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William H. Miller* 
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and 
Department of Chemistry 
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ABSTRACT 

LBL-151 

Since the complete set of rotation-vibration states of a molecule 

contains a dissociative continuum, a coupled-channel calculation for 

molecular scattering parameters based on an expansion in the set of 

discrete molecular states does not give the correct values. Here it 

is shown how one can very simply obtain a rigorous bound to the con-

tribution from all internal states - discrete and continuous - which 

are omitted in a finite coupled-channel calculation. 
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I. Introduction 

It is apparant that in the next few years there will be an increasing 

number of coupled-channel scattering calculations of atomic and molecular 

collision properties. 1 The customary practice is to carry out the cal-

culation with some number of channels, or internal states (the rotation-

vibration states of the collision partners) included in the expansion 

of the total wave function, then to re-do the calculation with more 

channels included, and so on until the scattering parameters of interest 

are not significantly changed with the addition of more channels to the 

expansion. 

One obtains the correct result by this procedure, however, only if 

the complete set of internal states is discrete; i.e., for numerical 

reasons one must omit any continuous set of internal states, and such 

an omission causes the coupled-channel expansion to be incomplete. 

Since all molecules have dissociative continua, all physically realistic2 

systems have a continuous range of internal states, so that one will 

always be faced with this lack of completeness of the coupled-channel 

expansion in the discrete internal states. 

Ways have been found3- 5 for overcoming this problem, but they are 

too difficult to be applied routinely. In this Letter we wish to point 

q~t a relat~vely simple method by which one can obtain a rigorous bound 

to the contribution from all internal states - discrete and continuous 

which are not included in the finite coupled-channel expansion. 
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II. Bounds for the Phase Matrix. 

·• Let R denote the translational coordinate and q all internal 

\rl 
coordinates of the collision system (which we assume to be non-reactive); 

the Hamiltonian is of the form 

H = T(R) + h(q) + V(q,R) 
' 

(l) 

where Tis the.center of mass translational kinetic energy operator, h 

is the internal Hamiltonian, and V is the scattering interaction (the 

arguments of the operators indicate the variables on which they operate). 

Carrying out the familiar Feshbach decomposition6, one finds that the 

exact Schrodinger equation is equivalent to the following partitioned 

form: 

P(H-E)P + P(H-E)Q[Q(E-H)Q]-l Q(H-E)P P~ = 0 
' 

(2) 

where E is the total energy and P and Q are projection operators. More 

specifically, P projects onto the lowest N internal states in the q-space 

and is identity in R-space. 

P(R,q) = l(R) p(q) 
' 

where the q-space projector p is 

N 

p ""lcJ>. > < cJ>.I L...J ~ ~ 
i=l 

' 

cJ>i(q) being the internal states, i.e., the eigenfunctions of h: 

. 
' 
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Q is the complement of P, 

Q :: 1 - P. 

The N internal states of the P-space must include at least all the 

energetically accessible states- i.e., E < 2N + 
1 

· 

The function P~ in Equation (2) is of the form 

N 

p~ = L <Pi(q) f ·4- (R) ' n l n 
i=l 

where n denotes the entrance channel (the initial internal state); 

Equation (2) is a finite •set of coupled equations for the radial 

functions f. fR). Exact solution of Equation ( 2) yields the exact 
lf'n 

scattering results for the system. The second term in Equation (2), 

(3) 

the 11 exact optical potential 11
, however, prevents such an exa-ct (i.e. , 

numerical) solution, for Q projects onto an infinite-dimensional space 

and the operator [Q{E-H)Q]-l is thus not calculable. Omission of the 

optical potential gives 

(P(H-E)P]P~ = 0 ' 
(4) 

which is the operator form of the standard coupled-channel equations; 

written out explicitly Equation (4) becomes 

N 

[T(R)- (E.:2.)] f. (R) + 
l lfon L V .. (R) f. (R) = o, 

l, J J+n 
(5) 

j=l 

where the potential matrix is 

V .. (R) = (dq </>.*(q) V(q,R) </>.(q) 
l,J J' l J 

(6) 

• 
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Error bounds are obtained by using the fact .that the operator QHQ 

is bounded from below by some number ~. Since the continuous spectrum 

of QHQ begins at ~N + 1, if QHQ has no discrete eigenvalues below this, 

one may take € = ~N + 1, the energy of the lowest internal state not 

included in coupled-channel expansion. If QHQ does have discrete 

eigenvalues below ~N + 1, these will appear (slightly shifted) as 

resonance energies of metastable states of the composite system; in 

this case ~ must be taken less than or equal to the lowest such discrete 

eigenvalue of QHQ. 

Thus one has the operator inequality 

Q~Q < QHQ ' 

and requiring that E < € gives 

0 < Q(~ -E)Q < Q(H-E)Q , 

' 

(7) 

Upper and lower bounds are obtained, therefore, for the operator 

[Q(E-H)Q]-1, so that the exact optical potential (which is real since 

Q contains only closed channels) is bounded above and below: 

(E-~)-l PVQVP < PVQ[Q(E-H)Q]-l QVP < 0 
' 

where we have used the fact that Q(H-E)P = QVP.for a non-reactive 

system. Replacing Q by 1 - P, the LHS of Equation (8) becomes 

(8) 

(9) 
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or writt.en out explicitly this lower bound to the optical potential matrix 

is 

avi,j(R) (E-€)-
1 [J dq q,i~(q) v(q,R)

2 
<J>j(q) 

N 

- :Evi,k(R) vk,j(R)J 
k=l 

Bounds on scattering papameters must refer to some hermitian 
-7 
-7 

matrix, for example, the phase matrix ~ , defined by 

S = exp(2i7i) 
' 

-7 -7 -7 

(10) 

-7 -7 -7 

where S is the usual S-matrix; S and ~ are finite matrices whose dimen-
-7 

sion is the number of open channels. -7 • 
Let ~ be the phase matr1x which 

0 

results from solution of the standard coupled-channel problem, Equa-

tions (4)-(6); this corresponds to replacing the optical potential by 
-7 

0 which, as seen in Equation (8), is an upper bound to it. ~ is 
0 

-7 

therefore a lower bound to the exact phase matrix ~. 7 Similarly, if 
-7 
-7 . 

~1is the phase matrix which results when the optical potential is re-

placed by the LHS of Equation (8), a lower bound to it, then ~l is an 
-+ 
-7 

upper bound to ~. 

In summary, then, the exact pahse matrix ~ is bounded by 

-+ 
-7 

< ~1 ' 
(11) 

-+ 
-+ 

where ~ is the phase matrix which results from the standard coupled
·o . -7 

-7 

channel calculation with the usual potential matrix V(R) defined in 
-7 

Equation (6), and ~l is the phase matrix which results from the 

t_l 
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coupled:..channel calculation with the modified potential matrix 
-+ -+ -+ 

V(R) + ~V(R)' ~ V(R) being defined by Equation (10). As N (the number 
~ -+ 

of channels) is increased, ~0 increases and ~l decreases- i.e., the 

bounds become closer - and for any finite N large enough to include at 

least all the open channels Equation (11) provides a rigorous bound on 

the contribution from all omitted channels. It is clear, of course, 

that none of the continuous (i.e., dissociative) channels can be open 

for this bounding relation to be applicable. 
-+ , -+ 

If the potential ~V(R) is small, then evaluation of ~l to first 
-+ 

order in ~V may be sufficiently accurate. This can be accomplished 

directly, without re-solving the set of coupled equations; it is a 
-+ 

form of distorted wave Born approximation in which V(R) is the distor-
-+ -

ting potential and A,V(R) is the weak residual interaction. With the 

radial functions [obtained by solving the coupled equations with 
-+ 

V(R)J normalized at largeR as 

f. (R)...., k.-~ rcos(k. R)(sin ·~ ). + sin(k.R)(cos ~ ). ] 
l+n 1 ~ 1 o 1,n 1 o 1,n , 

one has 

-+ -+ -+ 
-+ -+ 7 
TJ =7J +A ' 1 0 

where 

N 

Ai, j = - (2tl/'f1
2

) L J dR fkf-i (R) ~vk, .e (R) f .e ... j (R) 
k,£=1 

Since ~V(R) is a negative matrix operator, A is a positive matrix, and 

the bounding relation for the phase matrix [Equation (11)] can be 
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-written (to first order in ~V) as 

(12) 

The primary additional effort required to apply Equation (11) or 

(12) is computation of the matrix elements of V(q,R)
2 

in Equation (10). 

It would not seem, however, that this should be prohibitively difficult. 
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