
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Towards Large-scale Quantum Computing

Permalink
https://escholarship.org/uc/item/8x004643

Author
WU, ANBANG

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8x004643
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Towards Large-scale Quantum Computing

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Computer Science

by

Anbang Wu

Committee in charge:

Professor Yufei Ding, Chair
Professor Tevfik Bultan
Professor Timothy Sherwood
Professor Jonathan Balkind

March 2024

The Dissertation of Anbang Wu is approved.

Professor Tevfik Bultan

Professor Timothy Sherwood

Professor Jonathan Balkind

Professor Yufei Ding, Committee Chair

March 2024

Towards Large-scale Quantum Computing

Copyright © 2024

by

Anbang Wu

iii

I dedicate this to my parents, whose unwavering love lifted me
above the challenges of life and work

iv

Acknowledgements

I have received many help throughout my journey towards completing this disserta-

tion. I would like to express my deepest gratitude to my supervisor, Yufei Ding, for her

invaluable guidance, support and encouragement. She is always there when I want a talk

and discussion and has dedicated considerable time and effort to help cultivate my skills

in research, writing and presentation. I really admire her research philosophy which has

motivated me to approach problems with depth, express them with clarity, and solve

them with elegance. She has taught me an very important lesson: it is never too late to

pursue your passions. This make me determined to continue my research journey.

I am also grateful to my committee members, Professor Tevfik Bultan, Professor

Timothy Sherwood, and Professor Jonathan Balkind. Their constructive feedback and

insightful advice have immensely contributed to the refinement and completion of this

dissertation.

I would also express my sincere appreciation to my collaborators, Doctor Ang Li,

Doctor Gian Giacomo Guerreschi, Doctor Alireza Shabani, Doctor Andrew W. Cross,

Doctor Yunong Shi, Professor Gushu Li, Professor Yuan Xie and Professor Xinyu Wang,

for offering valuable suggestions and discussions for my research projects in the Ph.D.

career.

I will never forget my lab mates and friends at UC Santa Barbara, whose names

would be too numerous to list here, for fostering a friendly and engaging atmosphere for

studying and working.

Last but not least, I want to thank my family, whose unwavering love lifted me above

the challenges of life and work. Words alone just cannot convey my love and gratitude

for them.

v

Curriculum Vitæ
Anbang Wu

Education

2024 Ph.D. in Computer Science, University of California, Santa Barbara.
2023 M.S. in Computer Science, University of California, Santa Barbara.
2020 Master in Computer Science and Technology, Zhejiang University.
2017 Bachelor in Computer Science and Technology, Zhejiang University.

Publications

[1] Anbang Wu, Keyi Yin, Andrew W Cross, Ang Li, and Yufei Ding. Enabling full-stack
quantum computing with changeable error-corrected qubits. ArXiv: 2305.07072, 2023.
[2] Hezi Zhang, Keyi Yin, Anbang Wu, Hassan Shapourian, Alireza Shabani, and Yufei
Ding. Mech: Multi-entry communication highway for quantum computation on chiplets.
ASPLOS 2024.
[3] Anbang Wu, Yufei Ding, and Ang Li. Qucomm: Optimizing collective communica-
tion for distributed quantum computing. MICRO 2023.
[4] Hezi Zhang, Anbang Wu, Yuke Wang, Gushu Li, Hassan Shapourian, Alireza Sha-
bani, and Yufei Ding. OneQ: A Compilation Framework for Photonic One-Way Quantum
Computation. ISCA 2023.
[5] Anbang Wu, Hezi Zhang, Gushu Li, Alireza Shabani, Yuan Xie, and Yufei Ding.
Autocomm: A framework for enabling efficient communication in distributed quantum
programs. MICRO 2022.
[6] Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, and Yuan
Xie. A synthesis framework for stitching surface code with superconducting quantum
devices. ISCA 2022.
[7] Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan Xie.
Paulihedral: A generalized block-wise compiler optimization framework for quantum sim-
ulation kernels. ASOLOS 2022.
[8] Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yuan Xie, and Yufei
Ding. Qecv: Quantum error correction verification. ArXiv: 2111.13728, 2021.
[9] Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan Xie.
On the co-design of quantum software and hardware. NanoComm 2021.
[10] Anbang Wu, Gushu Li, Yuke Wang, Boyuan Feng, Yufei Ding, and Yuan Xie. To-
wards efficient ansatz architecture for variational quantum algorithms. ArXiv: 2111.13730,
2021.
[11] Anbang Wu, Gushu Li, Yufei Ding, and Yuan Xie. Mitigating noise-induced gradient
vanishing in variational quantum algorithm training. ArXiv: 2111.13209, 2021.

Please Note: Permissions are obtained for reusing contents from the above
papers in the dissertation.

vi

Abstract

Towards Large-scale Quantum Computing

by

Anbang Wu

With the rapid advancements in quantum hardware, we stand on the brink of the

large-scale quantum computing (LSQC) era, poised to harness the power of thousands

of even millions of noisy qubits. This heralds a transformative period where the com-

putational prowess of LSQC holds promises for addressing practical scientific challenges,

notably in the realms of molecule simulation and drug discovery. However, despite this

exciting progress, a noticeable gap persists between the current Noisy Intermediate-Scale

Quantum (NISQ)-era ecosystem and the full potential of LSQC. On the one hand, the

scale of LSQC makes manual hardware/software optimizations untenable. On the other

hand, the noisy nature of quantum hardware, accompanying the instruction scale of large

quantum applications, will surely destroy the quantum computing outcome. These as-

pects of LSQC induces a series of challenges and requirements not well optimized and

supported by NISQ computing stack: automation, scalability, and robustness.

The dissertation aims to fill this gap and synthesize a full-stack design for the LSQC

computing stack. The proposed framework presents systematic optimizations for quan-

tum software and quantum architecture. The vision is that significant advances in LSQC

require full-stack infrastructure that could not only vertically integrate the advances from

both the higher problem level and the lower hardware level. Concerning rapidly evolv-

ing problem size and hardware magnitude, the value of the proposed design will only

increase. It provides a clearer road-map for building the LSQC in the near future. The

evaluation demonstrates the superiority of the proposed framework.

vii

Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Motivation . 1
1.2 Overview and Outline . 2

2 Background 8
2.1 Quantum Computer Basics . 8
2.2 Distributed Quantum Computing . 9
2.3 Quantum Fault Tolerance . 11

3 Optimizing Burst Communication for Distributed Quantum Comput-
ing 19
3.1 Introduction . 19
3.2 Problem and Motivation . 23
3.3 Burst Communication Framework . 30
3.4 Evaluation . 41

4 Optimizing Collective Communication for Distributed Quantum Com-
puting 51
4.1 Introduction . 51
4.2 Problem and Motivation . 55
4.3 Collective Communication System Design 59
4.4 Evaluation . 69

5 Synthesizing an Error-Corrected Qubit 84
5.1 Introduction . 84
5.2 Problem Formulation . 88
5.3 Synthesis Algorithm Design . 90
5.4 Evaluation . 100

viii

6 Synthesizing a Reliable Computing Platform 109
6.1 Introduction . 109
6.2 Design Considerations . 113
6.3 QEC-based Computing Platform Design 118
6.4 Evaluation . 125

7 Synthesizing Verified Quantum Operations 137
7.1 Introduction . 137
7.2 Motivating Example . 142
7.3 Programming Language Designs for QEC 149
7.4 Weakest Precondition Computation . 158
7.5 Evaluation . 163

8 Related Work 171
8.1 Optimization of Distributed Quantum Computing 171
8.2 QEC Code Synthesis . 172
8.3 Verification of Quantum Programs . 174

9 Conclusion and Discussion 177

Bibliography 179

ix

Chapter 1

Introduction

1.1 Motivation

With the rapid advancements in quantum hardware, we stand on the brink of the

large-scale quantum computing (LSQC) era, which guarantees sufficient quantum re-

sources for demonstrating practical quantum advantage on well-known quantum appli-

cations, like Shor’s algorithm [1], chemistry simulation [2], and quantum machine learn-

ing [3]. Those applications often require thousands of even millions of qubits, which

is beyond the reach of NISQ (Near-term Intermediate-Scale Quantum) era, which only

considers computation with dozens of qubits. The system and architecture optimizations

proposed in the NISQ era are far from optimal for LSQC due to two aspects.

Firstly, NISQ quantum compilers lack high-level understanding of program patterns

in practical quantum applications, making their optimizations general but far from op-

timal. While seemingly causing only minor effect on small-scale quantum circuits, the

inefficiency can destroy LSQC. As the quantum hardware size grows, the instruction-level

overhead induced by communication (i.e., multi-qubit gate) between distant quantum

data significantly increase, just as in classical data-center computing where the com-

1

Introduction Chapter 1

munication bottlenecks the overall computing performance. Secondly, large quantum

applications will consist of orders of magnitude more instructions than NISQ programs,

amplifying the noise effect of quantum instructions. This fact motivates noise-robust

system/architecture designs. For example, guaranteeing 10−9 operation error rate over

quantum hardware of 10−3 physical error rate is needed for a reliable execution of Shor’s

algorithm, which consists of millions of quantum operations. Unfortunately, The NISQ

computing stack lacks support of noise resilience for executed quantum circuits.

To tackle these challenges, this dissertation proposes comprehensive and systematic

hardware-software optimizations for LSQC. The proposed framework for LSQC not only

implements scalable compiler optimizations for large-scale quantum circuits to enhance

communication efficiency between qubits across multiple quantum processors but also

facilitates automated fault tolerance over quantum hardware to shield quantum data

from quantum noise. Scalability and automation are crucial for LSQC, where manual

optimizations of quantum applications are impractical due to the extensive number of

computing components and the resulting computational complexity.

1.2 Overview and Outline

The goal of the dissertation is to design a large-scale and fault-tolerant quantum com-

puting (FTQC) framework (system + architecture), which is essential and indispensable

for demonstrating practical quantum advantage. To achieve this goal, the dissertation

mainly focuses on the following two lines of work: a) enhancing large-scale communication

efficiency, and b) enabling fault tolerance on quantum hardware.

2

Introduction Chapter 1

1.2.1 Enhancing Large-Scale Communication Efficiency

The availability of qubits on a quantum chip is frequently restricted due to fabrication

limitations [4]. This challenge escalates for LSQC which are featured large-scale quantum

circuits. A single quantum device may only accommodate a few dozen logical qubits. In

this scenario, distributed quantum computing (DQC) emerges as a promising approach

for scaling up [5, 6, 7, 8]. DQC integrates the computing resources of multiple quantum

processors with inter-node quantum communication. However, the efficiency of quantum

communication in DQC is not well studied previously, leading to great resource and time

overhead. The dissertation significantly reduces the communication overhead of DQC by

integrating high-level program patterns into compiler-level optimizations, enabling DQC

in the near term.

Chapter 3: Optimizing Burst Communication in DQC

Quantum communication and thus inter-node operations between different quantum

computers are often far more error-prone and time-consuming than intra-node opera-

tions [7], demanding extra compiler optimizations. Previous compilers for DQC only

focus on reducing the communication cost of each nonlocal CX or SWAP, regardless of

quantum program contexts. The dissertation points out that enhanced communication

optimization can be achieved by inspecting quantum programs’ data footprints in the

DQC network.

The dissertation proposes AutoComm [9], a compiler which identifies the burst com-

munication patterns widely existing in distributed quantum programs and reduces the

overall communication overhead by devising specific communication optimizations. The

insight of AutoComm is that a group of nonlocal CX between two nodes often involve

the same nonlocal quantum data. This implies that a single transmission of the required

3

Introduction Chapter 1

quantum data between the two nodes is sufficient for these nonlocal CX, rather than re-

peatedly sending the data for each nonlocal CX. This efficient data transmission is named

burst communication. AutoComm demonstrates the abundance of burst communica-

tion in distributed quantum programs and provides optimized data transmission schemes

for burst communication of different patterns. Compared to previous works, AutoComm

increases the communication throughput by up to 18x, and reduces the communication

request and latency of distributed programs by 72.9% and 69.2%, respectively.

Chapter 4: Optimizing Collective Communication in DQC

The dissertation further proposes QuComm [10], a framework that extends Auto-

Comm and proposes an efficient communication system for multi-node communication

over restrained quantum hardware. QuComm unveils more optimization opportunities

by examining the data flow between multiple nodes, i.e., collective communication. In

theory, more nodes (extremely, all nodes) and more nonlocal gates/data are involved in

one collective communication, more communication reduction can be achieved. However,

a large collective communication requires many concurrent communication channels on

related nodes. It is often not feasible to execute a too large collective communication

due to the limitation of communication resources. To optimize collective communica-

tion, QuComm comprises of two key contributions. Firstly, QuComm establishes the

communication buffer, which can temporarily store the pre-established communication

channels to enable a larger collective communication. Secondly, QuComm proposes a

heuristic to determine the largest collective communication to be accommodated within

the communication buffer and efficiently arrange the data flow according to high-level

communication patterns extracted from collective communication blocks. Compared to

state-of-the-art (i.e., AutoComm), this communication system further reduces quantum

communication requests by 54.9%.

4

Introduction Chapter 1

1.2.2 Enabling Fault Tolerance on Quantum Hardware

Quantum computing is error-prone (e.g., the control infidelity can be up to 1%) due

to physical and engineering limitations, requiring quantum error correction (QEC) to

correct errors in the computing results [1]. Most existing works focus on the theoretical

performance of the QEC code (QECC) and lacks systematic studies about efficiently

synthesizing QECC on quantum hardware, let alone a comprehensive and verified com-

puting stack based on the synthesized QECC. The dissertation efficiently tackled these

gaps by orchestrating architecture, system, and programming language designs.

Chapter 5: Synthesizing an Error-Corrected Qubit

The qubit connectivity assumption of most QECC does not match the constrained

topology of real quantum devices. For example, the surface code necessitates square-grid

connectivity, while mainstream quantum devices equip with sparse connectivity, like IBM

heavy hexagon devices. It is indispensable to overcome this architectural gap to enforce

QECC on hardware. Motivated by the idea from classical EDA tools, the dissertation

abstract the QECC synthesis problem as the layout problem in computer architecture

but with constraints imposed by QECC and quantum mechanics. The dissertation points

out a middleware that separates QEC design and hardware fabrication but able to stitch

them is the most viable solution to mitigate the gap and accommodate any change in

QECC or quantum device.

Based on this insight, the dissertation proposes surf-stitch [11], the first automation

tool that transforms and fits the surface code to arbitrary quantum devices. Surf-stitch

automatically extracts features from the surface code and mainstream quantum archi-

tectures and exploits the extracted features to implement a transformed yet functional-

equivalent variant of the surface code on each quantum hardware. The synthesized QECC

5

Introduction Chapter 1

can be regarded as a new ‘layouted’ QECC tailored for the deploying hardware. The eval-

uation of the synthesized QECC demonstrates that they can achieve equivalent or even

better error correction capability, compared to manually designed QECCs for specific

quantum devices.

Chapter 6: Synthesizing a Reliable Computing Platform

After synthesising a single ‘logical’ qubit that is protected by QECC, the next step is

to explore efficient QECC-based computing platform which involves designs over multiple

logical qubits. The insight is that it is important to orchestrate both architectural and

compiler optimizations of QECC. The dissertation further proposes FLEX [12], which

provides the first full-stack framework for FTQC based on code switching. FLEX iden-

tifies the architecture and compiler challenges induced by operations in quantum pro-

grams and crystallizes the large design space motivated by these challenges. FLEX

tackles the architecture design by exploiting profiling data of QECC and crafts compiler

optimizations for the expensive code switching operation with program context informa-

tion. FLEX further employs the qubit communication pattern to guide the architecture-

compiler co-designs over each program for even better efficiency. The evaluation shows

the great advantage of FLEX over existing QECC designs, indicating potential FTQC in

the near term.

Chapter 7: Synthesizing Verified Quantum Operations

The next key enabler of FTQC is trustworthy and verified quantum operations over

logical qubits. The implementation of QECC-based quantum operations is complicated,

requiring intensive interaction between quantum hardware and classical controller. Even

experts may make mistakes due to the complexity of QECC. It is thus important to syn-

thesize verified quantum operations. However, formulating and verifying QECC imple-

6

Introduction Chapter 1

mentations are challenging as each QECC operation involves a series of physical quantum

gates over plenty of physical qubits, causing exponential overhead for qubit-wise reason-

ing. While it is possible to treat QECC implementations as general quantum programs

and adopt existing works to verify them, the scalability or accuracy of such verification

is not satisfactory.

This dissertation indicates that the structure information of QECC can be the key

to improve the scalability of the verification of QECC operations while guarantee the

correctness. Based on the insight, this dissertation proposes a scalable automated verifi-

cation framework Verita [13] for stabilizer-based QECC. Verita prioritizes the struc-

tural information (i.e., stabilizers) of QECC, shaping it as the foundational element of

the proposed QECC-based programming language and assertions. With these high-level

information, Verita derives a sound quantum Hoare logic, containing scalable infer-

ence rules that avoid exponential qubit-wise reasoning overhead in most cases. Verita

demonstrates exponential time and space savings for verifying QECC operations. It can

verify operations of surface codes with up to 10081 qubits, suggesting the effectiveness of

QECC’s structure information for the verification of QECC-based quantum operations.

7

Chapter 2

Background

This chapter is devoted to providing background knowledge for the following chapters

that addresses specific large-scale quantum computing system design problems. The ma-

terial [1] also provides sufficient and excellent supplemental materials for the background

chapter and the audience may refer to it for more details.

2.1 Quantum Computer Basics

Similar to the bit which is information unit in classical computing, quantum comput-

ing employs the qubit as the basic information unit. The state/information of a qubit is

represented as a unit vector a |0⟩+b |1⟩ in the Hilbert space spanned by the computational

basis states |0⟩ =
[
1

0

]
and |1⟩ =

[
0

1

]
, which are built upon quantum effects of quantum

computing materials like the superconductor, trapped ion, neutral atom, and photon.

Furthermore, the state of n-qubits are represented by unit vectors in the 2n-dimension

Hilbert space, of which the computational basis will be {∏xi∈{0,1},i=1,··· ,n |xi⟩}.

Likewise, quantum computing relies on quantum (logic) gates to manipulate the state

of qubits. A commonly-used and universal gate basis for quantum computing is demon-

8

Background Chapter 2

strated in the following equation:

H =
1√
2

1 1

1 −1

 , RX(θ) =

 cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

 , CX =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(2.1)

For a general n-qubit system, the H or the RX(θ) gate is local to alter the state of

a single qubit while the CX gate is used to manipulate the state of two specific qubits,

which are its operands. An arbitrary n-qubit quantum circuit that manipulates a general

n-qubit system can be composed of those single-qubit and two-qubit quantum gates.

2.2 Distributed Quantum Computing

This section serves as the foundation of Chapter 3 and 4.

Quantum Communication. Like in classical distributed computing, remote/inter-

node quantum communication is the bedrock of distributed quantum computing (DQC)

but is also the bottleneck of DQC. Different from classical distributed computing, quan-

tum data cannot be easily shared across quantum nodes due to the quantum no-cloning

theorem [1]. The workaround is to exploit inter-node quantum entanglement. If two

qubits are in the entangled quantum state 1√
2
(|00⟩ + |11⟩), that is to say they form an

EPR pair [1]. The two qubits of an EPR pair can be distributed to different quantum

nodes, formulating a remote EPR pair [14]. The remote EPR pair is the most widely-

used quantum communication resource, providing the necessary quantum entanglement

for transferring quantum data between nodes. Actually, based on EPR pairs, two com-

munication protocols emerge, named Cat-Comm and TP-Comm respectively. Figure 2.1

illustrates how to use these two schemes to implement one remote CX gate, with the

control qubit q0 residing in quantum node A and the target qubit q′0 in node B. Qubits in

Figure 2.1 fall into two categories. The first category of qubits is used to store program
9

Background Chapter 2

information and is called data qubits, e.g., q0 and q′0. The second category of qubits,

called communication qubits, is used to hold remote EPR pairs, e.g. qc0 and q′c0.

Cat-Comm and TP-Comm. As shown in Figure 2.1(a), Cat-Comm utilizes cat-

entangler to transfer the state of the control qubit q0 to node B, execute the target CX

gate, and then use cat-disentangler to transfer the state back to node A. TP-Comm in

Figure 2.1(b) employs quantum teleportation [1] to transfer the state of q0 to node B,

and then execute the target CX gate. Note that in Figure 2.1(b), another teleportation

is included to move the state teleported to q′c0 back to q0. Essentially, the second telepor-

tation is used to handle the side effect of TP-Comm: the communication qubit q′c0 will

be occupied by the teleported state of q0 and thus cannot be used to establish new EPR

pairs. The second teleportation is needed to set q′c0 free. For the second teleportation,

besides moving the teleported state of q0 back to its original location as in Figure 2.1(b),

the teleported state can also be moved to any other location as long as the occupation on

the current communication qubit q′c0 is released. Overall, two EPR pairs are required to

implement one remote CX gate by TP-Comm, with one of them handling the side effect.

To avoid ambiguity, here the saying of one invocation of TP-Comm actually refers to

one invocation of quantum teleportation. That’s to say, one invocation of TP-Comm

consumes one EPR pair, just like one call of Cat-Comm. Thus, to implement one remote

CX, two invocations of TP-Comm are needed.

Figure 2.1 only shows how to implement one remote CX gate. To implement a com-

plex remote interaction between quantum nodes, one simple strategy is to first decompose

the remote interaction into several remote CX gates and implement each remote CX as

in Figure 2.1. However, this strategy may incur heavy communication costs. Eisert

et al. observe that optimized implementations exist for specific inter-node interactions,

as shown in Figure 2.2. The proposed communication optimization in this dissertation

will cleverly take advantage of the implementations in Figure 2.2 based on the observa-

10

Background Chapter 2

H

M

M

 Z

N
od

e
A

Cat-entangler Cat-disentangler

Target CX

N
od

e
B

(a)

H

Z

M

Teleportation
M

H

Target CX

N
od

e
A

N
od

e
B M

Z

M

Teleportation

(b)

Figure 2.1: The implementation of one remote CX. (a) The Cat-Comm version. (b)
The TP-Comm version. Wavy lines and dashed lines denote EPR pairs and classical
communication bits respectively. M denotes measurement.

H

M

M

 Z

N
od

e
A

Cat-entangler Cat-disentangler

N
od

e
B

Unitary
Block

(a)

H

Z

M

Teleportation
M

H

N
od

e
A

N
od

e
B M

Z

M

Teleportation

Unitary
Block

(b)

Figure 2.2: The optimized implementation of complex remote interactions. (a) Con-
trolled-unitary block by one call of Cat-Comm. (b) Unitary block by two calls of
TP-Comm.

tion of the burst and collective communication, to optimize the communication cost of

distributed quantum programs, as demonstrated in Chapter 3 and 4.

2.3 Quantum Fault Tolerance

This section serves as the foundation of Chapter 5, 6 and 7, which aims to design an

efficient system to enable fault-tolerant quantum computing.

11

Background Chapter 2

2.3.1 QEC Code basics

Quantum computation is fragile without error correction. Information in qubits can

be easily distorted by the decoherence error [1]. The imprecise quantum operation and er-

roneous quantum measurement further worsen the situation [1]. To ensure fault-tolerant

quantum computation, various QEC codes [15, 16, 17, 18, 19, 20] are proposed. In these

QEC codes, the surface code is among the most popular ones due to its excellent error

correction capability [20]. The rest of this section will use surface code as the example

to demonstrate basic components and concepts of QEC codes.

Figure 2.3: Common components of the surface code. (a) The surface code lattice
with data qubits (blue dots) and syndrome qubits (red dots). (b) Z-type syndrome
extraction and its circuit. (c) X-type syndrome extraction and its circuit.

Data and syndrome qubits. The surface code encodes a logical qubit in a 2D

lattice of physical qubits, as shown in Figure 2.3(a). The physical qubits in the code

lattice can be divided into two types: data qubits and syndrome qubits, denoted as

blue and red dots, respectively in Figure 2.3(a). The encoded logical information is

stored in data qubits. Error information on data qubits can be extracted by measuring

the syndrome qubit (a.k.a measurement qubit). Each syndrome qubit is coupled with

its (up to) four neighboring data qubits, using the syndrome extraction circuit (a.k.a

measurement circuit) shown in Figure 2.3(b)(c) to gather the error information on data
12

Background Chapter 2

qubits.

Pauli operator and stabilizer. In surface codes, the relationship between a syn-

drome qubit and its neighboring data qubits is represented by the product of Pauli

operators (a.k.a Pauli string [1]), as shown in Figure 2.3(a) where Pauli operators are

labeled on the edges between data qubits and syndrome qubits. For each syndrome qubit,

the Pauli string on its edges can be in one of two possible patterns. The first one (Z-type)

is shown in Figure 2.3(b). The connections between the center syndrome qubit and the

four data qubits are all labeled by the operator Z, and together they are represented by

the Pauli string ZaZbZcZd. The second one (X-type) as shown in Figure 2.3(c) is similar,

except that all connections are labeled by the operator X, together represented by the

Pauli string XaXbXcXd.

For these two different patterns, corresponding error detection (or syndrome extrac-

tion) circuits are devised to detect errors on data qubits (shown on the right side of

Figure 2.3(b)(c)). Syndrome extraction circuits in Figure 2.3(b)(c) project the state

of data qubits {a, b, c, d} onto the eigenstates of corresponding Pauli strings, which are

also referenced by stabilizers [21] in the context of QEC. Syndrome extraction is thus

known as the stabilizer measurement [22]. Without ambiguity, the stabilizer notation

will be used to represent the syndrome extraction circuit, and the stabilizer ZaZbZcZd

(XaXbXcXd) will be abbreviated into Zabcd (Xabcd).

Error detection cycle. Surface codes can detect Pauli X- and Z-errors on data

qubits with Z- and X-type stabilizer measurement circuits, respectively. Errors on a data

qubit can affect the measurement results of stabilizers associated with it. In an error

detection cycle, the surface code would run all stabilizer measurements once and collect

the measurement results. With these results, a surface code error correction protocol can

infer what errors have occurred in the code lattice and apply corrections accordingly. For

more details, please refer to [20].

13

Background Chapter 2

Figure 2.4: Code distance and the compact lattice. (a) Logical operations of the
distance-3 surface code. (b) Inside the rotated rectangle (dashed brown line) is a
compact surface code lattice with the same code distance as in (a).

Figure 2.5: Z-type stabilizer measurement circuit synthesis. (a) The connected graph
of data qubits (blue) and ancillary qubits (red). Qubit s is the syndrome qubit. (b)
The synthesized stabilizer measurement circuit that is executable on the connected
graph in (a).

Code distance. The error correction capability of the surface code is related to the

code distance [23, 17], which is defined as the minimum number of physical qubits that

support the logical X or Z operation on the encoded logical qubit (denoted by XL or

ZL in Figure 2.4). Usually, surface codes with larger code distances can correct more

complex errors, but their implementation overhead is also higher. Figure 2.4(a) shows

the logical operations in a distance-3 surface code. Figure 2.4(b) indicates that a more

compact surface code lattice can be obtained without changing the code distance.

14

Background Chapter 2

2.3.2 Logical Operations upon QEC Codes

Transverse logical gate. To enable FTQC over QEC codes, logical gates that

fault-tolerantly manipulate logical qubits are required. Many logical gates can be easily

implemented by applying data-qubit-wise physical gates. Such logical gates are called to

be transverse. For instance, on a logical qubit q̄ of the Steane code (in short, a Steane

logical qubit) whose data qubits are q1, q2, · · · , q7, the logical H gate (HL) is transverse

and is defined by seven physical H gates: HLq̄ = ⊗7
i=1Hqi. Logical CX (CXL) is also

transverse and is defined by CXLq̄0q̄1 = ⊗7
i=1CXq0iq1i. Logical gates comprise another

critical part of the QEC architecture design, especially for the logical CX where is control

and target data qubits are not neighboring to each other.

Non-transverse logical gate. Unfortunately, not all logical gates of a QEC code

admit a transverse implementation [24]. For instance, the logical T gate (TL) is transverse

in the 15-qubit Reed-Muller (RM) code (defined as TLq̄ = ⊗15
i=1T

†qi) but is non-transverse

in the Steane code. Likewise, HL is transverse in the Steane code but non-transverse in

the RM code. To achieve universal FTQC with the Clifford+T gate basis, various schemes

(e.g., magic distillation [25] and code switching [26]) are proposed to provide robust

implementations of the ‘difficult-to-implement’ non-transverse logical gates. Among these

schemes, code switching stands out for its potentially smaller resource-time overhead [27].

Code switching. Specifically, the core idea of code switching is to encode the log-

ical qubit in different QEC codes along the time dimension, e.g., switching between the

Steane and the RM code, which is widely studied in existing works [27, 26]. To imple-

ment TL on a Steane logical qubit, the logical qubit can be switched into the RM code.

After TL is transversely implemented, one more code switching is needed to transform the

logical qubit back into the Steane code. For RM code {qr1, · · · , qr15}, {qr1 · · · , qr7} and

{qr8 · · · , qr14} separately form two Steane codes. The code switching from Steane code to

15

Background Chapter 2

RM code contains one logical CX between Steane code {qr1 · · · , qr7} and {qr8 · · · , qr14}

and then three physical CX gates (CXqc15 qc5, CXqc15 qc6, CXqc15 qc7), with each logi-

cal/physical CX followed by one Steane error correction round. The following RM error

correction round will then finish the code switching process (please see [27, 26] for more

details). The code switching from the RM to the Steane code is just the reverse of

Steane code to RM code. The correctness and fault tolerance of code switching is guar-

anteed [27, 26].

The implementation of code switching is another critical design aspect of the QEC

architecture. Compiler optimizations can be further incorporated to reduce the utilization

of the time-consuming and error-prone code switching protocol.

2.3.3 Enforcing QEC on Hardware

In this section, necessary underlying toolkit for implementing QEC operations on

hardware will be introduced. In many quantum devices (e.g., superconducting [28] and

neutral atom hardware [29]), the connectivity between physical logical qubits is limited.

In such a case, the physical CX gate in stabilizer measurement circuits, logical CX, and

code switching may be on non-neighboring physical qubits.

Stabilizer measurement implementation. There may be a structural gap be-

tween the measurement circuit and the hardware connectivity. As an example, to

map a stabilizer measurement circuit that requires a four-degree qubit to the sparsely-

connected superconducting device that lacks such high-degree qubits, various methods

have been proposed, such as the degree-deduction technique [30], and the flag-bridge

circuit [31, 32, 33, 34]. Once data qubits and the required ancillary qubits (including the

syndrome qubit) for the stabilizer measurement are specified, those methods can generate

corresponding measurement circuits executable on superconducting devices. Figure 2.5

16

Background Chapter 2

shows the generated flag-bridge circuit for the stabilizer Zabcd with a tree of ancillary

qubits {e, s, f}. These ancillary qubits are also called bridge qubits, and the tree they

form is called the bridge tree. Here the qubit s is set as the tree root, which acts as the

syndrome qubit for Zabcd, collecting error information from data qubits {a, b, c, d}. The

construction of the flag-bridge circuit consists of five components:

1) Initialization: bridge qubits except the tree root s are initialized to |+⟩ while s is

initialized to |0⟩.

2) Encoding circuit: Starting from k = 1 (i.e., from the root s), for each node at the

k-th level of the bridge tree, one CNOT gate is added from this node to its parent node

in the encoding circuit.

3) Coupling circuit for data qubits: The data qubits are coupled in a zigzag way with

leaf bridge qubits instead of the tree root to respect the device connectivity limitation.

4) Decoding circuit: The decoding circuit is the mirror of the encoding circuit. Those

two circuits together ensure the fault tolerance of the stabilizer measurement.

5) Measurements: The tree root is measured on the Z basis while other ancillary

qubits are measured on the X basis. The measurement results on the X basis can be used

to detect Pauli Z errors on ancillary qubits.

Other stabilizer measurement circuits can be constructed in a similar way. For more

details, please refer to Lao et al. [31]. Note that methods discussed in this section only

solve the low-level circuit generation problem of one stabilizer measurement, far from

tackling the overall surface code implementation.

Implementation of logical CX and code switching. To perform a physical CX

between data qubits that are not physically coupled, the GHZ state (see Figure 2.6) rather

than SWAP gates will be used for low cost, as practiced widely by existing works [35, 36],

where the GHZ state is used to build the fault-tolerant logical CX. In Figure 2.6, a

GHZ state can be built using {qi, · · · , qi+k} and the remote CX between q1 and q0 is

17

Background Chapter 2

qi

qi+1

qi+2

qi+3

qi+k

q1

q0

|+〉

|0〉

|+〉

|0〉

M

M

X

X

from mea.
on qi+2j+1

state preparation
M H

H

H

H

H

M

M

M

M

M

Z

GHZ
path

Figure 2.6: Remote CX between q1 and q0 using the GHZ state. The state preparation
part of the circuit will generate a GHZ state over qi, qi+2, qi+4, · · · , qi+k.

implemented by using the prepared GHZ state. Qubits in the state preparation part of

Figure 2.6 (i.e., qi, · · · , qi+k) form a GHZ path to connect two data qubits.

In the proposed architecture designs for QEC-based quantum computing, the flag-

bridge circuit in Figure 2.5 will be used for error detection and the GHZ-state-based

method in Figure 2.6 will be used for the CX gate between non-neighboring physical

qubits. Using these toolkit is not the contribution of this dissertation. Rather, this

dissertation concerns higher-level architectural designs upon these toolkit.

18

Chapter 3

Optimizing Burst Communication for

Distributed Quantum Computing

In this chapter, we will delve into optimizing the burst communication pattern commonly

found in distributed quantum programs.

3.1 Introduction

Quantum computing is promising with its great potential of providing significant

speedup to many problems, such as large-number factorization with an exponential

speedup [37] and unordered database search with a quadratic speedup [38]. A large num-

ber of qubits is required in order to solve practical problems with quantum advantage

and the qubit count requirement is even higher after taking quantum error correction [1]

into consideration. However, it has turned out that extending the number of qubits on a

single quantum processor is exceedingly difficult due to various hardware-level challenges

such as crosstalk errors [39, 40], qubit addressability [40], fabrication difficulty [41], etc.

Those challenges usually increase with the size of quantum hardware and may limit the

19

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

number of qubits in a single quantum processor.

Rather than relying on the advancement of a single quantum processor, an alterna-

tive way to scale up quantum computing is to explore distributed quantum computing

(DQC) [5, 8], which integrates the computing resources of multiple quantum processors.

In DQC, remote quantum communication involving qubits in different compute nodes is

essential yet far more expensive than the local communication between same-node qubits

(e.g., 5-100x time consumption and up to 40x fidelity degradation [42, 43]). There are

two major schemes for inter-node communication: one built upon cat-entangler and -

disentangler protocols [44], and the other based on quantum teleportation [1]. We refer

to the former scheme as Cat-Comm and the latter one as TP-Comm. Both schemes

consume remote EPR pairs [14], which are pre-distributed entangled qubit pairs, as a

resource to establish quantum communication. Cat-Comm can implement a remote CX

gate [1] with only one EPR pair, but for general two-qubit gates such as SWAP gate [1],

Cat-Comm requires up to three EPR pairs [45]. In contrast, TP-Comm can execute any

remote two-qubit gate with two EPR pairs [14] and is thus more efficient for the SWAP

gate. For a distributed quantum program, more complex remote operations or more

quantum information transferred per EPR pair would lead to less communication cost.

The overall compiling flow for DQC is similar to that of single-node quantum pro-

grams, except with more emphasis on remote communication overhead. One compiler

design proposed by Ferrari et al. [45] adopts a similar compilation strategy to single-node

compilers [46, 28, 47, 48, 49], using Cat-Comm for implementing the remote CX. This

strategy has a low communication throughput due to the low information of the remote

CX gate. The compiler by Baker et al. [42] and another design by Ferrari et al. [45]

instead eliminate all remote CX gates by using remote SWAP, which only requires two

EPR pairs for implementation but contains the information of three CX gates. Unfor-

tunately, bounded by the information of a single two-qubit gate, these compilers cannot

20

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

Distributed Quantum Program Compiling Flow Integration

Other Passes

Existing Flow
Qubit Mapping

Gate Unrolling

AutoComm Design and Optimzations

ScheduleAssignmentAggregation

Burst identify

Linear merge

Pattern inspect

Cat&TP-Comm

Pattern inspect

Parallel&Fusion
Sparse

Communication Burst Communication

Figure 3.1: AutoComm Overview.

achieve higher throughput of information per EPR pair. Eisert et al. [14] suggest that

a higher throughput could be achieved by considering multi-qubit gates. Diadamo et

al. [6] compiles distributed VQE by using Cat-Comm to implement controlled-unitary-

unitary and controlled-controlled-unitary gates. However, their work can only optimize

gates written in the controlled-unitary form, not applicable to the decomposed circuit

that consists of only quantum basis gates (e.g., CX+U3 [28]). Besides, their work cannot

optimize programs lacking controlled-unitary blocks.

Besides increasing the ‘height’ (number of qubits) of remote operations, we observe

that the throughput of information per EPR pair can also be significantly boosted up by

expanding the ‘width’ (number of gates) of each remote communication. Specifically, we

discover that it is possible to implement a group of remote two-qubit gates collectively

through one or two EPR pairs. On top of the observation, we propose optimizing the

communication overhead of distributed quantum programs based on the burst communi-

cation, which denotes a group of continuous remote two-qubit gates between one qubit

and one node. Burst communication is powerful as it is more information-intensive than

a single two-qubit gate and contains but is not limited to controlled-unitary blocks. Burst

communication is also flexible for optimization as it does not require specialized circuit

representation and is available in decomposed circuits.

21

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

To this end, we develop the first burst-communication-centric optimization frame-

work, AutoComm. Our framework focuses on the optimization of remote communication

and leverages existing compiling flows [42, 45, 46, 28, 47, 48, 49] on other program op-

timization aspects (e.g., qubit mapping to assign qubits over different DQC nodes), as

shown in Figure 3.1. This two-step design not only makes our work extensible but also

outstands our significant novel contributions on communication optimization. In exist-

ing compiling flows, each CX is implemented independently (i.e., sparse communication);

while with AutoComm, sparse communication is converted into burst communication and

specifically optimized for higher communication throughput.

Overall, our framework consists of three key stages. Firstly, we perform a communi-

cation aggregation pass to group remote gates and extract burst communication blocks.

Due to the wide existence of burst communication in distributed quantum programs,

this pass could generate a large amount of burst communication blocks for the follow-

ing optimizations. Secondly, we propose a hybrid communication scheme that examines

the patterns of each burst communication block and assigns the optimal communication

scheme for each block. The insight is that TP-Comm and Cat-Comm are more resource-

efficient for different types of burst communication, thus considering only one scheme

would incur extra resource consumption. Finally, we adopt an adaptive schedule for

burst communication blocks of different patterns to squeeze out the parallelism between

them and thus reduce the overall program latency. We observe that it is possible to

execute burst communication with shared qubits or nodes in parallel, and we can fuse

some burst communication blocks to cut down the communication footprint.

Our contributions are summarized as follows:

• We identify the burst communication feature in DQC and promote its importance

in optimizing distributed quantum programs. we further propose the first commu-

22

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

Figure 3.2: Program snippet extracted from quantum arithmetic circuits [51].

nication optimization framework based on it.

• We propose a communication aggregation pass to expose burst communications

and design a hybrid communication scheme, using both Cat- and TP-Comm to

accommodate different communication patterns.

• We propose an efficient communication scheduling method to optimize the program

latency adaptively, squeezing out the parallelism of burst communication.

• Compared to state-of-the-art baselines, AutoComm reduces the EPR pair consump-

tion and the program latency by 72.9% and 69.2% on average, respectively.

3.2 Problem and Motivation

In this section, we first introduce the communication problem in DQC and then

identify optimization opportunities by considering burst communication. For the rest

of the discussion, we assume that quantum communication can be established between

any two quantum nodes, a typical assumption in data-center distributed computing [50].

We also assume that each quantum node has only two communication qubits, which is

realistic for near-term DQC [45].

23

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

3.2.1 Communication Problem

The example distributed program in Figure 3.2 is modified from quantum arithmetic

circuits [51]. This program contains many remote CX gates, e.g., CX q1, q3. Remote CX

gates are inevitable in DQC especially when the program’s qubit number is substantially

larger than that of each quantum node. To execute a distributed program, we need

to invoke either Cat-Comm or TP-Comm to implement remote operations, as shown

in Figures 2.1 and 2.2. Due to the noisy nature of quantum communication, remote

operations are far more error-prone than local quantum gates. The long runtime of

quantum communication would also lead to the decoherence of quantum states. As a

result, to produce high fidelity outcome, we hope the number of remote communication

to be as small as possible, and so is the latency induced.

While one remote CX gate requires at least one remote EPR pair and there is little

room for optimizing the communication cost of one remote CX, there is a large opti-

mization space when considering burst communication, which involves a group of remote

CX gates. For example in Figure 3.2, we can execute the first two CX gates on q1, q3

collectively, with only one EPR pair by using the circuit in Figure 2.2(a). From the

perspective of information theory, burst communication is more informative than com-

munication that carries only one remote CX. The overall communication overhead would

be considerably lowered if handling all remote CX gates in this burst manner.

Fortunately, as we can see in the next section, burst communication is prevalent in

diverse distributed quantum programs.

3.2.2 Burst Communication in DQC

Aside from the arithmetic program shown in Figure 3.2, we also see burst commu-

nication in a variety of quantum programs. As examples, we examine the burst com-

24

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

munication of the Quantum Fourier Transform (QFT) program [1] and the Quantum

Approximate Optimization Algorithm (QAOA) [52] by hand. These two represent differ-

ent categories of quantum programs: QAOA is one of the most important applications

in near-term quantum computing whereas QFT is the building block circuit of quantum

algorithms.

We first give a formal definition of burst communication in DQC. We refer to a

group of continuous remote two-qubit gates between one qubit and one node as burst

communication. For two remote two-qubit gates g1 and g2, the continuity of these two

gates means there are no other remote gates between g1 and g2.

To characterize the burst communication of a distributed program dprog, for a remote

gate g in dprog, we define function ϵ(g) to be the largest burst communication block that

contains g. The gate order of dprog may affect the burst communication block found.

ϵ(g) is defined to be the largest over all functional-equivalent gate order of dprog. We then

define len(ϵ(g)) to be the number of remote CX gates in ϵ(g) if compiled to the CX+U3

basis [28]. Finally, we are ready to define the inverse-burst distribution as follows:

P (x) =
|{g|len(ϵ(g)) < x}|

#g
. (3.1)

A lower P (x) suggests more burst communication. Specifically, for a given x, the lower

P (x) is, the larger 1 − P (x) is and the more remote CX gates belong to burst commu-

nication blocks that each possesses more than x remote CX gates, indicating more burst

communication opportunities. On the other hand, for the given probability P0 = P (x),

we hope the corresponding x to be as large as possible since it means there are 1 − P0

of remote CX gates belonging to burst communication blocks that each possesses more

than x remote CX gates. The distribution 1 − P (x) actually provides an ideal upper

bound for the burst communication existing in distributed quantum programs and can

25

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

Figure 3.3: (a) QFT program with two nodes and two qubits per node. (b) The layout
for the maximal P4. Parameters of CRZ gates are omitted here for simplicity. For the
purpose of demonstration, we do not combine CRZ43 and CRZ32 to form a 4-REM-CX
block. The 4-REM-CX (or 2-REM-CX) block denotes the gate block which contains
four (resp. two) remote CX gates when compiled to the CX+U3 basis.

serve as a metric to evaluate the communication efficiency of various distributed quantum

algorithms.

We begin by examining the QFT program using the aforementioned definition. We

assume the total qubit number is n, the quantum node number is k, and qubits are

evenly distributed across all nodes, with t = n
k

qubits per node. Figure 3.3 shows the

QFT program with k = 2 and t = 2. For the QFT program, each qi is controlled by all

qubits qj (through the CRZ gate) that satisfies j > i [1], as shown in Figure 3.3. Then,

we have P (2) = 0 because each CRZ gate in QFT is compiled into two CX gates, as

illustrated in Figure 3.3(a). Now, we consider P (4). For the i-th qubit satisfies i ≤ n−k,

the number of j s.t. ϵ(CRZji) < 4 is at most ⌊ i−1
t−1⌋ because for one node, if at least two

of its qubits have subscripts > i, this node would have at least two qubits interacting

with qubit i. Since CRZ gates are commutable with each other, we could then form a

communication block with at least 4 CX gates. It’s easy to see that there are at most

⌊ i−1
t−1⌋ nodes, each containing no more than one qubit with subscript > i. On the other

hand, if i > n − k, then the i-th qubit is at most controlled by n − i qubits, thus the

26

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

number of j s.t. ϵ(CRZji) < 4 is at most n− i. Therefore, we have

P (4) ≤
∑n−k

i=1 ⌊ i−1
t−1⌋+

∑n
i=n−k+1(n− i)∑n

i=1(n− i)− k
∑t

l=1(t− l)
=

1

t
.

This indicates there are 1 − P (4) ≥ 1 − 1
t

remote gates within burst communication

blocks that each possesses more than 4 remote CX gates. Generally, we can prove that

P (x) ≤ x/2−1
t

, for x > 2. This upper bound is quite promising when t is large and it

is actually loose. For Figure 3.3(b) which approximates the upper bound of P (4), there

may be 1
t

of remote CRZ gates, i.e., CRZ43 and CRZ32 not in a block with 4 remote CX

gates at the first glance. But as shown in Figure 3.3(b), we can actually combine CRZ43

and CRZ32 to form a 4-REM-CX block (the block that contains 4 remote CX gates when

compiled to the CX+U3 basis). More 4-REM-CX blocks or n-REX-CX blocks (n > 4)

can enable more burst communication opportunities. This indicates that the distributed

QFT program has more abundant burst communication than the upper bound of P (x)

(thus the lower bound of 1− P (x)) suggests.

Similarly, for the QAOA program, we assume k nodes and t qubits per node. We also

suppose r remote ZZ interactions between any two nodes. Figure 3.4 shows the QAOA

program with k = 2 and t = 3. Likewise, P (2) = 0 since each ZZ interaction is compiled

into two CX gates, as shown in Figure 3.4(a). For every two nodes, the qubit layout

to minimize len(ϵ(ZZ)) for each ZZ interaction is to make every two ZZ interactions

have no shared qubits, i.e., not adjacent. However, this layout at most accommodates

t ZZ interactions. For r > t, considering m2 + (t −m) < r ≤ (m + 1)2 + (t −m − 1),

there are at most t − m − 1 ZZ interactions that are not adjacent to any other ZZ

interactions. Thus, we have P (4) = t−m−1
r

< t−m−1
m2+(t−m)

. For example in Figure 3.4(b),

we have 12 + (t − 1) = 3 < r < 22 + (t − 2) = 5, thus we predict P (4) < t−1−1
12+(t−1) = 1

3
.

This bound is correct because in Figure 3.4(b), only 1
4

of remote ZZ interactions are

27

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

Figure 3.4: QAOA program with two nodes and three qubits per node. Parameters of
ZZ interactions are omitted here for simplicity. (a) inter-node communication number
r = 3. (b) r = 4.

not in a 4-REM-CX block. It is easy to see that P (4) would quickly decrease if m

becomes large. For the general P (x), a similar conclusion can be reached. Therefore,

burst communication is also broadly available in the distributed QAOA program.

We could derive a similar analysis for other distributed quantum programs. Fur-

ther numerical evidence for the richness of burst communication in various distributed

quantum programs is shown in Figure 3.13. The next step is to figure out how to uti-

lize abundant burst communication to optimize the communication cost of distributed

quantum programs, as discussed in the next section.

3.2.3 Optimization Opportunities

To exploit burst communication in distributed quantum programs, we need to answer

three key questions:

28

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

How to unveil burst communication? Burst communication is a type of high-level

program information and cannot be easily deduced from the low-level circuit language,

especially when remote interactions between multiple nodes are all mixed together. For

example in Figure 3.2, gate CX q2; q4 between node A and node B is followed by CX q1; q6,

which is the interaction between node A and node C. Such a disorder in distributed

quantum programs causes great difficulty in utilizing the benefits of burst communication.

How to select the best communication scheme? Burst communication comes in

various forms. While being more efficient for implementing one remote CX gate, Cat-

Comm is not always better than TP-Comm for burst communication. For example in

Figure 3.2, if we use Cat-Comm to implement the last three remote CX gates between

q3 and node A, three EPR pairs are needed. However, with TP-Comm to teleport q3 to

node A, at most two EPR pairs are needed. Thus, to reduce the communication cost,

we should examine the pattern of burst communication and choose the communication

scheme wisely.

How to schedule burst communication? Finally, we need to schedule the execution

of burst communication blocks. If we arrange all burst communication in a sequential

way, the large time overhead would impose non-negligible decoherence errors on quantum

states. As a result, we should maximize the parallelism in burst communication to gen-

erate high-fidelity output. To achieve this goal, we should first identify the relationships

between communication blocks and then reduce the time gaps caused by communication

blocks adaptively.

29

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

3.3 Burst Communication Framework

In this section, we first give an overview of the AutoComm framework and then

introduce each component in detail.

3.3.1 Design overview

We propose the AutoComm framework as shown in Figure 3.1. AutoComm focuses

on the communication optimization of distributed quantum programs and serves as the

back-end of front compiling flows (e.g., mapping qubits to quantum nodes). We would

adopt existing technologies for these front compiling stages, as we would see in Section 3.4.

To reduce the communication overhead in distributed quantum programs, AutoComm

comes with three stages to utilize burst communication. Firstly, it aggregates remote

two-qubit gates by gate commutation. Gate commutation is common in quantum pro-

grams [53]. Commutable gates, on the one hand, may be ordered arbitrarily and hide

the burst communication. On the other hand, we could also utilize gate commutation

to uncover burst communication blocks. In this stage, we first identify potential burst

communication and then employ a linear merge step to combine isolated burst commu-

nication blocks.

Secondly, it assigns an optimal communication scheme for each burst communication

block. We observe that the pattern of burst communication impacts the efficiency of

communication schemes. Cat-Comm is less expensive for some patterns, while TP-Comm

may be more cost-effective for others. It is thus important to examine the patterns of

burst communication and consider both Cat-Comm and TP-Comm for implementing

them, rather than only focusing on one scheme.

Thirdly, it performs a block-level schedule of burst communication. It is possible to

execute communication blocks with shared nodes or qubits concurrently or shorten the

30

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

= =

RZ = RZ

RZ1 RZ2

=

RZ2 RZ1

RX
=

RX
RZ

=
RZ

X
=

X

X Z
=

Z

Z

1

Figure 3.5: Representative gate commutation rules used in AutoComm.

quantum state transfer path across quantum nodes. Combined with these optimizations,

a greedy schedule is effective for burst communication.

3.3.2 Communication Aggregation

Burst communication is prevalent in distributed programs, but may not be immedi-

ately available due to two factors: CX gates may be scattered across the program, and

whether CX gates are remote or not depends on the qubit mapping to quantum nodes.

To make our framework able to uncover hidden burst communication regardless of qubit

mappings, we need to rewrite the circuit and aggregate remote CX gates.

Figure 3.5 shows a fraction of circuit rewriting rules for remote gate aggregation.

The first two rows of Figure 3.5 contain gate commutation rules for two-qubit gates,

from simple ones to complex ones. These rules enable flexible two-qubit gate relocation

so that burst communication can be automatically exposed and utilized. The remaining

two rows of Figure 3.5 are about exchanging single-qubit gates with the CX gate and

affect the pattern of the aggregated burst communication (more details in Section 3.3.3).

Based on these circuit rewriting rules, we design the following steps to aggregate remote

31

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

Algorithm 1: Linear merge procedure
Input: An array of communication blocks blk_list
Output: Merged communication blocks blk_list_merge

1 blk_list_merge = [];
2 blk = blk_list[0] ;
3 while there are blocks in blk_list not visited do
4 non_commute_gates = [];
5 for blk_next in unvisited blocks of blk_list do

// Attempt merge blk to blk_next
6 for gate between blk and blk_next do
7 if gate is single-qubit and not commutes with blk then
8 non_commute_gates.append(gate);
9 if gate is two-qubit then

10 check if gate is commutable with non_commute_gates and blk;
11 if not commutable then
12 if gate is in-node two-qubit then
13 non_commute_gates.append(gate);
14 else
15 break;
16 end
17 blk =merge blk, non_commute_gates and blk_next;
18 end
19 if the above merge failed then
20 Try to merge blk_next to blk similarly;
21 if succeeds then
22 blk =merge blk, non_commute_gates and blk_next;
23 else
24 blk = blk_next;
25 end
26 output the merged blocks and adjust the order of commutable gates;

gates.

(a) Identifying potential burst communication As burst communication is defined

between one qubit and one node, the first step of communication aggregation is thus to

identify the qubit-node pair of potential burst communication. We start with the qubit-

node pair associated with most remote gates as it would likely lead to a large burst

communication block. For example in Figure 3.2, the chosen qubit-node pair is (q3, node

A) as it is associated with 5 remote CX gates. We then search for consecutive remote

CX gates related to this qubit-node pair. In this step, circuit rewriting is not applied

32

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

1 2
3

4

1 2

1 2

3

4

5
6

7

Figure 3.6: Communication aggregation for the example program in Figure 3.2. (a)
Identifying potential burst communication. (b) Linear merge. (c) Iterative refinement.

yet and the search would result in many isolated communication blocks. For example in

Figure 3.6(a), we obtain four small blocks.

(b) Linear merge The next step is to merge isolated small communication blocks

obtained in step (a). As illustrated in Algorithm 1, we merge related communication

blocks in a linear and greedy manner. For communication blocks 1○, 2○, 3○, 4○ in

Figure 3.6(a), we can easily merge block 1○ and 2○ since only single-qubit gates exist

between those two blocks. We call denote the merged block of 1○ and 2○ by blk_new.

Unfortunately, we can not merge block blk_new and block 3○. On the one hand, CX q5, q3

33

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

is not commutable with blk_new, so we cannot move blk_new close to 3○. On the

other hand, CX q5, q2 is not commutable with 3○, making it impossible to move 3○

close to blk_new. We then skip blk_new and start from block 3○ to find other merge

opportunities. The linear merge procedure will visit all blocks at least once. Finally, we

obtain two larger communication blocks after the linear merge, as shown in Figure 3.6(b).

(c) Iterative refinement Then we repeat steps (a) and (b) for other qubit-node pairs

until no more merge opportunities exist. The final result of communication aggregation

is shown in Figure 3.6(c). Identified burst communication blocks are ordered by the time

being discovered.

3.3.3 Communication Assignment

With burst communication blocks, the next optimization is to find the best way to

execute them. We address this problem by first examining the pros and cons of Cat-

Comm and TP-Comm, and then assigning the optimal communication scheme based on

the pattern analysis of burst communication blocks. Since we assume only two commu-

nication qubits in each quantum node, the communication patterns discussed here center

on interactions between one qubit and one node. Extending burst communication to the

node-to-node situation is promising when communication qubits are plentiful. We leave

it for future work.

Cat-Comm vs. TP-Comm: Suppose we have a burst communication block between

q1 in node A and several qubits in node B, with n remote CX gates totally. If the

block can be executed by one invocation of Cat-Comm, the savings on EPR pairs would

be up to n times, compared to executing each remote CX gate individually. However,

Cat-Comm only supports controlled-unitary blocks and needs many (≥ 2) EPR pairs to

34

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

Figure 3.7: Two primitive communication patterns (a)(b) and the variant (c).

(a) (b)

Figure 3.8: The transformation between communication patterns by using Hadamard gates.

implement communication blocks not being controlled-unitary. Compared to Cat-Comm,

TP-Comm can implement any burst communication block with two EPR pairs: one to

teleport q1 to node B, the other to teleport q1 back to node A, in order to handle the

side effect of TP-Comm. There are cases we would like to teleport q1 to another node

instead of simply moving it back. We postpone the details to Section 3.3.4. Compared to

Cat-Comm, the disadvantage of TP-Comm is that its EPR pair saving is at most n
2

times.

Overall, Cat-Comm provides higher EPR pair savings for specific burst communication

blocks, while TP-Comm can handle any burst communication block with up to two EPR

pairs.

Pattern analysis: Figure 3.7(a)(b) shows two primitive patterns of burst communi-

cation. For the unidirectional communication pattern in Figure 3.7(a) where one qubit,

i.e., q1 always serves as the control qubit, the communication block can be implemented

by Cat-Comm with only one EPR pair if no single-qubit gate on q1 separates two-

35

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

2 4

Cat-Comm
Blocks

TP-Comm
Blocks

7

Teleport Teleport Teleport Teleport Teleport

EPR
Prep

1 3 56

7

1

6
3

5

2

4

Figure 3.9: (a) The result of the communication assignment pass. (b) The result of
the communication scheduling pass.

qubit gates [44]. For example, one call of Cat-Comm can handle the gate sequence

CX q1, q
′
1; CX q1, q

′
2 , but cannot address CX q1, q

′
1; RZ q1; CX q1, q

′
2 due to the mid-

dle RZ gate. However, by moving RZ behind CX q1, q
′
2, the resulted gate sequence

CX q1, q
′
1; CX q1, q

′
2; RZ q1 only requires one invocation of Cat-Comm. Thus, to execute

a communication block of unidirectional pattern with Cat-Comm, we should move single-

qubit gates on the control qubit outside the communication block. Otherwise, we resort

to TP-Comm. For example, to implement CX q1, q
′
1; H q1; CX q1, q

′
2; H q1; CX q1, q

′
3, it

is better to use TP-Comm.

A varied unidirectional pattern in which q1 always serves as the target qubit, as shown

in Figure 3.7(c), also occurs frequently in distributed quantum programs. This pattern

can be transformed into the pattern in Figure 3.7(a) by applying a series of Hadamard

gates, as shown in Figure 3.8(a).

36

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

Figure 3.7(b) shows a bidirectional pattern in which q1 serves as both control qubit

and target qubit. Although we can transform a bidirectional communication block to be

unidirectional as in Figure 3.8(b) with Hadamard gates, single-qubit gates on the control

qubit may still prevent a cheap implementation by Cat-Comm. In fact, for the block

in Figure 3.8(b), TP-Comm is more efficient as it only requires two EPR pairs, while

Cat-Comm requires three EPR pairs.

To summarize, for unidirectional communication patterns in Figure 3.7(a)(c), we

will try Cat-Comm first, while for the bidirectional pattern in Figure 3.7(b), TP-Comm

is mostly preferred. The insight behind the conclusion is that, analogous to classical

distributed computing, Cat-Comm only shares its read-only copy to another node, thus

it is not a natural fit for bidirectional communications which involve read and write on

the shared qubit. TP-Comm, in contrast, migrates data to another node, allowing read

and write operations on the migrated qubit.

Communication scheme assignment: Now, we are ready to assign an optimal com-

munication scheme to each burst communication block. Taking Figure 3.6(c) as an ex-

ample, we assign Cat-Comm to unidirectional blocks 1○, 6○ (we can move the T † gate on

q2 outside the communication block) and 7○. We call these blocks Cat-Comm blocks for

simplicity. We then assign TP-Comm to bidirectional blocks 2○, 4○ and 5○. Likewise, we

call them TP-Comm blocks. For 3○, although being unidirectional, it cannot be executed

by one invocation of Cat-Comm due to the H gate on q5. Since executing it with either

Cat-Comm or TP-Comm requires two EPR pairs, we set the TP-Comm assignment as

default. The finalized communication assignment is shown in Figure 3.9(a).

37

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

3.3.4 Communication Scheduling

After optimizing the EPR pair consumption, we then schedule the execution of burst

communication blocks to reduce the overall program latency and mitigate the effect of

decoherence. Based on the quantitative data shown in Table 3.1, the preparation of

remote EPR pairs is the most time-consuming one among various operations and hence

should be carefully optimized to hide its latency. While the quantitative data may vary

across quantum computing platforms, the schedule design in this section should be also

effective.

Operation Variable Name Latency
Single-qubit gates t1q ∼ 0.1 CX
CX and CZ gates t2q 1 CX
Measure tms 5 CX
EPR preparation tep ∼ 12 CX
One-bit classical comm tcb ∼ 1 CX

Table 3.1: The quantitative data of operations in DQC, extracted from [54, 55]. La-
tencies are normalized to CX counts.

The designs here aim to maximize the parallelism of communication blocks and

shorten the latency of sequential communication by fusion.

More block-level parallelism: The essence of scheduling is to maximize the paral-

lelism of a circuit. For burst communication blocks without nodes or qubits in common,

they can be concurrently executed in nature. For blocks with shared nodes or qubits,

their parallelism is limited by their commutability, as well as the communication resource

each node holds. With the constraint that each node can establish only two communi-

cations in parallel, there is little room for lazy operations. We adopt a greedy strategy

to execute commutable blocks, i.e., execute as many blocks as possible simultaneously,

as soon as EPR pairs are prepared.

For Cat-Comm blocks, we can execute two commutable blocks in parallel at most if
38

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

EPR
prepare

Figure 3.10: The schedule optimization for commutable Cat-Comm blocks, with shared
qubit or node.

EPR
prepare

Teleport TeleportTeleportTeleport

TeleportTeleport EPR
prepare

Figure 3.11: The schedule optimization for TP-Comm blocks. Aligned qubit telepor-
tation in (b) is better than the independent qubit teleportation in (a).

they share nodes, as shown in Figure 3.10. For TP-Comm blocks, the situation is complex

as each TP-Comm block requires two EPR pairs. For two commutable TP-Comm blocks,

rather than prioritizing the completion of one TP-comm block as in Figure 3.11(a),

we observe that parallelism can be enabled by communication alignment, as shown in

Figure 3.11(b). Compared to Figure 3.11(a), Figure 3.11(b) aligns the qubit teleportation

of two TP-Comm blocks, leading to a latency saving of tblock + 2ttele. This TP-Comm

alignment technique can be generalized to the case of n commutable TP-Comm blocks.

With TP-Comm alignment, the total latency saving can be up to (n−1)(tblock+2ttele) (e.g.,

if those TP-Comm blocks are on nodes {A1, A2}, {A2, A3}, · · · , {An, An+1} respectively).

39

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

EPR
prepare

Teleport Teleport

Teleport TeleportTeleportTeleport

Teleport

Figure 3.12: The schedule optimization for TP-Comm blocks. Cyclic qubit teleporta-
tion in (b) is better than the SWAP-style qubit teleportation in (a).

Fusion of sequential blocks: Sometimes communication blocks have to be executed

in sequence. However, if one qubit is teleported across many TP-Comm blocks, we can

shorten the latency of executing those TP-Comm blocks by fusing the teleportations, as

shown in Figure 3.12. Figure 3.12(a) shows a simple schedule where each TP-Comm block

is executed independently. As each node has only two communication qubits, we need

to wait for tep before executing the next TP-Comm block. In contrast, Figure 3.12(b)

fuses the teleportations between quantum nodes, forming a cycle: A → B → C → A.

With TP-Comm fusion, the number of teleportations is reduced by one and the overall

execution time is reduced by tep + ttele. Generally, if we have n TP-Comm blocks with

the same teleported qubit, the total number of teleportation would be reduced by n− 2,

and the overall latency saving would be (n−2)(tep+ ttele). From another view, the fusion

also optimizes the token passing problem in classical distributed computing [50], which

also appears in Section 3.3.3, about whether to move the teleported qubit back or to

another node, in order to handle the side effect of TP-Comm.

With the designs above, the communication scheduling pass should apply block-level

commutation analysis to unveil the patterns discussed above and then apply correspond-

ing optimizations. We omit the details since this procedure is very similar to the com-

40

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

munication aggregation except working at the block level. With all those optimizations

applied, Figure 3.9(b) shows the optimized communication schedule for the example pro-

gram in Figure 3.2. In total, 58.3% latency saving is achieved compared to executing

each remote CX gate independently.

3.4 Evaluation

In this section, we first compare the performance of AutoComm to two baselines

and then evaluate the effect of optimization passes in AutoComm. We finally perform a

sensitivity analysis on AutoComm to study how its performance evolves as the experiment

configuration changes.

3.4.1 Experiment Setup

(a) Platforms We perform all experiments on a Ubuntu 18.04 server with a 6-core

Intel E5-2603v4 CPU and 32GB RAM. Other software includes Python 3.8.3 and Qiskit

0.18.3 [28].

(b) Benchmark programs We consider two categories of benchmark programs, as

shown in Table 3.2. The first category of benchmarks focuses on implementing elemen-

tary functions, e.g., arithmetic operations and Fourier transformation. These quantum

programs are often used as building blocks of large quantum applications. The second

category of benchmarks aims to solve real-world problems, including Bernstein-Vazirani

(BV) algorithm, Quantum Approximate Optimization algorithm (QAOA), and Unitary

Coupled Cluster ansatzes (UCCSD). Specifically, for BV, we choose 1000 randomized se-

cret strings which on average contain 2
3
qubit nonzeros. For QAOA, we choose the graph

maxcut problem (over 1000 randomized graphs), and for UCCSD, we select molecules

41

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

LiH,BeH2, and CH4 which correspond to programs with 8, 12 and 16 qubits, respectively.

All benchmark programs used in the evaluation are collected from IBM Qiskit [28] and

RevLib [51].

(c) Baseline We implement two state-of-the-art compilers, GP-Cat and GP-TP, which,

to the best of our knowledge, represent the best efforts for distributed quantum compila-

tion. GP-Cat implements one of the compiler designs proposed by [45] which exploits the

Cat-Comm scheme for remote CX gates but does not consider burst communication. We

did not extend GP-Cat to use TP-Comm as TP-Comm is not efficient at implementing

a single remote CX gate. For the GP-TP baseline, we adopt a similar compiler design to

[42, 45] where nonlocal operations are turned into local operations by swapping qubits

between nodes. In GP-TP, we use TP-Comm to implement nonlocal qubit swapping

operations as TP-Comm is better at implementing the remote SWAP gate than Cat-

Comm. For both baselines and AutoComm, we map qubits to compute nodes by the

‘Static Overall Extreme Exchange’ (Abbrev. SOEE) strategy [42], which aims to reduce

inter-node communication. To reduce the program latency, the baselines adopt a greedy

scheduling method, i.e., executing operations as soon as possible.

(d) Distributed quantum computing model We assume a uniform DQC system.

Each node in the DQC system has the same number of qubits. The fidelity of EPR pairs

between any two nodes is the same, and so is the latency of preparing them. We also

assume that the EPR pair can be established between any two nodes and each node has

two communication qubits as in [42, 6]. Since our framework focuses on communication

optimization, we assume a trapped-ion style device [40] for each compute node that any

two local qubits can communicate with each other. Our work can also be easily applied

to superconducting devices [56] with sparse two-qubit connections.

42

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

For Table 3.2, we assume each node has 10 data qubits for benchmark programs except

UCCSD. For UCCSD, we assume each node has 2 data qubits. For all experiments, we

assume that qubits of the test program are evenly distributed over all nodes.

(e) Metric The first metric is the total number of consumed EPR pairs for executing a

distributed quantum program. Each invocation of Cat-Comm or TP-Comm requires one

EPR pair. Note that without TP-Comm fusion, two EPR pairs are needed to execute one

burst communication block with the TP-Comm, with one of the EPR pairs moving the

teleported qubit back to its original node. The number of consumed EPR pairs models

the resource overhead of executing distributed quantum programs and a lower value is

favored.

The second metric is the maximum number of inter-node two-qubit gates got executed

with one EPR pair. We denote this metric by ‘Peak # REM CX’. To give a concrete

example, assuming a distributed quantum program where the largest Cat-Comm block

contains 10 remote CX gates and the largest TP-Comm block contains 18 remote CX

gates, if without TP-Comm fusion, then for this program, ‘Peak # REM CX’ is 10 =

max(10, 18/2). If we assume the largest TP-Comm block is fused with the next TP-

Comm block, then ‘Peak # REM CX’ is 18 = max(10, 18) because TP-Comm fusion

reduces the EPR pair consumption of a TP-Comm block. The metric ‘Peak # REM CX’

characterizes the communication throughput and a higher value is preferred.

Finally, we consider two metrics that model the relative performance of AutoComm

to baselines, with respect to EPR consumption and program latency. The first one is the

‘improv. factor’, which is defined to be ‘# total EPR pairs by baseline/# total EPR pairs

by AutoComm’. The second one is the ‘LAT-DEC factor’ that is defined to be ‘program

latency by baseline/program latency by AutoComm’. The target of AutoComm is to

make these two metrics as large as possible.

43

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

Type Name # qubit # node # gate # CX
REM
CX by
SOEE

Building
Blocks

Multi-
Controlled Gate
(MCTR)

100 10 10640 4560 1680

200 20 21840 9360 3568

300 30 33040 14160 5632

Ripple-Carry
Adder (RCA)

100 10 1569 785 99

200 20 3169 1585 209

300 30 4769 2385 319

Quantum
Fourier
Transform
(QFT)

100 10 19800 9900 9000

200 20 79600 39800 38000

300 30 179400 89700 87000

Real
World
Appli-
cations

Bernstein
Vazirani (BV)

100 10 265 65 56

200 20 535 135 126

300 30 803 203 194

QAOA

100 10 6000 4000 3144

200 20 24000 16000 14076

300 30 54000 36000 32896

UCCSD

8 4 3129 1420 900

12 6 40659 19142 15136

16 8 129829 64956 53426

1

Table 3.2: Benchmark programs. #qubit is the total number of qubits and each node
has exactly ‘#qubit/# node’ data qubits.

3.4.2 Compared to Baselines

We first analyze the ability of AutoComm in exposing burst communications, with

communication statistics shown in Figure 3.13. We then evaluate AutoComm and two

baselines on benchmark programs in Table 3.2. The results of AutoComm and its relative

performance to GP-Cat and GP-TP are shown in Table 3.3. When we say on average in

this section, we refer to the geometric mean.

Burst communication statistics: Figure 3.13 shows the distribution of burst com-

munications assembled by AutoComm. This distribution is closely related to the inverse-

burst distribution discussed in Section 3.2.2 but is easier to compute. We can see that

burst communications exist widely, no matter in building-block circuits (Figure 3.13(a))

44

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

or in real-world applications (Figure 3.13(b)). Moreover, Figure 3.13 demonstrates the

effectiveness of AutoComm in unveiling burst communications. In Figure 3.13, the EPR

pairs that each support ≥ 2 remote CX gates account for 76.8% of the overall consumed

EPR pairs, on average.

Compared to GP-Cat: As shown in Table 3.3, AutoComm achieves significant re-

duction in both EPR pair consumption and program latency, compared to GP-Cat.

Specifically, AutoComm reduces the number of consumed EPR pairs by a factor of 3.9x

on average, up to 18.8x (ref. ‘Improv. factor’). AutoComm also reduces the program

latency by a factor of 3.1x on average, up to 9.4x (ref. ‘LAT-DEC factor’). These

significant improvements come from the high communication throughput enabled by Au-

toComm. In GP-Cat, each EPR pair, i.e., each invocation of Cat-Comm is used to

implement only one remote CX gate. In contrast, the peak communication throughput

(ref. ‘Peak #REM CX’) by AutoComm is 7.2x on average and up to 20x of that by

GP-Cat. Those results indicate that AutoComm can efficiently discover and utilize burst

communications, transferring more information with each EPR pair.

Compared to GP-TP: As shown in Table 3.3, AutoComm achieves significant reduc-

tion in both EPR pair consumption and program latency, compared to GP-TP. Specif-

ically, AutoComm reduces the number of consumed EPR pairs by a factor of 3.5x on

average, up to 13.3x. AutoComm also reduces the program latency by a factor of 3.4x

on average, up to 10.7x. On the side of information theory, AutoComm enables a higher

throughput of information. Each EPR pair in GP-TP carries 3/2 remote CX gates (i.e.,

a remote SWAP gate over two EPR pairs), much smaller than the throughput by Auto-

Comm. On the algorithmic side, AutoComm avoids unnecessary qubit movement. For

example, consider the gate sequence CX q1, q2; CX q1, q3; CX q1, q4; CX q2, q1 where q1

45

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

1 3 5 7 9 11 13 15 17 19 21 23
Executed # REM CX with one EPR pair

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

Pr
[X

]
MCTR
RCA
QFT

(a)

2 4 6 8 10
Executed # REM CX with one EPR pair

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
Pr

[X
]

BV
QAOA
UCCSD

(b)

Figure 3.13: Burst communications by AutoComm: Pr[X] = Pr[one EPR pair supports
≥ X REM-CXs].

is in node A, q2 is in node B, and q3, q4 are in node C. To execute these remote gates,

GP-TP needs to swap q1 into node B first, then to node C, and back to node B again.

However, with AutoComm, we only need to first move q1 to node C and then to node B,

since CX q1, q2 is commutable with CX q1, q3 and CX q1, q4.

3.4.3 Optimization Analysis

In this section, we further analyze the effectiveness of each optimization pass in Au-

toComm. Again, when we say on average in this section, we refer to the geometric

mean.

For simplicity, we denote the communication aggregation pass by P1, the assignment

pass by P2, and the scheduling pass by P3. We first study how P1 and P2 affect the

‘improv. factor’ of AutoComm to GP-Cat, then evaluate how P3 affects the ‘LAT-DEC

factor’. The results are shown in Table 3.4. We do not compare P2 to GP-Cat directly

as P2 cannot work properly without communication aggregation.

The effect of communication aggregation: As shown in Table 3.4, compared to

GP-Cat, ‘P1+Cat-Comm’ reduces the EPR pair consumption by a factor of 2.6x, on

46

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

Name
#Tot. EPR pairs consumed

Peak#REMCX
Compared to GP-Cat Compared to GP-TP

By Cat-Comm By TP-Comm Improv. factor LAT-DEC factor Improv. factor LAT-DEC factor

MCTR-100-10 313 220 10 3.15 3.27 2.81 3.90

MCTR-200-20 554 418 10 3.67 3.83 3.26 4.51

MCTR-300-30 932 1112 10 2.76 2.88 2.45 3.39

RCA-100-10 0 36 3 2.75 2.22 2.00 1.37

RCA-200-20 0 76 3 2.75 2.26 2.00 1.38

RCA-300-30 0 116 3 2.75 2.27 2.00 1.38

QFT-100-10 0 540 20 16.67 9.35 4.67 3.24

QFT-200-20 0 2090 20 18.18 9.40 5.27 3.26

QFT-300-30 0 4640 20 18.75 9.41 5.50 3.26

BV-100-10 9 0 8 6.22 4.33 12.22 9.68

BV-200-20 19 0 8 6.63 4.63 13.16 10.47

BV-300-30 29 0 8 6.69 4.69 13.31 10.65

QAOA-100-10 1182 266 6 2.17 1.83 1.56 2.09

QAOA-200-20 6059 728 8 2.07 1.79 1.57 2.52

QAOA-300-30 14915 1138 6 2.05 1.69 1.62 2.68

UCCSD-8-4 464 0 4 1.94 1.74 3.97 4.08

UCCSD-12-6 8973 0 4 1.69 1.55 3.10 3.31

UCCSD-16-8 33303 0 5 1.60 1.50 3.02 3.29

1

Table 3.3: Results of AutoComm and its comparison to baselines. The first column
contains acronyms of programs in Table 3.2.

average. The result indicates the effectiveness of the communication aggregation pass in

reducing the communication cost by grouping remote CX gates into a burst communica-

tion block. On the other hand, this analysis also shows that burst communication may

not be readily available in distributed quantum programs and we need the communication

aggregation pass to unveil them.

The effect of communication assignment: As shown in Table 3.4, compared to

‘P1+Cat-Comm’, ‘P1+P2’ further reduces the EPR pair consumption by a factor of 1.4x,

on average. The result demonstrates the importance of considering both Cat-Comm

and TP-Comm for burst communication. The benefit of P2 is even more significant

for programs where bidirectional communication patterns appear frequently, e.g., RCA

and QFT. This is because Cat-Comm is not as efficient as TP-Comm for implementing

bidirectional burst communication.
47

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

Name
Improv. factor compared to GP-Cat LAT-DEC factor compared to GP-Cat

P1+Cat-

Comm

P1+P2 P1+P2 P1+P2+P3

MCTR 3.05 3.17 2.76 3.30

RCA 1.88 2.75 2.25 2.25

QFT 2.22 10.00 7.14 9.39

BV 6.51 6.51 4.55 4.55

QAOA 2.08 2.10 1.65 1.77

UCCSD 1.74 1.74 1.59 1.59

1

Table 3.4: Optimization analysis for AutoComm. Results are averaged over programs
in Table 3.2. ‘P1+P2+P3’ is just AutoComm.

100 200 300 400 500 600
qubit

2

3

4

Im
pr

ov
. f

ac
to

r

The effect of # qubit
10 nodes
20 nodes
50 nodes

(a)

2 10 20 50 100
node

1

2

3

4
Im

pr
ov

. f
ac

to
r

The effect of # node
100 qubits
200 qubits
300 qubits

(b)

Figure 3.14: The effects of (a) # qubit and (b) # node on the ‘improv. factor’ of
AutoComm when compared to GP-Cat. The test program is MCTR.

The effect of communication scheduling: As shown in Table 3.4, compared to

‘P1+P2’, ‘P1+P2+P3’ further reduces the program latency by a factor of 1.1x, on av-

erage. The result illustrates the effectiveness of P3 in reducing communication-induced

latency. The effectiveness of P3 for scheduling burst communication stems from its smart

utilization of communication qubits, especially for TP-Comm blocks, as discussed in Sec-

tion 3.3.4. As for programs comprised of Cat-Comm blocks, e.g., BV and UCCSD, P3

behaves as efficiently as the default as-soon-as-possible scheduling method.

48

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

3.4.4 Sensitivity Analysis

The performance of AutoComm may be affected by factors like the number of program

qubits, the number of DQC nodes, the qubit mapping, and the heterogeneity of compute

nodes. In this section, we study how the performance of AutoComm changes as those

factors varies.

When evaluating the effect of # qubit and #node (ref. Figure 3.14), we assume pro-

gram qubits are evenly distributed over all nodes: each node has exactly ‘#qubit/# node’

data qubits. We also assume two communication qubits per node.

The effect of # qubit: As shown in Figure 3.14(a), the ‘improv. factor’ of AutoComm

converges when #qubit increases (i.e., # qubit/#node becomes large). The reason may

be that the number of burst communication blocks also increases when the total number

of remote multi-qubit gates grows with the number of program qubits. Such behavior

is preferable because it illustrates that AutoComm can provide a consistent reduction of

the communication overhead as the number of program qubits grows.

The effect of # node: As shown in Figure 3.14(b), the ‘improv. factor’ of Auto-

Comm deteriorates when #node increases (i.e., # qubit/#node becomes small). On the

one hand, the remote multi-qubit gate would proliferate when #node increases, poten-

tially providing more chances for burst communication. On the other hand, it is harder

to find large burst communication blocks when #qubit/# node becomes small, instead

increasing the communication overhead. Overall, we should not use too many nodes for

distributing programs.

The effect of qubit mapping: When evaluating the sensitivity to qubit mappings,

we adapt two widely used algorithms, NoiseAdaptive [57] and SABRE [46] to benchmark

49

Optimizing Burst Communication for Distributed Quantum Computing Chapter 3

MCTR QAOA RCA BV QFT0

4

8

12
GP

-C
at

 /
Au

to
Co

m
m

1.2
2.1 2.8

6.8

13.4

1.4 2 1.7

6.6

12

The effect of qubit mappings
Noise Adaptive
SABRE

(a)
QAOA RCA MCTR BV QFT0

10

20

30

40

GP
-C

at
 /

Au
to

Co
m

m

2.5 2.8 3.1

13.7

43.8

2.6 2.8 3.1

18

33.3

The effect of heterogeneous nodes
Heterogeneous
Homogeneous

(b)

Figure 3.15: The effects of (a) qubit mappings and (b) heterogeneous nodes. Numbers
in (a)(b) are averaged (geometric mean) ‘improv. factor’ of AutoComm to GP-Cat.

programs in Table 3.2. Such adaptations are straightforward as the DQC backend can

also be described by the coupling graph. As shown in Figure 3.15(a), our framework still

achieves significant communication cost reduction with NoiseAdaptive and SABRE. This

indicates the practicality of AutoComm’s two-step compilation design (ref. Figure 3.1),

which enables us to focus on communication optimization while leveraging tons of existing

efforts on qubit mapping.

The effect of heterogeneous nodes: For this analysis, we consider two settings: the

heterogeneous setting distributes each 100-qubit program over 4 nodes with 10, 20, 30,

and 40 data qubits, respectively; the homogeneous setting evenly distributes each pro-

gram over 4 nodes with 25 data qubits per node. As shown in Figure 3.15(b), our frame-

work still achieves significant communication cost reduction on heterogeneous nodes. In

the heterogeneous setting, nodes with few qubits limit the benefits of burst communica-

tion while nodes with many qubits boost them. These two effects cancel out each other

and guarantee the performance of AutoComm.

50

Chapter 4

Optimizing Collective Communication

for Distributed Quantum Computing

In this chapter, we will delve into optimizing the collective communication pattern com-

monly found in distributed quantum programs.

4.1 Introduction

Quantum computing is promising and can be used to solve classically intractable

problems [58, 59]. One critical problem that hinders the practical application of quantum

computing is the limited qubit resource of quantum computers. Distributed quantum

computing (DQC) provides an optimistic way to scale up quantum computing and has

been demonstrated in recent experiments [60, 7, 61]. Research attention on DQC emerges

both in hardware design [62, 60, 61, 7] and program compilation [63, 64, 5, 65, 66, 67,

45, 6, 68, 9]. Distributed quantum computing, as shown in Figure 4.1(a), integrates

many independently fabricated quantum processors (aka compute nodes) to run quantum

programs.

51

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

S S S
Remote EPR

entanglement

Optical fiber Data qubitCompute node

Comm.

qubit

(a) (b)(a) (b)

Figure 4.1: (a) The common distributed quantum computing architecture [62]. Nodes
form a quantum network. Communication qubits emit photons, which are transferred
through optical fibers, to establish remote entanglement. Data qubits are used to
store program information. (b) An exemplar distributed circuit of the decomposed
CCZ gate.

DQC relies on inter-node quantum communication to share or move quantum data be-

tween compute nodes so that nonlocal gates (e.g., the CX gates in Figure 4.1(b)) become

executable. In the common DQC model [5, 45, 6, 67, 68, 66, 63, 64, 65, 9], each invocation

of inter-node communication consumes one remote EPR pair while the generation of re-

mote EPR pairs between two different nodes is far more error-prone and time-consuming

than applying local quantum gates [60]. To mitigate the infidelity caused by inter-node

communication, researchers have investigated many strategies, e.g., designing more reli-

able communication hardware [62], employing quantum error correction (QEC) [69], and

using EPR entanglement purification [70]. A much cheaper strategy to mitigate infidelity,

however, is to reduce the amount of inter-node communication needed in a distributed

quantum program through a DQC compiler. This strategy is always useful, regardless

of hardware or QEC/entanglement purification. We focus on designing a compiler for

reducing inter-node communication.

Unfortunately, existing compilers for DQC lack deep analysis of distributed quantum

programs and are limited to either qubit-to-qubit communication or qubit-to-node com-

munication. Most DQC compilers focus on either optimizing the qubit layout [63, 64, 5,

65, 66, 67] to reduce nonlocal gates or shortening the communication footprint of apply-

52

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

ing each nonlocal gate [45, 6]. Those works do not inspect the intrinsic communication

patterns in distributed quantum programs. State-of-the-art DQC compilers such as [9]

identify the burst communication pattern between one qubit and one node and propose

executing a group of nonlocal gates together by 1-2 invocations of inter-node communica-

tion. Though significantly better than previous works, their work still does not consider

the communication among multiple nodes, similar to other DQC compilers. Considering

the example circuit in Figure 4.1(b) where there exists a group of nonlocal gates across

three nodes (i.e., collective communication), existing DQC compilers [45, 6, 9] would re-

quire 5 invocations of inter-node communication for the 5 inter-node gates. In contrast,

if we implement those inter-node gates by moving both q1 and q2 to q3’s node and keep

them there, only 2 invocations of inter-node communication are needed.

Therefore, considering collective communication would enable a wider scope on op-

timizing distributed quantum programs and present optimization opportunities invisible

from the low level. We formally define a collective communication block as a group of

inter-node gates whose inter-node qubit interaction forms a connected graph over mul-

tiple nodes. We require each collective communication block to absorb quantum gates

as much as possible, as long as the overall communication cost is reduced. Moreover,

we identify three key challenges for utilizing collective communication patterns to reduce

inter-node communication. Firstly, in the program level, collective communication is usu-

ally not directly accessible. For many quantum circuits, e.g., those decomposed to the

Clifford+T basis [1] or the CX+U3 basis [28], collective communication is hidden in the

details of scattered inter-node CX. Secondly, for an arbitrary DQC network topology, it

is unclear how to route collective communication based on its patterns, e.g., into which

node we place all involved qubits could lead to the least inter-node communication. No

such problem exists in routing the two-qubit gate. Finally, for the lowest-level implemen-

tation, the DQC system may not have enough resources to directly support a collective

53

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

Quantum Circuit

Distributed
Quantum Circuit

Circuit partition
algorithms

Distributed
Quantum Circuit

Optional quantum circuit
transformations, e.g., gate
unrolling, gate cancellation,
unitary synthesis, burst
communication, etc.

Distributed
Quantum Circuit

Inter-node

gates routing

Communication
Fusion

1q, 2q, even n-q
gates/blocks

Communication
Routing

Communication
System Design

Distributed
Quantum Circuit

In the program level, unveil
collective communication

For any DQC inter-node network
topology, route data transfer
paths of collective communication
to the underlying architecture

Sec. IV A

Sec. IV B

Sec. IV C

Existing DQC compilers QuComm

In the view of intra-node
communication resource, buffer
EPR pairs to implement
collective communication

Figure 4.2: The compilation flow of quantum circuits on the DQC architecture and
the overview of QuComm.

communication block, e.g., the block may require one node to have several remote EPR

pairs ready simultaneously. This is harsh considering the potentially limited number of

communication qubits per node [60, 7].

The identified challenges require three continuous compiler optimizations. To this

end, we developed the first compiler framework, named QuComm. As shown in Fig-

ure 4.2, QuComm consists of three key stages for collective communication optimization

which is unexplored by existing DQC compilers. The first stage is communication fu-

sion, which inspects program information, aiming to unveil collective communication

blocks from low-level circuit details. The insight is that a collective communication

block should require less inter-node communication for execution, compared to imple-

menting each nonlocal gate independently. The second stage is communication routing,

54

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

which further incorporates DQC network topology information. The insight is that the

overall communication footprint can be reduced by adapting the data transfer path of

target collective communication to the underlying DQC architecture. The final stage is

communication system design, which concerns the lowest-level implementation of routed

collective communication blocks in view of intra-node communication resources. We for-

malize the concept of the communication buffer that utilizes data qubits for buffering

remote EPR pairs so that large collective communication blocks are executable. Evalua-

tion shows that, QuComm reduces the amount of inter-node communication by 54.9% on

average, over various distributed quantum programs and DQC hardware configurations,

compared to the state-of-the-art baseline [9].

4.2 Problem and Motivation

In this section, we study the collective communication hidden in distributed quan-

tum programs and discuss the opportunities and challenges of collective communication

optimization.

4.2.1 Collective Communication in DQC

Being essential, inter-node communication greatly degrades the fidelity of distributed

quantum programs [54]. The main goal here is to reduce the amount of inter-node com-

munication in distributed quantum programs by efficient compilation. Our insight of

compiler optimizations originates from our analysis of collective communication. We

formally define a collective communication block as a group of inter-node

gates which has a connected inter-node interaction graph on qubits over mul-

tiple nodes. In the interaction graph, We would draw an edge between any two qubits

if they are involved in the same inter-node gate. We require the interaction graph to

55

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

1 2 3 4 5 6 7 8
Involved # nodes

10 2

10 1

100

Pe
rc

en
ta

ge

Collective communications in DQC
4 nodes
6 nodes
8 nodes

Figure 4.3: Collective communication from quantum circuits in [51] with the OEE
qubit-node mapping [71]. Dot (x,y%) on each curve means there are y% multi-qubit
gates involving at least x node. Results are averaged over circuits in [51].

be connected since in coherent collective communication, nonlocal gates should depend

on each other (in terms of qubits). Our definition of collective communication is more

general and flexible than the one in [68], containing but not limited to broadcast, reduce,

etc.

We observe that distributed quantum programs have abundant collective

communication. By collecting statistics on various quantum circuits (arithmetic func-

tions, encoding circuits, etc.) from the widely studied quantum benchmark [51] (having

circuits up to 143 qubits), we observe that on average 77.6%, 20.2%, and 10.6% of quan-

tum gates involve more than 3, 6, and 9 qubits, respectively. This demonstrates the

potential existence of abundant collective communications when executing these circuits

on DQC hardware. Figure 4.3 shows the statistics of collective communication when

qubits of various quantum circuits in [51] are mapped to DQC systems with 4, 6, and 8

nodes (blue, orange, and red curves) with each node holding ‘# circuit qubit/# node’,

respectively. The qubit-node mapping uses the widely-adopted OEE algorithm which

tries to maximally reduce inter-node quantum gates. As shown in Figure 4.3, there are

56

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

about 28.4% of the multi-qubit gates require communications between more than 3 nodes,

when running circuits on 4 compute nodes. The percentage grows up when we run these

circuits on 8 compute nodes, where 49.8% of multi-qubit gates involve computation on

more than 3 nodes.

In summary, we observe that the efficient implementation of collective communication

in distributed quantum programs is critical to promoting DQC’s computational potential.

4.2.2 Opportunities and Challenges

First, we can greatly reduce the amount of inter-node communication through pattern

analysis of collective communication. Let us revisit the distributed quantum circuit in

Figure 4.1(b). Realizing that the circuit forms a collective communication on three

nodes, we can decrease the amount of inter-node communication from 5 (if using existing

DQC compilers [9]) to 2 (by placing all three qubits into the same node). This example

demonstrates the importance of implementing inter-node gates collectively, i.e.,

analyzing the pattern of a group of inter-node gates as a coherent whole (i.e., collective

communication) and finding the most communication-efficient way to implement them

from a higher level.

Node A Node B Node C

(a) (b)

Node A Node B Node C

(a) (b)(a) (b)

Figure 4.4: Two examples of routing the collective communication block in Fig-
ure 4.1(b) onto the nearest-neighbor architecture. (a) Data path: move q1 and q2
to node C. (b) Data path: move q1 and q3 to node B.

Second, new opportunities emerge when we route collective communication to a DQC

system without full connection between nodes. Let us now consider routing the dis-

57

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

tributed circuit in Figure 4.1(b) onto the nearest-neighbor DQC architecture [72]. Two

routing examples are presented in Figure 4.4. The first example (Figure 4.4(a)) requires

2+1 invocations of inter-node communication, with one of the three being the routing

overhead. However, by redesigning the data paths of the collective communi-

cation to better align with the underlying DQC network topology, we can

reduce the routing overhead from one inter-node communication to zero, as shown in

Figure 4.4(b). This is a unique optimization opportunity for collective communication.

There is no such design space on the data path of communication between two nodes.

Finally, another optimization opportunity emerges from the underlying system de-

sign. There are cases where the underlying DQC system may not always have enough

communication resources to support collective communication. For example, for the col-

lective communication block in Figure 4.1(b), if each node only has one communication

qubit and does not use data qubits to store the generated remote EPR pairs, then each

node at most accommodates one EPR pair at any time, making it impossible to simulta-

neously move both q1 and q2 to the node holding q3. However, if we use two data qubits to

buffer the EPR pairs generated by the communication qubit, it becomes possible for one

node to have two EPR pairs at the same time, making the collective communication in

Figure 4.1(b) directly executable. Overall, an EPR pair buffer is critical to enable collec-

tive communication, especially for DQC nodes with a limited number of communication

qubits.

While being promising for reducing DQC’s communication overhead, the identified

optimization opportunities also impose difficulties for the compiler design:

1) Collective communication is usually not directly accessible. For circuits decomposed

to basic gates, collective communication is hidden in the details of scattered inter-node

gates. Collective communication is also affected by qubit placement, gate ordering, etc.

2) Given a DQC network topology, it is unclear how to efficiently utilize collective com-

58

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

munication patterns to route nonlocal operations. Existing DQC compilers lack a higher-

level routing that considers both architecture information and communication patterns.

3) The DQC system design directly affects the efficiency of executing collective com-

munication. This design needs high-level information like the collective communication

blocks one node needs to accommodate, which is hard to extract without deep program

analysis.

4.3 Collective Communication System Design

In this section, we introduce the compiler designs that tackle the identified challenges

and enable efficient utilization of high-level information in collective communication to

reduce inter-node communication in distributed quantum programs. The qubit in this

section can be a logical qubit or just a physical qubit.

QuComm includes three stages: the communication fusion which is used to unveil

collective communication from circuit details, the communication routing which utilizes

identified collective communication patterns to route inter-node gates onto the underlying

DQC architecture, and the communication system design that improves the efficiency of

collective communication by buffering EPR pairs.

4.3.1 Communication Fusion

The availability of collective communication in distributed quantum programs is af-

fected by various factors, e.g., whether the distributed program is decomposed or not,

the qubit mapping onto each node, and the gate ordering. The insight for identifying col-

lective communication is that inter-node gates forming collective communication should

require much less inter-node communication when implemented collectively, compared

to implementing each of them independently. Based on the insight, we adopt a greedy

59

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

Algorithm 2: Communication fusion stage
Input: Distributed quantum circuit circ
Output: Collective communication blocks blk_list

1 blk_list = [];
2 Initialize a new block b0 with the next nonlocal gate;
3 while blk_list continues grow do

/* The aggregation step */
4 b1 = []; // The block next to b0
5 for nonlocal gate g in the remaining circuit do
6 if g has overlapped qubits with b0 then
7 if possible, move g to b1 by circuit rewriting;
8 end
9 end

/* The fusion step */
10 while b1 is not empty do

// cost is defined in Equation (4.1)
11 if cost(b0 + b1) < cost(b0) + cost(b1) then
12 merge b1 into b0;
13 b1 = [];
14 else
15 pop the last gate of b1 out;
16 end
17 end

/* Terminating fusion */
18 while the next gate g to b0 is local do
19 if cost(b0 + g) == cost(b0) then
20 merge g into b0;
21 else
22 break;
23 end
24 end
25 blk_list.append(b0);
26 Initialize a new block b0 with the next nonlocal gate;
27 end
28 output blk_list;

strategy to construct collective communication blocks, as shown in Algorithm 2.

To enable node-aware search while being general for any network topology among

nodes, this stage only requires information about the maximum number of EPR pairs

each node can accommodate at the same time, i.e., the EPR capacity of each node. The

60

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

EPR capacity of a node also indicates the maximum number of external qubits this node

can hold simultaneously. For an ideal DQC architecture where each node has infinite

communication qubits, the EPR capacity per node is ∞. The output of Algorithm 2

would contain a series of collective communication blocks. There are two important

steps in Algorithm 2:

1) Aggregation: This step is to maximize collective communication opportunities

through circuit rewriting (with rules in [53]), regardless of how scattered the input circuit

is.

2) Fusion: This step is based on the insight that efficiently constructed collective com-

munication blocks should always lead to less inter-node communication.

Let E(na) be the EPR capacity of node na; C(b0) be {# qubits involved in b0};

C(b0 − na) be {# qubits involved in b0 but not in na}. Then we define the cost of

implementing b0 + b1 as follows:

min
na∈nodes

{max (2 ∗ (C(b0 + b1 − na)− E(na)), 0)

+min(E(na), C(b0 + b1 − na))} (4.1)

That is to say, if C(b0+ b1) ≤ E(na), we can simply transfer all qubits involved in b0 and

b1 to na; otherwise, for each remaining qubit, we will perform an inter-node SWAP gate

(by two TP-Comm or three Cat-Comm) to exchange it into na (ref. the first summand

in Equation (4.1)). Equation (4.1) is only an estimation of the implementation cost but

serves as a good metric for identifying profitable fusion.

To demonstrate Algorithm 2, let us consider the example circuit in Figure 4.5(a).

The finalized circuit after the communication fusion stage is shown in Figure 4.5(b).

The first collective communication block 1○ starts from gates between node A and node

B. The gates between node B and node C will be merged into block 1○ since three

61

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

RZ

(a)
RZ

1 2

3

(b)

Figure 4.5: (a) An example distributed circuit for illustrating Algorithm 2. qa∗, qb∗,
qc∗, qd∗, qe∗ are in node A, B, C, D and E, respectively. We assume each node’s EPR
capacity is 5. (b) The circuit after communication fusion.

invocations of inter-node communication are reduced when implementing them together,

according to Equation (4.1). Block 1○ is further enlarged by incorporating gates between

node C and node D (note that the gate CXqd1, qc1 is aggregated to block 1○ by circuit

rewriting). Block 1○ also contains the local gate CXqb1, qb2 since it does not incur extra

communication. Unfortunately, the two gates between node A and node E cannot be

merged into block 1○ as no communication reduction is observed. The gates between

node A and node E then form block 2○. Block 2○ is also a collective communication

block if node A and node E are not directly connected where we need intermediate nodes

to relay quantum data transfer.

4.3.2 Communication Routing

With the identified collective communication blocks, we then need to route these

blocks for the underlying DQC network topology. The insight of this stage is to match

the data transfer path of collective communication with the underlying DQC architecture

so that the inter-node communication induced by routing overhead can be reduced. In

this stage, we would examine the pattern of collective communication and identify efficient

routing optimizations correspondingly.

62

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

(5) (5)

(5)

A

D

B

C

(5)

4 transfers:
2 transfers:

1 transfer:

(5)

E

(5) (5)

(5)

A

D

B

C

(5)

3 transfers:
2 transfers:

1 transfer:

(5)

E

(a)

(b)

EPR capacityconnector

7 transfers in total

6 transfers in total

(5) (5)

(5)

A

D

B

C

(5)

4 transfers:
2 transfers:

1 transfer:

(5)

E

(5) (5)

(5)

A

D

B

C

(5)

3 transfers:
2 transfers:

1 transfer:

(5)

E

(a)

(b)

EPR capacityconnector

7 transfers in total

6 transfers in total

Figure 4.6: Examples of selecting the node for qubit aggregation on a nearest-neighbor
DQC architecture, targeting block 1○ in Figure 4.5(b). Gray curves represent data
paths. (a) When node B is selected. (b) When node C is selected.

Routing an individual collective communication block: The main idea is still to

move/share all involved qubits to the same node while we can transform the data transfer

path to fit into the underlying DQC network. The length of data path L(pth) in the DQC

network is computed as

L(pth) =
∑

link∈pth
link.weight (4.2)

The weight can be distilled/raw EPR fidelity of each inter-node link or just 1 for the

uniform DQC hardware. Without loss of generality, here we assume all link weights are

1. Overall, we identify three routing optimizations for data transfer paths. Firstly, we

should select the node for qubit aggregation based on the underlying network topology

information along with the EPR capacity for each node. For example, for the collec-

tive communication block 1○ in Figure 4.5(b), if the underlying DQC network is fully-

connected, it makes no difference to transfer all qubits to node B or node C. However, for

the nearest-neighbor DQC architecture in Figure 4.6, transferring all qubits to node C is

63

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

cheaper (ref. Figure 4.6(b)). With the node for qubit aggregation selected, we pick data

transfer schemes as suggested by [9]: it is more efficient to use Cat-Comm for read-only

data transfer and TP-Comm for writable data transfer. For example, qa1 is transferred

by Cat-Comm while qb1 is transferred by TP-Comm.

(5) (5)

(5)

A

D

B

C

(5)

CX
CX

(5) (5)

(5)

A

D

B

C

(5)

CX
CX

stop
transfer

(a) (b)

Figure 4.7: Two shortest paths for sharing qa1 to node C. The path in (b) enables early
execution of CX gates between qa1 and node C. Gray arrows between data qubits mean
CX gates. Data transfer paths for other qubits are omitted.

Secondly, enabling early execution along the data path can eliminate unnecessary

data transfer. With the node for qubit aggregation determined (node C in Figure 4.6),

the next step is to determine the data transfer path for each involved qubit. Figure 4.7

shows two different shortest data paths that share qa1 to node C. Compared to the path

in Figure 4.7(a), the path in Figure 4.7(b) enables the execution of the two CX gates

between qa1, qb1 and qb2 in node B. Since qa1 is not involved in later inter-node operations,

we would stop further transferring of qa1 to node C, saving one invocation of inter-node

communication. Thus, we should consider not only the data path length but also the

early-execution opportunity along the path when scheduling the transfer of a qubit.

Thirdly, the early execution strategy can be further extended to the parity computa-

tion process of large multi-controlled blocks to reduce the amount of inter-node commu-

nication. An n-qubit generalized Toffoli gate can be seen as computing the parity of the

64

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

(5) (5)

(5)

A

D

B

C

(5)

(5)

E

(b)Share one parity across
multi-controlled gates

3 transfers in total

Merge parity data from
node B and E into

(5) (5)

(5)

A

D

B

C

(5)

(5)

E

(a)Parity data
2 parity transfers

1 parity transfer
2 parity transfers

5 transfers in total

(5) (5)

(5)

A

D

B

C

(5)

(5)

E

(b)Share one parity across
multi-controlled gates

3 transfers in total

Merge parity data from
node B and E into

(5) (5)

(5)

A

D

B

C

(5)

(5)

E

(a)Parity data
2 parity transfers

1 parity transfer
2 parity transfers

5 transfers in total

Figure 4.8: Optimizing parity propagation of multi-controlled gates in block 3○ in
Figure 4.5. Green arrows from {qd1, qd2} to qd3 means computing parity on the group
{qd1, qd2} and storing it to qd3 (i.e., a Toffoli gate on qd1, qd2, qd3). (a) The parity paths
by [73]. (b) Our two optimizations on parity paths.

(n-1) control lines and this parity computing process can be decomposed by separating

control lines into different groups [74]. For example, CCCCXq0, q1, q2, q3, q4 can be de-

composed into gates CCXq0, q1, q5; CCXq2, q3, q6; CCXq5, q6, q4; CCXq0, q1,

q5; CCXq2, q3, q6, where the parity computing results on groups {q0, q1} and {q2, q3} are

stored in q5 and q6, respectively. Here in this stage, we will implement a group of multi-

controlled gates collectively and adaptively on the underlying DQC architecture which

may not be fully-connected, for the first time. As an example, given the collective com-

munication block 3○ in Figure 4.5(b), we would analyze the overall parity propagation

and apply routing optimizations correspondingly:

1) Merge parity along the propagation path (i.e., early execution). As in Figure 4.8(a),

65

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

when transferring the parity computed in node E to the node for qubit aggregation (i.e.,

node C), the parity data would go by node B. Since node B also have parity data, we can

combine the parity data from node E and B into one, as shown in Figure 4.8(b). One

remote communication is thus reduced due to reduced parity data.

2) Share parity across multi-controlled gates. For example in Figure 4.8(b), the multi-

controlled gates in block 3○ both depend on the parity from the group {qd1, qd2}, thus we

can avoid recomputing and resending the parity data from the group {qd1, qd2}, saving

one inter-node communication.

After the collective communication block is executed, the node for qubit aggregation

may be occupied by external qubits and cannot accommodate more EPR pairs and

other external qubits. To release the occupation, we would inspect future collective

communication blocks and transfer those external qubits to positions where they are

needed for future multi-qubit gates. This process may help reduce the transition overhead

between collective communication blocks, as discussed below.

(5) (5)

(5)

A B

C

(5)

E

D

(5)

(5) (5)

(5)

A B

C

(5)

E

D

(5)

Shorter path

(a)

(5) (5)

(5)

A B

C

(5)

E

D

(5)

(5) (5)

(5)

A B

C

(5)

E

D

(5)

Shorter path

(b)

Figure 4.9: (a) The qubit layout after executing collective communication block 1○.
(b) It is shorter to transfer the read-only copy of qa1 (by Cat-Comm) from node B to
node E rather than from node A to node E.

Routing transition between collective communication blocks: When transiting

the routing from one collective communication block to another one, we can use data

transfer that happened in the former one to reduce the routing overhead of the current

block. For example in Figure 4.9(a), after routing block 1○, qa1 is coherently in node A

and node B. Therefore, to execute the CX in block 2○, we can use Cat-Comm to share qa1
66

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

Node C Qubit list | EPR capacity

qc1, qc2, qc3, qc4 | 3 qc1, qc2, qc3 | 4 qc1, qc2 | 5

inter-node comm

Block 1O 7 5 5

Block 3O 3 3 3

Local Gates: 4 CX on qc3, qc1,

1 CX on qc4, qc1
0 ≤ 1 ≤ 5

Overall 10 ≤ 9 stop

1

Table 4.1: The table shows the configuration process on node C, assuming each node
only has 3 communication qubits, i.e. EPR capacity is 3. Block 1○ and 3○ are from
Figure 4.5(b) where each node’s EPR capacity is 5. ‘# inter-node comm’ is derived
from Sec. 4.3.2.

from node B directly, saving one inter-node communication, as shown in Figure 4.9(b).

Thus, when transiting between two collective communication blocks, we should first

inspect the qubit layout change (e.g., one qubit may coherently exist in multiple nodes)

caused by the former block and then shorten the data transfer path of the next block

accordingly.

4.3.3 Communication Buffer Design

As stated in Sec. 4.2.2, # communication qubits on each node may potentially limit

the efficient execution of collective communication. Our insight to overcome it is to use

data qubits to buffer (through using local SWAP gates) remote EPR pairs generated by

the communication qubits so that we can use these data qubits to accommodate data

of external qubits. We say those data qubits form a communication buffer. This is the

first formalization of the communication buffer concept in DQC compilers. The commu-

nication buffer essentially provides an abstraction or intermediate layer that is able to

approximate the ideal DQC hardware (the one with infinite communication qubits). As

67

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

long as the communication buffer is large enough, we can implement collective commu-

nication without inter-node qubit swapping.

The size of the communication buffer requires careful design. Using too many data

qubits in the communication buffer would cause each node to have fewer qubits to store

program information, thus requesting more nodes to support the same program. Intu-

itively, for a given program, using more nodes would induce more inter-node commu-

nication. However, if we use only a few data qubits in the communication buffer, the

communication reduction by optimizing collective communication would be small as well.

To balance these two effects, we propose a program-adaptive communication buffer de-

sign so that the communication buffer in each node is just able to support collective

communication in the program.

In this stage, we first perform the communication fusion stage assuming each node

has a large number of communication qubits, obtaining collective communication blocks

related to each node. We then configure the communication buffer of each node, starting

from the node associated with most inter-node gates, with the following steps:

1) For a node ni, find the qubit q0 in ni which incurs the least increment (say, I(q0))

of inter-node communication when it is moved to another node (say, nj) with idle data

qubits. I(q0) can be easily computed by counting multi-qubit gates that involve q0, in ni

and nj.

2) According to Equ (4.1), re-inspect collective communication blocks associated with ni

to compute overall inter-node communication reduction by adding one data qubit in the

communication buffer of ni. Denote the reduction by R(ni).

3) If I(q0) ≤ R(ni), we would place q0 into nj, and add one data qubit in the communi-

cation buffer of ni. Repeat this process until there is no further improvement.

The proposed communication buffer design only increases the size of a communication

buffer if and only if the amount of inter-node communication is reduced. The whole

68

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

configuration process is computationally-cheap and iterates over each node linearly. The

iteration cost on each node is bounded by the size of related collective communication

blocks, which is often a constant factor. Table 4.1 shows an example of configuring the

communication buffer on node C. The overall inter-node communication is reduced when

moving qc4 to another node. However, we may not gain any benefit by moving qc3. The

configuration process thus terminates.

4.4 Evaluation

In this section, we compare the performance of QuComm to the baseline [9] and

analyze the effect of optimizations proposed in QuComm.

4.4.1 Experiment Setup

DQC hardware model. For evaluation, we adopt the mesh-grid network [8] for DQC:

. In the DQC architecture, we assume 8 compute nodes and 40 data qubits per

node. We assume each data qubit is a logical qubit protected by QEC codes [69, 20].

Thousands of physical qubits may be required to build one logical qubit. We also as-

sume each compute node has an independent magic state distillation unit [25] to enable

local logical T gates. Further, we assume each node can only establish communication

with neighboring nodes. We consider configurations of 1 or 3 or 5 logical communication

qubits per node to evaluate the performance of QuComm on DQC systems with limited

or abundant communication resources. Since our work focuses on communication opti-

mization and only concerns the number of inter-node communication, we do not make

any assumption about the logical qubit topology inside each node. We would consider

more DQC architecture options in Section 4.4.3 to evaluate the benefit of QuComm.

Benchmark programs. The fault-tolerant benchmark programs used in the evaluation

69

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

Name
logical

qubit

remote

logical CX

logical comm by QuComm (full)

1 comm

logical

qubit/node

3 comm

logical

qubit/node

5 comm

logical

qubit/node

XOR

100 16 3 3 3

200 48 28 14 10

300 128 33 33 33

RCA

100 22 4 4 4

200 44 10 8 8

300 77 14 14 14

XORR

100 - 2 2 2

200 - 18 4 4

300 - 7 7 7

QFT

100 6400 81 80 80

200 32000 562 480 480

300 78400 1001 780 780

Grover

100 32000 6000 6000 6000

200 96000 56000 28000 20000

300 256000 66000 66000 66000

1

Table 4.2: Fault-tolerant benchmarks and results by QuComm.

are obtained from [51] and summarized in Table 4.2. Programs in Table 4.2 include

the quantum XOR gate, the quantum ripple carry adder (RCA), the quantum Fourier

transformation (QFT) algorithm, and Grover’s algorithm. Those programs For Grover,

we consider the secret string with all ones and repeat the iteration by 1000 times. All

programs are decomposed into the Clifford+T basis [1], except for the raw XOR gate

(XORR), which is specifically decomposed toward the DQC architecture according to

[73]. We would further consider near-term applications in Section 4.4.3 to evaluate the

impact of QuComm on the NISQ (Noisy Intermediate Scale Quantum) era [4].

Baseline. As the baseline, we implement the DQC compiler AutoComm [9]. AutoComm

70

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

groups a series of remote CX gates between one qubit and one node into a burst com-

munication block and implements the burst communication block (all remote CX gates

in it) with at most two invocations of communication protocols. AutoComm represents

the state-of-the-art effort in optimizing quantum communication overhead in distribut-

ing quantum programs, as far as we know. However, without the communication buffer,

AutoComm cannot optimize more general collective communication that may involve

more than two compute nodes. We adopt the same circuit partition algorithm—OEE

algorithm [71], which maximally reduces inter-node gates induced by partition, for both

QuComm and AutoComm, in order to eliminate the difference caused by the circuit

partition.

Metric. We use the number of invocations of inter-node communication protocols (Cat-

Comm or TP-Comm), i.e., the amount of inter-node communication based on logical

qubits, to characterize the communication overhead of the compiled distributed quantum

circuits. The amount of inter-node communication in a quantum program is equivalent

to the number of EPR pairs (on logical qubits) required to execute the program on DQC

hardware.

Notations. Before diving into results, we first introduce some notations and abbrevia-

tions. The communication reduction by QuComm refers to ‘1- # comm by QuComm/#

comm by baseline’, with ‘comm’ meaning communication. ‘# comm lqb/node’ means

the number of logical communication qubits per node. For simplicity, we use L1, L2, and

L3 to denote QuComm’s stages: communication fusion, communication routing,

and communication buffer design.

71

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

Comm reduction by
QuComm L1+L2+L3

Comm reduction by
QuComm L1+L2

Comm reduction by
QuComm L1

Program
5 comm

lqb/node
3 comm

lqb/node
1 comm

lqb/node
5 comm

lqb/node
3 comm

lqb/node
1 comm

lqb/node
5 comm

lqb/node
3 comm

lqb/node
1 comm

lqb/node
75.0%75.0%76.9%75.0%75.0%46.2%66.7%66.7%46.2%XOR-100
70.6%58.8%33.3%70.6%58.8%26.2%70.6%58.8%26.2%XOR-200
68.4%68.4%69.2%56.1%43.9%3.7%54.1%41.8%3.7%XOR-300
50.0%50.0%80.0%50.0%50.0%0.0%0.0%0.0%0.0%RCA-100
50.0%50.0%75.0%50.0%50.0%0.0%0.0%0.0%0.0%RCA-200
50.0%50.0%80.0%50.0%50.0%0.0%0.0%0.0%0.0%RCA-300
0.0%0.0%60.0%0.0%0.0%0.0%0.0%0.0%0.0%XORR-100

20.0%50.0%28.0%20.0%50.0%0.0%0.0%0.0%0.0%XORR-200
61.1%74.1%84.4%61.1%74.1%0.0%0.0%0.0%0.0%XORR-300
20.0%20.0%42.1%20.0%20.0%0.0%0.0%0.0%0.0%QFT-100
29.4%29.4%43.8%29.4%29.4%0.0%0.0%0.0%0.0%QFT-200
61.0%61.0%59.6%61.0%61.0%0.0%0.0%0.0%0.0%QFT-300
75.0%75.0%76.9%75.0%75.0%46.2%66.7%66.7%46.2%Grover-100
70.6%58.8%33.3%70.6%58.8%26.2%70.6%58.8%26.2%Grover-200
68.4%68.4%69.2%56.1%43.9%3.7%54.1%41.8%3.7%Grover-300

Table 4.3: Communication reduction by QuComm compared to AutoComm [9].

4.4.2 Compared to Baseline

In this section, we analyze the relative communication reduction of QuComm com-

pared to the baseline and discuss the effect of designs in QuComm. Table 4.2 and 4.3

summarize results of QuComm.

Overall, QuComm significantly reduces the amount of inter-node communication

across all benchmarks and device configurations tested, compared to the baseline. QuComm

on average reduces the amount of inter-node communication by 60.8%, 52.6%, and

51.3% on configurations of 1, 3, and 5 communication qubits per node, respectively.

The effect of program patterns and L1 optimization. QuComm behaves differently

on programs of distinguished patterns. Collective communication in programs can be

classified according to the extent of qubit correlation. For strongly correlated distributed

quantum programs, e.g., XOR and Grover in Table 4.2, each collective communication

block has an inter-node interaction graph (on logical qubits) close to the complete graph.

72

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

0.0

2.0

4.0

6.0

8.0

10.0

12.0

MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG

MCTR100 MCTR200 MCTR300 RCA100 RCA200 RCA300 BV100 BV200 BV300 MCTRR100 MCTRR200 MCTRR300 QAOA100 QAOA200 QAOA300

Communication buffer design statistics

1 comm qubit per node

3 comm qubit per node

5 comm qubit per node

B
u

ff
e
r

S
iz

e

Figure 4.10: The communication buffer design results of QuComm. ‘MAX’, ‘AVG’,
and ‘TOT’ denote the maximum size, average size, and total size of communication
buffers in the DQC system.

For example, for a decomposed three-qubit XOR gate (i.e., the Toffoli gate) distributed

over three nodes, its inter-node interaction graph is a triangle since there are inter-node

gates on each two of the three involved logical qubits. In contrast, for loosely correlated

distributed quantum programs e.g., RCA and QFT in Table 4.2, the interaction graph

of each collective communication block has few edges compared to the vertex count.

Strongly correlated distributed quantum programs would gain more benefits from the

L1 pass of QuComm. With abundant communication resources (e.g., 3 or 5 commu-

nication qubits per node), the communication reduction by ‘QuComm L1’ on strongly-

correlated distributed programs is on average 59.8% higher than on loosely-correlated

distributed programs. The reason for the discrepancy is that strongly correlated col-

lective communication benefits more from the implementation by aggregating qubits to

the same node. For loosely correlated distributed programs, the communication block

discovered by QuComm L1 is almost similar to the qubit-to-node burst communica-

tion [9] and cannot benefit from the L1 stage. Overall, L1 offers QuComm significant

communication reduction of 48.3% (averaged over various program size and # comm

lqb/node) on strongly correlated distributed programs (which have abundant collective

communication), compared to the baseline which can only handle burst communication.

The effect of L2 optimization. The L2 optimization also provides a great reduction in

73

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

inter-node communication, especially on loosely correlated distributed programs. With

abundant communication resources (3 or 5 logical communication qubits per node), the

communication reduction for loosely correlated distributed programs by L2 is on aver-

age 43.4%, far surpassing 3.5% for strongly correlated distributed programs. On the

other hand, compared the baseline which lacks communication-aware routing, L2 offers

QuComm on average 28.9% communication reduction on loosely correlated programs,

despite the communication fusion of QuComm on loosely correlated programs is similar

to the baseline.

Results in Table 4.3 validate the designs of L2 by comparing ‘QuComm L1+L2’ to

‘QuComm L1’. QuComm L2 moves logical qubits to the next inter-node communication

position by examining current and future communication patterns. For RCA, this pre-

vents the frequent TP-Comm back and forth caused by the baseline, leading to a 50.0%

communication reduction in the RCA benchmark (see Table 4.3 Column 6-7).

Moreover, for QFT where qi controls all qj (j > i), QuComm L2 would utilize existing

read-only copies of the control line to shorten the qubit transfer path while the baseline

does not have such a capability. This optimization on average leads to a 61.0% commu-

nication reduction on the 300-qubit QFT program (see Table 4.3 Column 6-7). Further,

XORR evaluates the effect of early execution in L2. The early execution strategy leads to

a 34.2% communication reduction in the XORR benchmark, on average (see Table 4.3

Column 6-7). Finally, for the XOR and Grover benchmark, the benefit of L2 lay in select-

ing the proper node for qubit aggregation. For 3 or 5 logical communication qubits per

node, the topology-aware node selection in L2 on average leads to 8.3% communication

reduction on the 100-qubit XOR and Grover programs.

The effect of L3 optimization. The communication buffer is more important for DQC

systems where limited communication qubits are available. With the buffer, ‘QuComm

L1+L2+L3’ significantly reduces the communication overhead, compared to ‘QuComm

74

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

L1+L2’ (by 21.5% on average) and AutoComm (by 54.9% on average) over all device

configurations and programs tested, as shown in Table 4.3. This is because the routing

and implementation of both burst and collective communication will be severely affected

when lacking communication (buffer) qubits. Further, we show the size of the designed

communication buffer in Figure 4.10.

As shown in Table 4.3, the importance of the communication buffer increases as the

number of communication qubits decreases. Compared to ‘QuComm L1+L2’, ‘QuComm

L1+L2+L3’ further reduces the amount of inter-node communication by 1.6%, 3.3%

and 50.6% on average, for the configurations of 5, 3, and 1 communication qubits per

node. For the DQC system with only one logical communication qubit per node, the

communication buffer not only facilitates the direct execution of collective communica-

tion blocks but also provides resources to relay quantum data transfer. Further, from

Figure 4.10, we can draw two observations: a) the size of the communication buffer grows

as the program size increases; b) strongly correlated distributed programs require more

help from the communication buffer than loosely correlated distributed programs.

Finally, we claim that our communication design will not hurt the scalability. Firstly,

our design features an input-adaptive buffering module which is configured to favor using

idle data qubits on each node, instead of requesting extra nodes. Secondly, as shown

in Figure 4.10, a small buffer that uses less < 2% data qubits would generally suffice

for reducing communication at a large scale. Lastly, even without the communication

buffer, ‘QuComm L1+L2’ still greatly reduces the communication overhead compared to

the baseline, as shown in Table 4.3.

75

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

0%

20%

40%

60%

80%

100%

XOR-300 RCA-300 XORR-300 QFT-300 Grover-300

Heterogeneous
Homogeneous

The effect of heterogeneous node size

(a)

0%

20%

40%

60%

80%

100%

XOR-300 RCA-300 XORR-300 QFT-300 Grover-300

Fully connected Star Mesh grid

The effect of diverse node connectivity

(b)

Figure 4.11: Communication reduction by QuComm on heterogeneous DQC systems,
compared to the baseline [9]. (a) The effect of heterogeneous node size. (b) The effect
of diverse node connectivity.

4.4.3 Additional Studies

In this section, we further evaluate the performance of QuComm on heterogeneous

DQC architectures and discuss the impact of QuCommon the NISQ era.

The effect of heterogeneity for QuComm. In Figure 4.11(a), we consider a het-

erogeneous DQC system consisting of eight compute nodes, with 20, 20, 30, 30, 50, 50,

60, and 60 logical qubits, respectively. For comparison, the homogeneous DQC comes

with eight nodes but all with 40 logical qubits. We assume one logical communication

qubit per node for both heterogeneous and homogeneous DQC systems. As shown in

Figure 4.11(a), compared to the baseline, QuComm can significantly reduce inter-node

communication in both heterogeneous and homogeneous DQC systems. This is because

collective communication is widely available for distributed programs mapped to DQC

systems and the node heterogeneity may not hurt collective communication optimization.

We further evaluate the performance of QuComm on diverse DQC networks where

the connectivity of nodes may be heterogeneous. We consider the fully connected and

star-like network topology in addition to the mesh-grid topology. For all network topolo-

gies, we assume 8 compute nodes, 40 logical qubits per node, and 1 logical communica-

tion qubit per node. As shown in Figure 4.11(b), compared to the baseline, QuComm

achieves significant communication reduction on all considered DQC architectures. We

76

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

can see that, the more sparse a DQC network is, the more benefits QuComm can provide.

QuComm achieves the largest communication reduction on the mesh grid topology whose

average node-to-node distance is 2.0, longer than 1.86 and 1.0 for the star-like and fully

connected topology, respectively.

0.0E+0

1.0E-4

2.0E-4

3.0E-4

4.0E-4

5.0E-4

6.0E-4

7.0E-4

8.0E-4

9.0E-4

1.0E-3

1.1E-3
1 comm qubit/node
3 comm qubit/node
5 comm qubit/node
1 comm qubit/node
3 comm qubit/node
5 comm qubit/node

AutoComm

QuComm

0.5 0.7 0.9 0.95
Overall Communication Fidelity of QAOA300Er

ro
r

R
at

e
 o

f
In

te
r-

n
o

d
e

 C
o

m
m

(a)

>1019

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

BV300 QAOA300

Local swap reduction
Comm. reduction
Latency reduction
Fidelity improv. by swap reduction
Overall fidelity improv.

QuComm on superconducting device

(b)

Figure 4.12: (a) The effect of nonlocal communication on the near-term application.
(b) The effect of local SWAP on DQC nodes with IBM architecture [28]. Results are
by comparing QuComm to the baseline [9].

The effect of QuComm on NISQ. We further evaluate QuComm on near-term ap-

plications and devices. In the evaluation, we assume physical qubits for data qubits of

compute nodes. Inter-node communication protocols are directly executed on physical

qubits. Near-term programs are decomposed into the CX+U3 basis [28]. For both Fig-

ure 4.12(a)(b), we assume the mesh grid network topology on 8 compute nodes, 40 data

qubits per node, and 1 communication qubit per node.

Figure 4.12(a) shows the required error rate of inter-node communication to achieve

specified overall communication fidelity for the 300-qubit QAOA (Quantum Approximate

Optimization Algorithm) program. The result in the figure indicates that, ensuring the

same level of overall communication fidelity, QuComm can admit on average 174.1%

higher inter-node communication error rate, compared to the baseline. Further, with

QuComm communication buffer design, we can equip each DQC node with fewer com-

munication qubits. Thus, with QuComm, it may be possible to demonstrate DQC in the

77

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

near term.

Figure 4.12(b) demonstrates the result of QuComm on the IBM heavy hexagon ar-

chitecture [28], compared to the baseline. Gate latency and fidelity are derived from [9].

Other experiment settings follow the one in Figure 4.12(a). For test programs, we con-

sider the 300-qubit BV (Bernstein–Vazirani algorithm) and QAOA. As shown in Fig-

ure 4.12(b), QuComm does not necessarily induce more local SWAP gates than the

baseline. On the one hand, the communication buffer may increase the SWAP overhead

of performing CX between same-node data qubits since qubits in the buffer may hinder

the SWAP path (see BV300 in Figure 4.12(b)). On the other hand, when executing

inter-node CX, we need to move data qubits closer to the communication buffer. The

SWAP overhead between data qubits and buffer qubits is less than that between data

qubits and the communication qubit since the buffer spans the device area used for inter-

node communication. This reduction of local SWAP overhead outweighs the overhead of

swapping EPR pairs from the communication qubit into buffer qubits if many inter-node

CX gates are executed (see QAOA300 in Figure 4.12(b)).

Furthermore, as shown in Figure 4.12(b), the local SWAP overhead change induced

by QuComm is minor (<0.05%) because of the small average size of communication

buffers (<2 per node as shown in Figure 4.10). QuComm always tries to use a small

communication buffer since a large communication buffer may instead lead to more inter-

node communication, as discussed in Section 4.3.3. This observation, on the other hand,

indicates that the program latency reduction and fidelity improvement (in Figure 4.12(b))

mainly stem from inter-node communication reduction.

Comparing QuComm to more DQC compilers. We further compare QuComm

to two more recent DQC compilers, called GP-CAT [45, 5] and GP-SWAP [42, 45] for

simplicity. GP-CAT executes each inter-node CX gate by solely using Cat-Comm. GP-

SWAP executes remote CX by swapping qubits between node and making the remote

78

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

0
1
2
3
4
5
6
7
8
9

10

XOR RCA QFT XORR Grover XOR RCA QFT XORR Grover XOR RCA QFT XORR Grover

1 comm lqb/node 3 comm lqb/node 5 comm lqb/node

GP-CAT/QuComm
GP-SWAP/QuComm

43.9 64.9 64.9

Figure 4.13: The ratio of ‘# comm’ by GP-CAT/GP-SWAP to that by QuComm.
Results are averaged over 100, 200, and 300 qubits.

CX local. The experiment setting is the same as the one for Table 4.3. As shown

in Figure 4.13, compared to GP-CAT and GP-SWAP, QuComm significantly reduces

inter-node communication, on average by 4.88x. Specifically, compared to GP-CAT, the

communication reduction by QuComm scales with the inter-node gate count in each pro-

gram. For programs with denser inter-node communication, e.g., QFT, QuComm can

build larger collective communication blocks for more aggressive communication reduc-

tion. Compared to GP-SWAP, the benefit of QuComm comes from its communication-

aware routing, which avoids repeated and unnecessary quantum data movement between

quantum nodes by utilizing the higher-level program information provided by uncovered

collective communication blocks.

Sensitivity analysis of of QuComm. Finally, we study the sensitivity of QuComm

to # node and # data qubits per node, with results shown in Figure 4.14. In the figure,

we consider XOR and QFT as test programs, which represents strongly-correlated and

loosely-correlated distributed programs, respectively. We also consider the star DQC

architecture as it has a deterministic shape when node size changes and has similar

performance as the mesh-grid architecture, as shown in Figure 4.11(b). One logical com-

79

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

0%

20%

40%

60%

80%

100%

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
XOR QFT# data qubit per node

Device: 240 data qubits in total
Test program: 200-qubit

Device: 480 data qubits in total
Test program: 400-qubit

Device: 720 data qubits in total
Test program: 600-qubit

Device: 960 data qubits in total
Test program: 800-qubit

Figure 4.14: The sensivity of QuComm to ‘# node’ and ‘# data qubit/node’, in terms
of communication reduction compared to [9].

munication qubit per node is assumed while other settings follows the one for Table 4.3.

As shown in Figure 4.14, the communication reduction by QuComm is stable for the

strongly-correlated distributed program. This is because the collective communication

uncovered by QuComm is consistently better than the burst communication by [9]. For

example, for the decomposed CCZ gate in Figure 4.1, by our collective communication

optimization, 60% fewer communication invocations are need, compared to by that burst

communication optimization [9], no matter how # node and # data qubits per node

change. In contrast, for loosely correlated programs, the advantage of QuComm mainly

comes from its communication-aware routing. For QFT, the amount of inter-node com-

munication increases quadratically with respect to # node, surpassing the communication

reduction by QuComm’s routing. Thus, as shown in Figure 4.14, the benfit of QuComm

decreases as # node increases. On the other hand, by keeping # node fixed, the benefit

of QuComm is stable as # data qubit per node increases, as shown in Figure 4.14. The

is as expected as ‘# data qubit per node’ does not affect QuComm’s routing. Overall,

for various combinations of ‘# node’ and ‘# data qubit per node’, QuComm is always

better than [9].

80

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

4.4.4 Complexity Analysis and Impact

In this section, we will discuss the scalability of our framework, its impact on QEC re-

quirement, as well as the trade-offs of our framework design. We then introduce potential

future works based on these discussions.

Scalability Analysis of QuComm

We assume there is M multi-qubit gates, N nodes involved, E network links involved

in the distributed program. We further assume K data qubits per node. For the commu-

nication fusion stage (L1) of QuComm, it performs a linear scan of the circuit as shown

in Algorithm 2. Thus, the computational complexity of QuComm L1 is O(M). Its space

complexity is O(M), so as to store the program and qubit-to-node mapping.

As for the communication routing stage (L2) of QuComm, the complexity for find-

ing the node for aggregation and scheduling data propagation is O(MN), as at most

M collective communication blocks and N nodes for each specific block are involved.

The shortest paths between nodes can be computed in advanced and is of complexity

O(E logN). Thus, the computational complexity of QuComm L2 is O(MN + E logN).

Its space complexity is O(N2) as it needs to store the shortest paths (O(N2)), the distance

matrix (O(N2)) and the available EPR pair count per node (O(N))).

Finally, as for the communication buffer design (L3) of QuComm, it first tries to find

the least communication-involved data qubit qc and the optimal relocation of this qubit

for each node. The computation will keep track of the count of multi-qubit gates on each

node that involves qc, and is thus of complexity O(M +N). QuComm L3 then estimates

the communication reduction by relocating qc according to Equ (4.1), and is thus of

complexity O(M). In the worst case, the buffer design process may go through N nodes

and K data qubits for each node. Thus, the computational complexity of QuComm L3

81

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

is O(NKM) in the worst case, and O(NM) in the best case (the buffer design process

for each node often ends in 1-2 iterations). QuComm L3’s space complexity is O(NK)

as L3 only needs to keep track of the assignment of communication buffer qubits and

remote gates for each node.

Overall, the computational complexity of QuComm is O(M2 +E logN) in the worst

case, and O(NM + E logN) in the best case. Note that O(NK) is O(M) as the qubit

count of a program is often far fewer than its gate count. On the other hand, the total

space overhead of QuComm is O(M +N2).

Impact of QuComm on QEC

Further, we study the effect of communication reduction by QuComm on the QEC

requirement. As a case study, we use surface code as the underlying QEC facility, where

pL ≈ 0.03(p/pth)
d/2. Here pL is the error rate of the logical qubit; pth is the error threshold

of surface code and can be set to be 0.01; p is the physical error rate; and d is the code

distance. In the following reasoning, we assume L local gates, R remote gates, and

C invocations of inter-node communication protocols by QuComm for the distributed

program.

First, QuComm enables smaller code distance or tolerates higher physical error rate

for remote communication, while preserving the overall program fidelity. We also assume

the overall communication fidelity we want to achieve is 1 − pC . Then QuComm

reduces the code distance for remote communication by ‘(1 − log(pC/(0.03C))
log(pC/(0.03R))

)*100%’. For

pC = 0.01 and programs in Table 4.2, the code distance reduction by QuComm is on

average 29.5%, up to 47.1%. On the other hand, QuComm can tolerate ‘((R/C)2/d −

1)*100%’ higher physical error rate for remote communication than the unoptimzed case.

For d = 5 and programs in Table 4.2, the (tolerated) physical error rate upper bound of

communication by QuComm is on average 238.6% higher, up to 1488.1%.

82

Optimizing Collective Communication for Distributed Quantum Computing Chapter 4

Second, we can also use the fidelity gain from communication reduction (by QuComm)

to compensate for looser QEC for local gates. We assume that the overall program

fidelity we want to achieve is 1 − pP . Likewise, compared to the unoptimized case,

QuComm can approximately reduce the code distance required for local logical qubits

by ‘(1 − log((pP−pC∗C/R)/(0.03L))
log((pP−pC)/(0.03L))

)*100%’, or tolerate error rate of local physical qubits by

‘(((pP − pC ∗ C/R)/(pP − pC))
2/d − 1)*100%’ higher. For pP = 0.02, pC = 0.01, and

programs in Table 4.2, the code distance reduction by QuComm is on average 5.3%,

up to 7.0%. For pP = 0.02, pC = 0.01, d = 5 for local logical qubits, and programs in

Table 4.2, the (tolerated) error rate upper bound of local physical qubits by QuComm is

on average 27.5% higher, up to 31.9%.

Finally, QuComm reduces the need of EPR pair generation by at least R − C. For

the same overall EPR pair fidelity 0.99, the same 2-to-1 entanglement purification pro-

tocol [75] and programs in Table 4.2, QuComm can tolerate on average 419.5% (up to

3059.4%) higher error rate for EPR generation.

83

Chapter 5

Synthesizing an Error-Corrected Qubit

Starting from this chapter, we will explore enabling fault tolerance over noisy quantum

hardware. In this chapter, our focus will be on the first problem: efficiently constructing

an error-corrected ’logical’ qubit by encoding redundant physical qubits of superconduct-

ing quantum hardware. The proposed framework presents the first automated solution

to this problem.

5.1 Introduction

Quantum hardware has made significant progress over the past decade, with the first

demonstration of quantum supremacy in 2020 [58]. Among various quantum hardware

technologies [76, 77, 78, 79], the superconducting (SC) qubit is currently one of the

most promising candidates for building quantum processors [80, 81] due to its low error

rate, single qubit addressability, manufacturing scalability, etc. Many of the latest quan-

tum computers adopt SC technology, such as IBM’s 65-qubit heavy-hexagon-architecture

chip [82], Rigetti’s 32-qubit octagonal-architecture device [83], and Google’s 54-qubit

square-architecture processor [58].

84

Synthesizing an Error-Corrected Qubit Chapter 5

The low error rate of SC quantum processors makes them ideal platforms for quantum

error correction (QEC) [15, 16, 17, 18, 19, 20], thus enabling fault-tolerant (FT) quantum

computation. Among various QEC codes, the surface code [20] is a popular choice due

to its high tolerance of physical error rates (up to 1%). This makes surface codes one of

the most viable QEC options for demonstrating near-term FT quantum computation.

With off-the-shelf surface code arrays, many recent research efforts have been devoted

to improving the efficiency of FT quantum computation, ranging from compilation [84,

85], communication scheduling [86, 87], to micro-controller design [88]. All these studies

are based on a nontrivial assumption: we have found a scalable way to build logical qubits

with the surface code family on existing quantum devices, in particular SC devices.

However, implementing surface codes on SC devices is complex in itself as error

detection relies on sophisticated circuits. Surface codes divide physical qubits into data

qubits and syndrome qubits, with syndrome qubits detecting the errors of neighboring

data qubits through measurement circuits [20]. In surface code, the implementation of

measurement circuits requires a qubit structure of 2D-lattice, with each qubit coupled

to four neighbors [20]. Such an architecture is not readily available on many latest SC

quantum processors [82, 83]. This is because dense architectures like the 2D-lattice would

lead to a high physical error rate and low yield rate [89].

Previous works attempt to address the connectivity gap between surface codes and

sparsely connected SC devices either by adapting architectures with tunable couplings [79]

or by designing device-dedicated QEC codes [30]. Nevertheless, the former method is

expensive and may introduce additional device noise, while the latter method is not

automated. A third attempt is to treat the measurement circuits of the surface code

as ordinary quantum circuits and compile them to sparse SC architectures with existing

quantum compilers [90, 91, 92, 93, 94, 95, 96, 97]. Unfortunately, generic compilers

are not suitable for compiling surface codes. Firstly, they don’t distinguish data qubits

85

Synthesizing an Error-Corrected Qubit Chapter 5

from other qubits. Those compilers may move data qubits frequently, making it hard

to apply logical operations which assume a fixed data qubit layout [20]. Secondly, the

SWAP gates they use to overcome the connectivity gap make the compiled measurement

circuits more error-prone, compared to specialized measurement circuits [30, 31] which

do not use SWAP gates. Finally, they only focus on gate-level optimization and do not

account for the parallelism between measurement circuits enabled by a specific execution

order [20].

To address problems of existing methods, we propose the first automatic synthesis

framework Surf-Stitch which specializes in stitching the surface code family to various

SC quantum devices. With specialized measurement circuits [31, 30] as the backend, our

framework overcomes three key challenges of the surface code synthesis, which remain

unexplored by existing works. The first is the allocation of data qubits. If the data qubits

of a measurement circuit are far apart from each other, we would need many ancillary

qubits to help detect their errors. Conversely, if they are too close, there will not be

enough room for the syndrome qubit. The second is the construction of measurement

circuits. Measurement circuits should be small as large circuits are error-prone and hurt

the error detection accuracy of the surface code. Besides, large measurement circuits

may contend for ancillary qubits. Such resource conflicts would destroy the parallelism

of error detection. The third is the execution order of measurement circuits. We should

exploit parallelism between measurement circuits as much as possible, to shorten the

error detection cycle and reduce the decoherence error.

Our framework decouples the solution space of the identified key challenges with

a modular optimization scheme that includes three stages. Firstly, we optimize the

allocation of data qubits as they are the key to gluing measurement circuits together.

We search for data qubits over rectangular device blocks since the measurement circuit is

exactly shaped by a rectangle [20]. We require each rectangular block to be the smallest

86

Synthesizing an Error-Corrected Qubit Chapter 5

possible, for a compact data qubit layout and potential small measurement circuits.

Secondly, we optimize measurement circuits for the allocated data qubits. The goal is to

keep them small and minimize the conflict between them if possible. To achieve the goals,

we constrict each measurement circuit within rectangular blocks of zero overlapping areas

and then adopt two heuristics to find small circuits. Finally, we optimize the execution

order of measurement circuits as the conflict between them is sometimes inevitable. We

observe that the error detection cycle can be reduced by executing large measurement

circuits together. Therefore we propose a procedure to find and execute large circuits

that do not have resource conflicts in parallel.

We evaluate the proposed synthesis framework by comparing it with manually-designed

QEC codes [30]. The results show that the surface codes synthesized by our framework

can achieve equivalent or even better error correction capability. This result is inspiring

as it unveils the possibility that automated synthesis can surpass manual QEC code de-

sign by experienced theorists. We also investigate our framework on various mainstream

SC quantum architectures to demonstrate its wide applicability. Surf-Stitch would be of

great interest to both QEC researchers and quantum hardware designers. Theorists will

have a baseline to compare with when designing novel QEC codes. Hardware researchers

can identify inefficient architecture designs for the surface code with Surf-Stitch.

Our contributions are summarized as follows:

• We systematically formulate the surface code synthesis problem on SC quantum

devices for the first time and identify three key challenges: data qubit allocation,

measurement circuit construction, and syndrome measurement schedule.

• We propose the first automatic synthesis framework that addresses the identified

challenges step by step, with insights extracted from surface codes and SC quantum

architectures.

87

Synthesizing an Error-Corrected Qubit Chapter 5

Figure 5.1: A motivating example for synthesizing a (rotated) distance-3 surface code.
(a) An SC device based on the hexagon structure. (b) A bad data qubit layout where
the stabilizer Xidfe cannot be measured. (c) A promising data qubit layout that ensures
all stabilizer measurements. (d) An example of resolving the bridge tree conflict.

• Our evaluation demonstrates the effectiveness of the proposed framework by the

comparison to manually designed QEC codes and a comprehensive investigation of

Surf-Stitch on various mainstream SC quantum architectures.

5.2 Problem Formulation

In this section, we first formulate the problem of synthesizing surface codes onto SC

quantum processors and then introduce the optimization opportunities.

We consider implementing the (rotated) surface code in Figure 2.4(b) on a quantum

device with the hexagon architecture (Figure 5.1(a)) [30]. In this hexagon device, each

qubit connects to at most three other qubits. This imposes a challenge to synthesiz-

ing stabilizer measurement circuits of the surface code since a syndrome qubit in either

an X- or Z- type stabilizer measurement should connect to four data qubits (see Fig-

ure 2.3(b)(c)). As in Figure 2.5, we can overcome the connectivity limitation of this

SC device with specialized measurement circuits [30, 31] as long as the data qubits and

the bridge tree for each stabilizer measurement are determined. While deciding the

88

Synthesizing an Error-Corrected Qubit Chapter 5

data qubits and the bridge tree for one stabilizer measurement is easy, deciding them

for all stabilizer measurements and making the implemented measurement circuits work

together are challenging tasks in the overall surface code synthesis.

In this section, we formulate the surface code synthesis problem into three key stages:

data qubit allocation, measurement circuit construction, and stabilizer measurement

schedule. Since the measurement circuit is determined once the bridge tree is selected,

we will refer to the second stage as bridge tree construction.

We briefly introduce the objectives and the design considerations of each stage as

follows.

Data qubit allocation: We choose to allocate and fix the position of data qubits first as

data qubits are the key to gluing stabilizer measurement circuits together. Once allocated,

the location of data qubits should not be changed, otherwise, the logical operations

designed for a fixed data qubit layout [20] would be invalidated. The layout of data

qubits affects the execution of stabilizer measurements. As an example, we synthesize the

distance-3 surface code in Figure 2.4(b) with two data qubit layouts in Figure 5.1(b) and

Figure 5.1(c). In Figure 5.1(b), the stabilizer Xidfe cannot be measured without moving

data qubits and inserting SWAP gates, which are not allowed to avoid error proliferation.

In contrast, all stabilizer measurements (Xabhi, Xidfe, Xfg, Xbc, Zbcid, Zhigf , Zah, Zde) can

be executed on Figure 5.1(c) by using the depicted bridge trees.

Bridge tree construction: After the data qubits are placed, the next step is to select

bridge qubits and construct bridge trees for stabilizer measurements. The first constraint

in this stage is that we should minimize the number of bridge qubits for each stabilizer

measurement since using more physical qubits would result in larger measurement circuits

which are naturally more error-prone. Besides, the construction of bridge trees affects the

efficiency of error detection because two stabilizers can be simultaneously measured only

if their bridge trees do not share qubits (i.e., no resource conflict). For instance, referring

89

Synthesizing an Error-Corrected Qubit Chapter 5

to Figure 5.1(c), if we measure Xbc with bridge qubits {r, s}, these two qubits then

cannot be used in the measurement circuit of Xabhi at the same time because the bridge

qubits need to be reset at the beginning of any measurement circuit. However, if we

measure Xbc with bridge qubits {p, q} in Figure 5.1(d), we can measure Xbc and Xabhi in

parallel. An efficient bridge tree construction should enable the concurrent measurement

of as many stabilizers as possible.

Stabilizer measurement scheduling: The third stage is to schedule the execution of

stabilizer measurements. It would be desirable to execute stabilizer measurements in

parallel as much as possible since it can reduce the error detection latency and miti-

gate the decoherence error. However, stabilizer measurement circuits with overlapped

bridge qubits cannot be executed simultaneously. For example in Figure 5.1(c), the

measurement circuit of Xabhi and Zbcid cannot be measured together since they share

bridge qubits {q9, q10}. One possibility is to measure Xabhi and Xidhe first, then measures

Zhgif and Zbcid. This schedule may seem promising, but it is not optimal as these two

groups of stabilizer measurements take 20 operation steps in total, using the flag-bridge

circuit [31](see Figure 2.5) as the backend. As a comparison, if we measure Xabhi and

Zhgif first and measure Xidfe and Zbcid second, the total number of operation steps is

only 18. Our objective is to identify the potential parallelism in stabilizer measurements

and generate efficient scheduling to shorten the overall error detection latency.

5.3 Synthesis Algorithm Design

In this section, we introduce the surface code synthesis flow of Surf-Stitch. As dis-

cussed above, we will introduce three key stages: data qubit allocation, bridge tree

construction and stabilizer measurement scheduling.

90

Synthesizing an Error-Corrected Qubit Chapter 5

5.3.1 Data qubit allocator

We start by allocating data qubits. Once allocated, the positions of data qubits should

not be changed. This is because the logical operations on surface codes [20] assume a fixed

data qubit layout, and moving data qubits would invalidate those high-level operations.

Moreover, moving data qubits would involve a series of SWAP gates which are noisy and

could destroy the logical information stored in data qubits.

A fundamental requirement for data qubit allocation is to ensure that a bridge tree

exists for each stabilizer. The following proposition about the degree of nodes (qubits)

provides a necessary condition to guarantee this.

Figure 5.2: Data qubit allocation example. (a) A modified device from Figure 5.1(a).
Red circles indicate physical qubits with a high degree of connectivity (i.e. with 3 or
more edges). (b) Finding compatible bridge rectangles. (c) Locating data qubits. (d)
The final data qubit layout and syndrome rectangles.

Proposition 5.3.1. Any bridge tree for a stabilizer with support on four data qubits must

have at least one four-degree node or two three-degree nodes.

Proof. For any graph G(V,E) where V is the vertex set and E is the edge set, we have∑
v∈V deg(v) = 2|E|. An n-vertex tree always has n − 1 edges. A bridge tree with four

data qubits has four 1-degree leaf nodes and all other nodes should have degrees of at least

2. Therefore we have 4 +
∑

v∈V \data qubits deg(v) = 2n − 2 and
∑

v∈V \data qubits deg(v) =

91

Synthesizing an Error-Corrected Qubit Chapter 5

Algorithm 3: Data qubit allocation
Input: Device architecture graph G.
Output: Data qubit layout data_layout.

1 Lh = all three- and four-degree nodes in G;
2 bridge_rects = [] ; // the set of bridge rectangles
3 for na in Lh do
4 if deg(na) == 3 then
5 nb = the nearest high-degree node of na;
6 rect = the minimal rectangle containing na, nb and their neighboring qubits;
7 else
8 rect = the minimal rectangle containing na and its neighboring qubits;
9 end

10 bridge_rects.append(rect);
11 end
12 r0 = the bridge rectangle at the top left corner of G;
13 bridge_rect_tuple = []; // compatible bridge rects;
14 repeat
15 for (r1, r2, r3) ∈ ⊗3bridge_rects do
16 if r0, r1, r2, r3 are mutually compatible then
17 potent_dqbits = qubits enclosed by r0, r1, r2, r3; // potential data area;
18 if potent_dqbits ̸= ∅ then
19 bridge_rect_tuple.append((r0, r1, r2, r3));
20 break;
21 end
22 set r0 to r1, r2, r3 in turn to find new tuples of r0, r1, r2, r3 that has non-empty

potent_dqbits;
23 until bridge_rect_tuple converges;
24 data_layout = [];
25 for r0, r1, r2, r3 in bridge_rect_tuple do
26 dqb = the qubit at the center of potent_dqbits of r0, r1, r2, r3;
27 data_layout.append(dqb);
28 end

2n − 6 = 2(n − 4) + 2. We only have n − 4 vertices after removing the four leaf nodes.

So we must have at least one four-degree node or two three-degree nodes.

From Proposition 5.3.1, we see that a feasible layout should ensure that each data

qubit has enough three-degree or four-degree qubits around it so that it can form a

stabilizer with nearby data qubits. To achieve that, we introduce a data qubit layout

that ensures the existence of local bridge trees, whose bridge qubits lie within the region

92

Synthesizing an Error-Corrected Qubit Chapter 5

bounded by the corresponding stabilizer’s data qubits. The benefit of this strategy comes

from the fact that local bridge trees often lead to shallow measurement circuits. For

illustration, we adopt the SC quantum architecture shown in Figure 5.2(a). We embed

the coupling graph of that architecture into a 2D grid so that all qubits can be referred

to by the spatial coordinates on the grid. Such an embedding is always possible for the

latest SC processors as they are usually designed in a modular structure.

Now we state the data qubit allocation algorithm, as shown in Algorithm 3. We keep

a list (denoted as Lh) for all the three- and four-degree nodes in the grid and record their

coordinates since high-degree nodes are critical to constructing the data qubit layout.

In Figure 5.2(a), Lh = {Q2, Q4, Q10, Q12, Q13, Q18, Q21}. Then we process the nodes in

the list sequentially. For each node na in Lh, if it is a three-degree node, we search for

its nearest high-degree node nb and create a minimal rectangle containing na, nb, and

their neighbors. If na is of degree ≥ 4, then we create a rectangle containing na and

its neighbors. Such a rectangle is called a bridge rectangle. Figure 5.2(a) depicts five

bridge rectangles resulted from {Q2, Q10}, {Q10}, {Q4, Q12}, {Q13, Q21} and {Q18, Q10},

indexed from 1 to 5. We omit other bridge rectangles here for simplicity.

Based on those bridge rectangles, we can then determine the positions of data qubits.

As shown in Figure 2.3(a), each data qubit of the surface code should be shared by

four stabilizers. Likewise, we can determine the position of a data qubit by four bridge

rectangles. We search for compatible bridge rectangles starting from rectangle 1. (We

can also start from rectangle 2 which is created from a four-degree qubit. We will discuss

this possibility in Section 5.4.) Two bridge rectangles are said to be compatible if their

overlapping area is zero. For example in Figure 5.2(b), rectangle 2 is not compatible with

rectangle 1 and rectangle 4, while rectangles 1, 3, 4, and 5 are mutually compatible. We

avoid using incompatible rectangles as they may not allow a feasible data qubit layout.

When four compatible bridge rectangles are found, we search for the data qubit in the

93

Synthesizing an Error-Corrected Qubit Chapter 5

potential data area (the black rectangle in the center of Figure 5.2(c)), which is enclosed

by those compatible bridge rectangles, as shown in Figure 5.2(c). If the potential data

area is empty, we select another four compatible bridge rectangles. Otherwise, we select

the qubit at the center of the potential data area as a data qubit.

On the boundary, we may not have enough bridge rectangles to locate the data qubits.

For example, the bottom right corner of rectangle 3 is only neighbored by rectangle 5.

In this case, we have to locate the data qubit based on only those two bridge rectangles.

Specifically, a potential data qubit should satisfy: A) its x coordinate ≥ the largest x

coordinate in rectangles 3 and 5; B) its y coordinate should lie between the largest y

coordinate of rectangle 3 and the smallest y coordinate of rectangle 5. With these spatial

constraints, the only qubit we can find is Q14, as shown in the black rectangle on the

right of Figure 5.2(c). Positions of other data qubits are determined in a similar way.

The final layout of data qubits and their associated syndrome rectangles are shown

in Figure 5.2(d). A syndrome rectangle is an extension of the bridge rectangle which

includes the allocated data qubits. We can assign a stabilizer to each syndrome rectangle

and synthesize the corresponding measurement circuits locally (using qubits inside each

syndrome rectangle). In the next section, we will discuss how to find a short bridge tree

for each stabilizer.

5.3.2 Bridge tree finder

Based on allocated data qubits and syndrome rectangles, we search for bridge trees

that satisfy two requirements: small in size and local in position. The reason why they are

required to be small is that large bridge trees would compromise the fidelity of stabilizer

measurements. This is because the error correction capability of the synthesized surface

codes is sensitive to the length of bridge trees, as each additional edge in a bridge tree

94

Synthesizing an Error-Corrected Qubit Chapter 5

Algorithm 4: Bridge tree construction
Input: A syndrome rectangle R with data qubits {a, b, c, d}.
Output: Candidate bridge trees.
// bridge trees by the star-tree method;

1 star_trees = [];
// bridge trees by the branching-tree method;

2 branching_trees = [];
3 for qb in R do
4 T = the bridge tree by connecting qubit qb to data qubits {a, b, c, d} with shortest

paths;
5 insert T to star_trees and remove trees larger than T from star_trees;
6 end
7 let {a′, b′, c′, d′} be an arrangement of {a, b, c, d} s.t.

la′b′ + lc′d′ = min{lab + lcd, lac + lbd, lad + lbc};
// lab is the distance of a → b;

8 connect a′ and b′, c′ and d′ with shortest paths;
9 for qb1 in a′ → b′, qb2 in c′ → d′ do

10 T = the resulting bridge tree by connecting qb1 and qb2 with shortest paths;
11 insert T to branching_trees and remove trees larger than T from

branching_trees;
12 end
13 merge star_trees and branching_trees to find a list of small local bridge trees;

Figure 5.3: Finding bridge trees in a syndrome rectangle with data qubits {a, b, c, d}.
(a)(b) shows the case where path merge is efficient, while (c) shows the case when path
merging incurs extra overhead. (a) Green edges denote the shortest paths from qubit
E to data qubits and they form a bridge tree with length 10. (b) Blue edges form a
bridge tree with length 8. (c) An example where data qubits are close to each other.

results in two more CNOT gates in the measurement circuit, increasing the probability

of correlated errors which are hard to detect and correct [20]. The reason why bridge

trees should be local is to guarantee the parallelism of bridge trees, which also affects

the fidelity of stabilizer measurements. For bridge trees that share bridge qubits, i.e.,

incompatible bridge trees, their corresponding stabilizers must be measured sequentially,

95

Synthesizing an Error-Corrected Qubit Chapter 5

resulting in a longer error detection cycle, which means more decoherence errors. To

reduce potential conflicts between bridge trees, we only search for bridge trees inside

each syndrome rectangle. Such local bridge trees, whose qubits lie completely within the

syndrome rectangles, naturally facilitate the concurrent measurement of stabilizers.

A natural way to find small local bridge trees is to first locate the bridge tree root

within the syndrome rectangle, and then connect the tree root to data qubits by the

shortest paths. We denote this method as the star-tree method. A disadvantage of this

method is that it may miss opportunities for path merging. For example, in the syndrome

rectangle in Figure 5.3(a), the length of the bridge tree produced by the star-tree method

is 10 (green edges). In contrast, by merging paths E → F → b and E → d, we can get a

bridge tree of length 8 (blue edges in Figure 5.3(b)), which reduces the number of CNOT

gates in the resulting stabilizer measurement circuit by at least 4.

To remedy the above shortcoming, we propose the branching-tree method, which first

connects close data qubit pairs by shortest paths, and then connects those shortest paths

to build a complete bridge tree. As an example, suppose we are constructing a bridge

tree for the syndrome rectangle in Figure 5.3(a). We first find the shortest paths a → c

and b → d, since lac + lbd (lac is the length of the shortest path from a to c) is smaller

than lab+ lcd and lad+ lbc. Then by connecting paths a→ c and b→ d with path E → F ,

we immediately obtain the small bridge tree (blue edges) in Figure 5.3(b). The following

proposition bounds the length of the bridge tree generated by the branching-tree method:

Proposition 5.3.2. Let the total edge length of the bridge tree T generated by the

branching-tree method be E(T), then,

E(T) ≤ 1

2
(lab + lac + lad + lbc + lbd + lcd).

Proof. W.l.o.g., we assume lab+ lcd ≤ min{lac+ lbd, lad+ lbc}. Then in T , we first connect
96

Synthesizing an Error-Corrected Qubit Chapter 5

a and b, c and d, respectively. On the other hand, the distance between shortest paths

a→ b and c→ d is smaller than min{lac, lad, lbc, lbd}. This proposition then can be proved

by combining these two inequalities.

Generally, the branching-tree method is more efficient if min{lab+lcd, lac+lbd, lad+lbc}

is small, as shown in Figure 5.3(a)(b). In this case, the length of the resulting bridge

tree is very close to 1
2
(lad + lbc). In contrast, the length of the bridge tree by the star-

tree method is at least max{lad, lbc}+ 2, which is larger than that by the branching-tree

method. However, if max{lab + lcd, lac + lbd, lad + lbc} is small too, the benefit of path

merging may not outweigh the overhead of not using shortest paths. Figure 5.3(c) shows

an example where the star-tree method produces a shorter bridge tree. In practice,

we will run both the star-tree method and the branching-tree method, then find small

bridge trees by merging their results, as shown in Algorithm 4. Once the bridge tree is

determined, we can assign the syndrome qubit to the center node of the bridge tree.

In general, our bridge tree finder can generate small bridge trees that approximate

optimal bridge trees as long as the distances between data qubits are small (by Proposi-

tion 5.3.2).

5.3.3 Stabilizer measurement scheduler

With all stabilizers and their measurement circuits allocated to the physical device,

the next goal is to minimize the runtime of stabilizer measurements by maximizing paral-

lelism, which naturally reduces the effect of decoherence. Two stabilizers can be measured

in parallel if and only if their measurement circuits do not share bridge qubits. Such stabi-

lizers are said to be compatible with each other. To exploit the parallelism of compatible

stabilizers while not allowing incompatible stabilizers to be measured concurrently, we

propose a heuristic scheduling approach in Algorithm 5, which consists of two steps:

97

Synthesizing an Error-Corrected Qubit Chapter 5

Algorithm 5: Iterative stabilizer measurement scheduling
Input: Binary tuples of stabilizer and syndrome rectangle: {(s,R)}.
Output: A schedule of binary tuples of stabilizer and bridge trees.
// Schedule initialization;

1 S1 = tuples of X-stabilizers and syndrome rectangles;
2 S2 = tuples of Z-stabilizers and syndrome rectangles;
// Iterative refinement;

3 repeat
4 if exec_time(S1) < exec_time(S2) then
5 swap(S1, S2);
6 r2 = (s,R) in S2 that has longest execution time;
7 swap_list = [r2]; for i in [0 : k] do
8 S = Si%2+1;
9 for r in swap_list do

10 swap_list.remove(r);
11 for r1 in S in descending order do
12 if r1 and r does not have compatible bridge trees then
13 if exec_time(r1) > exec_time(r) then
14 terminate the refinement loop;
15 swap_list.append(r1);
16 S.remove(r1);
17 end
18 if swap_list == ∅ then
19 break;
20 end
21 end
22 if swap_list ̸= ∅ then
23 recover S1 and S2 to the values before this iteration;
24 break;
25 until S1 converges;
26 generate the finalized stabilizer measurement schedule from S1 and S2;

schedule initialization and refinement loop.

Schedule initialization: The proposed data qubit allocation ensures that syndrome

rectangles of the same type do not have bridge tree conflicts, i.e., the stabilizer mea-

surements of the same type are compatible with each other. With this guarantee, we

initialize the stabilizer measurement schedule with two sets, S1 and S2 which contain X-

and Z-type stabilizers, respectively.

Refinement loop: The core idea of the refinement loop is to move stabilizers with
98

Synthesizing an Error-Corrected Qubit Chapter 5

Figure 5.4: An example of stabilizer measurement scheduling.

large measurement circuits into one set. The motivation for this refinement is that the

execution time of a set of stabilizer measurements is determined by the stabilizer with

the deepest measurement circuit. After the refinement loop, we end up with one set

containing the stabilizers with large measurement circuits, and the other set containing

the remaining stabilizers which have small measurement circuits and can be measured in

a short time.

To illustrate how the refinement loop works, suppose we are given stabilizers and syn-

drome rectangles shown in Figure 5.4. Initially, we have S1 = {(s1, R1), (s4, R4), (s5, R5)}

and S2 = {(s2, R2), (s3, R3), (s6, R6)}. We then send the largest element in S2, which is

(s2, R2) in this case, to the swap_list and swap it into S1. Since (s4, R4) and (s2, R2)

do not have compatible bridge trees, we will move (s4, R4) to S2. In S2, (s6, R6) is not

compatible with (s4, R4), so it will be swapped into S1. After this swap, the refinement

loop will stop since the swap_list is empty and every stabilizer in S1 has a larger bridge

tree than the stabilizer in S2. The finalized stabilizer measurement schedule is shown in

Figure 5.4(b). Compared to the initial schedule, the refined schedule in Figure 5.4(b)

reduces the error detection cycle by one time step, and reduces the CNOT gate number

by two.

99

Synthesizing an Error-Corrected Qubit Chapter 5

5.4 Evaluation

In this section, we first evaluate the proposed synthesis framework Surf-Stitch by

comparing its generated surface codes with state-of-the-art manually designed QEC

codes. We then demonstrate the effectiveness of Surf-Stitch on mainstream SC architec-

tures by analyzing the error correction capability and resource overhead of the synthesized

codes.

5.4.1 Experiment Setup

Evaluation setting: We use the flag-bridge circuit [31] as the backend for instanti-

ating stabilizer measurement circuits as it provides the extra feature of fault-tolerant

error detection [98]. We implement all numerical simulations with stim v1.5.0, a fast

stabilizer circuit simulator [99]. We use PyMatching v0.4.0 [100] for error decoding with

measurement signals from bridge qubits. The PyMatching decoder is the implementa-

tion of the well-studied Minimum Weight Perfect Matching (MWPM) algorithm [30, 20].

Error rates are computed by performing 105 simulations with 3d (d is the code distance)

error detection rounds, on a Ubuntu 18.04 server with a 6-core Intel E5-2603v4 CPU and

32GB RAM.

Metrics: We evaluate the error threshold of the synthesized surface codes to demon-

strate their error correction capability. Error threshold indicates the error rate below

which hardware errors can be tolerated [20]. Hence, a higher error threshold is preferred.

The time-step count determines the execution speed of the surface code and its logical

operations. A large time-step count would also introduce more decoherence errors. Thus,

a small time-step count is preferred. Finally, We evaluate the resource overhead of the

synthesized surface codes with the CNOT count and the qubit count. A resource-efficient

synthesis should use fewer CNOT gates and bridge qubits.

100

Synthesizing an Error-Corrected Qubit Chapter 5

Type Name Building blocks Tilling Example Remark

Polygon

Archi-

tectures

Square
Each square can have at most four neighbor-

ing squares for tiling.

Hexagon
Each hexagon can have at most six neighbor-

ing hexagons for tiling.

Octagon
Each octagon can have at most four neigh-

boring octagons for tiling.

Heavy

Archi-

tectures

Heavy

Square

Heavy squares are tiled like squares.

Heavy

Hexagon

Heavy hexagons are tiled like hexagons.

1

Table 5.1: Overview of device architectures.

Device architectures: we use two categories of device architectures, as shown in Ta-

ble 5.1. The first category of architectures built from tiled polygons is the basic struc-

ture of many SC quantum devices, e.g. Google’s Sycamore [58] and IBM’s latest ma-

chines [101]. The second category of architectures is mainly used by IBM devices [101].

It consists of heavy architectures with an extra qubit inserted into each edge of the poly-

gons. Edges with the extra qubit in the middle are called heavy edges. Compared to

polygon architectures, the average qubit connectivity of heavy architectures is lower due

to the inserted two-degree qubits. All architectures in Table 5.1 can be easily embedded

into a 2D grid.

Error model: In all simulations, we assume a similar circuit-level error model as

in [20, 30]. For the gate error, we assume an error probability pe for the single-qubit

depolarizing error channel on single-qubit gates, the two-qubit depolarizing error channel

on two-qubit gates, and the Pauli-X error channel on measurement and reset operations.

For the idle error induced by decoherence, we assume each idle qubit is followed by

a single-qubit depolarizing error channel per gate duration with the error probability

101

Synthesizing an Error-Corrected Qubit Chapter 5

(a) Surf-Stitch Heavy Square (b) Surf-Stitch Heavy Hexagon

(c) IBM Heavy Square (d) IBM Heavy Hexagon

Figure 5.5: The synthesized distance-3 surface codes by Surf-Stitch and the two man-
ually designed QEC codes by IBM [30].

0.0002, which is estimated by the decoherence error formula 1− e−
t
T ≈ 0.0002, with the

gate duration t = 20ns and the relaxation or dephasing time T = 100µs [28]. These

errors happen on all qubits, including data qubits and bridge qubits.

5.4.2 Compared to manually designed QEC codes

We first compare the synthesized surface codes by Surf-Stitch to the two manually

designed QEC codes by Chamberland et al. [30] on heavy architectures. Figure 5.5(a)(b)

show the qubit layouts and stabilizer measurements of our synthesized surface codes on

the heavy square architecture (‘Surf-Stitch Heavy Square’) and the heavy hexagon archi-

tecture (‘Surf-Stitch Heavy Hexagon’). Figure 5.5(c)(d) show the manually designed QEC

codes on the heavy square architecture (‘IBM Heavy Square’) and the heavy hexagon ar-

chitecture (‘IBM Heavy Hexagon’). The error thresholds of these codes are in Figure 5.6.

The error thresholds are computed with respect to Pauli X errors.

102

Synthesizing an Error-Corrected Qubit Chapter 5

L
og

ic
al

er
ro

r
ra

te
p l Surf-Stitch: d = 3 d = 5 d = 7 d = 9

IBM: d = 3 d = 5 d = 7 d = 9

10−3

10−1

0.00330.0016

10−3

0.0053
physical error rate

(a) Heavy Hexagon
physical error rate
(b) Heavy Square

Figure 5.6: The error threshold is the physical error rate where code curves of different
distances meet. (a) The error thresholds are 0.16% and 0.33% for codes by IBM and
Surf-Stitch, respectively. (b) The error threshold is 0.53% for both codes.

Overall, compared with the manually designed codes on the heavy architectures,

the surface codes synthesized by Surf-Stitch can have comparable or even better error

correction capability. On the heavy hexagon architecture, the error threshold of ‘Surf-

Stitch Heavy Hexagon’ is 0.33% which is 106% higher than that of ‘IBM Heavy Hexagon’

(0.16%), as shown in Figure 5.6(a). This significant discrepancy comes from the fact

that ‘IBM Heavy Hexagon’ measures gauge operators instead of the stabilizers for the

Pauli-X error detection. Besides, ‘IBM Heavy Hexagon’ does not guarantee the fault

tolerance of the Pauli-X error detection procedure. On the heavy square architecture,

the error threshold of ‘Surf-Stitch Heavy Square’ is the same as that of ‘IBM Heavy

Square’, as shown in Figure 5.6(b). This is because the code synthesized by Surf-Stitch

is almost identical to ‘IBM Heavy Square’ except for stabilizers on boundaries, as shown in

Figure 5.5(a)(c). The only difference is that ‘IBM Heavy Square’ removes some boundary

nodes (dotted) and edges (dotted) for better efficiency of stabilizer measurements on the

borderline.

In summary, Surf-Stitch can automatically generate surface codes that have similar

or even better error correction capability compared with manually designed QEC codes

on the two studied architectures.

103

Synthesizing an Error-Corrected Qubit Chapter 5

Figure 5.7: First four stabilizers of the synthesized surface codes by Surf-Stitch.
(a)(b)(c) syntheses on the square, hexagon, and octagon architectures. (d)(e) syn-
theses on the square and heavy square architectures by using syndrome rectangles
induced by 4-degree qubits.

Code
Avg.
bridge
qubit #

Avg.
CNOT
#

Avg.
time-
step #

Tot.
time-
step #

Error
thresh-
old

Surf-Stitch Heavy Sqaure 3 8 12 24 0.53%
Surf-Stitch Heavy Hexagon 7 19 20 40 0.33%
Surf-Stitch Sqaure 2 6 10 20 0.63%
Surf-Stitch Hexagon 4 10 13 26 0.47%
Surf-Stitch Octagon 6 14 14 28 0.38%
Surf-Stitch Sqaure-4 1 4 8 8 0.70%
Surf-Stitch Heavy Sqaure-4 5 12 13 13 0.45%
IBM Heavy Sqaure 3 8 12 24 0.53%
IBM Heavy Hexagon 3 8 12 24 0.16%

Table 5.2: Metrics of the synthesized surface codes by Surf-Stitch. The average num-
bers of bridge qubits, CNOT gates, and time steps are computed over all X-type
stabilizers.

5.4.3 Synthesis on various SC architectures

We further apply Surf-Stitch to other architectures in Table 5.1 to demonstrate the

general applicability of Surf-Stitch. Figure 5.7(a)-(c) presents the synthesis results of

Surf-Stitch on the square, hexagon, and octagon architectures. Besides syntheses enabled

by a pair of three-degree bridge qubits as in Figure 5.7(a)-(c), we also include another

two surface codes generated by using syndrome rectangles centering around four-degree

qubits, as shown in Figure 5.7(d)(e). These two codes have the suffix ‘-4’ in the code name

in Table 5.2 and Table 5.3. Table 5.2 summarizes the characteristics of stabilizer mea-

surements in the synthesized surface codes by Surf-Stitch. Table 5.3 shows the resource

requirements of these synthesized surface codes and is obtained by finding the smallest

104

Synthesizing an Error-Corrected Qubit Chapter 5

Code data
qubit %

bridge
qubit %

unused
qubit %

Tot.
qubit #

Surf-Stitch Heavy Sqaure 31.7% 45.6% 22.8% 79
Surf-Stitch Heavy Hexagon 18.8% 59.4% 21.8% 133
Surf-Stitch Square 55.6% 44.4% 0.0% 45
Surf-Stitch Hexagon 30.5% 48.8% 20.7% 82
Surf-Stitch Octagon 13.8% 75.8% 10.4% 116
Surf-Stitch Square-4 43.9% 56.1% 0.0% 57
Surf-Stitch Heavy Sqaure-4 16.3% 83.7% 0.0% 153
IBM Heavy Sqaure 31.7% 45.6% 22.8% 79
IBM Heavy Hexagon 17.4% 63.0% 19.6% 92

Table 5.3: Qubit utilization of the distance-5 surface codes synthesized by Surf-Stitch
on different architectures.

tiling of building blocks in Table 5.1 that is able to support the distance-5 surface code

and then computing the ratios of different types of qubits.

The effect of architectures: High-degree architectures are more effective for surface

code synthesis than low-degree architectures. Compared to polygon architectures, heavy

architectures increase the bridge qubit number by 114% on average, up to 400%. Heavy

architectures also increase the average time-step number by 40.7% on average. Fortu-

nately, in Surf-Stitch, such significant resource differences do not lead to great error

correction capability degradation. Compared to polygon architectures, heavy architec-

tures reduce the error threshold by 26.7% on average. Besides, low-degree devices have a

much lower hardware error rate and are easier to fabricate than high-degree devices [89].

The effect of the synthesis design: The synthesized codes centering on four-degree

qubits have higher resource requirements than the synthesized codes induced by a pair

of three-degree qubits. In Table 5.3, 26.7% and 93.7% more qubits are required for

‘Surf-Stitch Square-4’ and ‘Surf-Stitch Heavy Square-4’ than ‘Surf-Stitch Square’ and

‘Surf-Stitch Heavy Square’, respectively. The synthesis by four-degree qubits may also

have a lower error threshold. Compared to ‘Surf-Stitch Heavy Square’, ‘Surf-Stitch Heavy

Square-4’ decreases the error threshold by 15.1%.

105

Synthesizing an Error-Corrected Qubit Chapter 5

Code bridge
qubit #

bridge
/data

2-qubit
gate #

1-qubit
gate #

Surf-Stitch Heavy Sqaure 2(d2 − 1) 2 8d(d− 1) 2(d − 1) ∗
(3d+ 1)

Surf-Stitch Heavy Hexagon 2(2d+1)∗
(d− 1)

4 4(4d−1)∗
(d− 1)

2(d − 1) ∗
(7d− 1)

Surf-Stitch Square (d − 1) ∗
(d+ 2)

1 6d(d− 1) 2(d − 1) ∗
(2d+ 1)

Surf-Stitch Hexagon (2d+3) ∗
(d− 1)

2 10d(d−1) 2(5d−1)∗
(d− 1)

Surf-Stitch Octagon (d − 1) ∗
(3d+ 7)

3 14d(d−1) 2(d − 1) ∗
(6d+ 1)

Ideal d2 − 1 1 4(d2 − 1) 2(d2 − 1)

Table 5.4: Resource scalability of Surf-Stitch on different architectures. d is the code
distance. The ‘Ideal’ rows denotes the ideal surface code on a 2D lattice [20].

Overall, not only the architectural design but also the synthesis design have a critical

impact on the resource overhead and error correction capability of the synthesized codes.

By optimizing the three key stages in the surface code synthesis, Surf-Stitch achieves

reasonable error thresholds on various mainstream SC quantum architectures. In fact,

IBM recently demonstrates a CNOT gate with a fidelity of 99.77% [102], whose physical

error rate of 0.23% is lower than the worst error threshold by Surf-Stitch in Table 5.2

(0.33% on the heavy hexagon architecture).

Being effective in synthesizing surface codes, Surf-Stitch also has good scalability on

quantum resources. Table 5.4 reports the bridge qubit number and quantum gate number

by Surf-Stitch, with respect to the code distance d. These data are obtained by analyzing

the patterns of the synthesized surface codes. As shown in Table 5.4, the required number

of bridge qubits (also, two-qubit gates and single-qubit gates) in Surf-Stitch scales almost

linearly with the number of data qubits, i.e., d2. This indicates that no matter how large

the code distance is, for a given architecture, Surf-Stitch only needs a constant number of

bridge qubits to measure one stabilizer. Such good scalability comes from the fact that

Surf-Stitch always uses small syndrome rectangles and only considers local bridge trees

that have limited sizes and do not grow as the code distance increases.

106

Synthesizing an Error-Corrected Qubit Chapter 5

Square Heavy
Square

Hexagon Octagon Heavy
Hexagon

0.1

0.3

0.5

0.7
Er

ro
r t

hr
es

ho
ld

 (%
)

0.63

0.53
0.47

0.38
0.33

Impact of bridge trees
Surf-Stitch
Revised-SABRE

(a)

0.0004 0.0008 0.0012 0.0016 0.0020
Idle error

0.20

0.25

0.30

0.35

0.40

0.45

Er
ro

r t
hr

es
ho

ld
 (%

)

Impact of measurement scheduling
Surf-Stitch
Two-stage

(b)

Figure 5.8: Sub-component analysis. (a) The impact of different bridge trees. (b) The
impact of different measurement scheduling.

5.4.4 Analysis on sub-components

In this section, we study the effect of Surf-Stitch’s three optimization stages.

Data qubit allocation: To demonstrate the necessity of a specialized data qubit allo-

cation algorithm, we compare the data qubit allocation pass of Surf-Stitch to Qiskit [28]

and the random sampling method on device architectures in Table 5.1. For Qiskit, we

try two different qubit layouts: SABRE [96] and NoiseAdaptive [90]. The random sam-

pling method tries to find data qubits by sampling the device nodes uniformly. During

100000 trials, Qiskit and the random sampling method do not produce any valid data

qubit layout that is able to execute all stabilizer measurement circuits without moving

data qubits. The reason for the failure of these methods is that they do not consider

the constraints of the surface code synthesis: (a) once allocated, data qubits should not

be moved; (b) there should be high-degree qubits between data qubits. In contrast,

Surf-Stitch always produces valid data qubit layouts.

Bridge tree construction: Keeping other optimization steps fixed, we compare the

bridge tree construction algorithm of Surf-Stitch to a revised SABRE routing algorithm.

We use a revised SABRE here because the original SABRE cannot distinguish bridge

107

Synthesizing an Error-Corrected Qubit Chapter 5

qubits and data qubits. To make a CNOT gate executable, SABRE may move data

qubits towards syndrome qubits. Such behavior is prohibited in the surface code because

moving data qubits will invalidate the logical operations of the surface code. Besides,

SABRE cannot guarantee the correct execution of stabilizer measurements. When we

measure an X- and Z-stabilizer together, the order of the CNOT gates between syndrome

qubits (or bridge qubits) and data qubits must follow the zig-zag ordering [20], as shown

in Figure 2.5. Unfortunately, SABRE does not obey this constraint. Therefore, we revise

the SABRE algorithm to make it applicable for implementing stabilizer measurements.

As in Figure 5.8(a), the SABRE method is also significantly worse than Surf-Stitch due

to the large number of extra CNOT gates induced by using SWAP gates. This result

illustrates the necessity of a specialized bridge tree optimization pass.

Stabilizer measurement scheduling: Keeping the first two optimization stages fixed, we

compare the stabilizer measurement scheduling of Surf-Stitch to the two-stage measure-

ment scheme [31] which first measures all X-stabilizers and then measures Z-stabilizers.

For the comparison, we consider the synthesized surface code in Figure 5.7(e). As shown

in Figure 5.8(b), the stabilizer measurement schedule of Surf-Stitch achieves a higher error

threshold than the two-stage schedule, and the advantage of Surf-Stitch increases as the

idle error grows. Such a result demonstrates the effectiveness of Surf-Stitch’s stabilizer

measurement scheduling, especially for SC quantum devices in the near future.

108

Chapter 6

Synthesizing a Reliable Computing

Platform

This chapter will discuss about how to build a reliable computing platform based on

quantum error correction theory. This chapter will explore architecture-compiler co-

designs so as to enable an efficient fault-tolerant quantum computing platform.

6.1 Introduction

Quantum computing suffers from device noise which greatly limits the problem size

a quantum device can address with a low failure rate [103]. To address this challenge,

quantum error correction (QEC) codes are invented to mitigate quantum noises and

enable fault-tolerant quantum computing (FTQC) [1]. The QEC code encodes a high-

fidelity logical qubit with a group of unreliable physical qubits (named data qubits) and

corrects potential errors on the logical qubit based on error information extracted from

data qubits. Experiments demonstrate the reliability of quantum architectures based

on QEC and the enablement of QEC on realistic hardware has witnessed a series of

109

Synthesizing a Reliable Computing Platform Chapter 6

breakthroughs recently [11, 34, 31, 30, 104, 105, 106, 107, 108].

To execute quantum programs fault-tolerantly, the logical operation that can directly

manipulate the logical qubit protected by the QEC code is indispensable. Like on physical

qubits, it is critical to have a universal logical gate basis, such as the logical version of

the Clifford+T gate basis, which can be used to achieve arbitrary unitary transformation

directly on logical qubits. Unfortunately, not all logical operations can be implemented

with a low cost, no matter what logical gate basis we adopted, according to [24]. Taking

the most widely-used Clifford+T gate basis for example, for well-known QEC codes like

the Steane code [1], the implementation of the logical T gate is much more complex than

other logical gates and requires the support of extra QEC protocols.

To reduce the overhead of the difficult-to-implement logical operation like the logical

T, it is critical to optimize QEC protocols required to implement such logical operation.

Among these protocols, magic state distillation and code switching are two most promis-

ing methods. Magic state distillation consumes multiple logical qubits to implement the

logical T gate. Its advantages as well as optimization opportunities have been extensively

studied in literature [1, 25, 84]. Distinctly, code switching [27] allows a cheap implemen-

tation of the logical T by encoding the logical qubit in different QEC codes along the

time dimension. While being complicate on the Steane code, the logical T can be easily

implemented on the Reed-Muller (RM) code, by simply applying physical T † gates on

each data qubit. To implement the logical T on a logical qubit of the Steane code, we

can first use one code switching to transform the logical qubit into the RM code mode,

implement the logical T, and then switch the logical qubit back into the Steane code. As

an emerging method, the advantage of code switching has not been well investigated yet.

There are large optimization spaces left for exploration.

Especially, existing efforts of code switching [27] only consider the theoretical proto-

col for implementing the logical T, totally missing optimization opportunities from the

110

Synthesizing a Reliable Computing Platform Chapter 6

architecture and compiler aspects that can further enlarge the benefit of code switching.

From the architecture perspective, it is unclear how we can implement QEC with code

switching (in short, QEC-CS) on quantum hardware. For example, what is the optimal

data qubit layout for a QEC-CS logical qubit? How can we place multiple QEC-CS

logical qubits to achieve optimal computational efficiency? These two critical questions

need to be addressed before we reach an effective design of the QEC-CS architecture.

From the compiler perspective, the unique optimization opportunity imposed by code

switching remains unexplored. Code switching is an expensive QEC operation and re-

quires a series of noisy and time-consuming physical operations between data qubits in

a logical qubit [27]. Reducing the utilization of code switching is critical for minimizing

the overhead of programs on the QEC-CS architecture.

A better understanding of the effectiveness of code switching in the architecture and

program context is critical towards FTQC. Without comprehensive exploration, it is

hard to determine what architectural designs for logical qubits and gates can lead to

more efficient FTQC. Furthermore, studying code switching in the program context can

reveal the advantages and optimization chances of code switching for FTQC on quantum

applications. In its early stage, FTQC urges extensive exploration of various design

spaces to unveil the promising next step.

To this end, we propose the first full-stack framework, named FLEX, to provide ar-

chitecture and compiler support for FTQC based on QEC-CS. Firstly, we present a com-

prehensive architecture design for the data qubit layout of one QEC-CS logical qubit. We

observe that three types of QEC operations (error detection, code switching, and logical

gates) have different impacts on the reliability and space overhead of the logical qubit.

Their hardware implementation may even conflict with each other. To address those

problems and find the optimal data qubit layout, we propose using the profiling data

(e.g., impact on logical operation error rates, consumed physical qubits) and structural

111

Synthesizing a Reliable Computing Platform Chapter 6

information (e.g., data qubit locations in an error detection circuit) of those QEC opera-

tions to guide the search priority and circumvent implementation conflicts. Experiments

demonstrate the effectiveness of our architectural design over the large search space.

Secondly, we present a compiler design that supports the efficient execution of quan-

tum programs on the QEC-CS architecture. On the one hand, we observe that a pair of

code switching operations can be used to execute more than the logical T gate depending

on the program context, saving program latency and improving fidelity. On the other

hand, we observe that executing too many logical gates between a pair of code switching

operations may instead hurt the program fidelity considering the different error correction

capabilities of the two QEC codes being switched. Our compiler achieves a good balance

for this unique trade-off in the QEC-CS architecture and far surpasses existing QEC

compilers in reducing the space-time overhead of quantum programs, as demonstrated

by our experiments.

Thirdly, we present a co-design of the QEC-CS architecture and compiler to further

promote the computational potential of QEC-CS. We observe that, for compiled quantum

programs of different features, regarding different optimization metrics, it is better to use

different connectivity between logical qubits and place QEC-CS logical qubits accordingly.

This is the first co-design study of FTQC since existing works [11, 34, 31, 30] only consider

the simulation of one logical qubit. Our evaluation shows that the co-design can further

improve the performance of specific quantum programs in particular metrics, e.g., the

space-time overhead and the program fidelity.

Finally, we compare our QEC-CS architecture to the QEC architecture based on

magic distillation. Results show that code switching is more promising than magic state

distillation in the program context, especially in the space-time overhead.

112

Synthesizing a Reliable Computing Platform Chapter 6

qi15

qi1

qi2 qi4

qi3

qi5 qi6 qi7

qi8

qi9 qi11

qi10

qi12 qi13 qi14

qj

15

qj

1

qj

2 qj

4

qj

3

qj

5 qj

6 qj

7

qj

8

qj

9 qj

11

qj

10

qj

12 qj

13 qj

14

shortest GHZ path for code switching shortest GHZ path for logical CX

(a) QEC-CS logical qubit q̄i (b) QEC-CS logical qubit q̄j

Figure 6.1: An example layout of data qubits (qi∗, q
j
∗) for QEC-CS logical qubits q̄i and

q̄j , which only minimizes the error detection cost.

6.2 Design Considerations

Our objective is to improve the overall fidelity as well as reduce the space-time over-

head of running quantum programs on the QEC-CS architecture by orchestrating the

architecture and software design. Here, we highlight the critical considerations and ob-

servations to achieve our design objectives.

6.2.1 Architectural Design for QEC-CS

1) Challenges in logical qubit design

Generally, to enforce QEC support on quantum hardware, we need to map data qubits

and error detection circuits of logical qubits to hardware [11]. However, for the QEC-

CS logical qubit design, we should further support dynamic code switching between two

QEC codes. Overall, when placing data qubits of a QEC-CS logical qubit on hardware,

we expect the overhead (e.g., involved qubit/gate count, latency) of executing error

detection, logical CX, and code switching on data qubits to be as small as possible. A

QEC-CS logical qubit with lower overhead is more reliable because of its fewer physical

gates and qubits (i.e., fewer error locations [1]).

Unfortunately, the overhead optimization of error detection differs from the optimiza-

113

Synthesizing a Reliable Computing Platform Chapter 6

tion of code switching, and logical gates. The error detection circuit requires data qubits

to be close to the parity qubit so that we can use fewer qubit resources (e.g., flag qubits)

to gather error information from data qubits that are not in the neighborhood of the

parity qubit. However, placing data qubits too close will instead hinder the implemen-

tation of logical CX and code switching. Figure 6.1 shows an example data qubit layout

that minimizes error detection cost but the code switching and logical CX require using

long GHZ paths. Indeed, for code switching, the shortest GHZ path connecting qi6 and

qi13 is blocked by qi7. While for logical CX, the shortest GHZ path between qi14 and qj14 is

blocked by qj5.

Similarly, the overhead optimization of code switching differs from the optimization

of logical CX. Code switching requires logical CX inside the QEC-CS logical qubit and

we should make data qubits involved in this interior logical CX close to reduce the length

of required GHZ paths. However, this optimization may hinder the logical CX between

two QEC-CS logical qubits. For example, in Figure 6.1, the shortest GHZ path between

qi2 and qj2 required by CXL q̄i q̄j is blocked by qi9, which is involved in CX gate within the

code switching protocol.

Overall, it remains unclear how to design the layout of the QEC-CS logical qubit to

coordinate error detection, code switching, and logical CX. To address this challenge, we

argue it is critical to gather quantitative data about the impacts of these three types of

QEC operations on the reliability of the QEC-CS architecture.

2) Observations for architecture design

Table 6.1 shows the simulation data for the Steane logical CX gate, based on different

design options of # flag qubit and GHZ paths (see Sec. 6.4 for simulation details). We

observe that it is more critical to reduce error detection overhead (i.e., # flag qubit).

For example, for the length-0 GHZ path and one flag qubit option, adding one more

flag qubit will decrease the pseudo-threshold of logical CX by 0.0017 while adding one

114

Synthesizing a Reliable Computing Platform Chapter 6

0.0017
0.0034

0

0.0013
0.0022

1

0.0010
0.0016

2

0.0008
0.0012

3

0.0006
0.0009

4GHZ path
length

flag
qubit

2
1

Table 6.1: Pseudo-threshold of the Steane logical CX for varied # flag qubit, and GHZ
path length (averaged over data-qubit pairs).

edge in the GHZ path only lead to a decrease of 0.0012. This is because error correction

following the logical CX can mitigate the negative effect of longer GHZ paths. Further,

larger error detection overhead will also hurt the fidelity of other logical operations, e.g.,

code switching and single-logical-qubit gates.

Further, we observe that logical CX should be optimized before code switching as it

appears more frequently in quantum programs. For example, quantum arithmetic circuits

are based on the Toffoli gate. The decomposed Toffoli gate has seven T gates [1], meaning

that a Toffoli gate requires at most 14 code switching operations with two for each TL.

However, on a connectivity-limited qubit layout, the overall CX count may surpass the

amount of code switching required, as each CX will generally induce 4 SWAP gates for

routing [109] and we have 6 CX gates in the Toffoli gate (see Sec. 6.4 for more program

details).

Observation 1: a good data qubit layout for a QEC-CS logical qubit should first

reduce the overhead of error detection, then the logical CX, and finally the code switching.

After the design for an individual QEC-CS logical qubit, the next step is to design the

layout of multiple QEC-CS logical qubits to support quantum programs. The placement

of multiple QEC-CS logical qubits affects the ‘logical connectivity’ between logical qubits.

On the one hand, enabling direct logical CX between remote logical qubits by the GHZ

path may not feasible due to its low reliability. Also, a long GHZ path may hinder logical

CX gates on logical qubits near the path since two GHZ path should not intersect for

functional correctness. On the other hand, higher logical connectivity (i.e., more direct

115

Synthesizing a Reliable Computing Platform Chapter 6

logical CX) will reduce the number of SWAP gates for routing thus improving program

fidelity and reducing latency. Whether increasing the logical connectivity or not should

consider the feature of input programs. For example, chemistry simulation programs

like UCCSD [110] requires many remote CX and prefer higher connectivity. In contrast,

arithmetic circuits focus on local interactions between two or three qubits [110], for which

a small connectivity is enough.

Observation 2: The placement of logical qubits affects logical CX and the ‘logical

connectivity’. By orchestrating the logical qubit layout design and the compiler design,

we may further improve program fidelity or reduce latency.

6.2.2 Compiler Design for QEC-CS

Different implementations of non-transverse gates (e.g., TL) often induce different

compiler designs. Unfortunately, existing QEC compilers do not support the optimiza-

tion of code switching, which is the critical difference between QEC-CS to other QEC

architectures. We observe two challenges for optimizing the code switching usage in

quantum programs. The first is to determine the non-transverse logical gate we expect

to execute with code switching. We can adopt code switching to implement TL is for the

Steane code or HL for the RM code. The second is to determine the number of logical

gates we expect to execute after one invocation of code switching. The Steane and RM

code share many transverse logical gates, e.g., CXL, XL. If we perform code switching

from Steane code to RM code for TL, it is unclear whether we should switch back to the

Steane code directly after TL executed, or perform more transverse gates in the RM code

before switching back.

Firstly, we argue that most logical gates should be executed in the Steane code mode

of QEC-CS logical qubits and use code switching for TL. The insight is that logical gates

116

Synthesizing a Reliable Computing Platform Chapter 6

of Steane code is more reliable than the ones of RM code since Steane code has fewer

error locations [111]. We should avoid executing too many logical gates on the RM code

mode. Similar conclusion holds for other code pairs for switching [27].

Secondly, we observe that it may be more advantageous to execute more than one

TL gate after one code switching operation. Executing more logical gates between two

code switching may increase infidelity, but it also reduces the count of code switching,

which is error-prone and time-consuming. To give an example, let us consider the gate

sequence:

TL q̄0;TL q̄1;CXL q̄0 q̄1;TL q̄1, (6.1)

which frequently appears in quantum programs [112] (e.g, arithmetic circuits, Grover).

Two logical qubits (q̄0 and q̄1) are first switched from Steane code to RM code to perform

the first two TL. If we switch the two logical qubits back to Steane code after the two

TL are executed, we will need another two code switching to execute the last TL on q̄1.

Instead, if we delay the code switching of q̄0 and q̄1 after the last TL q̄1 executed, we

can save two code switching on q̄1. Such a delay of code switching is advantageous, as

long as the infidelity/latency induced by two code switching operations is larger than

the infidelity/latency difference between the RM CX and the Steane CX. Indeed, this

condition always holds as shown in Section 6.4.

Overall, we are not going to delay all code switching since executing too many logical

gates in the less reliable code mode may hurt the program fidelity as discussed before.

We can achieve a good balance by inspecting the program context (e.g., the one in

Equation 6.1) and determining whether to delay code switching or not according to

fidelity/latency gain.

Observation 3: The code switching for TL should be applied in a context-aware way

for more computational benefits.

117

Synthesizing a Reliable Computing Platform Chapter 6

q1

q2

q3

q4

q5 q6 q7

Mirror

(a)

q5

q12

q1

q2

q9

q8

q3

q6

q13

q10

q4

q11

q7

q14

q15

Optimize
Error
Detection

(b)

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

(c)

Optimize
Logical
CX Gate

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

(d)Comm. Channel for Logical CX

Optimize
Code
Switching

Comm. Channel for Code Switching

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

(e)

Figure 6.2: Optimizing the data qubit layout of one QEC-CS logical qubit with knowl-
edge from error detection, code switching, and logical CX.

6.3 QEC-based Computing Platform Design

In this section, we implement the QEC-CS architecture and compiler based on obser-

vations outlined in Section 6.2.

6.3.1 The QEC-CS Architecture

1) Implementing one QEC-CS logical qubit

We first search for the data qubit layout of one QEC-CS logical qubit. Assume the

(color) code pairs for code switching is C1 and C2 with C1 ⊊ C2 according to [27]. We

first determine the initial layout of the QEC-CS logical qubit. The insight is to use the

geometrical shape of stabilizer operators. For example, for C1 = Steane code, there are

spatial relations between data qubits of the Steane code and we can use this relation to

determine the initial layout of C1, as shown in Figure 6.2(a). The initial layout of C2

118

Synthesizing a Reliable Computing Platform Chapter 6

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

(a) (b) (c) (d)

Figure 6.3: Examples of placing multiple logical qubits. Green arrows denote logical
CX directions. (a) connectivity 4. (b) connectivity 4 rotated. (c) connectivity 6. (d)
connectivity 8.

can be determined based on the relation of C1 and C2. For instance, for C2 = RM code,

C2 is almost doubling the C1 and its initial layout can be found by mirroring the Steane

code layout, as shown in Figure 6.2(b). Such a relation of C1 and C2 widely exists in

code pairs for code switching [27].

After the initial layout of C2 determined, the first step is to guarantee the minimal

overhead of error detection circuits of C1 and C2, according to Observation 1. We fine-

tune the data qubit layout of C1 and C2 for smaller overhead of error detection circuits

according to Equation 6.2:

∀s ∈ S, min
ts∈{↑,↓,←,→,nop}

TOT_CX({tsi(qi), · · · }),

{qi, · · · }: qb of s
(6.2)

The function TOT_CX is computed as the total edge count of the smallest tree of flag

qubits that connects all data qubits in an error detection circuit s. The overall set of

error detection circuits S of C1 and C2 is organized by the weight of stabilizer operators.

The optimization by Equation 6.2 will be repeated (< 3 times for C2 = RM code) for

a smaller overhead of error detection. Figure 6.2(c) shows the optimized layout of the

QEC-CS logical qubit for C1 = Steane code and C2 = RM code, where ancillary qubits

(parity and flag qubits) used for error detection circuits are orange dots.

Further, we should reduce the cost of the logical CX and the code switching op-
119

Synthesizing a Reliable Computing Platform Chapter 6

eration. For those two operations, the source of overhead is the GHZ path between

non-neighboring data qubits. The goal of this step is thus to reduce the total lengths

of GHZ paths while still guaranteeing a small overhead of error detection. The insight

for this step is that to support remote CX between vertically distant data qubits, there

should be a vertical line of unoccupied physical qubits as the communication channel (see

Figure 6.2(d) green dots). Likewise, for horizontally distant data qubits, there should

be a horizontal line of unoccupied physical qubits as the communication channel. Such

communication channels can be guaranteed by moving each data qubit along a horizon-

tal or vertical direction by at most one step, according to Equation 6.3 (‘EC’: error

correction):

min
ts∈{↑,↓,←,→,nop}

∑
i

GHZ_LEN(tsi(qi), tsi(q
h
i)) +GHZ_LEN(

tsi(qi), tsi(q
v
i)) + TOT_CX(Steane EC +RM EC)

(6.3)

The function GHZ_LEN is computed as the length of the shortest uninterrupted GHZ

path between data qubits. qhi and qvi are data qubits of the horizontal and vertical logical

qubit neighbors, respectively. Figure 6.2(d) shows the logical CX-optimized layout of the

QEC-CS logical qubit for C1 = Steane code and C2 = RM code. This small tweaking

of the data qubit layout will not greatly influence the overhead of error detection. The

optimization for the logical CX will also provide sufficient communication channels for the

‘interior’ logical CX of code switching. Thus, to reduce the overhead of remote physical

CX in code switching, we will optimize the data qubit layout according to Equation 6.4

(‘CS’: code switching):

min
loc(qi), qi∈C2

TOT_GHZ_LEN(CS) + TOT_GHZ_LEN(CX)

+TOT_CX(Steane EC +RM EC)

(6.4)

This optimization for code switching determines the location of data qubits in an ascend-

ing order, based on the count of error detection circuits each data qubit involves. The
120

Synthesizing a Reliable Computing Platform Chapter 6

optimization in Equ 6.4 also keeps low overhead of error detection and logical CX.

Overall, for the example where C1 = Steane code and C2 = RM code, the tuned

layout of the QEC-CS logical qubit is shown in Figure 6.2(e). In the figure, ancillas in

the communication channel (i.e., GHZ paths) are time-multiplexed and will also be used

for error detection or code switching (see Figure 6.2(c)(d)(e)). The preparation latency

for GHZ states is not significant, as it only involves two layers of physical CX gates and

one layer of measurement-conditioned Pauli gates for any-length GHZ path. The GHZ

path connects data qubits of the same numbering (i.e., q1 to q1 in Figure 6.2(d)) but in

different logical qubits. Our design in Figure 6.2(e) enables at most 4 simultaneous GHZ

state preparation. The GHZ state preparation latency is a part of the logical CX latency.

2) Placing multiple QEC-CS logical qubits

There is a large amount of freedom when placing multiple logical qubits. We can tile

logical qubits along horizontal, vertical, or diagonal directions, as shown in Figure 6.3,

where logical qubit layouts with different connectivity are demonstrated. Table 6.2 shows

the latency and fidelity of logical CX gates on different layouts (see Sec. 6.4 for more

simulation details).

Layouts with different connectivity have their own advantages. Higher-connectivity

layouts usually induce fewer SWAP gates than lower-connectivity layouts, thus can pro-

duce more reliable program outcomes. For example, for the connectivity-4 layout, if we

perform a (Steane) logical CX along the diagonal direction, we need one logical SWAP

gate along the vertical direction plus one horizontal logical CX gate, leading to an error

rate of 1.4 ∗ 10−8 when the device error rate is 10−6 (see Table 6.2). In contrast, on the

connectivity-8 layout, the diagonal logical CX is directly executable, with a lower error

rate at 5.3 ∗ 10−9 (see Table 6.2). Thus, establishing direct logical CX between distant

qubits to increase connectivity may boost the reliability of the resulting QEC-CS layout.

However, higher connectivity of the layout may instead hurt the parallelism of logical

121

Synthesizing a Reliable Computing Platform Chapter 6

CX. For two logical CX, if their communication channels (green dots in Figure 6.2)

intersect with each other, these two logical CX cannot be executed simultaneously. For

example, on the connectivity-8 layout, for a logical qubit q̄i, denoting its upper left,

upper, left logical qubits as q̄i+1, q̄i+2, q̄i+3, CXL q̄i q̄i+1 and CXL q̄i+2 q̄i+3 cannot be

concurrently executed as their GHZ paths intersect. Generally, the more distant two

logical qubits of one logical CX is, the more logical CX may lag behind. Moreover, GHZ

paths for each data qubit in the same logical qubit may also interfere with each other.

As shown in Table 6.2, on the connectivity-8 layout, the latency of diagonal logical CX

is far longer than the vertical logical CX.

Different layouts may fit programs of different features, providing opportunities for

architecture-compiler co-design. For example, if one compiled program does not have

much parallelism between logical CX, e.g., the UCCSD benchmark, using the connectivity-

8 layout may be better than other layouts as for the fidelity and latency of executed logical

CX. On the other hand, for the compiled program without many long-distance logical

CX, using the connectivity-4 (rotated) layout may instead improve CX parallelism while

still maintaining the same level of fidelity. Therefore, we can pick the best layout for a

program according to its logical CX feature. This co-design can further promote FTQC

based on code switching.

Overall, in Section 6.4, we have provided more quantified performance data for

qubit layouts in Figure 6.3 and demonstrated the computational benefits of architecture-

compiler co-design.

6.3.2 Compiler for QEC-CS

To provide program compilation support for the QEC-CS architecture, we need to

address two major tasks: QEC-CS architecture abstraction and code switching optimiza-

122

Synthesizing a Reliable Computing Platform Chapter 6

Logical CX gates Connectivity-4 Connectivity-4 rotated Connectivity-6 Connectivity-8
Horizontal Latency 72.1 — 72.1 72.1
Steane CX Error Rate 3.9 ∗ 10−9 — 3.9 ∗ 10−9 3.9 ∗ 10−9
Vertical Latency 20.6 — — 20.6
Steane CX Error Rate 3.3 ∗ 10−9 — — 3.3 ∗ 10−9
Diagonal Latency — 30.9 30.9 72.1
Steane CX Error Rate — 3.8 ∗ 10−9 3.8 ∗ 10−9 5.3 ∗ 10−9
Horizontal Latency 82.4 — 82.4 82.4
RM CX Error Rate 3.7 ∗ 10−8 — 3.7 ∗ 10−8 3.7 ∗ 10−8
Vertical Latency 41.2 — — 41.2
RM CX Error Rate 2.7 ∗ 10−8 — — 2.7 ∗ 10−8
Diagonal Latency — 51.5 51.5 154.5
RM CX Error Rate — 3.0 ∗ 10−8 3.0 ∗ 10−8 3.9 ∗ 10−8

Table 6.2: Performance of logical CX for different logical qubit placement. The error
rate of logical CX is computed when the device error level is 10−6. The latency is
normalized to physical CX counts.

tion.

QEC-CS architecture abstraction. The first task is to abstract the QEC-CS

architecture, including the logical qubit topology and basic instructions. The coupling

graph of logical qubits can be directly extracted from the given QEC-CS architecture. For

the instruction set, we will expose two more instructions besides Clifford+T logical gates.

The first one is EC which means to perform error correction. The second one is CS,

meaning to perform code switching. The CS instruction provides the compiler with the

ability to control code switching. Further, the fidelity and latency data of the instruction

set can be simulated and computed according to their specific implementations (see

Sec.6.4 for more details).

Optimization of code switching. The second task is to reduce the usage of code

switching which is necessary but is error-prone and time-consuming. Conventionally, we

will use two code switching operations for a logical T gate with one before it and one

after it. Here, we propose reducing the amount of code switching required by a quantum

program in a context- and fidelity-aware way (Observation 3), with following steps:

Step 1: Blocking. For a given circuit, we search for the next (logical) T gate.

Assuming qubit q0 is associated with this T gate, we create a new block blk containing

123

Synthesizing a Reliable Computing Platform Chapter 6

the T gate. We denote the qubit list of blk by qlist. For qi in qlist, we will also add

other gates that are close to blk and are applied on qi to blk until the new gate on qi is

H gate. We will update qlist in this process since CX gates may have been added to blk.

Overall, blk represents the largest scope of CS on q0.

Step 2: Gate reordering. Then we will move CX, X, and Z gates of blk outside

this block by circuit writing [53] so that we can keep most gates executed in the Steane

code mode of QEC-CS logical qubits, and only execute necessary gates in the RM code

mode, according to Observation 3.

Step 3: Block refining. For each CX gate g in blk, computing the fidelity of blk if

we mark g to be executed by the Steane code mode. If the fidelity is improved, we will

split blk into two parts, each part representing a new scope of CS on q0. This step is

repeated until no splitting is possible. The goal of this step is to ensure no fidelity loss

is caused by executing logical gates in the RM code mode.

We will repeat the above three steps until no new blocks are found. Finally, we will

add CS instructions at the start and end of each refined block. The start and end of

each refined block in Step 3 represent the optimized timing of applying code switching

on related logical qubits.

As an example of the benefit of CS optimization, let us consider the circuit in Fig-

ure 6.4. For the logical qubit in Figure 6.2(e) and device error rate < 1e−4, the normalized

infidelity of RM CX, RM 1q, Steane 1q and CS are about 8.8, 2.6, 0.2, and 4.1 Steane

CX, respectively. Also, the normalized latency of RM CX, RM 1q, Steane CX, Steane

1q and CS are about 5.5, 3.0, 2.9, 1.0 and 9.1 Steane EC rounds, respectively. Without

CS optimization, the CS count, the normalized infidelity, and the normalized latency for

the example circuit are 14, 82.0, and 167.8, respectively. With the proposed CS opti-

mization, the block found is highlighted with dotted lines in Figure 6.4. The CS count,

normalized infidelity, and normalized latency for the example circuit are reduced to 6,

124

Synthesizing a Reliable Computing Platform Chapter 6

q3

q2

q1

H T† T T† T

T

H

T

T†

Block to be executed on RM code mode

Figure 6.4: An circuit (Toffoli gate) for illustrating CS optimization.

q1

q2

q5

q12

q9

q8

q4

q3

q6

q13

q10

q11

q7

q14

q15

(a) Logical Qubit by OECF

q1 q2 q3 q4 q5 q6 q7

q8 q9 q10 q11 q12 q13 q14 q15

(b) Logical Qubit by OCSF
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15

(c) Logical Qubit by OLCF

q1

q2

q3

q4

q5

q6

q7

q15

q14

q11

q12

q13

q8

q9

q10

(d) Logical Qubit by OEL

Figure 6.5: QEC-CS logical qubits by four different schemes. Blue circles denote data
qubits, with other qubits within the same dotted rectangle serving as ancillary qubits
for QEC operations.

80.4, and 105.4, respectively.

6.4 Evaluation

6.4.1 Experiment Setup

Benchmark programs We consider two categories of benchmark obtained from [110],

as shown in Table 6.4. The first category focuses on implementing arithmetic functions,

e.g., multi-qubit XOR, ripple-carry adder and ripple-carry comparator (in short, XOR,

Adder and Comparator). These quantum programs are subroutines of large quantum

applications. The second category aims to solve practical problems, e.g., Grover’s algo-

rithm, quantum walking, and Unitary Coupled Cluster ansatzes (UCCSD). For quantum

walking, we specifically select the Binary Welded Tree (BWT) algorithm. For UCCSD,

we simulate the CH4 molecule. All programs are decomposed into circuits with the

125

Synthesizing a Reliable Computing Platform Chapter 6

Arch
Layouts

Resource Overhead Operation Latency Pseudo-threshold
CX for
Steane
EC

CX
for RM
EC

Avg. ghz
length
for CS

Avg. ghz
length for
Steane CX

Avg. ghz
length for
RM CX

phy-
sical
qubit

Steane
EC

RM
EC

Code
Swit-
ching

Avg.
Steane
CX

Avg.
RM
CX

Steane
1q
gate

Avg.
Steane
CX

RM
1q
gate

Avg.
RM
CX

Code
switch-
ing

OECF 40 152 2.7 8.64 9.73 42 24.8 74.4 225.1 46.35 61.80 1.4e−3 2.8e−4 1.1e−4 3.1e−5 6.8e−5

OCSF 68 268 0.7 10.14 9.83 36 69.2 187.8 487.2 41.20 82.40 5.5e−4 1.5e−4 3.8e−5 1.6e−5 2.9e−5

OLCF 68 236 6.5 8.50 8.50 30 69.2 190.2 529.8 30.90 56.65 5.5e−4 1.7e−4 4.8e−5 2.1e−5 2.5e−5

OEL 40 212 5.7 8.57 8.67 40 24.8 115.4 277.4 36.05 56.65 1.4e−3 2.8e−4 5.9e−5 2.4e−5 3.8e−5

1

Table 6.3: Performance of QEC-CS logical qubit layouts. ‘OECF’ is our proposed one.
EC: error detection circuits, CS: code switching, latency data: normalized to physical
CX counts, ghz length: GHZ path length for physical CX between distant qubits.

Program # qubit # gate # CX OECF+AgnosticCS OECF+AwareCS
Norm.
infidelity

Fidelity
point Latency

Space
*Time # CS

Norm.
infidelity

Fidelity
point Latency

Space
*Time # CS

XOR 20000 2.19e6 1.79e6 4.76e6 98.3% 1.47e8 1.24e14 5.60e5 4.72e6 98.3% 1.01e8 8.51e13 3.20e5

Adder 30000 2.27e6 1.97e6 4.20e6 98.5% 9.85e7 1.24e14 4.20e5 4.17e6 98.6% 6.39e7 8.35e13 2.40e5

Comparator 30000 2.39e6 2.06e6 4.29e6 98.4% 1.00e8 1.27e14 4.20e5 4.26e6 98.5% 6.63e7 8.35e13 2.40e5

Grover 38 1.05e6 6.30e5 3.71e6 98.7% 1.33e8 2.12e11 5.79e5 3.66e6 98.7% 8.56e7 1.37e11 3.31e5

BWT 28 1.03e6 5.98e5 3.81e6 98.6% 1.38e8 1.62e11 6.06e5 3.77e6 98.6% 8.80e7 1.03e11 3.46e5

UCCSD 16 1.07e6 1.79e5 4.70e6 98.3% 2.36e8 1.58e11 8.23e5 4.70e6 98.3% 2.36e8 1.58e11 8.23e5

Table 6.4: Compilation results on a square grid of OECF logical qubits. ‘Norm. in-
fidelity’: program infidelity normalized to Steane logical CX counts (for pe < 10−4).
‘Fidelity point’: program fidelity when pe = 10−6. OECF+AwareCS: our optimiza-
tions.

Clifford+T gate basis.

Baseline We are the first full-stack framework for QEC-CS. Different baselines are

considered to unveil the huge space of architecture/compiler optimization and provide an

in-depth analysis of our design. For architecture design, four schemes for generating QEC-

CS logical qubits are evaluated. The first one, named OECF, optimizes the resource

overhead of error detection circuits as the first priority (then logical CX, code switching).

OECF is the proposed layout design. The second one, named OCSF, optimizes

the resource overhead of the code switching operation as the first priority (then error

detection, logical CX). The third one, named OLCF, optimizes the resource overhead

of the logical CX gate as the first priority (then error detection, code switching). The

fourth one, named OEL, evenly places data qubits of the logical qubit respecting the

underlying architecture. It first allocates the location of data qubits and then permutes

the location of these data qubits for the best error correction capability, cheapest logical

126

Synthesizing a Reliable Computing Platform Chapter 6

CX gates, and code switching in turn. Figure 6.5 shows logical qubit layouts generated

by the four schemes. for the Steane code and RM code.

For compiler optimizations for code switching, we evaluate two schemes. The first one,

named AgnosticCS, is context-agnostic which always uses two code switching operations

for a logical T gate (Steane mode → RM mode → Steane mode). AgnosticCS is the

common strategy of using code switching in existing works [27]. The second one, named

AwareCS, is context-aware which executes usually more than one logical gate during two

code switching. AwareCS always tries to reduce the usage of code switching as long as

no fidelity loss is observed. AwareCS is the proposed optimization. For compiler

optimizations except for code switching, they are not our focus and we adopt existing

toolkits for them. Specifically, we use PyZX 0.7.3 [113] to optimize T count and Qiskit

0.35.0 [28] to optimize CX count (e.g., the SWAP gates induced by routing).

Hardware setup. We perform all experiments with Python 3.10.6 on a Ubuntu

22.04 server with two 28-core Intel Platinum 8280 Processor and 1TB RAM. For the

architecture design, our framework finishes in less than one minute. Our compiler finishes

in less than 10 minute for each program.

Metrics. For the architecture design, the main metrics are the resource overhead,

latency and fidelity of error detection, code switching, and logical CX gates. These

metrics quantify the performance of one QEC-CS logical qubit. Besides, we also consider

the space-time overhead (‘# physical qubit used * latency’) and SWAP cost required to

execute benchmark programs, in order to evaluate the performance of the placement of

multiple logical qubits. For the compiler design, the first metric is the code switching

count required for a quantum program. We expect to reduce code switching operations.

Another two are conventional compiler metrics: the overall program fidelity and latency.

We estimate these two metrics based on logical operation statistics.

Device model and noise simulation. We consider the widely-adopted square-grid

127

Synthesizing a Reliable Computing Platform Chapter 6

0%

25%

50%

75%

100%

XOR Adder Comparator Grover BWT UCCSD

Ovehead of OEL+AwareCS Compared to OECF+AwareCS
Program Error Rate Latency Space-time Overhead

0%

50%

100%

150%

200%

XOR Adder Comparator Grover BWT UCCSD

Overhead of OLCF+AwareCS Compared to OECF+AwareCS
Program Error Rate Latency Space-time Overhead

0%

50%

100%

150%

200%

XOR Adder Comparator Grover BWT UCCSD

Overhead of OCSF+AwareCS Compared to OECF+AwareCS
Program Error Rate Latency Space-time Overhead

(a)

(b)

(c)

Figure 6.6: ‘Overhead of the tested logical qubit design/overhead of OECF’*100%-1.
Logical qubits are arranged in a square grid.

connectivity [105] for physical qubits. Further for the error feature of them, we consider

the commonly-used circuit noise model [114, 99], with a physical error probability pe for

the single-qubit depolarizing error channel on single-qubit gates, the two-qubit depolar-

izing error channel on two-qubit gates, and the Pauli-X error channel on measurement

and reset operations. For error decoding of QEC-CS, two different lookup decoders are

designed specifically toward the code pairs considered. Lookup decoders are widely-used

in literature [114]. The decoding latency has a tiny impact on the error detection latency

in our experiments. One error detection round is added behind each logical gate.

128

Synthesizing a Reliable Computing Platform Chapter 6

6.4.2 Experiment Results

Table 6.3 shows the performance of different logical qubit designs in terms of resource

overhead, latency, and fidelity. Figure 6.6 shows the performance of different logical

qubit designs in the quantum program context. Table 6.4 and Figure 6.7 illustrate the

performance of proposed code switching optimizations. Figure 6.8 demonstrates the effect

of ‘logical connectivity’ when placing multiple QEC-CS logical qubits. ‘Connectivity-

4/6/8’ means to let each QEC-CS logical qubit have 4/6/8 neighboring logical qubits.

The ‘Connectivity-4 rotated’ architecture is achieved by rotating the ‘Connectivity-4’

architecture by π
4
, as shown in Figure 6.3.

Overall, the infidelity, space-time overhead, and latency of test programs on other

logical qubit layouts (OCSF, OLCF, and OEL) is on average 99.3%, 43.9% and 75.1%

higher than that on the OECF layout, respectively. Moreover, compared to AgnosticCS,

the proposed AwareCS on average reduces the space-time overhead and code switching

count of test programs by 43.8% and 62.5%, respectively. Finally, the results show that

increasing ‘logical connectivity’ does not necessarily induce a better FTQC platform and

different programs favor different placement of logical qubits. It is thus important to

adopt architecture-compiler codesigns to further improve the efficiency of FTQC. We

elaborate on these conclusions in the following analysis.

1) The effect of logical qubit design

Firstly, it is critical to reduce the resource overhead of error detection circuits as the

first priority when designing a logical qubit. As shown in Table 6.3, compared to OCSF

and OLCF, though OECF has higher resource overhead for code switching and logical CX

gates, it still has the highest error threshold for all logical operations. This indicates that

error detection has the largest impact on the fidelity of logical operations and OECF’s

low overhead for error detection guarantees the reliability of logical operations. The OEL

129

Synthesizing a Reliable Computing Platform Chapter 6

logical qubit has the second-best error threshold, also due to its specific optimizations

for error detection circuits. Moreover, in the program context, OECF logical qubits are

still the most reliable. As shown in Figure 6.6, the error rate of (six) test programs on

OCSF, OLCF, and OEL layouts is on average 138.8%, 113.1%, and 46.0% higher than

that on the OECF layout, respectively.

Secondly, error detection circuits latency is also the most important factor in the

space-time overhead of quantum programs. Though the OECF logical qubit has the most

physical qubits per logical qubit (see Table 6.3 Column 7), the smallest latency overhead

of OECF’s error detection (see Table 6.3 Column 8,9) still guarantees the smallest space-

time overhead for quantum programs. As shown in Figure 6.6, the space-time overhead

of test programs on OCSF, OLCF, and OEL layouts is on average 74.4%, 46.0% and

11.2% higher than that on the OECF layout, respectively. This is because each logical

gate of a quantum program is followed by an error detection operation. This amplifies

the effect of error detection latency on the whole program latency.

Thirdly, the optimization of logical CX is more important than the optimization of

code switching. With similar error detection overhead, OCSF and OLCF separately show

better code switching and logical CX than each other, due to their specific optimizations

toward code switching and logical CX, respectively. Compared to OCSF, OLCF on

average achieves 9.2% lower error rate and 15.8% lower space-time overhead for test

programs (see Figure 6.6(a)(b)). This is because logical CX appears more frequently

than code switching, making optimizing logical CX more advantageous. In quantum

programs, each logical CX may induce some SWAP gates for routing and each SWAP

gate will be decomposed into three logical CX, increasing the overall logical CX count.

On the other hand, our compiler optimization AwareCS greatly reduces the usage of code

switching in quantum programs. These two factors together result in 338% more logical

CX than code switching (see Table 6.4 Column 4,14), averaged over test programs.

130

Synthesizing a Reliable Computing Platform Chapter 6

0%

25%

50%

75%

100%

XOR Adder Comparator Grover BWT UCCSD

Overhead of OEL+AgnosticCS Compared to OEL+AwareCS
Program Error Rate Latency Space-time Overhead # CS

0%

25%

50%

75%

100%

XOR Adder Comparator Grover BWT UCCSD

Overhead of OLCF+AgnosticCS Compared to OLCF+AwareCS
Program Error Rate Latency Space-time Overhead # CS

0%

25%

50%

75%

100%

XOR Adder Comparator Grover BWT UCCSD

Overhead of OCSF+AgnosticCS Compared to OCSF+AwareCS
Program Error Rate Latency Space-time Overhead # CS

(a)

(b)

(c)

Figure 6.7: (‘Overhead of AgnosticCS/overhead of AwareCS’*100%-1) on logical
qubits generated by OCSF, OLCF and OEL.

Finally, incorporating QEC code information is critical for logical qubit design. Com-

pared to OECF, OEL determines the data qubit layout according to the underlying hard-

ware topology. Though we have tried to improve the logical qubit by OEL for better error

detection, logical CX and code switching, the logical operations by OECF, especially the

ones related to the RM code mode, are more reliable than those by OEL (see pseudo-

thresholds in Table 6.3 Column 13-17). Moreover, as shown in Figure 6.6, compared

to OECF, OEL on average increases the program error rate, latency, and space-time

overhead of test programs by 46.0%, 17.0% and 11.2%, respectively. This indicates the

importance of incorporating QEC code information into the logical qubit design.

2) The effect of code switching optimization

131

Synthesizing a Reliable Computing Platform Chapter 6

-2%

3%

8%

13%

XOR Adder Comparator Grover BWT UCCSD

Latency reduction compared to the connectivity-4 layout
Connectivity-4 rotated Connectivity-6 Connectivity-8

-2%
8%

18%
28%
38%
48%
58%

XOR Adder Comparator Grover BWT UCCSD

SWAP gate reduction compared to the connectivity-4 layout
Connectivity-4 rotated Connectivity-6 Connectivity-8

-2%
3%
8%

13%
18%
23%

XOR Adder Comparator Grover BWT UCCSD

Error rate reduction compared to the connectivity-4 layout
Connectivity-4 rotated Connectivity-6 Connectivity-8

(a)

(b)

(c)

Figure 6.8: The effect of connectivity when placing multiple logical qubits generated
by OECF.

Code switching count reduction will lead to space-time overhead reduction as code

switching widely exists in test programs and is far more time-consuming than other

logical operations (see Table 6.3 Column 8-12). Compared to ‘OECF +AgnosticCS’,

‘OECF+AwareCS’ on average reduces the space-time overhead and code switching count

of test programs by 43.8% and 62.5%, respectively, as shown in Table 6.4. As for the

fact that AwareCS does not show benefits on the UCCSD benchmark, it is because each

T gate in UCCSD is followed by a H gate, providing no opportunities for code switching

optimization. Fortunately, this is not a common pattern, especially in Toffoli-gate-based

programs (e.g., Grover).

Further, the benefit of AwareCS is significant even when the logical qubit design

132

Synthesizing a Reliable Computing Platform Chapter 6

changes. As shown in Figure 6.7, compared to AgnosticCS, AwareCS on average reduces

the space-time overhead of test programs on OCSF, OLCF, and OEL logical qubits by

46.4%, 52.1%, and 43.6%, respectively. This is because the logical qubit design will

not change the occurrence of code switching in quantum programs and the latency of

code switching is always far longer than other logical operations in different logical qubit

designs (see Table 6.3 Column 8-12). The benefit of AwareCS will become even more

remarkable when the ‘logical connectivity’ is higher. This is because the logical CX count

of test programs on highly-connected architectures will be smaller, amplifying the effect

of code switching.

3) Architecture-Compiler co-design

Firstly, we demonstrate that no layout is universally better. For hardware with

constrained connectivity between physical qubits, enforcing higher connectivity between

logical qubits does not necessarily induce a better computing platform. As shown in

Figure 6.8(a), compared to the connectivity-4 setting (where logical qubits form a square

grid), the connectivity-6 and connectivity-8 setting does improve the fidelity of quan-

tum programs because they greatly reduce the SWAP gate count as shown in Fig-

ure 6.8(b). However, the connectivity-8 setting induces higher space-time overhead than

the connectivity-4 setting, as shown in Figure 6.8(c). This is because logical CX along

the diagonal direction hurts the parallelism of other logical CX gates and induces extra

latency (see Table 6.2). Also, as shown in Figure 6.8(c), the connectivity-6 setting induces

higher space-time overhead than the rotated connectivity-4 setting. This is because in

the connectivity-6 setting, the horizontal logical CX takes longer time than the diagonal

logical CX (see Table 6.2). Moreover, the lengthened GHZ paths of ‘connectivity-4-

rotated’ may induces higher error rates than the connectivity-4 setting, for example on

Xor, Adder, Comparator and UCCSD benchmarks, as shown in Figure 6.8(a). Overall, it

is reasonable to match the connectivity of logical qubits with the connectivity of physical

133

Synthesizing a Reliable Computing Platform Chapter 6

qubits. Enforcing higher connectivity between logical qubits may not provide benefits to

both fidelity and space-time overhead.

More importantly, we demonstrate more computational efficiency can be achieved

by architecture-compiler co-designs. While it is not possible to achieve better perfor-

mance on all programs by simply enforcing higher connectivity between logical qubits,

it is possible to promote the performance of some specific quantum programs with the

compiler output in Figure 6.8. For example, to achieve the smallest space-time over-

head (i.e., latency overhead in this context) while allowing slightly (< 2%) higher error

rate of test programs than on the connectivity-4 layout, we can use the connectivity-6

layout for the UCCSD benchmark and ‘Connectivity-4 rotated’ layout for other test pro-

grams. Likewise, to achieve the lowest error rate while allowing slightly (< 4%) higher

space-time overhead of test programs than on the connectivity-4 layout, we can use

the connectivity-6 layout for ripple-carry adder/comparator and connectivity-8 layout

for other test programs. The ability of adjusting the QEC-CS architecture provides us

the opportunity to co-design with the compiler to improve the performance of specific

quantum programs.

4) Compared to distillation-based QEC scheme

We further compare ‘OECF+AwareCS’ to ‘OECF+Distill’. ‘OECF+Distill’ uses our

design for the Steane logical qubit (i.e., the half of the OECF logical qubit in Figure 6.5)

but now exploits 15-to-1 magic state distillation [27] for implementing the logical T gate.

We design the magic state distillation factory to be a 5*7 rectangle block of Steane

logical qubits. Logical qubits along the boundaries of the factory can use the factory to

implement the logical T. For the number of ancilla used in the factory, Jones et al. [115]

indicated a 10:1 factory-to-data footprint to hide the latency of magic state distillation.

In our work, we keep a 3:1 ancilla-to-data ratio for a good space-time balance. We

place factories in a mesh grid with lines of logical qubits separating factories. For both

134

Synthesizing a Reliable Computing Platform Chapter 6

0%

1000%

2000%

3000%

4000%

XOR Adder Comparator Grover BWT UCCSD

CX increase latency increase
infidelity increase space-time increase

Figure 6.9: The increasing overhead of ‘OECF+Distill’ compared to ‘OECF+AwareCS’.

‘OECF+AwareCS’ and ‘OECF+Distill’, we use the connectivity-4 setting.

As shown in Figure 6.9, ‘OECF+AwareCS’ is significantly better than ‘OECF+Distill’

over various benchmarks. The space-time overhead of ‘OECF+Distill’ is on average 24.3x

higher than that of ‘OECF+AwareCS’. This is because the 15-to-1 magic state distillation

requires at least 31 ancillary Steane logical qubits and its time overhead is more than

25x longer than code switching, making the logical T by distillation less resource- and

time-efficient than by code switching. Moreover, while the distilled magic state is very

reliable, ‘OECF+Distill’ instead induces 4.2x higher overall error rate on test programs.

This is because distillation factories occupy large device area and hinder the routing of

logical CX, inducing 8.3x more logical CX gates on average.

6.4.3 Complexity Analysis

Scalability analysis: We first analyze the time/space complexity of our framework.

For the architecture design in Sec. 6.3.1, the search process will repeatedly iterate over

data qubits. For a distance-d color code, the data qubit count for code switching is at

worst O(d3) [27]. Thus, the time complexity of the architecture search is O(Kd3) (K is

the iteration count) and can be controlled by the user. Also, the space complexity of

the search is O(d3) so as to store the optimized data qubit layout. For compiler designs,

the code switching optimization in Sec. 6.3.2 performs a linear scan of gates of input

135

Synthesizing a Reliable Computing Platform Chapter 6

circuits. The time complexity of our compiler optimization is thus O(N), assuming N is

the gate count. The space complexity is also O(N) so as to store the circuit. Overall,

our framework is scalable to support higher-distance (color) code pairs.

Overhead scaling: We then analyze how the overhead of our QEC architecture

design scales with the code distance. First, the latency of logical CX is at worst O(d2)

(or O(d3) after code switching) when we need to do physical CX gates on data qubit

pairs sequentially. By designing 3D connections [116] over data qubits, the latency of

logical CX can be reduced to O(1), by maximizing the parallelism of physical CX gates

on data qubits. The error detection overhead of the color code is O(1) as our stabilizer-

shape-respected architecture design ensures the parallelism of the same-type (X-type or

Z-type) stabilizer measurement. The code switching can be implemented within O(d)

QEC cycles [27] and its latency overhead is thus O(d). On the other hand, the space

overhead of each logical qubit in our framework is O(d3) as discussed above. Thus, the

space-time overhead of logical single-qubit gates, error detection, and code switching is

O(d3), O(d3) and O(d4), respectively. The space-time overhead of logical CX is dependent

on the hardware support, and scales with O(d6) in the worst case, and O(d3) in the best

case.

136

Chapter 7

Synthesizing Verified Quantum

Operations

This chapter will dicuss about how to verify implementations of quantum operations pro-

tected by quantum error correction codes from quantum noise. The proposed verification

framework can be used to guarantee the correctness of the synthesized error-corrected

quantum operations.

7.1 Introduction

Quantum error correction (QEC) is a key enabler of fault-tolerant quantum com-

putation (FTQC) on error-prone quantum hardware [1, 117, 118]. In particular, to

achieve fault tolerance, QEC codes (QECC) will encode logical qubits — i.e., the quan-

tum information to be protected — into many redundant physical qubits known as data

qubits [20, 30]. QECC then utilizes logical operations — typically involving complex

quantum circuits applied to data qubits — to manipulate the encoded information in

logical qubits. These logical operations are crucial, as they enable the change of logical

137

Synthesizing Verified Quantum Operations Chapter 7

qubit states (in short, logical states) without the need of the high-overhead steps of ex-

plicit decoding and re-encoding. This capability is essential for the pursuit of FTQC [1].

The critical role of logical operations in QECC further underscores the necessity for

thorough correctness verification. In its absence, there is a risk that these operations

could distort the logical state unexpectedly. Formally, in QECC, a logical operation

F is considered correct if it reliably transforms any given input logical state into the

targeted output state [1]. Building on this concept, we define “QECC correctness” wherein

every logical operation within a universal logical gate set, such as the Clifford+T gate

basis [1], adheres to this standard of correctness. This sufficiency stems from the property

that a universal gate set, by definition, can construct any quantum operation [1, 20].

Hence, ensuring correctness for each logical operation in this set effectively guarantees

the correctness of any logical operation in QECC.

Unfortunately, to our best knowledge, state-of-the-art quantum verifiers [119, 120,

121, 122, 123, 124, 125] are not able to effectively prove the correctness of QECC. The

primary challenges in this context involves: 1) the encoding of a logical qubit requires

a large number of data qubits, often in the thousands, according to the gap between

the logical qubit error required by practical quantum applications [126] and the real

physical qubit error of NISQ quantum hardware [20], and 2) the encoded logical qubit

state is highly-entangled [1], which consists of exponentially many terms of quantum

states over data qubits. For example, simulation-based techniques [124, 125] fail, as the

sheer scale of data qubit count in the logical qubit state induces intractable exponential

computational overhead. While other verification techniques [119, 120, 121, 122, 123]

adopt symbolic reasoning to mitigate this overhead, they still cannot scale to practical

QECCs due to the complexity of tracing logical states (which incur exponential memory

overhead). Additionally, the complexity of logical operations exacerbates the situation,

as their implementation demands a substantial number of low-level physical quantum

138

Synthesizing Verified Quantum Operations Chapter 7

instructions. These instructions further result in an extensive sequence of verification

steps.

We propose the first automated approach that can efficiently verify QECC correctness.

Our key insight is to abstract both logical states and operations based on stabilizer

operators. Traditionally, stabilizer operators in QECC are used to identify error detection

mechanisms [1]: they define a valid quantum state subspace, flagging any logical state

outside this subspace as an anomaly for detection. Instead, in our approach, we leverage

a few stabilizer groups (each with n stabilizer operators) to uniquely determine any

valid logical state in QECC that has O(2n−1) terms [1], effectively circumventing the

exponential memory overhead typically associated with representing logical qubit states.

Moreover, we abstract a sequence of physical quantum gates, each altering some local

physical state terms of a logical state, into a global transformation of stabilizer operators

(which characterize the whole logical state). This abstraction considerably streamlines

the complexity of QECC circuits for implementing logical operation and facilitates the

scaling of the QECC verification.

While conceptually stabilizer operators provide a mechanism that simplifies the rep-

resentation of logical states and operations, it is non-trivial to adapt them for efficient

QECC verification. In what follows, we highlight a few key contributions of our work

that bridge this gap.

Key contribution 1: a stabilizer-based language for QECC circuits. Given

a QECC circuit C, we first transform C to a program P in a stabilizer-based language

in a semantics-preserving fashion. Intuitively, this transformation process abbreviates

multiple quantum gates from C to one operator in P , which by construction preserves

the semantics. The key advantage of using higher-level operators, however, is to expose

global program information that involves all data qubits, and focus the reasoning on the

global transformation between two logical states, bypassing all intermediate transition

139

Synthesizing Verified Quantum Operations Chapter 7

of the logical state induced by quantum gates local to individual data qubits. More

specifically, our language supports abstracting error detection subroutines from C (typi-

cally corresponding to a few dozens of quantum gates) to stabilizer-based variables in P .

Another class of language abstractions can compress a series of quantum gates from C

(that sequentially manipulate local physical state terms of the logical state) to a global

transformation of stabilizer operators. These new abstractions will be used to transform

the pre/post-conditions as well, as explained next.

Key contribution 2: a stabilizer-based language for program states. Given

a quantum circuit C and a pair of pre/post-conditions to be verified against, in addition

to converting C to P in our stabilizer-based programming language, we also transform

the pre/post to a stabilizer-based format. In general, we have a stabilizer-based language

to express program states in P , where we utilize stabilizer operators to symbolize logical

states. Our language considers stabilizer operators (defined by templates) whose sub-

spaces contain the logical states from pre/post, as well as those from P . In other words,

our language is defined by P and the pre/post. This induces a language that is both

succinct and expressive for verification purposes in our experience.

Key contribution 3: an automated stabilizer-based verification algorithm.

Now, given a program P and its pre/post, all in a stabilizer-based representation, we

compute the weakest precondition for the given post and check its implication for the

given pre. While overall standard, our algorithm is the first application of the Hoare-style

reasoning to the stabilizer-based QECC verification. This novel combination enables us

to verify large QEC codes, which prior work cannot reach.

Importance of automated verification. Our approach is push-button and fully

automated — we believe this is necessary for QECC correctness verification, especially

given the abundance of QEC codes that have been created in the past [127, 1, 30, 20] as

well as to be invented in the future (e.g., by advanced artificial intelligence [128] or search

140

Synthesizing Verified Quantum Operations Chapter 7

techniques [129]). It is thus critical to develop automated techniques to scale verification

to the escalating volume of QEC codes.

Evaluation. We have implemented our proposed technique in a tool, called Verita,

and use it to verify commonly used QEC codes. Our experimental results show that,

Verita can successfully verify significantly more benchmarks than state-of-the-art quan-

tum verifiers, within much less time. Our approach also scales better: for example, while

prior work can verify the surface code with up to 25 data qubits within 3 hours, Verita

can scale to more than 5,000 data qubits using the same amount of time. We have also

performed extensive ablation studies that demonstrate the importance of each component

of our technique.

In summary, we makes the following contributions.

• We propose a new stabilizer-based programming language for QECC circuits, which

allows a higher-level reasoning with our concise stabilizer-based representations for

groups of quantum gates.

• We propose a new stabilizer-based language for QECC logical states, which avoids

exponential memory overhead and allows direct utilization of high-level program

information.

• We propose the first automated stabilizer-based verification algorithm for QEC

codes.

• We implement our proposed techniques in a new tool, called Verita. Our evalu-

ation results highlight the stabilizer-based abstraction yields a significantly faster

verifier.

141

Synthesizing Verified Quantum Operations Chapter 7

Steane Code
Circuit 𝐻𝑐𝑖𝑟𝑐 for

logical H

Expanded circuits
for 𝑋1𝑋3𝑋5𝑋7,

𝑍1𝑍3𝑍5𝑍7

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑞6

𝑞7

Manipulating the logical state

H
H
H
H
H
H
H

(a)

Error detection circuits

X 4
X 5

X 6
X 7

X 2
X 3

X 4
X 5

X 1
X 3

X 5
X 7

Z 4
Z 5
Z 6
Z 7

Z 2
Z 3
Z 4
Z 5

Z 1
Z 3
Z 5
Z 7

Co
nd

iti
on

ed
Co

rr
ec
tio

n

(b)

𝑞𝑠

𝑞1

𝑞3

𝑞5

𝑞7

g H H Mz

(c)

𝑞𝑠

𝑞1

𝑞3

𝑞5

𝑞7

I g I Mz

Figure 7.1: An example program of the Steane code which implements the logical H
on the encoded logical qubit. Pauli strings in (a), e.g., X1X3X5X7 and Z1Z3Z5Z7,
represents error detection circuits shown in (b)(c). Physical operations g, H, I, Mz

refers to reset, Hadamard gate, identity gate, and Z-type measurement, respectively.

7.2 Motivating Example

Logical Operation on QECC. The quantum diagram in Figure 7.1(a) illustrates

the circuit implementation of a logical H gate on a logical qubit, which is encoded using

the Steane code [1] across seven data qubits, q1, . . . , q7. For ease of reference, we refer to

the circuit implementing a logical operation as a QECC circuit.

A QECC circuit typically consists of two distinct types of subroutines. The first type

of subroutine is responsible for error detection. For the Steane code in Figure 7.1(a),

the six stabilizer operators, which are a string/tensor product of Pauli operators like

X1X3X5X7, each represents an error detection circuit (aka stabilizer measurement cir-

cuit [1]). For example, Figure 7.1(b) depicts the error detection circuit denoted by

X1X3X5X7 and on q1, q3, q5, q7. These circuits are indispensable in any QECC circuit as

they detect errors that may occur during the execution. For example, considering a Pauli

142

Synthesizing Verified Quantum Operations Chapter 7

Z error on q1 before the measurement circuit of X1X3X5X7, this Pauli Z error, through

the gate CX qs, q1, will flip the measurement outcome of qs, indicating the presence of

certain errors. Afterward, depending on the error detection outcome, error correction

operations will be applied to eliminate the detected error, e.g., a quantum Z gate will be

applied on q1 for a detected Pauli Z error on q1.

The second type of subroutine is tasked with manipulating the logical state. For

example, the initial seven qubit-wise H gates in Figure 7.1(a) perform the Hadamard

transformation on the logical qubit encoded by the Steane code, i.e., they will transform

the logical zero state |0L⟩ to the logical magic state |+L⟩. We remark this qubit-wise

implementation of the logical H is specific to the Steane code. For other QECCs, the

implementation varies. For example, for the Reed-Muller code [126], the implementation

of the logical H relies on the complicated magic state distillation [126], making it even

harder to show the correctness of the circuit. Here for the demonstration purpose, we

focus on the verification of the logical H of the Steane code.

QECC correctness. Establishing QECC correctness can be achieved by verifying

the correctness of logical operations in the logical version of the Clifford+T gate set,

which can be used to achieve any unitary transformation and encompasses logical X, Z,

H, S, T, and CX gates, along with logical initialization. To prove the correctness of a

logical operation, we need to show that this operation does transform an arbitrary logical

state to the desired logical state, depending on the specific logical operation examined.

For example, concerning the logical H circuit Hcirc in Figure 7.1(a), we need to prove it

implements the Hadamard transformation, i.e., transforms |+L⟩ to |0L⟩ and |0L⟩ to |+L⟩,

where braket notations with subscript L denote logical states. Formally, we are to prove

|= {|0L⟩}Hcirc{|+L⟩}, |= {|+L⟩}Hcirc{|0L⟩} (7.1)

143

Synthesizing Verified Quantum Operations Chapter 7

This desired input-output behaviors is similar to the physical H gate, which requires

|= {|+⟩}H{|0⟩}, |= {|−⟩}H{|1⟩}.

Intuitively, we may think, since one H gate can be easily shown to achieve the de-

sired Hadamard transformation on one data qubit, H gates on all data qubits should

be obviously proved to achieve the Hadamard transformation on the logical qubit. Un-

fortunately, this intuition does not hold for the complex QECC circuit, as explained

next.

Challenges. The challenges of proving QEC correctness originates from the com-

plexity of logical states and error detection. First, the logical state encoded by QECC is

increasingly complex as the QECC size grows. For a QECC circuit with n data qubits,

the logical state may consist of O(
√
2
n−1

) terms of n-qubit physical quantum states. For

example, the |0L⟩ encoded by the Steane code involves 8 seven-qubit physical states:

|0L⟩ :=
1

4
|0000000⟩+ 1

4
|0001111⟩+ 1

4
|0111100⟩+ 1

4
|0110011⟩ (7.2)

1

4
|1010101⟩+ 1

4
|1011010⟩+ 1

4
|1101001⟩+ 1

4
|1100110⟩

While we can still verify the small QECC circuit in Figure 7.1(a) with existing quantum

verification frameworks, the exponentially complex logical state for a QECC with more

than 100 data qubits will cause out of memory error with those approaches since they

directly reason over quantum states and there is no efficient way in the literature to

reduce the the memory overhead.

In addition, the error detection part of QECC circuits will significantly expand the

reasoning flow. As shown in Figure 7.1(a), the size of error detection circuits (48 physical

operations induced by 6 stabilizer operators) is far greater than the size of codes for ma-

nipulating the logical qubit (7 physical H gates). The discrepancy holds as QECC scales

up. For example, considering the surface code with n data qubits, the error detection cir-

144

Synthesizing Verified Quantum Operations Chapter 7

0 Hprog :=
1 q0q1q2q3q4q5q6q7 := ⊗7

i=1Hi q0q1q2q3q4q5q6q7;
2 ∫1 := X4X5X6X7;
3 ∫2 := X2X3X4X5;
4 ∫3 := X1X3X5X7;
5 ∫4 := Z4Z5Z6Z7;
6 ∫5 := Z2Z3Z4Z5;
7 ∫6 := Z1Z3Z5Z7;
8 correct(∫1, ∫2, . . . , ∫6);(a)

0 correct(∫1, ∫2, . . . , ∫6) :=
1 if M [∫3, q0q1q2q3q4q5q6q7]

then
2 skip;

else
3 q1 = Z1 q1;

end
(b)

Figure 7.2: (a) The logical H program in Veri-Lang , translated from Figure 7.1(a).
(b) The simplified implementation of the correct function, which can only correct the
Pauli Z error on q1.

cuit consists of 8(n−1) physical quantum operations while fulfilling the Hadamard trans-

formation on the logical qubit only requires n quantum operations. Failing to simplify

the reasoning related to these error detection circuits will induce substantial reasoning

overhead.

Now let us explain how Verita can efficiently verify the QECC circuit in Fig-

ure 7.1(a).

Step 1: Convert circuit to program. We translate QECC circuit in Figure 7.1(a)

to the program shown in Figure 7.2(a). In the translated program, we utilize three

types of abstractions to reduce the program size. The first type is the stabilizer-based

assignment statement (see line 2-7), which is used to represent error detection circuits.

For example, we use ∫3 = X1X3X5X7 to model the behavior of the circuit shown in

Figure 7.1(b). This translation is straightforward, since error detection circuits like those

shown in Figure 7.1(b)(c) have clear patterns: they have a parity qubit qs which use CX

gates to interact with data qubits and will be later measured to report the existence of

errors. We can use template matching to convert error detection circuits into stabilizer-

based assignment statements shown in Figure 7.2(a). In the semantics of our language,

145

Synthesizing Verified Quantum Operations Chapter 7

∫3 = X1X3X5X7 has exactly the same meaning as the circuit in Figure 7.1(b). The

only difference is that our statement explicitly points out the error detection circuit in

Figure 7.1(b) will project the quantum state over data qubits into the quantum state

subspace of the stabilizer operator X1X3X5X7.

The second type is for aggregating quantum gates. We translate the individual H gates

in Figure 7.1(a) into an aggregated instruction (line 1) in Figure 7.2(a). This translation

can also be directly completed by template matching: we will create an aggregated

instruction if we see a group of quantum gates that manipulate all data qubits in a

sequential way. There is no difference in semantics whether we write the seven H gates

in seven lines or write them in one line and in an aggregated style. The benefit of this

abstraction is that, it reveals the global transformation on the logical qubit, which will

shorten our reasoning (since fewer sentences are considered).

The third type of abstraction is to use the statement correct(∫1, ∫2, . . . , ∫6) to abstract

the error correction operation, e.g. the simple one shown in Figure 7.2(b). The semantics

of the error correction operation has a clear pattern: the illegal logical state will be

recovered to be a legal logical state, i.e., to be into the intersected subspace of all error

detection-related stabilizer operators. Our abstraction correct(∫1, ∫2, . . . , ∫6) is exactly

designed to convey the same semantics. Since our work is focused on demonstrating the

correctness of logical operations, using this abstraction can rescue us from diving into

the details of the error correction operation.

Step 2: Convert pre and postconditions. While our programming language

reduces the code size, we still need an efficient representation for assertions to avoid the

exponential memory overhead induced by the highly-entangled logical state. In general,

we can use n stabilizer operators to uniquely symbolize the logical state of QECC with n

data qubits, thus avoiding exponential terms of physical states. Particularly, for QECC

with n data qubits, we propose to translate the state-based assertions to the conjunction

146

Synthesizing Verified Quantum Operations Chapter 7

of a set of n stabilizer operators, which means the logical state in the assertion should

be in the mutual quantum state subspace of those stabilizer operators.

We determine the set of stabilizer operators with two steps. The first step is to

extract error detection-related stabilizer operators from the QEC program translated by

Step 1. For example, from Figure 7.2(a), we obtain six stabilizer operators that are

assigned to ∫1, . . . , ∫6. These stabilizer operators will serve as the major part of the

translated assertion. According to the definition of QECC, the logical state must be

in the intersection of subspaces represented by those error detection-related stabilizer

operators [1].

In the second step, we will search for additional stabilizer operators from predefined

templates. For example, for the |0L⟩ of the Steane code, since it belongs the subspace

represented by the stabilizer operator ⊗7
i=1Zi (i.e., Z1Z2 · · ·Z7), we will pick this stabilizer

operator as the remaining part of the translated assertion.

Thus, we can simplify the assertion based on |0L⟩ of the Steane code with seven

stabilizer operators as follows:

|0L⟩ =⇒ Z1Z2Z3Z4Z5Z6Z7

∧X4X5X6X7 ∧X2X3X4X5 ∧X1X3X5X7 (7.3)

∧ Z4Z5Z6Z7 ∧ Z2Z3Z4Z5 ∧ Z1Z3Z5Z7

Note that the conjunction means that, the |0L⟩ is in the intersection of subspaces repre-

sented by stabilizer operations on the right hand size of Equ 7.3. Overall, the translation

from state-based assertion to the stabilizer-based assertion is cheap since the error detec-

tion specification of QECC already provide enough information for the translation. For

the demonstration purpose, the translated assertion in Equ 7.3 only consists of singular

stabilizer operators. In Section 7.3.2, we will discuss about more complicated cases, where

147

Synthesizing Verified Quantum Operations Chapter 7

the element of the conjunction can be an arithmetic expression over stabilizer operators.

Step 3: Weakest precondition generation. With our stabilizer-based language

and assertion, we can now use existing machinery to prove the correctness of QEC pro-

grams. We specifically design new inference rules based on our language and assertion

(see Figure 7.5 in Section 7.4). These inference rules explicitly utilize the high-level pro-

gram information exposed by stabilizer-based representations. As an example, with the

weakest precondition computation (WPC), we can verify the goal |0L⟩ ⊢ Hprog : |+L⟩

for Hprog in Figure 7.2, where |0L⟩ and |+L⟩ are the post and pre and are already trans-

lated by Step 2, like in Equ 7.3. For simplicity, we let ZL := ⊗7
i=1Zi, XL := ⊗7

i=1Xi,

HL := ⊗7
i=1Hi, AS be the conjunction of all the six error detection-related stabilizer

operators except X1X3X5X7 in Figure 7.2(a). Then we provide the sketch of the WPC

as follows:

ZL ∧X1X3X5X7 ∧ AS ⊢ correct(∫1, ∫2, . . . , ∫6) : ZL ·X1X3X5X7 ∧ AS (7.4)

ZL ·X1X3X5X7 ∧ AS ⊢ ∫6 = Z1Z3Z5Z7 : ZL ·X1X3X5X7 ∧ AS

... // omit some steps for simplicity

ZL ·X1X3X5X7 ∧ AS ⊢ ∫1 = X4X5X6X7 : ZL ·X1X3X5X7 ∧ AS (7.5)

ZL ·X1X3X5X7 ∧ AS ⊢ q1q2q3q4q5q6q7 = HLq1 . . . q7 : XL · Z1Z3Z5Z7 ∧ (∧i ̸=6∫i) (7.6)

Note that, XL ·Z1Z3Z5Z7 means the symbolic multiplication of the (tensor-product) ma-

trices represented by XL and Z1Z3Z5Z7. Since |+L⟩ is in state subspaces represented by

XL (according to Step 2) and Z1Z3Z5Z7, it must be in the subspace (i.e., +1 eigenspace)

of XL ·Z1Z3Z5Z7 (see the inference rule in Section 7.3.2 Lemma 7.3.4), this completes the

proof. This inference process involves stabilizer-based rules, which do not have counter-

parts in existing quantum verifiers. For example, Equ 7.4 and Equ 7.5 require Rule 7.18,

148

Synthesizing Verified Quantum Operations Chapter 7

7.19 and 7.15 in Section 7.4 Figure 7.5. Notice that the correct in Equ 7.4 refers to the

simplified one in Figure 7.2(b), rather than the general one in Rule 7.20 in Figure 7.5.

Overall, for the QECC circuit in Figure 7.1(a), with our approach, 8 statements and

at most 7 terms of stabilizer operators are involved in the verification process. As a

comparison, 106 statements and up to 128 terms of physical states over data qubits

will be involved when reasoning with existing approaches. This demonstrates the great

efficiency of our framework in verifying QECC circuits.

7.3 Programming Language Designs for QEC

In this section, we introduce our stabilizer-based language designs for QECC-based

programs and corresponding assertions, which enables us to reason over stabilizer-based

high-level structural information of QECC.

7.3.1 Veri-Lang : The QECC Programming

We define the notation for quantum variables as follows: Define qVar as the set

of quantum variables, q as a metavariable ranging over quantum variables, and q̄ to

be a quantum register associated with a finite set of distinct quantum variables. We

denote the state space of q by Hq which is a two-dimensional Hilbert space spanned by

the computational basis states {|0⟩, |1⟩}. The state space of q̄ is the tensor product of

Hilbert spaces Hq̄ = ⊗q∈q̄Hq.

Logical operations of QECC are often associated with error detection circuits. For

example, the surface code [20] frequently turns on and turns off specific stabilizer mea-

surement circuits to implement logical operations. Besides, the outcomes of stabilizer

measurements act as signals for error correction. By introducing a stabilizer variable,

which represents a stabilizer measurement circuit without the need of specifying its

149

Synthesizing Verified Quantum Operations Chapter 7

physical implementation, we can greatly simplify the description of QEC operations.

Specifically, we use the stabilizer operator to define the value of stabilizer variables.

We define the stabilizer operator as follows: a stabilizer operator refers to a tensor

product of Pauli operators on data qubits and is used to describe to the error detection

circuit in the QEC context. For example, X1X3X5X7 in Figure 7.1(a) is a stabilizer

operator and can be used to describe the X-type error detection circuit on data qubits

q1, q3, q5, q7 (see Figure 7.1(b)). The stabilizer operator can also be thought as a symbolic

Hermitian matrix, whose +1 eigenspace defines a quantum state subspace. For example,

X1X3X5X7 denotes the matrix X1 ⊗ I2 ⊗X3 ⊗ I4 ⊗X5 ⊗ I6 ⊗X7, and the ‘Steane code’

logical state |0L⟩ is in the +1 eigenspace of this matrix/stabilizer operator. One more

intuition is that, for the error detection circuit Figure 7.1(b), if the measurement outcome

of qs is +1, the resulting physical state over data qubits will be in the +1 eigenspace of

X1X3X5X7.

Then, we define the notations for the stabilizer variable as follows: define S as the set

of stabilizer operators on qVar, s as an individual stabilizer operator in S, sVar as the set

of stabilizer variables, and ∫ as a metavariable ranging over sVar. To make S countable,

we assume that every s ∈ S only involves a finite number of qubits. The range of values

for the stabilizer variable ∫ is S ∪ −S ∪ iS ∪ −iS, where i is the imaginary unit.

We define the syntax of Veri-Lang as follows:

Prog ::= skip | q̄ := ⊗i|0⟩ | q̄ := U [q̄] | ∫ := sue

| Prog1;Prog2

| if M [∫ , q̄] then Prog1 else Prog0 end (7.7)

sue ::= ±s | ± i s

The proposed language constructs consisting of instructions as follows: (1) skip does

150

Synthesizing Verified Quantum Operations Chapter 7

nothing; (2) q̄ := ⊗i|0⟩ resets quantum register q̄ to ground state ⊗i|0⟩; (3) q̄ := U [q̄]

perform unitary operation U on quantum register q̄; (4) ∫ := sue assigns a unary stabilizer

expression sue to the stabilizer variable ∫ ; (5) Prog1;Prog2 is the sequencing of programs;

(6) if M [∫ , q̄] then Prog1 else Prog0 end perform the error detection circuit represented

by ∫ on qubits q̄ (or in short, measures ∫ on qubits q̄) and executes program Prog1 if the

measurement outcome is +1. Otherwise Prog0 is executed.

The language constructs above are similar to those of the quantum while-language [120],

except the part associated with stabilizer variables. In our design, we propose the stabi-

lizer variable to expose the high-level stabilizer measurement information. For example

in Figure 7.1, we use the stabilizer variable ∫3 = X1X3X5X7 to represent the stabilizer

measurement circuit shown in Figure 7.1(b), which consists of a series of 1- and 2-qubit

gates and measurements. This abstraction not only reduces the program size but also lay

a foundation for easy application of Hoare logic discussed in Section 7.3.2. Further, with

stabilizer variables, Veri-Lang avoids the implementation details of stabilizer measure-

ment circuits. This makes Veri-Lang programs very flexible and independent from the

specific implementation of stabilizer measurements. The latter may, for example, depend

on architectural properties like the underlying hardware connectivity [30], while the cor-

rectness of the QEC operations should not be affected the implementation of stabilizer

measurement circuits.

For programming, stabilizer variables can be used to describe operations on stabilizers.

For example, to turn off one stabilizer measurement circuit in a QEC program, we can

simply set ∫ = I. The stabilizer variable can also serve to inform the error correction

procedure. Every time we detect one or more stabilizer variables with a negative sign

(this may happen after a stabilizer measurement), the error decoder knows that at least

one error affected the physical circuit. It proceeds to identify the specific error and

applies the corresponding correction. Further, we abstract the error correction protocol

151

Synthesizing Verified Quantum Operations Chapter 7

as a function over stabilizer variables as follows:

Definition 7.3.1 (Error correction protocol). Define correct(∫0, ∫1, · · · , ∫n) as an error

decoding and correction protocol by measuring ∫0, ∫1, · · · , ∫n.

The correct function can essentially be implemented by a series of condition state-

ment, with measurement results from stabilizer variables.

7.3.2 Veri-Assn: The Assertion Language

A stabilizer operator is a Hermitian matrix and can be used as predicate for QEC

programs. This observation is particularly important for QEC programs in which the

majority of logical operations can be described with a few stabilizer operators. Using

stabilizer operators as predicates can circumvent the exponential memory overhead in-

duced by quantum state-based predicate, which has a exponential number of physical

state terms, regarding the data qubit count.

However, as predicates, stabilizers are not universal. There are infinitely many

quantum states that are not eigenstates of any non-identity stabilizer operator, e.g.,

|ψ⟩ =
√
3
2
|0⟩+ 1

2
|1⟩. Such limitation will cause difficulty in the verification of QEC pro-

grams. For example, if we are given some logical state that is not the +1 eigenstate of any

stabilizer operator, we cannot find any predicate except I to abstract such logical state.

One well-studied way in the quantum information community to address this problem is

to use the Pauli expansion of quantum Observable (Hermitian matrices) [1, 130]:

Lemma 7.3.2 (Pauli expansion). The quantum observable O of a n-qubit system can be

expressed as a linear combination of Pauli strings: O =
∑

iw
iσi

n, where σi
n ∈ {I,X, Y, Z}⊗n

is a length-n Pauli string, and wi ∈ R is its coefficient.

The Pauli expansion motivates the following proposition which provides a universal

way to deal with arbitrary logical states in QEC programs:
152

Synthesizing Verified Quantum Operations Chapter 7

Proposition 7.3.3. ∀ |ψ⟩ ∈ Hn, there is a P which is a sum of stabilizers (Pauli strings),

that satisfies P |ψ⟩ = |ψ⟩, and P ̸= I.

Proposition 7.3.3 can be directly proved by setting P = |ψ⟩ ⟨ψ| and expand it into

a linear combination of Pauli strings, i.e., stabilizer operators. Inspired by Lemma 7.3.2

and Proposition 7.3.3, we introduce arithmetic expressions of stabilizer operators, and

define the stabilizer expression se as follows,

se ::= s | λ0se0 + λ1se1, λ0, λ1 ∈ C (7.8)

where s is a stabilizer operator. se is different from the sue used for stabilizer variables

which only consists of unary operations on stabilizer operators. However, by describing

both the stabilizer variable and the predicate within the stabilizer-based language, we

can easily incorporate the information from stabilizer measurement into predicates.

By Proposition 7.3.3, se is universal as ∀ |ψ⟩ ,∃se s.t. se |ψ⟩ = |ψ⟩. For example, the

state |ψ⟩ =
√
3
2
|0⟩+ 1

2
|1⟩ is a +1 eigenstate of se := 1

2
Z +

√
3
2
X. We then formulate the

assertion language Veri-Assn on QEC programs as follows:

A ::= se | A0 ∧ A1 | A0 ∨ A1 | A0 ⇒ A1. (7.9)

When A := se, we say a QEC program state (ρ, σ) satisfies an assertion A if Aρ = ρ

(for ρ = |ψ⟩ ⟨ψ|, Aρ = ρ ⇔ A |ψ⟩ = |ψ⟩), and se commutes with all stabilizer variables

in σ. We denote this relation by (ρ, σ) |= A. Requiring that se commutes with stabilizer

variables in σ is to ensure the logical state can be in the +1 eigenspace of se. Otherwise

this assertion never be satisfied.

The semantics of A0 ∧ A1 and other Boolean expressions can then be derived by

structural induction:

153

Synthesizing Verified Quantum Operations Chapter 7

• (ρ, σ) |= A1 ∧ A2 iff (ρ, σ) |= A1 and (ρ, σ) |= A2;

• (ρ, σ) |= A1 ∨ A2 iff (ρ, σ) |= A1 or (ρ, σ) |= A2;

• (ρ, σ) |= (A1 ⇒ A2) iff ((ρ, σ) |= A1) ⇒ ((ρ, σ) |= A2).

If an assertion A is satisfied by all program states (ρ, σ), we denote such property as

|= A.

The following lemma presents stabilizer-based implicit rules.

Lemma 7.3.4 (Implication rule). For stabilizer expressions,

1. If (ρ, σ) |= se0 and (ρ, σ) |= se1, we have (ρ, σ) |= se0se1 and (ρ, σ) |= λ0se0 + λ1se1,

where |λ0|2 + |λ1|2 = 1.

2. Assume se0 is not singular if we view it as a matrix. If (ρ, σ) |= se0 and (ρ, σ) |=

se1se0, we have (ρ, σ) |= se1.

3. Assume (ase0 + bse1)ρ = ρ, every stabilizer in σ commutes with se0 and se1, and

(ρ, σ) |= se2, then (ρ, σ) |= ase0 + bse1se2.

Proof. This lemma can be proved by examining the definition of our proposed assertions.

Rules from classical Boolean predicates can also be used for Veri-Assn, such as the

rules for disjunction and conjunction. We will use these rules directly without extra

description. Especially, the identity operator I represents True and the empty operator

0 represents False in Veri-Assn.

7.3.3 QECC Correctness

We use Hoare logic to formalize the QECC correctness. A Hoare tripe in Veri-

Assn has the form: {A}c{B}, where A,B ∈ Veri-Assn, and c ∈ Veri-Lang. We first
154

Synthesizing Verified Quantum Operations Chapter 7

{A}skip{A} (Skip)
{A[|0⟩ /q]}q := |0⟩ {A} (Initialization)
{A}q̄ := Uq̄{UAU †} (Unitary)

U is a unitary, but written in the sum of stabilizers.
{A}∫ := sue{A} (Assignment)

where sue commutes with A. Otherwise, {A}∫ := sue{I}.
{A}Prog1;Prog2{B}

{A}Prog1{C} {C}Prog2{B} (Sequencing)

{∑1
i=0AiMi}ifM [∫ , q̄] thenProg1 elseProg0 end{B}

{A1 ∧ ∫}Prog1{B} {A0 ∧ −∫}Prog0{B} (Condition)

{A}Prog{B}
|= (A ⇒ A′) {A′}Prog{B′} |= (B′ ⇒ B)

(Consequence)

Figure 7.3: Hoare rules for QECC correctness when A := se.

present the Hoare logic for partial correctness assertions in which the precondition A is

a stabilizer expression se, as shown in Figure 7.3. We will extend the Hoare logic to

Boolean expressions like A1 ∧ A2 in Proposition 7.3.9.

The proof rules in Figure 7.3 are syntax-directed and reduce proving a partial cor-

rectness assertion of a compound statement to proving partial correctness assertions of

its sub-statements. We only explain some rules below, since most rules are self-explained.

In the initialization rule, (ρ, σ) |= A[|0⟩ /q] means that Aρq0 = ρq0 and A commutes

with all stabilizer variables in σ. This can be seen as the quantum version substitution

rule. A more useful case of the initialization rule is when all qubits are reset to |0⟩, and

for the n-qubit system, we have

{I}qn−1 · · · q0 := |0⟩⊗n {Z0 ∧ Z1 ∧ · · · ∧ Zn}. (7.10)

The following example shows the partial correctness on the initialization rule.

Example 7.3.5 (Initialization rule). Let A := Z0Z1, ρ = |10⟩ ⟨10| , σ = {}, for ini-

tialization q0 := |0⟩, (ρ, σ) |= A[|0⟩ /q] since (ρq00 , σ) = (|00⟩ ⟨00| , {}) |= Z0Z1. Then,

155

Synthesizing Verified Quantum Operations Chapter 7

(ρ′, σ) = [[q0 := |0⟩]](ρ, σ) = (|00⟩ ⟨00| , {}) also satisfies Z0Z1.

For the assignment rule, (ρ, σ) |= A[sue/∫] means that AρA† = ρ and A commutes with

all stabilizer variables in σ[sue/∫]. The following example shows the partial correctness

on the assignment rule.

Example 7.3.6 (Assignment rule). Let A := Z, ρ = |0⟩ ⟨0| , σ = {∫ = X}, for assignment

∫ := Z, (ρ, σ) |= A[Z/∫] since (ρ, σ[Z/∫]) = (|0⟩ ⟨0| , {Z}) |= Z. Then, (ρ, σ′) = [[∫ :=

Z]](ρ, σ) = (|0⟩ ⟨0| , {Z}) also satisfies Z.

In the unitary rule, we represent unitary matrices as the sum of stabilizers in order

to utilize the cheap computational cost of stabilizer multiplication.

The rules for condition and while loop resembles their classical counterparts except

the state may be changed by the branching condition. A direct derivative of the Condition

rule is to make A1 = A0 = A as follows,

Lemma 7.3.7.
{A ∧ ∫}Prog1{B} {A ∧ −∫}Prog0{B}

{A}ifM [∫ , q̄] thenProg1 elseProg0 end{B} .

The consequence rule is a powerful tool for the verification of QEC programs since it

can encode facts of QEC codes into partial correctness assertions. The following example

demonstrates the usage of the proposed Hoare rules, including the consequence rule:

Example 7.3.8. Assume Prog ::= ∫ := Z1; if M [∫ , q1] then skip else q1 := X q1; q0 :=

X q0 end.

We prove {Z0Z1}Prog{Z0} as follows: (for simplicity, we perform analysis sentence by

sentence)

{Z0Z1}∫ := Z1; {Z0Z1} (Assignment)

(Z0Z1)M1 = (Z0Z1)
I+Z1

2
= Z0

I+Z1

2
, (Z0Z1)M0 = −Z0

I−Z1

2

{Z0Z1 ∧ Z1}skip{Z0Z1 ∧ Z1} (Skip)

{Z0Z1 ∧ −Z1}q1 := X q1{−Z0Z1 ∧ Z1} (Unitary)
156

Synthesizing Verified Quantum Operations Chapter 7

{−Z0Z1 ∧ Z1}q0 := X q0{Z0Z1 ∧ Z1} (Unitary)

{Z0Z1 ∧ −Z1}q1 := X q1; q0 := X q0{Z0Z1 ∧ Z1} (Sequencing)

{Z0Z1 = (Z0Z1)M0 + (Z0Z1)M1}if M [∫ , q̄] then skip

else q1 := X q1; q0 := X q0 end{Z0Z1 ∧ Z1} (Condition)

Then, {Z0Z1}Prog{Z0Z1 ∧ Z1} (Sequencing)

Z0Z1 ∧ Z1 ⇒ Z0 (Implication)

With the consequence rule, we have {Z0Z1}Prog{Z0}.

Now we extend the Hoare rules in Figure 7.3 to other Boolean assertions in Veri-Assn.

Proposition 7.3.9. We restate the Hoare rules for classical Boolean assertions as fol-

lows,

if {A0}Prog{B0} ∧ {A1}Prog{B1}, then {A0 ∧ A1}Prog{B0 ∧B1};

if {A0}Prog{B0} ∨ {A1}Prog{B1}, then {A0 ∨ A1}Prog{B0 ∨B1};

{I}Prog{I}, {0}Prog{B}, where B is any assertion, and 0 represents an empty set of

program states. For example, if se1 and se2 anti-commute, se1 ∧ se2 = 0.

Proof. We first prove the conjunction rule. Since A0 ∧ A1 ⇒ A0, A0 ∧ A1 ⇒ A1,

then by the consequence rule, we have {A0 ∧A1}Prog{B0} and {A0 ∧A1}Prog{B1}, i.e.,

{A0 ∧ A1}Prog{B0 ∧ B1}. For the disjunction rule, notice that if (ρ, σ) |= (A0 ∨ A1),

then either (ρ, σ) |= A0 or (ρ, σ) |= A1. Finally, {I}Prog{I} always holds since any state

(ρ, σ) satisfies I. {0}Prog{B} is true because (ρ, σ) |= 0 ⇒ [[P]](ρ, σ) |= B.

Finally, we have the soundness theorem of Hoare rules in Figure 7.3.

Theorem 7.3.10 (Soundness). The proof system in Figure 7.3 is sound for partial cor-

rectness assertions.

Proof. (1) Skip. Note than the skip rule does not change the program state.

(2) Initialization. By the definition of the substitution rule, (ρ, σ) |= A[|0⟩ /ρ] is equiva-

lent to (ρq0, σ) |= A, then the state after initialization (ρ′, σ) = (ρq0, σ) also satisfies A.
157

Synthesizing Verified Quantum Operations Chapter 7

(3) Unitary. Note that (UAU †)(UρU †) = UAρU †, so (UAU †)(UρU †) = (UρU †) ⇔ Aρ =

ρ.

(4) Assignment. The rule is obviously correct, since it does not change the program state.

(5) Sequencing. Assume (ρ, σ) |= A, then [[P0]](ρ, σ) |= C by the hypothesis {A}P0{C}.

On the other hand [[P0;P1]](ρ, σ) = [[P1]]([[P0]](ρ, σ)) |= B by the hypothesis {C}P1{B}.

(6) Condition. First,
∑
AiMi is a legal stabilizer expression because M1 =

I+∫
2

and M0 =

I−∫
2

are legal stabilizer expressions. Assume (ρ, σ) |= A, then σ(∫) commutes with A, so

is M1 and M0. Thus, AM1ρM
†
1 = M1AρM

†
1 = M1ρM

†
1 . Likewise, we have AM0ρM

†
0 =

M0ρM
†
0 . Let A =

∑
iAiMi, then AM1ρM

†
1 = A1M1(M1ρM

†
1) + A0M0(M1ρM

†
1) =

A1(M1ρM
†
1) since M1M1 =M1, M1M0 = 0. Thus, we have A1M1ρM

†
1 =M1ρM

†
1 . Since ∫

commutes with both A1 and A0, we have (M1ρM
†
1 , σ) |= A1 and (M0ρM

†
0 , σ[−∫/∫]) |= A0.

Also, (M1ρM
†
1 , σ) |= ∫ and (M0ρM

†
0 , σ[−∫/∫]) |= −∫ . Thus, if (ρ, σ) |= ∑

iAiMi, we

have (M1ρM
†
1 , σ) |= A1 ∧ ∫ and (M0ρM

†
0 , σ) |= A0 ∧ −∫ . Since {A1 ∧ ∫}P1{B} and

{A0 ∧ −∫}P0{B}, by the semantics of the condition statement, we have:

{∑AiMi}ifM [∫ , q̄] thenP0 elseP1 end{B}.

(7) Consequence. Assume (ρ, σ) |= A, then (ρ, σ) |= A′ by {A⇒ A′}. Since {A′}Prog{B′},

we have [[P]](ρ, σ) |= B′. Then [[P]](ρ, σ) |= B by B′ ⇒ B. Thus, {A}Prog{B}.

7.4 Weakest Precondition Computation

Based on the proposed language for QEC programs and assertions, we implement an

automated inference tool for verifying QEC programs, which adopt the weakest precondi-

tion (WP) computation technique to verify the QEC circuit which describes a logical oper-

ation. Generally, WP computation (WPC) is of the judgement: Φpost ⊢ statement : Φpre,

where Φpost and Φpre are assertions, named post- and pre-conditions, respectively. Φpre

represents the constraint on the input logical state, so that, after the statement, the

158

Synthesizing Verified Quantum Operations Chapter 7

𝑅 𝑞𝑠
𝐻 𝑞𝑠
𝐶𝑋 𝑞𝑠 , 𝑞𝑖0
· · ·
𝐶𝑋 𝑞𝑠 , 𝑞𝑖𝑛
𝐻 𝑞𝑠
𝑀𝑧 𝑞𝑠

∫𝑖 := 𝑋𝑖0 · · ·𝑋𝑖𝑛

Circuit template I for error detection

Verita statement

𝑅 𝑞𝑠
𝐶𝑋 𝑞𝑖0, 𝑞𝑠
· · ·
𝐶𝑋 𝑞𝑖𝑛, 𝑞𝑠
𝑀𝑧 𝑞𝑠

∫𝑖 := 𝑍𝑖0 · · ·𝑍𝑖𝑛

Circuit template II for error detection

Verita statement

𝑉 is some gate
𝑉 𝑞𝑖0
· · ·
𝑉 𝑞𝑖𝑛

𝑞𝑖0 · · ·𝑞𝑖𝑛 := 𝑉𝑖0 · · ·𝑉𝑖𝑛 𝑞𝑖0 · · ·𝑞𝑖𝑛

Circuit template III for gate aggregation

Verita statement

Figure 7.4: Templates and action rules for translating circuits into the Verita language.

resulting logical state is in the quantum state subspace represented by Φpost Here, we

first give a sketch of the WPC for QECC correctness:

• Step 1: Converting the QEC circuit to a Verita program by matching templates

shown in Figure 7.4;

• Step 2: Converting the state-based precondition and post-condition to be stabilizer-

based through program analysis and state computation;

• Step 3: Genenerating the WP of the QEC program for the post-condition of the

Verita version, using the inference rules shown in Figure 7.5.

• Step 4: Check if the precondition implies the generated WP.

Now, we will dive into the details of these four steps.

Step 1: program translation. Figure 7.4 shows the predefined circuit templates

and the conversion rule. We can directly use these rules to translate the QEC circuit

from the circuit language into our Verita language. Figure 7.2(a) provides an example

translation of the circuit in Figure 7.1(a).
159

Synthesizing Verified Quantum Operations Chapter 7

Step 2: Pre/post-condition translation. The pre/post-condition of WPC for gen-

eral quantum circuits are physical state-based. To speedup the verification on QEC

circuits with Verita, we need to translate pre/post-conditions into the sets of (general-

ized) stabilizer operators. The translation consists of two parts.

The first part is to extract stabilizer variables from QEC programs from Step 1.

For each stabilizer variable ∫ , we will track its last assignment statement in the QEC

program and use the stabilizer operator on the right hand size as part of the translated

pre/post-conditions.

The second part involves computation over the predefined template. We first extract

data qubit set dqV ar from the QEC program. This can be easily done by examing

the stabilizer operators extracted by the first part of Step 2. Then, we will check if the

logical state in the pre/post-condition is in the +1 eigenspace in one of following stabilizer

operator templates:

⊗i∈dqV arXi, ⊗i∈dqV arZi, ⊗i∈dqV arYi,

⊗i∈dqV arYi +⊗i∈dqV arXi√
2

,
⊗i∈dqV arZi +⊗i∈dqV arXi√

2
,
⊗i∈dqV arYi +⊗i∈dqV arZi√

2
(7.11)

(⊗i∈dqV arXi)⊗ (⊗i∈dqV ar′Xi), (⊗i∈dqV arZi)⊗ (⊗i∈dqV ar′Zi), (⊗i∈dqV arYi)⊗ (⊗i∈dqV ar′Yi),

The bottom templates of Equ 7.11 are for the case where two logical qubits are involved

in the QEC program.

If the logical state to be translated is already be in the +1 eigenspace of one stabilizer

operator template, then we will end Step 2 by including that stabilizer operator in the

translated pre/post-conditions. Otherwise, Lemma 7.4.1 provides us one way to find the

remaining stabilizer operators for pre/post-condition translation.

Lemma 7.4.1. If a logical state |ψL⟩ = α|0L⟩ + β|1L⟩, then it is the +1 eigenstate of
α2−β2

α2+β2 ⊗i∈dqV ar Zi +
2αβ

α2+β2 ⊗i∈dqV ar Xi.

Lemma 7.4.1 can be simply proved by computing (α
2−β2

α2+β2 ⊗i∈dqV ar Zi +
2αβ

α2+β2 ⊗i∈dqV ar

160

Synthesizing Verified Quantum Operations Chapter 7

Φ1 ≡ Φ

Φ ⊢ skip : Φ1

(7.12)

Φ1 ≡ Φ[⊗i|0⟩/q̄]
Φ ⊢ q̄ := ⊗i|0⟩ : Φ1

(7.13)

Φ1 ≡ UΦU †

Φ ⊢ q̄ := Uq̄ : Φ1

(7.14)

Φ1 ≡ Φ

Φ ⊢ ∫ := s : Φ1

(7.15)

Φ⊢Prog: Φ2
Φ1 ⊢Prog: Φ3

Φ ∧ Φ1 ⊢ Prog : Φ2 ∧ Φ3

(7.16)

Φ⊢Prog2: Φ2
Φ2 ⊢Prog1: Φ1

Φ ⊢ Prog1;Prog2 : Φ1

(7.17)

Φ⊢Prog2: Φ1
Φ⊢Prog1: Φ1

Φ ⊢ ifM [∫ , q̄] thenProg1 elseProg0 end : Φ1

(7.18)

Φ⊢Prog2: Φ2
Φ⊢Prog1:−Φ2

Φ ⊢ ifM [∫ , q̄] thenProg1 elseProg0 end : Φ2 ∗ ∫
(7.19)

Φ1 ≡ Φ

Φ ∧ (∧n
i ∫i) ⊢ correct(∫1, . . . , ∫n) : Φ1

(7.20)

Figure 7.5: Weakest precondition computation rules.

Xi)|ψL⟩. Then we can end Step 2 by including that the stabilizer operator by Lemma 7.4.1

in the translated pre/post-conditions. Notice that, the computation of this part is not

affected by the exponential number of physical states in the logical state, as it only

requires the superposition information of |0L⟩ and |1L⟩, which is already accessible from

pre/post-conditions before translation.

Step 3: WP generation. Figure 7.5 shows rules for generating WP. These rules are

basically the translation of the Hoare logic shown in Figure 7.3. The proof for these rules

can be translated from our proof for the Hoare logic in Figure 7.3, and we omit them

here for simplicity.

Rules 7.12—7.17 are already self-explained. Rule 7.20 is the blackbox-like inference

over quantum error decoding and correction, which corresponds to the case where no error
161

Synthesizing Verified Quantum Operations Chapter 7

observed. We elaborate on Rule 7.18 and 7.19 that are special cases of the condition rule

in Figure 7.3. The proof is straightforward and omit it here for simplicity. Rule 7.18

is specifically designed for the case where the condition statement does not change the

stabilizer operator in post-condition. This case is met when the post-condition is a

error detection-related stabilizer operator. Rule 7.19 is designed for the case where the

stabilizer operator for measurement is a ‘substring’ of the stabilizer operator in the pre-

condition. For example, considering the pre-condition Z1Z2 and stabilizer measurement

Z1, the measurement by Z1 will indeed cast the pre-condition to Z1 ∧ Z2. Rule 7.19 can

be applied to recover Z1Z2 through WPC. Rule 7.19 is critical for nontranverse logical

operations whose implementations heavily rely on the condition statement.

Note that, we will convert the intermediate precondition induced by the WPC into

the standard form indicated in Equ 7.11 and Lemma 7.4.1. Such a conversion is cheap

since the backward inference will not substantially increase the amount of stabilizer

terms in the intermediate precondition, considering the stabilizer-based nature of the

proposed Veri-Lang. This conversion not only simplifies the precondition implication

process discussed below, but also decreases the overhead of the WPC since the number

of terms in the pre/post-conditions are reduced.

Step 4: Precondition Implication. We can determine if a stabilizer operator s1

implies s2 or not by string comparison. If the pauli operator of s1 on q is the same as the

pauli operator of s2 on q for each q ∈ dqV ar, or s2 is all of identity operators, then s1

implies s2. For example, Z1Z2 implies I1I2. The proof for this checking is obvious and we

omit it here. This implication checking is sufficient for our verification of QECC logical

operations. During the implication checking, we will further ignore error detection-related

stabilizer operators (by applying Lemma 7.3.4) to reduce the computation overhead.

162

Synthesizing Verified Quantum Operations Chapter 7

7.5 Evaluation

This section presents a series of experiments designed to answer the following research

questions:

• Q1: Can Verita automatically verify general QEC codes? How does it scale with

their size?

• Q2: How does Verita’s performance compare against the state-of-the-art quantum

verifier?

• Q3: How important is each of the components in Verita?

7.5.1 Experiment Setup

Platform. All of our reasoning toolkits (including the weakest precondition compu-

tation engine) are implemented in Python 3.10. All experiments are run on a Ubuntu

18.04 server with a 6-core Intel E5-2603v4 CPU and 16GB RAM.

Baselines. We use the quantum while-language [120], in short qWhile, as our pri-

mary baseline: qWhile is the state-of-the-art verification framework for general quantum

programs. Different from our approach, qWhile is based on the lowest-level circuit lan-

guage and performs its reasoning directly over physical quantum states. Note that, for

both verifiers, we treat the conditioned error correction operation as a blackbox function,

over which the reasoning is defined by Rule 7.20 in Figure 7.5. Since our work is focused

on demonstrating the correctness of logical operations, using this abstraction can rescue

us from diving into the details of the error correction operation.

Benchmarks. We selected four popular QECCs for our benchmark suite, each fea-

turing distinct implementations requirements for the common universal logic gate basis,

known as the Clifford+T gate basis [1]. This logical gate set encompasses logical X, Z,

163

Synthesizing Verified Quantum Operations Chapter 7

H, S, T, and CX gates, along with logical initialization. This diversity demonstrates our

tool’s broad applicability. Table 7.1 shows more detailed statistics (e.g., qubit count)

about our benchmarks.

• Steane code. This QECC involves 7 data qubits and is a well-known example of the

CSS code family [1]. Most logical operations of Steane code are based on qubit-

wise physical quantum gates, like the logical H from Figure 7.1. The logical T gate

instead requires the distilled magic state and the use of the branching statement [1].

• Shor’s code [1]. This QECC involves 9 data qubits and heavily depends on distilled

magic states and branching statements for logical H, logical S and logical T.

• Reed Muller code [127]. This QECC involves 15 data qubits, and uses the distilled

magic state and the branching statement for logical H, with other logical operations

based on qubit-wise gates.

• The surface code family [20]. Surface code is the one of the most popular QECC in

the quantum community. Various versions of the surface code, distinguished by the

code distance d, offer differing levels of protection: a larger d corresponds to more

data qubits (= d2) and thus enhanced protective power. Most logical operations

of the surface code are based on qubit-wise gates, except for the logical T, which

relies on the distilled magic state and the branching statement.

QECC correctness in weakest precondition computation (WPC). Table 7.2

summarizes pre/post-conditions to verify each logical operation of the Clifford+T gate

basis, hence the QEC correctness. Due the linearity of quantum programs, we only need

consider the pre/post-conditions based on the computational logical states, e.g., |0L⟩ and

|+L⟩.

164

Synthesizing Verified Quantum Operations Chapter 7

Table 7.1: Statistics of benchmark programs.
Logical Initialization Logical X/Z Logical H Logical S Logical T Logical CX
var # gate # var # gate # var # gate # var # gate # var # gate # var # gate

Steane code 13 60 13 49 13 49 13 56 26 137 26 91
Shor’s code 17 70 17 57 34 154 34 145 34 154 34 105

Reed-Muller code 29 164 29 145 58 354 29 145 29 145 58 275
Surface code d = 3 17 66 17 59 17 59 34 127 34 142 34 115
Surface code d = 5 49 178 49 171 49 171 98 351 98 366 98 339
Surface code d = 7 97 346 97 339 97 339 194 687 194 702 194 675

Surface code d = 11 241 850 241 843 241 843 482 1695 482 1710 482 1683
Surface code d = 21 881 3090 881 3083 881 3083 1762 6175 1762 6190 1762 6163
Surface code d = 31 1921 6730 1921 6723 1921 6723 3842 13455 3842 13470 3842 13443
Surface code d = 41 3361 11770 3361 11763 3361 11763 6722 23535 6722 23550 6722 23523
Surface code d = 51 5201 18210 5201 18203 5201 18203 10402 36415 10402 36430 10402 36403
Surface code d = 61 7441 26050 7441 26043 7441 26043 14882 52095 14882 52110 14882 52083
Surface code d = 71 10081 35290 10081 35283 10081 35283 20162 70575 20162 70590 20162 70563

7.5.2 Q1: Can Verita Verify Large QEC Codes?

We evaluate Verita on all our benchmarks, especially focusing on its scalability

for complex QEC codes (e.g., high-distance surface code). For example, large quantum

programs (such as Shor’s algorithm [126]) require complex surface code with distance at

least 61, in order to protect the underlying computation and demonstrate the quantum

advantage [20].

Results. Table 7.3 shows our main results. As we can see, Verita has significantly

greater scalability compared to qWhile. In contrast, Verita can successfully verify the

distance-71 surface code within 3 hours. The scalability of Verita stems from two fac-

tors. The first factor is the concise QEC-tailored language. By using abstracting groups

of quantum gates into high-level stabilizer operators, Verita significantly reduces the

overhead of reasoning, e.g., over QEC error detection subroutines in each QEC programs.

The second factor is the stabilizer-centric proof system, which greatly reduces the

number of assertion terms during the verification process. Taking the surface code as an

example, each logical state of the distance-d surface code is a highly-entangled physical

quantum states over data qubits, containing at least 2num_x_stabilizers =
√
2
d2−1

physi-

cal quantum states. With Verita, at most d2 + 3 stabilizer operators are involved in

165

Synthesizing Verified Quantum Operations Chapter 7

Table 7.2: QECC correctness in weakest precondition computation (WPC). For sim-
plicity, the error detection-related stabilizer generator of QECC for Verita goals and
the ancillary state for qWhile goals are omitted. IL, XL, ZL, YL refer to stabilizer
operators consisting of I,X,Z, Y on all data qubits, respectively.

Logical initialization Logical X Logical Z Logical H Logical S
Pre Post Pre Post Pre Post Pre Post Pre Post

Verita goals IL ZL ZL −ZL ZL ZL ZL XL ZL ZL

XL XL XL −XL XL ZL XL YL

qWhile goals 0 |0L⟩ |0L⟩ |1L⟩ |0L⟩ |0L⟩ |0L⟩ |+L⟩ |0L⟩ |0L⟩
|+L⟩ |+L⟩ |+L⟩ |−L⟩ |+L⟩ |0L⟩ |+L⟩ |0L⟩+ i|1L⟩

Logical CX Logical T
Pre Post Pre Post

Verita goals

IL ⊗ ZL ZL ⊗ ZL ZL ZL

ZL ⊗ IL ZL ⊗ IL XL
XL+YL√

2

IL ⊗XL IL ⊗XL

XL ⊗ IL XL ⊗XL

qWhile goals

(a|0L⟩+ b|1L⟩)|0L⟩ a|0L⟩|0L⟩+ b|1L⟩|1L⟩ |0L⟩ |0L⟩
|0L(a|0L⟩+ b|1L⟩)⟩ |0L(a|0L⟩+ b|1L⟩)⟩ |+L⟩ |0L⟩+ ei

π
4 |1L⟩

(a|0L⟩+ b|1L⟩)|+L⟩ (a|0L⟩+ b|1L⟩)|+L⟩
|+L⟩(a|0L⟩+ b|1L⟩) a(|0L⟩|0L⟩+ |1L⟩|1L⟩)+

b(|0L⟩|1L⟩+ |1L⟩|0L⟩)

Logical Initialization Logical X/Z Logical H Logical S Logical T Logical CX

Steane code
qWhile 9.4 ×10−4 7.8 ×10−4 3.7 ×10−3 1.2 ×10−3 9.3 ×10−3 2.0 ×10−3

Verita 4.5 ×10−4 4.3 ×10−4 3.3 ×10−4 4.7 ×10−4 3.2 ×10−3 1.2 ×10−3

Speedup by Verita 2.1 ×10+0 1.8 ×10+0 1.1 ×10+1 2.6 ×10+0 2.9 ×10+0 1.7 ×10+0

Shor’s code
qWhile 6.3 ×10−4 4.0 ×10−4 4.1 ×10−2 2.0 ×10−2 2.0 ×10−2 8.6 ×10−4

Verita 4.6 ×10−4 2.6 ×10−4 8.5 ×10−3 8.1 ×10−3 8.0 ×10−3 8.4 ×10−4

Speedup by Verita 1.4 ×10+0 1.5 ×10+0 4.8 ×10+0 2.5 ×10+0 2.5 ×10+0 1.0 ×10+0

Reed-Muller
code

qWhile 4.3 ×10−3 4.0 ×10−3 3.4 ×10−2 5.1 ×10−3 7.1 ×10−3 1.1 ×10−2

Verita 1.0 ×10−3 1.0 ×10−3 2.5 ×10−2 1.5 ×10−3 1.8 ×10−3 2.8 ×10−3

Speedup by Verita 4.1 ×10+0 4.0 ×10+0 1.3 ×10+2 3.3 ×10+0 4.0 ×10+0 3.7 ×10+0

Surface code
d = 3

qWhile 9.5 ×10−3 7.9 ×10−3 1.3 ×10−1 2.3 ×10−2 2.3 ×10−1 2.9 ×10−2

Verita 8.8 ×10−4 4.1 ×10−4 4.9 ×10−4 3.8 ×10−3 6.9 ×10−3 1.7 ×10−3

Speedup by Verita 1.1 ×10+1 1.9 ×10+1 2.6 ×10+2 6.1 ×10+0 3.4 ×10+1 1.7 ×10+1

Surface code
d = 5

qWhile 2.8 ×10+3 2.8 ×10+3 >3h 6.3 ×10+3 >3h 8.1 ×10+3

Verita 1.6 ×10−3 1.3 ×10−3 2.4 ×10−3 1.8 ×10−2 2.9 ×10−2 7.1 ×10−3

Speedup by Verita 1.8 ×10+6 2.2 ×10+6 N/A 3.5 ×10+5 N/A 1.1 ×10+6

Surface code
d = 7

qWhile Out of Memory
Verita 2.2 ×10−3 2.1 ×10−3 5.9 ×10−3 5.7 ×10−2 9.2 ×10−2 2.5 ×10−2

Speedup by Verita N/A

Table 7.3: Verification time (in seconds, unless otherwise specified) of Verita and
qWhile on our benchmarks.

assertions. Though each stabilizer operator involves d2 symbolic Pauli matrices over all

data qubits, the storage complexity of Verita for asserting the surface code are at most

166

Synthesizing Verified Quantum Operations Chapter 7

Logical Initialization Logical X/Z Logical H Logical S Logical T Logical CX

Surface code
d = 11

qWhile Out of Memory
Verita 6.9 ×10−3 6.8 ×10−3 3.3 ×10−2 3.9 ×10−1 5.4 ×10−1 2.0 ×10−1

Speedup by Verita N/A

Surface code
d = 21

qWhile Out of Memory
Verita 3.7 ×10−2 3.7 ×10−2 4.3 ×10−1 6.0 ×10+0 1.1 ×10+1 3.3 ×10+0

Speedup by Verita N/A

Surface code
d = 31

qWhile Out of Memory
Verita 1.6 ×10−1 1.1 ×10−1 2.2 ×10+0 3.7 ×10+1 7.0 ×10+1 2.4 ×10+1

Speedup by Verita N/A

Surface code
d = 41

qWhile Out of Memory
Verita 2.9 ×10−1 2.9 ×10−1 6.6 ×10+0 1.5 ×10+2 2.4 ×10+2 1.0 ×10+2

Speedup by Verita N/A

Surface code
d = 51

qWhile Out of Memory
Verita 5.1 ×10−1 5.0 ×10−1 1.6 ×10+1 4.0 ×10+2 6.0 ×10+2 2.8 ×10+2

Speedup by Verita N/A

Surface code
d = 61

qWhile Out of Memory
Verita 9.2 ×10−1 8.9 ×10−1 3.3 ×10+1 8.4 ×10+2 1.3 ×10+3 6.3 ×10+2

Speedup by Verita N/A

Surface code
d = 71

qWhile Out of Memory
Verita 1.5 ×10+0 1.4 ×10+0 6.1 ×10+1 1.5 ×10+3 2.2 ×10+3 1.2 ×10+3

Speedup by Verita N/A

Table 7.4: Continued table to Table 7.3. Verification time (in seconds, unless otherwise
specified) of Verita and qWhile on our benchmarks.

O(d4). The computational complexity of Verita depends on the program and are at

most O(d6) since each program contains at most O(d2) lines. This complexity reasoning,

together with results shown in Table 7.3, demonstrates the significantly better scalability

of our framework.

7.5.3 Q2: How Does Verita Compare Against Baseline?

In this section, we compare the performance of Verita to that of the baseline,

qWhile [120].

As shown in Table 7.3, compared to the baseline, Verita achieves significant ver-

ification time reduction for all QECCs considered. The verification time reduction by

Verita becomes larger as the program size (see # var and # gate in Table 7.1) increases.

For instance, Verita demonstrates a notably higher speedup on the distance-5 surface

167

Synthesizing Verified Quantum Operations Chapter 7

code compared to the speedup observed for the distance-3 surface code and Reed-Muller

code. The only exception to this trend is Shor’s code. In the case of Shor’s code, the

stabilizer operators are of small weights, mostly 2, leading to minimal overhead when

reasoning over error detection circuits with qWhile. Additionally, Shor’s code features

the simplest logical states since it contains only two X-type stabilizer operators. Overall,

we expect Verita to be more efficient for QEC codes with high-weight stabilizer gen-

erators (as those will induce more reasoning overhead over error detection circuits) and

more X-type stabilizer operators (as those will induce more complex logical states).

Furthermore, Verita has significantly better scalability than the baseline. qWhile

is limited to verifying surface codes up to distance 7. Instead, Verita can successfully

verify the distance-71 surface code within a verification time shorter than what qWhile

requires to verify the distance-5 surface code. The main reason for this scalability dis-

crepancy stems from the representation of assertions. For qWhile where assertions are

based on quantum states, exponential number of physical quantum states will be visited

in the verification process. Though we have tried to symbolize the inference computation,

the computational and storage complexity of qWhile for a distance-d surface code still

scales exponentially with d2.

7.5.4 Q3: Ablation Studies

We consider the following ablations in this experiment. Note that the language for

assertion and the verification algorithm must be used together by design.

• “qlang + vassn” is a variant of Verita with our new stabilizer-based program ab-

stractions disabled. Instead, it uses the existing qWhile language [120] to represent

QEC circuits. The term ’qlang’ denotes the qWhile language and ’vassn’ denotes

the assertion and proof system of Verita.

168

Synthesizing Verified Quantum Operations Chapter 7

Distance Verification Time (s) Logical Initialization Logical X/Z Logical H Logical S Logical T Logical CX

vlang+qassn 9.1 ×10−4 4.9 ×10−4 1.2 ×10−1 9.7 ×10−3 2.3 ×10−1 2.1 ×10−3

Speedup by Verita 1.0 ×10+0 1.2 ×10+0 2.5 ×10+2 2.6 ×10+0 3.3 ×10+1 1.2 ×10+0

qlang+vassn 7.2 ×10−3 6.5 ×10−3 7.0 ×10−3 3.4 ×10−2 3.0 ×10−2 4.3 ×10−2
3

Speedup by Verita 8.2 ×10+0 1.6 ×10+1 1.4 ×10+1 8.9 ×10+0 4.3 ×10+0 2.6 ×10+1

vlang+qassn 3.1 ×10+1 3.0 ×10+1 >3h 3.8 ×10+3 >3h 6.3 ×10+2

Speedup by Verita 2.0 ×10+4 2.4 ×10+4 N/A 2.1 ×10+5 N/A 8.9 ×10+4

qlang+vassn 5.1 ×10−2 5.1 ×10−2 6.1 ×10−2 3.5 ×10−1 3.2 ×10−1 5.5 ×10−1
5

Speedup by Verita 3.3 ×10+1 4.0 ×10+1 2.6 ×10+1 1.9 ×10+1 1.1 ×10+1 7.8 ×10+1

vlang+qassn Out of Memory
Speedup by Verita N/A

qlang+vassn≥7

Speedup by Verita
Scales up to d = 51 (verifies each program within 3h), see Figure 7.6

Table 7.5: Verification time of ‘vlang+qassn’ and ‘qlang+vassn’ on the surface code family.

• “vlang + qassn” is an ablation which replaces our proof system with the one from

qWhile [120]. As a result, this variant also uses the verification algorithm from the

qWhile work, in order for the approach as a whole to function. The term ’vlang’

denotes the language of Verita and ’qassn’ denotes the assertion and proof system

of qWhile.

0 10 20 30 40 50
0

300
600
900

1,200
1,500
1,800
2,100 Logical Initialization

Logical X/Z

0 10 20 30 40 500
20
40
60
80
100
120
140 Logical H

Logical CX

0 10 20 30 40 500

10

20

30

40 Logical S
Logical T

X axis: surface code distance
(a) (b) (c)

ql
an

g+
va

ss
n

V
er

if.
T

im
e

V
er

it
a

V
er

if.
T

im
e

Figure 7.6: Comparing Verita to ‘qlang+vassn’.

Impact of stabilizer-based program states and proof system (vassn): As

shown in Table 7.5 and Figure 7.6, vassn scales significantly better than qassn, com-

bined with either vlang or qlang. Similar to results in Table 7.3, for the distance-5 sur-

face code, qassn-based verification (‘vlang+qassn’) consumes thousands of times more

time than vassn-based verification (Verita and ‘qlang+vassn’). Further, like qWhile,

‘vlang+qassn’ cannot scale to the surface code of distance higher than 7. Instead,
169

Synthesizing Verified Quantum Operations Chapter 7

‘qlang+vassn’ can scale up to distance-51 surface code, though sharing the same lan-

guage system for QEC circuits with qWhile. Overall, vassn plays the key role in scaling

up the verification of QECC correctness.

Impact of stabilizer-based language for QEC circuits (vlang): As shown in

Figure 7.6, vlang further helps reduce the verification time: the verification time by

‘qlang+vassn’ is dozens times, even thousands times larger than the time by Verita.

This comparison demonstrates the importance of vlang in scaling up the verification.

Compared to qlang, vlang reduces the overhead of reasoning through stabilizer mea-

surement circuits, through incorporating stabilizer operators into the circuit language.

Even combined with qassn, vlang still significantly reduces the verification time (see the

verification time of ‘vlang+qassn’ in Table 7.5 and the verification time in Table 7.3).

170

Chapter 8

Related Work

8.1 Optimization of Distributed Quantum Computing

Most existing quantum compilers [46, 28, 47, 48, 49] focus on the compilation of

programs within a single quantum computer. These works do not consider inter-node

communication. Extending them to DQC cannot achieve high communication through-

put in distributed quantum programs.

Unfortunately, existing compilers for DQC adopt similar methodologies to single-node

quantum compilers. One compiler design proposed by Ferrari et al. [45] exploits Cat-

Comm to implement each remote CX gate independently, treating the remote CX like

the local CX. Another compiler design by Ferrari et al. [45] and the compiler by Baker

et al. [42] use remote SWAP gates to transform remote operations into local operations,

resembling SWAP-based routing (e.g., SABRE [46]) for single-node quantum programs.

Diadamo et al. [6] consider specific optimizations of inter-node controlled-unitary blocks.

However, their work requires specialized circuit representations and cannot optimize gen-

eral quantum programs. All these works do not consider the burst and collective com-

munication proposed in the dissertation and thus cannot achieve high communication

171

Related Work Chapter 8

throughput.

Another line of work executes distributed quantum programs without using inter-node

quantum communication protocols [131, 132]. These works run large quantum circuits in

a divide-and-conquer way. To overcome the expressibility loss due to no inter-node com-

munication, these works rely heavily on classical post-processing techniques and cannot

be extended to large-scale quantum programs. Häner et al. [68] present a DQC pro-

gramming framework that optimizes collective operations as library functions. However,

their work does not consider the program context and the underlying hardware topol-

ogy, which are essential for communication optimizations proposed in the dissertation.

Further, their definition of collective communication in DQC is based on the classical

counterpart defined in MPI [133] and is only a subset of the proposed definition in the

dissertation.

There are also works trying to reduce the communication overhead of distributed

quantum programs by exploring various circuit partition/qubit mapping techniques [5, 67,

66, 64, 65]. These works are orthogonal and can be merged into the proposed framework

in the dissertation.

8.2 QEC Code Synthesis

Compiling a general quantum circuit onto a quantum device with limited qubit con-

nectivity has been widely studied [90, 91, 92, 93, 94, 95, 96, 97]. However, these general

quantum compilers are not suitable for compiling and synthesizing QEC codes to quan-

tum hardware. Firstly, they don’t distinguish data qubits from other qubits. They may

move data qubits frequently, invalidating logical operations designed for a fixed data

qubit layout [20]. Secondly, the SWAP gates they use to overcome the connectivity issue

of the SC device make the compiled measurement circuits too error-prone for practical

172

Related Work Chapter 8

error correction. Finally, they do not account for the constraints imposed by QEC codes,

e.g., the order of CNOT gates between syndrome qubits and data qubits [20].

As for the compilation over QEC codes, most circuit compilation works on QEC codes

are at the higher logical circuit level. Javadi et al. [86] and Hua et al. [87] studied the

routing congestion in circuits over the surface code. Ding et al. [84] and Paler et al. [85]

studied the compilation of magic state distillation circuits with existing surface code

logical operations for realizing a universal quantum gate set. Lao et al. [134] proposed

a mapping process to execute lattice surgery-based quantum circuits on surface code

architectures. These works assume that the ideal surface code architecture is already

available and do not consider the problem of synthesizing surface codes on hardware. In

contrast, this dissertation mainly focuses on building the underlying QEC-based quan-

tum computing platform upon diverse quantum hardware. Also, the proposed compiler

optimizations for QEC-based programs are designed for the code switching operation

which is not considered in existing works.

As for the architecture design, most efforts on QEC code synthesis are still on looking

for an hardware architecture that is suitable for the target code. Reichardt [135] proposed

three possible planar qubit layouts for synthesizing the seven-qubit color code. Cham-

berland et al. [34] proposed a trivalent architecture where it is straightforward to allocate

data qubits of triangular color codes. Chamberland et al. [30] introduced heavy architec-

tures which reduce qubit frequency collisions while still providing support for the surface

code synthesis. Instead, the proposed framework in the dissertation can automatically

synthesize QEC codes onto various quantum hardware and avoid manually redesigning

code protocols for the ever-changing quantum device architecture. Further, those works

cannot be simply extended to support the code switching operation which involves dy-

namic conversion between two QEC codes, let alone providing compiler optimization and

architecture-compiler co-design for code switching.

173

Related Work Chapter 8

Another line of research targets compiling stabilizer measurement circuits to existing

SC architectures. Lao and Almudever [31] proposed the flag-bridge circuit which can

measure the stabilizer of the Steane code on the IBM-20 device. However, their work

relies on manually appointed data qubits and bridge qubits, and focuses on the IBM-

20 device. Methods in this category are orthogonal and can be easily merged into the

proposed framework in the dissertation.

8.3 Verification of Quantum Programs

The dissertation is also related to works on quantum programming language and ver-

ification, especially the quantum Hoare logic. The comparison focuses on the constructs

in quantum program languages and proof systems.

From the view of operator and state representation, existing quantum programming

language works can be primarily divided into two categories. The first category of

works [120, 121, 122, 123, 136, 137, 138, 139, 140] uses the general Hermitian matrix

and density matrix to represent quantum operators and states. While being general and

compatible with quantum measurements and branching statements, this representation

may cause exponential computational/storage overhead to track the evolution of quan-

tum states under quantum operators if the number of involved qubits is large, depending

on the symbolization of the Hermitian and density matrix adopted. This category of

languages is not suitable to express QEC programs where the QEC operator will involve

many qubits.

The second category of works [141, 142] adopts the path-sum representation for quan-

tum operators and the statevector description for quantum states. The path-sum repre-

sentation can greatly reduce the computation cost of reasoning over the quantum pro-

gram. Unfortunately, this representation is only applicable to quantum circuits. QEC

174

Related Work Chapter 8

codes, in contrast, also contain classical-quantum procedures, e.g., the logical operation

based on magic states. While a classical-quantum procedure can be converted into a pure

quantum circuit by the deferred measurement principle [1], verifications of the classical-

quantum procedure used in QEC and the associated quantum circuit are not equivalent

as those two programs behave differently when quantum error presents: the classical

part of a classical-quantum procedure is still exact under quantum errors while all parts

of a quantum circuit would be potentially affected by quantum errors. Moreover, the

path-sum representation still cannot overcome the exponential storage overhead induced

by highly-entangled quantum states. [143] adopts a hybrid representation for quantum

circuits by using both the matrix and path-sum representation. Once again, this hybrid

representation is not a fit for QEC programs for the reasons just discussed. As a compar-

ison, the framework proposed in the dissertation adopts the stabilizer representation for

quantum operators, allowing a compact description of QEC-based programs and efficient

tracking of quantum states.

From the perspective of predicate logic, existing works can be primarily divided into

two categories. The first category of verification works [119, 120, 121, 122, 123, 124] ex-

ploits expectation-based predicates. The extent a quantum state ρ satisfies the quantum

predicate O is measured by Tr(Oρ). Based on such predicates, Ying et al. [120] proposed

a sound and relatively complete Hoare logic for their quantum while-language which is

further extended to handle parallel quantum programs [121], quantum programs with

classical variables [122] and distributed quantum programs [123]. However, this type of

quantum Hoare logic does not fit QEC programs where it is required to know exactly

whether a program state is legal instead of a satisfactory probability, for the purpose

of quantum error correction. Besides, this type of proof system may cause significant

computation overhead when O and ρ are large matrices and involve exponential number

of terms.

175

Related Work Chapter 8

The second category of verification works [125, 136, 137, 138, 139] focuses on the bi-

valued satisfactory relation between a quantum program state and a quantum predicate:

satisfied or not satisfied, just as in classical predicate logic. One emerging research line

lying in this category is to use projection-based predicates [125, 139]. With projection-

based predicates, Unruh [139] proposed a quantum Hoare logic with ghost variables to

enhance the expressive power of the quantum assertion language. The framework pro-

posed in the dissertation also uses projection-based predicates but these predicates are

described in the form of stabilizer expressions for an efficient reasoning with stabilizer

variables. Though seeming similar, the ghost variable proposed by Unruh [139] is con-

ceptually different from the stabilizer variable in this work. The ghost variable is only

used in predicates and does not owe any QEC-related semantics. Instead, the stabilizer

variable has a clear semantics: it represents a stabilizer measurement circuit.

Rand et al. [144, 145, 146] develop an elegant type-checking system for general quan-

tum programs based on the stabilizer formalism. Although this work is also motivated

by high-level insights in utilizing stabilizer formalism [147], the dissertation differs signifi-

cantly in the overall optimization goal and the entire design framework. In addition, their

works only consider quantum circuits and cannot deal with branching statements which

are indispensable for QEC programs. In contrast, the proposed framework can handle

branching statements by incorporating stabilizer variables in the design of quantum pred-

icate logic. Last but not least, the proposed framework also develops a compact language

for QEC programs while their work follows the vanilla quantum circuit language [1]. Yu

et al. [148] develop an abstract interpretation technique for quantum computing. How-

ever, their technique has strict constraint on assertions and cannot be directly applied to

the QEC verification. Finally, there are also other work which develop quantum predicate

logic in debugging and testing (run-time analysis) [124, 125]. Those works are out of the

scope of the dissertation which is for the verification (static analysis) of QEC codes.

176

Chapter 9

Conclusion and Discussion

The dissertation proposes a large-scale, fault-tolerant and computationally-efficient quan-

tum computing framework by orchestrating architecture, compiler and programming lan-

guage efforts. The proposed computing framework can speedup the way towards demon-

strating practical quantum advantage. The proposed framework is both highly scalable

and automated, and is the first systematic attempt that formalizes and optimizes design

problems for large-scale quantum computing. The proposed framework can be used to

automatically configure an efficient and reliable execution of a given quantum applica-

tion on a specific quantum device architecture. A typical workflow can be: a) inspecting

the quantum application and quantum hardware to determine the optimal QEC-based

architecture design that guarantees the required noise-resilience; b) optimizing the com-

munication efficiency between inter-node error-corrected qubits with the proposed sys-

tem design; c) optimizing intra-node QEC-based quantum operations; d) fine-tuning the

QEC-based architecture and the communication efficiency by the proposed co-designs.

Although The proposed framework significantly surpasses existing works in improving

the communication efficiency and noise resilience of large-scale quantum applications,

there is still much space left for potential improvements. Specifically, it is promising to

177

explore the following directions:

Improving QECC’s on-device encoding. For better scalability, the proposed frame-

work adopts a greedy strategy when constructing error-corrected logical qubits. However,

when the device architecture becomes complicated, the proposed framework may not gen-

erate the optimal data qubit layout for logical qubits. The first way to solve the problem

is to incorporate more device information like topological symmetries into the logical

qubit design; the second way is to use advanced optimization algorithms like simulated

annealing or neural network to discover better on-device encoding of logical qubits.

Adapting communication optimization to higher-level program abstraction.

This proposed framework works with the low-level circuit language to maintain com-

patibility with existing compiling flows. However, if higher-level program information is

provided, more aggressive communication optimization could be enabled. It is promising

to extend existing quantum programming languages to provide burst/collective commu-

nication primitives which could expose extra burst/collective communication patterns

that are difficult to uncover at a low level.

Co-designing DQC architecture and software. For a wide applicability of the

proposed framework, the dissertation assumes a general DQC architecture/system. It is

possible to use the proposed framework to guide the DQC network design: modifying

the network topology and inspecting the communication cost of distributed programs

compiled by the proposed framework on the modified topology.

Co-designing communication optimizations with QECC synthesis. To ensure

the generality of the proposed framework, the dissertation makes few assumptions for

the underlying QEC structure of the DQC architecture. For specific QEC, it is possible

to optimize the communication cost of primitive QEC operations, e.g., logical operations

(over logical qubits) and stabilizer measurements.

178

Bibliography

[1] M. A. Nielsen and I. Chuang, Quantum computation and quantum information,
2002.

[2] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, Quantum
computational chemistry, Reviews of Modern Physics 92 (2020), no. 1 015003.

[3] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
Quantum machine learning, Nature 549 (2017), no. 7671 195–202.

[4] J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2 (2018) 79.

[5] P. Andr’es-Mart’inez and C. Heunen, Automated distribution of quantum circuits
via hypergraph partitioning, Physical Review A (2019).

[6] S. Diadamo, M. Ghibaudi, and J. R. Cruise, Distributed quantum computing and
network control for accelerated vqe, IEEE Transactions on Quantum Engineering
2 (2021) 1–21.

[7] S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and
R. Hanson, Qubit teleportation between non-neighbouring nodes in a quantum
network, Nature 605 (2022) 663–668.

[8] N. Laracuente, K. N. Smith, P. Imany, K. L. Silverman, and F. Chong,
Short-range microwave networks to scale superconducting quantum computation,
ArXiv abs/2201.08825 (2022).

[9] A. Wu, H. Zhang, G. Li, A. Shabani, Y. Xie, and Y. Ding, Autocomm: A
framework for enabling efficient communication in distributed quantum programs,
arXiv preprint arXiv:2207.11674 (2022).

[10] A. Wu, Y. Ding, and A. Li, Qucomm: Optimizing collective communication for
distributed quantum computing, in 2023 56th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2023.

[11] A. Wu, G. Li, H. Zhang, G. G. Guerreschi, Y. Ding, and Y. Xie, A synthesis
framework for stitching surface code with superconducting quantum devices,

179

Proceedings of the 49th Annual International Symposium on Computer
Architecture (2022).

[12] A. Wu, K. Yin, A. W. Cross, A. Li, and Y. Ding, Enabling full-stack quantum
computing with changeable error-corrected qubits, arXiv preprint
arXiv:2305.07072 (2023).

[13] A. Wu, G. Li, H. Zhang, G. G. Guerreschi, Y. Xie, and Y. Ding, Qecv: Quantum
error correction verification, arXiv preprint arXiv:2111.13728 (2021).

[14] J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio, Optimal local
implementation of nonlocal quantum gates, Physical Review A 62 (2000), no. 5
052317.

[15] P. W. Shor, Scheme for reducing decoherence in quantum computer memory,
Physical review A 52 (1995), no. 4 R2493.

[16] A. M. Steane, Error correcting codes in quantum theory, Physical Review Letters
77 (1996), no. 5 793.

[17] A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist,
Physical Review A 54 (1996), no. 2 1098.

[18] A. Steane, Multiple-particle interference and quantum error correction,
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences 452 (1996), no. 1954 2551–2577.

[19] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary, arXiv
preprint quant-ph/9811052 (1998).

[20] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes:
Towards practical large-scale quantum computation, Physical Review A 86 (2012),
no. 3 032324.

[21] D. Gottesman, Class of quantum error-correcting codes saturating the quantum
hamming bound, Physical Review A 54 (1996), no. 3 1862.

[22] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. Sloane, Quantum error
correction and orthogonal geometry, Physical Review Letters 78 (1997), no. 3 405.

[23] E. Knill, R. Laflamme, and L. Viola, Theory of quantum error correction for
general noise, Physical Review Letters 84 (2000), no. 11 2525.

[24] B. Eastin and E. Knill, Restrictions on transversal encoded quantum gate sets,
Physical Review Letters 102 (Mar, 2009) 110502.

180

[25] S. Bravyi and A. Kitaev, Universal quantum computation with ideal clifford gates
and noisy ancillas, Phys. Rev. A 71 (Feb, 2005) 022316.

[26] J. T. Anderson, G. Duclos-Cianci, and D. Poulin, Fault-tolerant conversion
between the steane and reed-muller quantum codes, Phys. Rev. Lett. 113 (Aug,
2014) 080501.

[27] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of universality: A
comparative study of the overhead of state distillation and code switching with
color codes, PRX Quantum 2 (Jun, 2021) 020341.

[28] M. S. ANIS, Abby-Mitchell, H. Abraham, AduOffei, R. Agarwal, G. Agliardi,
M. Aharoni, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, M. Amy,
S. Anagolum, Anthony-Gandon, E. Arbel, A. Asfaw, A. Athalye, A. Avkhadiev,
C. Azaustre, P. BHOLE, A. Banerjee, S. Banerjee, W. Bang, A. Bansal,
P. Barkoutsos, A. Barnawal, G. Barron, G. S. Barron, L. Bello, Y. Ben-Haim,
M. C. Bennett, D. Bevenius, D. Bhatnagar, A. Bhobe, P. Bianchini, L. S. Bishop,
C. Blank, S. Bolos, S. Bopardikar, S. Bosch, S. Brandhofer, Brandon, S. Bravyi,
N. Bronn, Bryce-Fuller, D. Bucher, A. Burov, F. Cabrera, P. Calpin,
L. Capelluto, J. Carballo, G. Carrascal, A. Carriker, I. Carvalho, A. Chen, C.-F.
Chen, E. Chen, J. C. Chen, R. Chen, F. Chevallier, K. Chinda, R. Cholarajan,
J. M. Chow, S. Churchill, CisterMoke, C. Claus, C. Clauss, C. Clothier,
R. Cocking, R. Cocuzzo, J. Connor, F. Correa, Z. Crockett, A. J. Cross, A. W.
Cross, S. Cross, J. Cruz-Benito, C. Culver, A. D. Córcoles-Gonzales, N. D,
S. Dague, T. E. Dandachi, A. N. Dangwal, J. Daniel, M. Daniels, M. Dartiailh,
A. R. Davila, F. Debouni, A. Dekusar, A. Deshmukh, M. Deshpande, D. Ding,
J. Doi, E. M. Dow, E. Drechsler, E. Dumitrescu, K. Dumon, I. Duran,
K. EL-Safty, E. Eastman, G. Eberle, A. Ebrahimi, P. Eendebak, D. Egger, ElePT,
Emilio, A. Espiricueta, M. Everitt, D. Facoetti, Farida, P. M. Fernández,
S. Ferracin, D. Ferrari, A. H. Ferrera, R. Fouilland, A. Frisch, A. Fuhrer,
B. Fuller, M. GEORGE, J. Gacon, B. G. Gago, C. Gambella, J. M. Gambetta,
A. Gammanpila, L. Garcia, T. Garg, S. Garion, J. R. Garrison, J. Garrison,
T. Gates, L. Gil, A. Gilliam, A. Giridharan, J. Gomez-Mosquera, Gonzalo,
S. de la Puente González, J. Gorzinski, I. Gould, D. Greenberg, D. Grinko,
W. Guan, D. Guijo, J. A. Gunnels, H. Gupta, N. Gupta, J. M. Günther,
M. Haglund, I. Haide, I. Hamamura, O. C. Hamido, F. Harkins, K. Hartman,
A. Hasan, V. Havlicek, J. Hellmers, Ł. Herok, S. Hillmich, H. Horii,
C. Howington, S. Hu, W. Hu, J. Huang, R. Huisman, H. Imai, T. Imamichi,
K. Ishizaki, Ishwor, R. Iten, T. Itoko, A. Ivrii, A. Javadi, A. Javadi-Abhari,
W. Javed, Q. Jianhua, M. Jivrajani, K. Johns, S. Johnstun, Jonathan-Shoemaker,
JosDenmark, JoshDumo, J. Judge, T. Kachmann, A. Kale, N. Kanazawa,
J. Kane, Kang-Bae, A. Kapila, A. Karazeev, P. Kassebaum, T. Kehrer, J. Kelso,
S. Kelso, V. Khanderao, S. King, Y. Kobayashi, Kovi11Day, A. Kovyrshin,

181

R. Krishnakumar, V. Krishnan, K. Krsulich, P. Kumkar, G. Kus, R. LaRose,
E. Lacal, R. Lambert, H. Landa, J. Lapeyre, J. Latone, S. Lawrence, C. Lee,
G. Li, J. Lishman, D. Liu, P. Liu, Lolcroc, A. K. M, L. Madden, Y. Maeng,
S. Maheshkar, K. Majmudar, A. Malyshev, M. E. Mandouh, J. Manela, Manjula,
J. Marecek, M. Marques, K. Marwaha, D. Maslov, P. Maszota, D. Mathews,
A. Matsuo, F. Mazhandu, D. McClure, M. McElaney, C. McGarry, D. McKay,
D. McPherson, S. Meesala, D. Meirom, C. Mendell, T. Metcalfe, M. Mevissen,
A. Meyer, A. Mezzacapo, R. Midha, D. Miller, Z. Minev, A. Mitchell, N. Moll,
A. Montanez, G. Monteiro, M. D. Mooring, R. Morales, N. Moran, D. Morcuende,
S. Mostafa, M. Motta, R. Moyard, P. Murali, J. Müggenburg, T. NEMOZ,
D. Nadlinger, K. Nakanishi, G. Nannicini, P. Nation, E. Navarro, Y. Naveh, S. W.
Neagle, P. Neuweiler, A. Ngoueya, T. Nguyen, J. Nicander, Nick-Singstock,
P. Niroula, H. Norlen, NuoWenLei, L. J. O’Riordan, O. Ogunbayo, P. Ollitrault,
T. Onodera, R. Otaolea, S. Oud, D. Padilha, H. Paik, S. Pal, Y. Pang,
A. Panigrahi, V. R. Pascuzzi, S. Perriello, E. Peterson, A. Phan, K. Pilch,
F. Piro, M. Pistoia, C. Piveteau, J. Plewa, P. Pocreau, A. Pozas-Kerstjens,
R. Pracht, M. Prokop, V. Prutyanov, S. Puri, D. Puzzuoli, J. Pérez, Quant02,
Quintiii, R. I. Rahman, A. Raja, R. Rajeev, I. Rajput, N. Ramagiri, A. Rao,
R. Raymond, O. Reardon-Smith, R. M.-C. Redondo, M. Reuter, J. Rice,
M. Riedemann, Rietesh, D. Risinger, M. L. Rocca, D. M. Rodríguez,
RohithKarur, B. Rosand, M. Rossmannek, M. Ryu, T. SAPV, N. R. C. Sa,
A. Saha, A. Ash-Saki, S. Sanand, M. Sandberg, H. Sandesara, R. Sapra,
H. Sargsyan, A. Sarkar, N. Sathaye, B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L.
Scholten, E. Schoute, M. Schulterbrandt, J. Schwarm, J. Seaward, Sergi, I. F.
Sertage, K. Setia, F. Shah, N. Shammah, R. Sharma, Y. Shi, J. Shoemaker,
A. Silva, A. Simonetto, D. Singh, D. Singh, P. Singh, P. Singkanipa, Y. Siraichi,
Siri, J. Sistos, I. Sitdikov, S. Sivarajah, M. B. Sletfjerding, J. A. Smolin,
M. Soeken, I. O. Sokolov, I. Sokolov, V. P. Soloviev, SooluThomas, Starfish,
D. Steenken, M. Stypulkoski, A. Suau, S. Sun, K. J. Sung, M. Suwama,
O. Słowik, H. Takahashi, T. Takawale, I. Tavernelli, C. Taylor, P. Taylour,
S. Thomas, K. Tian, M. Tillet, M. Tod, M. Tomasik, C. Tornow, E. de la Torre,
J. L. S. Toural, K. Trabing, M. Treinish, D. Trenev, TrishaPe, F. Truger,
G. Tsilimigkounakis, D. Tulsi, W. Turner, Y. Vaknin, C. R. Valcarce, F. Varchon,
A. Vartak, A. C. Vazquez, P. Vijaywargiya, V. Villar, B. Vishnu, D. Vogt-Lee,
C. Vuillot, J. Weaver, J. Weidenfeller, R. Wieczorek, J. A. Wildstrom, J. Wilson,
E. Winston, WinterSoldier, J. J. Woehr, S. Woerner, R. Woo, C. J. Wood,
R. Wood, S. Wood, J. Wootton, M. Wright, L. Xing, J. YU, B. Yang, U. Yang,
J. Yao, D. Yeralin, R. Yonekura, D. Yonge-Mallo, R. Yoshida, R. Young, J. Yu,
L. Yu, C. Zachow, L. Zdanski, H. Zhang, I. Zidaru, C. Zoufal, aeddins ibm,
alexzhang13, b63, bartek bartlomiej, bcamorrison, brandhsn, charmerDark,
deeplokhande, dekel.meirom, dime10, dlasecki, ehchen, fanizzamarco, fs1132429,
gadial, galeinston, georgezhou20, georgios ts, gruu, hhorii, hykavitha, itoko,

182

jeppevinkel, jessica angel7, jezerjojo14, jliu45, jscott2, klinvill, krutik2966, ma5x,
michelle4654, msuwama, nico lgrs, ntgiwsvp, ordmoj, sagar pahwa,
pritamsinha2304, ryancocuzzo, saktar unr, saswati qiskit, septembrr, sethmerkel,
sg495, shaashwat, smturro2, sternparky, strickroman, tigerjack, tsura crisaldo,
upsideon, vadebayo49, welien, willhbang, wmurphy collabstar, yang.luh, and
M. Čepulkovskis, Qiskit: An open-source framework for quantum computing, 2021.

[29] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and
C. Jurczak, Quantum computing with neutral atoms, Quantum 4 (2020) 327.

[30] C. Chamberland, G. Zhu, T. J. Yoder, J. Hertzberg, and A. Cross, Topological
and subsystem codes on low-degree graphs with flag qubits, Physical Review X 10
(Jan, 2020) 011022.

[31] L. Lao and C. G. Almudéver, Fault-tolerant quantum error correction on
near-term quantum processors using flag and bridge qubits, Physical Review A
101 (Mar, 2020) 032333.

[32] R. Chao and B. Reichardt, Flag fault-tolerant error correction for any stabilizer
code, arXiv: Quantum Physics (2019).

[33] C. Chamberland and M. Beverland, Flag fault-tolerant error correction with
arbitrary distance codes, arXiv: Quantum Physics 2 (2017) 53.

[34] C. Chamberland, A. Kubica, T. J. Yoder, and G. Zhu, Triangular color codes on
trivalent graphs with flag qubits, arXiv: Quantum Physics 22 (Feb, 2019) 023019.

[35] A. Javadi-Abhari, P. Gokhale, A. Holmes, D. Franklin, K. R. Brown,
M. Martonosi, and F. T. Chong, Optimized surface code communication in
superconducting quantum computers, in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 692–705, 2017.

[36] D. Gottesman and I. L. Chuang, Quantum teleportation is a universal
computational primitive, arXiv preprint quant-ph/9908010 (1999).

[37] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer, SIAM review 41 (1999), no. 2 303–332.

[38] L. K. Grover, A fast quantum mechanical algorithm for database search, in
Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pp. 212–219, 1996.

[39] K. R. Brown, J. Kim, and C. Monroe, Co-designing a scalable quantum computer
with trapped atomic ions, npj Quantum Information 2 (2016), no. 1 1–10.

183

[40] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, Trapped-ion
quantum computing: Progress and challenges, Applied Physics Reviews 6 (2019),
no. 2 021314.

[41] M. Brink, J. M. Chow, J. Hertzberg, E. Magesan, and S. Rosenblatt, Device
challenges for near term superconducting quantum processors: frequency
collisions, in 2018 IEEE International Electron Devices Meeting (IEDM), pp. 6–1,
IEEE, 2018.

[42] J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong, Time-sliced quantum
circuit partitioning for modular architectures, Proceedings of the 17th ACM
International Conference on Computing Frontiers (2020).

[43] C. Young, A. Safari, P. Huft, J. Zhang, E. Oh, R. Chinnarasu, and M. Saffman,
An architecture for quantum networking of neutral atom processors, Applied
Physics B 128 (2022).

[44] A. Yimsiriwattana and S. J. Lomonaco Jr, Generalized ghz states and distributed
quantum computing, arXiv preprint quant-ph/0402148 (2004).

[45] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi, Compiler design for
distributed quantum computing, IEEE Transactions on Quantum Engineering 2
(2021) 1–20.

[46] G. Li, Y. Ding, and Y. Xie, Tackling the qubit mapping problem for nisq-era
quantum devices, Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (2019).

[47] M. Amy and V. Gheorghiu, staq—a full-stack quantum processing toolkit, arXiv:
Quantum Physics (2019).

[48] N. Khammassi, I. Ashraf, J. van Someren, R. Nane, A. M. Krol, M. A. Rol,
L. Lao, K. Bertels, and C. G. Almudever, Openql : A portable quantum
programming framework for quantum accelerators, ACM J. Emerg. Technol.
Comput. Syst. 18 (2022) 13:1–13:24.

[49] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan,
t|ket〉: a retargetable compiler for nisq devices, Quantum Science and Technology
(2020).

[50] M. Van Steen and A. Tanenbaum, Distributed systems principles and paradigms,
Network 2 (2002) 28.

[51] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, RevLib: An
online resource for reversible functions and reversible circuits, in Int’l Symp. on
Multi-Valued Logic, pp. 220–225, 2008. RevLib is available at
http://www.revlib.org.

184

[52] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization
algorithm, arXiv: Quantum Physics (2014).

[53] Y. S. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. L. Maslov, Automated
optimization of large quantum circuits with continuous parameters, npj Quantum
Information 4 (May, 2017) 1–12.

[54] N. Isailovic, Y. Patel, M. Whitney, and J. Kubiatowicz, Interconnection networks
for scalable quantum computers, in 33rd International Symposium on Computer
Architecture (ISCA’06), pp. 366–377, IEEE, 2006.

[55] R. S. Correa and J. P. David, Ultra-low latency communication channels for
fpga-based hpc cluster, Integration 63 (2018) 41–55.

[56] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D.
Oliver, A quantum engineer’s guide to superconducting qubits, Applied Physics
Reviews 6 (2019), no. 2 021318.

[57] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers, Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (2019).

[58] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. Brandao, D. A. Buell, et. al., Quantum supremacy using a
programmable superconducting processor, Nature 574 (2019), no. 7779 505–510.

[59] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin,
D. Wu, X. Ding, Y. Hu, et. al., Quantum computational advantage using photons,
Science 370 (2020), no. 6523 1460–1463.

[60] M. Pompili, S. L. Hermans, S. Baier, H. K. Beukers, P. C. Humphreys, R. N.
Schouten, R. F. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse,
et. al., Realization of a multinode quantum network of remote solid-state qubits,
Science 372 (2021), no. 6539 259–264.

[61] S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin,
and G. Rempe, A quantum-logic gate between distant quantum-network modules,
Science 371 (2021), no. 6529 614–617.

[62] M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, Quantum networks
based on color centers in diamond, Journal of Applied Physics 130 (2021), no. 7
070901.

185

[63] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden, D. J.
Shepherd, and M. J. Stather, Efficient distributed quantum computing,
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 469 (2013).

[64] M. Z. Moghadam, M. Houshmand, and M. Houshmand, Optimizing teleportation
cost in distributed quantum circuits, International Journal of Theoretical Physics
57 (2016) 848–861.

[65] Z. Davarzani, M. Z. Moghadam, M. Houshmand, and M. Nouri, A dynamic
programming approach for distributing quantum circuits by bipartite graphs,
Quantum Inf. Process. 19 (2020) 360.

[66] O. Daei, K. Navi, and M. Zomorodi-Moghadam, Optimized quantum circuit
partitioning, International Journal of Theoretical Physics 59 (2020), no. 12
3804–3820.

[67] D. Dadkhah, M. Zomorodi, S. E. Hosseini, P. Plawiak, and X. Zhou, Reordering
and partitioning of distributed quantum circuits, IEEE Access 10 (2022)
70329–70341.

[68] T. Häner, D. S. Steiger, T. Hoefler, and M. Troyer, Distributed quantum
computing with qmpi, Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2021).

[69] S. L. Braunstein, Quantum error correction for communication with linear optics,
Nature 394 (1998), no. 6688 47–49.

[70] J.-W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, Entanglement purification for
quantum communication, Nature 410 (2001), no. 6832 1067–1070.

[71] T. Park and C. Y. Lee, Algorithms for partitioning a graph, Computers &
Industrial Engineering 28 (1995), no. 4 899–909.

[72] R. V. Meter, W. Munro, K. Nemoto, and K. M. Itoh, Arithmetic on a
distributed-memory quantum multicomputer, ACM Journal on Emerging
Technologies in Computing Systems (JETC) 3 (2008), no. 4 1–23.

[73] M. Sarvaghad-Moghaddam and M. Zomorodi, A general protocol for distributed
quantum gates, Quantum Information Processing 20 (2021), no. 8 1–14.

[74] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter, Elementary gates for quantum
computation, Physical review A 52 (1995), no. 5 3457.

186

[75] Y. Zhao, G. Zhao, and C. Qiao, E2e fidelity aware routing and purification for
throughput maximization in quantum networks, in IEEE INFOCOM 2022-IEEE
Conference on Computer Communications, pp. 480–489, IEEE, 2022.

[76] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn,
Linear optical quantum computing with photonic qubits, Reviews of Modern
Physics 79 (2007) 135–174.

[77] D. P. DiVincenzo and Ibm, The physical implementation of quantum computation,
Protein Science 48 (2000) 771–783.

[78] T. Asselmeyer-Maluga, 3d topological quantum computing, International Journal
of Quantum Information (2021).

[79] J. Kelly, “A Preview of Bristlecone, Google’s New Quantum Processor.”
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html,
2017.

[80] H. Paik, D. I. Schuster, L. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R.
Johnson, M. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and
R. J. Schoelkopf, Observation of high coherence in josephson junction qubits
measured in a three-dimensional circuit qed architecture., Physical review letters
107 24 (2011) 240501.

[81] Y. Chen, C. J. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly,
B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant,
J. Mutus, P. J. J. O’Malley, C. Quintana, D. T. Sank, A. Vainsencher, J. Wenner,
T. White, M. R. Geller, A. N. Cleland, and J. M. Martinis, Qubit architecture
with high coherence and fast tunable coupling., Physical review letters 113 22
(2014) 220502.

[82] E. J. Zhang, S. Srinivasan, N. Sundaresan, D. F. Bogorin, Y. Martin, J. B.
Hertzberg, J. Timmerwilke, E. J. Pritchett, J.-B. Yau, C. Wang, et. al.,
High-fidelity superconducting quantum processors via laser-annealing of transmon
qubits, arXiv preprint arXiv:2012.08475 (2020).

[83] A. Gold, A. Stockklauser, M. Reagor, J.-P. Paquette, A. Bestwick, C. J.
Winkleblack, B. Scharmann, F. Oruc, and B. Langley, Experimental
demonstration of entangling gates across chips in a multi-core qpu, Bulletin of the
American Physical Society (2021).

[84] Y. Ding, A. Holmes, A. JavadiAbhari, D. Franklin, M. Martonosi, and F. T.
Chong, Magic-state functional units: Mapping and scheduling multi-level
distillation circuits for fault-tolerant quantum architectures, 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO) (2018)
828–840.

187

[85] A. Paler, Surfbraid: A concept tool for preparing and resource estimating quantum
circuits protected by the surface code, ArXiv abs/1902.02417 (2019).

[86] A. JavadiAbhari, P. Gokhale, A. Holmes, D. Franklin, K. R. Brown,
M. Martonosi, and F. T. Chong, Optimized surface code communication in
superconducting quantum computers, 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2017) 692–705.

[87] F. Hua, Y.-H. Chen, Y. Jin, C. Zhang, A. B. Hayes, Y. Zhang, and E. Z. Zhang,
Autobraid: A framework for enabling efficient surface code communication in
quantum computing, MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture (2021).

[88] S. S. Tannu, Z. Myers, P. J. Nair, D. M. Carmean, and M. K. Qureshi, Taming
the instruction bandwidth of quantum computers via hardware-managed error
correction, 2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO) (2017) 679–691.

[89] G. Li, Y. Ding, and Y. Xie, Towards efficient superconducting quantum processor
architecture design, Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (2020).

[90] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers, in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
pp. 1015–1029, 2019.

[91] B. Tan and J. Cong, Optimal layout synthesis for quantum computing, in 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD),
pp. 1–9, IEEE, 2020.

[92] A. Zulehner, A. Paler, and R. Wille, An efficient methodology for mapping
quantum circuits to the ibm qx architectures, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38 (2018), no. 7
1226–1236.

[93] R. Wille, L. Burgholzer, and A. Zulehner, Mapping quantum circuits to ibm qx
architectures using the minimal number of swap and h operations, in 2019 56th
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2019.

[94] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira, Qubit
allocation, in Proceedings of the 2018 International Symposium on Code
Generation and Optimization, pp. 113–125, 2018.

188

[95] W. Finigan, M. Cubeddu, T. Lively, J. Flick, and P. Narang, Qubit allocation for
noisy intermediate-scale quantum computers, arXiv preprint arXiv:1810.08291
(2018).

[96] G. Li, Y. Ding, and Y. Xie, Tackling the qubit mapping problem for nisq-era
quantum devices, in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems,
pp. 1001–1014, 2019.

[97] S. S. Tannu and M. K. Qureshi, Mitigating measurement errors in quantum
computers by exploiting state-dependent bias, in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 279–290, 2019.

[98] R. Chao and B. Reichardt, Fault-tolerant quantum computation with few qubits,
npj Quantum Information 4 (2017) 1–8.

[99] C. Gidney, Stim: a fast stabilizer circuit simulator, Quantum 5 (July, 2021) 497.

[100] O. Higgott, PyMatching: A python package for decoding quantum codes with
minimum-weight perfect matching, arXiv preprint arXiv:2105.13082 (2021).

[101] P. Jurcevic, A. Javadi-Abhari, L. Bishop, I. Lauer, D. Bogorin, M. Brink,
L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa, A. Kandala, G. Keefe, K. D.
Krsulich, W. Landers, E. Lewandowski, D. McClure, G. Nannicini, A. Narasgond,
H. Nayfeh, E. Pritchett, M. Rothwell, S. Srinivasan, N. Sundaresan, C. Wang,
K. X. Wei, C. J. Wood, J. Yau, E. Zhang, O. Dial, J. Chow, and J. Gambetta,
Demonstration of quantum volume 64 on a superconducting quantum computing
system, Quantum Science & Technology 6 (2020).

[102] A. Kandala, K. X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G. A. Keefe,
D. Klaus, O. Dial, and D. C. McKay, Demonstration of a high-fidelity cnot gate
for fixed-frequency transmons with engineered zz suppression, Phys. Rev. Lett.
127 (Sep, 2021) 130501.

[103] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (aug,
2018) 79.

[104] N. Sundaresan, T. J. Yoder, Y. Kim, M. Li, E. H. Chen, G. Harper, T. Thorbeck,
A. W. Cross, A. D. Córcoles, and M. Takita, Matching and maximum likelihood
decoding of a multi-round subsystem quantum error correction experiment, arXiv
preprint arXiv:2203.07205 (2022).

[105] G. Q. AI, Suppressing quantum errors by scaling a surface code logical qubit,
Nature 614 (2023), no. 7949 676–681.

189

[106] C. Ryan-Anderson, N. Brown, M. Allman, B. Arkin, G. Asa-Attuah, C. Baldwin,
J. Berg, J. Bohnet, S. Braxton, N. Burdick, et. al., Implementing fault-tolerant
entangling gates on the five-qubit code and the color code, arXiv preprint
arXiv:2208.01863 (2022).

[107] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings,
S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen, M. Müller,
A. Blais, C. Eichler, and A. Wallraff, Realizing repeated quantum error correction
in a distance-three surface code, Nature 605 (May, 2022) 669–674.

[108] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu, D. Biswas, M. Newman,
M. Li, K. R. Brown, M. Cetina, et. al., Fault-tolerant operation of a quantum
error-correction code, arXiv preprint arXiv:2009.11482 (2020).

[109] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl, Quantum circuits
for isometries, Phys. Rev. A 93 (Mar, 2016) 032318.

[110] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, Qasmbench: A low-level quantum
benchmark suite for nisq evaluation and simulation, ACM Transactions on
Quantum Computing (2022).

[111] C. Chamberland and T. Jochym-O’Connor, Error suppression via complementary
gauge choices in reed-muller codes, Quantum Science and Technology 2 (2017),
no. 3 035008.

[112] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, Revlib: An online
resource for reversible functions and reversible circuits, in 38th International
Symposium on Multiple Valued Logic (ismvl 2008), pp. 220–225, IEEE, 2008.

[113] A. Kissinger and J. van de Wetering, Pyzx: Large scale automated diagrammatic
reasoning, arXiv preprint arXiv:1904.04735 (2019).

[114] C. Chamberland and P. Ronagh, Deep neural decoders for near term fault-tolerant
experiments, Quantum Science and Technology 3 (jul, 2018) 044002.

[115] N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd,
and Y. Yamamoto, Layered architecture for quantum computing, Physical Review
X 2 (2012), no. 3 031007.

[116] Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro,
A. Dunsworth, E. Jeffrey, J. Mutus, et. al., Fabrication and characterization of
aluminum airbridges for superconducting microwave circuits, Applied Physics
Letters 104 (2014), no. 5.

[117] J. Preskill, Quantum computing in the nisq era and beyond, Quantum (2018).

190

[118] A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T. Chong,
Nisq+: Boosting quantum computing power by approximating quantum error
correction, 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA) (2020) 556–569.

[119] E. D’Hondt and P. Panangaden, Quantum weakest preconditions, Mathematical
Structures in Computer Science 16 (2006) 429–451.

[120] M. Ying, Floyd–hoare logic for quantum programs, ACM Trans. Program. Lang.
Syst. 33 (2012) 19:1–19:49.

[121] M. Ying and Y. Li, Reasoning about parallel quantum programs, ArXiv
abs/1810.11334 (2018).

[122] Y. Feng and M. Ying, Quantum hoare logic with classical variables, ArXiv
abs/2008.06812 (2020).

[123] Y. Feng, S. Li, and M. Ying, Verification of distributed quantum programs, ArXiv
abs/2104.14796 (2021).

[124] L. Zhou, N. Yu, and M. Ying, An applied quantum hoare logic, Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (2019).

[125] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie, Projection-based runtime
assertions for testing and debugging quantum programs, Proceedings of the ACM
on Programming Languages 4 (2020) 1–29.

[126] P. W. Shor, Quantum computing, Documenta Mathematica 1 (1998), no. 1000 1.

[127] A. M. Steane, Quantum reed-muller codes, IEEE Transactions on Information
Theory 45 (1999), no. 5 1701–1703.

[128] V. P. Su, C. Cao, H.-Y. Hu, Y. Yanay, C. Tahan, and B. Swingle, Discovery of
optimal quantum error correcting codes via reinforcement learning, arXiv preprint
arXiv:2305.06378 (2023).

[129] K. Yin, H. Zhang, Y. Shi, T. Humble, A. Li, and Y. Ding, Optimal synthesis of
stabilizer codes via maxsat, arXiv preprint arXiv:2308.06428 (2023).

[130] M. M. Wilde, Quantum information theory. Cambridge university press, 2013.

[131] W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi, Cutqc: using
small quantum computers for large quantum circuit evaluations, in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 473–486, 2021.

191

[132] T. Peng, A. W. Harrow, M. A. Ozols, and X. Wu, Simulating large quantum
circuits on a small quantum computer., Physical review letters 125 15 (2020)
150504.

[133] D. W. Walker and J. J. Dongarra, Mpi: a standard message passing interface,
Supercomputer 12 (1996) 56–68.

[134] L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Khammassi, K. Bertels, and
C. G. Almudever, Mapping of lattice surgery-based quantum circuits on surface
code architectures, Quantum Science and Technology (2018).

[135] B. Reichardt, Fault-tolerant quantum error correction for steane’s seven-qubit
color code with few or no extra qubits., arXiv: Quantum Physics 6 (Jan, 2018)
015007.

[136] R. Chadha, P. Mateus, and A. Sernadas, Reasoning about imperative quantum
programs, in MFPS, 2006.

[137] Y. Kakutani, A logic for formal verification of quantum programs, in ASIAN,
2009.

[138] P. Selinger, Towards a quantum programming language, Mathematical Structures
in Computer Science 14 (2004) 527–586.

[139] D. Unruh, Quantum hoare logic with ghost variables, 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS) (2019) 1–13.

[140] F. Voichick, L. Li, R. Rand, and M. Hicks, Qunity: A unified language for
quantum and classical computing, in Proceedings of the ACM on Programming
Languages, vol. 5, 2023.

[141] C. Chareton, S. Bardin, F. Bobot, V. Perrelle, and B. Valiron, An automated
deductive verification framework for circuit-building quantum programs,
Programming Languages and Systems 12648 (2021) 148–177.

[142] M. Amy, Towards large-scale functional verification of universal quantum circuits,
CoRR abs/1805.06908 (2018) 1–21.

[143] K. Hietala, R. Rand, S.-H. Hung, X. Wu, and M. W. Hicks, A verified optimizer
for quantum circuits, Proceedings of the ACM on Programming Languages 5
(2021) 1–29.

[144] A. Sundaram, R. Rand, K. Singhal, and B. Lackey, A rich type system for
quantum programs, 2022.

192

[145] R. Rand, A. Sundaram, K. Singhal, and B. Lackey, Extending gottesman types
beyond the clifford group, in The Second International Workshop on Programming
Languages for Quantum Computing (PLanQC 2021), 2021.

[146] R. Rand, A. Sundaram, K. Singhal, and B. Lackey, Gottesman types for quantum
programs, in Proceedings of the 17th International Conference on Quantum
Physics and Logic, QPL, vol. 20, 2020.

[147] D. Gottesman, Stabilizer codes and quantum error correction, arXiv: Quantum
Physics (1997).

[148] N. Yu and J. Palsberg, Quantum abstract interpretation, in Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, pp. 542–558, 2021.

193

	Curriculum Vitae
	Abstract
	Introduction
	Motivation
	Overview and Outline

	Background
	Quantum Computer Basics
	Distributed Quantum Computing
	Quantum Fault Tolerance

	Optimizing Burst Communication for Distributed Quantum Computing
	Introduction
	Problem and Motivation
	Burst Communication Framework
	Evaluation

	Optimizing Collective Communication for Distributed Quantum Computing
	Introduction
	Problem and Motivation
	Collective Communication System Design
	Evaluation

	Synthesizing an Error-Corrected Qubit
	Introduction
	Problem Formulation
	Synthesis Algorithm Design
	Evaluation

	Synthesizing a Reliable Computing Platform
	Introduction
	Design Considerations
	QEC-based Computing Platform Design
	Evaluation

	Synthesizing Verified Quantum Operations
	Introduction
	Motivating Example
	Programming Language Designs for QEC
	Weakest Precondition Computation
	Evaluation

	Related Work
	Optimization of Distributed Quantum Computing
	QEC Code Synthesis
	Verification of Quantum Programs

	Conclusion and Discussion
	Bibliography

