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Abstract—Many graph-related applications face the challenge
of managing excessive and ever-growing graph data in a dis-
tributed environment. Therefore, it is necessary to consider a
graph partitioning algorithm to distribute graph data onto mul-
tiple machines as the data comes in. Balancing data distribution
and minimizing edge-cut ratio are two basic pursuits of the graph
partitioning problem. While achieving balanced partitions for
streaming graphs is easy, existing graph partitioning algorithms
either fail to work on streaming workloads, or leave edge-cut ratio
to be further improved. Our research aims to provide a better
solution that fits the need of streaming graph partitioning in a
distributed system, which further reduces the edge-cut ratio while
maintaining rough balance among all partitions. We exploit the
similarity measure on the degree of vertices to gather structural-
related vertices in the same partition as much as possible, this
reduces the edge-cut ratio even further as compared to the state-
of-the-art streaming graph partitioning algorithm - FENNEL.
Our evaluation shows that our streaming graph partitioning
algorithm is able to achieve better partitioning quality in terms
of edge-cut ratio (up to 20% reduction as compared to FENNEL)
while maintaining decent balance between all partitions, and such
improvement applies to various real-life graphs.

Keywords-Graph Partitioning; Graph Database; Distributed
System; Graph Storage

I. INTRODUCTION

Due to the excessive and ever-growing size of graph data,

many graph-related applications have to take the advantage

of distributed storage systems while facing the challenge of

data management in a distributed setting. Distributed graph

databases [1], [2], distributed graph-modeled metadata manag-

ing system [3], [4] are typical examples of these applications.

The size of graphs in these applications are not only large,

but also growing over time. Thus, it is necessary to consider a

graph partitioning algorithm to distribute the graph data onto

multiple machines with the data coming into the distributed

system, in other words, the placement of incoming graph data

needs to be determined instantaneously.

As one of the most prominent NP-hard problems, graph par-

titioning has been well studied [5], [6]. Many graph partition-

ing algorithms were proposed to address the graph partitioning

problem. However, not all these algorithms can be applied to

dynamic graphs, which are always changing over time. Offline

graph partitioning algorithms, such as METIS [7], Chaco [8],

and SBV-cut [9], can evaluate the structural features of the

entire graph to achieve minimized edge-cut ratio and balanced

partition size. However, since they need to load the entirety

of a static graph into memory and conduct graph partitioning

with multiple iterations of complicated computations, due to

the limited memory space and heavy computational workloads,

these algorithms are incapable of partitioning dynamic graphs

on the fly.

Hence, some online graph partitioning algorithms were

proposed recently to address the issue of partitioning such

dynamic graphs. Some of them, such as Prefer Big [10] and

HoVerCut [11], usually require a buffer for holding a sufficient

amount of data, which represent vertices and edges that arrive

at the system consecutively in a specified time interval. When

the buffer is filled with enough data, these algorithms will

make a decision about which partition the buffered data should

be sent to. Such a decision making process is done based on

the local topological structure of the buffered data. After that,

the buffered data will be flushed to the partition, which is

recognized as the best choice by the algorithms. However,

such partitioning algorithms cannot partition the graph in a

timely manner, so they cannot be used in those time-sensitive

graph storage systems.

Some other online graph partitioning algorithms work in a

purely streaming fashion, in which the partition decision is

made immediately as the data of vertices and edges arrives.

The most commonly used one is Deterministic Hashing [10].

It only considers the hash value of the vertices and edges and

totally ignores the structural features of the incoming data, so it

absolutely achieves partition balance but accomplishes nothing

in minimizing the cut-size (the number of cross-partition

links). Some recent streaming graph partitioning algorithms,

such as LDG and Fennel [10], [12], attempt to take structural

features into account while maintaining the balance of the

partitions. In these algorithms, for each single vertex, the data

placement decision is made rapidly based on the number of

its edges or its neighbors in each partition. However, these

online graph partitioning algorithms have their limitations in

minimizing the cut-size due to their simplicity in reflecting

the connectivity between a set of closely connected vertices.

We believe that such simplicity leaves space for further edge-

cut reduction and locality improvement in a distributed graph

storage system.
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To partition graphs on the fly with better data locality

on each partition, we propose AKIN - a streaming graph

partitioning algorithm. Our algorithm utilizes similarity of

vertices to achieve further edge-cut reduction and better data

locality. Our major contributions are as follows:

• We propose a new streaming graph partitioning algorithm

for distributed graph storage.

• We design and implement our graph partitioning algo-

rithm that utilizes the similarity index of vertices on every

incoming edge to further reduce the edge-cut ratio.

• We conduct comprehensive evaluations to validate the

proposed graph partitioning algorithm and to verify its

effectiveness on various real-life graphs.

The rest of this paper is organized as follows. Section II

introduces the background of the graph partitioning problem.

After briefly talking about our motivation and designing princi-

ples, in Section IV, we introduce the design of proposed AKIN

graph partitioning algorithm. Section V provides analysis of

critical procedures of our AKIN algorithm. Section VI reports

the evaluation results with different criteria on different graph

datasets and compares the results against several existing algo-

rithms. Section VII reviews several existing graph partitioning

algorithms and compares them with the newly proposed AKIN

algorithm. In Section VIII we conclude this study and discuss

future work.

II. BACKGROUND

The formal definition of the k-way partitioning problem can

be found in [7] as follows:

Given a graph G = (V,E), where V denotes set
of vertices and E denotes set of edges, partition V
into k subsets, V1 ,V2 ,...,Vk, such that Vi ∩ Vj = ∅

for i �= j, |Vi| = n/k, and
⋃

i Vi = V , and the
number of edges of E whose incident vertices belong
to different subsets is minimized.

In another words, the objective of the k-way graph partition-

ing is to split the graph into multiple partitions (V1, V2, ..., Vn),

so that each partition is equally the same size, and the cut-size

(the number of connections spanning over different partitions)

can be minimized.

To measure the balance of the partition size, one can

quantitively measure the standard deviation of partition size
ratio of each partition. The partition size ratio can be easily

obtained by calculating the quotient of the actual size of a

partition and the average size of all partitions. Obviously, a

smaller standard deviation of partition size ratio means the size

of all partitions is more balanced. Thus, a minimal standard

deviation of partition size ratio is another goal the graph

partitioning algorithms should achieve.

To measure the cut-size, given the number of all edges

across partitions {V1, V2, ..., Vn} defined as C(V1, V2, ..., Vn),
we denote edge-cut ratio as follows:

λi =
|C(V1, V2, ..., Vn)|

|E|

Here, |E| represents the total number of edges in the entire

graph, and graph partitioning algorithms aim at finding the

minimal λi.

It has been well known that the k-way partitioning problem

is NP-hard [5], [6], hence a huge number of graph partitioning

algorithms have been proposed and examined in the past [13].

We roughly categorize them into two paradigms: the offline
graph partitioning algorithms and their online counterparts.

Offline graph partitioning algorithms (e.g., METIS [7] and

Chaco [8]) requires the the data of an entire graph to be

fully loaded into memory before actually performing graph

partitioning operations. While the global view of the whole

graph is known, these algorithms usually generate consider-

ably superior partitioning quality in terms of both partition

balance and cut-size. However, these algorithms need to load

the entire graph into memory, and the limitation of memory

space in modern computers will become a hindrance to do

so for excessively large graphs, especially when the graph

is dynamically growing. In addition, the multiple levels of

computation during the partitioning process will incur inten-

sive computational overhead, which makes these algorithms

impossible to fit for streaming graph partitioning scenarios.

Although applying such an algorithm on multiple subgraphs

collected periodically can also help in accomplishing the goal

of graph partitioning, the partitioning result still fails to reflect

the instant changes of the graph. Besides, for a distributed

system where vertex accessing is frequent, a distributed hash

table needs to be established based on the partitioning result

for locating each vertex; this makes the vertex locating proce-

dure inefficient.

To tackle these challenges, online graph partitioning al-

gorithms were proposed recently. The simplest online graph

partitioning algorithm is to apply a hashing function on the

graph vertices to determine their target partitions. Such an

approach normally obtains good balance in partition size, but

does not consider the structural nature of the graph at all. Some

online graph partitioning schemes, such as Prefer Big [10] and

HoVerCut [11], were proposed to improve the partitioning

quality by considering the local structural features on the

subgraph buffered in a limited portion of memory. Because the

local computation takes time and the data buffered in memory

needs to be flushed to the actual storage after the computation,

the data placement cannot be addressed in a timely manner.

Recently, some other online graph partitioning algorithms,

such as LDG [10] and Fennel [12], attempt to achieve the

graph partitioning in a streaming fashion as the data con-

tinuously arrives. But, they only consider very simple graph

features, such as the number of outgoing edges and the number

of neighbors. Due to the simplicity of these metrics, these al-

gorithms are able to determine data placement instantaneously.

However, such simplicity also becomes an obstacle for these

algorithms to explore more structural features of the graph

and, hence, makes these algorithms incapable of generating

decent partitioning result in terms of edge-cut ratio.
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III. MOTIVATION AND REQUIREMENTS

A. An Inspiration From Community Structure

As the saying goes, “Birds of a feather flock together”.

Graph theory suggests that most real-world graphs tend to

show certain community structure on some of the vertices [14].

In other words, there are always some groups of highly con-

nected vertices in the graph. These highly connected vertices

naturally reveal some clustering features that can be exploited

to perform graph partitioning. Also, existing research has

revealed that the connectivity among similar vertices tend to be

stronger than what it is among those dissimilar vertices [15].

Thus, gathering similar vertices into the same partition can

help increase the spatial data locality in distributed graph

storage systems and, therefore, reduce the edge-cut ratio.

To determine similarity between vertices, we need a metric

that requires a minimum amount of information about the

graph, and the calculation of such a metric should be simple

so that the computational overhead won’t be very high. As a

common metric for similarity, we use the Jaccard index [16]

to measure the similarity between vertices because it is simple

and straightforward.

B. AKIN Algorithm Designing Principles

Based on the discussions in previous sections, we summa-

rize four key requirements for streaming graph partitioning in

a distributed system:

1) Easy to locate a vertex. In a distributed graph storage,

a lookup on vertex requires the address of the vertex, a

graph traversal operation start from a vertex, even a sim-

ple lookup on an edge requires the address on its source

vertex. In general, vertices are frequently accessed, and

even more frequently than edges. Therefore, it is a must

that every vertex can be located and accessed rapidly.

2) Balanced partition size. Since the size of all partitions

determines the workload on each of them, the size of

all partitions should be approximately equal. As stated

above, vertices are more frequently accessed, so the

number of vertices in one partition highly decides the

workload on that partition. Thus, to balance partition

size is to balance the number of vertices in all partitions.

3) To determine data placement instantly. For arriving

data stream of vertices and edges, the algorithm should

address the data placement for continuously arriving

vertices and edges in a timely manner, so that the

streamed graph can be partitioned on the fly while it

is growing.

4) To minimize edge-cut ratio. In a distributed graph

storage, graph traversal operations are very frequent.

However, the more cross-partition edges we have, the

more network overhead there would be. Thus, to reduce

the excessive network communication between different

partitions, the number of cross-partition edges should

be minimized and, hence, the data locality should be

improved.

IV. AKIN ALGORITHM DESIGN

In this study, we propose a novel similarity-based stream-

ing graph partitioning algorithm - AKIN that fulfills these

requirements summarized above. Our AKIN algorithm works

in a streaming fashion. It takes the stream of vertices and

the stream of edges in a graph as input, and determines

data placement on each vertex and each edge it receives.

We generally introduce how our algorithm deals with vertex

stream and edge stream, respectively.

A. On Vertex Stream

As stated in our partitioning requirements, the vertices

should be easily located after partitioning. Thus, each data

placement decision on vertices should be responsible for the

simplicity of vertex locating. To achieve this, we apply the

deterministic hashing function on each arriving vertex in the

vertex stream. Specifically, for each arriving vertex v, our

AKIN algorithm will apply hashing function h against the

ID of the arriving vertex and determine the initial partition Pi

of the vertex according to the result i = h(v) (as shown in

Algorithm 1).

Algorithm 1 Determine partition Pi for arriving vertex v

Input: arriving vertex v, number of all partitions k
1: i ← h(v)
2: if i ∈ {0, ..., k − 1} then
3: if not exists(v,Pi) then
4: assign v to Pi

5: end if
6: end if

Here, function not exists(v,Pi) determines whether vertex

v (or a reference of it) does not exist in partition Pi. We define

the partition determined by the hashing of the vertex to be the

base partition.

B. On Edge Stream

For each edge in edge stream, our AKIN algorithm performs

the following steps to determine where the edge should be

assigned to and whether vertex migration should happen:

First, AKIN will evaluate the default partition where the

edge should be stored. Without further evaluating the similarity

of the two vertices on the edge, it is ideal to assign the edge

alongside its source vertex, so that the data locality between

the source vertex and its out-going edge is ensured. Such data

locality may facilitate the graph traversal operations.

Secondly, AKIN will evaluate the similarity between two

vertices. To achieve this, AKIN will maintain a fixed-length
neighbor list for each vertex on its base partition, as shown in

Figure 1. Such a neighbor list is sorted by the degree of those

neighboring vertices. Each item in this neighbor list consists of

the ID of the neighbor vertex and the ID of its current hosting

partition, along with the degree of this vertex. The neighbor

vertices with smallest degree will be eventually replaced by

the ones with higher degrees.
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Figure. 1: Neighbor List Sorted by Degree

Given such a sorted, fixed-length neighbor list, our AKIN

algorithm is able to apply the similarity evaluation on the two

vertices of any arriving edge. To be specific, each time when

an edge e(u, v) in the edge stream is received, our AKIN

algorithm will retrieve two neighbor lists of vertices (u and

v) from their base partition, and then apply similarity-based

heuristic H(u, v) on each partition to find the partition Pt

where the maximum score of H(u, v) is obtained. Once Pt is

found, AKIN will assign the edge e(u, v) and both vertices (u
and v) to this partition Pt, only if both u and v are available

in all partitions (as shown in Algorithm 2). Otherwise, the

arriving edge will be assigned to the partition where its source

vertex resides. After vertex migration happens, we define the

new partition hosting the vertex to be the hosting partition.

Afterwards, AKIN will update the neighbor list of both

vertices u and v on their base partitions. Also, a reference

to the migrated vertex will be created on the base partition

for locating purposes. We denote the reference of a vertex v
by Kv . The reference simply plays the role of pointer to the

vertex by recording the vertex ID and its hosting partition ID.

Algorithm 2 Determine vertex migration for arriving edge e(u, v)

Input: arriving edge e(u, v), number of all partitions k
1: i ← h(u)
2: j ← h(v)
3: if (Ku ∈ Pi or u ∈ Pi) and (Kv ∈ Pj or v ∈ Pj) then
4: max score ← 0
5: t ← nil
6: for all p such that 0 ≤ p < k do
7: x ← Hp(u, v)
8: if x > max score and isFull(Px) = false then
9: max score ← x

10: t ← p
11: end if
12: end for
13: if t �= nil then
14: migrate u and v to partition Pt.
15: Ku ← Tuple(u,Pt)
16: Kv ← Tuple(v,Pt)
17: maintain reference key Ku at partition Pi.
18: maintain reference key Kv at partition Pj .
19: end if
20: end if

Here, isFull function takes a partition and determines

whether the partition size constraint is reached. A coefficient

of such constraint ν is provided so that our algorithm is able

to loosen the size constraint and gather more similar vertices

in one partition.

AKIN algorithm always seeks to join similar vertices to-

gether rather than tearing them apart. We consider vertex

migration on every edge insertion operation to be sufficient,

namely, the deletion of an edge is out of our concern.

C. Heuristic Function

For any partition Pi, our similarity-based heuristic H(u, v)
is defined as follows:

Hi(u, v) = α× simi(u, v)− β × pnl(i) (1)

Here, simi(u, v) calculates the similarity score of vertices

u and v on partition Pi and the pnl(i) calculates a score based

on the size of partition Pi, serving as the penalty against the

similarity score.

The purpose of having a penalty score is to guarantee that,

while the similarity of two vertices is considers, the balance

of partition size can also be taken into account.

With α and β serving as coefficient of similarity score and

penalty score, for each arriving edge e(u, v), the objective of

our AKIN algorithm is to find a certain partition Pi among

k partitions, when the value of the heuristic function H(u, v)
reaches to its maximum, namely,

argmax
i∈{0,...,k−1}

{H(u, v)} (2)

D. Similarity Score of a Partition P
In the AKIN algorithm, we use the Jaccard index [16] as the

similarity measurement, since its simplicity leads to efficient

similarity evaluation while its mathematical meaning makes it

intuitive to be applied on the evaluation of vertex similarity.

The definition of the Jaccard index is as follows, given two

sample sets, A and B:

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| (3)

Based on this equation, for any edge e(u, v), we define A is

the set of outgoing neighbors of u, and B is the set of outgoing

neighbors of v. Then, we can extend this similarity index

to our graph partitioning scenarios, where we have multiple

partitions. The similarity score for both u and v on a particular

partition P can be defined as:

simP(u, v) =
|AP ∩BP |
|A ∪B| =

|AP ∩BP |
|A|+ |B| − |AP ∩BP | (4)

where AP and BP are the sets of outgoing neighbors on a

particular partition P for vertex u and v, respectively. With

the support of sorted neighbor list, the Jaccard index on the

neighboring sets of two vertices can be efficiently calculated

to achieve streaming graph partitioning. We will discuss the

complexity of similarity calculation in Section V.
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E. The Calculation of Penalty Score
The penalty score of a partition Pi aims at avoiding biased

evaluation towards the similarity score when calculating the

heuristic score H . Since it is related to partition size, depend-

ing on the definition of partition size, it can be calculated

in many ways. For example, if we only consider the generic

graph model, the size of a partition Pi could be represented

by the number of vertices in the partition, denoted as |VPi
|.

With the size constraint of partition Pi defined as max(|VPi |),
the penalty score can be calculated as:

pnl(i) =
|VPi

|
max(|VPi

|) (5)

V. COMPLEXITY ANALYSIS IN DISTRIBUTED SYSTEM

In this section, we conduct theoretical analysis about the

complexity of AKIN algorithm. Since determining vertex

placement simply relies on the hashing function and requires

O(1) time, the most critical part of our algorithm is to

determine the edge placement. We will analyze the edge

placement from three aspects: 1. Cost of Neighbor List, 2.

Complexity of Local Similarity Evaluation, 3. Data Migration

Cost.

A. Cost of Neighbor List
Each time when evaluating the similarity index of two ver-

tices on all partitions, AKIN can simply retrieve the neighbor

lists of the two vertices from their base partition. Since the

size of each neighbor list is globally fixed (which can be

denoted by n), the communication cost for such an operation

is also fixed. To be specific, suppose the length of vertex ID

takes 64 bits, which is identical to 8 Bytes, and the length

of partition ID as well as the length of vertex degree takes

32 bits, namely 4 Bytes, each record in the neighbor list

will cost 16 Bytes or so. For a neighbor list of 500 records,

the entire list will take up 8KB, which will not impose a

heavy burden on the storage system and can also be easily

transmitted over the network without taking up too much

bandwidth. In addition, one of our evaluation results in Section

VI shows that our AKIN algorithm does not require the length

of the neighbor list to be very long. With the length of

100 records for every neighbor list, our algorithm already

outperforms the state-of-the-art streaming graph partitioning

algorithm - FENNEL with a much better edge-cut ratio. Thus,

in our AKIN algorithm, introducing such a neighbor list for

each vertex will neither exhaust storage resource nor network

bandwidth. Furthermore, with some optimizations, the network

communication overhead for transmitting neighbor lists still

remains little. For example, if the comparison of two neighbor

lists happens at the server side, there is no need to transmit

both neighbor lists. After transmitting one neighbor list from a

partition to another, the in-situ comparison of two lists can be

conducted and consequent edge placement can be performed

by the server where such a comparison is made. Overall, in

modern distributed systems where large graphs can be stored

and queried, it would not be a big deal for AKIN to introduce

such a neighbor list.

B. Complexity of Local Similarity Evaluation

To evaluate the similarity between two vertices, our al-

gorithm needs to compare between two neighbor lists of

both vertices. Although the complexity of comparing the two

neighbor lists would be proportional to the size of the lists,

given the fact that the size of all neighbor lists are globally

fixed, such operations can actually finish in constant time.

Also, with some optimizations, the computation time can be

further reduced. For example, with proper data organization

of the neighbor list and the support of parallelism in modern

computers, the number of common neighbors on different

partitions can be evaluated in parallel. One of our evaluation

results in Section VI shows that the computational overhead

for local similarity evaluation is very small, even without the

support of any parallelism mechanism.

C. Data Migration Cost

Since the AKIN algorithm only considers edge placement

rather than edge migration, there is no need to consider edge

migration cost. The only data migration happens to the vertices

on an edge. Each time for an arriving edge, the possibility of

migrating the two vertices is k−1
k for k partitions. However,

since each data migration only involves two vertices, the

migration cost when determining each placement for each

arriving edge remains constant. Although multiple data migra-

tions may happen to many pairs of vertices over a relatively

long period of time, considering the goal of minimizing edge-

cut ratio, such data migration cost is inevitable and worthwhile.

More importantly, as a graph partitioning algorithm which

aims to partition an ever-growing graph on the fly, the data

migration cost of only two vertices already enables AKIN to

achieve so.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We carried out all evaluations on c6320 computing nodes

from CloudLab [17]. For the c6320 cluster, each computing

node has two Intel E5-2683 v3 14-core CPUs at 2.00 GHz,

256GB ECC Memory, two 1 TB 7.2K RPM 3G SATA HDDs,

and dual-port Intel 10Gbe NIC (X520) and Qlogic QLE 7340

40 Gb/s Infiniband HCA (PCIe v3.0, 8 lanes).

In the following evaluations, we applied multiple partition-

ing algorithms on various graph datasets to generate multiple

partitions (eight) for comparison. Since our focus in this

paper is to evaluate the capability of our AKIN algorithm

in terms of keeping the partition size balanced, reducing

the edge-cut ratio and controlling the overhead of making

partition decisions, we measure their corresponding metrics for

quantitative comparison. The evaluated metrics include: 1) the

most overweighed partition size ratio and standard deviation

of partition size ratio, which show how balanced the resulted

partitions can be; 2) the edge-cut ratio, which reflects the

data locality from the flip-side; 3) the maximum, average,

90-percentile running time of each partition decision making,

which indicates the overheads that our algorithm may bring to

the real system.
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B. Evaluation Datasets

We select 14 different graphs’ data sets from the Stanford

Large Network Dataset Collection [18] to conduct the eval-

uations. The datasets were selected to cover the wide range

of use cases: from co-purchasing network to social network,

from citation network to the autonomous system network, from

p2p network to World Wide Web, from Internet interactions

to citation network.

Although the graphs in the SNAP graph data set are not

excessively large, it is still valid to consider a distributed

system where a large number of clients access any of these

graphs. A single server definitely will not be capable of

responding such a huge query workload, so it is still necessary

to distribute any of these graphs onto multiple machines

in a distributed storage system. Also, for streaming graph

partitioning algorithms, any of these graphs can be considered

as a subgraph of the ever-growing graph collected from the

data stream during a limited period of time. A streaming graph

partitioning algorithm should work well at any given time

period, thus it is not necessary to consider excessively huge

graphs. As long as the streaming graph partitioning algorithms

achieve two major pursuits, i.e., the balanced partition size and

the minimized edge-cut ratio, at any given time for any type

of graph, we consider the algorithm to be effective.

TABLE I: Basic Information of Graph Datasets

Graph Type Num V Num E
amazon0601 Purchase 403394 3387388

as-skitter Network 1696415 11095298

ca-AstroPh Social 18772 198110

cit-HepPh Citation 34546 421578

cit-Patents Citation 3,774,768 16,518,948

email-Enron Social 36692 183831

higgs-mention network Social 116408 150818

higgs-retweet network Social 256491 328132

higgs-social network Social 456626 14855842

loc-brightkite edges Geo 58228 214078

p2p-Gnutella31 Network 62586 147892

soc-Slashdot0902 Social 82168 948464

web-Google Web 875713 5105039

wiki-Talk Social 2394385 5021410

C. Experiment Parameters

TABLE II: Experiment Parameters

Experiment Name Parameters ν
METIS Default Parameters ( p=k-way, c=shem, obj=cut )

Hash None

FENNEL Cost 1 c(x) = αxγ , γ = 3
2 , α =

√
k m
n3/2 1.1

FENNEL Cost 2 c(x) = 1
2x

2 1.1

AKIN 100 β = 1 (with Penalty), n = 100 1.1

AKIN 200 β = 0 (without Penalty), n = 200 1.1

AKIN 300 β = 0 (without Penalty), n = 300 2

AKIN 400 β = 0 (without Penalty), n = 400 3

We evaluate our AKIN algorithm against the state-of-the-art

streaming graph partitioning algorithm - FENNEL. To observe

how close we can get to the extreme case of edge-cut ratio and

the extreme case of partition size balance, we also conduct the

experiment on one classic offline graph partitioning algorithm -

METIS (which is our extreme case of edge-cut ratio), and one

most commonly used streaming data partitioning algorithm

- the deterministic hashing (which is our extreme case of

partition size balance).

We conduct these algorithms with different parameter set-

tings. As shown in Table II, for deterministic hashing, there

are no specific parameters that need to be set up due to its

plainness and simplicity.

For METIS, we just use the default parameters since they

are already the best case as described in their paper [7].

For FENNEL, we choose two specific families of the cost

function mentioned in the original paper [12]. For the first

family of cost function c(x) = αxγ , we choose the same

value for α and γ as what was used in their experiments. For

the second family of cost function, we choose c(x) = 1
2x

2 as

discussed in the original paper too.

For AKIN, we also setup multiple parameters to better eval-

uate its performance characteristics. Specifically, we introduce

four different parameter sets. In each parameter set, we control

three key parameters: 1) whether to consider penalty or not

(β); 2) the size of neighbor list (n); and the coefficient of

partition size constraint (ν). We use the length of neighbor

list to denote the name of each parameter set. As shown in

Table II, we only consider penalty under the minimal number

of adjacency list (i.e., AKIN 100). For the other three cases,

we consider removing the penalty by setting α to be 0, and

we set up the partition size constraint factor ν as 1.1, 2 and 3

respectively.

D. Experimental Results

1) Partition Size Ratio: One major pursuit of the graph

partitioning algorithm is to balance the partition size. After

partitioning a graph, the size of all partitions should be roughly

equal, so that when queries against the graph arrive, the

workload of each partition can be well balanced. We define

the partition size ratio of partition P to be

ρP =
the actual number of vertices in partition P

the average number of vertices in each partition
(6)

As it shows in Figure 2a, the most balanced partitioning

results are generated by Hash and FENNEL. METIS also

conducts a decent job in maintaining the balance of all

partitions. The balance of the AKIN algorithm is largely

determined by the selected parameters. For example, AKIN

still generates balanced partitions when the coefficient of

partition size constraint ν is 1.1. But, when ν increases, like

in the case of ν = 2(AKIN.300) and ν = 3(AKIN.400), the

balance between partitions is obviously violated.

However, tolerating imbalance between different partitions

helps in reducing the edge-cut ratio even further. For ex-

ample, as shown in Figure 3, when ν = 1.1(AKIN.200),

the edge-cut ratio of soc-Slashdot0902 is above 50%(54.09%

actually), whereas in the case of ν = 2(AKIN.300) and

ν = 3(AKIN.400), the edge-cut ratio of soc-Slashdot0902 is

around 53.19% and 45.98% respectively.
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(b) Standard Deviation of the Partition Size Ratio

Figure. 2: Partition Balance Evaluation

In general, all partitioning algorithms in our evaluation are

capable of maintaining balanced partition size. Specifically,

AKIN neither falls behind the state-of-the-art streaming graph

partitioning algorithm, nor fails to maintain balanced partition

size as deterministic hashing does, unless the partition size

constraint is set to be violated for better edge-cut ratio.

2) Edge-cut Ratio: Less edge-cut ratio means better data

locality and less communication overhead between different

graph storage servers. We compare the edge-cut ratio of our

selected graph partitioning algorithms. Please note that we

include METIS in this comparison to see how close our AKIN

algorithm can approach to the extreme case of edge-cut ratio

- METIS, as compared to the-state-of-the-art streaming graph

partitioning algorithm - FENNEL. Through the discussion

in previous sections, it is naturally difficult for an online

streaming graph partitioning algorithm to achieve superior

edge-cut ratio while offline graph partitioning algorithms like

METIS can.

We show the results in Figure 3. It can be easily seen that

METIS has the minimum edge-cut ratio while the determin-

istic hashing algorithm generates the partitioning result with

the highest edge-cut ratio. As we discussed earlier, the reason

is simply because offline algorithms have the information of

the entire graph and can find the best partitioning solution on

a global basis, while the deterministic hashing algorithm does

not consider any graph structural features at all. For the FEN-

NEL algorithm with its cost function 1, we can see its edge-cut

ratio of most graphs is slightly reduced as compared to deter-

ministic hashing. In some graphs such as higgs-activity time,

higgs-mention network and higgs-retweet network, the edge-

cut ratio is reduced even more significantly. However, for the

FENNEL algorithm with its cost function 2, the edge-cut ratio

of all the graphs is not reduced at all as compared to the result

of deterministic hashing. Figure 3 also shows the results of

AKIN. We can observe that the AKIN algorithm is able to

reduce more edge-cut ratio compared to Fennel with both cost

functions. Even with the penalty and maximum 100 elements

in the adjacency list, the edge-cut ratio of AKIN still witnesses

a good reduction for most graphs. In terms of edge-cut ratio,

AKIN did better in getting close to the quality of an offline

graph partitioning algorithm, as compared to FENNEL.

After removing the penalty and increasing the maximum

length of adjacency list to 200, the edge-cut ratio of every

graph is substantially reduced. After increasing the coefficient

of partition size constraint ν from 1.1 to 3, and increasing the

maximum length of adjacency list too 400, the edge-cut ratio

of all different graphs are reduced even more significantly,

and approaches even closer to the edge-cut ratio of the offline

graph partitioning algorithm - METIS.

3) Decision Making Time per Edge Chunk: Since our

AKIN algorithm mainly works on the edge stream, for each

arriving edge, we need to calculate the intersect of the neigh-

bors of its two vertices to get the similarity. While transmitting

neighbor lists, which is less than 8KB and is not a big deal

for modern distributes systems, it is also critical to understand

how much time will be taken for compare the neighbor lists
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Figure. 3: Edge-cut Ratio Comparisons

of two vertices. So, we evaluated the time for such in-memory

comparison. Specifically, we show the maximum and average

decision making time, plus the 90-percentile decision making

time, which is the decision making time below 90 percent

of observations throughout all the partitions. Namely, if the

90-percentile decision making time is acceptable, we should

expect that 90% of the partition decision making takes place

within an acceptable amount of time.

As shown in Figure 4, throughout the entire 14 graph

datasets and all their edges, the maximum decision making

time is slightly over 600ms for a particular graph dataset

- cit-Patent. Except for the Hash algorithm, FENNEL also

has the similar maximum running time over 500ms on that

graph. In this worst case, AKIN.100 only spends less than

10% more time compared to FENNEL(FENNEL.Cost1), and

AKIN.400 spends around 20% more time than the best case of

FENNEL(FENNEL.Cost2). This suggests a comparable small

computational overhead towards the state-of-the-art streaming

partitioning algorithm. Looking deeper into the 90-percentile

decision making time, it is clear that, for the slowest case of

dataset cit-Patent, 90% percent of the decisions were made

really fast (within 1ms). For other datasets, 90% percent of

the comparisons were made only within 0.5ms, regardless of

the length of the neighbor list. On average, the comparison

between neighbor lists of every two vertices on an edge can be

finished within 1ms, which ensures that our AKIN streaming

graph partitioning algorithm can partition the graph on the fly.

VII. RELATED WORK

The existing graph partitioning schemes mainly falls into

two categories - edge-cut and vertex-cut regarding to whether

the partitioning scheme is applied on the edge or vertex. By

edge-cut graph partitioning schemes, the vertices are assigned

into different partitioning, while edges running between dif-

ferent partitions, intuitively, the edges are cut by the boundary

of different partitions. Such an example can be seen in most of

the existing works, such as Chaco [19], METIS [7], ParMETIS

[20], Hashing and LDG [21]. By vertex-cut schemes, the

critical vertices are replicated onto multiple partitions, so

that there are much less links running between edges, and

intuitively the vertices are cut into pieces, some of the existing

practice and applications include SBV-cut [9], PowerGraph

[22], GraphX [23], etc. Recently, people even attempt to apply

hybrid-cut graph partitioning scheme to the distributed graph

computing system, which is to apply edge-cut on low-degree

vertices and to apply vertex-cut on high-degree vertices [24].

Here, the degree of a vertex measures the number of incident

edges of the vertex.

However, in addition to reducing the cut-size(defined as the

number of inter-partition links), we might also shed light on

community structure of the graph. Community detection [25]

is the technique that can help people to find some special

groups of vertices with a high concentration of edges inside

each group and a low concentration of edges between these

groups. One big difference between graph partitioning and

community detection is that the latter doesn’t need to know

how many communities are in the graph in advance, whereas

the former needs to know how many partitions need to be

generated. In other words, the process of graph partitioning

can be viewed as a typical type of supervised machine learning

[26], namely, classification, while community detection can

be viewed as a typical case of unsupervised learning [27],

namely, clustering. In comparison with the above algorithms

that consider minimizing the cut-size, our approach focuses

more on increasing the spatial data locality that naturally lies

in the community structure of the graph. In this sense, our

approach is basically semi-supervised graph clustering using

the Jaccard Index as a similarity measure.

Although most of the graph partitioning algorithms or

community detection algorithms are able to divide the graph

into smaller subgraphs, some of them need to load the data of

the entire graph into the memory, so that the algorithm itself is

able to generate a superior partitioning result with minimized

cut-size. Obviously, in the real practice when we consider the

system where an increasingly large amount of data is generated

from time to time, such as GraphMeta(where metadata graph

is growing as the number of files increases) and TAO(where

large-scale social graph data is growing everyday with the

growth of the number of active users), loading the entire graph

into memory is impossible due to the excessive and ever-

growing size of data, the limited capacity of memory and

storage. In addition, most offline graph partitioning schemes

come with multiple iterations of complex computation, and

such intensive computational cost makes them incapable of
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Figure. 4: Decision Making Time Comparisons (per Edge Chunk)

partitioning dynamic graph data on the fly. Since the data

comes into the system incrementally, and the size of the data

is growing all the time, in this scenario, streaming graph

partitioning comes into play so that the data is able to be

placed into a certain partition as long as it arrives to the system.

As discussed in the last paragraph, our graph partitioning

approach is basically doing semi-supervised graph clustering

with Jaccard Index similarity measure, Although such an

objective can be found in [28], our approach works in a

streaming fashion.

In spite of a higher proportion of inter-partition links,

the streaming graph partitioning approach requires neither

intensive computational overhead nor huge memory space. In

[21], 10 different heuristics were proposed, but to get rid of a

mapping table between vertices and partitions, the best way is

still the hash-based function. While some graph processing

frameworks seek to apply the hash-based streaming graph

partitioning scheme with some replication on vertices or edges

[22], [23], [29], others are trying to apply more complicated

graph partitioning techniques on the fly [12]. However, for

each partition decision made on a single vertex or edge,

since only very limited local information about the vertex or

edge is available, most of the streaming graph partitioning

algorithms only consider the speed of placing each vertex

or edge while failing to consider the community structure

of the graph. Thus, in terms of the partitioning result, these

online graph partitioning schemes usually features a decent

time efficiency while having much lower cut-size minimization

for the partitioning result. Our approach strives for better data

locality of each partition, so we take the local community

structure into account while maintaining a fast speed for

making each data placement decision in a streaming fashion.

At the same time our partitioning result is compatible with

the partitioning result of deterministic hashing mentioned by

[21], which makes it possible to accelerate the data retrieval

for one single vertex or one single edge.

VIII. CONCLUSION AND FUTURE WORK

In this study, we propose a streaming graph partitioning

algorithm - AKIN, which utilizes the similarity between

vertices to increase the data locality. Compared to the state-

of-the-art streaming graph partitioning algorithm (FENNEL),

AKIN is able to keep partition size balanced while achieving

further reduced edge-cut ratio. In addition, the partitioning

overhead of AKIN is also small, making it suitable for parti-

tioning a graph in a streaming fashion for a distributed graph

storage system. However, AKIN does not aim at addressing

the problem of power-law degree distribution, since the way

it considers structural features of graphs has nothing to do

with the degree of vertices. In the future, we would like to

seek optimizations to address such challenge and would like

to explore other structural features that a streaming graph

partitioning algorithm can apply to achieve better partitioning

quality.
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