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Abstract
Continuous-timeMarkov chains are frequently used as stochastic models for chemical
reaction networks, especially in the growing field of systems biology. A fundamental
problem for these Stochastic Chemical Reaction Networks (SCRNs) is to understand
the dependence of the stochastic behavior of these systems on the chemical reaction
rate parameters. Towards solving this problem, in this paper we develop theoretical
tools called comparison theorems that provide stochastic ordering results for SCRNs.
These theorems give sufficient conditions for monotonic dependence on parameters in
these networkmodels, which allow us to obtain, under suitable conditions, information
about transient and steady-state behavior. These theorems exploit structural properties
of SCRNs, beyond those of general continuous-time Markov chains. Furthermore,
we derive two theorems to compare stationary distributions and mean first passage
times for SCRNs with different parameter values, or with the same parameters and
different initial conditions. These tools are developed for SCRNs taking values in a
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generic (finite or countably infinite) state space and can also be applied for non-mass-
action kinetics models. When propensity functions are bounded, our method of proof
gives an explicit method for coupling two comparable SCRNs, which can be used to
simultaneously simulate their sample paths in a comparable manner. We illustrate our
results with applications to models of enzymatic kinetics and epigenetic regulation by
chromatin modifications.

Keywords Stochastic chemical reaction networks · Monotonicity

1 Introduction

1.1 Overview

Stochastic Chemical Reaction Networks (SCRNs) are a class of continuous-time
Markov chain models used to describe the stochastic dynamics of a chemical sys-
tem undergoing a series of reactions which change the numbers of molecules of a
finite set of species over time. These models provide a framework for the theoretical
study of biochemical systems in areas such as intracellular viral kinetics (Srivastava
et al. (2002) and Haseltine and Rawlings (2002)), enzymatic kinetics (see Kang et al.
(2019) for example) and epigenetic regulation by chromatin modifications (see Bruno
et al. (2022) for a recently developed model of chromatin regulation).

One of the most interesting questions for biochemical system models is: “What
effect does changing reaction rate parameters have on system dynamics?" Indeed, dif-
ferent rate parameters for chemical processes can lead to different stochastic behaviors.
One possible approach to evaluate the effect of parameter variations on system dynam-
ics is through comparison theorems for stochastic processes. More precisely, this type
of theorem provides inequalities between stochastic processes (see Muller and Stoyan
(2002) for a general reference on this topic).

In this paper, we employ uniformization and coupling methods (see Grassmann
(1977) andKeilson (1979)) to derive comparison theorems for SCRNs under verifiable
sufficient conditions. These theoretical results enable us to develop two novel theorems
yielding a direct comparison of mean first passage times and stationary distributions
between SCRNs with different rate parameters or initial conditions. We apply these
theorems to several examples to illustrate how they can be used to understand how key
biological parameters affect stochastic behavior.While a major motivator for our work
has been the study of SCRNs, we state our theorems in the context of continuous-time
Markov chains, for which the state space is a subset of Zd+ (the set of d-dimensional
vectors with nonnegative integer entries), and the set of all possible transition vectors is
a finite set. This thereby allows for other applications that have similar characteristics
to SCRNs. In addition, for the case of bounded transition intensities satisfying our
conditions, we give an explicit concrete coupling of two comparable Markov chains,
which can be used to simultaneously simulate them in such a way that their sample
paths are monotonically related.

The paper is structured as follows: in Sect. 2 we introduce some background on
stochastic chemical reaction networks needed for this article. We present the main
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results in Sect. 3, with proofs provided in Sect. 5. In Sect. 4 we apply our theoretical
tools to several examples, such as epigenetic regulationby chromatinmodifications and
enzymatic kinetics. Concluding remarks are presented in Sect. 6. The Supplementary
information (SI) file contains some further details and extensions of the main results
and examples in the paper.

1.2 RelatedWork

Due to the growing field of systems biology, the mathematical study of chemical
reaction networks has seen a wealth of activity lately. Concerning comparison results,
considerable work has been conducted on monotonicity properties for deterministic
models of chemical reaction networks, i.e., systems of ordinary differential equations
describing the dynamics of species concentrations. For example, Angeli et al. (2006)
proposed a graphical method, based on the monotonicity properties of the reaction
rates with respect to species concentrations, to determine global stability properties
for the models. More recently, Gori et al. (2019) introduced sufficient conditions to
verify the existence of a monotonicity property for the concentrations of species for
any positive time with respect to their initial concentrations. However, these works do
not address how changing parameters affects the behavior of stochastic models.

To the best of our knowledge, no systematic study of stochastic ordering has been
conducted for stochastic chemical reaction networks. On a more general level, the-
orems have been established for stochastic processes and have been specialized for
particular classes such as for queueing systems and point processes (see Muller and
Stoyan (2002) for an introduction to the topic). ForMarkov chains, thework ofMassey
(1987) is of special interest, since he establishes criteria for comparison of continuous-
time Markov chains in terms of their infinitesimal generators. For relevant work prior
to Massey, there is a nice summary in Massey (1987). In particular, Kamae et al.
(1977) showed that for Markov processes, a comparison between transition proba-
bility functions, at all fixed times and for all partially ordered starting points, can be
realized in a pathwise stochastic comparison between versions of the Markov pro-
cesses. In relation to Massey’s work, our results provide simplified conditions and
extended results for stochastic comparisons, which exploit the structure of stochastic
chemical reaction networks. Furthermore, unlike Massey, we do not require a uniform
bound on the rates of leaving each state. In addition, under the latter assumption, we
explicitly construct versions of the stochastic processes on the same probability space
that have comparable sample paths. More detail on the relationship of our work to that
of Massey is given in Remark 3.2. In contrast to work on sensitivity analysis of distri-
butions at a finite set of times and which considers only local changes in parameters
(see for example Gunawan et al. (2005), Gupta and Khammash (2014) and references
therein), our work provides a sample path comparison between stochastic processes
for global changes in their parameters.
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1.3 Notation and Terminology

Denote by Z+ = {0, 1, 2, . . .} the set of nonnegative integers. For an integer d ≥ 1
we denote byZd+ the set of d-dimensional vectors with entries in Z+. For any integer
d ≥ 1, let Rd denote the d-dimensional Euclidean space. We usually writeR for R1.
We denote by Rd+ the set of vectors x ∈ Rd such that xi ≥ 0 for every 1 ≤ i ≤ d.
For x ∈ Rd , let ‖x‖∞ = sup1≤i≤d |xi | be the supremum norm. In this paper, the sum
over the empty set is considered to be 0.

A binary relation � on a set X will be called reflexive if x � x for every x ∈ X ,
transitive if x � y and y � z implies x � z for every x, y, z ∈ X and antisymmetric
if x � y and y � x implies x = y for every x, y ∈ X . A preorder is a binary relation
that is reflexive and transitive. A partial order is a preorder that is antisymmetric.

In this paper, a probability space (�,F ,P) will consist of a sample space �, a
σ -algebra of events F and a probability measure P on (�,F). We will say that two
real-valued random variables Y ,Y ′ (defined on possibly different probability spaces)

are equal in distribution, denoted as Y ′ dist= Y , if their cumulative distribution functions
agree. All stochastic processes considered in this paper will have right-continuous
sample paths that also have finite left-limits.

2 Stochastic Chemical Reaction Networks (SCRNs)

In this section, we provide necessary background on Stochastic Chemical Reaction
Networks. The reader is referred to Anderson and Kurtz (2015) for an introduction to
this subject.

We assume there is a finite non-empty set S = {S1, . . . ,Sd} of d species, and a
finite non-empty set R ⊆ Zd+ × Zd+ that represents chemical reactions. We assume
that (w,w) /∈ R for everyw ∈ Zd+. The setS represents d differentmolecular species
in a system subject to reactions R which change the number of molecules of each
species. For each (v−, v+) ∈ R, the d-dimensional vector v− (the reactant vector)
counts how many molecules of each species are consumed in the reaction, while v+
(the product vector) counts how many molecules of each species are produced. The
reaction is usually written as

d∑

i=1

(v−)iSi −→
d∑

i=1

(v+)iSi . (1)

To avoid the use of unnecessary symbols, we will assume that for each 1 ≤ i ≤ d,
there exists a vector w = (a1, . . . , ad)T ∈ Zd+ with ai > 0 such that (w, v) or (v,w)

is in R for some v ∈ Zd+, i.e., each species is either a reactant or a product in some
reaction.

The net change in the quantity of molecules of each species due to a reaction
(v−, v+) ∈ R is described by v+ −v− and it is called the associated reaction vector.
We denote the set of reaction vectorsV := {v ∈ Zd |v = v+−v− for some (v−, v+) ∈
R}, let n := |V| the size of V and enumerate the members of V as {v1, . . . , vn}. Note
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that V does not contain the zero vector becauseR has no elements of the form (w,w).
Different reactions might have the same reaction vector. For each v j ∈ V we consider
the set Rv j := {(v−, v+) ∈ R | v j = v+ − v−}. The reaction vectors generate the
stoichiometric subspace L := span(V). For z ∈ Rd , we call z +L a stoichiometric
compatibility class.

Given (S ,R) we will consider an associated continuous-time Markov chain X =
(X1, . . . , Xd), with a state space X contained in Zd+, which tracks the number of
molecules of each species over time. Roughly speaking, the dynamics of X will be
given by the following: given a current state x = (x1, . . . , xd) ∈ X ⊆ Zd+, for each
reaction (v−, v+) ∈ R, there is a clock which will ring at an exponentially distributed
time (with rate �(v−,v+)(x)). The clocks for distinct reactions are independent of one
another. If the clock corresponding to (v−, v+) ∈ R rings first, the system moves
from x to x + v+ − v− at that time, and then the process repeats. We now define the
Markov chain in more detail.

Consider a set of speciesS and of reactionsR, a set X ⊆ Zd+ and a collection of
functions {�(v−,v+) : X −→ R+}(v−,v+)∈R such that for each x ∈ X and (v−, v+) ∈
R, if x + v+ − v− /∈ X , then �(v−,v+)(x) = 0. Now, for 1 ≤ j ≤ n, v j ∈ V , define

ϒ j (x) :=
∑

(v−,v+)∈Rv j

�(v−,v+)(x). (2)

Note that for each x ∈ X and 1 ≤ j ≤ n, if x + v j /∈ X , then ϒ j (x) = 0. A
stochastic chemical reaction network (SCRN) is a Markov chain X with state space
X and infinitesimal generator1 Q given for x, y ∈ X by

Qx,y =

⎧
⎪⎨

⎪⎩

ϒ j (x) if y − x = v j for some 1 ≤ j ≤ n,

−∑n
j=1 ϒ j (x) if y = x,

0 otherwise.

(3)

The functions {�(v−,v+) : X −→ R+}(v−,v+)∈R are called propensity or intensity
functions. A common form for the propensity functions is the following associated
with mass action kinetics:

�(v−,v+)(x) = κ(v−,v+)

d∏

i=1

(xi )(v−)i , (4)

where {κ(v−,v+)}(v−,v+)∈R are positive constants and form, � ∈ Z+, the quantity (m)�
is the falling factorial, i.e., (m)0 := 1 and (m)� := m(m − 1) . . . (m − � + 1).

Remark 2.1 Our definition of SCRN allows for some model flexibility. Notice that
the propensity functions are not necessarily defined on the whole lattice Zd+ and

1 Note that Q is sometimes called an infinitesimal transition matrix although it may have countably many
“rows" and “columns". The entries Qx,y for x 
= y are the infinitesimal transition rates of going from x to
y: P[X(t + h) = y|X(t) = x] = Qx,yh + o(h) as h → 0.
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they are not necessarily of the form (4). Indeed, in some of our applications, mass-
conservation laws restrict the possible values that X may take (see Example 4.4). In
addition, theremay be other types of kinetics, such as those described byHill functions
(see Example 4.5).

A convenient way to represent such a Markov chain is given in Theorem 6.4.1 of
Ethier and Kurtz (1986). For this, consider a probability space (�,F ,P) equipped
with independent unit rate Poisson processes N1, . . . , Nn . There is a version of X
defined on (�,F ,P) such that

X(t) = X(0) +
n∑

j=1

v j N j

(∫ t

0
ϒ j (X(s)) ds

)
, (5)

for every 0 ≤ t < τ , where τ is the explosion time for X (which may be +∞).
From (5), it is easy to see that for a SCRN X with initial state z ∈ X , X(t) will
stay in the stoichiometric compatibility class z + L intersected with Zd+ for all time
0 ≤ t < τ , with probability one. For this reason, sometimes it will be convenient to
choose X = (z + L) ∩ Zd+, for a fixed z ∈ Zd+.

While our work was initially motivated by questions for SCRNs, we will first
develop our results in a more general context of continuous-time Markov chains, for
which the state space is contained in Zd+ and the set of all possible transition vectors
is a finite set, and then illustrate them for SCRNs.

3 Main Results

The general stochastic ordering results provided in this paper are relative to a preorder
relation on a state space X ⊆ Zd+ ⊆ Rd . We will define the preorder on all of Rd

and then restrict it to various subsets. We introduce this notation and related notation
in Sect. 3.1. In Sect. 3.2 we present the main results of this article, and in Sect. 3.3 we
discuss relevant consequences for the comparison of (mean) first passage times and
stationary distributions.

3.1 Preorders inRd

Let m, d ≥ 1 be integers. Denote by ≤ the usual componentwise partial order on Rd ,
i.e., for x, y ∈ Rd , x ≤ y whenever xi ≤ yi for every 1 ≤ i ≤ d. Additionally, we
write x < y whenever xi < yi for every 1 ≤ i ≤ d. For the rest of the paper, we
consider a matrix A ∈ Rm×d , where no row of A is identically zero.

Definition 3.1 For x, y ∈ Rd , we say that x �A y whenever A(y − x) ≥ 0.

For the matrix A, consider the convex cone KA := {x ∈ Rd | Ax ≥ 0}. Note that
x �A y holds if and only if y − x ∈ KA. Moreover, the relation �A is reflexive and
transitive, and therefore a preorder on Rd . Also, for this relation,

if x �A y, then x + z �A y + z for any z ∈ Rd . (6)

123



Comparison Theorems for Stochastic... Page 7 of 41 39

For any x ∈ Rd consider the set

KA + x = {y ∈ Rd | A(y − x) ≥ 0} = {y ∈ Rd | x �A y}.

In the coming sections, we will consider the notions of increasing and decreasing
sets with respect to�A in a given subset ofZd+.More concretely, consider a non-empty
set X ⊆ Zd+. We will say that a set 	 ⊆ X is increasing in X with respect to �A if
for every x ∈ 	 and y ∈ X , x �A y implies that y ∈ 	. We observe that, for x ∈ X ,
the set

(KA + x) ∩ X = {y ∈ X | x �A y} (7)

is increasing in X by the transitivity property of �A. On the other hand, we will say
that a set 	 ⊆ X is decreasing inX with respect to �A if for every x ∈ 	 and y ∈ X ,
y �A x implies that y ∈ 	. We will say that a point x ismaximal (resp.minimal) in
X if for every y ∈ X , x �A y (resp. y �A x) implies that x = y. In this case, the set
	 = {x} would be increasing (resp. decreasing) in X .

Remark 3.1 If rank(A) = d, then the relation �A will be antisymmetric and therefore
a partial order onRd . Indeed, if rank(A) = d, then A(y − x) = 0 implies that x = y.
In addition, �A will then be a partial order when restricted to X ⊂ Zd+. Throughout
this article, we will not assume that rank(A) = d and therefore, the relation �A might
not be a partial order on X (see Examples 4.1, 4.2, and 4.3).

3.2 Stochastic Comparison Theorems

The fundamental objects in the following results are a non-empty set X ⊆ Zd+ and
a pair of continuous-time Markov chains X and X̆ with the same state space X and
where it is assumed that the set of all possible transition vectors for X or X̆ is a
finite set. We denote the size of this set by n. A primary example of this setup is two
stochastic chemical reaction networks as described in Sect. 2 with different propensity
functions. We will now formally introduce the notation for stating our results.

Consider a non-empty set X ⊆ Zd+, an integer n ≥ 1 and a collection of distinct
vectors v1, . . . , vn inZd\{0}, where 0 is the origin inZd . Consider two collections of
functions ϒ = (ϒ1, . . . , ϒn) and ϒ̆ = (ϒ̆1, . . . , ϒ̆n) defined on X and taking values
in R+, such that for every 1 ≤ j ≤ n and x ∈ X :

if x + v j /∈ X , then ϒ j (x) = ϒ̆ j (x) = 0. (8)

Consider a continuous-time Markov chain X on the state space X with infinitesimal
generator Q = (Qx,y)x,y∈X defined for x, y ∈ X by

Qx,y :=

⎧
⎪⎨

⎪⎩

ϒ j (x) if y − x = v j for some 1 ≤ j ≤ n,

−∑n
j=1 ϒ j (x) if x = y,

0 otherwise.

(9)
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Consider the analogous continuous-timeMarkov chain X̆ with infinitesimal generator
Q̆ as in (9) but with functions ϒ̆1, . . . , ϒ̆n instead of ϒ1, . . . , ϒn . We call X and X̆
the continuous-time Markov chains associated with ϒ and ϒ̆ , respectively. We will
assume that X and X̆ do not explode in finite time. The following is our main result.

Theorem 3.1 Consider a non-empty set X ⊆ Zd+, a collection of distinct vec-
tors v1, . . . , vn in Zd\{0} and two collections of nonnegative functions on X ,
ϒ = (ϒ1, . . . , ϒn) and ϒ̆ = (ϒ̆1, . . . , ϒ̆n), such that (8) holds and the associ-
ated continuous-time Markov chains do not explode in finite time. Consider a matrix
A ∈ Rm×d with nonzero rows and suppose that for every x, y ∈ X such that x �A y
the following hold:

ϒ̆ j (y) ≤ ϒ j (x), for each 1 ≤ j ≤ n such that y + v j ∈ X \ (KA + x), (10)

and

ϒ̆ j (y)≥ϒ j (x), for each 1 ≤ j ≤ n such that x + v j ∈X and y /∈ KA + x + v j .

(11)

Then, for each pair x◦, x̆◦ ∈ X such that x◦ �A x̆◦, there exists a probability space
(�,F ,P) with two continuous-time Markov chains X = {X(t), t ≥ 0} and X̆ =
{X̆(t), t ≥ 0} defined there, each having state space X ⊆ Zd+, with infinitesimal
generators Q and Q̆, associated with ϒ and ϒ̆ , respectively, with initial conditions
X(0) = x◦ and X̆(0) = x̆◦ and such that:

P
[
X(t) �A X̆(t) for every t ≥ 0

]
= 1. (12)

An example of checking conditions (10) and (11) is given in Fig. 1. The proof of
Theorem 3.1 is given in Sect. 5.1. The main idea in the construction of the processes
X and X̆ is uniformization (see Chapter 2 in Keilson (1979)) together with a suitable
coupling. Our proof uses a single Poisson process together with a sequence of i.i.d.
uniform random variables to determine potential jumps for the two continuous-time
Markov chains,where for X and X̆ , potential jumps in the samedirectionv j are coupled
together, and their probabilities of acceptance are given by normalized versions of
their infinitesimal transition rates ϒ j and ϒ̆ j . Uniformization can be done provided
the diagonal terms of the infinitesimal generators are uniformly bounded in size. In
the proof of Theorem 3.1, we initially make this assumption on Q and Q̆ in order
to construct X and X̆ . We then generalize the result to Markov chains that do not
explode in finite time by using a truncation and limiting procedure. The construction
mentioned here, for the case where the diagonal terms of the infinitesimal generators
are uniformly bounded in size, besides playing a key role in our proofs, is also the basis
for an algorithm described in SI - Section S.4, which provides a way to simultaneously
simulate the processes X and X̆ in a comparable manner.

Remark 3.2 In Theorem 5.3 of Massey (1987), the author provides a necessary and
sufficient condition for stochastic comparison of continuous-time Markov chains at
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Conditions

(10), (11)

hold if:

Fig. 1 Pictorial representation of conditions (10), (11) for a certain (KA+x)∩X in a two-dimensional
lattice. Here, X = {0, 1, 2, 3} × {0, 1, 2, 3}, n = 4, v1 = (0, 1)T , v2 = (1, 0)T , v3 = (0, −1)T ,
v4 = (−1, 0)T , where T denotes transpose, A = [2 −1], and (KA+x)∩X = {w ∈ X |[2 −1](w−x) ≥ 0}.
In the graph, (KA + x) ∩ X consists of the states (black dots) that lie in the light orange region and the
arrows represent possible transitions along v1, v2, v3, v4 between states. For the exhibited states x, y ∈ X
with x �A y, the light green (dark green) and light red (dark red) arrows represent the transitions with rates
ϒ2(x) (ϒ̆2(y)) andϒ4(x) (ϒ̆4(y)) for the Markov chain X (X̆ ). Higher transitions rates are associated with
thicker arrows. To check the conditions (10) and (11), since y + v4 /∈ KA + x and y /∈ KA + x + v2, we
need to check that ϒ̆4(y) ≤ ϒ4(x) and ϒ̆2(y) ≥ ϒ2(x)

each fixed time for all partially ordered initial conditions. By the work of Kamae
et al. (1977), the conditions in Massey (1987) imply the existence of a coupling
of continuous-time Markov chains so that a relation such as (12) holds. Massey’s
condition requires that

∑
w∈	 Qxw ≤ ∑

w∈	 Q̆yw for every x �A y and every set
	 ⊆ X that is increasing inX with respect to�A and such that either x ∈ 	 or y /∈ 	.
These inequalities can often be difficult to check since first, they involve computing
sums of terms in the infinitesimal generators and second, the form of all increasing sets
can be hard to determine. In Theorem 3.1 we overcome these obstacles by providing
simplified sufficient conditions that involve only pointwise comparison of entries in
the infinitesimal generators associated to each of the transition vectors v j . Besides
this practical value, in our context, our results go beyond the work of Massey (1987),
since he assumes that �A is a partial order (we only assume preorder) and he assumes
that the diagonal entries of the infinitesimal generators are bounded (we generalize
to non-exploding Markov chains). Our proof has a commonality with the work of
Massey in the sense that we also use uniformization. It is different in the sense that,
when infinitesimal transition rates are bounded, we construct an explicit coupling for
all time, exploiting the simplified nature of our conditions, while Massey does not
provide an explicit coupling. Instead, he proves existence of a stochastic comparison
for each fixed time, using a semigroup approach.

Conditions (10) and (11) may be simplified if we consider a particular relation
between the matrix A and the vectors v1, . . . , vn in which A ∈ Zm×d and Av j has
entries taking values only in {−1, 0, 1} for every 1 ≤ j ≤ n. More concretely, let us
consider a class of continuous-time Markov chains such that, for a given matrix A
with nonzero rows, if the Markov chain starts within the set KA + x , then to go outside
of it, the process will necessarily hit its boundary, and similarly for entry into KA + x .
In this case, we can derive a theorem whose conditions must be checked only on the
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boundary of KA+x because the only transitions that can lead theMarkov chain outside
or inside the set KA+x are ones starting on the boundary of KA+x . Before stating the
theorem, let us introduce the sets ∂i (KA + x) := {y ∈ KA + x | 〈Ai•, y〉 = 〈Ai•, x〉},
2 for each 1 ≤ i ≤ m. We can then characterize3 the boundary of KA + x as follows:

∂(KA + x) =
m⋃

i=1

∂i (KA + x). (13)

Theorem 3.2 Consider a non-empty set X ⊆ Zd+, a collection of distinct vec-
tors v1, . . . , vn in Zd \ {0} and two collections of nonnegative functions on X ,
ϒ = (ϒ1, . . . , ϒn) and ϒ̆ = (ϒ̆1, . . . , ϒ̆n) such that (8) holds and the associ-
ated continuous-time Markov chains do not explode in finite time. Consider a matrix
A ∈ Zm×d with nonzero rows and suppose that both of the following conditions hold:

(i) For each 1 ≤ j ≤ n, the vector Av j has entries in {−1, 0, 1} only.
(ii) For each x ∈ X , 1 ≤ i ≤ m and y ∈ ∂i (KA + x) ∩ X we have that

ϒ̆ j (y) ≤ ϒ j (x), for each 1 ≤ j ≤ n such that 〈Ai•, v j 〉 < 0, (14)

and

ϒ̆ j (y) ≥ ϒ j (x), for each 1 ≤ j ≤ n such that 〈Ai•, v j 〉 > 0. (15)

Then, for each pair x◦, x̆◦ ∈ X such that x◦ �A x̆◦, there exists a probability space
(�,F ,P) with two continuous-time Markov chains X = {X(t), t ≥ 0} and X̆ =
{X̆(t), t ≥ 0} defined there, each having state space X ⊆ Zd+, with infinitesimal
generators given by Q and Q̆, associated with ϒ and ϒ̆ , respectively, with initial
conditions X(0) = x◦ and X̆(0) = x̆◦, and such that:

P
[
X(t) �A X̆(t) for every t ≥ 0

]
= 1. (16)

The proof of this theorem is given in Sect. 5.2 and involves checking that (10) and
(11) of Theorem 3.1 hold, using conditions (i) and (ii) of Theorem 3.2.

Remark 3.3 In the context of Theorem 3.2, it is possible that for x ∈ X , and y ∈
∂i1(KA + x) ∩ ∂i2(KA + x) ∩ X with i1 
= i2, it happens that 〈Ai1•, v j 〉 < 0 and

2 Here, for convenience of notation, let Ai• denote the row vector corresponding to the i-th row of A, for
1 ≤ i ≤ m. In this article, we will adopt the convention of considering the inner product 〈·, ·〉 as a function
of a row vector in its first entry and as a function of a column vector in the second entry. In particular,
〈Ai•, x〉 =∑d

k=1 Aik xk .
3 The fact that A does not contain zero rows allows for equation (13) to hold. In fact, let A ∈ Rm×d be a
matrix that is not identically zero and let Ā be thematrix obtained from A by erasing any rows that contain all
zeros. Then, for x, y ∈ Rd , A(y−x) ≥ 0 if and only if Ā(y−x) ≥ 0, and so KA+x = K Ā+x and x �A y
if and only if x � Ā y. However, if A contains a row Ai• such that Ai• = 0, then ∂i (KA + x) = KA + x
and if KA + x has non empty interior, then equation (13) will not hold. Consequently, we have made the
assumption that A has no zero rows.
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〈Ai2•, v j 〉 > 0 for some 1 ≤ j ≤ n. For condition (i i) to hold, we must then have
ϒ̆ j (y) = ϒ j (x).

When there are multiple vectors v j with a common value for Av j , the pointwise
comparison in j , for 1 ≤ j ≤ n, in conditions (14) and (15) in Theorem 3.2, can be
weakened. To this end, let us introduce the set of distinct vectors {η1, . . . , ηs} formed
by Av j , for 1 ≤ j ≤ n, where s denotes the cardinality of this set. Consider the subsets
of indices

Gk := { j | 1 ≤ j ≤ n and Av j = ηk}, for 1 ≤ k ≤ s. (17)

Then we have the following theorem.

Theorem 3.3 Consider a non-empty set X ⊆ Zd+, a collection of distinct vec-
tors v1, . . . , vn in Zd\{0} and two collections of nonnegative functions on X ,
ϒ = (ϒ1, . . . , ϒn) and ϒ̆ = (ϒ̆1, . . . , ϒ̆n) such that (8) holds and the associ-
ated continuous-time Markov chains do not explode in finite time. Consider a matrix
A ∈ Zm×d with nonzero rows and suppose that both of the following conditions hold:

(i) For each 1 ≤ j ≤ n, the vector Av j has entries in {−1, 0, 1} only.
(ii) For each x ∈ X , 1 ≤ i ≤ m and y ∈ ∂i (KA + x) ∩ X we have that

∑

j∈Gk

ϒ̆ j (y) ≤
∑

j∈Gk

ϒ j (x), for each k such that ηki < 0, (18)

and

∑

j∈Gk

ϒ̆ j (y) ≥
∑

j∈Gk

ϒ j (x), for each k such that ηki > 0. (19)

Then, for each pair x◦, x̆◦ ∈ X such that x◦ �A x̆◦, there exists a probability space
(�,F ,P) with two continuous-time Markov chains X = {X(t), t ≥ 0} and X̆ =
{X̆(t), t ≥ 0} defined there, each having state space X ⊆ Zd+, with infinitesimal
generators Q and Q̆, associated with ϒ and ϒ̆ , respectively, with initial conditions
X(0) = x◦ and X̆(0) = x̆◦ and such that:

P
[
X(t) �A X̆(t) for every t ≥ 0

]
= 1. (20)

The proof of this theorem is given in Sect. 5.3.

Remark 3.4 If ϒ = ϒ̆ , Theorems 3.1, 3.2 and 3.3 give sufficient conditions for mono-
tonic dependence of the stochastic dynamic behavior on the initial condition. In the
sense of Massey (1987), this notion corresponds to constructing a strongly monotone
Markov chain.

Remark 3.5 For deterministic dynamical systems, there is a considerable literature
giving monotonicity conditions with respect to initial conditions (see, e.g., Hirsch
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and Smith (2006)). Furthermore, Angeli and Sontag (2003) extended the concept of
monotone systems to systems having external inputs (i.e., ẋ = f (x, u), with x repre-
senting the state and u representing the input). More precisely, they developed tools
to prove monotonic dependence of the deterministic dynamic behavior on the initial
condition and external input, provided that certain sign conditions on the first partial
derivatives of the function f (x, u) are satisfied on the entire state and input space.
These theoretical tools can be used also to study how changing a system parameter
affects the deterministic behavior of the system, by viewing u as the system parameter
of interest.

Remark 3.6 Checking the conditions in Theorems 3.2 and 3.3 (if they hold) is less
cumbersome than checking the conditions in Theorem 3.1. In fact, compared to The-
orem 3.1, for Theorems 3.2 and 3.3, the conditions must be checked only on the
boundaries of KA + x , given that condition (i) there is assumed to hold. Furthermore,
Theorem 3.3 has less restrictive conditions (i.e., comparing sums of infinitesimal
rates associated with transitions inward or outward with respect to the hyperplanes
{z ∈ Rd | 〈Ai•, z〉 = 〈Ai•, x〉 = 〈Ai•, y〉}, 1 ≤ i ≤ m, instead of comparing transition
rates one-by-one for 1 ≤ j ≤ n).

3.3 Monotonicity Properties for (Mean) First Passage Times and Stationary
Distributions

The first consequence of our main results is for first passage times and it is related to
stochastic orderings of real-valued random variables. Let Y and Z be [0,∞]-valued
random variables with cumulative distribution functions FY and FZ , respectively.
We say that Y is smaller than Z in the usual stochastic order, written Y �st Z if
FY (t) ≥ FZ (t) for every t ∈ R. The relation Y �st Z is equivalent to the existence

of a probability space (�,F ,P) with random variables Y ′ dist= Y and Z ′ dist= Z defined
there such that P(Y ′ ≤ Z ′) = 1. The reader may consult Chapter 1 in Muller and
Stoyan (2002) for the corresponding proofs and further properties of this notion.

Theorem 3.4 Consider a non-empty set X ⊆ Zd+, a collection of distinct vec-
tors v1, . . . , vn in Zd\{0} and two collections of nonnegative functions on X ,
ϒ = (ϒ1, . . . , ϒn) and ϒ̆ = (ϒ̆1, . . . , ϒ̆n), such that (8) holds and the associ-
ated continuous-time Markov chains do not explode in finite time. Consider a matrix
A ∈ Rm×d with nonzero rows and suppose that at least one of the following holds:

(i) For every x, y ∈ X such that x �A y, conditions (10) and (11) are satisfied.
(ii) The matrix A has integer-valued entries and conditions (i) and (i i) in Theorem 3.2

are satisfied.
(iii) The matrix A has integer-valued entries and conditions (i) and (i i) in Theorem 3.3

are satisfied.

Let x◦, x̆◦ ∈ X be such that x◦ �A x̆◦ and let X = {X(t), t ≥ 0} and X̆ = {X̆(t), t ≥
0} be two continuous-time Markov chains (possibly defined on different probability
spaces), each having state space X ⊆ Zd+, with infinitesimal generators Q and Q̆,
associated with ϒ and ϒ̆ , respectively, and with initial conditions X(0) = x◦ and
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X̆(0) = x̆◦. For a non-empty set 	 ⊆ X , consider T	 := inf{t ≥ 0 | X(t) ∈ 	} and
T̆	 := inf{t ≥ 0 | X̆(t) ∈ 	}. If 	 is increasing in X with respect to the relation �A,
then

T̆	 �st T	, (21)

and the mean first passage time of X̆ from x̆◦ to 	 is dominated by the mean first
passage time of X from x◦ to 	. If 	 is decreasing in X with respect to the relation
�A, then

T	 �st T̆	, (22)

and the mean first passage time of X from x◦ to 	 is dominated by the mean first
passage time of X̆ from x̆◦ to 	.

Proof By Theorem 3.1, 3.2 or 3.3, we can construct two versions of the processes X
and X̆ on a common probability space (�,F ,P) with initial conditions x◦ and x̆◦,
respectively, and such that (12) or (16) or (20) hold. We denote these versions again by
X and X̆ , and we observe that to show (21), it suffices to show that for an increasing
set 	, P[T̆	 ≤ T	] = 1 for T	 and T̆	 associated with these versions of X and X̆ . To
see that this holds, let �̃ be a set of probability one on which

X(t) �A X̆(t), for all t ≥ 0 (23)

(this exists by (12), (16) or (20)). On {T	 = +∞}, it is clear that T̆	 ≤ T	 . For eachω ∈
{T	 < +∞}∩�̃ and ε > 0 there is τε(ω) ∈ [T	(ω), T	(ω)+ε) such that X(τε(ω)) ∈
	 and by (23), X(τε(ω)) �A X̆(τε(ω)). And then, since	 is increasing, X̆(τε(ω)) ∈ 	.
It follows that T̆	(ω) ≤ T	(ω) + ε and letting ε → 0 we obtain that T̆	(ω) ≤ T	(ω).
It follows thatP[T̆	 ≤ T	] = 1. For the result on mean first passage times, let FT	 :=
1 − FT	 and FT̆	

:= 1 − FT̆	
represent the complementary cumulative distribution

functions for T	 and T̆	 , respectively. Observe that (21) implies that FT̆	
≤ FT	 . For a

nonnegative randomvariable, themeanof the randomvariable is given by theLebesgue
integral of the complementary cumulative distribution function. Consequently, the
mean first passage time for X̆ from x̆◦ to 	 is given by

∫∞
0 FT̆	

(t)dt ≤ ∫∞
0 FT	 (t)dt ,

where the latter is the mean first passage time for X from x◦ to 	. If 	 is decreasing,
analogous arguments yield the results stated for that case. ��

The second consequence of our results provides a comparison result for stationary
distributions.

Theorem 3.5 Consider a non-empty set X ⊆ Zd+, a collection of distinct vec-
tors v1, . . . , vn in Zd\{0} and two collections of nonnegative functions on X ,
ϒ = (ϒ1, . . . , ϒn) and ϒ̆ = (ϒ̆1, . . . , ϒ̆n), such that (8) holds and the associ-
ated continuous-time Markov chains do not explode in finite time. Consider a matrix
A ∈ Rm×d with nonzero rows and suppose that at least one of the following holds:

(i) For every x, y ∈ X such that x �A y, conditions (10) and (11) are satisfied.
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(ii) The matrix A has integer-valued entries and conditions (i) and (i i) in Theorem 3.2
are satisfied.

(iii) The matrix A has integer-valued entries and conditions (i) and (i i) in Theorem 3.3
are satisfied.

Assume that the two continuous-time Markov chains on the set X with infinitesimal
generators Q and Q̆, associated with ϒ and ϒ̆ , respectively, are irreducible and
positive recurrent on X , and denote the associated stationary distributions by π and
π̆ , respectively. If 	 ⊆ X is a non-empty set that is increasing in X with respect to
�A, then

∑

x∈	

πx ≤
∑

x∈	

π̆x . (24)

If 	 ⊆ X is a non-empty set that is decreasing in X with respect to �A, then

∑

x∈	

π̆x ≤
∑

x∈	

πx . (25)

Proof As in the proof of Theorem 3.4, we can construct two versions of the processes
X and X̆ on a common probability space (�,F ,P) for some pair of initial conditions
x◦ �A x̆◦. If 	 ⊆ X is increasing, equation (12) or (16) or (20) yields that P(X(t) ∈
	) ≤ P(X̆(t) ∈ 	) for every t ≥ 0.By letting t → ∞ and observing that the stationary
distribution is the steady-state distribution under our assumptions of irreducibility and
positive recurrence, we obtain (24). If 	 is decreasing, an analogous argument yields
(25). ��
Remark 3.7 Aspecial case of Theorems 3.4 and 3.5 iswhen	 = {x} for somemaximal
or minimal element x ∈ X .

In the next section, we give examples which illustrate Theorem 3.2 (see Exam-
ples 4.1, 4.2, 4.4 and 4.5), Theorem 3.3 (see Example 4.3), Theorem 3.4 and Theorem
3.5 for continuous-time Markov chains that are stochastic chemical reaction net-
works. For Examples 4.1, 4.2 and 4.3, the state space X will be a stoichiometric
compatibility class z + L intersected with Zd+. For Examples 4.4 and 4.5, we work
with reduced Markov chains and the state space X will be a projection of a suitable
higher-dimensional stoichiometric compatibility class z + L intersected with Zd+.

4 Examples

In this section, we apply the theoretical tools developed in the paper to several exam-
ples. While in Examples 4.1, 4.3 and 4.4 the Markov chains analyzed have a finite
state space, in Examples 4.2 and 4.5 the Markov chains have a countably infinite state
space, but it is straightforward to verify that they do not explode (see SI - Sections
S.1.2 and S.1.3, respectively). The choice of matrix A in each example is based on the
specific monotonicity relationship of interest. While for simpler cases the choice of
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Fig. 2 Reactionmodel and correspondingMarkov chain for enzymatic kinetics I example. aChemical
reaction system. The numbers on the arrows correspond to the associated reactions. b Projected Markov
chain graph for one stoichiometric compatibility classwith two conservation laws nS+nP+nSE = Stot = 3
and nE + nSE = Etot = 2. The projection takes a state x = (nS, nP, nE, nSE) = (nS, nP,Etot − Stot +
nS + nP, Stot − nS − nP) to x̄ = (nS, nP). We use black dots to represent the states, red double-ended
arrows to represent transitions in both directions and red single-ended arrows to represent transitions in one
direction. Note that x̄ = (0, 0) is not a vertex in the graph because 0 ≤ nE = Etot − Stot + nS + nP, and
so nS + nP ≥ 3 − 2 = 1. We use orange to highlight the projection of the region KA + x intersected with
the stoichiometric compatibility class, where A is defined in (27). c The projections of the directions of the
possible transitions of the Markov chain. The transition rates ϒ1(x), ϒ2(x), and ϒ3(x) are defined in (26)

A is straightforward, for more complicated systems the choice can be more subtle. In
many cases, in order to study the monotonicity properties for the stochastic behavior
of our system, we can rely on Theorem 3.2, which provides a reasonable approach to
narrow down the choices for suitable A. The approach consists in solving, for each
row i , the system of equations

∑d
k=1 Aik(v j )k = bi j , with bi j equal to 1,−1, or 0

depending, based on the monotonicity relationship of interest, whether we expect that
theMarkov chain transition in the direction v j leads inside, outside, or is parallel to the
boundary of the region KA+x . Finally, it is worth noticing that, while all the following
examples compare two identical reaction networks with different rate constants, our
theory can also be applied to compare two different reaction networks as long as they
have the same reaction vectors {v j }nj=1.

Example 4.1 Enzyme kinetics I
Let us consider a classic model of enzyme kinetics (see Michaelis and Menten

(1913) andKang et al. (2019)),where an enzyme catalyzes the conversion of a substrate
to a product. The species considered here are substrate (S), enzyme (E), intermediate
enzyme-substrate complex (SE), and product (P), and the chemical reaction system is
depicted in Fig. 2a. We are interested in how the rate constant κ3 affects the time to
convert the substrate to the final product.

To this end, let us first introduce the set of species S = {S,P,E,SE}, and the set
of reactions R = {(v−

1 , v+
1 ), (v−

2 , v+
2 ), (v−

3 , v+
3 )}, where v−

1 = v+
2 = (1, 0, 1, 0)T ,

v+
1 = v−

2 = v−
3 = (0, 0, 0, 1)T , v+

3 = (0, 1, 1, 0)T , where T denotes transpose. At a
given time, let the counts of each of the species S, P, E and SE be denoted by nS, nP, nE
and nSE, respectively. The state of the associated Markov chain is (nS, nP, nE, nSE).
The potential transitions of the Markov chain are in three possible directions:

v1 = v+
1 − v−

1 = (−1, 0,−1, 1)T ,

v2 = v+
2 − v−

2 = (1, 0, 1,−1)T ,

123



39 Page 16 of 41 F. A. Campos et al.

v3 = v+
3 − v−

3 = (0, 1, 1,−1)T .

Fixing integers Stot,Etot > 0, we have a stoichiometric compatibility class z + L
with z = (Stot, 0,Etot, 0) and L := span{v1, v2, v3}, which is contained in a two-
dimensional affine subspace of four-dimensional space. Then, the state space of the
Markov chain is

X = (z + L) ∩ Z4+ = {(x1, x2, x3, x4) ∈ Z4+|x1 + x2 + x4 = Stot, x3 + x4 = Etot}.

The two constraints described in the last expression for X characterize the two
linearly independent conservation laws for this chemical reaction system: nS + nP +
nSE = Stot and nE + nSE = Etot.

Given a state x = (x1, x2, x3, x4) ∈ X , following mass-action kinetics, the
infinitesimal transition rates are

ϒ1(x) = κ1x1x3, ϒ2(x) = κ2x4, ϒ3(x) = κ3x4, (26)

for constants κ1, κ2, κ3 > 0. Here, we have used κ j as an abbreviation for κ(v−
j ,v+

j ),

j = 1, 2, 3. We will use similar abbreviations in the other examples too.
We note that the projected process (X1, X2)(·) is still a continuous-time Markov

chain, and we could apply our theory to it. However, when the functions ϒ j ,
j = 1, 2, 3, are written in terms of these two components, they will have a more com-
plex, non-mass action form. Here we apply our theory directly to our four-dimensional
Markov chain. For the purpose of visualization, Fig. 2b shows the two-dimensional
projection of the four-dimensional Markov chain graph for one stoichiometric com-
patibility class. In Examples 4.2 and 4.3, we also analyze Markov chains without
projections, and in Examples 4.4 and 4.5, we analyze projected Markov chains.

In order to study how the rate constant κ3 affects the time to convert the substrate
to the final product, let us define the state (0,Stot,Etot, 0) associated with nP = Stot as
p, the state (Stot, 0,Etot, 0) associated with nS = Stot as s, and the mean first passage
time to reach the state p, starting from s, asEs[Tp].Wewill verify that the assumptions
of Theorems 3.2, 3.4 hold and exploit them to determine how κ3 affects Es[Tp]. To
this end, define the matrix

A =
[−1 0 0 0
0 1 0 0

]
(27)

and consider the preorder x �A y, defined by A(y − x) ≥ 0, and the set KA +
x = {w ∈ R4 | x �A w}. Let us also consider the infinitesimal transition rates
ϒ̆1(x), ϒ̆2(x) and ϒ̆3(x) defined as for ϒ1(x), ϒ2(x) and ϒ3(x), but with κ̆1 = κ1,
κ̆2 = κ2, κ̆3 > κ3 in place of κ1, κ2, κ3, respectively. Condition (i) of Theorem 3.2
(i.e., for every 1 ≤ j ≤ n, the vector Av j has entries in {−1, 0, 1}) holds since
Av1 = (1, 0)T , Av2 = (−1, 0)T and Av3 = (0, 1)T . Condition (i i) of Theorem 3.2
also holds, as shown in the paragraph below.
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Verification of condition (i i) of Theorem 3.2. We first consider x ∈ X and
y ∈ ∂1(KA + x) ∩ X , where

∂1(KA + x) ∩ X
= {w ∈ Z4+ | x1 = w1, x2 ≤ w2} ∩ X
= {w ∈ Z4+ | x1 = w1, x2 ≤ w2, x1 + x2 + x4 = w1 + w2 + w4 = Stot, x3 + x4 = w3 + w4 = Etot}
= {w ∈ Z4+ | x1 = w1, x2 ≤ w2, x3 ≤ w3, x4 ≥ w4, w1 + w2 + w4 = Stot, w3 + w4 = Etot}
= {w ∈ X | x1 = w1, x2 ≤ w2, x3 ≤ w3, x4 ≥ w4}.

Since 〈A1•, v1〉 = 1, 〈A1•, v2〉 = −1, we need to check that ϒ1(x) ≤ ϒ̆1(y) and
ϒ2(x) ≥ ϒ̆2(y). The first inequality holds because y ∈ ∂1(KA + x) ∩ X implies
x1 = y1 and x3 ≤ y3 so that ϒ1(x) = κ1x1x3 ≤ κ1y1y3 = κ̆1y1y3 = ϒ̆1(y).
The second inequality holds because y ∈ ∂1(KA + x) ∩ X implies x4 ≥ y4 so that
ϒ2(x) = κ2x4 ≥ κ2y4 = κ̆2y4 = ϒ̆2(y).

Secondly, we consider x ∈ X , y ∈ ∂2(KA + x) ∩ X = {w ∈ X | x1 ≥ w1, x2 =
w2, x3 ≥ w3, x4 ≤ w4}. Then, since 〈A2•, v3〉 = 1, we need to check that ϒ3(x) ≤
ϒ̆3(y). This holds because y ∈ ∂2(KA + x) ∩ X implies x4 ≤ y4 so that ϒ3(x) =
κ3x4 ≤ κ3y4 ≤ κ̆3y4 = ϒ̆3(y).

Since all of the hypotheses of Theorem 3.2 hold, we can conclude that, for each
x◦, x̆◦ ∈ X with x◦ �A x̆◦, there exists a probability space (�,F ,P) with two
Markov chains X = {X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} associated with ϒ and ϒ̆ ,
respectively, such that X(0) = x◦, X̆(0) = x̆◦ and

P
[
X(t) �A X̆(t) for every t ≥ 0

]
= 1.

Furthermore, applying Theorem 3.4 with the set 	 = {p} = {(0,Stot,Etot, 0)}, which
is increasing in X with respect to �A, we see that the mean first passage time from s
to p, Es[Tp], is a decreasing function of κ3.

Because the Markov chain has one absorbing state, p, per stoichiometric compati-
bility class, the stationary distribution on a given stoichiometric compatibility class is
trivial, and hence so too are its monotonicity properties.

Example 4.2 Enzyme kinetics II
Let us consider an extension of the enzymatic kinetics model introduced in the

previous example, in which the substrate S can enter and leave the system and the
product can revert to the substrate. This is a simplified version of the enzymatic kinetics
considered by Anderson et al. (2010).

The chemical reaction system is depicted in Fig. 3a.
Now, for this case study, we first determine how the reaction rate constant κ5

affects the stochastic behavior of the system and then we will study properties of the
system with respect to initial conditions. To this end, let us introduce the set of species
S = {S,P,E,SE}, and, similar to Example 4.1,we let (nS, nP, nE, nSE) be the state of
the Markov chain that records the number of molecules of each species. The potential
transitions of the Markov chain are in six possible directions, v j for j = 1, ..., 6,
where v1 = −v2 = (−1, 0,−1, 1)T , v3 = −v4 = (0, 1, 1,−1)T , and v5 = −v6 =
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Fig. 3 Reactionmodel and correspondingMarkov chain for enzymatic kinetics II example. aChemical
reaction system. The numbers on the arrows correspond to the associated reactions. b Projected Markov
chain graph for one stoichiometric compatibility class with the conservation law nE + nSE = Etot = 2.
The projection takes a state x = (nS, nP, nE, nSE) = (nS, nP, nE,Etot − nE) ∈ X to x̄ = (nS, nP, nE) ∈
Z3+ : 0 ≤ nE ≤ 2. Here, we use black dots to represent the states, red double-ended arrows to represent
transitions in both directions associated with the reactions represented by the red arrows in (a) and blue
double-ended arrows to represent transitions in both directions associated with the reactions represented by
the blue arrows in (a). We use dotted arrowed-lines to indicate that the pattern of Markov chain transitions
extends to infinity. We use orange to highlight the projections of the region KA + x intersected with the
stoichiometric compatibility class, where A is defined in (29). c The projections of the directions of the
possible transitions of the Markov chain within a stoichiometric compatibility class. The transition rates
ϒi (x), i = 1, 2, 3, 4, 5, 6, are defined in (28)

(1, 0, 0, 0)T (see SI-Section S.2.1 for the derivation of the v j , j = 1, ..., 6). Since there
is one linearly independent conservation law in this chemical reaction system: nE +
nSE = Etot, each stoichiometric compatibility class is contained in a three-dimensional
affine subspace of four-dimensional space, denoted as z+L, where z = (0, 0,Etot, 0)
and L := span{v1, v3, v5}, with fixed integer Etot > 0. Then, we can choose the
state space of the Markov chain to be X = (z + L) ∩ Z4+ = {(x1, x2, x3, x4) ∈
Z4+|x3 + x4 = Etot}. Furthermore, given a state x = (x1, x2, x3, x4) ∈ X , following
mass-action kinetics, the associated infinitesimal transition rates are given by

ϒ1(x) = κ1x1x3, ϒ2(x) = κ2x4, ϒ3(x) = κ3x4,

ϒ4(x) = κ4x2x3, ϒ5(x) = κ5, ϒ6(x) = κ6x1,
(28)

for κ1, κ2, κ3, κ4, κ5, κ6 > 0. As in Example 4.1, we apply our theory directly to
our four-dimensional Markov chain, but, for the purpose of illustration, Fig. 3b shows
the three-dimensional projection of the Markov chain graph for one stoichiometric
compatibility class.

Now, for the first analysis (determining how κ5 affects the stochastic behavior of
the system), we verify that the assumptions of Theorems 3.2 and 3.5 hold and use
them to determine how κ5 affects the stationary distribution.
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To this end, define the matrix

A =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 −1 0

⎤

⎦ (29)

and consider the preorder x �A y, defined by A(y − x) ≥ 0. For x ∈ X ,
KA + x = {w ∈ R4 | x �A w}. Furthermore, let us consider the infinitesi-
mal transition rates ϒ̆1(x), ϒ̆2(x), ϒ̆3(x), ϒ̆4(x), ϒ̆5(x) and ϒ̆6(x) defined as for
ϒ1(x), ϒ2(x), ϒ3(x), ϒ4(x), ϒ5(x) and ϒ6(x), but with κ̆i in place of κi , where
κ̆i = κi , for i = 1, 2, 3, 4, 6, and κ̆5 ≥ κ5. Given that Av1 = (−1, 0, 1)T ,
Av2 = (1, 0,−1)T , Av3 = (0, 1,−1)T , Av4 = (0,−1, 1)T , Av5 = (1, 0, 0)T and
Av6 = (−1, 0, 0)T , we have that condition (i) of Theorem 3.2 holds. Condition (i i)
of that theorem also holds, as shown in the next paragraph.

Verification of condition (i i) of Theorem 3.2. First consider x ∈ X and y ∈
∂1(KA+x)∩X , where ∂1(KA+x)∩X = {w ∈ X |x1 = w1, x2 ≤ w2, x3 ≥ w3, x4 ≤
w4}. Since 〈A1•, v2〉 = 〈A1•, v5〉 = 1 and 〈A1•, v1〉 = 〈A1•, v6〉 = −1, we need to
check that ϒ1(x) ≥ ϒ̆1(y), ϒ6(x) ≥ ϒ̆6(y), ϒ2(x) ≤ ϒ̆2(y), and ϒ5(x) ≤ ϒ̆5(y).
Given that y ∈ ∂1(KA + x)∩X , the first inequality holds because ϒ1(x) = κ1x1x3 ≥
κ1y1y3 = κ̆1y1y3 = ϒ̆1(y), the second inequality holds because ϒ6(x) = κ6x1 =
κ6y1 = κ̆6y1 = ϒ̆6(y), the third inequality holds because ϒ2(x) = κ2x4 ≤ κ2y4 =
κ̆2y4 = ϒ̆2(y), and the fourth inequality holds because ϒ5(x) = κ5 ≤ κ̆5 = ϒ̆5(y).

Secondly, we consider x ∈ X and y ∈ ∂2(KA + x)∩X = {w ∈ X | x1 ≤ w1, x2 =
w2, x3 ≥ w3, x4 ≤ w4}. Given that 〈A3•, v3〉 = 1 and 〈A3•, v4〉 = −1, we need to
check that ϒ4(x) ≥ ϒ̆4(y) and ϒ3(x) ≤ ϒ̆3(y). The first inequality holds because
ϒ4(x) = κ4x2x3 ≥ κ4y2y3 = κ̆4y2y3 = ϒ̆4(y) and the second inequality holds
because ϒ3(x) = κ3x4 ≤ κ3y4 = κ̆3y4 = ϒ̆3(y).

Finally, consider x ∈ X and y ∈ ∂3(KA + x) ∩ X = {w ∈ X | x1 ≤
w1, x2 ≤ w2, x3 = w3, x4 = w4}. Since 〈A3•, v1〉 = 〈A3•, v4〉 = 1 and
〈A3•, v2〉 = 〈A3•, v3〉 = −1, we need to check that ϒ2(x) ≥ ϒ̆2(y), ϒ3(x) ≥ ϒ̆3(y),
ϒ1(x) ≤ ϒ̆1(y), and ϒ4(x) ≤ ϒ̆4(y). Indeed, we have that ϒ2(x) = κ2x4 = κ2y4 =
κ̆2y4 = ϒ̆2(y), ϒ3(x) = κ3x4 = κ3y4 = κ̆3y4 = ϒ̆3(y), ϒ1(x) = κ1x1x3 ≤
κ1y1y3 = κ̆1y1y3 = ϒ̆1(y), and ϒ4(x) = κ4x2x3 ≤ κ4y2y3 = κ̆4y2y3 = ϒ̆4(y).

Thus, all of the hypotheses ofTheorem3.2 are verified, and so, for each pair x◦, x̆◦ ∈
X satisfying x◦ �A x̆◦, there exists a probability space (�,F ,P) with two Markov
chains X = {X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} associated with ϒ and ϒ̆ , respec-

tively, such that X(0) = x◦, X̆(0) = x̆◦ and P
[
X(t) �A X̆(t) for every t ≥ 0

]
=

1.
The Markov chains X , X̆ are irreducible and positive recurrent (see SI - Section

S.1.1).
Furthermore, for the increasing set in X with respect to �A defined as 	(x) =

{w ∈ X | x1 ≤ w1, x2 ≤ w2, x3 ≥ w3, x4 ≤ w4}, we can apply Theorem 3.5 and
obtain that

∑
w∈	(x) πw ≤∑w∈	(x) π̆w.

Loosely speaking, this means that increasing κ5 causes the stationary distribution
π(x) to shift mass toward states characterized by lower x3 and higher x1, x2 and x4.
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For this specific case, in which we have a stochastic chemical reaction network
associated with a complex balanced dynamical system, an explicit expression for the
stationary distribution can be obtained by applying Theorem 4.1 in Anderson et al.
(2010). Analysis of this formula would provide results in agreement with the ones
obtained by applying the theoretical tools developed in this paper. Specifically, πx can
be written as a product of two Poisson distributions and a binomial distribution, i.e.,

πx =
(
e−c1

cx11
x1!
)(

e−c2
cx22
x2!
)(

Etot!c
x3
3

x3!
cx44
x4!
)

, x ∈ X , (30)

in which (c1, c2, c3, c4) represents the complex balanced equilibrium for the
deterministic model, where

c1 = κ5

κ6
, c2 = κ1κ3κ5

κ2κ4κ6
, c3 = 1

1 + κ1κ5
κ2κ6

, and c4 =
κ1κ5
κ2κ6

1 + κ1κ5
κ2κ6

. (31)

In most cases, it is not possible to derive an analytical formula for the stationary
distribution, but our theorems can still be applied and then monotonicity properties for
π can still be determined even without an explicit expression for π . For instance, in
the context of the above example, if the infinitesimal transition rates ϒi do not follow
mass-action kinetics, the deficiency zero theorem and Theorem 4.1 in Anderson et al.
(2010) do not apply. Nevertheless, our theory can still be easily applied to study
monotonicity properties for sample paths and stationary distributions.

As pointed out in Remark 3.4, we can also exploit our theoretical tools to determine
monotonicity properties of the system with respect to the initial conditions.

For this, suppose that κ̆i = κi for i = 1, 2, 3, 4, 5, 6. Then, by the analysis above,
Theorem 3.2 holds and yields monotonically (with preorder induced by the matrix A)
with respect to the initial conditions.

Example 4.3 A network topology arising in Braess’ paradox A natural question
in synthetic biology may involve the prediction of whether an engineered biological
circuit with additional reactions will lead to the desired effect of accelerating the
process or unexpected behaviors. Now, we consider an example inspired by Braess’
paradox, which arises from transportation networks, where adding one or more roads
to a road network can slow down overall traffic flow through the network (see Braess
(1968) and see also a related state-dependent queuing network model in Calvert et al.
(1997)). A simple network of this type is one where there are two routes to get from
the start to the final destination, and adding a linkage road between the routes can
in some cases increase travel times. Figure4a shows a reaction network analogue of
the Braess’ network topology. Of course, our chemical reaction network is a little
different from a road network since there is no congestion nor competition between
molecules and pathways are chosen randomly with certain probabilities instead of
routing decisions being based on the number of cars on the routes. Nevertheless, the
example considered here is interesting because adding a reaction to cross-link two
pathways might intuitively be interpreted as a detour and be expected to increase the
time to the final destination, while this is sometimes not the case in this example.
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Fig. 4 Circuit inspired by Braess’ paradox and corresponding Markov chain. a Chemical reaction
system. The numbers on the arrows correspond to the associated reactions. b Projected Markov chain graph
for one stoichiometric compatibility class with the conservation law nS1 + nS2 + nS3 + nS4 = Stot = 2.
The projection takes a state x = (nS1 , nS2 , nS3 , nS4 ) = (Stot − nS2 − nS3 − nS4 , nS2 , nS3 , nS4 ) ∈ X
to x̄ = (nS2 , nS3 , nS4 ). Here, we use black dots to represent the states and red (blue, green) arrows to
represent transitions in directions associated with the reactions represented by the red (blue, green) arrows
in (a). We use orange to highlight the projection of the region KA + x intersected with the stoichiometric
compatibility class, where A is defined in (33). c The projections of the directions of the possible transitions
of theMarkov chain within a stoichiometric compatibility class. The transition ratesϒi (x), i = 1, 2, 3, 4, 5,
are given in (32)

The chemical reaction system is depicted in Fig. 4a, which involves four species
S = {S1,S2,S3,S4}. The state of the Markov chain is (nS1 , nS2 , nS3 , nS4) where nSi
is the number of copies of Si for i = 1, 2, 3, 4. The potential transitions of the Markov
chain are in five possible directions, v j , j = 1, ..., 5, where v1 = (−1, 1, 0, 0)T , v2 =
(0,−1, 0, 1)T , v3 = (−1, 0, 1, 0)T , v4 = (0, 0,−1, 1)T and v5 = (0,−1, 1, 0)T (see
SI-Section S.2.2 for the derivation of the v j , j = 1, ..., 5). Fixing an integer Stot > 0,
the associated stoichiometric compatibility class is z + L with z = (Stot, 0, 0, 0) and
L := span{v1, v2, v3, v4, v5}. The set z + L is a three-dimensional affine subspace
of four-dimensional space. We choose the state space of our Markov chain to be
X = (z + L) ∩ Z4+ = {(x1, x2, x3, x4) ∈ Z4+|x1 + x2 + x3 + x4 = Stot}. The
constraint introduced in the last expression for X follows from the conservation law
in this chemical reaction system, that is nS1 +nS2 +nS3 +nS4 = Stot. Given a generic
state x = (x1, x2, x3, x4), following mass-action kinetics, the infinitesimal transition
rates are

ϒ1(x) = κ1x1, ϒ2(x) = κ2x2, ϒ3(x) = κ3x1, ϒ4(x) = κ4x3, ϒ5(x) = κ5x2.

(32)

For the purpose of illustration, Fig. 4b shows the three-dimensional projection of the
Markov chain graph for one stoichiometric compatibility class.

A natural question is how the time T(0,0,0,Stot) to reach the state (0, 0, 0,Stot)
from (Stot, 0, 0, 0) depends on the rate constants κ1,κ2,κ3,κ4 and κ5. For this, we
use Theorem 3.4. Let
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A =
[−1 0 0 0
0 −1 −1 0

]
. (33)

The matrix A here defines a preorder that is not a partial order of X . For x ∈ X ,
consider infinitesimal transition rates ϒ̆1(x), ϒ̆2(x), ϒ̆3(x), ϒ̆4(x) and ϒ̆5(x) defined
as forϒ1(x), ϒ2(x), ϒ3(x), ϒ4(x) andϒ5(x), but with κ̆i in place of κi where κ̆i = κi ,
for i = 1, 2, 3, 4, and κ̆5 
= κ5. Suppose that κ2 = κ4. Now, let us verify that
the assumptions of Theorem 3.3 hold. Condition (i) holds since Av1 = (1,−1)T ,
Av2 = (0, 1)T , Av3 = (1,−1)T , Av4 = (0, 1)T and Av5 = (0, 0)T . Condition (i i)
of Theorem 3.3 also holds, as shown in the paragraph below.

Verification of condition (i i) of Theorem 3.3. Let x ∈ X , and first consider x ∈ X
and y ∈ ∂1(KA+x)∩X , where ∂1(KA+x)∩X = {w ∈ X |x1 = w1, x2+x3 ≥ w2+
w3, x4 ≤ w4}. Given that Av2 = Av4, Av1 = Av3, and 〈A1•, v1〉 = 〈A1•, v3〉 = 1,
weneed to check thatϒ1(x)+ϒ3(x) ≤ ϒ̆1(y)+ϒ̆3(y). Since y ∈ ∂1(KA+x)∩X , then
ϒ1(x) = κ1x1 = κ1y1 = κ̆1y1 = ϒ̆1(y) and ϒ3(x) = κ3x1 = κ3y1 = κ̆3y1 = ϒ̆3(y),
and so the desired inequality holds with equality. Secondly, consider y ∈ ∂2(KA+x)∩
X = {w ∈ X |x1 ≥ w1, x2+x3 = w2+w3, x4 ≤ w4}. Given that Av2 = Av4, Av1 =
Av3, and 〈A1•, v1〉 = 〈A1•, v3〉 = −1 and 〈A1•, v2〉 = 〈A1•, v4〉 = 1, we need to
check that ϒ2(x) + ϒ4(x) ≤ ϒ̆2(y) + ϒ̆4(y) and ϒ1(x) + ϒ3(x) ≥ ϒ̆1(y) + ϒ̆3(y).
For x ∈ X and y ∈ ∂2(KA + x) ∩ X , we have that ϒ2(x) + ϒ4(x) = κ2x2 + κ4x3 =
κ2(x2 + x3) ≤ κ2(y2 + y3) = κ̆2(y2 + y3) = ϒ̆2(y) + ϒ̆4(y) and ϒ1(x) = κ1x1 ≥
κ1y1 = κ̆1y1 = ϒ̆1(y), ϒ3(x) = κ3x1 ≥ κ3y1 = κ̆3y1 = ϒ̆3(y).

Thus, all hypotheses of Theorem 3.3 hold, and so for every x◦, x̆◦ ∈ X where
x◦ �A x̆◦ there there exists a probability space (�,F ,P) with two Markov chains
X = {X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} associated with ϒ and ϒ̆ , respectively,

such that X(0) = x◦, X̆(0) = x̆◦ and P
[
X(t) �A X̆(t) for every t ≥ 0

]
= 1. Let

	 = {(0, 0, 0,Stot)}. This is an increasing set inX with respect to the relation�A. Let
T(0,0,0,Stot), respectively T̆(0,0,0,Stot) be the first time that the Markov chain X , respec-
tively X̆ , reaches the set 	. Then, by Theorem 3.4, if X(0) = X̆(0) = (Stot, 0, 0, 0),
we have that T̆(0,0,0,Stot) �st T(0,0,0,Stot). By interchanging ϒ̆5 and κ5, we can conclude
that T̆(0,0,0,Stot) and T(0,0,0,Stot) are stochastically equivalent (equal in distribution). It
follows that the mean first passage time from (Stot, 0, 0, 0) to (0, 0, 0,Stot) is insen-
sitive to κ5 when κ2 = κ4. This is naively counter-intuitive: since the fifth reaction
re-routes some samples to another state where the last reaction has the same rate con-
stant as the final reactionwithout re-routing, it should take a longer expected time since
re-routing also takes some time. However, in reality, the presence of the fifth reaction
also fastens the rate to transition fromS2, and this balances the time of re-routing.Most
importantly, our theorem is able to capture this result without explicitly calculating the
mean first passage time and allows us to reach the conclusion easily. We expect that in
more complex situations, our method will be a valuable tool to establish monotonicity
and insensitivity results.

Given that the Markov chain has one absorbing state per stoichiometric compati-
bility class, the stationary distribution for a given stoichiometric compatibility class
is trivial, and hence so too are its monotonicity properties.
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Fig. 5 Histone modification circuit and corresponding Markov chain. a Original chemical reaction
system. The numbers on the arrows correspond to the associated reactions. bMarkov chain graph associated
with the reduced chemical reaction system. Here, we consider Dtot = 3, we use black dots to represent the
states and red double-ended arrows to represent transitions in both directions. We use orange to highlight
the region (KA + x) ∩ X , with A defined in (37). c Direction of the possible transitions of the Markov
chains, whose rates are given in equation (36)

Theorem S.2 allows us to conclude further interesting properties for this network.
Using two other A matrices (see SI - Section S.3.2), we can conclude that adding
reaction 5© (changing from κ5 = 0 to κ5 > 0) causes the mean first passage time from
(Stot, 0, 0, 0) to (0, 0, 0,Stot) to increase if κ2 > κ4 or to decrease if κ2 < κ4. More
explicitly, this shows that there can be opposing effects on the mean first passage time
with different choices of κ2 and κ4 when reaction 5© is added.

Example 4.4 Epigenetic regulation by chromation modifications
Epigenetic regulation is the modification of the DNA structure, due to chromatin

modifications, that determines if a gene is active or repressed. There are several chro-
matin modifications that can affect the DNA structure. Here, we will focus only on
histone modifications. More precisely, we consider a ubiquitous model for a histone
modification circuit (see Dodd et al. (2007) and Bruno et al. (2022)). The species
considered are nucleosomes that are unmodified (D), modified with repressive mod-
ifications (DR), and modified with activating modifications (DA), and, in terms of
molecular interactions, each histone modification autocatalyzes itself and promotes
the erasure of the other one. The chemical reaction system considered is depicted in
Fig. 5a. The amount of each species is represented by nD, nDR and nDA, respectively,
and their sum is conserved, that is nD + nDR + nDA = Dtot, with Dtot representing the
total number of nucleosomes within the gene.

By fixing an integer Dtot > 0, we fix one stoichiometric compatibility class. The
projected process (X1, X2)(·) = (nDR , nDA) is still a continuous-time Markov chain,
and in this example we choose to apply our theory to this reduced system. This is the
same as studying the reduced chemical reaction system defined as follows:

1© ∅ → DA, 2© ∅ → DR, 3© DA → ∅, 4© DR → ∅, (34)

with two species S = {DR,DA} and four reactions R = {(v−
1 , v+

1 ), (v−
2 , v+

2 ),

(v−
3 , v+

3 ), (v−
4 , v+

4 )}, where v−
1 = v−

2 = v+
3 = v+

4 = (0, 0)T , v+
2 = v−

4 = (1, 0)T ,
v+
1 = v−

3 = (0, 1)T , and with associated propensity functions of non-mass-action
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type defined as follows:

�(v−
1 ,v+

1 )(x) = (Dtot − (x1 + x2)) (κ1a + κ1bx2) ,

�(v−
2 ,v+

2 )(x) = (Dtot − (x1 + x2)) (κ2a + κ2bx1) ,

�(v−
3 ,v+

3 )(x) = x2 (κ3a + x1κ3b) , �(v−
4 ,v+

4 )(x) = x1μ (cκ3a + x2κ3b) , (35)

in which κ1a , κ1b, κ3a , κ3b, κ2a , κ2b, κ4a = μcκ3a , κ4b = μκ3b are the rate constants
that go with each of the reactions shown in Fig. 5a, respectively.

The state space for the Markov chain is X = {(x1, x2) ∈ Z2+ | x1 + x2 ≤ Dtot}.
Given a generic state x = (x1, x2) ∈ X , the potential transitions of the Markov chain
are in four possible directions v j = v+

j − v−
j , j = 1, 2, 3, 4, that can be written

as v1 = (0, 1)T , v2 = (1, 0)T , v3 = (0,−1)T and v4 = (−1, 0)T , with associated
infinitesimal transition rates

ϒ1(x) = �(v−
1 ,v+

1 )(x), ϒ2(x) = �(v−
2 ,v+

2 )(x),

ϒ3(x) = �(v−
3 ,v+

3 )(x), ϒ4(x) = �(v−
4 ,v+

4 )(x).
(36)

We are interested in determining how the asymmetry of the system, represented by the
parameter μ affects the stochastic behavior of the system. In particular, we will focus
on studying the stationary distribution and the time to memory loss of the active and
repressed state, defined as the mean first passage time to reach the fully repressed state
(r = (nDR , nDA) = (Dtot, 0)), starting from the fully active state (a = (nDR , nDA) =
(0,Dtot)), and vice versa (i.e., ha,r = Ea[Tr ] and hr ,a = Er [Ta]). To this end, we first
verify that we can apply Theorem 3.2.

Let

A =
[−1 0
0 1

]
. (37)

For x ∈ X , KA+x = {w ∈ R2 |x �A w} and (KA+x)∩X = {w ∈ X |x �A w}. See
Fig. 5b for an example ofX and (KA+x)∩X for Dtot = 3.We introduce infinitesimal
transition rates ϒ̆1(x), ϒ̆2(x), ϒ̆3(x) and ϒ̆4(x) defined as for ϒ1(x), ϒ2(x), ϒ3(x)
and ϒ4(x), with all the parameters having the same values except that μ is replaced
by μ̆, where μ̆ ≥ μ. Since Av1 = (0, 1)T , Av2 = (−1, 0)T , Av3 = (0,−1)T and
Av4 = (1, 0)T , we have that condition (i) of Theorem 3.2 holds. Condition (i i) also
holds, as shown in the paragraph below.

Verification of condition (i i) of Theorem 3.2. Consider x ∈ X and y ∈
∂1(KA + x) ∩ X , where ∂1(KA + x) ∩ X = {w ∈ X | x1 = w1, x2 ≤ w2}.
Since 〈A1•, v4〉 = 1 and 〈A1•, v2〉 = −1, we must check that ϒ2(x) ≥ ϒ̆2(y) and
ϒ4(x) ≤ ϒ̆4(y). Since y ∈ ∂1(KA + x) ∩ X implies x1 = y1 and x2 ≤ y2, we have
ϒ2(x) = (Dtot−(x1+x2)) (κ2a + κ2bx1) ≥ (Dtot−(y1+y2)) (κ2a + κ2b y1) = ϒ̆2(y)
and ϒ4(x) = x1μ (cκ3a + x2κ3b) ≤ y1μ (cκ3a + y2κ3b) ≤ y1μ̆ (cκ3a + y2κ3b) =
ϒ̆4(y), and so both inequalities hold. Similarly, for x ∈ X and y ∈ ∂2(KA + x)∩X =
{w ∈ X | x1 ≥ w1, x2 = w2}, since 〈A2•, v1〉 = 1 and 〈A2•, v3〉 = −1,
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we need to check that ϒ1(x) ≤ ϒ̆1(y) and ϒ3(x) ≥ ϒ̆3(y). Indeed, ϒ1(x) =
(Dtot − (x1 + x2)) (κ1a + κ1bx2) ≤ (Dtot − (y1 + y2)) (κ1a + κ1b y2) = ϒ̆1(y) and
ϒ3(x) = x2 (κ3a + x1κ3b) ≥ y2 (κ3a + y1κ3b) = ϒ̆3(y).

Since all of the hypotheses of Theorem 3.2 hold, for each pair x◦, x̆◦ ∈ X satisfying
x◦ �A x̆◦, there exists a probability space (�,F ,P) with two Markov chains X =
{X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} associated with ϒ and ϒ̆ , respectively, such

that X(0) = x◦, X̆(0) = x̆◦ and P
[
X(t) �A X̆(t) for every t ≥ 0

]
= 1.

We can also apply Theorem 3.5. The Markov chains X and X̆ are irreducible and,
having only finitely many states, are positive recurrent. Based on the order �A we
introduced, the fully active state a = (0,Dtot) is maximal inX and the fully repressed
state r = (Dtot, 0) is minimal inX . Then, by Theorem 3.5, we can conclude that πa ≤
π̆a and πr ≥ π̆r . This implies that increasing μ increases the probability of the system
in steady-state to be in the active state a to the detriment of the repressed state r (and
vice versa for decreasing μ). We can also apply Theorem 3.4. Since {a} is increasing
and {r} is decreasing, then by Theorem 3.4, h̆r ,a = Er [T̆a] ≤ Er [Ta] = hr ,a and
ha,r = Ea[Tr ] ≤ Ea[T̆r ] = h̆a,r . Since the only difference between the two systems
was that μ ≤ μ̆, these results imply that the time to memory loss of the active state
increases for higher values of μ, while the time to memory loss of the repressed state
decreases for higher values of μ.

Example 4.5 Epigenetic regulation by chromatin modifications with positive TF-
enabled autoregulation

Now, we consider the histone modification circuit considered in the previous exam-
ple with an additional positive autoregulation loop. For this, we assume that a protein
expressed by the gene of interest recruits writers for the activating histone modifica-
tions. Consequently, we introduce the gene product P as an additional species for our
system and add the following reactions to the ones shown in Fig. 5a:

5a© DA → DA + P, 6a© P → ∅. (38)

Furthermore, given the P-enabled autoregulation loop (Fig. 6 a), let us consider the
rate constant that goes with 1a© in Fig. 5a as κ1a = κ0

1a + κ1
1ag(nP), with κ0

1a and
κ1
1a representing the rate constants that go with the DA basal de-novo establishment
process and with the DA de-novo establishment process enhanced by nP, respectively,
and g(nP) representing a nonnegative, bounded, monotonically increasing function of
nP (see Bruno et al. (2022), Sect. 3.4).

Here, we are interested in determining how the reaction rate constant κ5a affects
the reactivation time of the gene. As before, we have the conservation law nD+nDR +
nDA = Dtot, with Dtot representing the total number of nucleosomes within the gene,
and by fixing Dtot > 0, we fix one stoichiometric compatibility class and the projected
process (X1, X2, X3)(·) = (nDR , nDA , nP) is a continuous-time Markov chain. This
is the same as studying the reduced chemical reaction system:

1© ∅ → DA, 2© ∅ → DR, 3© DA → ∅,

4© DR → ∅, 5© DA → DA + P, 6© P → ∅,
(39)
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Fig. 6 Histone modification circuit with positive TF-enabled autoregulation and corresponding
Markov chain. a Original chemical reaction system. The numbers on the arrows correspond to the asso-
ciated reactions. b Markov chain graph. Here, we consider Dtot = 3, we use black dots to represent the
states and red double-ended arrows to represent transitions in both directions associated with the reactions
represented by the red arrows in a. Similarly we use blue double-ended (single-ended) arrows to repre-
sent transitions in both directions (in one direction) associated with the reactions represented by the blue
arrows in a. We use blue dotted lines to show that, in the vertical direction, the Markov chain has countably
infinitely many states, connected by transitions in both directions. Finally, we use orange to highlight the
region KA + x intersected with the state space X , with A defined in (41). c Direction of the possible
transitions of the Markov chain starting from a state x , whose rates are defined in equation (40)

with set of species S = {DR,DA,P}, set of reactions R = {(v−
1 , v+

1 ), (v−
2 , v+

2 ),
(v−

3 , v+
3 ), (v−

4 , v+
4 ), (v−

5 , v+
5 ), (v−

6 , v+
6 )}, where v−

1 = v−
2 = v+

3 = v+
4 = v+

6 =
(0, 0, 0)T , v+

2 = v−
4 = (1, 0, 0)T , v+

1 = v−
3 = v−

5 = (0, 1, 0)T , v+
5 = (0, 1, 1)T ,

v−
6 = (0, 0, 1)T , and with associated propensity functions of non-mass-action type
defined as follows:

�(v−
1 ,v+

1 )(x) = (Dtot − (x1 + x2))
(
κ0
1a + κ1

1ag(x3) + κ1bx2
)

,

�(v−
2 ,v+

2 )(x) = (Dtot − (x1 + x2)) (κ2a + κ2bx1) , �(v−
3 ,v+

3 )(x) = x2 (κ3a + x1κ3b) ,

�(v−
4 ,v+

4 )(x) = x1μ (cκ3a + x2κ3b) , �(v−
5 ,v+

5 )(x) = κ5ax2, �(v−
6 ,v+

6 )(x) = κ6ax3,

in which κ5a and κ6a are the rate constants that go with reactions 5a© and 6a© in (38),
respectively, and all the other rate constants are defined as for (35).

The state space for the Markov chain is X = {(x1, x2, x3) ∈ Z3+ | x1 + x2 ≤ Dtot}.
Given a generic state x = (x1, x2, x3), the transitions of the Markov chain are in
six possible directions v j = v+

j − v−
j , j ∈ {1, ..., 6}, that can be written as v1 =

(0, 1, 0)T , v2 = (1, 0, 0)T , v3 = (0,−1, 0)T , v4 = (−1, 0, 0)T , v5 = (0, 0, 1)T ,
v6 = (0, 0,−1)T , with associated infinitesimal transition rates:

ϒ1(x) = �(v−
1 ,v+

1 )(x), ϒ2(x) = �(v−
2 ,v+

2 )(x), ϒ3(x) = �(v−
3 ,v+

3 )(x),

ϒ4(x) = �(v−
4 ,v+

4 )(x), ϒ5(x) = �(v−
5 ,v+

5 )(x), ϒ6(x) = �(v−
6 ,v+

6 )(x).
(40)
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As mentioned before, we are interested in determining how the protein production
rate κ5a affects the reactivation time of the gene, defined as hr ,� = Er [T�], where
r = (Dtot, 0, 0) and � = {w ∈ X |w = (0,Dtot, i), i ∈ Z+} corresponds to the set
of states characterized by the fully active state nDA = Dtot. We first check that the
assumptions of Theorem 3.2 hold. Let

A =
⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦ . (41)

For x ∈ X , x �A y and the set KA + x = {y ∈ R3 | x �A y}. For our
example, the region (KA + x) ∩ X is depicted in orange in Fig. 6b. We introduce
infinitesimal transition rates ϒ̆1(x), ϒ̆2(x), ϒ̆3(x), ϒ̆4(x), ϒ̆5(x) and ϒ̆6(x) defined
as for ϒ1(x), ϒ2(x), ϒ3(x), ϒ4(x), ϒ5(x) and ϒ6(x), with all the parameters having
the same values except that κ5a is replaced by κ̆5a > κ5a . Condition (i) of The-
orem 3.2 holds since Av1 = (0, 1, 0)T , Av2 = (−1, 0, 0)T , Av3 = (0,−1, 0)T ,
Av4 = (1, 0, 0)T , Av5 = (0, 0, 1)T , Av6 = (0, 0,−1)T . Condition (i i) also holds,
as shown in the paragraph below.

Verification of condition (i i) of Theorem 3.2. First consider x ∈ X and y ∈
∂1(KA + x) ∩ X = {w ∈ X | x1 = w1, x2 ≤ w2, x3 ≤ w3}. Since 〈A1•, v4〉 = 1
and 〈A1•, v2〉 = −1, we need to check that ϒ4(x) ≤ ϒ̆4(y) and ϒ2(x) ≥ ϒ̆2(y).
Since x1 = y1, x2 ≤ y2, x3 ≤ y3, we have that ϒ4(x) = x1μ (cκ3a + x2κ3b) ≤
y1μ (cκ3a + y2κ3b) = ϒ̆4(y) andϒ2(x) = (Dtot−(x1+x2)) (κ2a + κ2bx1) ≥ (Dtot−
(y1 + y2)) (κ2a + κ2b y1) = ϒ̆2(y). Secondly, consider x ∈ X and y ∈ ∂2(KA + x) ∩
X = {w ∈ X |x1 ≥ w1, x2 = w2, x3 ≤ w3}. Since 〈A2•, v1〉 = 1 and 〈A2•, v3〉 = −1,
we need to check that ϒ1(x) ≤ ϒ̆1(y) and ϒ3(x) ≥ ϒ̆3(y). Since x1 ≥ y1, x2 =
y2, x3 ≤ y3, we haveϒ1(x) = (Dtot−(x1+x2))

(
κ0
1a + κ1

1a g(x3) + κ1bx2
) ≤ (Dtot−

(y1 + y2))
(
κ0
1a + κ1

1a g(y3) + κ1b y2
) = ϒ̆1(y) and ϒ3(x) = x2 (κ3a + x1κ3b) ≥

y2 (κ3a + y1κ3b) = ϒ̆3(y). Finally, consider x ∈ X and y ∈ ∂3(KA + x)∩X = {w ∈
X | x1 ≥ w1, x2 ≤ w2, x3 = w3}. Since 〈A3•, v5〉 = 1 and 〈A3•, v6〉 = −1, we must
check that ϒ5(x) ≤ ϒ̆5(y) and ϒ6(x) ≥ ϒ̆6(y). Since x1 ≥ y1, x2 ≤ y2, x3 = y3, we
obtain ϒ5(x) = κ5ax2 ≤ κ5a y2 ≤ κ̆5a y2 = ϒ̆5(y) and ϒ6(x) = κ6ax3 = κ6a y3 =
ϒ̆6(y).

Since all the hypotheses of Theorem 3.2 hold, for each x◦, x̆◦ ∈ X satisfying
x◦ �A x̆◦, there exists a probability space (�,F ,P) with two Markov chains X =
{X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} associated with ϒ and ϒ̆ , respectively, such

that X(0) = x◦, X̆(0) = x̆◦ and P
[
X(t) �A X̆(t) for every t ≥ 0

]
= 1.

Furthermore, since the hypotheses of Theorem 3.2 hold, we can also apply Theorem
3.4. Specifically, for r = (Dtot, 0, 0) and� = {y ∈ X |y = (0,Dtot, i), i ∈ Z+}, since
� is an increasing set in X with respect to the relation �A, then hr ,� ≥ h̆r ,�. This
implies that, assuming that the only difference between the two systems is in the value
of the protein production rate parameter, κ5a , higher protein production rates reduce
the mean reaction time for the gene.
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5 Proofs of theMain Results

5.1 Proof of Theorem 3.1.

Consider a non-empty set X ⊆ Zd+, a collection of distinct vectors v1, . . . , vn in
Zd\{0} and two collections of nonnegative functions on X , ϒ = (ϒ1, . . . , ϒn) and
ϒ̆ = (ϒ̆1, . . . , ϒ̆n), such that (8) holds. Let Q = (Qx,y)x,y∈X and Q̆ = (Q̆x,y)x,y∈X
denote the infinitesimal generators for the continuous-time Markov chains associated
with ϒ and ϒ̆ , respectively. In the following, let A ∈ Rm×d be a matrix with nonzero
rows and consider the relation �A as defined in Definition 3.1.

For the proof of Theorem 3.1, we first assume that

sup
x∈X

ϒ j (x) < ∞ and sup
x∈X

ϒ̆ j (x) < ∞ for every 1 ≤ j ≤ n. (42)

This restriction will be relaxed later. Then, we define a constant λ > 0 and a pair of
functions �λ and �̆λ, which will be key to our construction of the coupled processes
X and X̆ . Let λ > 0 such that:

λ > nmax

⎧
⎨

⎩ sup
x∈X

n∑

j=1

ϒ j (x), sup
x∈X

n∑

j=1

ϒ̆ j (x)

⎫
⎬

⎭ . (43)

Note that both
ϒ j (x)

λ
and

ϒ̆ j (x)
λ

are less than 1
n for every x ∈ X and 1 ≤ j ≤ n. For

x ∈ X , consider the sets

I j (x) :=
[
j − 1

n
,
j − 1

n
+ ϒ j (x)

λ

)
, 1 ≤ j ≤ n. (44)

If ϒ j (x) = 0, then I j (x) is the empty set. On the other hand, if ϒ j (x) > 0, then
I j (x) is an interval that is a strict subset of [ j−1

n ,
j
n ). Define the function �λ(·, ·) :

X × [0, 1] −→ X by

�λ(x, u) := x +
n∑

j=1

v j1I j (x)(u), x ∈ X , u ∈ [0, 1]. (45)

For x ∈ X , the sets I1(x), . . . , In(x) are mutually disjoint and so for any u ∈ [0, 1]
either �λ(x, u) = x or �λ(x, u) = x + v j for some 1 ≤ j ≤ n. In the second case,
this will happen if and only if u ∈ I j (x) for the corresponding index j . The latter
condition implies that I j (x) 
= ∅, hence by (44), ϒ j (x) > 0 and by (8), x + v j ∈ X .

This shows that�λ(·, ·) iswell-defined as anX -valued function.Wedefine intervals
Ĭ j (x), 1 ≤ j ≤ n, x ∈ X and a function �̆λ : X × [0, 1] −→ X in an analogous
manner to that above, where �̆λ is defined as in (45), but with the intervals I j (x)
replaced by Ĭ j (x), where these are defined as in (44), but with ϒ j (x) replaced by
ϒ̆ j (x).
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Lemma 5.1 Suppose that x, y ∈ X are such that x �A y and the following hold:

ϒ̆ j (y) ≤ ϒ j (x), for each 1 ≤ j ≤ n such that y + v j ∈ X \ (KA + x), (46)

and

ϒ̆ j (y) ≥ ϒ j (x), for each 1 ≤ j ≤ n such that x + v j ∈ X and y /∈ KA+x + v j .

(47)

Then, for each u ∈ [0, 1],

�λ(x, u) �A �̆λ(y, u). (48)

Proof First, we note that�λ, �̆λ have the following property: for every u ∈ [0, 1] and
1 ≤ j ≤ n,

if �λ(x, u) = x + v j , then �̆λ(y, u) ∈ {y, y + v j }, (49)

since I j (x), Ĭ j (y) ⊆ [ j−1
n ,

j
n ). Similarly,

if �̆λ(y, u) = y + v j , then �λ(x, u) ∈ {x, x + v j }. (50)

Furthermore, if ϒ̆ j (y) ≥ ϒ j (x), then

�λ(x, u) = x + v j implies that �̆λ(y, u) = y + v j , (51)

since under this condition, I j (x) ⊆ Ĭ j (y). Similarly, if ϒ̆ j (y) ≤ ϒ j (x), then

�̆λ(y, u) = y + v j implies that �λ(x, u) = x + v j . (52)

Now, to prove (48), fix u ∈ [0, 1]. We consider two cases.
Case 1: �̆λ(y, u) = y + v j for some 1 ≤ j ≤ n.
Fix such an index j . Then, by (50), either �λ(x, u) = x + v j or �λ(x, u) = x .

a) If �λ(x, u) = x + v j , then, by (6), x + v j �A y + v j and therefore �λ(x, u) �A

�̆λ(y, u).
b) If�λ(x, u) = x , then y+v j ∈ KA+x . To see this, we note that y+v j ∈ X by (8)

and since ϒ̆ j (y) > 0 because Ĭ j (y) 
= ∅. Then, if y + v j /∈ KA + x , by (46), we
would have ϒ̆ j (y) ≤ ϒ j (x), which would imply that �λ(x, u) = x + v j by (52).
But this contradicts the assumption that �λ(x, u) = x . Thus, y + v j ∈ KA + x
and so �λ(x, u) = x �A y + v j = �̆λ(y, u).

Case 2: �̆λ(y, u) = y. Again, we consider two subcases.

a) If �λ(x, u) = x , then (48) holds, since x �A y by assumption.
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b) If �λ(x, u) = x + v j for some 1 ≤ j ≤ n, then y ∈ KA + x + v j for the
corresponding value of j . To see this, fix the value of j forwhich�λ(x, u) = x+v j

and notice that x + v j ∈ X by (8) and since ϒ j (x) > 0. If y /∈ KA + x + v j ,
then by (47) we would have ϒ j (x) ≤ ϒ̆ j (y), which would imply that �̆λ(y, u) =
y + v j . This contradicts the assumption that �̆λ(y, u) = y. Thus, we must have
y ∈ KA + x + v j and then �λ(x, u) = x + v j �A y = �̆λ(y, u). ��
Now that all these preliminaries have been established under assumption (42), we

proceed with the main part of the proof of Theorem 3.1 with this assumption. For this
proof, we assume that all of the conditions of Theorem 3.1 hold and in addition that
condition (42) holds. The latter ensures that the pair of continuous-timeMarkov chains
with infinitesimal generators Q and Q̆ are uniformizable (see Chapter 2 in Keilson
(1979)). With λ > 0 as in (43), the (possibly infinite) matrices 4 Pλ(Q) := 1

λ
Q + I

and Pλ(Q̆) := 1
λ
Q̆ + I are stochastic,5 where I = (Ix,y)x,y∈X is the identity matrix.

Indeed, for x ∈ X , (Pλ(Q))x,x = Qx,x
λ

+ 1 = 1 − |Qx,x |
λ

∈ [1 − 1
n , 1], for y 
= x ,

(Pλ(Q))x,y = Qx,y
λ

∈ [0, 1
n ] and∑y∈X (Pλ(Q))x,y =∑y∈X 1

λ
Qx,y + 1 = 1.

Now, let x◦, x̆◦ ∈ X be such that x◦ �A x̆◦. Consider a probability space (�,F ,P)

where the following are defined:

(i) A Poisson process N = {N (t), 0 ≤ t < ∞} of rate λ > 0.
(ii) A sequence of independent and identically distributed (i.i.d.) random variables

U = (Uk)k≥1 where each Uk has the uniform distribution on [0, 1].
Additionally, choose N to be independent of U . We construct two discrete-time pro-
cesses, Y = (Yk)k≥0 and Y̆ = (Y̆k)k≥0, by defining Y0 := x◦, Y̆0 := x̆◦, and for
k ≥ 0,

Yk+1 := �λ(Yk,Uk+1), Y̆k+1 := �̆λ(Y̆k,Uk+1). (53)

Then Y and Y̆ are discrete-time Markov chains with transition matrices Pλ(Q) and
Pλ(Q̆), respectively. Now, define the processes

X(t) := YN (t), X̆(t) := Y̆N (t), t ≥ 0. (54)

According to Section 2.1 in Keilson (1979) (see the discussion around Equation 2.1.6),
X and X̆ are continuous-time Markov chains with infinitesimal generators Q and Q̆,
respectively, and with initial conditions X(0) = x◦ and X̆(0) = x̆◦.

In order to prove (12), it suffices to check that the following holds:

P[Yk �A Y̆k] = 1, for every k ≥ 0. (55)

Indeed, if this is true, then P[Yk �A Y̆k for every k ≥ 0] = 1 and therefore
P[YN (t) �A Y̆N (t) for every t ≥ 0] = 1. We will prove (55) by induction on

4 These “matrices" may have countably many rows and columns, in which case they could be considered
as operators on �∞. For convenience, we still call them “matrices” here.
5 Stochastic here means that all entries take values in [0, 1] and all row sums equal one.
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k. We already know that x◦ �A x̆◦ and so (55) holds for k = 0. Now, assume
P[Yk �A Y̆k] = 1 for some k ≥ 0. Since conditions (10) and (11) hold for every
x, y ∈ X such that x �A y, by Lemma 5.1 we obtain that on a set of probability one,
on which Yk �A Y̆k ,

Yk+1 = �λ(Yk,Uk+1) �A �̆λ(Y̆k,Uk+1) = Y̆k+1, (56)

and so (55) holds with k + 1 in place of k. This completes the induction step, and so
Theorem 3.1 is proved whenever (42) holds.

For the case where (42) does not hold, we construct the corresponding continuous-
time Markov chains as a limit in distribution of appropriately coupled continuous-
time Markov chains with truncated propensity functions for which (42) holds. Many
elements for this case are similar to the previous case, although the use of Lemma 5.1
is different. We provide the details below, where we assume that the hypotheses of
Theorem 3.1 hold.

We consider truncations of the propensity functions ϒ and ϒ̆ . More concretely,
for x◦, x̆◦ ∈ X such that x◦ �A x̆◦, let M0 ≥ 1 be an integer such that
‖x◦‖∞, ‖x̆◦‖∞ ≤ M0. For every integer M ≥ M0, consider the finite set XM :=
{x ∈ X | ‖x‖∞ ≤ M}, together with the functions ϒM

j , ϒ̆M
j : X −→ R+ defined by

ϒM
j (x) := ϒ j (x)1XM (x) and ϒ̆M

j (x) := ϒ̆ j (x)1XM (x) for 1 ≤ j ≤ n and x ∈ X .

We see that for every M ≥ M0, (8) holds with the functions ϒM = (ϒM
1 , . . . , ϒM

n )

and ϒ̆M = (ϒ̆M
1 , . . . , ϒ̆M

n ) in place of ϒ and ϒ̆ . Also, since XM is a finite set,
supx∈X ϒM

j (x) = supx∈XM
ϒ j (x) < ∞ and supx∈X ϒ̆M

j (x) = supx∈XM
ϒ̆ j (x) <

∞ for every 1 ≤ j ≤ n. Furthermore, by (10) and (11), we have that for every pair
x, y ∈ XM such that x �A y,

ϒ̆M
j (y) ≤ ϒM

j (x), for every 1 ≤ j ≤ n such that y + v j ∈ X \ (KA + x), and

ϒ̆M
j (y) ≥ ϒM

j (x), for every 1 ≤ j ≤ n such that x + v j ∈ X and y /∈ KA + x + v j .
(57)

Let QM and Q̆M denote the infinitesimal generators associated with ϒM

and ϒ̆M , respectively. We define an increasing sequence {λM }M≥M0 of pos-
itive numbers such that λM −→ ∞ as M −→ ∞ and λM >

nmax
{
supx∈X

∑n
j=1 ϒM

j (x), supx∈X
∑n

j=1 ϒ̆M
j (x)

}
for every M ≥ M0. Define

�λM (·, ·), �̆λM (·, ·) : X × [0, 1] −→ X as in (45), but with ϒM and ϒ̆M

in place of ϒ and ϒ̆ , respectively. Since (57) holds, applying Lemma 5.1 with
ϒM , ϒ̆M , λM ,�λM , �̆λM in place of ϒ, ϒ̆, λ,�λ, �̆λ yields that

�λM (x, u) �A �̆λM (y, u) for every x, y ∈ XM such that x �A y and u ∈ [0, 1].
(58)

Now, for each M ≥ M0 consider a probability space (�M ,FM ,PM ) where the
following are defined:

(i) A Poisson process NM = {NM (t), 0 ≤ t < ∞} of rate λM > 0.
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(ii) An i.i.d. sequence UM = (UM
k )k≥1 of uniform [0, 1] random variables.

Additionally, choose NM to be independent ofUM . For every M ≥ M0, we construct
two discrete-time processes, Y M = (Y M

k )k≥0 and Y̆ M = (Y̆ M
k )k≥0, by defining Y M

0 :=
x◦, Y̆ M

0 := x̆◦ and for k ≥ 0,

Y M
k+1 := �λM (Y M

k ,UM
k+1), Y̆ M

k+1 := �̆λM (Y̆ M
k ,UM

k+1). (59)

Similarly to the previous case, Y M and Y̆ M are discrete-time Markov chains with
transition matrices PλM (QM ) := 1

λM
QM + I and PλM (Q̆M ) := 1

λM
Q̆M + I ,

respectively.
Now, we claim that for each M ≥ M0:

PM
[
Y M
k∧SM �A Y̆ M

k∧SM for every k ≥ 0
]

= 1. (60)

where SM := inf{k ≥ 0 | Y M
k /∈ XM or Y̆ M

k /∈ XM }. In fact, (60) is equivalent to

proving thatPM
[
Y M
k∧SM

�A Y̆ M
k∧SM

]
= 1 for every k ≥ 0, which we do by induction.

We already know that Y M
0 �A Y̆ M

0 . Assuming the statement is true for some k ≥ 0,
to establish it for k + 1 we distinguish between two cases. First, on {SM ≤ k},
Y M

(k+1)∧SM
= Y M

k∧SM
�A Y̆ M

k∧SM
= Y̆ M

(k+1)∧SM
, PM -a.s.. Second, on {SM > k},

Y M
k ∈ XM , Y̆ M

k ∈ XM , and by the induction assumption, Y M
k �A Y̆ M

k , PM -a.s..
Applying Lemma 5.1, we obtain PM -a.s. on {SM > k} that

Y M
(k+1)∧SM = Y M

k+1 = �λM (Y M
k ,UM

k+1) �A �̆λM (Y̆ M
k ,UM

k+1) = Y̆ M
(k+1)∧SM , (61)

where we have used (58).
Now, for each M ≥ M0, we define the processes

XM (t) := Y M
NM (t), X̆ M (t) := Y̆ M

NM (t), t ≥ 0. (62)

Then, XM and X̆ M are continuous-time Markov chains with infinitesimal generators
QM and Q̆M , respectively, and with initial conditions XM (0) = x◦ and X̆ M (0) = x̆◦.
Define T M := inf{t ≥ 0 | XM (t) /∈ XM or X̆ M (t) /∈ XM } and, because Y M and Y̆ M

are the discrete time skeletons for XM and X̆ M , we have that PM -a.s.

T M = inf{t ≥ 0 | NM (t) = SM }. (63)

Then, it follows from (60) that

PM
[
XM (t ∧ T M ) �A X̆M (t ∧ T M ) for every t ≥ 0

]
= 1. (64)

We now prove that for every t ≥ 0,

PM [T M < t] −→ 0, as M −→ ∞. (65)
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For this, let T M
XM := inf{t ≥ 0 | XM (t) /∈ XM } and T M

X̆M := inf{t ≥ 0 | X̆ M (t) /∈ XM }.
Since T M = T M

XM ∧ T M
X̆M , then

PM [T M < t] ≤ PM [T M
XM < t] + PM [T M

X̆M < t], for every t ≥ 0. (66)

Now, since QM
x,y = Qx,y for x ∈ XM and y ∈ X , XM (· ∧ T M

XM ) will have the same
distribution as a Markov chain with infinitesimal generator Q and initial condition x◦,
stopped at the first time it leaves XM . Because of this, T M

XM has the same distribution
as the first time a continuous-timeMarkov chain with infinitesimal generator Q leaves
XM . Since a continuous-time Markov chain with infinitesimal generator Q has been
assumed to not explode in finite time,we obtain thatPM [T M

XM < t] −→ 0 asM → ∞.

Similar reasoning holds for T M
X̆M . Combining with (66), we obtain (65).

Denote byD([0,∞),X 2) the space of right-continuous functions from [0,∞) into
X 2 that also have finite left-limits. As usual, this space is endowed with Skorokhod’s
J1 topology. The pair (XM , X̆ M ) have paths in D([0,∞),X 2) and we obtain (X , X̆)

as a limit in distribution of (XM , X̆ M ) as M → ∞. We first verify that the sequence of
processes {(XM , X̆ M )}M≥M0 is tight. For this, it suffices to check that each sequence
{XM }M≥M0 and {X̆ M }M≥M0 is tight, whichwe do bymeans of Theorem 7.2 in Chapter
3 of Ethier and Kurtz (1986). Condition (a) there (compact containment) is satisfied,
because of (65) and because for M̃ ≥ M ≥ M0 we have that X M̃ (· ∧ T M

XM̃
) under PM̃

has the same law as XM (·∧T M
XM ) underPM , where T M

XM̃
:= inf{t ≥ 0|X M̃ (t) /∈ XM }.

To verify condition (b) in Theorem 7.2 of Ethier and Kurtz (1986), for t0 > 0 fixed

and η > 0, let Mη ≥ M0 be such that PM
[
T M
XM < t0

]
≤ η

2 for all M ≥ Mη. Then,

PM
[
w′(XM , δ, t0) ≥ η

]
≤ PM

[
w′(XM , δ, t0) ≥ η ; T M

XM ≥ t0
]

+ PM
[
T M
XM < t0

]

≤ P̃
[
w′(X̃ , δ, t0) ≥ η ; τM

X̃
≥ t0

]
+ η

2

≤ P̃[w′(X̃ , δ, t0) ≥ η] + η

2
,

wherew′(·, ·, ·) is the modulus of continuity, as defined in Equation (6.2), Chapter 3 of
Ethier andKurtz (1986), X̃ under P̃ is a realization of theMarkov chain associatedwith
the infinitesimal generator Q that starts with x◦, and τM

X̃
:= inf{t ≥ 0 | X̃(t) /∈ XM }.

Since X̃ under P̃ is a single process with right-continuous paths having finite left-
limits, the tightness applies to it and so the term P̃[w′(X̃ , δ, t0) ≥ η] can be made less
than η

2 by choosing δ sufficiently small and so condition (b) of Theorem 7.2 of Ethier
and Kurtz (1986) is satisfied. It follows that {XM }M≥M0 is tight. Similar reasoning
yields tightness for {X̆ M }M≥M0 .

It follows that there exists a probability space (�,F ,P) with two processes X and
X̆ defined there, having paths that are right-continuouswith finite left-limits, and a sub-
sequence {Mk}k≥1 such thatMk → ∞ as k → ∞, and the sequence {(XMk , X̆ Mk )}k≥1
converges in distribution to the pair of processes (X , X̆). To identify the law of the
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limit, note that since {QMk }k≥1 converges pointwise to Q, for any function f with
bounded support inX , f (X(t))−∫ t0 Q f (X(s))ds will inherit the martingale property
of f (XMk (t)) − ∫ t0 QMk f (XMk (s))ds. It follows from the martingale characteriza-
tion that X is a continuous-time Markov chain with infinitesimal generator Q (see
Chapter 4 in Ethier and Kurtz (1986)). Similarly, X̆ will be a continuous-time Markov
chain with infinitesimal generator Q̆. In addition, the processes have inherited initial
conditions X(0) = x◦ and X̆(0) = x̆◦.

Finally, to show that (12) holds, consider the set

F = {( f , g) ∈ D([0,∞),X 2) | f (t) �A g(t) for all t ≥ 0}, (67)

which is closed in the Skorokhod topology. From (64), we know that the stopped
processes satisfy PMk [(XMk (· ∧ T Mk ), X̆ Mk (· ∧ T Mk )) ∈ F] = 1 for every k ≥ 1.
Furthermore, from (65) we know that T Mk −→ ∞ in probability as k → ∞. The
reader may verify that this last fact, along with the convergence of (XMk , X̆ Mk ) to
(X , X̆), implies that (XMk (· ∧ T Mk ), X̆ Mk (· ∧ T Mk )) converges in distribution to
(X , X̆) as k → ∞. By the Portmanteau Theorem (see Theorem 2.1 in Billingsley
(1999)),

1 = lim sup
k→∞

PMk [(XMk (· ∧ T Mk ), X̆ Mk (· ∧ T Mk )) ∈ F] ≤ P[(X , X̆) ∈ F] (68)

and we obtain (12).

Remark 5.1 The proof of Theorem 3.1 provides a method to simulate the sample paths
for the continuous-time Markov chains X and X̆ in a coupled manner for the case
where (42) holds. Roughly speaking, the procedure consists of determining λ > 0
as in (43), �λ, �̆λ as in (45), Y , Y̆ as in (53) and X , X̆ as in (54). For the benefit of
the reader, this method is described as an algorithm in SI - Section S.4, which yields
coupled sample paths under the assumptions of Theorem 3.2, 3.3 and S.2.

5.2 Proof of Theorem 3.2

By Theorem 3.1, it suffices to prove that for every x, y ∈ X such that x �A y,
conditions (10) and (11) hold. For this, we make some observations first. Consider
x, y ∈ X such that x �A y and let 1 ≤ j ≤ n. Observe that x �A y + v j will hold if
and only if A(y + v j − x) ≥ 0 which is equivalent to:

〈Ai•, y − x〉 + 〈Ai•, v j 〉 ≥ 0, for every 1 ≤ i ≤ m. (69)

Similarly, x + v j �A y will hold if and only if

〈Ai•, y − x〉 − 〈Ai•, v j 〉 ≥ 0, for every 1 ≤ i ≤ m. (70)

Since x �A y, then 〈Ai•, y−x〉 ≥ 0 for every 1 ≤ i ≤ m. Now, consider i ∈ {1, ...,m}
such that 〈Ai•, y − x〉 > 0. Since A ∈ Zm×d and y − x ∈ Zd , then 〈Ai•, y − x〉 ≥ 1.
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This yields that

〈Ai•, y − x〉 + 〈Ai•, v j 〉 ≥ 1 + 〈Ai•, v j 〉 ≥ 0, (71)

since 〈Ai•, v j 〉 ∈ {−1, 0, 1}. Similarly, 〈Ai•, y−x〉−〈Ai•, v j 〉 ≥ 1−〈Ai•, v j 〉 ≥ 0.
By observing that the interior of KA + x is of the form int(KA + x) = {y ∈ Rd | Ax <

Ay}, the latter argument shows that for every x ∈ X and y ∈ int(KA + x) ∩ X , we
have

x �A y + v j and x + v j �A y, for every 1 ≤ j ≤ n. (72)

Now, lets check condition (10). For this, let x, y ∈ X be such that x �A y and
let 1 ≤ j ≤ n be such that y + v j ∈ X \(KA + x). By (72), y /∈ int(KA + x) and
since y ∈ KA + x , we must have y ∈ ∂(KA + x) = {z ∈ KA + x | 〈Ai•, z〉 =
〈Ai•, x〉 for some 1 ≤ i ≤ m}, the boundary of KA + x . Consider the set of indices
Ky := {i | 〈Ai•, y〉 = 〈Ai•, x〉, 1 ≤ i ≤ m}, which is non-empty. Observe that for
every i /∈ Ky , 〈Ai•, y − x〉 > 0 and from (71), 〈Ai•, (y + v j ) − x〉 ≥ 0, while
for i ∈ Ky , 〈Ai•, (y + v j ) − x〉 = 〈Ai•, v j 〉. From this, we can infer that there
exists an ik ∈ Ky such that 〈Aik•, v j 〉 < 0. Indeed, if this was not the case, then
〈Ai•, (y + v j ) − x〉 ≥ 0 for every i ∈ Ky and consequently (69) would hold. This
contradicts the fact that y + v j /∈ KA + x . By (14), we know that 〈Aik•, v j 〉 < 0
implies ϒ̆ j (y) ≤ ϒ j (x) and we conclude that (10) holds.

To check condition (11), let x, y ∈ X be such that x �A y and let 1 ≤ j ≤ n
be such that x + v j ∈ X and y /∈ KA + x + v j . Again, by (72), we obtain that
y ∈ ∂(KA + x) and Ky 
= ∅. For every i /∈ Ky , 〈Ai•, y − (x + v j )〉 ≥ 0, while for
i ∈ Ky , 〈Ai•, y − (x + v j )〉 = −〈Ai•, v j 〉. From this, we can infer that there exists
an ik ∈ Ky such that 〈Aik•, v j 〉 > 0. By (15), we know that 〈Aik•, v j 〉 > 0 implies
ϒ̆ j (y) ≥ ϒ j (x) and we conclude that (11) holds.

5.3 Proof of Theorem 3.3

The proof of this result uses similar general ideas to the ones used in the proof of The-
orem 3.1. However, since the conditions involve sums, the construction is somewhat
different and more complex and we provide the details below. Let us consider again a
non-empty set X ⊆ Zd+, a collection of distinct vectors v1, . . . , vn inZd\{0} and two
collections of nonnegative functions onX ,ϒ = (ϒ1, . . . , ϒn) and ϒ̆ = (ϒ̆1, . . . , ϒ̆n)

such that (8) holds. In the following, let A ∈ Zm×d be a matrix with nonzero rows
such that condition (i) of Theorem 3.3 holds.

We initially assume that supx∈X ϒ j (x) < ∞ and supx∈X ϒ̆ j (x) < ∞ for every
1 ≤ j ≤ n, and let λ > 0 such that (43) holds. We shall relax these assumptions later.
We start by defining functions analogous to �λ and �̆λ as defined in (45), although
this time, the construction is more involved.

Recall that s denotes the size of the set {Av j | 1 ≤ j ≤ n} and that the index
sets Gk 
= ∅, 1 ≤ k ≤ s, defined in (17), are such that Av j = ηk for all j ∈ Gk ,
1 ≤ k ≤ s. Consider a bijection σ : {1, . . . , n} −→ {1, . . . , n} such that the vectors
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vσ(1), . . . , vσ(n) have the property that the first |G1| vectors have indices in G1, the
next |G2| vectors have indices in G2, and so on. More precisely, the bijection σ is
such that for 1 ≤ k ≤ s, Avσ(q) = ηk , whenever

∑k−1
�=1 |G�| + 1 ≤ q ≤ ∑k

�=1 |G�|.
Recall for this that a sum over an empty set is taken to equal zero.

For x ∈ X , we define a family of intervals {I k(x) | 1 ≤ k ≤ s} as follows.
Let p0 := 0, and for 1 ≤ k ≤ s, inductively define pk :=∑k

�=1 |G�|, and

I k(x) :=
pk⋃

q=pk−1+1

I kq (x), (73)

where for pk−1 + 1 ≤ q ≤ pk ,

I kq (x) :=
⎡

⎣ pk−1

n
+

q−1∑

�=pk−1+1

ϒσ(�)(x)

λ
,
pk−1

n
+

q∑

�=pk−1+1

ϒσ(�)(x)

λ

⎞

⎠ . (74)

The sets I kq (x), with 1 ≤ k ≤ s and pk−1 + 1 ≤ q ≤ pk , are mutually disjoint,

and by (43), the length of I k(x) is less than pk−pk−1
n = |Gk |

n , and so the sum of the
lengths of {I k(x) | 1 ≤ k ≤ s} is less than 1

n

∑s
k=1 |Gk | = 1. Now, let us define

�λ(·, ·) : X × [0, 1] −→ X by

�λ(x, u) := x +
s∑

k=1

pk∑

q=pk−1+1

vσ(q)1I kq (x)(u), x ∈ X , u ∈ [0, 1]. (75)

Note that Avσ(q) = ηk for pk−1 + 1 ≤ q ≤ pk , 1 ≤ k ≤ s. From the above
properties of I kq (x), we have that for any u ∈ [0, 1], either u /∈ ⋃s

k=1 I
k(x) or

u ∈ I kq (x) for exactly one k and q such that I kq (x) 
= ∅. The latter condition implies,
by (74), that ϒσ(q)(x) > 0 and then, by (8), x + vσ(q) ∈ X . This shows that �λ(·, ·)
is well-defined as an X -valued function.

In an analogous manner to that above, we can define intervals Ĭ k(x), Ĭ kq (x), 1 ≤
k ≤ s, pk−1 + 1 ≤ q ≤ pk, x ∈ X and a function �̆λ : X × [0, 1] −→ X , as in (73)
– (75), but with ϒ̆ j (x), Ĭ k(x), Ĭ kq (x), �̆λ in place of ϒ j (x), I k(x), I kq (x), �λ.

Lemma 5.2 Suppose that x, y ∈ X are such that x �A y and the following hold:
whenever y ∈ ∂i (KA + x) ∩ X for some 1 ≤ i ≤ m, we have

∑

j∈Gk

ϒ̆ j (y) ≤
∑

j∈Gk

ϒ j (x), for every k such that ηki < 0, (76)

and

∑

j∈Gk

ϒ̆ j (y) ≥
∑

j∈Gk

ϒ j (x), for every k such that ηki > 0. (77)
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Then, for each u ∈ [0, 1],

�λ(x, u) �A �̆λ(y, u). (78)

Proof First, we note that �λ, �̆λ have the following properties: for every u ∈ [0, 1],
1 ≤ k ≤ s, j ∈ Gk ,

if �λ(x, u) = x + v j , then �̆λ(y, u) ∈ {y + v� : � ∈ Gk} ∪ {y}, (79)

since I k
σ−1( j)

(x), Ĭ k
σ−1(�)

(y) ⊆ [ pk−1
n ,

pk
n ) for � ∈ Gk . Similarly,

if �̆λ(y, u) = y + v j , then �λ(x, u) ∈ {x + v� : � ∈ Gk} ∪ {x}. (80)

Furthermore, for 1 ≤ k ≤ s, j ∈ Gk , if
∑

�∈Gk ϒ̆�(y) ≥∑�∈Gk ϒ�(x), then

�λ(x, u) = x + v j implies that �̆λ(y, u) = y + v� for some � ∈ Gk, (81)

since under the condition, I k(x) ⊆ Ĭ k(y). Similarly, if
∑

�∈Gk ϒ̆�(y) ≤∑�∈Gk ϒ�(x),
then

�̆λ(y, u) = y + v j implies that �λ(x, u) = x + v� for some � ∈ Gk . (82)

We also have that, for 1 ≤ k ≤ s and j ∈ Gk , x �A y + v j if and only if

〈Ai•, y − x〉 + 〈Ai•, v j 〉 ≥ 0, for every 1 ≤ i ≤ m. (83)

Similarly, x + v j �A y if and only if

〈Ai•, y − x〉 − 〈Ai•, v j 〉 ≥ 0, for every 1 ≤ i ≤ m. (84)

Furthermore, for 1 ≤ k ≤ s and j, � ∈ Gk , since Av j = Av� and x �A y, then

〈Ai•, y − x〉 + 〈Ai•, (v j − v�)〉 = 〈Ai•, y − x〉 ≥ 0, for every 1 ≤ i ≤ m. (85)

To prove (78), we first consider the situation where y ∈ int(KA + x) = {w ∈
Rd | Ax < Aw}. Then, for each 1 ≤ i ≤ m, 〈Ai•, y − x〉 > 0 and since A ∈ Zm×d

and y − x ∈ Zd , we have 〈Ai•, y − x〉 ≥ 1. This implies that for 1 ≤ k ≤ s and
j ∈ Gk ,

〈Ai•, y − x〉 + 〈Ai•, v j 〉 ≥ 1 + 〈Ai•, v j 〉 ≥ 0, for every 1 ≤ i ≤ m, (86)

since 〈Ai•, v j 〉 ∈ {−1, 0, 1} by condition (i) of Theorem 3.3. Similarly, for 1 ≤ k ≤ s
and j ∈ Gk ,

〈Ai•, y − x〉 − 〈Ai•, v j 〉 ≥ 1 − 〈Ai•, v j 〉 ≥ 0, for every 1 ≤ i ≤ m. (87)
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It follows from (85) – (87) that if y ∈ int(KA + x) ∩ X , then for any 1 ≤ k ≤ s and
j, � ∈ Gk :

x �A y + v j , x + v j �A y and x + v� �A y + v j . (88)

We also have, by assumption, that x �A y. It follows that if y ∈ int(KA + x) ∩X ,
then {x, x + v� | � ∈ Gk} �A {y, y + v j | j ∈ Gk} for 1 ≤ k ≤ s and consequently
(78) holds for all u ∈ [0, 1].

Now, we turn to the other situation where y ∈ ∂i (KA+ x)∩X for some 1 ≤ i ≤ m.
Then Ky := {i | 〈Ai•, y〉 = 〈Ai•, x〉, 1 ≤ i ≤ m} is non-empty. Let u ∈ [0, 1]. We
consider two cases.

Case 1: �̆λ(y, u) = y + v j for some 1 ≤ j ≤ n.
Fix such an index j . Consider the unique 1 ≤ k ≤ s such that j ∈ Gk . Then, by

(80), either �λ(x, u) = x + v� for some � ∈ Gk , or �λ(x, u) = x .

(a) If �λ(x, u) = x + v� for some � ∈ Gk , then, since x �A y and Av j = Av�, we
have x + v� �A y + v j . Hence, �λ(x, u) �A �̆λ(y, u) and (78) holds.

(b) If�λ(x, u) = x , we claim that y+v j ∈ KA+x . To see this, observe that for every
i /∈ Ky , 〈Ai•, y−x〉 > 0 and as for (86), 〈Ai•, (y+v j )−x〉 ≥ 0, while for i ∈ Ky ,
〈Ai•, (y+v j )− x〉 = 〈Ai•, v j 〉 ∈ {−1, 0, 1}. For each i ∈ Ky , if 〈Ai•, v j 〉 = −1,
then by (76), we would have

∑
�∈Gk ϒ̆�(y) ≤ ∑�∈Gk ϒ�(x), which would imply

that �λ(x, u) = x + v� for some � ∈ Gk , but this contradicts the assumption that
�λ(x, u) = x . So we must have 〈Ai•, v j 〉 ≥ 0 and hence 〈Ai•, (y + v j ) − x〉 ≥ 0
for all i ∈ Ky . Thus, y+v j ∈ KA+x and so�λ(x, u) = x �A y+v j = �̆λ(y, u)

holds.

Case 2: �̆λ(y, u) = y. Again, we consider two subcases.

(a) If �λ(x, u) = x , then (78) holds, because x �A y.
(b) If �λ(x, u) = x + v j for some 1 ≤ j ≤ n, we claim that y ∈ KA + x + v j for

the corresponding value of j . To see this, fix the value of j for which �λ(x, u) =
x + v j , let 1 ≤ k ≤ s be such that j ∈ Gk , and observe that for every i /∈ Ky ,
〈Ai•, y − x〉 > 0 and as for (87), 〈Ai•, y − (x + v j )〉 ≥ 0, while for i ∈ Ky ,
〈Ai•, y− (x +v j )〉 = −〈Ai•, v j 〉 ∈ {−1, 0, 1}. For each i ∈ Ky , if 〈Ai•, v j 〉 = 1,
then by (77), we would have

∑
�∈Gk ϒ̆�(y) ≥ ∑�∈Gk ϒ�(x), which would imply

that �̆λ(y, u) = y + v� for some � ∈ Gk . This would contradict the assumption
that �̆λ(y, u) = y. Sowemust have 〈Ai•, v j 〉 ≤ 0 and hence 〈Ai•, y−(x+v j )〉 =
〈Ai•, y − x〉 − 〈Ai•, v j 〉 ≥ 0 for all i ∈ Ky . Thus, we have y ∈ KA + x + v j and
then �λ(x, u) = x + v j �A y = �̆λ(y, u).

��
In order to prove Theorem 3.3, from here on we can follow a similar procedure

to the one used in the proof of Theorem 3.1 after Lemma 5.1 was proved there. For
the case where (42) holds, we define two discrete-time processes, Y = (Yk)k≥0 and
Y̆ = (Y̆k)k≥0, by defining Y0 := x◦, Y̆0 := x̆◦, and for k ≥ 0,

Yk+1 := �λ(Yk,Uk+1), Y̆k+1 := �̆λ(Y̆k,Uk+1), (89)
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and define X and X̆ using these and an independent Poisson process N as in (54). For
the case where (42) does not hold, we can use a truncation procedure similar to that
for Theorem 3.1. In both cases, we use Lemma 5.2 instead of Lemma 5.1.

6 Conclusion

In this work, we first reviewed the concept of Stochastic Chemical Reaction Networks
(SCRNs), a class of continuous-timeMarkov chainmodels frequently used to describe
the stochastic behavior of chemical reaction systems. We also gave the definitions of
preorder and increasing set considered in this paper. In Sect. 3.2, we presented themain
theoretical results of this paper.We first derived, by exploiting uniformization and then
coupling of stochastic processes (see Grassmann (1977) and Keilson (1979)), three
theorems which give practical sufficient conditions for stochastic dominance of one
continuous-time Markov chain over another. More precisely, these theorems provide
conditions under which, when one or more parameters is changed monotonically, the
system is almost surely “higher” with respect to a certain preorder. While the first the-
orem (Theorem 3.1) can be used for any SCRN, it has extensive conditions to check.
The second set of theorems (Theorems 3.2, 3.3) can be used for more specific SCRN
classes, but they have assumptions that only need to be checked at the boundary of cer-
tain translated convex cones. All these theorems can be applied to SCRNs with either
finite or countably many states. In Sect. 3.3, we exploited these tools to develop two
theorems to specifically study the monotonicity properties of stationary distributions
and mean first passage times depending on system parameters.

Subsequently, in Sect. 4, we presented some illustrative examples to highlight the
advantages of using our theoretical tools in order to study the stochastic behavior of
SCRNs. Specifically, we focused on two common models for enzymatic kinetics (see
Michaelis andMenten (1913), Kang et al. (2019), Del Vecchio andMurray (2014) and
Anderson et al. (2010)), on a model inspired by Braess’s paradox (see Calvert et al.
(1997)) and on a recently developed model describing the main interactions among
histone modifications alone, and together with an expressed protein (see Bruno et al.
(2022)). In these illustrative examples we see that our sufficient conditions can be easy
to check and our results can be also used to study networks with a countably infinite
number of states. Furthermore, the conclusions obtained by using our theorems are true
for trajectories of theMarkov chains, yielding results for both transient and steady-state
behavior.

Overall, in this paper we derived and presented theorems that can be used for
the theoretical study of monotonicity of SCRNs associated to a variety of chemical
reaction systems. Future work will include the adaptation of our theoretical tools to
other forms of monotonicity for SCRNs (see Definition 5.1.1 in Muller and Stoyan
(2002) as an example), the investigation of possible correlations between the network
graph properties and the monotonicity properties of the SCRN (extension of the work
of Angeli et al. (2006) to SCRNs), and the application of our results to deterministic
chemical reaction network through appropriate limits.
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Supplementary information (SI) file:

File containing detailed mathematical derivations for some of our examples, a
generalization of Theorem 3.3, and an algorithm for coupled stochastic simulation.
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