
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
OpenRAM: an open-source memory compiler

Permalink
https://escholarship.org/uc/item/8x19c778

ISBN
978-1-4503-4466-1

Authors
Guthaus, Matthew R
Stine, James E
Ataei, Samira
et al.

Publication Date
2016-11-07

DOI
10.1145/2966986.2980098

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8x19c778
https://escholarship.org/uc/item/8x19c778#author
https://escholarship.org
http://www.cdlib.org/

OpenRAM: An Open-Source Memory Compiler
Invited Paper

Matthew R. Guthaus1, James E. Stine2, Samira Ataei2,
Brian Chen1, Bin Wu1, Mehedi Sarwar2

1 Department of Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
{mrg, bchen12, bwu8}@ucsc.edu

2 Electrical and Computer Engineering Department, Oklahoma State University, Stillwater, OK 74078
{james.stine, ataei, mehedis}@okstate.edu

ABSTRACT

Computer systems research is often inhibited by the avail-
ability of memory designs. Existing Process Design Kits
(PDKs) frequently lack memory compilers, while expensive
commercial solutions only provide memory models with im-
mutable cells, limited configurations, and restrictive licenses.
Manually creating memories can be time consuming and te-
dious and the designs are usually inflexible. This paper in-
troduces OpenRAM, an open-source memory compiler, that
provides a platform for the generation, characterization, and
verification of fabricable memory designs across various tech-
nologies, sizes, and configurations. It enables research in
computer architecture, system-on-chip design, memory cir-
cuit and device research, and computer-aided design.

1. INTRODUCTION
Static Random Access Memories (SRAMs) have become a

standard component embedded in all System-on-Chip (SoC),
Application-Specific Integrated Circuit (ASIC), and micro-
processor designs. Their wide application leads to a variety
of requirements in circuit design and memory configuration.
However, manual design is too time consuming. The reg-
ular structure of memories leads well to automation that
produces size and configuration variations quickly, but de-
veloping this with multiple technologies and tool method-
ologies is challenging. In addition, memory designs play a
significant role in overall system performance and costs, so
optimization is important. Thus, a memory compiler is a
critical tool.

Most academic ICs design methodologies are limited by
the availability of memories. Many standard-cell Process
Design Kits (PDKs) are available from foundries and ven-
dors, but these PDKs frequently do not come with memory
arrays or memory compilers. If a memory compiler is freely
available, it often only supports a generic process technol-
ogy that is not fabricable. Due to academic funding restric-
tions, commercial industry solutions are often not feasible
for researchers. In addition, these commercial solutions are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’16, November 07 - 10, 2016, Austin, TX, USA

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4466-1/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2966986.2980098

limited in customization of the memory sizes and specific
components of the memory. PDKs may have the options to
request “black box” memory models, but these are also not
modifiable and have limited available configurations. These
restrictions and licensing issues make comparison and ex-
perimentation with real world memories impossible.

Academic researchers are able to design their own custom
memories, but this can be a tedious and time-consuming
task and may not be the intended purpose of the research.
Frequently, the memory design is the bare minimum that the
research project requires, and, because of this, the memory
designs are often inferior and are not optimized. In memory
research, peripheral circuits are often not considered when
comparing memory performance and density. The lack of
a customizable compiler makes it difficult for researchers to
prototype and verify circuits and methodologies beyond a
single row or column of memory cells.

The OpenRAM project aims to provide an open-source
memory compiler development framework for memories. It
provides reference circuit and physical implementations in
a generic 45nm technology and fabricable Scalable CMOS
(SCMOS), but it has also been ported to several commercial
technology nodes using a simple technology file. OpenRAM
also includes a characterization methodology so that it can
generate the timing and power characterization results in
addition to circuits and layout while remaining independent
of specific commercial tools. Most importantly, OpenRAM
is completely user-modifiable since all source code is open
source at:

https://openram.soe.ucsc.edu/

The remainder of this paper is organized as follows: Sec-
tion 2 provides a background on previous memory compil-
ers. Section 3 presents the reference memory architecture in
OpenRAM. Section 4 specifically introduces the implemen-
tation and main features of the OpenRAM memory com-
piler. In Section 5, an analysis of the area, timing and power
is shown for different sizes and technologies of memory. Fi-
nally, the paper is summarized in Section 6.

2. BACKGROUND
Memory compilers have been used in Electronic Design

Automation (EDA) design flows to reduce the design time
long before contemporary compilers [2, 9]. However, these
compilers were generally not portable as they were noth-
ing more than quick scripts to aid designers. Porting to
a new technology essentially required rewriting the scripts.
However, the increase in design productivity when porting

designs between technologies has led to more research on
memory array compilers [3, 8, 14, 22].

As technology entered the Deep Sub-Micron (DSM) era,
memory designs became one of the most challenging parts of
circuit design due to decreasing static noise margins (SNM),
increasing fabrication variability, and increasing leakage power
consumption. This increased the complexity of memory
compilers dramatically as they had to adapt to the ever-
changing technologies. Simultaneously, design methodolo-
gies shifted from silicon compilers to standard cell place
and route methods which required large optimized libraries.
During this time, industry began using third-party suppliers
of standard cell libraries and memory compilers that allowed
their reuse to amortize development costs. These next-
generation memory compilers provided silicon-verification
that allowed designers to focus on their new design con-
tribution rather than time-consuming tasks such as memory
generation.

Contemporary memory compilers have been widely used
by industry, but the internal operation is typically hidden.
Several prominent companies and foundries have provided
memory compilers to their customers. These memory com-
pilers usually allow customers to view front-end simulation,
timing/power values, and pin locations after a license agree-
ment is signed. Back-end features such as layout are nor-
mally supplied directly to the fab and are only given to the
user for a licensing fee.

Specifically, Global Foundries offers front-end PDKs for
free, but not back-end detailed views [6]. Faraday Technolo-
gies provides a “black box” design kit where users do not
know the details of the internal memory design [5]. Dolphin
Technology offers closed-source compilers which can create
RAMs, ROMs, and CAMs for a variety of technologies [4].
The majority of these commercial compilers do not allow the
customer to alter the base design, are restricted by the com-
pany’s license, and usually require a fee. This makes them
virtually unavailable and not useful for many academic re-
search projects.

In addition to memory compilers provided by industry,
various research groups have released scripts to generate
memories. However, these designs are not silicon verified
and are usually only composed of simple structures. For ex-
ample, FabMem is able to create small arrays, but it is highly
dependent on the Cadence design tools [15]. The scripts do
not provide any characterization capability and cannot eas-
ily integrate with commercial place and route tools.

Another recent, promising solution for academia is the
Synopsys Generic Memory Compiler (GMC) [7]. The soft-
ware is provided with sample generic libraries such as Synop-
sys’ 32/28nm and 90nm abstract technologies and can gen-
erate the entire SRAM for these technologies. The GMC
generates GDSII layout data, SPICE netlists, Verilog and
VHDL models, timing/power libraries, and DRC/LVS ver-
ification reports. GMC, however, is not recommended for
fabrication since the technologies it supports are not real.
Its sole purpose is to aid students in VLSI courses to learn
about using memories in design flows.

There have been multiple attempts by academia to im-
plement a memory compiler that is not restricted: the In-
stitute of Microelectronics’ SRAM IP Compiler [22], School
of Electronic Science and Engineering at Southeast Univer-
sity’s Memory IP Compiler [11], and Tsinghua University’s
Low Power SRAM Compiler [21]. These are all methodolo-

Bit Cell Array

Column Mux

Sense Amp Array

Write Driver Array

Input Data MS-Flop Array

Tri Gate Array

Address

MS-Flop

AND

Array

D
e
c
o

d
e
r

W
o

rd
lin

e
 D

ri
v
e

r

Predecdoer

Control

Logic

&

Replica

Bit-line

Precharge Array

Bank Select

Address Bus

n
Bidirectional

Data Bus

m

Bank

6T

CLK

CSb

OEb

WEb

Figure 1: An OpenRAM SRAM consists of a bit-
cell array along with decoder, reading and writing
circuitry and control logic timed with a replica bit-
line.

gies and design flows for a memory compiler, but there are
no public releases.

3. ARCHITECTURE
The OpenRAM SRAM architecture is based on a bank of

memory cells with peripheral circuits and control logic as
illustrated in Figure 1. These are further refined into eight
major blocks: the bit-cell array, the address decoder, the
word-line drivers, the column multiplexer, the pre-charge
circuitry, the sense amplifier, the write drivers, and the con-
trol logic.

Bit-cell Array: In the initial release of OpenRAM, the
6T cell is the default memory cell because it is the most
commonly used cell in SRAM devices. 6T cells are tiled
together with abutting word- and bit-lines to make up the
memory array. The bit-cell array’s aspect ratio is made as
square as possible using multiple columns of data words.
The memory cell is a custom designed library cell for each
technology. Other types of memory cells, such as 7T, 8T,
and 10T cells, can be used as alternatives to the 6T cell.

Address Decoder: The address decoder takes the row
address bits as inputs and asserts the appropriate word-line
so that the correct memory cells can be read from or written
to. The address decoder is placed to the left of the memory
array and spans the array’s vertical length. Different types
of decoders can be used such as an included dynamic NAND
decoder, but OpenRAM’s default option is a hierarchical
CMOS decoder.

Word-Line Driver: Word-line drivers are inserted be-
tween the address decoder and the memory array as buffers.
The word-line drivers are sized based on the width of the
memory array so that they can drive the row select signal
across the bit-cell array.

Column Multiplexer: The column multiplexer is an
optional block that uses the lower address bits to select the
associated word in a row. The column mux is dynamically
generated and can be omitted or can have 2 or 4 inputs.
Larger column muxes are possible, but are not frequently
used in memories. There are options for a multi-level tree

CLK
ADDR
CSb

OEb
WEb

DATA OUT

A0 A1

D0 D1

Setup Hold

Setup Hold

Read
Delay

Setup

SCLK

(a) Read operation timing

CLK
ADDR

CSb

OEb
WEb

DATA IN

A0 A1

D0 D1

Setup Hold

Setup Hold

Setup

WD_EN
Setup Hold

D0 D1X Mem Cell Write
Delay

(b) Write operation timing

Figure 2: OpenRAM uses a synchronous SRAM interface using a system clock (clk) along with control
signals: output enable (OEb), chip select (CSb) and write enable (WEb).

mux as well.
Bit-line Precharge: This circuitry pre-charges the bit-

lines during the first phase of the clock for read operations.
The precharge circuit is placed on top of every column in
the memory array and equalizes the bit-line voltages so that
the sense amplifier can sense the voltage difference between
the two bit-lines.

Sense Amplifier: A differential sense amplifier is used
to sense the voltage difference between the bit-lines of a
memory cell while a read operation is performed. The sense
amplifier uses a bit-line isolation technique to increase per-
formance. The sense amplifier circuitry is placed below the
column multiplexer or the memory array if no column mul-
tiplexer is used. There is one sense amplifier for each output
bit.

Write Driver: The write drivers send the input data
signals onto the bit-lines for a write operation. The write
drivers are tri-stated so that they can be placed between the
column multiplexer/memory array and the sense amplifiers.
There is one write driver for each input data bit.

Control Logic: The OpenRAM SRAM architecture in-
corporates a standard synchronous memory interface using a
system clock (clk). The control logic uses an externally pro-
vided, active-low output enable (OEb), chip select (CSb),
and write enable (WEb) to combine multiple SRAMs into
a larger structure. Internally, the OpenRAM compiler can
have 1, 2, or 4 memory banks to amortize the area/power
cost of control logic and peripheral circuitry.

All of the input control signals are stored using master-
slave (MS) flip-flops (FF) to ensure that the signals are valid
for the entire clock cycle. During a read operation, data is
available after the negative clock edge (second half of cy-
cle) as shown in Figure 2(a). To avoid dead cycles which
degrade performance, a Zero Bus Turn-around (ZBT) tech-
nique is used in OpenRAM timing. The ZBT enables higher
memory throughput since there are no wait states. During
ZBT writes, data is set up before the negative clock edge
and is captured on the negative edge. Figure 2(b) shows the
timing for input signals during the write operation.

The internal control signals are generated using a replica
bit-line (RBL) structure for the timing of the sense ampli-
fier enable and output data storage [1]. The RBL turns on
the sense amplifiers at the exact time in presence of process
variability in sub-100nm technologies.

4. IMPLEMENTATION
OpenRAM’s methodology is implemented using an object-

oriented approach in the Python programming language.
Python is a simple, yet powerful language that is easy to
learn and very human-readable. Moreover, Python enables
portability to most operating systems. OpenRAM has no
additional dependencies except a DRC/LVS tool, but that
is disabled with a warning if the tools are unavailable.

In addition to system portability, OpenRAM is also trans-
latable across numerous process technologies. This is ac-
complished by using generalized routines to generate the
memory based on common features across all technologies.
To facilitate user modification and technology interoperabil-
ity, OpenRAM provides a reference implementation in 45nm
FreePDK45 [17] and a fabricable option using the MOSIS
Scalable CMOS (SCMOS) design rules [13]. FreePDK45
uses many design rules found in modern technologies, but is
non-fabricable, while SCMOS enables fabrication of designs
using the MOSIS foundry services. SCMOS is not confiden-
tial and an implementation using it is included, however, it
does not include many advanced DSM design rules. Open-
RAM has also been ported to other commercial technologies,
but these are not directly included due to licensing issues.

OpenRAM’s framework is divided into “front-end” and
“back-end” methodologies as shown in Figure 3. The front-
end has the compiler and the characterizer. The compiler
generates SPICE models and its GDSII layouts based on
user inputs. The characterizer calls a SPICE simulator to
produce timing and power results. The back-end uses a spice
netlist extracted from the GDSII layout using to generate
annotated timing and power models.

4.1 Base Data Structures
The design modules in OpenRAM are derived from the

design class (design.py). The design class has a name, a
SPICE model (netlist), and a layout. Both the SPICE model
and the layout inherit their capabilities from a hierarchical
class. The design class also provides inherited functions to
perform DRC and LVS verification of any sub-design for
hierarchical debugging.

The design class derives from the spice class (hierarchy
spice.py) which has a data structure to maintain the circuit
hierarchy. This class maintains the design instances, their
pins, and their connections as well as helper functions to
maintain the structure and connectivity of the circuit hier-

Memory Compiler

(Python)

Logical

LEF/FRAM GDSII Liberty (.lib)Spice/LVS Verilog

Front-End

Physical

Estimated

Timing/Power

Memory Characterizer

(Python)

Simulator

(e.g. ngspice, spectre)

Extractor

(e.g. Calibre)

Annotated

Timing/PowerLiberty (.lib) Spice

Memory Characterizer

(Python)

Back-End
Methodology

Front-End
Methodology

Simulator

(e.g. ngspice,

spectre)

Tech Library

User Specification

(word size, memory size, aspect ratio, etc.)

Figure 3: Overall Compilation and Characterization
Methodology

archy.
The design class also derives from a layout class (hierar-

chy layout.py). This class has a list of physical instances of
sub-modules in the layout and a structure for simple objects
such as shapes and labels in the current hierarchy level. In
addition, there are helper functions that maintain the phys-
ical layout structures.

OpenRAM has an integrated, custom GDSII library to
read, write, and manipulate GDSII files. The library, origi-
nally called GdsMill [20], has been modified, debugged, and
extended for OpenRAM. Full rights were given to include
the GdsMill source with OpenRAM, but to make the inter-
facing easier and porting to other physical layout databases
possible, OpenRAM implements a geometry wrapper class
(geometry.py) that abstracts the GdsMill library.

4.2 Technology and Tool Portability
OpenRAM is technology-independent by using a technol-

ogy directory that includes the technology’s specific informa-
tion, rules, and library cells. Technology parameters such as
the design rule check (DRC) rules and the GDS layer map
are required to ensure that the dynamically generated de-
signs are DRC clean. Custom designed library cells such as
the memory cell and the sense amplifier are also placed in
this directory. A very simple design rule parameter file has
the most important design rules for constructing basic in-
terconnect and transistor devices. FreePDK45 and SCMOS
reference technologies are provided.

OpenRAM uses some custom-designed library primitives
as technology input. Since density is extremely important,
the following cells are pre-designed in each technology: 6T
cell, sense amplifier, master-slave flip-flop, tri-state gate, and
write driver. All other cells are generated on-the-fly using
parameterizable transistor and gate primitives.

OpenRAM can be used for various technologies since it
creates the basic components of memory designs that are
common over these technologies. For technologies that have
specific design requirements, such as specialized well con-
tacts, the user can include call-back helper functions in the
technology directory. This is done so that the main compiler
remains free of dependencies to specific technologies.

OpenRAM has two functions that provide a wrapper in-
terface with DRC and LVS tools. These two functions per-
form DRC and LVS using the GDSII layout and SPICE
netlist files. Since each DRC and LVS tool has different out-
put, this routine is customized per tool to parse DRC/LVS

Table 1: Dependencies required for sub-modules
Variable Equation

Total Bits word size ∗ num words

Words Per Row
√

(num words)/word size
Num of Rows num words/words per row
Num of Cols words per row ∗ word size
Col Addr Size log

2
(words per row)

Row Addr Size log
2
(num of rows)

Total Addr Size row addr size+ col addr size
Data Size word size
Num of Bank num banks

reports and return the number of errors while also out-
putting debug information. These routines allow flexibility
of any DRC/LVS tool, but the default implementation calls
Calibre nmDRC and nmLVS. In OpenRAM, both DRC and
LVS are performed at all levels of the design hierarchy to
enhance bug tracking. DRC and LVS can be disabled for
improved run-time or if tool licenses are not available.

4.3 Class Hierarchy

4.3.1 High-Level Classes

The openram class (openram.py) organizes execution and
instantiates a single memory design using the sram class.
It accepts user-provided parameters to generate the design,
performs the optional extraction, performs characterization,
and saves the resulting design files.

The sram class (sram.py) decides the appropriate internal
parameter dependencies shown in Table 1. They are depen-
dent on the user-desired data word size, number of words,
and number of banks. It is responsible for instantiation of
the single control logic module which controls the SRAM
banks. The control logic ensures that only one bank is ac-
tive in a given address range.

The bank class (bank.py) does the bulk of the non-control
memory layout. It instantiates 1, 2, or 4 bit-cell arrays and
coordinates the row and column address decoders along with
their pre-charge, sense amplifiers, and input/output data
flops.

4.3.2 Block Classes

Every other block in the memory design has a class for its
base cell (e.g., sense amplifier.py) and an array class (e.g.,
sense amplifier array.py) that is responsible for tiling the
base cell. Each class is responsible for physically placing
and logically connecting its own sub-circuits while passing
its dimensions and port locations up to higher-level modules.

4.3.3 Low-Level Classes

OpenRAM provides parameterized transistor and logic
gate classes that help with technology portability. These
classes generate a technology-specific transistor and simple
logic gate layouts so that many modules do not rely on li-
brary cells. It is also used when a module such as the write
driver needs transistor sizing to optimize performance. The
parameterized transistor (ptx.py) generates a basic transis-
tor of specified type and size. The parameterized transistor
class is used to provide several parameterized gates including
pinv.py, nand2.py, nand3.py, and nor2.py.

4.4 Characterization

2 Kb (1 bank x 32 words x 64 bits) 4 Kb (4 banks x 32 words x 32 bits)

16 Kb (2 banks x 128 words x 64 bits)

Figure 4: Single bank and multi-bank SRAMs (not
to scale) use symmetrical bank placement to share
peripheral circuitry and equalize signal delays.

OpenRAM includes a memory characterizer that mea-
sures the timing and power characteristics through SPICE
simulation. The characterizer has four main stages: gener-
ating the SPICE stimulus, running the circuit simulations,
parsing the simulator’s output, and producing the charac-
teristics in a Liberty (.lib) file.

The stimulus is written in standard SPICE format and
can be used with any simulator that supports this. The
stimulus only uses the interface of the memory (e.g., bi-
directional data bus, address bus, and control signals) to
perform “black box” timing measurements.

Results from simulations are used to produce the average
power, setup/hold times, and timing delay of the memory
design. Setup and hold times are obtained by analyzing the
flip-flop library cell because OpenRAM uses a completely
synchronous input interface. The setup time, hold time,
and delay are found using a fast bisection search.

4.5 Unit Tests
Probably the most important feature of OpenRAM is the

set of thorough regression tests implemented with the Python
unit test framework. These unit tests allow users to add fea-
tures and easily verifying if functionality is broken. The tests
also work in multiple technologies so they can guide users
when porting to new technologies. Every module has its own
regression test and there are also regression tests for memory
functionality, verifying library cells, timing characterization,
and technology verification.

5. RESULTS
Figure 4 shows several different SRAM layouts generated

by OpenRAM in FreePDK45. OpenRAM can generate sin-
gle bank and multi-bank SRAM arrays. Banks are symmet-
rically placed to have the same delay for data and address
while sharing peripheral blocks such as decoders.

Figure 5 shows the memory area of different total size
and data word width memories in both FreePDK45 and SC-
MOS. As expected, the smaller process technology (45nm)

Total Size (Kbits)

0 20 40 60 80 100 120 140

A
re

a
 (

m
m

2
)

0

0.1

0.2

0.3

Total Size (Kbits)

0 20 40 60 80 100 120 140

A
re

a
 (

m
m

2
)

0

10

20

30

40

50

Total Size (Kbits)

0 20 40 60 80 100 120 140

A
c
c
e
s
s
 t
im

e
 (

n
s
)

0

2

4

6

8

10

Total Size (Kbits)

0 20 40 60 80 100 120 140

A
c
c
e
s
s
 t
im

e
 (

n
s
)

0

10

20

30

40

50

16-bit word size

32-bit word size

64-bit word size

128-bit word size

SCMOS

Freepdk45

SCMOS

Freepdk45

Figure 5: OpenRAM provides high-density memo-
ries in multiple technologies and sizes with corre-
sponding characterized delays.

has lower total area overall but the trends are similar in both
technologies.

Figure 5 also shows the access time of different size and
data word width in FreePDK45 and SCMOS. Increasing the
memory size generally increases the access time; long bit-
lines and word-lines increase the access time by adding more
parasitic capacitance and resistance. Since OpenRAM uses
multiple banks and column muxing, it is possible to have a
smaller access time for larger memory designs, but this will
sacrifice density.

Comparison of power consumption and read access time
of different memories is a bit more complicated to make a
conclusion, because there are many trade-offs. Power and
performance are highly dependent on circuit style (CMOS,
ECL, etc.), memory organization (more banks is faster but
sacrifices density), and the optimization goal: low-power
or high-performance. In general, OpenRAM has reason-
able trade-off between the two and can be customized by
using an alternate sense amplifiers, decoders, or overall di-
mensional organization. Table 2 compares the bit-density

Table 2: OpenRAM has high density compared to
other published memories in similar technologies.

Ref. Feature Tech. Density

Size [Mb/mm2]

[10] 65 nm CMOS 0.7700
[19] 45 nm CMOS 0.3300
[12] 40 nm CMOS 0.9400

OpenRAM 45 nm FreePDK45 0.8260

[23] 0.5 um CMOS 0.0036
[18] 0.5 um BiCMOS 0.0020
[16] 0.5 um CMOS 0.0050

OpenRAM 0.5 um SCMOS 0.0050

of OpenRAM against published designs using similar tech-
nology nodes. The results show the benefit of technology
scaling and that OpenRAM has very good density in both
technologies. As a comparison, a 76ns SRAM consumes
3.9mW [16] while OpenRAM is much faster at 44.9ns but
consumes 115mW for the same size.

6. CONCLUSIONS
This paper introduced OpenRAM, an open-source and

portable memory compiler. OpenRAM generates the cir-
cuit, functional model, and layout of variable-sized SRAMs.
In addition, a memory characterizer provides synthesis tim-
ing/power models.

The main motivation behind OpenRAM is to promote and
simplify memory-related research in academia. Since Open-
RAM is open-sourced, flexible, and portable, this memory
compiler can be adapted to various technologies and is easily
modified to address specific design requirements. Therefore,
OpenRAM provides a platform to implement and test new
memory designs.

Designs are currently being fabricated to test designs us-
ing the OpenRAM framework in SCMOS. We are also con-
tinuously introducing new features, such as non-6T memo-
ries, variability characterization, word-line segmenting, char-
acterization speed-up, and a graphical user interface (GUI).
We hope to engage an active community in the future de-
velopment of OpenRAM.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. CNS-1205685
and CNS-1205493. Many students have contributed to the
project throughout their studies including Jeff Butera, Tom
Golubev, Seokjoong Kim, Matthew Gaalswyk, and Son Bui.

8. REFERENCES

[1] B. S. Amrutur and M. A. Horowitz. A replica
technique for wordline and sense control in low-power
SRAMs. JSSC, 33(8):1208–1219, Aug 1998.

[2] R. Broderson. Anatomy of a Silicon Compiler.
Springer, 1992.

[3] A. Cabe, Z. Qi, W. Huang, Y. Zhang, M. Stan, and
G. Rose. A flexible, technology adaptive memory
generation tool. Cadence CDNLive, 2006.

[4] Dolphin Technology. Memory products.
http://www.dolphin-ic.com/memory-products.html,
2015.

[5] Faraday Technologies. Memory compiler architecture.
http://www.faraday-tech.com/html/Product/
IPProduct/LibraryMemoryCompiler/index.htm, 2015.

[6] Global Foundries. ASICs. http://www.globalfoundries.
com/technology-solutions/asics, 2015.

[7] R. Goldman, K. Bartleson, T. Wood, V. Melikyan,
and E. Babayan. Synopsys’ educational generic
memory compiler. In EWME, pages 89–92, May 2014.

[8] T.-H. Huang, C.-M. Liu, and C.-W. Jen. A high-level
synthesizer for VLSI array architectures dedicated to
digital signal processing. In International Conference

on Acoustics, Speech and Signal Processing, pages
1221–1224, 1991.

[9] D. Jahannsen. Bristle blocks: A silicon compiler. In
DAC, pages 195–198, 1979.

[10] K. Kushida et al. A 0.7v single-supply SRAM with
0.495 um2 cell in 65nm technology utilizing
self-write-back sense amplifier and cascaded bit line
scheme. In ISVLSI, pages 46–47, June 2008.

[11] C. Ming and B. Na. An efficient and flexible
embedded memory IP compiler. In CyberC, pages
268–273, Oct 2012.

[12] S. Miyano et al. Highly energy-efficient SRAM with
hierarchical bit line charge-sharing method using
non-selected bit line charges. JSSC, 48(4):924–931,
Apr 2013.

[13] MOSIS. MOSIS scalable CMOS (SCMOS).
https://www.mosis.com/files/scmos/scmos.pdf, 2015.

[14] P. Poechmueller, G. K. Sharma, and M. Glesner. A
CAD tool for designing large, fault-tolerant VLSI
arrays. In GLSVLSI, 1991.

[15] T. Shah. FabMem: A multiported RAM and CAM
compiler for superscalar design space exploration.
Master’s thesis, North Carolina State University, 2010.

[16] N. Shibata, H. Morimura, and M. Watanabe. A 1-V,
10-MHz, 3.5-mw, 1-Mb MTCMOS SRAM with
charge-recycling input/output buffers. JSSC,
34(6):866–877, Jun 1999.

[17] J. E. Stine et al. FreePDK: An open-source
variation-aware design kit. In MSE, pages 173–174,
June 2007.

[18] N. Tamba et al. A 1.5-ns 256-kb BiCMOS SRAM with
60-ps 11-k logic gates. JSSC, 48(11):1344–1352, Nov
1994.

[19] S. O. Toh, Z. Guo, T. K. Liu, and B. Nikolic.
Characterization of dynamic SRAM stability in 45 nm
CMOS. JSSC, 46(11):2702–2712, Nov 2011.

[20] M. Wieckowski. GDS Mill User Manual, 2010.

[21] S. Wu, X. Zheng, Z. Gao, and X. He. A 65nm
embedded low power SRAM compiler. In DDECS,
pages 123–124, April 2010.

[22] Y. Xu, Z. Gao, and X. He. A flexible embedded SRAM
IP compiler. In ISCAS, pages 3756–3759, May 2007.

[23] K. Yamaguchi et al. A 1.5-ns access time, 78 um2

memory-cell size, 64-kb ECL-CMOS SRAM. JSSC,
27(2):167–174, Feb 1992.

