives the density of zoospores in the zoospore pool at time t + 1. Z(t + 1)

depends on three distinct terms: the survival probability of the zoospores in the environment from

time t to t + 1 (ν), contribution of zoospores from infected adults where µA is the proportion of total

zoospores on adults contributed to the zoospore pool over a time step, and removal of zoospores from

the zoospore pool by frogs transitioning from uninfected to infected. This removal term ψ(SA(t), Z(t))

had very little effect on the dynamics of the system and we do not consider it further.

Based on the laboratory experiment described above and known Bd life history (Woodhams et al.,

2008), we allowed various vital rate functions to be temperature-dependent (e.g. the survival of free-

living zoospores, Table 1, Fig. 5.S1).

R0 with an environmental reservoir

Using the IPM described in equations 1-3, we calculated R0 to quantify how temperature and

the transmission dynamics affected the ability of Bd to invade a R. muscosa population – a necessary

condition for Bd-induced population declines and extinction. R0 describes the average number of

secondary infections produced over the lifetime of an average infected agent (Diekmann et al., 1990;

Dietz, 1993). When R0 ≤ 1, a pathogen cannot invade a fully susceptible host population. When

R0 > 1, a pathogen can invade a fully susceptible host population with probability 1− (1/R0) (Gerber

et al., 2005; Allen, 2015).

In Section 5.B we show that, consistent with continuous-time disease models (Rohani et al., 2009),

R0 for discrete-time IPMs with an environmental reservoir is composed of transmission from host contact

and the environment. We use this result in combination with our fully parameterized host-parasite IPM

to calculate the temperature-dependent R0 for R. muscosa-Bd systems with and without infection from

the environmental zoospore pool.
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5.3.3 The hybrid model

The model described by equations 1-3 is sufficient to describe the dynamics of an initial epizootic,

but to examine Bd-induced extinction dynamics in R. muscosa populations a number of additions need

to be made. We briefly describe the hybrid model that accounts for the within-year Bd dynamics as

well as the between year demography of R. muscosa. Fig. 5.1 gives a visual representation of the hybrid

model and Section 5.C gives a full description.

The within-year component (Fig. 5.1B.), is identical to the IPM given in equations 1-3 with the

addition of three tadpole stages. The tadpole stage of R. muscosa is likely important in generating

enzootic dynamics in R. muscosa populations (Briggs et al., 2005, 2010). We assumed all tadpoles were

immediately infected with Bd and had a constant mean contribution to the zoospore pool (Table 1).

This is justified by the observation that most tadpoles in R. muscosa populations carry high fungal

loads, even in enzootic populations (Briggs et al., 2010). R. muscosa tadpole survival is not affected

by Bd infection. Therefore, the within-season dynamics of the tadpole stages were simply given by

the probability of a tadpole surviving from time t to t + 1. Infected tadpoles also contributed to the

zoospore pool at each time step (Fig. 5.1B).

R. muscosa populations also experience seasonal temperature fluctuations in which winter lake

temperatures drop to approximately 4 °C in the winter (in the unfrozen portion of a lake where the

frogs overwinter) and reach approximately 20 °C in the summer (Knapp et al., 2011). We accounted for

this seasonal variability by imposing a deterministically fluctuating environment on the R. muscosa-Bd

IPM (Fig. 5.1A). At each discrete time point within a season, a new temperature was calculated and

the temperature-dependent vital rate functions were updated accordingly.

The between-year component of the hybrid model accounted for yearly maturation and meta-

morphosis of the tadpole stages as well as reproduction of adults (Fig. 5.1C). We assumed that the

recruitment of metamorphed tadpoles into the adult stage was density-dependent and that all tadpoles

entered the adult stage as uninfected (i.e. all individuals are infected as tadpoles, but lose their infection

at metamorphosis, Briggs et al., 2010). Because we have no empirical evidence for Bd-induced fertility

reduction in R. muscosa, we assumed that reproduction in uninfected and infected adults was the same.
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5.3.4 Simulating the hybrid model

After parameterizing the hybrid model using the above experiments, we used the model to make

predictions about the probability of disease-induced host extinctions. Because demographic stochas-

ticity is important when predicting extinction for small populations (Lande et al., 2003), we included

it into the hybrid model (Caswell, 2001; Schreiber and Ross, 2016). To do this, we first discretized

the within-season IPM using the mid-point rule and 30 mesh points (Easterling et al., 2000) and then

determined the transition of an individual frog or zoospore to another state (including death) as a draw

from a multinomial distribution with probabilities given by the discretized hybrid model at that time

step (Section 5.D). In addition, we assumed that both the production of tadpoles that occurs once a

year in the spring and the number of zoospores shed into the zoospore pool at each time step followed

a Poisson distribution (Section 5.D).

To answer our question regarding the importance of transmission, resistance, and tolerance on Bd-

induced extinction, we performed two analyses. First, we examined how different transmission functions

parameterized from our mesocosm experiment affected extinction risk. Using the three transmission

functions with a dynamic zoospore pool described in Table 2 and the parameter values given in Table

1, we performed 500 stochastic simulations of the hybrid model to generate time-dependent extinction

curves over a 25 year period. All simulations were started with 10 uninfected adult frogs, 85 year-one

tadpoles (T1), 12 year-two tadpoles (T2), and 3 year-three tadpoles (T3). The relative proportions of

adult frogs and tadpoles were assigned based on the stable stage distribution in the Bd-free model.

While the initial conditions necessarily affect the absolute time to extinction, they do not affect the

shapes of the extinction curves for different transmission functions relative to each other. All simulations

started in the winter at 4 °C, with reproduction occurring in the first spring at 12 °C (Fig. 5.1A). Given

our analysis of R0 in the previous section, we assumed that Bd could invade with a probability of

one, such that tadpoles were immediately infected with Bd and began contributing to the zoospore

pool Z(t) (see Section 5.D). For each simulation, we calculated time-dependent extinction curves as the

mean probability of going extinct in a given time step over all 500 simulations.

Second, we performed a sensitivity analysis on the hybrid model to assess the relative importance

of transmission compared to resistance and tolerance. Transmission was determined by the parameters

in the transmission function φ, resistance was determined by the parameters in the growth function
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G(x′, x), the loss of infection function l(x), and the initial infection burden functionG0(x′), and tolerance

was determined by the parameters in the survival function s(x). To perform the sensitivity analysis, we

ran 1000 simulations using the parameter values given in Table 1 and the initial conditions described

above. For each simulation we recorded whether or not a R. muscosa population went extinct in ≤

8 years, as this was where extinction probability was approximately 50% with the default parameter

values.

On each run of the simulation we perturbed sixteen lower-level transmission, resistance and tol-

erance parameters by, for each parameter, drawing a random number from a log normal distribution

with median 1 and dispersion parameter σsensitivity = 0.3 and multiplying the given parameter by this

random number (Sobie, 2009). Our results were robust to our choice of σ and our method of pertur-

bation (Fig. 5.S3). For each simulation, we saved the perturbed parameter values and stored them in

a 1000 by 16 parameter matrix. Upon completion of the simulation, we used both regularized logistic

regression and a Random Forest classifier in which our response variable was whether or not a given

simulation went extinct and our predictor variables were the scaled (i.e. z-transformed) matrix of per-

turbed predictors (Harper et al., 2011; Pedregosa et al., 2011; Lee et al., 2013). Using this approach,

we could then identify the relative importance of each parameter in the vital rate functions in pre-

dicting whether or not extinction occurred (Sobie, 2009). Moreover, we also built a pruned regression

tree to visualize the interactive effects of transmission, resistance, and tolerance parameters on host

extinction risk (Harper et al., 2011). All the code necessary to replicate the analyses is provided at

https://github.com/mqwilber/host extinction.

5.4 Results

5.4.1 Question 1: What is the structure of the transmission

function?

Accounting for the dynamics of the environmental zoospore pool resulted in significantly better

transmission models compared to those that did not. The transmission model with density-dependent

host to host transmission as well as transmission from a dynamic zoospore pool was a better model
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than all other transmission models considered (Table 2). In addition to being a better model in terms

of WAIC, the density-dependent transmission model also captured the marginal pattern of increasing

probability of infection with increasing density of infected hosts (Fig. 5.S4).

5.4.2 Question 2: How does the transmission function affect

the ability of Bd to invade?

Using the temperature-dependent vital functions described in Table 1 and the best-fitting density-

dependent transmission function with an environmental zoospore pool (Table 2), we examined how

host density and temperature affected the ability of Bd to invade a R. muscosa population. When

transmission was density-dependent, but did not depend on the environmental zoospore pool, Bd was

able to invade R. muscosa populations over a large range of densities and temperatures, though there

was a slight protective effect of low temperatures and low densities (Fig. 5.2A). Including transmission

from the environmental zoospore pool substantially increased the region in which Bd could invade and

invasion was highly probable for most temperatures and host densities (Fig. 5.2B, C).

5.4.3 Question 3: How sensitive is disease-induced extinction

to transmission, resistance, and tolerance?

The time-dependent probability of extinction was similar between the three transmission functions

that included a dynamic zoospore pool (Fig. 5.S5, Table 2). The similarity between these curves was

due to the overwhelming influence of the infection probability from the zoospore pool, which swamped

out the well-known differences between frequency-dependent and density-dependent transmission func-

tions. Drastically decreasing zoospore survival probability below what has been observed in laboratory

experiments (Woodhams et al., 2008), led to an expected reduction in extinction risk as the transmis-

sion probability then declined with decreasing host density (given density-dependent transmission, Fig.

5.S5).

A sensitivity analysis of Bd-induced host extinction to transmission, host resistance, and host

tolerance showed that, regardless of the transmission function used, R. muscosa extinction was more

sensitive to the parameters relating to host resistance and tolerance than to parameters relating to
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transmission (Fig. 5.3). In particular, the most important parameter across all transmission functions

was the slope of the growth function b1,1, which is a parameter affecting host resistance. For a given

temperature, the logistic regression analysis showed that decreasing this parameter, which roughly

corresponds to decreasing the mean Bd load on a host for a given temperature, decreased the probability

of disease-induced extinction for all transmission functions (Fig. 5.3A-C). Bd-induced R. muscosa

extinction was also sensitive to the parameters of the survival function, particularly the intercept of the

survival function b0,0. This parameter can be thought of as the threshold at which Bd-induced mortality

begins to occur given a fixed slope in the survival function. The logistic regression analysis showed that

increasing this parameter, which corresponds to increasing the threshold at which R. muscosa begins

to suffer load-dependent Bd mortality, decreased the probability of extinction (Fig. 5.3A-C).

Resistance and tolerance parameters also showed significant interactions when affecting host extinc-

tion risk. Random forests and pruned regression trees showed the importance of the slope of the growth

function as well as the importance of the interaction between this parameter and the intercept of the

survival function (a tolerance parameter) and the temperature-dependency in the growth function (a

resistance parameter) (Fig. 5.3A-C; Fig. 5.S6-8).

5.5 Discussion

Wildlife conservation in the face of disease emphasizes the importance of the transmission function

in extinction risk (McCallum, 2012). This is a reasonable emphasis as the transmission function is

ultimately the most important aspect of disease-induced extinction: if a host does not get infected with

a disease it will not suffer disease-induced mortality. In amphibian-Bd systems it has been hypothesized

that both amphibian density and an environmental pool of zoospores can affect transmission (Rachowicz

and Briggs, 2007; Briggs et al., 2010; Courtois et al., 2017), but the nature of this transmission has

rarely been quantified. We experimentally quantified the transmission function in the R. muscosa-Bd

system and used these results, in combination with a dynamic model, to predict how the environmental

zoospore reservoir affected the ability of Bd to invade an amphibian population. Consistent with

previous theory (Godfray et al., 1999; Rohani et al., 2009), we found that including an environmental

zoospore pool substantially increased R0 for R. muscosa-Bd systems, such that Bd was able to invade

a R. muscosa population for most realistic temperatures and host densities. To our knowledge, this is
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the first estimation of R0 in an amphibian-Bd system (but see Woodhams et al., 2011, for a discussion

of R0 in amphibian-Bd systems), and the large value of R0 across all temperatures and densities is

consistent with field observations that temperature and density have little protective effect in the R.

muscosa/sierrae system (Knapp et al., 2011, R. A. Knapp et al., unpublished). These results suggest

that attempting to prevent Bd invasion into a system may be largely futile and management should be

focused on mitigating post-invasion Bd impacts (Langwig et al., 2015).

Conditional on Bd invasion, we used our parameterized model to explore the importance of the

transmission function on Bd-induced amphibian extinction and found that the extinction dynamics

were similar between all transmission models with a dynamic zoospore pool. This was due to the large

number of zoospores shed by infected amphibians combined with the laboratory-estimated decay rate of

zoospores outside the host, leading to a zoospore pool that remained large even for rapidly declining host

populations (Fig. 5.1D). Only considering this result, we would then expect R. muscosa populations

to be at substantial risk of disease-induced extinction given that the persisting zoospore pool prevents

a decrease in transmission rate with declining host density (Anderson and May, 1981; Godfray et al.,

1999; De Castro and Bolker, 2005). This finding is consistent with a number of other studies that have

found that the dynamics of the Bd zoospore pool are critical for determining Bd-induced amphibian

extinctions (Mitchell et al., 2008; Briggs et al., 2010; Doddington et al., 2013). If abiotic or biotic factors

such as temperature, stream flow, water chemistry, and/or zoospore consumption by aquatic organisms

are able to substantially increase zoospore death rate beyond the values seen in the lab (Tunstall, 2012;

Strauss and Smith, 2013; Venesky et al., 2013; Heard et al., 2014; Schmeller et al., 2014), then we might

expect a reduction, though not an elimination, of Bd invasion probability and amphibian extinction

risk.

However, considering only the transmission function ignores the fact that, conditional on infection,

increasing resistance or tolerance to a disease can also reduce disease-induced mortality and thus provide

alternative mechanisms by which to manage disease-induced extinction risk (Kilpatrick, 2006; Vander

Wal et al., 2014; Langwig et al., 2015). Using our model, we found that Bd-induced extinction risk

was far more sensitive to host resistance and tolerance than to the transmission dynamics of Bd. In

particular, extinction risk of R. muscosa populations was most sensitive to the vital rate functions

dictating the growth rate of Bd on a host, the load-dependent survival probability, and the interaction

between these two functions.
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This result highlights the importance of accounting for the load-dependent nature of vital rate

functions when considering extinction risk in load-dependent diseases such as chytridiomycosis. In this

study, consistent with results observed in the field (Vredenburg et al., 2010), the survival function of

Bd was strongly non-linear such that above ≈ 9 ln zoospores = 8103 zoospores the survival probability

of R. muscosa rapidly declined (Fig. 5.S1B). When the survival function is load-dependent and highly

non-linear, as observed in some amphibian-Bd systems (Stockwell et al., 2010; Vredenburg et al., 2010,

but see Clare et al. (2016)), small changes in host resistance or tolerance can lead to abrupt changes

in survival probability. In particular, non-linearities in the survival function (i.e. tolerance) need to be

considered in the context of the shape of the growth function (i.e. resistance) of a parasite on its host.

To illustrate the generality of this result, consider the following graphical argument. Take a

pathogen growth function (G(x′, x)) that predicts a static mean pathogen load near the threshold

at which the survival function predicts a drastic decrease in survival probability (Fig. 5.4, i.e. a non-

linear dose-response curve; Dwyer et al., 1997; Handel and Rohani, 2015; Louie et al., 2016). Slightly

shifting the slope (or the intercept) of the growth function (i.e. changing resistance) up or down will

increase or decrease the static mean pathogen load and move a host into the region of the survival curve

where either mortality or survival is almost certain (Fig. 5.4). Similarly, holding the growth function

constant and altering the survival function (i.e. changing tolerance) will change how close the static

mean pathogen load is to the survival function threshold (Fig. 5.4). This suggests that identifying how

the growth function of a pathogen changes in resistant host populations, whether by decreasing the

slope, decreasing the intercept or by transitioning from a linear to a non-linear function (Langwig et al.,

2017), is important for understanding the sensitivity of extinction risk to both the growth function

(resistance) and the survival function (tolerance). Identifying whether or not a disease system shows

this strong interaction between resistance and tolerance can help determine whether disease mitigation

should focus on reducing parasite loads via strategies such as inducing acquired immunity, microbial

treatments, or selecting for resistance (Harris et al., 2009; Langwig et al., 2015) or decreasing parasite

transmission via strategies such as culling and/or treating the disease reservoir (Cleaveland et al., 2001).

The importance of host resistance and tolerance for our model’s predictions of disease-induced

extinction indicates that these host strategies could promote population persistence in R. muscosa-Bd

populations, as they have in other species of amphibians suffering from chytridiomycosis, bats suffering

from white-nose syndrome, and Tasmanian devils suffering from facial tumor disease (Hoyt et al.,
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2016; Savage and Zamudio, 2016; Epstein et al., 2016; Langwig et al., 2017). In fact, a recent study

showed that many populations of R. sierrae that experienced Bd-induced population declines over the

last four decades are recovering in the presence of Bd, but with reduced Bd loads relative to naive

populations (Knapp et al., 2016). This result is consistent with resistance mechanisms reducing Bd

load and thus increasing host survival probability. While changes in resistance mechanisms, and not

tolerance mechanisms, are putatively responsible for persistence in a number of load-dependent diseases

(Savage and Zamudio, 2011; Epstein et al., 2016; Langwig et al., 2017), our results show that the shape

of the tolerance function is critical for understanding the effects of resistance on host persistence (Fig.

5.4). An important future direction will be to explore how heterogeneities in host resistance, tolerance,

and/or transmission functions can promote host persistence (Boots et al., 2009; Langwig et al., 2015;

Brunner et al., 2017).

While our study suggests that an interaction between resistance and tolerance promotes population

persistence in R. musocsa-Bd populations, additional mechanisms that we do not consider here are

likely important in other amphibian-Bd systems. For example, laboratory studies have shown that Bd

can evolve increased or reduced virulence in as few as 50 generations (less than one year, Langhammer

et al., 2013; Voyles et al., 2014; Refsnider et al., 2015). If Bd virulence attenuates over the course of

an epizootic, these changes could augment host persistence, without any changes in host resistance or

tolerance. In reality, the evolution of both the pathogen and the host affects population persistence

(Vander Wal et al., 2014) and developing load-dependent models that incorporate both of these processes

is an open challenge in wildlife epidemiology.

The emergence of a number of diseases of conservation concern have highlighted the importance

of considering disease-induced extinction in the context of load-dependent parasite dynamics. We

show that simultaneously considering transmission, resistance, and tolerance, in conjunction with load-

dependent dynamics, provides novel insight regarding how to best manage emerging infectious diseases.
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Table 5.1: Parameters used in the Rana muscosa-Bd hybrid model. All b and c
parameters had a Normal prior with mean 0 and standard deviation 5. All ν param-
eters had a half-Cauchy prior from 0 to ∞ with scale parameter 1. For all statistical
models, convergence was assessed using traceplots and ensuring that the Gelman-Ru-
bin statistic was < 1.05 (Gelman et al., 2014). logit specifies a logistic link, x is ln
zoospore load, and T is temperature. All probabilities are over a three day time step.

Description Functional Form Parameters Details of Parameterization

Infected survival function, s(x):
Probability of host survival from
t to t+ 1 with load x

logit[s(x)] = b0,0 + b1,0x b0,0 = 5.295
b1,0 = −2.595

Likelihood
Bernoulli(s(x)), x was z-
transformed
Fig. 5.S1B.

Growth function, G(x′, x): Prob-
ability density of host transition-
ing from load x to load x′ at time
t+ 1

µ(x, T ) = b0,1 + b1,1x+ b2,1T
σ2(x) = ν0,1 exp(2c0,1x)

b0,1 = 0.012
b1,1 = 0.799
b2,1 = 0.092
ν0,1 = 5.92
c0,1 = −0.049

Likelihood
Normal(µ(x, T ), σ2(x))
Fig. 5.S1A.

Loss of infection function, l(x):
The probability of host having in-
fection of load x at t and losing it
by t+ 1

logit[l(x, T )] = b0,2 + b1,2x+ b2,2T b0,2 = 1.213
b1,2 = −0.472
b2,2 = −0.151

Likelihood
Bernoulli(l(x, T ))
Fig. 5.S1C.

Initial infection burden function,
G0(x′): Probability density of be-
ing uninfected at t and gaining an
infection of x′ at t+ 1

µ(T ) = b0,3 + b1,3T
σ2(T ) = ν0,3 exp(2c0,3T )

b0,3 = 0.642
b1,3 = 0.137
ν0,3 = 0.59
c0,3 = 0.063

Likelihood
Normal(µ(T ), σ2(T ))
Fig. 5.S1D.

Transmission function, φ: The
probability of an uninfected host
gaining an infection at time t+ 1

Functional forms vary See Table 2 See Table 2

Uninfected adult survival proba-
bility over three day time step, s0

Constant s0 = 0.999 Yearly survival from Briggs et al.
2005 converted to a three day
time scale

Temperature-dependent zoospore
survival probability, ν

ν = f(T ) Non-parametric Cubic smoothing spline based on
data from Woodhams et al. 2008
Fig. 5.S1E.

Proportion of zoospores con-
tributed to Z by infected adult

Constant µA = 1 Likely a conservative estimate of
how infected adults contribute to
the zoospore pool

Mean tadpole zoospore load, µTi Constant µTi = 1487.036 Mean zoospore load of tadpoles in
mesocosm experiment described
in text

Probability of tadpole i surviving
a three day time step

Constant sT1 = 0.987; sT2 = 0.997;
sT3 = 0.997

Yearly survival from Briggs et al.
2005 converted to a three day
time scale

Probability of tadpole i not meta-
morphosing, pTi

Constant pT1 = 1; pT2 = 0.5;
pT3 = 0

Briggs et al. 2005

Probability of tadpole i surviving
metamorphosis, mTi

Constant mT1 = 0.9; mT2 = 0.9;
mT3 = 1.0

Briggs et al. 2005

Probability of adult reproducing,
pA

Constant pA = 0.25 Briggs et al. 2005

Mean adult reproductive output,
λ

Constant λ(x) = λ0 = λ = 50 Leads to realistic population-level
growth rate of λgrowth rate ≈
1.46 in the disease-free, density-
independent model (Briggs et al.,
2005)

Carrying capacity parameter, K Constant K = 5 Leads to equilibrium adult densi-
ties between 10-15 adults per m3

in disease-free model
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Table 5.2: The results of fitting transmission functions of the form φ = 1− exp(−Λ)
to the R. muscosa-Bd mesocosm experiment. I is the total number of infected adults
in a mesocosm at the beginning of a time interval, A is the total number of adults
in a tank, Z is the number of zoospores in the mesocosm at the beginning of the
time interval as estimated from a latent zoospore pool model (Section 5.A), and ∆t
is the time between swabbing events in the experiment (between 4-8 days). All β
parameters had a half-Cauchy prior from 0 to ∞ with scale parameter equal to 1.
Models with lower WAICs and higher weights are better models.

Name Function Parameters WAIC (weight)

Constant zoospore
pool

Λ = (β0)∆t β0 = 8.07x10−2 day−1 401.1 (0)

Density-dependent
w/ constant
zoospore pool

Λ = (β0 + β1I)∆t β0 = 4.18x10−2, β1 = 5.25x10−2 336.7 (0)

Frequency-
dependent w/
constant zoospore
pool

Λ = (β0 + β1
I
A

)∆t β0 = 4.28x10−2, β1 = 0.551 336.6 (0)

Dynamic zoospore
pool

Λ = (β0 ln(Z + 1))∆t β0 = 1.09x10−2 345.32 (0)

Density-dependent
w/ dynamic
zoospore pool

Λ = (β0 ln(Z + 1) + β1I)∆t β0 = 5.29x10−3, β1 = 7.52x10−2 301.18 (0.99)

Frequency-
dependent w/
dynamic zoospore
pool

Λ = (β0 ln(Z + 1) + β1
I
A

)∆t β0 = 5.77x10−3, β1 = 0.627 311.06 (0.01)
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Figure 5.1: A. Diagram showing the temporal dynamics of the hybrid model of
R. muscosa-Bd. Reproduction and demographic transitions occur once a year in
the spring (red dot and C.). Disease dynamics are temperature-dependent and are
updated every 3 days (vertical dashes and B.) over the course of the entire year.
B. The within-season dynamics of R. muscosa and Bd. C. The between season
demography of R. muscosa. Note that survival probability of susceptible adults (SA),
infected adults (IA) and Bd zoospores in the environmental pool (Z) is one because
their survival probabilities are already accounted for in the within-season model. D.
Representative trajectories of adult, tadpole and zoospore pool population sizes from
the hybrid model with a density-dependent transmission function and infection from
a dynamic zoospore pool. Five stochastic trajectories are shown from the hybrid
model (colored lines). The mean ln Bd load, conditional on infection, is also shown.
Gaps in trajectories for the mean ln Bd load indicate that no infected individuals
were in the population at those time points.
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Figure 5.2: R0 and the invasion probability of Bd (1− 1
R0

) for different temperatures
and host densities with and without an environmental zoospore pool. This calculation
of R0 uses the parameters given in Table 1 and the “Density dependent w/ dynamic
zoospore pool” transmission function in Table 2. While R0 will inevitably decrease
without transmission from a zoospore pool (i.e. when β0 = 0; see Section 5.B), the
magnitude of that decrease depends on the estimated transmission coefficient from
the zoospore pool. A. Gives the invasion probability of Bd. The dashed, vertical lines
in A. correspond to the curves shown in B., where ln(R0) is plotted against initial
adult density when temperature is 15 °C. The solid, horizontal lines in A. correspond
to the curves shown in C. where ln(R0) is plotted against temperature when initial
adult density is four adults per m3. The gray regions give the 95% credible intervals.
The dashed lines in B. and C. correspond to R0 = 1 (ln(R0) = 0), below which Bd
cannot invade.
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Figure 5.3: A. - C. The sensitivity of R. muscosa extinction probability to parame-
ters dictating transmission, resistance, and tolerance of Bd for the three transmission
functions used in the hybrid model. The dark gray bars give the weights of the various
parameters when logistic regression is used to classify whether or not a simulation
trajectory experienced extinction. The absolute height of the bar shows the relative
importance of that parameter and the direction specifies what happens to the ex-
tinction probability when that parameter is increased. For example, increasing the
G(x′, x) parameter b1,1 increases the probability of extinction. The light gray bars
give the relative importances of each parameter in predicting the extinction of a sim-
ulation when a Random Forest classifier was used to account the interactions between
parameters on extinction probability. These values are all between zero and one and
the height of a bar indicates the relative importance of a transmission, resistance, or
tolerance parameter.
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to time step t + 1. The growth functions have different slopes representing different
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probability. However, the direction and magnitude of these changes depends on the
degree of tolerance represented in the survival curve.
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5.A The mesocosm experiment and the latent zoospore

pool transmission model

5.A.1 The mesocosm experiment

We performed an outdoor mesocosm experiment in summer 2008 to determine if adult frog density

influenced Bd infection prevalence and the rate of increase in the fungal load on individuals through

time in Sierra Nevada yellow legged frogs, Rana sierrae. The experiment was performed in four 1.2 m

wide x 4.8 m long x 1.2 m deep concrete channels at the Sierra Nevada Aquatic Research Laboratory

(University of California Natural Reserve System, Mammoth Lakes, CA, N37.614176 W118.833452,

elevation 2167m). Channels were subdivided with plywood into 4 isolated tanks measuring 1.2 m3 in

each channel, for a total of 16 tanks in four blocks. Tanks were each filled with approximately 1400

liters of water from adjacent Convict Creek, a Bd-negative stream originating from nearby Convict

Lake. Sloping shelves (approximately 30cm wide) extending from below water to a few cm above the

water surface were provided on the south-facing wall of each tank for the frogs to bask on during the

daylight hours. Lids were constructed from wood frames covered in fiberglass screen and wire mesh.

Infected Rana sierrae tadpoles were collected from Conness Pond, a large, Bd-positive site in

Yosemite National Park (N37.97485 W119.31134, elevation 3193m). The tadpoles were used as the

initial source of infection in each tank. Uninfected (Bd-näıve) adults were collected from Marmot Lake,

(Sierra National Forest, N37.259860 W118.683379, elevation 3589m). All animals were swabbed to

confirm initial Bd infection status (infected for the tadpoles, and uninfected for the adults). Adult frogs

were individually marked with Passive Integrative Transponder (PIT) tags, which allowed each adult

to be uniquely identified. On July 7, 2008, five infected tadpoles were added to each tank. Nine days

later, tanks were drained 90% and re-filled with fresh water from Convict Creek to remove any tannins

leached from the plywood and to remove extra tadpole food. On July 20, 2008, adult frogs were added

to each tank in one of four densities: 1, 4, 8, and 16 (this is counted as Day 0 of the experiment for all

of the analyses in the main text). The four tanks in each block received one of each of the four density

treatments, assigned randomly within each block. Preliminary analyses did not detect a significant

effect of block and thus the statistical models presented below do not include a block effect.

Skin swabs were collected from all animals once per week to determine Bd infection status, using
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a standardized swabbing protocol (Briggs et al., 2010; Vredenburg et al., 2010). For post-metamorphic

individuals, a sterile synthetic swab was brushed across the hind feet (concentrating on the toe webbing),

hind legs, and each side of the abdomen, 5 times each, for a total of 30 strokes. For tadpoles, the swab

was brushed across the mouthparts for 30 strokes. Swabs were allowed to air dry, and then were placed

in individual tubes, and frozen as soon as possible. The number of Bd DNA copies on each swab was

determined using quantitative real-time PCR, following the protocol of Boyle et al. (2004), as in Briggs

et al. (2010). During each weekly swabbing event, the weight and snout-to-vent length were recorded

for each adult. Tadpoles were fed rabbit chow ad libitum and adults were fed Phoenix worms ad libitum

during the swabbing events.

5.A.2 The latent zoospore pool transmission model

Using the mesocosm transmission experiment described above and in the main text, we sought to

characterize the transmission function for Bd and R. muscosa. In particular, we wanted to quantify how

the environmental zoospore pool affected the probability of an amphibian transitioning from uninfected

to infected in a time step. However, we were unable to measure the total number of zoospores in

the environmental zoospore pool at each time step and therefore assumed that the zoospore pool was

a latent variable that needed to be estimated. We estimated it by assuming that the zoospore pool

obeyed the following dynamics

Zj(t+ ∆t) = Zj(t) exp(−d∗∆t) + Zj,tadpoles(t)f
∗
T∆t+ Zj,adults(t)f

∗
A∆t (5.4)

This equation assumes that the dynamics of the unobserved zoospore pool in mesocosm j are

governed by the survival probability of zoospores in the pool at time t (first term, d∗ is zoospore death

rate) and contribution of zoospores into the pool based on the total number of zoospores on tadpoles

(Zj,tadpoles(t)) and adults (Zj,adults(t)) at time t in mesocosm j. f∗T and f∗A are rates that relate the total

number of zoospores on tadpoles and frogs at time t (as estimated from qPCR) to the total number

of zoospores that enter the pool. This equation does not include the reduction of zoospores in the

pool due to frogs acquiring them upon initial infection as we found that the small number acquired is

inconsequential for the dynamics of the zoospore pool.

For the ith individual frog in mesocosm j at time t + 1, the likelihood of gaining an infection is
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given by

yij(t+ ∆t) ∼ Bernoulli(φj(t)) if yij(t) = 0 (5.5)

Each individual frog i in tank j was swabbed six times over the course of 32 days and yij(t) specifies

whether frog i in mesocosm j was infected (1) or uninfected (0) at time t+∆t, having been uninfected at

time t. Only observations where an animal was uninfected in the previous time step directly contributed

to the likelihood (n = 333), but the entire time series for all individuals within a mesocosm contributed

to the dynamics of the zoospore pool.

φj(t) is the probability of infection in mesocosm j at time t and takes the general functional form

φj(t) = 1− exp(−Λ(Zj(t), Aj(t), Ij(t))∆t) (5.6)

where the probability of infection depends on the total number of zoospores in the pool (Zj(t)), the

total number of adults (Aj(t)), and the total number of infecteds (Ij(t)) in tank j at time t. The number

of adults and total number of infecteds are both observed (i.e. measured in the experiment) at each

time t. In contrast, Zj(t) is unobserved at each time t. The specific forms of Λ(Zj(t), Aj(t), Ij(t)) that

we considered are given in Table 2 in the main text. We assumed that transmission was temperature-

independent because we were not able to simultaneously manipulate host density and temperature in

the mesocosm experiment.

We assumed that the total number of zoospores Zj(t) is a random variable with a lognormal

distribution such that

ln(Zj(t+ ∆t)) ∼ Normal(ln(µj(t+ ∆t))− σ2

2
), σ2) (5.7)

µj(t+ ∆t) = Z(t)j exp(−d∗∆t) + Ztadpoles(t)jf
∗
T∆t+ Zadults(t)jf

∗
A∆t (5.8)

Ztadpoles(t)j and Zadults(t)j were both observed at each time t. The σ2

2 terms is a result of converting

from the expected value of the lognormal distribution to the mean of the normal distribution on the

log scale.

To fit these models, we assumed that the initial zoospore load in the pool was given by lnZj(t =

0) ∼ Normal(ln(2000), σ2). We specified this prior distribution based on the average number zoospores
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on the tadpoles at the beginning of the experiment across all mesocosms. We gave the zoospore death

rate d∗ day−1 a normal prior distribution with mean 0.3 day−1, standard deviation 0.03, and a lower

bound of 0. This tight prior was based on laboratory estimates of the zoospore death rate (Woodhams

et al., 2008). To aid in the identifiability of our model, we set σ = 1 and fT = fA = f and gave f a

vague half Cauchy prior distribution with a scale parameter equal to 1.

We fit this model for each of the φ functions given in Table 2 in the main text using Hamilto-

nian Monte Carlo with the RStan package (2.12.1). Three chains were run for each model and we

assessed convergence of the model parameters by determining if the Gelman-Rubin statistic R̂ was

less than 1.05 (Gelman et al., 2014). We also confirmed that this statistical model could recover

known transmission functions by simulating our mesocosm experiment in silico and testing whether

the above model could both recover known parameters in φ and also correctly distinguish between

different forms of φ using information criteria (see accompanying code code/simulate lab data.py at

https://github.com/mqwilber/host extinction/).

We also tested how robust our conclusions were to the assumption that σ = 1 using two different

approaches. First, we allowed this parameter to have a minimally informative half Cauchy prior with a

scale parameter equal to three. This allowed for enormous variability in the dynamics of the zoospore

pool. Incorporating this vague prior led to larger mean estimates of transmission from the zoospore

pool (i.e. larger β0), but also larger uncertainty around this estimate. However, the relative ranking

of the different transmission models given in Table 2 in the main text did not change. The models

with a dynamic zoospore pool were always better than corresponding models without the zoospore pool

and the density-dependent model with a dynamic zoospore model was the best model followed by the

frequency-dependent model with a zoospore pool.

Second, we explored how fixed values of σ ranging from 0.25 to 4 affected the relative rank of the

models as well as the estimates of the coefficients (Figure 5.S9, 5.S10). Across a range of values of σ

and two different measures of information criteria (WAIC and DIC), the relative rankings of the three

transmission models with a dynamic zoospore pool (Table 2 in main text) stayed largely consistent,

with some notable deviations between σ = 1.5 and σ = 2 (Fig. 5.S9). We used two different information

criteria as there is some question over WAIC’s accuracy for time series models (Gelman et al., 2014).

For values of σ ≤ 1 the estimates of the transmission coefficients from the zoospore pool (β0) remained

relatively constant, but began increasing for σ > 1 due to the large variability in the zoospore pool
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dynamics (Fig. 5.S10A). In contrast, the coefficient estimates for the density/frequency dependent

transmission stayed relatively constant with a slight decreasing trend with increasing σ (Fig. 5.S10B).

Considering these sensitivity analyses, we felt that σ = 1 was a reasonable choice because 1) it did not

lead to unrealistically large variability in the zoospore pool as did the uninformative prior on σ 2) it

provided a conservative estimate for effect of the zoospore pool on transmission 3) the density/frequency

dependent transmission coefficient β1 was largely unaffected by the choice and 4) it resulted in model

ranks that were consistent between two different information criteria and largely consistent across most

values of σ that we explored.

5.B R0 for host-parasite IPMs with an environmen-

tal reservoir

5.B.1 R0 for a discrete-time SIS model with an environmental

reservoir

Wilber et al. (2016) showed how to calculate R0 for basic host-parasite IPMs using the general

methodology developed in Klepac and Caswell (2011). This method can be extended to calculate R0

for an IPM with an environmental reservoir. To begin, we illustrate the procedure with a simple discrete

time Susceptible-Infected-Susceptible (SIS) model with a dynamic zoospore pool (Z). Take the following

set of discrete dynamical equations

S(t+ 1) = S(t)s0[1− φ(I(t), Z(t))] + I(t)sI lI (5.9)

I(t+ 1) = I(t)sI(1− lI) + S(t)s0φ(I(t), Z(t)) (5.10)

Z(t+ 1) = Z(t)ν + I(t)f (5.11)

where s0 is the survival probability for an uninfected host in a time step, sI is the survival probability

for an infected host in a time step, lI is the probability of losing an infection in a time step, ν is the

survival probability of a zoospore in a time step, f is the average number of zoospores produced by

an infected individual in a time step, and φ(I(t), Z(t)) is the probability of gaining an infection in a
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time step. Based on the results from the transmission experiment given in Table 2 in the main text, we

assume that transmission depends on density-dependent host to host contact as well as transmission

from the zoospore pool. Given this, we can write

φ(I(t), Z(t)) = 1− exp[−(β1I(t) + β0Z(t))] (5.12)

We can calculate R0 for the above system of equations by rewriting them as the following matrix

model



S

P


 (t+ 1) =




0 0

M(P(t)) U






S

P


 (t) (5.13)

where the zeros simply indicate that these values do not contribute to the calculation of R0, not that

they are actually zero in the model. P(t) is the vector [I(t) Z(t)]T and 0 is a row vector [0 0]. Just

focusing on the vector P, we can write

P(t+ 1) = M(P(t))S(t) + UP(t) (5.14)

M(P(t)) is the vector [s0φ(P(t)) 0]T . U is the 2 x 2 matrix

U =



sI(1− lI) 0

f ν


 (5.15)

To calculate R0, we linearize P(t+1) about a vector n∗. We set this vector to be a host population

with only susceptibles n∗ = [S∗ 0] (Rohani et al., 2009; Klepac and Caswell, 2011), where 0 is a vector

of zeros of length n = 2. We then compute the Jacobian matrix evaluated at n∗

J =
dP(t+ 1)

dP(t)

∣∣∣∣
n∗

(5.16)

which allows us to compute R0 (Klepac and Caswell, 2011). Computing this Jacobian requires com-

puting
dM(P(t))S(t)

dP(t)
and

dUP(t)

dP(t)
.

We immediately see that
dUP(t)

dP(t)

∣∣∣∣
n∗

= U.
dM(P(t))S(t)

dP(t)

∣∣∣∣
n∗

requires application of the chain rule
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for differentiation and we see that

dM(P(t))S(t)

dP(t)

∣∣∣∣
n∗

= M∗ =



s0S
∗β1 s0S

∗β0

0 0


 (5.17)

R0 is given by (Klepac and Caswell, 2011)

R0 = max eig(M∗(1−U)−1) (5.18)

and plugging into M∗ and U given above we get

R0 =
s0S
∗β1

1− sI(1− lI)
+

s0S
∗β0f

(1− ν)[1− sI(1− lI)]
(5.19)

Similar to the continuous time result given in Rohani et al. (2009), we see that R0 is a combination

of both transmission from the hosts (first term) and the environment (second term). Setting β0 = 0,

we recover the simple SIS R0 given in Wilber et al. (2016) and Oli et al. (2006).

5.B.2 R0 for the host-parasite IPM with an environmental reser-

voir

To generalize this to a host-parasite IPM model with an environmental reservoir where the I class

is now potentially infinitely many classes, we can take the following steps. First, we recognize that in

practice IPMs are analyzed using the mid-point rule (Easterling et al., 2000) such that there are a finite

number of I classes, namely n classes. Therefore, we can think of our IPM as a generalization of the

SISZ model presented above such that P(t) is a vector of length n + 1, M(P(t)) is now a vector of

length (n+ 1) and U is a (n+ 1) x (n+ 1) matrix. The plus one is because the environmental reservoir

Z is part of the P vector.

For the first n x n elements in U, the element in the ith row and the jth column is given by

uij = s(xj)(1− l(xj))G(xi, xj)∆ (5.20)

which gives the probability of an individual in the jth load class with parasite load xj , surviving (s(xj)),

not losing its infection (1 − l(xj)), and transitioning to the load class of xi in a time step (G(xi, xj)).
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∆ is a result of using the midpoint rule to discretize the continuous IPM and is used to convert the

probability density G(xi, xj) into a probability (e.g. see Easterling et al., 2000; Wilber et al., 2016).

The n+ 1th row of U is the vector [fxx ν] of length n+ 1, where we assume that an infected host in

class j produces an average of fxxj parasites in a time step into the zoospore pool. x is a vector of

length n that contains the corresponding parasite loads for the n infected classes. The n+ 1th column

of U is the vector [0 ν]T , where 0 is of length n.

M(P(t)) is given by a vector of length n+ 1 where the first i = 1, . . . , i, . . . n elements are given by

mi = s0φ(βT I(t))G0(xi)∆ (5.21)

where βT is a vector of length n+ 1 with the first n elements being β1 and the n+ 1th element being

β0.
dM(P(t))S(t)

dP(t)

∣∣∣∣
n∗

= M∗ is given by a (n+ 1) x (n+ 1) matrix where the first n columns are given

by [s0S
∗β1G0(x)∆ 0]T and the n + 1th column is given by [s0S

∗β0G0(x)∆ 0]T . G0(x) indicates

that the function G0(x) is evaluated at each element in x, resulting in a vector of length n.

Given M∗ and U we can again calculate R0 as (Klepac and Caswell, 2011)

R0 = max eig(M∗(1−U)−1) (5.22)

In the main text, we use this formulation to numerically calculate R0 for the R. muscosa-Bd IPM

model with and without an environmental reservoir.

5.C The hybrid model

5.C.1 Within-year component of the hybrid model

The model described by equations 6-8 in the main text may be sufficient to describe the dynamics of

an initial epizootic, but in order to examine Bd-induced extinction dynamics in R. muscosa populations

a number of additions need to be made. First, the tadpole stage of R. muscosa has been shown to

play an important role in generating enzootic dynamics in R. muscosa populations (Briggs et al., 2005,

2010). R. muscosa can spend three years as tadpoles and thus we include three additional tadpole

stages into the model T1, T2, and T3 (Briggs et al., 2005). Considering equations 6-8, we can add this

tadpole class and update our zoospore pool equation as follows
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Ti(t+ 1) = Ti(t)sTi
(5.23)

Z(t+ 1) = Z(t)ν +

3∑

i=1

µTiTi(t) + µA

∫ Ux

Lx

exp(x)IA(x, t)dx− ψ(SA(t), Z(t)) (5.24)

The equation Ti(t+ 1) describes how the number of tadpoles in class i changes from time t to time

t + 1. We do not explicitly model the fungal load on tadpoles. Instead, we assume all tadpoles are

immediately infected with Bd and have a constant contribution to the zoospore pool. This is justified

by the observation that most tadpoles in R. muscosa populations carry high fungal loads, even in

enzootic populations (Briggs et al., 2010). R. muscosa tadpole survival is not affected by Bd infection.

Therefore, the within-season dynamics of Ti are simply given by the probability of a tadpole surviving

from time t to t+ 1, which is sTi
. Notice that infected tadpoles are now also contributing µTi

zoospores

to the zoospore pool at each time step. Previous models of this system have included a subadult stage

after metamorphosis that can last 1-2 years (Briggs et al., 2005, 2010). For simplicity, we are ignoring

it here.

R. muscosa populations also experience seasonal temperature fluctuations in which lake temper-

atures drop to approximately 4 °C in the winter (in the unfrozen portion of a lake where the frogs

overwinter) and reach approximately 20 °C in the summer (Knapp et al., 2011). We account for this

seasonal variability by imposing a deterministically fluctuating environment on the R. muscosa-Bd

IPM. We assumed that temperature follows a sinusoidal curve with a period of 1 year and a minimum

temperature of 4 °C and a maximum temperature of 20 °C (Fig. 5.1A). At each discrete time point

within a season, a new temperature is calculated based on the sinusoidal curve and the temperature-

dependent vital rate functions are updated accordingly (see Table 1 in the main text and Fig. 5.S1 for

temperature-dependent vital-rate functions).

5.C.2 Between-year component of the hybrid model

In the within-year component of the hybrid model a time step is 3 days. This time step is on the

same scale as Bd dynamics. However, R. muscosa demography occurs on a slower scale. We assume

that R. muscosa demographic dynamics occur on a yearly time scale (Briggs et al., 2005), such that

once a year tadpoles either age a year or metamorphose and adults reproduce. The mortality for each
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stage as well as all disease dynamics are accounted for in the within-year component of the IPM, thus

the between-year component only includes the following demographic events (Fig. 5.1C in the main

text)

T1(t+ 1) = pAλ0SA(t) + pA

∫ Ux

Lx

λ(x)I(x, t)dx (5.25)

T2(t+ 1) = pT1
T1(t) (5.26)

T3(t+ 1) = pT2T2(t) (5.27)

SA(t+ 1) = [(1− pT1
)mT1

T1(t) + (1− pT2
)mT2

T2(t) +mT3
T3(t)] exp(−A(t)/K) (5.28)

IA(x′, t+ 1) = IA(x′, t) (5.29)

Z(t+ 1) = Z(t) (5.30)

where these events only occur once per year (Fig. 5.1 in the main text). When these demographic

events occur each year, they occur after the disease dynamics defined above, but in the same time

step from t to t + 1. Equation 22 gives the contribution of adult frogs to the T1 tadpole class. pA

defines the probability of an adult reproducing, λ0 is the mean reproductive output of uninfected adults

and λ(x) is the mean reproductive output of an adult with a Bd load of x. Equation 23 gives the

probability of a T1 tadpole not metamorphosing (pT1) and transitioning to a T2 tadpole. Equation 24

describes the changes in the T3 class via the probability of a T2 tadpole not metamorphosing (pT2) and

transitioning to a T3 tadpole. Equation 25 describes T1, T2 and T3 tadpoles metamorphosing, surviving

metamorphosis, and recruiting as uninfected adults. Recruitment of tadpoles to the adult stage is a

density-dependent process following a Ricker function with adult density (A(t)) and a parameter that is

proportional to the carrying capacity (K) (Briggs et al., 2005). Because we have no empirical evidence

for Bd-induced fertility reduction in R. muscosa, we assumed that reproduction in uninfected adults was

the same as reproduction in infected adults. We also assume that tadpoles lose their infection during

Bd metamorphosis (Briggs et al., 2010). Finally, equations 26 and 27 indicate that infected individuals

(IA(x′, t+ 1)) and the zoospore pool (Z(t+ 1)) do not change during the demographic update.
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5.D Converting the hybrid model into an individual-

based model with demographic stochasticity

5.D.1 Details of the individual-based model

The simplest way to include demographic stochasticity into the hybrid model is to assume that

demographic stochasticity is given by sampling error and allow all demographic transitions to occur fol-

lowing some probability distribution (Caswell, 2001; Schreiber and Ross, 2016). To illustrate this, recall

that to analyze the hybrid Integral Projection Model we discretized the continuous class
∫ b
a
I(x, t)dx

(which gives the number of frogs with a ln Bd load between a and b at time t) into 30 load classes using

the midpoint rule (Easterling et al., 2000). We can now loosely think about our hybrid model as a

matrix model with 3 tadpole + 1 susceptible adult + 30 infected adult + 1 zoospore pool = 35 stages.

Let’s call the transition matrix A. Following Caswell (2001) and Schreiber and Ross (2016), we can

decompose our hybrid model into components for infection dynamics (i.e. growth, loss, initial infection

gain), host survival, disease transmission, and demographic transitions (T) and reproduction (F) such

that A = T+F. The matrix T gives the probabilities of an individual in stage j transitioning to stage

i in a 3 day time step. However, T is not a stochastic matrix (i.e. the columns do not sum to one)

because individuals in each stage also have a survival probability and one potential transition during

each time step is to a “dead” class. We can augment this matrix T with an extra row d specifying the

“dead” class where each entry in this row can be defined as d36,j = 1 − sum(T,j). sum(T,j) gives the

sum of the jth column of the T matrix. The new augmented matrix T∗ is fully stochastic (Caswell,

2001; Schreiber and Ross, 2016). Assuming each individual transitions independently of each other, for

each time step t the transition of a single individual in class j to another class i (including the “dead”

class) follows a multinomial distribution with a probability vector pj given by the jth column of T∗:

pj = T∗,j. At any time step we could simulate what happens to n individuals in class j by drawing from

a multinomial distribution with the total number of trials equal to n and the probability vector equal

to pj. The resulting random vector would be of length 36 specifying the stages that the n individuals

of stage j at time t now occupy at time t+ 1 (including death).

In addition to individual transitions (or “births”), we also need to account for the births defined in

the F matrix. In the hybrid model, there are two types of births we account for in the F matrix: the
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production of T1 tadpoles from adults (infected and uninfected) and the production of zoospores from

tadpoles and infected adults. As is, the fecundity matrix F only specifies the mean production of T1

tadpoles and zoospores. To make this probabilistic, we need to specify a distribution around this mean.

We assumed that the production of tadpoles followed a Poisson distribution with mean A(t)pAλ, where

A(t) = SA(t)+
∫ Ux

Lx
IA(x, t)dx is the number of adults in the population at time t, pA is the probability of

an adult reproducing and λ is the mean number of tadpoles produced. We used a Poisson distribution for

reproduction for consistency with previous modeling studies of R. muscosa (Briggs et al., 2005, 2010).

Moreover, as our goal was to understand the relative effects of resistance, tolerance, and transmission

on extinction risk, the exact form of the reproduction distribution has little influence of the effects of

these three process relative to each other. In contrast, the shape of the reproductive distribution will

have enormous implications if one were to consider the evolution of resistance and tolerance in a host

population. While this was beyond the scope of this study, an important next step is to understand how

standing variation in resistance and tolerance can rescue populations from extinction (Orr and Unckless,

2014). For this, particular attention will need to be paid to both the reproductive distribution and any

trade-offs between increased resistance/tolerance and mean host reproduction (Boots et al., 2009).

We also assumed that the number of zoospores shed into the zoospore pool from tadpoles and adults

at each time step followed a Poisson distribution with mean
∑3
i=1 µTiTi(t) + µA

∫ Ux

Lx
exp(x)IA(x, t)dx.

The Poisson distribution is justified by first noting that the best estimate for the rate of zoospore

shedding from an adult or tadpole at any point in a time step is the mean shedding rate over the entire

time step. Given no other information, the best guess is to assume a constant rate of zoospore shedding

over a time step. Taking this constant rate of zoospore shedding over a time step, probability theory

then tells that we should expect a Poisson distribution of zoospores produced per time step (Grimmett

and Stirzaker, 2001). If the rate of zoospore shedding actually varies over a time step, we would no

longer expect a Poisson distribution of zoospores released per individual over a time step. However,

because we have no information on how zoospore shedding rate varies on a per individual basis over a

three-day time step, the Poisson distribution provides a reasonable null hypothesis.

With these distributional assumptions, we can then calculate the contribution of T1 tadpoles and

zoospores over a time step t as a draw from a Poisson distribution with a mean given by the appropriate

entry in the F matrix. Combining these draws from a Poisson distributions with the draws from the

multinomial distribution described above, we can simulate the individual-based representation of our
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hybrid model with any density-dependent assumptions about recruitment or disease transmission in

addition to any assumptions about temperature-dependent vital rates. This can be done by updating

the various transition probabilities using the appropriate densities or temperatures at each time step and

performing the previously described stochastic draws with the updated transition probabilities. See the

function multiseason simulation in IPM functions for R.R for the R code necessary to implement

this stochastic simulation (all code available at https://github.com/mqwilber/host extinction).

5.D.2 Testing the assumptions regarding how tadpoles con-

tribute zoospores to the zoospore pool

In the above stochastic model, we assumed that tadpoles were always infected and shed a Poisson-

distributed random variable Zshed of zoospores into the zoospore pool at each time step, where Zshed

has a constant mean µT . This was a simplifying assumption of our model based on field data showing

that tadpoles have high Bd prevalence, even in endemic populations (Briggs et al., 2010). However,

this prevalence tends to be less than 1 (e.g. ≈ 0.84 in the mescosm experiment and between 0.3 and

1 at certain sites the field, Briggs et al., 2010), which is not exactly consistent with what we assumed

in the model. To test the influence of our assumption that tadpole prevalence is one, it would be ideal

to explicitly model tadpole load dynamics as we do with adult load dynamics. However, this was not

possible as we could not uniquely identify tadpoles in the mesocosm experiment as they were too small

to PIT tag.

Instead, we modified our assumption that an individual tadpole contributed Zshed ∼ Poisson(µT )

zoospores to the zoospore pool per time step. We allowed an individual tadpole to contribute Zshed ∼

Zero-inflated Poisson(µT , p) zoospores to the zoospore pool per time step, where p gives probability

that a tadpole is infected. The justification for the Poisson distribution is the same as given in the

previous section, but now we allow some tadpoles to be uninfected in a time step with probability p,

such that they do not contribute to the zoospore pool in that time step. This modification allows us to

relax our assumption that all tadpoles are infected in any given time step, without having to explicitly

model tadpole infection dynamics. Based on the data from the mesocosm experiment used in this study,

we set p = 0.84 and µT = 1487.036.

Rerunning our model with the above changes, we found that allowing for tadpole prevalence to be

260



Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a
load-dependent amphibian disease Chapter 5

the empirically-derived value of p = 0.84 did not qualitatively affect the extinction dynamics in this

system (Fig. 5.S5). The reason for this is because infected tadpoles were still able to shed a sufficient

number of zoospores to keep the force of infection in the system high. To understand when reduced

tadpole Bd prevalence did begin to affect host extinction dynamics, we reduced tadpole prevalence to

0.1, which is far lower than the observed levels of tadpole Bd prevalence in this system (Briggs et al.,

2010). This low prevalence did reduce extinction risk relative to the baseline model and the model with

prevalence set to 0.84, but had less of an effect on extinction risk than increasing the rate of zoospore

decay in the environment (Fig. 5.S5). Given these additional analyses showing that large changes in

tadpole prevalence had small effects on the extinction dynamics, we felt confident that our simplifying

assumption that tadpoles were always infected did not influence our main conclusions.
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Figure 5.S1: The various vital rate functions estimated from laboratory data given
in Wilber et al. (2016) and Woodhams et al. (2008). In all plots, points give the
laboratory data, lines give the model fit, and gray regions given the 95% credible in-
terval about the predictions. A. The temperature-dependent growth functionG(x′, x)
where temperature is included as a continuous covariate in the growth function. 95%
CIs where not included for visual clarity. B. The survival function s(x) which dic-
tates the probability of an adult R. muscosa surviving with a given load over a three
day time step. C. The loss of infection function l(x) which gives the load- and tem-
perature-dependent probability of an adult R. muscosa losing a Bd infection over a
three day time step. D. The initial infection function G0(x′) that specifies the tem-
perature-dependent probability density of gaining an initial infection of size x′. E.
The zoospore survival function ν that gives the temperature-dependent probability
of a zoospore surviving over three days as given in Woodhams et al. (2008). No
uncertainty was included around this prediction.
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Figure 5.S2: The observed Bd load trajectories for individual frogs in the density-de-
pendent mesocosm experiment described in the main text. Tanks/mesocosms had
an initial density of either 1, 4, 8, or 16 frogs and were assigned numbers 1 - 16 as
indicated on a panel. The different colored lines are the different Bd load trajectories
for the frogs in given tank. The black vertical line indicates day 32 of the experiment,
after which there was an unexplained decrease in zoospore load in the infected frogs
in all mesocosms in which frogs were infected by this time point. The consistency of
the decline between treatments, between mesocosms, and between frogs suggests the
involvement of an external environmental driver or a frog immune response. Data
after this time point was not used when fitting the transmission models described in
the main text.
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Figure 5.S3: The results of the global sensitivity analysis similar to Figure 5.4 in the
main text. However, instead of perturbing parameters by drawing from a lognormal
distribution with median 1 and σ = 0.3, we drew the parameters from their corre-
sponding posterior distribution from the fitted Bayesian models of the temperature
and transmission experiments described in the main text. This allowed for correlation
between the parameters as well as allowing some parameters to have larger variability
than others, strictly based on the variability in the posterior distribution. The above
plot gives the standardized coefficients (i.e. all predictors were z-transformed before
the analysis) from a regularized logistic regression. The height of a bar indicates
how sensitive extinction risk was to this parameter. The direction indicates whether
increasing the parameter increased or decreased the probability of extinction. The
values under each bar give the coefficient of variance (CV) for each parameter, cal-
culated from that parameter’s posterior distribution (“nan” indicates this parameter
was not in the model). The results from this sensitivity analysis were qualitatively
consistent with the approach used in the main text: disease-induced extinction was
far more sensitive to the parameters in the growth function (G(x′, x), resistance) and
the survival function (s(x), tolerance) than to parameters in the transmission func-
tion. Pruned regression trees also confirmed the important interaction between the
growth function and the survival function.
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Figure 5.S4: Predictions from the best fit frequency-dependent and density-depen-
dent transmission functions with a dynamic zoospore pool, as estimated from the
mesocosm experiment described in the main text. Because the data used to fit these
transmission models are Bernoulli (0 or 1) and there are three dimensions of predictor
variables (time, host density/frequency, and zoospore density) it is difficult to give
a visual representation of model fit. Here we show the marginal predictions (black
lines) from the frequency-dependent and density-dependent transmission models, fix-
ing the time step at 3 days and the zoospore pool at 1096 zoospores. The gray
region gives the 95% credible interval around these predictions. The open circles
give the observed proportion of frogs that transitioned from uninfected to infected
with the proportion/density of infected individuals given on the x-axis (pooled across
different time steps and zoospore pool sizes). The size of the points indicates the
sample size of each point, with larger points indicating larger sample size (n = 333
total samples distributed among the points). A. The predictions from the best-fit
density-dependent transmission function (φ = 1 − exp (−(β0 ln(Z + 1) + β1I)∆t))
B. The predictions from the best-fit frequency-dependent transmission function
(φ = 1− exp

(
−(β0 ln(Z + 1) + β1

I
A)∆t

)
)

265



Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a
load-dependent amphibian disease Chapter 5

0 5 10 15 20 25
Time (years)

0.0

0.2

0.4

0.6

0.8

1.0

E
xt

in
ct

io
n 

pr
ob

ab
ili

ty

Dynamic zoospore pool
Frequency-dependent w/
dynamic zoospore pool
Density-dependent w/
dynamic zoospore pool

Density-dependent transmission
with tadpole Bd prevalence = 0.84
Density-dependent transmission
with tadpole Bd prevalence = 0.1
Density-dependent tranmission
with high rate of zoospore decay

Figure 5.S5: The black lines show the time-dependent extinction curves of the hybrid
model with three different transmission functions described in Table 1: dynamic
zoospore pool, frequency-dependent transmission with a dynamic zoospore pool, and
density-dependent transmission with a dynamic zoospore pool. The curves were
generated from 500 stochastic simulations of each model parameterized with the
parameters given in Table 1 and 2. The red line gives the extinction curve when
transmission with density-dependent with a dynamic zoospore pool and the zoospore
survival probability was set to a constant 0.05 per three day time step, compared to
the laboratory-estimated temperature-dependent survival probability of 0.8 at 15 °C
(Woodhams et al., 2008). The blue and green lines given the extinction curves when
transmission was density-dependent with a dynamic zoospore pool and tadpole Bd
prevalence was 0.84 and 0.1, respectively.
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Figure 5.S9: Comparing two information criteria when fitting the latent zoospore
model to the mesocosm transmission experiment with different levels of process er-
ror in the latent zoospore pool (given by σ). The above plots show WAIC (A.)
and DIC (B.) values for three different transmission models fit to the experimental
data: density-dependent transmission with a dynamic zoospore pool (pink), frequen-
cy-dependent transmission with a dynamic zoospore pool (green), and only dynamic
zoospore pool (blue). When σ ≤ 1 and σ ≥ 2.5, the relative model rankings are
consistent for both WAIC and DIC. However, between 1 and 2.5 the information cri-
teria for the dynamic zoospore pool transmission function either drastically decreases
(WAIC) or drastically increases (DIC).
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Figure 5.S10: Comparing the estimates of the transmission coefficients (β0: the
zoospore pool coefficient, β1: the density/frequency dependent coefficient) when fit-
ting the latent zoospore model to the mesocosm transmission experiment with dif-
ferent levels of process error (given by σ). A. The zoospore pool coefficient shows a
marked increase after σ = 1. This is driven by the large variability in the trajectory
of the zoospore pool, such the transmission coefficient needs to increase in order to
contribute to transmission when, by chance, the zoospore pool may crash to very
low levels under the high σ/process error scenarios. B. In contrast, the transmission
coefficient β1 determining density or frequency-dependent host contacts is relatively
consistent across σ, with a slight decreasing trend. These is no blue line in B. because
the transmission model with only a dynamic zoospore pool does not have a coefficient
β1. The error bars are 95% credible intervals around the coefficient estimates.
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