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Nonlinear devolopmgnt of lower hybrid cones 
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ABSTRACT. 

The Instability of a planar lower hybrid soliton to transverse long wavelength 

perturbations Is Investigated numerically. Initially, a klnk·llke deformation grows In 

agreement with linear analysis. In the nonlinear regime the soliton breaks up Into 

bunches which move apart and spread the energy throughout the plasma • 
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I. INTRODUCTION 

Selfmodulatlon effe~ts are thought to be Important for the nonlinear evolution of 

lower hybrid resonance cones which have been excited at the wall of the plasma 

chamber by a finite extent source such as a phased waveguide array or a slow wave 

atructure.1•5 Since selfmodulatlon usually leads to self-focusing or fllamentatlon, the 

primary concern has been to examine whether these effects . would Impede the 

propagation of RF energy Into the Interior of the plasma. Depending on the Initial 

assumptions about the nature of the excitation spectrum, the nonlinear equation 

governing the propagation of the lower hybrid waves Is the complex modified Korteweg 

de-Vrles equation 2 or the nonlinear Schrodlnger equation •3•5 Most derivations of these 

equations restrict analysis to the plane containing the ambient magnetic field and the 

electric field of the pump wave,1•4 and associate planar stationary solutions of the 

soliton kind with fllamentatlon or self•focuslng effects. In Ref. 6 the effect of Including 

the third dimension was studied and It was shown that such planar structures' were 

linearly unstable to long wavelength transverse perturbations and that the tendency of 

the cones to form solitons was opposed by additional dispersive terms. 

In this paper we verify numerically the analytic results of the linear stability 

· analysis and In addition examine the nonlinear evolution of the resonance cone 

structures. The pertinent equation Is the nonlinear Schrodlnger equation with an 

additional term (Eq. 26 of Ref. 5): 

(1) 

where vIs the normalised electrostatic field amplitude ·~'2/t.1 icf/J/(4nT) 1 '2• The derivation 

of this equation Is detailed In Ref. 6. We will describe Its physical content here. 

Basically, the equation describes the evolution of the slowly varying envelope of a 
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monochromatic lower hybrid wave whose potential Is 4»<x)exp( -twt). The potential Is 

further expressed as 4»<.,,~,,)exp(ll<zz -LI<_.x) where the slowly varying envelope • Is a 

function of the stretched variables '.~ and 'I• The geometry of the problem Is sketched 

·1n Fig. 1 where the orientations of the coordinates ~ and 'I are shown In relation to the 

basic resonance cone structure In the x-z plane. ata~ and ata'l characterize the slow 

envelope variation In the x-z plane and y direction respectively In the absence of the 

weak effects of nonlinearity and dispersion, whereas ataf' describes the perturbation to 

the envelope due to nonlinearity and dispersion. This perturbation Is essentially along the 

x direction, or the minor radial direction In a toroidal geometry. Thus the evolution In the 

time-like variable ., corresponds In the present problem to evolution along x. 

We note that Eq. {1) differs from the usual nonlinear Schrodlnger equation by the 

presence of the additional term a2vtaf)2 which arises from Inclusion of slow variations In 

the third dlmenslon(y). The negative sign preceding this term sets our equation apart 

from the Langmuir wave equation which has a positive slgn8•7 The sign difference can be 

traced to the physical origin of the two dispersive terms: the a2ta~2 term arises from 

thermal corrections to the cold propagation characteristics of the lower hybrid wave and 

Is proportional to 1<_. whereas the a2tatr2 term Is nonthermalln origin and represents the 

spreading out of the wave In a three dimensional cone centered about the excitation 

source. For the nonlinear Langmuir wave equation both the terms arise from thermal 

corrections which are proportional to l<.l. and hence In terms of 1<_. and I<Y the positive sign 

appears. In our case I<Y Is set to zero and only slow variations In y are retained. The 

asymmetry In ~ and 'I of Eq. ( 1 ), due to the negative sign, has significant effects on the 

nonlinear structure of the solutions which evolve quite differently from those of the 

langmuir wave case. 

The plan of our paper Is as follows: In Sec.ll we present the numerical results for 
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the linear evolution of a transverse perturbation to a planar soliton solution of Eq. ( 1 ) 

and compare these to analytical estlmates.1•5 In Sec. Ill the perturbation Is followed In 

the nonlinear regime until extraneous factors arising from limitations of the numerical 

scheme begin to develop. A comparison Is made with previous such Investigations of the 

closely related equation for the Langmuir waves. Our results are summarized and their 

Implications for lower hybrid heating schemes are briefly discussed In the final section. 

II. LINEAR INSTABILITY 

In this section we present numerical results for the linear Instability of a planar 

sech-shaped lower hybrid soliton perturbed In the perpendicular direction. The 

computations were performed with a variant of the code used earlier to study strong 

Langmuir turbulence,7 which Is described by Eq. (1) with a plus sign In front of the " 

derivative. We used a grid of 32x32 points with 334 Fourier modes. The accuracy of the 

computations was checked by repeating some of them with different grid sizes and time 

steps; the results were only slightly Influenced. In addition, the conserved Integral 

/lvl2d~dtJ remained constant to a high accuracy. 

For a planar soliton of the form v0 = sech(~) perturbations even In~ are found to be 

stable. In the computations; this Is In agreement with the analytical calculatlons8 •9•5 and 

the computations are not shown here. The Instability of a planar soliton to perturbations 

odd In f, of the form 

(2) 

Is shown In Figs. 2 (a), (b), and (c) for t'=O, t'=4, and t'=6, respectlvely.The perturbation 
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wavelength Is equal to the periodicity length In the tJ direction of our system . and th~ 

Initial amplitude Is a(O) = 0.1. The perturbation appears as a kink-like deformation of a 

planar soliton, since (2) Is the first term In a Taylor series of the bent sech-shaped 

soliton v = sech[~ + acos(~'7)] • which has Its maximum along the line E = -acos(~etJ). 
Because the Initial amplitude Is chosen to be very small these kinks do not yet show up 

In Fig. 2 (a). At f' = 4, Fig. 2 (b), the amplitude of the kinks has Increased according to 

the linear growth rate, but the height of the soliton has only changed slightly. At f' = 6, 

Fig. 2 (c), the soliton starts to deviate from linear growth. The profile along a line tJ = 

constant Is different from the Initial shape, and the height Is now clearly modulated along 

a line through the soliton maxima. 

We note that Fig. 2 corresponds closely to the theoretical calculations of Yajlma.1 

He assumes a solution of the form 

· and finds that a sinusoidal perturbation In " on the position of the maximum Eo grows with 

the growth rate given In (3). Sinusoidal perturbations on height and Inverse width A(tJ,f') 

can oscillate In time, In agreement with numerical computations that are not shown. 

We now compare the observed linear growth rate with earlier analytic results. From 

Ref. 6 the linear growth rate Is: 

(3) 

The solid line In Fig. 3 represents the calculated growth rate (3). The dots .are results 

from the computations, obtained by measuring the ., behavior of the maximum value m(.,) 

of the perturbed soliton minus th~ unperturbed soliton: 



•(f') == [lv(~,fJ,f' >12 
- lv(~,fJ,f' == O)f2lmu • 
atvf2 

:¥ a(f' >ar lm ..... 
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(4) 

The logarithm of · m(') Is plotted versus ', and the slope of the straight portion of this 

plot yields the growth rate. For perpendicular wave numbers r of about 0.25-0.5 we find 

exponential growth over a sizeable range of ', and the determination of the growth rate 

Is reasonably accurate. For values of " outside this range the exponential growth In ., Is 

smaller, and the numerical growth rate Is less accurate. From Fig. 3 we see that the 

growth rate from the numerical computations, as represented by the dots, follows the 

theoretical curve quite well, upto r 2 == 0.3. The growth rate Is proportional to r for small 

•• and within our numerical accuracy the proportionality constant Is close to the 

theoretical value of ../4/3. For larger 1 the growth rate reaches a maximum, and for still 

larger " It decreases following once again the qualitative behavior of the theoretical 

curve. The maximum growth Is about 0.3 which Is 0.75 of the value suggested by (3), 

and It occurs near the predicted value of r.2 of 0.67. For larger r the growth rate 

decreases more slowly than that predicted by (3). However, computations for these 

cases do not show the clear kinks visible In Fig. 2 (c) becaus~· the nonlinear growth sets 

In at an early stage. 

The linear development of the Instability changes to a nonlinear stage at larger f' 

when the amplitude of the growing odd perturbation has reached about 0.5 of the 

unperturbed planar soliton. Then the absolute values of maximum and minimum of the 

perturbatlon,whlch remain equal In the linear stage , begin to differ appreciably. This 

nonlinear development Is treated In the next section. 

• 
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Ill. NONLINEAR DEVELOPMENT 

In the nonlinear regime there are no analytic predictions of the final state of the 

lower hybrid waves as described by Eq. (1) and we therefore Investigate this state 

numerically by following the development of the klnk•llke Instability well beyond Its linear 

stage. 

· Figures 4 (a), (b), and (c) picture the evolution of the same soliton as In Fig. 2 for 

t' • 1, ., =· 8 and f' = 9 respectively. Now the perturbation of the soliton Is not a pure 

m·odulatlon of the position of the soliton maximum, but this mexlmum and · the 

correspondl.ng width vary along the soliton ridge and with f'. Depending on the 

perturbation wave n~mber, the soliton maximum can obtain values up to twice the Initial 

maximum: the soliton of Fig. 4 reaches 1.4 times the Initial maximum at ., = 7 .3. 

Subsequently, as In Fig. 4 (b), the soliton breaks up Into pieces which can not keep 

themselves together but Instead spread out. 

In contrast to the Langmuir problem, where the final state Is a selfslmllarly 

contracting blob of energy density leading to a rapid Increase of energy density to 

Infinity In a finite time (collapse), the energy density In this cnse remains bounded at all 

times. In Fig. 6 Is plotted ·the energy density maximum versus f' of the soliton of Figs. 2 

and 4. The maximum oscillates slightly, and In addition Increases slowly toward the end 

of the linear growth at ., 11 6. This growth accelerates In the nonlinear regime, until at ,. = 

7.3 the largest value 1.4 Is reached. Afterwards, the maximum decreases rapidly since 

at this time the soliton begins to disperse In ~ and 'l· 

The upturn after., 11 9.6 Is related to the Interference pattern seen In Fig. 4 (c), 
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which does not, however, represent the end stage of a single decaying soliton. Namely, 

our computations take place In a doubly periodic system and therefore as the Instability 

progresses the soliton moves towards the boundary of Its period, where It gets close to 

the soliton of the next period. Interference between these solitons then results In 

pictures like Fig. 4 (c). In this Interference process the maximum reaches larger values 

than the minimum shown In Fig. 5, but we have not observed values larger than the Initial 

value. This situation of Fig. 4 (c) Is spurious In the present computation, which Intends to 

treat one soliton only, but It could correspond closely to a heating scheme where the 

lower hybrid waves are launched through multiple ports placed around the torus of a 

tokamak. Physically adjacent re$onance cones could then simulate such a situation. 

The energy density maximum In space and time for values adjacent to r = 'f(/6, 

namely r = .,/4 end rc = w/7, Is Indicated In Fig. 5 by the open circle and the closed 

square. The maximum takes place later when the wave number Is smaller, In agreement 

with the smaller growth rate. The value of the maximum Is a decreasing function of the 

wave number. We do not know of a quantitative theory that relates the value and 

occurrence of this maximum to the perpendicular wave number. Such a theory would 

undoubtedly be very difficult, and we have not tried to construct _one In view of our 

limited objectives. Qualitatively, It seems clear that the maximum occurs when the kinks 

become substantial. 

The dashed line In Fig. 5 shows the maximum energy density versus time for 1 = 

tr/2.75 corresponding to the open square In Fig. 3. After the short linear stage the 

soliton maximum does not Increase, but Instead decreases until the end of this 

computation at f' = 6. Indeed, this soliton never shows the clearly visible kinks of Figs. 2 

and 4, but has slightly oscillating kinks that decay from the beginning. 

I 
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In practice, Instabilities often develop from random perturbations and the one with 

the largest growth rate will dominate eventually. Figure 6 shows the soliton with this 

fastest growing perturbation with r.2 = 0.5 at " = 6. This and other computations exhibit 

qualitatively the same behavior as Illustrated In Figs. 2 and 4. 

IV. SUMMARY 

We· have lnv,stlgated the linear and nonlinear Instability of a planar soliton 

subjected to a long wavelength ,transverse perturbation. Such an Instability Is related 

to ttle nonlinear evolution of lower hybrid resonance cones as described by Eq. ( 1 ), 
. 

which takes Into account the nonlinear effects of selfmodulatlon and the perturbatlve 

effects of dispersion of the cones In the third dimension. 

In the linear regime our computations agree with the analytic results quite well. We 

have further Investigated the nonlinear stage of this Instability and found that the 

soliton eventually breaks up Into smaller pieces which cannot keep themselves together 

but spread out. This Is In contrast to the final collapse state In the langmuir wave 

equatlon,10•7 which Is Identical to Eq. (1) except for the sign of the second dispersive 

term. 

For the lower hybrid cones, therefore, the nonlinear evolution In the presence of 

selfmodulatlon can be described . as follows. Initially, a kink-like Instability with 

perpendicular wave number In the linearly most unstable regime around r. = 0.6 will grow 

and distort the cone. During this process the maximum of the energy density may reach 

values up to 1.5 times the Initial energy density. Subsequent nonlinear development 

causes the energy to spread throughout the plasmati rather than being focused Into 



Page 10 

small regions. 
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Flgwe captions 

Fig. 1 (a). lower hybrid resonance cone for a typical case In an Inhomogeneous plasma. 

Region A containS' electromagnetic waves, region 8 electrostatic lower hybrid waves. 

The scales of x and z are arbrltary. 

Fig. 1 (b). Expanded and simplified picture of region 8 assuming a homogeneous plasma. 

ThEt coordinates l and f' are perpendicular to each other and the coordinate '7 Is normal 

to the plane of the figure. The location of the energy density at f' 2 Is Indicated by the 

shaded soliton shape. Some contour lines are also shown. 

Fig. 2. Contours of the electrostatic energy density lvl2(~,tJ) for a soliton normalised to 

unity with perpendicular wave number 1 • w/6. The lines are the contours at 0.75, 0.5 

and 0.25. 

Fig. 3. The square of .the growth rate r 2 as a function of the square of the perpendicular 

wave number rc2• The solid line Is Eq. (3). The triangle corresponds to the computation of 

Fig. 2 with IC = ftl6, the open circle corresponds to Fig. 6 with rc = ff/4, and the dots and 

squares to other computations. 

~lg. 4. Contours of the electrostatic energy density for the computations of Fig. 2 at 

later times. 

F.lg. 6. The time dependence of the electrostatic energy density maximum, lvl2 m• from 

the computation of Figs. 2 and 4 with rc = 1'16 The open circle Is the maximum In time of 

lvl2, for IC = ff/4 shown In Fig. 6; the solid square Is for rc = 1'/7. 

Fig. 6. The electrostatic energy density lvl2 for IC = 1'/4 at f' = 6. Note the change of 
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