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Directed Chain Generative Adversarial Networks

Ming Min * 1 Ruimeng Hu * 1 2 Tomoyuki Ichiba 1

Abstract
Real-world data can be multimodal distributed,
e.g., data describing the opinion divergence in
a community, the interspike interval distribution
of neurons, and the oscillators’ natural frequen-
cies. Generating multimodal distributed real-
world data has become a challenge to existing
generative adversarial networks (GANs). For ex-
ample, it is often observed that Neural SDEs have
only demonstrated successful performance mainly
in generating unimodal time series datasets. In
this paper, we propose a novel time series gen-
erator, named directed chain GANs (DC-GANs),
which inserts a time series dataset (called a neigh-
borhood process of the directed chain or input)
into the drift and diffusion coefficients of the di-
rected chain SDEs with distributional constraints.
DC-GANs can generate new time series of the
same distribution as the neighborhood process,
and the neighborhood process will provide the key
step in learning and generating multimodal dis-
tributed time series. The proposed DC-GANs are
examined on four datasets, including two stochas-
tic models from social sciences and computa-
tional neuroscience, and two real-world datasets
on stock prices and energy consumption. To our
best knowledge, DC-GANs are the first work that
can generate multimodal time series data and con-
sistently outperforms state-of-the-art benchmarks
with respect to measures of distribution, data sim-
ilarity, and predictive ability.

1. Introduction
Generative models are important to overcome the limitation
of data scarcity, privacy, and costs. In particular, medical
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data are not easy to get, use or share, due to privacy; and
financial time series data are inadequate due to their non-
stationarity nature. Times-series generative models, instead
of seeking to learn the governing equations from real data,
aim to discover and learn data automatically, and output
new data that plausibly can be drawn from the original
dataset. Some existing infinite-dimensional generative ad-
versarial networks (GANs) (e.g., Kidger et al. (2021); Li
et al. (2022)) showed successful performance in unimodal
time series datasets. However, many real-world phenomena
are multimodal distributed, e.g., data describing the opinion
divergence in a community (Tsang & Larson, 2014), the
interspike interval distribution (Sharma et al., 2018), and the
oscillators’ natural frequencies (Smith & Gottwald, 2019).
All these bring the necessity of developing new generative
models for multimodal time series data.

In this paper, we develop a novel time-series generator,
named directed chain GANs (DC-GANs), motivated by the
formulation of DC-SDEs (Detering et al., 2020). The drift
and diffusion coefficients in DC-SDEs depend on another
stochastic process, which we call the neighborhood process,
with distribution required to be the same as the SDEs’ distri-
bution. Different from other GANs, which only use real data
in discriminators, our proposed algorithm naturally takes
the dataset as the neighborhood process, giving generators
access to data information. This feature enables our model
to outperform the state-of-the-art methods on many datasets,
particularly for the situation of multimodal time-series data.

Contribution. We propose a generator for multimodal dis-
tributed time series based on DC-SDEs (cf. Definition 2.1),
and prove that our model can handle any distribution that
Neural SDEs are capable of generating (see Theorem 2.1).
To train the generator, we propose to use a combination of
two types of discriminators: Sig-WGAN (Ni et al., 2021)
and Neural CDEs (Kidger et al., 2020).

We notice that data generated immediately from DC-GANs
can be correlated, and propose an easy solution by walking
along the directed chain in the path space for further steps
(see Theorem 2.2). Combining branching the chain with
different Brownian noises enables our model to generate
unlimited independent fake data.

We test our algorithms in four different experiments and
show that DC-GANs provide the best performance com-
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pared to existing popular models, including SigWGAN
(Ni et al., 2021), CTFP (Deng et al., 2020), Neural SDEs
(Kidger et al., 2021), TimeGAN (Yoon et al., 2019) and
Transformer-based generator TTS-GAN (Li et al., 2022).

Related Literature. Neural ordinary differential equa-
tions (Neural ODEs), introduced by Chen et al. (2018), use
neural networks to parameterize the vector fields of ODEs
and bring a powerful tool for learning time series data. Later,
significant effort has been put into improving Neural ODEs,
e.g., Quaglino et al. (2019); Zhang et al. (2019); Massaroli
et al. (2020); Hanshu et al. (2019). In fact, incorporating
mathematical concepts into the Neural ODEs framework
can provide the capability of analyzing and justifying its
validity, leading to a deeper understanding of the frame-
work itself. For example, Li et al. (2020) and Tzen &
Raginsky (2019a) generalized the idea to neural stochas-
tic differential equations (Neural SDEs), providing adjoint
equations for efficient training. By integrating rough path
theory (Lyons et al., 2007), Kidger et al. (2020) proposed
neural controlled differential equations (Neural CDEs) and
Morrill et al. (2021) proposed neural rough differential equa-
tions for modeling time series. Other examples integrating
profound mathematical concepts include using higher order
kernel mean embeddings to capture information filtration
(Salvi et al., 2021), and solving high dimensional partial dif-
ferential equations through backward stochastic differential
equations (Han et al., 2018), to name a few.

The closely related model to ours is the Neural SDEs by
Kidger et al. (2021), which uses the Wasserstein GAN
method to train stochastic diffusion evolving in a hidden
space and gains great success in simulating time series data.
Other successful GANs models for time-series data include
Cuchiero et al. (2020); Tzen & Raginsky (2019b); Deng
et al. (2020); Kidger et al. (2021); Li et al. (2022); see Bro-
phy et al. (2022) for a recent review. Note that we find in
the numerical experiments that the performances of Neural
SDEs are limited in simulating multimodal distributed time
series, e.g., as shown in Figure 1 from the stochastic opinion
dynamics (Example 1 in Section 4.2).

The directed chain is one of the simplest structures in ran-
dom graph theory, where each node on the graph represents
a stochastic process and has interactions only with its neigh-
bor nodes (Figure 4). To our best knowledge, Detering et al.
(2020) initiated the study of the SDE system on the directed
chains, followed by Feng et al. (2021a;b) for the analysis of
stochastic differential games on such chains with (determin-
istic and random) interactions. Later on, more complicated
graph structures are studied beyond directed chains. For
example, Lacker et al. (2021) analyzed particle behaviors
where the interaction only happens between neighborhoods
in an undirected graph, and proved Markov random fields
property and constructed Gibbs measure on path space when

interactions appear only in drift; Lacker & Soret (2022) con-
sidered stochastic differential games on transitive graphs;
Carmona et al. (2022) studied games on a graphon which
has infinitely many nodes. Despite numerous extensions,
we find that the directed chain structure, although simple
but rich enough for generating multimodal time series.

From another viewpoint, DC-SDEs can be understood as the
reverse direction of mimicking theorems (Gyöngy, 1986).
The idea of “mimicking” is that for a general SDE (even with
path-dependence features), one can construct a Markovian
one to mimic its marginal distribution; see Brunick & Shreve
(2013) for details on mimicking aspects of Itô processes
including the distributions of running maxima and running
integrals. DC-SDEs work in the reverse direction: they
can produce marginal distributions that are generated by
Markovian SDEs (see Theorem 2.1 for a detailed statement).
The benefit of using DC-SDEs, in particular in machine
learning, is to have a more vital fitting ability by embedding
data into a slightly more complicated system.

2. Directed Chan SDEs and Signatures
In this section, we introduce two mathematical concepts
that serve as the backbones of our algorithm: directed chain
SDEs and signatures. In Section 2.1, we identify the cen-
tral issue of naively generating time series from true data
using DC-SDEs: the non-independence of the true data
and fake data (Problem 2.1). Then we overcome the non-
independence issue by Decoorelating and Branching Phase
in Section 3.1, and provide theoretical guarantees for this
procedure (Theorem 2.2).

In the sequel, we shall use Xs, Xt to denote the state of X
at time s and t, respectively. With no subscript, e.g., by X ,
we mean the whole path from t = 0 to T .

2.1. Directed Chain SDEs (DC-SDEs)

The DC-SDEs are the limit of a system of n-coupled SDEs
interacting homogeneously on a directed chain when n goes
to infinity. Below we will focus on DC-SDEs and defer the
introduction of this limiting process to Appendix A. Under
the general setup, DC-SDEs can be of McKean-Vlasov type
where the coefficients have distributions as inputs, corre-
sponding to the n-coupled system having mean-field inter-
action. In our proposed generator, it is sufficient to use the
simple case mentioned above, DC-SDE without the mean-
field interaction, as in the following definition.

Definition 2.1 (DC-SDEs). Fix a filtered probability space
(Ω,F , (Ft)t≥0,P) and a finite time horizon [0, T ]. Let
(X, X̃) with X, X̃ ∈ L2(Ω×[0, T ],RN ) be a pair of square-
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Figure 1. Marginal distributions of real data (blue) and generated data (red) from Example 1 (Stochastic opinion dynamics) at t ∈
{0.1, 0.3, 0.5, 0.7, 0.9, 1} in Section 4.2. Figures (a)–(f) are generated by Neural SDEs, and Figures (g)–(l) are generated by DC-GANs.
One can see from Figures (e) and (f) that Neural SDEs fail to capture the bimodal distribution.

integrable stochastic processes satisfying

Xt = ξ+

∫ t

0

V0(s,Xs, X̃s) ds+

∫ t

0

V1(s,Xs, X̃s) dBs,

(1)
for t ∈ [0, T ], with the distributional constraint

Law(Xt, 0 ≤ t ≤ T ) = Law(X̃t, 0 ≤ t ≤ T ), (2)

where Law(·) stands for the distribution, V0 ∈ RN and
V1 ∈ RN×d are smooth coefficients satisfying Lipschitz and
linear growth conditions, B is a standard d-dimensional
Brownian motion, and X0 := ξ, X̃ and B are assumed to
be independent.

The existence of the solution to (1) and the weak unique-
ness in the sense of distribution have been proved under the
Lipschitz and linear growth assumptions on the coefficients
in Detering et al. (2020) for a simple case, and in Ichiba &
Min (2022) for a more general case. Moreover, with the
smoothness of the solution under certain additional condi-
tions posed on the coefficients (cf. Ichiba & Min (2022)),
we can derive a partial differential equation (PDE) for the
marginal densities of the solution. Then, the associated
PDEs lead to the following theorem: DC-SDEs have at least
the same amount of flexibility as Neural SDEs.

Theorem 2.1. Under proper assumptions, for any Y that
satisfies a system of Markovian SDEs on [0, T ], there exists
a unique solution to the DC-SDE (1) with constraints (2),
some V0 and non-degenerate coefficients V1, such that they
have the same marginal distributions for all t ∈ [0, T ]. Here
by degenerate, we mean that Vi(t, x, x̃) := Vi(t, x), i ∈
{0, 1}, i.e., the coefficients have no dependence on neigh-
borhood nodes at all.

We defer the proof of Theorem 2.1 to Appendix B.2.

Naturally, if V0 and V1 are known (or learned from data), one
can take real data paths as X̃ in (1) and straightforwardly
generate paths of X that have the same distribution as X̃ by
the constraint (2). However, naively implementing this idea
will lead to the following potential problems.
Problem 2.1 (Lack of Independence). The distribution of
the generated sequence crucially depends on the real data;
Consequently, to avoid dependence, a single real path can
only be used once as X̃ to generate one path of X , and thus
the number of the generated sequence has to be the same as
that of the training data set in one run.

Note that a qualified generator should also be able to gener-
ate unlimited independent data that does not depend on the
original one. Fortunately, both problems mentioned above
can be overcome by the idea behind the following theorem.
Theorem 2.2. Under mild non-degeneracy conditions, the
correlation between training data and generated data in DC-
SDEs decays exponentially fast, as the distance increases
on the chain.

Due to the page limit, we give the formal statement of
Theorem 2.2 with detailed proof in Appendix B.3.

We shall explain how to beat the independence problem dur-
ing the implementation described in Section 3.1. As shown
in Appendix B.3, the introduction of independent Brownian
motions to (1) is the key to solving the independence prob-
lem. We shall also provide an extreme example (cf. Remark
B.1) showing that without

∫
V1 dB, the system (1)–(2) has

only trivial (deterministic) solution.

2.2. Signature

The proposed method utilizes signature (Lyons et al., 2007),
a concept from rough path theory that we shall briefly in-
troduce for completeness. As an infinitely graded sequence,
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the signature can be understood as a feature extraction tech-
nique for time series data with certain regularity conditions.
Let x : Ω× [0, T ] → RN be a continuous random process,
and denote the signature map by S : x 7→ S(x) ∈ T (RN ),
where T (RN ) is the tensor algebra defined on RN . Then,

S(x) := (1, x1, · · · , xi, . . . ), and

xi =

∫
0<t1<···<ti<T

dxt1 ⊗ · · · ⊗ dxti .

Signature characterizes paths uniquely up to the tree-like
equivalence, and the equivalence is removed if at least one
dimension of the path is strictly increasing (Boedihardjo
et al., 2016). The concept has been applied to design
machine learning methods, e.g., Chevyrev & Oberhauser
(2022); Kidger et al. (2019); Min & Hu (2021); Ni et al.
(2021); Min & Ichiba (2022); Dyer et al. (2021). In practice,
one needs to truncate the signature up to a finite order M ,
denoted by SM (x) = (1, x1, · · · , xM ). We will justify the
truncation by the factorial decay property and discuss other
theoretical properties of signature in Appendix B.1.

In addition, signature induces another powerful tool to char-
acterize the distribution of random processes: the expected
signatures. It was proved by Chevyrev & Lyons (2016) that
expected signatures characterize the distribution of random
processes uniquely, i.e., if E[S(x)] = E[S(y)] and E[S(x)]
has an infinite radius of convergence, then x and y have the
same distribution.

3. Proposed Method: DC-GANs
In this section, we describe DC-GANs for generating mul-
timodal distributed time series. Our method builds on the
DC-SDEs with a straightforward idea: To find the (sub-)
optimal solution of the generator, we implement a GAN
model with the Neural DC-SDEs as the generator. For the
discriminator, we use Neural CDEs (Kidger et al., 2021)
and Sig-Wasserstein GAN (Ni et al., 2020; 2021).

3.1. Generator

To overcome the independence issue explained in Prob-
lem 2.1, we design DC-GANs by two phases: 1) training
and 2) decorrelating and branching. The second phase will
be utilized during testing. Both V0 and V1 in (1) will be
parameterized by multi-layers fully connected NNs.

Training Phase. We set aside the independence problem
and focus on finding the optimal coefficients V0 and V1

(together with the discriminator). Denote the training data
by {X̃(ωi)}Mi=1, where each ωi represents a realization of
the randomness in the path space. We treat our training
data {X̃(ωi)}Mi=1 as the neighborhood process X̃ in (1). For
each training path data X̃(ωi), we generate a DC-SDE path

X(ωi), according to the Euler scheme of (1),

Xtj+1
(ωi)

= Xtj (ωi) + V0(tj , Xtj (ωi), X̃tj (ωi))(tj+1 − tj) (3)

+ V1(tj , Xtj (ωi), X̃tj (ωi))(Btj+1(ωi)−Bj(ωi)),

where 0 = t0 ≤ t1 ≤ . . . ≤ tJ = T is a partition on [0, T ],
{B(ωi)}Mi=1 are independent Brownian paths.

Both the generated paths {X(ωi)}Mi=1 and the training paths
{X̃(ωi)}Mi=1 will be passed into the discriminator, where
their Wasserstein distance needs to be minimized. To sim-
plify the notations for later use, we define Gθ : (ξ,B, X̃) 7→
X to represent the overall transformation in (3), with θ de-
noting all network parameters of V0 and V1.

Decorrelating and Branching Phase. During testing, we
utilize a branching scheme to alleviate the independence
problem; see Figure 2 for an illustrative example. Let q
be the number of steps we “walk” along the directed chain.
Here “walking” along the chain means: After we have fin-
ished the training (identified V0 and V1) phase, we start with
the first chain (the grey one in Figure 2). We take real data
as the first neighborhood X1 to generate X2 through the
scheme (3), where X1 takes the role of X̃ and X2 takes the
role of X . Then we use X2 as the neighborhood to gener-
ate X3, and repeat this procedure until we obtain Xq. By
Theorem 2.2, Xq and X1 are asymptotically uncorrelated,
as q → ∞. We describe the pseudo-code in Algorithm 1
below for this decorrelating step.

Figure 2. Branching Scheme. Let q be the number of steps we
“walk” along the directed chain. We take real data as the first
neighborhood X1 to generate X2 through the scheme (3), where
X1 takes the role of X̃ and X2 takes the role of X . Then we use
X2 as the neighborhood to generate X3, and repeat this procedure
until we obtain Xq .

To generate more fake data, we can initiate more chains
with the same starting node X1 (where the real data are)
and independent Brownian paths, and then “walk” along the
chain to get X(i)

q , i = 2, 3, . . . . Again, X(i)
q is asymptot-

ically uncorrelated to X1. By the definition of DC-SDEs,
Xq and X

(i)
q are conditionally independent with condition-

ing on X1. Therefore, we can claim that Xq and X
(i)
q are

asymptotically uncorrelated.

Architecture. Note that although the directed chain SDE
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Algorithm 1 Generator in the Decorrelating and Branching

Input: real data {X̃(ωi)}Mi=1, # of steps q, generator Gθ;
Set {X1(ωi)}Mi=1 := {X̃(ωi)}Mi=1;
for k = 2 to q do

Generate M independent copies of initials positions
and Brownian paths {ξk(ωi), Bk(ωi)}Mi=1;
Generate M paths {Xk(ωi)}Mi=1 by

Xk(ωi) = Gθ(ξk(ωi), Bk(ωi), Xk−1(ωi));

end for
Output: {Xq(ωi)}Mi=1

pair (X, X̃) is Markovian, X itself can be non-Markovian
as a standalone stochastic process. All the historical infor-
mation can be embedded in the neighborhood process and
fetched through V0 and V1. Such a property leads to one of
the key differences between our method and Neural SDEs:
there is no need to embed time series into a hidden space. In
our implementations, V0 and V1 take standard feedforward
neural networks; see Appendix C for details.

3.2. Discriminator

The purpose of the discriminator is to identify the optimal
parameters in the V0- and V1- networks. We use the Wasser-
stein GAN framework (Goodfellow et al., 2020; Arjovsky
et al., 2017) to train the generator, and two types of discrim-
inators will be used here.

SigWGAN. Using the idea of expected signature, Ni et al.
(2020; 2021) designed Sig-Wasserstein GAN by directly
minimizing the signature Wasserstein-1 distance,

Sig-W1(µ, ν) := |EX∼µ[S(X)]− EX∼ν [S(X)]|,

where µ and ν are two distributions of time series corre-
sponding to real data and fake data, S is the signature map,
and | · | is the l2 norm. For practical use, we approximate
the infinite sequence S by truncating signatures up to some
finite order m, i.e.,

Sig-Wm
1 (µ, ν) := |Eµ[S

m(X)]− Eν [S
m(X)]|. (4)

The higher the truncation order m, the more information
the signature can capture. However, the number of terms in
the truncated signature will grow exponentially and become
costly when the time series data is high-dimensional.

Neural CDEs. Neural controlled differential equations
are the second candidate for the discriminator when the
underlying time series is of high dimension. This is also
the discriminator used in (Kidger et al., 2021). Let Dϕ :
X 7→ R be a Neural CDE discriminator where ϕ denotes
the network parameters. The training goal is to solve the

following optimization problem for the generator

min
θ

Eξ,B

[
Dϕ

(
Gθ(ξ,B, X̃)

)]
,

and the following one for the discriminator

max
ϕ

{
Eξ,B

[
Dϕ

(
Gθ(ξ,B, X̃)

)]
− EX̃

[
Dϕ(X̃)

]}
. (5)

Compared to only using the Neural CDEs as the discrim-
inator, we notice that a combination of Neural CDEs and
lower-order signature Wasserstein-1 distance as the discrim-
inator works better for the third numerical example below.
That is, the generator is optimized with respect to

min
θ

{
Eξ,B

[
Dϕ

(
Gθ(ξ,B, X̃)

)]
+ Sig-Wm

1

(
Law(X̃),Law

(
Gθ(ξ,B, X̃)

))}
. (6)

Remark that DC-GANs can work with different discrimina-
tors, and here we choose to use neural CDEs and SigWGAN
as the discriminators. The pseudo-algorithm of the overall
training strategy is summarized in Algorithm 2.

Algorithm 2 The Training Phase

Input: real data {X̃(ωi)}Mi=1, boolean variable cde, total
epochs E, signature truncation order m;
for e = 1 to E do

Generate independent copies of initials and Brownian
motions (ξ(ωi), B(ωi))

M
i=1;

Generate fake data {X(ωi)}Mi=1 by

X(ωi) = Gθ(ξ(ωi), B(ωi), X̃(ωi));

if cde is True then
Compute the loss (5) and its gradients w.r.t. ϕ;
Compute the loss (6) and its gradients w.r.t. θ;
Update θ by stochastic gradient descent optimiser;
Update ϕ by stochastic gradient ascent optimiser;

else
Compute the loss (4) and its gradients w.r.t. θ;
Update θ by stochastic gradient descent optimiser;

end if
end for
Output: Generator Gθ.

4. Experiments
We present the performance of the proposed DC-GANs
on four different datasets, including stochastic opinion dy-
namics, network dynamics from neural science, and real-
world stock data and energy consumption data. In all
cases, we set q = 10, i.e., “walk” along the chain for
ten steps during the decorrelating phase. Other hyperpa-
rameters for neural network training can be found in Ap-
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pendix C for details. The example implementation of DC-
GAN is available at https://github.com/mmin0/
DirectedChainSDE.

Benchmarks & Evaluation. The first two synthetic datasets
are generated by SDEs, the third real-world data set of stock
price time series was extracted from Yahoo Finance1, and
the fourth real-world energy consumption data were ob-
tained from Ireland’s open data portal2. We compare our
results by DC-GANs with SigWGAN, CTFP, Neural SDEs
and Transformer-based TTS-GANs, and DC-GANs give
much better accuracy under discriminative, predictive, and
maximum mean discrepancy (MMD) metrics detailed be-
low. We also provide independence metrics to show that
our decorrelating and branching scheme can resolve the
independence problem. We also test over different discrim-
inators, and show the flexibility of choosing the one that
brings better performance or has a faster running time.

4.1. Metrics

Marginal Distribution & MMD. For the first two examples,
we plot histograms to compare their marginal distributions
at several time stamps. To measure the goodness of fitting
for time series, we use maximum mean discrepancy (MMD)
induced by the expected signature given in (4).

Discriminative Metric. To quantitively measure the sim-
ilarity between the fake data generated by DC-GANs and
real data, we train a post-hoc time series classifier by opti-
mizing a two-layer LSTM to discriminate original and fake
sequential data. The fake data is labeled nonreal and the
original data is labeled real. The worse discriminative abil-
ity of the post-hoc time series classifier implies the better
performance of the time series generator. Our discriminative
score is calculated as the absolute difference between 0.5
and predicting accuracy on testing data, thus a smaller score
indicates a better generator.

Predictive Metric. Typically, a useful time series dataset
contains temporal evolution information, and we can predict
the future given past data. We expect that DC-GANs can
capture this temporal dynamic property accurately from the
original data. To this end, we train an auxiliary two-layer
LSTM sequential predictor on the generated time series and
test this post-hoc predictor on the original time series. The
predictive score is calculated as the L1 distance between
predicted sequences and true sequences on testing data (the
real data), with smaller scores for better generators.

Independence Metric. It is crucial for success to show that
our algorithm can address the independence problem. As an

1https://finance.yahoo.com/quote/GOOG?p=
GOOG&.tsrc=fin-srch.

2https://data.gov.ie/dataset?theme=Energy.

independence metric, we use

ρ(x, y) := sup
t∈[0,T ]

∥ρ(xt, yt)∥1, (7)

where x, y ∈ L2(Ω × [0, T ],RN ) and ρ(xt, yt) represents
the cross-correlation matrix between random vectors xt, yt.
Smaller ρ(x, y) means less correlation between real data x
and generated data y.

These metric scores are used to measure the algorithms’
discriminative ability, predictive ability, and the distance
and correlation between the generated data and the true
distribution. A decrease in the metric score suggests an
improvement in the quality of the generated data. Further-
more, the decrease in independence score is supported by
Theorem 2.2 and Theorem B.5 in Appendix.

All experiments are run over ten different random seeds, and
we report the mean and standard deviation (in the parenthe-
ses) for all metrics in Tables 1–4. We give more details on
how all these metrics are implemented in Appendix C.1.

4.2. Example 1: Stochastic Opinion Dynamics

We first consider stochastic opinion dynamics modeled by
the following MV-SDE

dYt = −
[ ∫

R
φθ(∥Yt − y∥)(Yt − y) µt(dy)

]
dt+ σ dWt,

where φθ is a interaction kernel with θ1, θ2 > 0,

φθ(r) =

 θ1 exp

(
− 0.01

1−(r−θ2)2

)
, r > 0,

0, r ≤ 0,

and µt = Law(Yt) denotes the distribution of Yt. One
can interpret θ1 as a scale parameter that characterizes the
intensity of the attraction between entities, and θ2 as the
range parameter that determines the distance, within which
an entity must be of one another in order to interact. This
model is widely used in many disciplines, from flocking and
swarming behaviors in biology (where Yt is the position)
to public opinion evolution in social science (where Yt is
the opinion towards a topic). We refer to Motsch & Tadmor
(2014) for further details.

We choose θ1 = 6, θ2 = 0.2, σ = 0.1, T = 1, ∆t = 0.01,
and generate 8192 paths. The distribution µt is approxi-
mated by the empirical distribution of 8192 samples. These
samples are used to produce the blue density in Figure 1,
where a clear shift in distribution from unimodality to bi-
modality is observed.

We first compare with the Neural SDEs method (Kidger
et al., 2021). Figure 1 gives the comparison of the marginal
distributions at t = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0. One can see
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that DC-GANs can accurately capture the bimodal distribu-
tion in general, but the Neural SDE method can not. Under
the MMD metric (4), the discrepancy of DC-GANs is 0.07,
while the Neural SDEs give 0.12. More comparisons with
SigWGAN, CTFP, Neural SDEs and TTS-GAN under dis-
criminative, MMD, and independence metrics are provided
in Table 1. Our proposed DC-GANs have a smaller discrim-
inative score, and an independence score comparable with
the ones produced by the Neural SDE generator, SigWGAN,
CTFP and TTS-GAN, all of which generate purely indepen-
dent samples. Therefore, we conclude that DC-GANs can
produce fake data closer to the real data without indepen-
dence issues.

4.3. Example 2: Stochastic FitzHugh-Nagumo Model

FitzHugh-Nagumo model is a standard model from neu-
roscience (Baladron et al., 2012; Reisinger & Stockinger,
2022), used to describe the neurons’ interacting spiking.
Mathematically, for N neurons and P different neuron
populations, and i ∈ {1, . . . , N}, we denote by p(i) =
α, α ∈ {1, . . . , P} the population of i-th particle that be-
longs to. The state vector of neural i, (Xi,N

t )t∈[0,T ] =

(V i,N
t , wi,N

t , yi,Nt )t∈[0,T ], satisfies the SDE,

dXt,N
t = fα(t,X

t,N
t ) dt+ gα(t,X

t,N
t )

[
dW i

t

dW i,y
t

]
+

P∑
γ=1

1

Nγ

∑
j,p(j)=γ

(
bαγ(X

i,N
t , Xj,N

t ) dt

+ βαγ(X
i,N
t , Xj,N

t ) dW i,γ
t

)
,

where V denotes a short, nonlinear elevation of membrane
voltage, w denotes a slower, linear recovery variable, Nγ

denotes the number of neurons in the population γ. We
defer more details about model description and training data
generation to Appendix C.2.

The FitzHugh-Nagumo system is an example of a relaxation
oscillator, and exhibits a characteristic excursion in phase
space, before the variables V and w relax back to their
rest values. As a result, their distributions are typically
multimodal distributed; see Figure 5 in Appendix C.2.

Figure 3 depicts the differences of their joint marginal den-
sities between generated time series and training (real) time
series on channels 1 and 3 at t = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0.
The darker the color the smaller the differences, thus the
closer the distribution and indicating a better generator. It
can be observed that DC-GANs produce less difference in
joint marginal densities at multiple time stamps. Under dis-
criminative, predictive, and MMD metrics, DC-GANs give
better samples than SigWGAN, CTFP, Neural SDEs, and
TTS-GAN consistently; see Table 2. In particular, fake sam-
ples produced by DC-GANs are almost indistinguishable

for a two-layer LSTM classifier after exhaustive training.
By the comparison using MMD, one can see that DC-GANs
generate fake samples with distributions significantly closer
to real data than the other three methods. The independence
scores given by (7) are nearly indistinguishable.

4.4. Example 3: Stock Price Time Series (Real Data)

The third example is Google stock prices from 2004 to 2019,
extracted from Yahoo Finance. Sequences of stock prices
are known as continuous time series data with unknown dis-
tributions, and can even be non-Markovian. Our data have
six channels, volume and high, low, opening, closing, and
adjusted closing prices. Among all, the first five channels
are multimodal. The combined discriminator (6) (Neural
CDE and Sig-W1) is used in GAN for this experiment, and
we list the comparison results in Table 3. One can see
that DC-GANs outperform SigWGAN, CTFP, TimeGAN,
Neural SDEs and TTS-GAN under all three metrics.

4.5. Example 4: Energy Consumption Data (Real Data)

We download the Energy Consumption data from Ireland’s
open data portal, and choose four electric and gas consump-
tion time series from 02/2011–02/2013, where channels 1,3,
and 4 exhibit multimodal features. We list the comparison
results in Table 4, which shows consistent advantages of DC-
GANs compared with other methods under different metrics
as in previous examples. Notice that DC-GANs can be used
with both Neural CDEs (NCDE) and Signature Wasserstein
(SigW) discriminators, and in this example, DC-GANs with
SigW as the discriminator present better performance and
have a faster running time.

4.6. Dependence Elimination & Ablation Study.

To demonstrate the effectiveness of removing dependence
in the Decorrelating and Branching Phase (Section 3.1),
we compare the independence score (7) with choices of
q = 2 (basic model) and q = 10 (DC-GANs), and present
the results in Table 5. A smaller score indicates better
independence. The large differences observed in all four
experiments suggest that the proposed scheme significantly
reduces correlation in the directed chain generator. We
anticipate that this approach can be employed in other di-
rected chain-related methods to effectively mitigate strong
dependence on generated data.

We also conduct an ablation study on the discriminator by
using an ordinary LSTM as the discriminator and imple-
menting Wasserstein-GAN for comparison. The results,
summarized in Table 6, indicate that DC-GANs (shown in
Tables 1-4) outperform Wasserstein-GAN with an LSTM
discriminator in both accuracy and speed.
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Table 1. Stochastic Opinion Dynamics (Example 1). The scores are computed for SigWGAN, CTFP, Neural SDEs, TTS-GAN and
DC-GANs under different metrics. The numbers in the parenthesis are the corresponding standard deviations of each score. Note that a
smaller value means a better approximation, which indicates the DC-GANs provide more accurate fake data with compared independence
and running time.

METHOD DISCRIMINATIVE MMD INDEPENDENCE TIME (MIN)

SIGWGAN 0.213 (0.01) 0.328 (0.004) 0.009(0.004) 6.55
CTFP 0.131 (0.02) 0.281 (0.005) 0.010(0.003) 5.58

NEURAL SDES 0.045 (0.025) 0.122 (0.003) 0.007 (0.005) 7.07
TTS-GAN 0.127(0.014) 0.176(0.003) 0.008(0.003) 15.6
DC-GANS 0.028 (0.019) 0.07 (0.003) 0.009 (0.004) 6.82
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Figure 3. Stochastic FitzHugh-Nagumo Model (Example 2). Figures (a)-(f) are generated by Neural SDEs, and Figures (g)-(l) are
generated by DC-GANs. They show their joint marginal densities differences between estimated time series and real-time series on
channels 1 (Dim 1) and 3 (Dim 3) at t ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Darker color means a smaller difference, and thus a better fitting.
One can observe that DC-GANs produce less difference in joint marginal densities at multiple time stamps.

5. Conclusion
We propose a novel time series generator, DC-GANs, moti-
vated by the study of Detering et al. (2020); Ichiba & Min
(2022) on directed chain SDEs (DC-SDEs). Compared to
more complicated graph systems, we find from numerical
examples that the directed chain systems exhibit promising
ability in fitting time series of multimodal probability distri-
butions. We prove in theory that DC-GANs have the same
flexibility as the Neural SDEs in capturing marginal distribu-
tions, and DC-GANs naturally embrace the non-Markovian
property in the topological structure, if needed. We also
prove that the correlation of the generated path decays ex-
ponentially fast as the graph distance of the generated path
from the original data becomes large under some mild as-
sumptions, and hence, the lack-of-independence problem
can be overcome by walking along the directed chain. We
present four numerical examples, two synthetic datasets gen-
erated by the SDEs, and two real-world data of stock price
and energy consumption, and show that DC-GANs have a
better performance than SigWGAN, CTFP, Neural SDEs,
TimeGAN and TTS-GAN, with the comparable indepen-
dence property. We remark that the DC-GANs algorithm

can also work with irregular data (i.e., the sample paths
may have data sampled on different time grids), which may
happen in healthcare applications.

Potential Societal Impact. The proposed DC-GANs in this
paper offer a fast and flexible generative adversarial network
method for machine learning research areas, such as biology,
economics, environmental science, finance, medicine, and
more, where path-dependent analysis is critical. They have
the potential to contribute to research areas where sequential
data is scarce or missing. Furthermore, the strong predictive
power of DC-GANs demonstrated in the energy consump-
tion example (Example 4) can aid in the development of
energy management and help reduce energy waste. As DC-
GANs are primarily used to generate time-series data or
sequential data, rather than fake faces, the usual negative
social impact associated with creating fake social media
accounts to spam would not be a concern in this context.
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Table 2. Stochastic FitzHugh-Nagumo Model (Example 2). The scores are computed for SigWGAN, CTFP, Neural SDEs, TTS-GAN
and DC-GANs under different metrics. Note that a smaller value means a better approximation. Parenthesized numbers are standard
deviations.

METHOD DISCRIMATIVE PREDICTIVE MMD INDEPENDENCE TIME (MIN)

SIGWGAN 0.126 (0.04) 0.44 (0.001) 0.737 (0.01) 0.0083(0.0024) 9.63
CTFP 0.275 (0.05) 0.501 (0.004) 1.095 (0.02) 0.0088(0.0023) 6.88

NEURAL SDES 0.20 (0.003) 0.44 (0.000) 0.97 (0.02) 0.0085 (0.0023) 8.25
TTS-GAN 0.258(0.02) 0.45(0.001) 0.96(0.04) 0.0082(0.002) 16.3
DC-GANS 0.01 (0.009) 0.439 (0.000) 0.47 (0.02) 0.0085 (0.0027) 8.13

Table 3. Stocks Price Time Series (Example 3). The scores are computed for SigWGAN, CTFP, TimeGAN, Neural SDEs, TTS-GAN
and DC-GANs under different metrics. Note that a smaller value means a better approximation. Parenthesized numbers are standard
deviations.

MODEL DISCRIMINATIVE PREDICTIVE MMD INDEPENDENCE TIME (MIN)

SIGWGAN 0.183 (0.03) 0.060 (0.004) 0.121 (0.011) 0.012(0.004) 4.13
CTFP 0.256 (0.05) 0.138 (0.006) 0.187 (0.009) 0.013(0.005) 6.40

TIMEGAN 0.102 (0.021) 0.038 (0.001) 0.0220 (0.007) 0.011 (0.005) >660
NEURAL SDES 0.085 (0.028) 0.048 (0.001) 0.0193 (0.008) 0.011 (0.006) 9.93

TTS-GAN 0.093(0.022) 0.041(0.001) 0.023(0.007) 0.010(0.004) 19.2
DC-GANS 0.045 (0.015) 0.036 (0.000) 0.0133 (0.005) 0.013 (0.006) 9.53

Table 4. Energy Consumption Data from Ireland’s open data portal (Example 4). The scores are computed for SigWGAN, CTFP, Neural
SDEs, and DC-GANs under different metrics. Note that a smaller value means a better approximation. Parenthesized numbers are
standard deviations.

METHOD DISCRIMINATIVE PREDICTIVE MMD INDEPENDENCE TIME(MIN)

SIGWGAN 0.368 (0.09) 0.159 (0.002) 0.135 (0.006) 0.022(0.007) 9.47
CTFP 0.487 (0.01) 0.185 (0.001) 0.558 (0.006) 0.021(0.008) 8.52
NEURAL SDES 0.413 (0.06) 0.172 (0.004) 0.126 (0.004) 0.022(0.006) 9.73
TTS-GAN 0.394(0.04) 0.167(0.003) 0.183(0.008) 0.022(0.006) 17.4
DC-GANS (W/ NCDE) 0.322 (0.12) 0.155 (0.006) 0.077 (0.003) 0.029(0.007) 23.44
DC-GANS (W/ SIGW) 0.310 (0.09) 0.151 (0.008) 0.075 (0.003) 0.033(0.008) 9.38

Table 5. The comparison of independence scores between a basic model (with q = 2) and DC-GANs (with q = 10). A smaller score
indicates better independence.

EXPERIMENTS OPINION (EXP.1) FITZ-NAG (EXP.2) STOCK (EXP.3) ENERGY(EXP.4)
q = 2 (BASIC) 0.078(0.013) 0.052(0.009) 0.130(0.024) 0.119(0.017)

q = 10 (DC-GANS) 0.009(0.004) 0.0085(0.0027) 0.013(0.006) 0.033(0.008)

Table 6. The scores computed when the discriminator is replaced by an ordinary WGAN. Parenthesized numbers are standard deviations.
Compared to Tables 1-4, DC-GANs outperform Wasserstein-GAN with an LSTM discriminator in both accuracy and speed.

EXPERIMENTS DISCRIMINATIVE PREDICTIVE MMD INDEPENDENCE TIME (MIN)
STOCH. OPINION 0.041(0.016) - 0.123(0.004) 0.008(0.003) 19.5

FITZHUGH-NAGUMO 0.09(0.01) 0.441(0.000) 0.66 (0.07) 0.0083(0.0022) 26.2
GOOGLE STOCK 0.082 (0.024) 0.059 (0.002) 0.0176 (0.006) 0.010 (0.005) 20.85

ENERGY CONSUMPTION 0.343 (0.13) 0.161(0.004) 0.093 (0.004) 0.024(0.004) 21.17
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A. Preliminaries on Directed Chain SDEs
In this appendix, we give an intuitive explanation of how the limit of an n-coupled SDE system leads to the DC-SDE. As
before, we use Xs, Xt to denote the state of X at time s and t, respectively. With no subscript, e.g., by X , we mean the
whole path from t = 0 to T . With a little abuse of notations, we use Xi, Xi+1 to denote the i-th or (i+ 1)-th node, and with
two subscripts, e.g., Xi,t, it represents the state value of the i-th node at time t.

Let us start with a system of n-coupled SDEs, which approximates a generic directed chain SDE when n goes infinity. An
illustration of their chain-like coupling is given in Figure 4(a). Each node Xi satisfies an SDE, which also depends on the
node pointing to it. More specifically, for i ≤ n− 1, Xi+1 depends on Xi, and we say the i-th node is the neighborhood
of the (i+ 1)-th node; the n-th node affects the first one, yielding a circular structure. The dependence is determined in a
homogeneous manner over the whole system of particles. Such a circular chain structure forces every node to be identically
distributed. When n goes to infinity, the circle chain is equivalent to a non-circular chain with the distribution constraint
(see Definition 2.1), and we get the abstract DC-SDE. We refer interested readers to Detering et al. (2020); Ichiba & Min
(2022) for more details.

(a) Circular structure in the n-coupled SDEs

(b) None-Circular structure in the DC-SDEs

Figure 4. Illustrative Directed Chain Structure. Each node Xi satisfies an SDE, which also depends on the node pointing to it.

B. Additional Theorems and Proofs
B.1. Property of Signatures

We provide some related properties and theorems of signatures. Firstly, we justify the validity of truncating signatures
in Section 2.2. The signature of a path is an infinite series of iterated integrals, which can be used to represent the path.
Practically, one can only deal with finite sequences, thus requiring truncating signatures up to a finite order (called the
signature depth). This truncation order is, in general, determined by its factorial decay property, which is indicated in the
following extension theorem. For the formal definition of control ω and β, we refer interested readers to the book by Lyons
& Qian (2002).

Theorem B.1 (Extension Theorem, Lyons & Qian (2002, Theorem 3.7)). Let p ≥ 1 be a real number and n ≥ 1 an integer
with n ≥ ⌊p⌋. DenoteX : ∆T → Tn(Rd) as a multiplicative functional with finite p-variation controlled by a control ω.
Then there exists a unique extension ofX to a multiplicative functional ∆T → T ((Rd)) which possesses finite p-variation.

More precisely, for every m ≥ ⌊p⌋+ 1, there exists a unique continuous functionXm : ∆T → (Rd)
⊗

m, such that

(s, t) → Xs,t =
(
1,X1

s,t, . . . ,X
⌊p⌋
s,t , . . . ,X

m
s,t, . . .

)
∈ T ((Rd))

is a multiplicative functional with finite p-variation controlled by ω, i.e.,

∥Xi
s,t∥ ≤ ω(s, t)

i
p

β( i
p )!

∀i ≥ 1, ∀(s, t) ∈ ∆T . (8)
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The extension theorem states that, for any multiplicative functional with finite p-variation, we can extend it to an infinite
sequence. In particular, the signature is one of such objects for some special multiplicative functionals (what we call
geometric rough paths). In most real-world applications, time series data are interpolated linearly and hence fall into the
case of p = 1, i.e., paths with bounded variation. In certain financial applications or the first two examples in this paper, we
have semi-martingales that fall into the cases of p ∈ (2, 3), that is, the geometric rough paths with finite p-variation. Their
signatures are all well-defined. The factorial decay property is implied by equation (8).

As a feature map of sequential data, the signature has a universality detailed in the following theorem.

Theorem B.2 (Universality). Let p ≥ 1 and f : Vp([0, T ],Rd) → R be a continuous function in paths. For any compact set
K ⊂ Vp([0, T ],Rd), if S(x) is a geometric rough path for any x ∈ K, then for any ϵ > 0 there exist M > 0 and a linear
functional l ∈ T ((Rd))∗ such that

sup
x∈K

|f(x)− ⟨l, S(x)⟩| < ϵ. (9)

Given that signature is well-defined and with finite expectation, we call E[S(X)] the expected signature of X . Intuitively,
the expected signature serves the moment-generating function, which can characterize the law induced by a stochastic
process under some regularity conditions. More precisely, an immediate consequence of Proposition 6.1 in Chevyrev &
Oberhauser (2022) on the uniqueness of the expected signature is summarized in the below theorem:

Theorem B.3. Let X,Y be two random variables of geometric rough paths such that E[S(X)]] = E[S(Y )] and E[S(X)]
has an infinite radius of convergence, then X,Y have the same distribution.

B.2. Proof of Theorem 2.1

We first restate Theorem 2.1 formally. Without loss of generality, we treat the time-homogeneous case, i.e., µ and σ are
independent of t. Our proof relies on constructing the forward equations characterizing marginal distributions of both SDEs
and directed chain SDEs, thus can be easily generalized to time-dependence cases. The forward equation associated with
directed chain SDEs has been constructed by Ichiba & Min (2022) and will be used directly in our proof.

Theorem B.4. Let Y ∈ L2(Ω× [0, T ],RN ) be an N -dimensional stochastic process with the following dynamics

dYt = µ(Yt) dt+ σ(Yt) dB
y
t , Y0 = ξy,

where By is a standard d-dimensional Brownian motion, and µ : RN → RN , σ : RN → RN×d are Borel measurable
functions with Lipschitz and linear growth conditions. Then, there exist functions V0 and V1 such that the process X has
the same marginal distribution as Y for all t ∈ [0, T ], where X is described by the following directed chain SDEs with an
initial position ξ as an independent copy of ξy ,

dXt = V0(Xt, X̃t) dt+ V1(Xt, X̃t) dB
y
t , X0 = ξ,

subject to: Law(Xt, 0 ≤ t ≤ T ) = Law(X̃t, 0 ≤ t ≤ T ).

Proof. Let g ∈ C2(RN ) be a twice continuously differentiable function. To characterize marginal distributions of the SDE
solution Y for all t ∈ [0, T ], we use the Kolmogorov forward equations. Define u(t, x) := E[g(Yt)|Y0 = x], it is the
solution of the following Cauchy problem

(∂t − L)u(t, x) = 0, (10)
u(0, x) = g(x). (11)

The derivation relies on Itô’s formula and can be found in stochastic calculus textbooks, e.g., in Karatzas & Shreve (2012).
Here the infinitesimal operator L is given by

Lg(x) = µ(x) · ∇xg(x) +
1

2
Tr(σσT (x)Hessxg(x)),

where Hessx(·) denotes the Hessian matrix, and Tr(·) denotes the matrix trace. In Ichiba & Min (2022, Section 4.5), a
similar partial differential equation for the directed chain SDEs is derived, and we here summarize a simpler version without
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the mean-field interaction term. Define v(t, x) := E[g(Xt)|X0 = x], then v solves

(∂t − Ldc)v(t, x) = 0, (12)
v(0, x) = g(x). (13)

Let ξ̃ be an independent copy of ξ, and the differential operator Ldc is given by

Ldcg(x) =Eξ̃

[
V0(x, ξ̃) · ∇xg(x) +

1

2
Tr(V1V

T
1 (x, ξ̃)Hessxg(x))

]
, (14)

where Eξ̃ is the expectation with respect to the distribution of ξ̃. As long as we can match these two operators L and Ldc

with some non-degenerate choices of V0, V1, then (10)-(11) and (12)-(13) agree with each other and so do their solutions u
and v. To this end, it suffices to choose V0, V1 such that

Eξ̃[V0(x, ξ̃)] = µ(x),

Eξ̃[V1V
⊤
1 (x, ξ̃)] = σσ⊤(x).

A toy example of non-degenerate V0, V1 can be V0(x, ξ̃) = µ(x)+φ1(ξ̃)−Eξ̃[φ1(ξ̃)] and V1(x, ξ̃) such that V1V
⊤
1 (x, ξ̃) =

σσ⊤(x) + φ2(ξ̃)− Eξ̃[φ2(ξ̃)] with measurable and integrable functions φ1, φ2.

B.3. Proof of Theorem 2.2

From Ichiba & Min (2022, Proposition 2.1), we have the existence and weak uniqueness of directed chain SDEs. Denote
this unique measure flow by

m := Law(Xt, 0 ≤ t ≤ T ) = Law(X̃t, 0 ≤ t ≤ T ).

This measure can also be understood as a probability distribution on C([0, T ],RN ). Given the Brownian motion path and
the neighborhood path, we define a map Φ : C([0, T ],RN )× C([0, T ],Rd) → C([0, T ],RN ) such that

X = Φ(X̃;B) ∈ C([0, T ],RN )

and Φt as the projection of Φ onto any specific time stamp, i.e. Xt ≡ Φt(X̃;B). Then, on a chain-like structure depicted in
Figure 4(b) or 2, we write

Xq = Φ(Xq−1;B
q) = Φ(Φ(Xq−2;B

q−1);Bq) = Φ ◦ Φ(Xq−2;B
q−1, Bq).

Namely, Xq is obtained as an output of the composite map Φ ◦Φ from the inputs Xq−2, Bq−1 and Bq . Repeating the above
equation until tracing back to the first node produces

Xq = Φ ◦ · · · ◦ Φ(X1;B
2, . . . , Bq) := Φq(X1;B),

where B = (B2, . . . , Bq) and B2, . . . , Bq are independent d-dimensional Brownian motions. Such a chain-like structure
possesses local Markov property as pointed out in Proposition 4.6 in Ichiba & Min (2022). Let us denote Xt,q = Φq

t (X1;B).
In the proof below, we impose Lipschitz and linear growth conditions on coefficients V0 and V1.

Assumption B.1. For both coefficients V0 and V1, there exists a positive constant CT such that,

1. (Lipschitz conditions) for i = 0, 1,

|Vi(x1, y1)− Vi(x2, y2)| ≤ CT (|x1 − x2|+ |y1 − y2|);

2. (Linear growth conditions) for i = 0, 1,

Vi(x, y) ≤ CT (1 + |x|+ |y|).

The following lemma gives the necessity of having the Brownian motion noises Bj , j = 2, . . . , q in Φq
t , in order to have

dependence decay properties.
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Lemma B.1. Suppose Assumption B.1 holds. In the degenerate case, i.e., V1 ≡ 0 and Xt,q = Φq
t (X1), if all the initial

conditions X0,1 = X0,2 = · · · = X0,q = ξ are identical, then the directed chain SDE satisfy X1 = X2 = · · ·Xq in the L2

sense.

Proof. We first write our directed chain dynamics in the integral form,

Xt,q = ξ +

∫ t

0

V0(Xs,q, Xs,q−1) ds. (15)

Note that the current directed chain system with degenerate V1 also has unique solutions. By the Lipschitz property on V0,
we compute

E[ sup
0≤s≤t

|Xs,q −Xs,q−1|2] ≤ E
[

sup
0≤s≤t

2CT

∫ s

0

(|Xv,q −Xv,q−1|2 + |Xv,q−1 −Xv,q−2|2) dv
]

≤ C · E
[ ∫ t

0

sup
0≤v≤s

(
|Xv,q −Xv,q−1|2 + |Xv,q−1 −Xv,q−2|2

)
dv

]
≤ C ·

∫ t

0

E
[

sup
0≤v≤s

|Xv,q −Xv,q−1|2
]
dv + C ·

∫ t

0

E
[

sup
0≤v≤s

|Xv,q−1 −Xv,q−2|2
]
dv

≤ C · eCT

∫ t

0

E
[

sup
0≤v≤s

|Xv,q−1 −Xv,q−2|2
]
dv,

where the third inequality comes from Fubini’s theorem and Proposition 2.2 in Ichiba & Min (2022), and the last inequality
follows from Gronwall’s inequality. Iterating back to the beginning of the chain, we deduce

E[ sup
0≤s≤T

|Xs,q −Xs,q−1|2] ≤
TCq−1e(q−1)CT

(q − 1)!
E[ sup

0≤s≤T
|Xs,2 −Xs,1|2].

According to the invariance of (joint) distribution (see Detering et al. (2020); Ichiba & Min (2022)), we get

E[ sup
0≤s≤T

|Xs,2 −Xs,1|2] ≤
TCq−1e(q−1)CT

(q − 1)!
E[ sup

0≤s≤T
|Xs,2 −Xs,1|2].

The constant q can be arbitrarily large and hence the above inequality forms a contraction, which implies

E[ sup
0≤s≤T

|Xs,2 −Xs,1|2] = 0.

We then conclude X1 = X2 = · · · = Xq in the L2 sense.

Although the assumption of identical initials in Lemma B.1 is different from the general setting of directed chain SDEs, where
initials should be i.i.d, it is consistent in the case that initials are deterministic. Therefore, the existence of non-degenerate
V1 becomes crucial, and we give the following necessary assumptions for factorial dependence decay property.

Definition B.1 (Ck,k
b,Lip). We have the following definition for Ck,k

b,Lip:

(a) We use ∂x, ∂y to denote the derivative with respect to the first and second Euclidean variables in V0, V1.

(b) Let V : RN × RN → RN with components V 1, . . . , V N : RN × RN → R. We say V ∈ C1,1
b,Lip(RN × RN ;RN ) if the

following is true: for each i = 1, . . . , N , ∂xV i, ∂yV
i exist. Moreover, assume the boundedness of the derivatives for

all (x, y) ∈ RN × RN ,
|∂xV i(x, y)|+ |∂yV (x, y)| ≤ C.

In addition, suppose that ∂xV i, ∂yV
i are all Lipschitz in the sense that for all (x, y) ∈ RN × RN ,

|∂xV i(x, y)− ∂xV
i(x′, y′)| ≤ C(|x− x′|+ |y − y′|),

|∂yV i(x, y)− ∂yV
i(x′, y′)| ≤ C(|x− x′|+ |y − y′|),
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and V i, ∂xV
i, ∂yV

i all have linear growth property,

|V i(x, y)|+ |∂xV i(x, y)|+ |∂yV i(x, y)| < CT (1 + |x|+ |y|),

where CT is a constant depending only on T .

(c) We write V ∈ Ck,k
b,Lip(RN × RN ;RN ), if the following holds: for each 1, . . . , N , and all multi-indices α, β on

{1, . . . , N} satisfying |α|+ |β| ≤ k, the derivative ∂α
x ∂

β
y exists and is bounded, Lipschitz continuous, and satisfies

linear growth condition.

(d) We say V0 ∈ Ck,k
b,Lip(RN × RN ) for short if V0 : RN × RN → RN satisfies (c). Let V1 : RN × RN → RN×d with

components V 1
1 , . . . , V

d
1 : RN × RN → RN . We say V1 ∈ Ck,k

b,Lip(RN × RN ) for short if V j
1 ∈ Ck,k

b,Lip(RN × RN ) for
every j = 1, . . . , d.

Assumption B.2. We emphasize two assumptions used for the existence and smoothness of the marginal densities of directed
chain SDEs:

1. (Uniform ellipticity on V1) Assume that there exists ϵ > 0 such that for all η, x, x̃ ∈ RN ,

η⊤V1(x, x̃)V1(x, x̃)
⊤η ≥ ϵ|η|2.

2. (Smoothness on V0, V1) Assume that V0, V1 ∈ Ck,k
b,Lip(RN ,RN ) with k ≥ N + 2, where V0, V1 ∈ Ck,k

b,Lip(RN ,RN ) is
defined in Definition B.1.

Under Assumption B.2, one can prove the existence of the density function of directed chain SDEs (Ichiba & Min, 2022,
Theorem 4.3).
Theorem B.5. Suppose Assumption B.2 is satisfied. For every Lipschitz function φ : RN → R with Lipschitz constant K,
there exists a constant c > 0 such that the difference between the conditional expectation of φ(Xt,q), given X1 and the
unconditional expectation φ(Xt,q) for all t ∈ [0, T ] is bounded, i.e.,

E
[

sup
0≤t≤T

∣∣E[φ(Xt,q)|X1]− E[φ(Xt,q)]
∣∣2] ≤ cq−1

(q − 1)!
. (16)

We shall first provide some interpretations for Theorem B.5 before giving the proof. For random variables in space
C([0, T ],RN ), there is no unique choice on how to measure their correlation or covariance. Here, we measure the difference
between conditional expectation and unconditional expectation over a family of testing functions φ. Thus, we use the
left-hand side in inequality (16) to measure the dependence between Xq and X1.

Proof. Note that Assumption B.2 is a stronger version of Assumption B.1, and it not only ensures the existence and weak
uniqueness of the solution, but also guarantees the existence of a smooth density which excludes the case of deterministic
Xt,q . If Xq and X1 are independent, the left-hand side is zero for every Lipschitz function φ. The vice versa is also correct
because of the exclusion of the deterministic case.

Let us start from the left-hand side in (16), the difference between the conditional expectation of φ and unconditional
expectation can be bounded by

E
[

sup
0≤t≤T

∣∣E[φ(Xt,q)|X1]− E[φ(Xt,q)]
∣∣2]

=

∫
C([0,T ],RN )

sup
0≤t≤T

∣∣∣∣ ∫
C([0,T ],RN )

(
EB

[
φ(Φq

t (ω;B))
]
− EB

[
φ(Φq

t (ω̃;B))
])

m( dω̃)

∣∣∣∣2m( dω)

≤
∫
C([0,T ],RN )2

sup
0≤t≤T

EB

[∣∣φ(Φq
t (ω;B))− φ(Φq

t (ω̃;B))
∣∣2]m( dω̃)m( dω)

≤ K2

∫
C([0,T ],RN )2

EB

[
sup

0≤t≤T

∣∣Φq
t (ω;B)− Φq

t (ω̃;B)
∣∣2]m( dω̃)m( dω)

≤ cq−1

(q − 1)!
,

for some positive constant c, where the proof of the last inequality is verbatim to the procedures in Lemma B.1.
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Remark B.1. We shall emphasize that the assumption X0,1 = X0,2 = · · · = X0,q = ξ is not allowed under directed chain
framework except for ξ ≡ x ∈ RN (the deterministic initial condition). This is quite common in practice, for instance, the
investment returns usually start from 1. Given results from Lemma B.1 and equation (16), we are able to conclude that

E[ sup
0≤t≤T

|φ(X1)− E[φ(X1)]|2] ≤
cq−1

(q − 1)!
.

Here q can be arbitrarily large, hence we conclude that E[sup0≤t≤T |φ(X1)−E[φ(X1)]|2] = 0. The only possible solution
for a directed-chain system is the deterministic case where we have deterministic initial conditions and degenerate V1 (or we
should call it “ODE”). Brownian motion is the key ingredient to enrich the representability of our directed-chain systems.

C. Experimental Details
Both discriminative and predictive metrics involve training tasks, and we shall first list all implementing details of these
metrics, which is universal for all experiments. Then, we provide training hyper-parameters and training details used in
different experiments.

C.1. Metrics

Discriminative Metric. We first generate the same amount of fake data paths as true data paths to avoid imbalance, and
choose 80% from both real and fake data as training data, leaving the rest 20% as testing data. We use a two-layer LSTM
classifier with channels/2 as the size of the hidden state, where channels is the dimension of generated and real
series. We will minimize the cross-entropy loss, and the optimization is done by Adam optimizer with a learning rate of
0.001 for 5000 iterations. The discriminative score is calculated by the difference between 0.5 and the prediction accuracy
on testing data.

Predictive Metric. We first generate the same amount of fake data as true data, and use it as training data for the predictive
metric, whereas true data is for testing. We use a two-layer LSTM sequential predictor with channels/2 as the size of
the hidden state, where channels is the dimension of generated and real series. Our objective function is L1 distance
between predicted sequences and true sequences. The predictor generates one-step future predictions in the last feature with
the others as input. Optimization is done by Adam optimizer with a learning rate of 0.001 for 5000 iterations. The predictive
score is reported as the L1 distance (also interpreted as mean absolute error (MAE)) between the predictive sequences and
true sequences on testing data.

Independence Metric. The independence score is computed by the maximum of the L1 distance of cross-
correlation matrices over the time period [0, T ]. In practice, we consider the maximum over the time stamps t ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

C.2. Experiments

In all four experiments, we use feed-forward neural networks with two hidden layers of sizes [128,128] to parameterize the
drift V0 and diffusion coefficient V1. For the purpose of fair comparisons, we use the same GAN structure for both neural
SDEs and DC-GANs, i.e., the same Sig-Wasserstein GAN setup (4) or the combination of neural CDE and Sig-WGAN
scheme (6) as discriminators. We remark that DC-GANs can be adapted to torchsde3 framework and use their adjoint
method for back-propagation.

Stochastic Opinion Dynamics. In this experiment, we only use Sig-Wasserstein GAN approach for the discriminator, and
choose m = 8 as the truncation depth in (4). We choose N = 1 and d = 3 dimensional standard Brownian motion in the
DC-GANs generator (3), a batch size of 1024, a learning rate of 0.001 decaying to one-tenth for every 500 steps, and train a
total of 2000 steps. Training data and testing data are sampled by the Euler scheme (3) with a sample size of 8192, and their
initial distributions ξ are drawn independently from a uniform distribution on [−2, 2].

Stochastic FitzHugh-Nagumo Model. The stochastic FitzHugh-Nagumo model is widely used in neuroscience for
describing the neurons’ interacting spiking, in particular, to capture the multimodality of neurons’ interspike interval

3See the Python package https://github.com/google-research/torchsde.
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distribution. For N neurons and P different neuron populations, we denote by p(i) = α, α ∈ {1, . . . , P}, the population of
i-th particle belongs to, for i ∈ {1, . . . , N}. The state vector (Xt,N

t )t∈[0,T ] = (V i,N
t , wi,N

t , yi,Nt )t∈[0,T ] of neural i follows
a three-dimensional SDE:

dXt,N
t = fα(t,X

t,N
t ) dt+ gα(t,X

t,N
t )

[
dW i

t

dW i,y
t

]
+

P∑
γ=1

1

Nγ

∑
j,p(j)=γ

(
bαγ(X

i,N
t , Xj,N

t ) dt+ βαγ(X
i,N
t , Xj,N

t ) dW i,γ
t

)
,

where Nγ denotes the number of neurons in population γ. For all γ and α ∈ {1, . . . , P}, Iα(t) := I , ∀t ∈ [0, T ], ∀α for
some constant value I , fα, gα, bαγ and βαγ are given by

fα(t,X
i,N
t ) =

 V i,N
t − (V i,N

t )3

3 − wi,N
t + Iα(t)

cα(V
i,N
t + aα − bαw

i,N
t )

aαr Sα(V
i,N
t )(1− yi,Nt )− aαd y

i,N
t

 , gα(t,X
i,N
t ) =

 σα
ext 0
0 0

0 σy
α(V

i,N
t , yi,Nt )

 ,

and

bαγ(X
i,N
t , Xj,N

t ) =

 −J̄αγ(V
i,N
t − V αγ

rev )y
i,N
t

0
0

 , βαγ(X
i,N
t , Xj,N

t ) =

 −σJ
αγ(V

i,N
t − V αγ

rev )y
i,N
t

0
0

 .

The functions Sα, X and σy
α are defined as

Sα(V
i,N
t ) =

Tα
max

1 + e−γα(V i,N
t −V i,N

T )
,

X (yi,Nt ) = 1yi,N
t ∈(0,1)Γe

−Λ/(1−(2yi,N
t −1)2),

σy
α(V

i,N
t , yi,Nt ) =

√
aαr Sα(V

i,N
t )(1− yi,Nt ) + aγdy

i,N
t ×X (yi,Nt ),

where (W i,W i,y,W i,γ), i = 1, . . . , N are standard three-dimensional Brownian motions that are mutually independent.
For sample paths produced by this model, we follow the parameter choices in line with dos Reis et al. (2021),

V0 = 0, σV0
= 0.4, a = 0.7, b = 0.8, c = 0.08, I = 0.5, σext = 0.5,

w0 = 0.5, σw0
= 0.4, Vrev = 1, ar = 1, ad = 1, Tmax = 1, λ = 0.2,

y0 = 0.3, σy0 = 0.05, J = 1, σj = 0.2, VT = 2, Γ = 0.1, Λ = 0.5.

The above choice produces the joint multimodal distribution of V and w; see the figure below.

All training and testing data are generated through the Euler scheme with the above parameters. In the training phase, we
choose the Sig-Wasserstein GAN approach again for our discriminator and choose m = 6 as the truncation depth in (4). We
take N = 3 and d = 5 in our DC-GANs generator, and use a batch size of 1024 for training 2000 steps with a learning
rate of 0.001 decaying to one-tenth every 500 steps. Training and testing data are generated by the Euler scheme, where
the initial positions ξ are drawn from a 3-dimensional Gaussian random variable with means (0, 0.5, 0.3) and standard
deviations (0.4, 0.4, 0.05).

Stock Price Time Series. In this real-world example, we use the six-dimensional stock price data of Google from 2004
to 2019. We segment them into sequences of length 24, which results in 3773 sequences as our time series data set. The
combination of Neural CDEs and Signature MMD (6) is used as the discriminator. For the purpose of a fair comparison, we
use the same noise size d and discriminator setup for both Neural SDEs and DC-GANs generators. In particular, for the
Neural CDEs discriminator, we set the dimension of the hidden process to be 16, and their coefficients are approximated by a
feed-forward neural network with two hidden layers of size [128, 128]. For both DC-GANs and Neural SDEs generator, the
Brownian motion’s dimension is set at d = 10; and for the Neural SDEs which embed stock prices data into a hidden space,
we set its (the hidden space) dimension at 12. The batch size is chosen to be 128. Both generators and discriminators are
trained using Adam optimizer. Both learning rates start at 0.0001 and decay to one-tenth after 2000 steps, the signature depth
is chosen at m = 4 in (6) to alleviate the dimensional burden, and training steps are set as 4000. Our CTFP implementation
follows the setup in Deng et al. (2020), SigWGAN follows from Ni et al. (2021) and TimeGAN implementation follows the
setup in Yoon et al. (2019).
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Figure 5. Stochastic FitzHugh-Nagumo Model (Example 2). Left subfigure shows the multimodal joint density of VT and wT , and right
subfigure shows the sample paths from the time-dependent model (blue) and from the DC-GANs (red).

Energy Consumption. In the real-world energy consumption example, we choose four electric and gas consumption time
series from 02/2011-02/2013 and use daily data as a single time series, bringing 694 sequences with a length of 96. For both
neural SDEs and DC-GANs, we use a ten-dimensional Brownian motion and neural nets with two hidden layers of size
[128, 128] to estimate drift and diffusion coefficients. The batch size is 128, the training step is 4000, and the learning rate
for the generator starts at 0.0001. In the case of using Neural CDEs as the discriminator, we use hidden size 16, [128, 128]
as the hidden layers of neural nets estimating coefficients and 0.0001 as the starting learning rate of the discriminator. In the
case of using SigWGAN, we consider signature depth 6. All learning rates decay to one-tenth after 2000 steps. Our CTFP
implementation follows the setup in Deng et al. (2020), SigWGAN follows from Ni et al. (2021) and TimeGAN follows
from Yoon et al. (2019).
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