
UC Irvine
UC Irvine Previously Published Works

Title
Estimation in High Dimensions: A Geometric Perspective

Permalink
https://escholarship.org/uc/item/8x22r5vx

Author
Vershynin, Roman

Publication Date
2015

DOI
10.1007/978-3-319-19749-4_1

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8x22r5vx
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ESTIMATION IN HIGH DIMENSIONS:

A GEOMETRIC PERSPECTIVE

ROMAN VERSHYNIN

Abstract. This tutorial provides an exposition of a flexible geometric
framework for high dimensional estimation problems with constraints.
The tutorial develops geometric intuition about high dimensional sets,
justifies it with some results of asymptotic convex geometry, and demon-
strates connections between geometric results and estimation problems.
The theory is illustrated with applications to sparse recovery, matrix
completion, quantization, linear and logistic regression and generalized
linear models.

Contents

1. Introduction 2
2. High dimensional estimation problems 4
3. An excursion into high dimensional convex geometry 6
4. From geometry to estimation: linear observations 14
5. High dimensional sections: proof of a general M∗ bound 18
6. Consequences: estimation from noisy linear observations 21
7. Applications to sparse recovery and regression 23
8. Extensions from Gaussian to sub-gaussian distributions 28
9. Exact recovery 32
10. Low-rank matrix recovery and matrix completion 36
11. Single-bit observations via hyperplane tessellations 42
12. Single-bit observations via optimization, and applications to

logistic regression 45
13. General non-linear observations via metric projection 49
14. Some extensions 52
References 53

Date: December 3, 2014.
Partially supported by NSF grant DMS 1265782 and USAF Grant FA9550-14-1-0009.

1

ar
X

iv
:1

40
5.

51
03

v2
  [

m
at

h.
ST

] 
 2

 D
ec

 2
01

4
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1. Introduction

1.1. Estimation with constraints. This chapter provides an exposition
of an emerging mathematical framework for high-dimensional estimation
problems with constraints. In these problems, the goal is to estimate a point
x which lies in a certain known feasible set K ⊆ Rn, from a small sample
y1, . . . , ym of independent observations of x. The point x may represent
a signal in signal processing, a parameter of a distribution in statistics, or
an unknown matrix in problems of matrix estimation or completion. The
feasible set K is supposed to represent properties that we know or want to
impose on x.

The geometry of the high dimensional set K is a key to understanding
estimation problems. A powerful intuition about what high dimensional
sets look like has been developed in the area known as asymptotic convex
geometry [5, 25]. The intuition is supported by many rigorous results, some
of which can be applied to estimation problems. The main goals of this
chapter are:

(a) develop geometric intuition about high dimensional sets;
(b) explain results of asymptotic convex geometry which validate this

intuition;
(c) demonstrate connections between high dimensional geometry and high

dimensional estimation problems.

This chapter is not a comprehensive survey but is rather a tutorial. It
does not attempt to chart vast territories of high dimensional inference that
lie on the interface of statistics and signal processing. Instead, this chapter
proposes a useful geometric viewpoint, which could help us find a common
mathematical ground for many (and often dissimilar) estimation problems.

1.2. Quick examples. Before we proceed with a general theory, let us
mention some concrete examples of estimation problems that will be covered
here. A particular class of estimation problems with constraints is considered
in the young field of compressed sensing [19, 39, 15, 35]. There K is supposed
to enforce sparsity, thus K usually consists of vectors that have few non-zero
coefficients. Sometimes more restrictive structured sparsity assumptions are
placed, where only certain arrangements of non-zero coefficients are allowed
[6, 61]. The observations yi in compressed sensing are assumed to be linear
in x, which means that yi = 〈ai,x〉. Here ai are typically i.i.d. vectors
drawn from some known distribution in Rn (for example, normal).

Another example of estimation problems with constraints is the matrix
completion problem [12, 13, 37, 32, 68, 63] where K consists of matrices with
low rank, and y1, . . . , ym is a sample of matrix entries. Such observations
are still linear in x.

In general, observations do not have to be linear; good examples are binary
observations yi ∈ {−1, 1}, which satisfy yi = sign(〈ai,x〉), see [10, 36, 57,
58], and more generally E yi = θ(〈ai,x〉), see [59, 2, 60].
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In statistics, these classes of estimation problems can be interpreted as
linear regression (for linear observations with noise), logistic regression (for
binary observations) and generalized linear models (for more general non-
linear observations).

All these examples, and more, will be explored in this chapter. However,
our main goal is to advance a general approach, which would not be tied to
a particular nature of the feasible set K. Some general estimation problems
of this nature were considered in [51, 3] for linear observations and in [59,
58, 2, 60] for non-linear observations.

1.3. Plan of the chapter. In Seciton 2.1, we introduce a general class
of estimation problems with constraints. We explain how the constraints
(given by feasible set K) represent low-complexity structures, which could
make it possible to estimate x from few observations.

In Section 3, we make a short excursion into the field of asymptotic convex
geometry. We explain intuitively the shape of high-dimensional sets K and
state some known results supporting this intuition. In view of estimation
problems, we especially emphasize one of these results – the so-called M∗

bound on the size of high-dimensional sections of K by a random subspace E.
It depends on the single geometric parameter of K that quantifies the com-
plexity of K; this quantity is called the mean width. We discuss mean width
in some detail, pointing out its connections to convex geometry, stochastic
processes, and statistical learning theory.

In Section 4 we apply the M∗ bound to the general estimation problem
with linear observations. We formulate an estimator first as a convex feasi-
bility problem (following [51]) and then as a convex optimization problem.

In Section 5 we prove a general form of the M∗ bound. Our proof bor-
rowed from [58] is quite simple and instructive. Once the M∗ bound is stated
in the language of stochastic processes, it follows quickly by application of
symmetrization, contraction and rotation invariance.

In Section 6, we apply the general M∗ bound to estimation problems;
observations here are still linear but can be noisy. Examples of such prob-
lems include sparse recovery problems and linear regression with constraints,
which we explore in Section 7.

In Section 8, we extend the theory from Gaussian to sub-gaussian obser-
vations. A sub-gaussian M∗ bound (similar to the one obtained in [51]) is
deduced from the previous (Gaussian) argument followed by an application
of a deep comparison theorem of X. Fernique and M. Talagrand (see [71]).

In Section 9 we pass to exact recovery results, where an unknown vector
x can be inferred from the observations yi without any error. We present a
simple geometric argument based on Y. Gordon’s “escape through a mesh”
theorem [31]. This argument was first used in this context for sets of sparse
vectors in [66], was further developed in [69, 53] and pushed forward for
general feasible sets in [16, 3, 72].
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In Section 10, we explore matrix estimation problems. We first show how
the general theory applies to a low-rank matrix recovery problem. Then
we address a matrix completion problem with a short and self-contained
argument from [60].

Finally, we pass to non-linear observations. In Section 11, we consider
single-bit observations yi = sign 〈ai,x〉. Analogously to linear observations,
there is a clear geometric interpretation for these as well. Namely, the
estimation problem reduces in this case to a pizza cutting problem about
random hyperplane tessellations of K. We discuss a result from [58] on this
problem, and we apply it to estimation by formulating it as a feasibility
problem.

Similarly to what we did for linear observations, we replace the feasibility
problem by optimization problem in Section 12. Unlike before, such replace-
ment is not trivial. We present a simple and self-contained argument from
[59] about estimation from single-bit observations via convex optimization.

In Section 13 we discuss the estimation problem for general (not only
single-bit) observations following [60]. The new crucial step of estimation
is the metric projection onto the feasible set; this projection was studied
recently in [17] and [60].

In Section 14, we outline some natural extensions of the results for general
distributions and to a localized version of mean width.

1.4. Acknowledgements. The author is grateful to Vladimir Koltchinskii,
Shahar Mendelson, Renato Negrinho, Robert Nowak, Yaniv Plan, Elizaveta
Rebrova, Joel Tropp and especially the anonymous referees for their helpful
discussions, comments, and corrections, which lead to a better presentation
of this chapter.

2. High dimensional estimation problems

2.1. Estimating vectors from random observations. Suppose we want
to estimate an unknown vector x ∈ Rn. In signal processing, x could be a
signal to be reconstructed, while in statistics x may represent a parameter of
a distribution. We assume that information about x comes from a sample of
independent and identically distributed observations y1, . . . , ym ∈ R, which
are drawn from a certain distribution which depends on x:

yi ∼ distribution(x), i = 1, . . . ,m.

So, we want to estimate x ∈ Rn from the observation vector

y = (y1, . . . , ym) ∈ Rm.

One example of this situation is the classical linear regression problem in
statistics,

y = Xβ + ν, (2.1)
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in which one wants to estimate the coefficient vector β from the observation
vector y. We will see many more examples later; for now let us continue
with setting up the general mathematical framework.

2.2. Low complexity structures. It often happens that we know in ad-
vance, believe in, or want to enforce, some properties of the vector x. We
can formalize such extra information as the assumption that

x ∈ K

where K is some fixed and known subset of Rn, a feasible set. This is a very
general and flexible assumption. At this point, we are not stipulating any
properties of the feasible set K.

To give a quick example, in the regression problem (2.1), one often believes
that β is a sparse vector, i.e. among its coefficients only few are non-zero.
This is important because it means that a few explanatory variables can
adequately explain the dependent variable. So one could choose K to be a
set of all s-sparse vectors in Rn – those with at most s non-zero coordinates,
for a fixed sparsity level s ≤ n. More examples of natural feasible sets K
will be given later.

Figure 1 illustrates the estimation problem. Sampling can be thought of
as a map taking x ∈ K to y ∈ Rm; estimation is a map from y ∈ Rm to
x̂ ∈ K and is ideally the inverse of sampling.

Figure 1. Estimation problem in high dimensions

How can a prior information encoded by K help in high-dimensional es-
timation? Let us start with a quick and non-rigorous argument based on
the number of degrees of freedom. The unknown vector x has n dimensions
and the observation vector y has m dimensions. So in principle, it should
be possible to estimate x from y with

m = O(n)

observations. Moreover, this bound should be tight in general.
Now let us add the restriction that x ∈ K. If K happens to be low-

dimensional, with algebraic dimension dim(K) = d � n, then x has d
degrees of freedom. Therefore, in this case the estimation should be possible
with fewer observations,

m = O(d) = o(n).
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It rarely happens that feasible sets of interest literally have small alge-
braic dimension. For example, the set of all s-sparse vectors in Rn has full
dimension n. Nevertheless, the intuition about low-dimensionality remains
valid. Natural feasible sets, such as regression coefficient vectors, images,
adjacency matrices of networks, do tend to have low complexity. Formally K
may live in an n-dimensional space where n can be very large, but the actual
complexity of K, or “effective dimension” (which will formally quantify in
Section 3.5.6) is often much smaller.

This intuition motivates the following three goals, which we will discuss
in detail in this chapter:

1. Quantify the complexity of general subsets K of Rn.
2. Demonstrate that estimation can be done with few observations as

long as the feasible set K has low complexity.
3. Design estimators that are algorithmically efficient.

We will start by developing intuition about the geometry of sets K in high
dimensions. This will take us a short excursion into high dimensional convex
geometry. Although convexity assumption for K will not be imposed in most
results of this chapter, it is going to be useful in Section 3 for developing a
good intuition about geometry in high dimensions.

3. An excursion into high dimensional convex geometry

High dimensional convex geometry studies convex bodies K in Rn for large
n; those are closed, bounded, convex sets with non-empty interior. This
area of mathematics is sometimes also called asymptotic convex geometry
(referring to n increasing to infinity) and geometric functional analysis. The
tutorial [5] could be an excellent first contact with this field; the survey [29]
and books [52, 56, 25, 4] cover more material and in more depth.

3.1. What do high dimensional convex bodies look like? A central
problem in high dimensional convex geometry is – what do convex bodies look
like in high dimensions? A heuristic answer to this question is – a convex
body K usually consists of a bulk and outliers. The bulk makes up most of
the volume of K, but it is usually small in diameter. The outliers contribute
little to the volume, but they are large in diameter.

If K is properly scaled, the bulk usually looks like a Euclidean ball. The
outliers look like thin, long tentacles. This is best seen on Figure 2a, which
depicts V. Milman’s vision of high dimensional convex sets [50]. This picture
does not look convex, and there is a good reason for this. The volume in
high dimensions scales differently than in low dimensions – dilating of a
set by the factor 2 increases its volume by the factor 2n. This is why it is
not surprising that the tentacles contain exponentially less volume than the
bulk. Such behavior is best seen if a picture looks “hyperbolic”. Although
not convex, pictures like Figure 2 more accurately reflect the distribution of
volume in higher dimensions.
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(a) A general convex set (b) The `1 ball

Figure 2. V. Milman’s “hyperbolic” drawings of high dimen-
sional convex sets

Example 3.1 (The `1 ball). To illustrate this heuristic on a concrete example,
consider the set

K = Bn
1 = {x ∈ Rn : ‖x‖1 ≤ 1},

i.e. the unit `1-ball in Rn. The inscribed Euclidean ball in K, which we will
denote by B, has diameter 2/

√
n. One can then check that volumes of B

and of K are comparable:1

voln(B)1/n � voln(K)1/n � 1

n
.

Therefore, B (perhaps inflated by a constant factor) forms the bulk of K.
It is round, makes up most of the volume of K, but has small diameter.
The outliers of K are thin and long tentacles protruding quite far in the
coordinate directions. This can be best seen in a hyperbolic drawing, see
Figure 2b.

3.2. Concentration of volume. The heuristic representation of convex
bodies just described can be supported by some rigorous results about con-
centration of volume.

These results assume that K is isotropic, which means that the random
vector X distributed uniformly in K (according to the Lebesgue measure)
has zero mean and identity covariance:

EX = 0, EXXT = In. (3.1)

Isotropy is just an assumption of proper scaling – one can always make a
convex body K isotropic by applying a suitable invertible linear transfor-
mation.

With this scaling, most of the volume ofK is located around the Euclidean
sphere of radius

√
n. Indeed, taking traces of both sides of the second

equation in (3.1), we obtain

E ‖X‖22 = n.

1Here an � bn means that there exists positive absolute constants c and C such that
can ≤ bn ≤ Can for all n.
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Therefore, by Markov’s inequality, at least 90% of the volume of K is con-
tained in a Euclidean ball of size O(

√
n). Much more powerful concentration

results are known – the bulk of K lies very near the sphere of radius
√
n, and

the outliers have exponentially small volume. This is the content of the two
major results in high dimensional convex geometry, which we summarize in
the following theorem.

Theorem 3.2 (Distribution of volume in high-dimensional convex sets).
Let K be an isotropic convex body in Rn, and let X be a random vector
uniformly distributed in K. Then the following is true:

1. (Concentration of volume) For every t ≥ 1, one has

P
{
‖X‖2 > t

√
n
}
≤ exp(−ct

√
n).

2. (Thin shell) For every ε ∈ (0, 1), one has

P
{∣∣∣‖X‖2 −√n∣∣∣ > ε

√
n
}
≤ C exp(−cε3n1/2).

Here and later in this chapter, C, c denote positive absolute constants.

The concentration part of Theorem 3.2 is due to G. Paouris [54]; see [1] for
an alternative and shorter proof. The thin shell part is an improved version
of a result of B. Klartag [38], which is due to O. Guedon and E. Milman
[33].

3.3. Low dimensional random sections. The intuition about bulk and
outliers of high dimensional convex bodies K can help us to understand what
random sections of K should look like. Suppose E is a random subspace of
Rn with fixed dimension d, i.e. E is drawn at random from the Grassmanian
manifold Gn,d according to the Haar measure. What does the section K∩E
look like on average?

If d is sufficiently small, then we should expect E to pass through the
bulk of K and miss the outliers, as those have very small volume. Thus, if
the bulk of K is a round ball,2 we should expect the section K ∩ E to be a
round ball as well; see Figure 3.

There is a rigorous result which confirms this intuition. It is known as
Dvoretzky’s theorem [23, 24], which we shall state in the form of V. Milman
[47]; expositions of this result can be found e.g. in [56, 25]. Dvoretzky-
Milman’s theorem has laid a foundation for the early development of asymp-
totic convex geometry. Informally, this result says that random sections of
K of dimension d ∼ log n are round with high probability.

2This intuition is a good approximation to truth, but it should to be corrected. While
concentration of volume tells us that the bulk is contained in a certain Euclidean ball (and
even in a thin spherical shell), it is not always true that the bulk is a Euclidean ball (or
shell); a counterexample is the unit cube [−1, 1]n. In fact, the cube is the worst convex
set in the Dvoretzky theorem, which we are about to state.
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Figure 3. Random section of a high dimensional convex set

Theorem 3.3 (Dvoretzky’s theorem). Let K be an origin-symmetric convex
body in Rn such that the ellipsoid of maximal volume contained in K is the
unit Euclidean ball Bn

2 . Fix ε ∈ (0, 1). Let E be a random subspace of
dimension d = cε−2 log n drawn from the Grassmanian Gn,d according to
the Haar measure. Then there exists R ≥ 0 such that with high probability
(say, 0.99) we have

(1− ε)B(R) ⊆ K ∩ E ⊆ (1 + ε)B(R).

Here B(R) is the centered Euclidean ball of radius R in the subspace E.

Several important aspects of this theorem are not mentioned here – in
particular how, for a given convex set K, to compute the radius R and the
largest dimension d of round sections of K. These aspects can be found in
modern treatments of Dvoretzky theorem such as [56, 25].

3.4. High dimensional random sections? Dvoretzky’s Theorem 3.3 de-
scribes the shape of low dimensional random sections K∩E, those of dimen-
sions d ∼ log n. Can anything be said about high dimensional sections, those
with small codimension? In this more difficult regime, we can no longer ex-
pect such sections to be round. Instead, as the codimension decreases, the
random subspace E becomes larger and it will probably pick more and more
of the outliers (tentacles) of K. The shape of such sections K ∩E is difficult
to describe.

Nevertheless, it turns out that we can accurately predict the diameter of
K∩E. A bound on the diameter is known in asymptotic convex geometry as
the low M∗ estimate, or M∗ bound. We will state this result in Section 3.6
and prove it in Section 5. For now, let us only mention that M∗ bound is
particularly attractive in applications as it depends only on two parameters
– the codimension of E and a single geometric quantity, which informally
speaking, measures the size of the bulk of K. This geometric quantity is
called the mean width of K. We will pause briefly to discuss this important
notion.

3.5. Mean width. The concept of mean width captures important geo-
metric characteristics of sets in Rn. One can mentally place it in the same
category as other classical geometric quantities like volume and surface area.
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Consider a bounded subset K in Rn. (The convexity, closedness and
nonempty interior will not be imposed from now on.) The width of K in
the direction of a given unit vector η ∈ Sn−1 is defined as the width of the
smallest slab between two parallel hyperplanes with normals η that contains
K; see Figure 4.

Figure 4. Width of K in the direction of η

Analytically, we can express the width in the direction of η as

sup
u,v∈K

〈η,u− v〉 = sup
z∈K−K

〈η, z〉

where K −K = {u − v : u,v ∈ K} is the Minkowski sum of K and −K.
Equivalently, we can define the width using the standard notion of support
function of K, which is hK(η) = supu∈K 〈η,u〉, see [64]. The width of K in
the direction of η can be expressed as hK(η) + hK(−η).

Averaging over η uniformly distributed on the sphere Sn−1, we can define
the spherical mean width of K:

w̃(K) := E sup
z∈K−K

〈η, z〉 .

This notion is standard in asymptotic geometric analysis.
In other related areas, such as high dimensional probability and statistical

learning theory, it is more convenient to replace the spherical random vector
η ∼ Unif(Sn−1) by the standard Gaussian random vector g ∼ N(0, In).
The advantage is that g has independent coordinates while η does not.

Definition 3.4 (Gaussian mean width). The Gaussian mean width of a
bounded subset K of Rn is defined as

w(K) := E sup
u∈K−K

〈g,u〉 , (3.2)

where g ∼ N(0, In) is a standard Gaussian random vector in Rn. We will
often refer to Gaussian mean width as simply the mean width.

3.5.1. Simple properties of mean width. Observe first that the Gaussian
mean width is about

√
n times larger than the spherical mean width. To see

this, using rotation invariance we realize η as η = g/‖g‖2. Next, we recall
that the direction and magnitude of a standard Gaussian random vector are
independent, so η is independent of ‖g‖2. It follows that

w(K) = E ‖g‖2 · w̃(K).
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Further, the factor E ‖g‖2 is of order
√
n; this follows, for example, from

known bounds on the χ2 distribution:

c
√
n ≤ E ‖g‖2 ≤

√
n (3.3)

where c > 0 is an absolute constant. Therefore, the Gaussian and spherical
versions of mean width are equivalent (up to scaling factor

√
n), so it is

mostly a matter of personal preference which version to work with. In this
chapter, we will mostly work with the Gaussian version.

Let us observe a few standard and useful properties of the mean width,
which follow quickly from its definition.

Proposition 3.5. The mean width is invariant under translations, orthog-
onal transformations, and taking convex hulls. �

Especially useful for us will be the last property, which states that

w(conv(K)) = w(K). (3.4)

This property will come handy later, when we consider convex relaxations
of optimization problems.

3.5.2. Computing mean width on examples. Let us illustrate the notion of
mean width on some simple examples.

Example 3.6. If K is the unit Euclidean ball Bn
2 or sphere Sn−1, then

w(K) = E ‖g‖2 ≤
√
n

and also w(K) ≥ c
√
n, by (3.3).

Example 3.7. Let K be a subset of Bn
2 with linear algebraic dimension d.

Then K lies in a d-dimensional unit Euclidean ball, so as before we have

w(K) ≤ 2
√
d.

Example 3.8. Let K be a finite subset of Bn
2 . Then

w(K) ≤ C
√

log |K|.

This follows from a known and simple computation of the expected maxi-
mum of k = |K| Gaussian random variables.

Example 3.9 (Sparsity). Let K consist of all unit s-sparse vectors in Rn –
those with at most s non-zero coordinates:

K = {x ∈ Rn : ‖x‖2 = 1, ‖x‖0 ≤ s}.

Here ‖x‖0 denotes the number of non-zero coordinates of x. A simple com-
putation (see e.g. [59, Lemma 2.3]) shows that

c
√
s log(2n/s) ≤ w(K) ≤ C

√
s log(2n/s).
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Example 3.10 (Low rank). Let K consist of d1 × d2 matrices with unit
Frobenius norm and rank at most r:

K = {X ∈ Rd1×d2 : ‖X‖F = 1, rank(X) ≤ r}.
We will see in Proposition 10.4,

w(K) ≤ C
√
r(d1 + d2).

3.5.3. Computing mean width algorithmically. Can we estimate the mean
width of a given set K fast and accurately? Gaussian concentration of
measure (see [56, 43, 42]) implies that, with high probability, the random
variable

w(K, g) = sup
u∈K−K

〈g,u〉

is close to its expectation w(K). Therefore, to estimate w(K), it is enough
to generate a single realization of a random vector g ∼ N(0, In) and compute
w(K, g); this should produce a good estimator of w(K).

Since we can convexify K without changing the mean width by Propo-
sition 3.5, computing this estimator is a convex optimization problem (and
often even a linear problem if K is a polytope).

3.5.4. Computing mean width theoretically. Finding theoretical estimates on
the mean width of a given set K is a non-trivial problem. It has been ex-
tensively studied in the areas of probability in Banach spaces and stochastic
processes.

Two classical results in the theory of stochastic processes – Sudakov’s
inequality (see [43, Theorem 3.18]) and Dudley’s inequality (see [43, Theo-
rem 11.17]) – relate the mean width to the metric entropy of K. Let N(K, t)
denote the smallest number of Euclidean balls of radius t whose union covers
K. Usually N(K, t) is referred to as a covering number of K, and logN(K, t)
is called the metric entropy of K.

Theorem 3.11 (Sudakov’s and Dudley’s inequalities). For any bounded
subset K of Rn, we have

c sup
t>0

t
√

logN(K, t) ≤ w(K) ≤ C
∫ ∞

0

√
logN(K, t) dt.

The lower bound is Sudakov’s inequality and the upper bound is Dudley’s
inequality.

Neither Sudakov’s nor Dudley’s inequality are tight for all sets K. A
more advanced method of generic chaining produces a tight (but also more
complicated) estimate of the mean width in terms of majorizing measures;
see [71].

Let us only mention some other known ways to control mean width. In
some cases, comparison inequalities for Gaussian processes can be useful,
especially Slepian’s and Gordon’s; see [43, Section 3.3]. There is also a
combinatorial approach to estimating the mean width and metric entropy,
which is based on VC-dimension and its generalizations; see [44, 65].
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3.5.5. Mean width and Gaussian processes. The theoretical tools of estimat-
ing mean width we just mentioned, including Sudakov’s, Dudley’s, Slepian’s
and Gordon’s inequalities, have been developed in the context of stochastic
processes. To see the connection, consider the Gaussian random variables
Gu = 〈g,u〉 indexed by points u ∈ Rn. The collection of these random vari-
ables (Gu)u∈K−K forms a Gaussian process, and the mean width measures
the size of this process:

w(K) = E sup
u∈K−K

Gu.

In some sense, any Gaussian process can be approximated by a process
of this form. We will return to the connection between mean width and
Gaussian processes in Section 5 where we prove the M∗ bound.

3.5.6. Mean width, complexity and effective dimension. In the context of
stochastic processes, Gaussian mean width (and its non-gaussian variants)
play an important role in statistical learning theory. There it is more natural
to work with classes F of real-valued functions on {1, . . . , n} than with
geometric sets K ⊆ Rn. (We identify a vector in Rn with a function on
{1, . . . , n}.) The Gaussian mean width serves as a measure of complexity of
a function class in statistical learning theory, see [45]. It is sometimes called
Gaussian complexity and is usually denoted γ2(F).

To get a better feeling of mean width as complexity, assume that K lies
in the unit Euclidean ball Bn

2 . The square of the mean width, w(K)2,
may be interpreted as the effective dimension of K. By Example 3.7, the
effective dimension is always bounded by the linear algebraic dimension.
However, unlike algebraic dimension, the effective dimension is robust – a
small perturbation of K leads to a small change in w(K)2.

3.6. Random sections of small codimension: M∗ bound. Let us re-
turn to the problem we posed in Section 3.4 – bounding the diameter of
random sections K ∩ E where E is a high-dimensional subspace. The fol-
lowing important result in asymptotic convex geometry gives a good answer
to this question.

Theorem 3.12 (M∗ bound). Let K be a bounded subset of Rn. Let E be a
random subspace of Rn of a fixed codimension m, drawn from the Grassma-
nian Gn,n−m according to the Haar measure. Then

Ediam(K ∩ E) ≤ Cw(K)√
m

.

We will prove a stronger version of this result in Section 5. The first
variant of M∗ bound was found by V. Milman [48, 49]; its present form is
due to A. Pajor and N. Tomczak-Jaegermann [55]; an alternative argument
which yields tight constants was given by Y. Gordon [31]; an exposition of
M∗ bound can be found in [56, 43].
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To understand the M∗ bound better, it is helpful to recall from Sec-
tion 3.5.1 that w(K)/

√
n is equivalent to the spherical mean width of K.

Heuristically, the spherical mean width measures the size of the bulk of K.
For subspaces E of not very high dimension, where m = Ω(n), the M∗

bound states that the size of the random section K ∩ E is bounded by
the spherical mean width of K. In other words, subspaces E of proportional
dimension passes through the bulk of K and ignores the outliers (“tentacles”),
just as Figure 3 illustrates. But when the dimension of the subspace E grows
toward n (so the codimension m becomes small), the diameter of K∩E also

grows by a factor of
√
n/m. This gives a precise control of how E in this

case interferes with the outliers of K.

4. From geometry to estimation: linear observations

Having completed the excursion into geometry, we can now return to the
high-dimensional estimation problems that we started to discuss in Section 2.
To recall, our goal is to estimate an unknown vector

x ∈ K ⊆ Rn

that lies in a known feasible set K, from a random observation vector

y = (y1, . . . , ym) ∈ Rm,

whose coordinates yi are random i.i.d. observations of x.
So far, we have not been clear about possible distributions of the ob-

servations yi. In this section, we will study perhaps the simplest model –
Gaussian linear observations. Consider i.i.d. standard Gaussian vectors

ai ∼ N(0, In)

and define

yi = 〈ai,x〉 , i = 1, . . . ,m.

Thus the observation vector y depends linearly on x. This is best expressed
in a matrix form:

y = Ax.

Here A in an m×n Gaussian random matrix, which means that the entires
of A are i.i.d. N(0, 1) random variables; the vectors ai form the rows of A.

The interesting regime is when the number of observations is smaller than
the dimension, i.e. when m < n. In this regime, the problem of estimating
x ∈ Rn from y ∈ Rm is ill posed. (In the complementary regime, where
m ≥ n, the linear system y = Ax is well posed since A has full rank almost
surely, so the solution is trivial.)

4.1. Estimation based on M∗ bound. Recall that we know two pieces
of information about x:

1. x lies in a known random affine subspace {x′ : Ax′ = y};
2. x lies in a known set K.



15

Therefore, a good estimator of x can be obtained by picking any vector x̂
from the intersection of these two sets; see Figure 5. Moreover, since just
these two pieces of information about x are available, such estimator is best
possible in some sense.

Figure 5. Estimating x by any vector x̂ in the intersection
of K with the affine subspace {x′ : Ax′ = y}

How good is such estimate? The maximal error is, of course, the distance
between two farthest points in the intersection of K with the affine subspace
{x′ : Ax′ = y}. This distance in turn equals the diameter of the section of
K by this random subspace. But this diameter is controlled by M∗ bound,
Theorem 3.12. Let us put together this argument more rigorously.

In the following theorem, the setting is the same as above: K ⊂ Rn is a
bounded subset, x ∈ K is an unknown vector and y = Ax is the observation
vector, where A is an m× n Gaussian matrix.

Theorem 4.1 (Estimation from linear observations: feasibility program).
Choose x̂ to be any vector satisfying

x̂ ∈ K and Ax̂ = y. (4.1)

Then

E sup
x∈K
‖x̂− x‖2 ≤

Cw(K)√
m

.

Proof. We apply the M∗ bound, Theorem 3.12, for the set K −K and the
subspace E = ker(A). Rotation invariance of Gaussian distribution implies
that E is uniformly distributed in the Grassmanian Gn,n−m, as required by
the M∗ bound. Moreover, it is straightforward to check that w(K −K) ≤
2w(K). It follows that

Ediam((K −K) ∩ E) ≤ Cw(K)√
m

.

It remains to note that since x̂,x ∈ K and Ax̂ = Ax = y, we have x̂− x ∈
(K −K) ∩ E. �

The argument we just described was first suggested by S. Mendelson,
A. Pajor and N. Tomczak-Jaegermann [51].
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4.2. Estimation as an optimization problem. Let us make one step
forward and replace the feasibility program (4.1) by a more flexible opti-
mization program.

For this, let us make an additional (but quite mild) assumption that K
has non-empty interior and is star-shaped. Being star-shaped means that
together with each point, the set K contains the segment joining that point
to the origin; in other words,

tK ⊆ K for all t ∈ [0, 1].

For such set K, let us revise the feasibility program (4.1). Instead of inter-
secting a fixed set K with the affine subspace {x′ : Ax′ = y}, we may blow
up K (i.e. consider a dilate tK with increasing t ≥ 0) until it touches that
subspace. Choose x̂ to be the touching point, see Figure 6. The fact that

Figure 6. Estimating x by blowing up K until it touches the
affine subspace {x′ : Ax′ = y}

K is star-shaped implies that x̂ still belongs to K and (obviously) the affine
subspace; thus x̂ satisfies the same error bound as in Theorem 4.1.

To express this estimator analytically, it is convenient to use the notion
of Minkowski functional of K, which associates to each point x ∈ Rn a
non-negative number ‖x‖K defined by the rule

‖x‖K = inf
{
λ > 0 : λ−1x ∈ K

}
.

Miknowski functionals, also called gauges, are standard notions in geometric
functional analysis and convex analysis. Convex analysis textbooks such as
[64] offer thorough treatments of this concept. We just mention here a couple
elementary properties. First, the function x 7→ ‖x‖K is continuous on Rn
and it is positive homogeneous (that is, ‖ax‖K = a‖x‖K for a > 0). Next,
a closed set K is the 1-sublevel set of its Minkowski functional, that is

K = {x : ‖x‖K ≤ 1}.
A typical situation to think of is when K is a symmetric convex body (i.e.
K is closed, bounded, has non-empty interior and is origin-symmetric); then
‖x‖K defines a norm on Rn with K being the unit ball.

Let us now accurately state an optimization version of Theorem 4.1. It is
valid for an arbitrary bounded star-shaped set K with non-empty interior.

Theorem 4.2 (Estimation from linear observations: optimization program).
Choose x̂ to be a solution of the program

minimize ‖x′‖K subject to Ax′ = y. (4.2)
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Then

E sup
x∈K
‖x̂− x‖2 ≤

Cw(K)√
m

.

Proof. It suffices to check that x̂ ∈ K; the conclusion would then follow
from Theorem 4.1. Both x̂ and x satisfy the linear constraint Ax′ = y.
Therefore, by choice of x̂, we have

‖x̂‖K ≤ ‖x‖K ≤ 1;

the last inequality is nothing else than our assumption that x ∈ K. Thus
x̂ ∈ K as claimed. �

4.3. Algorithmic aspects: convex programming. What does it take
to solve the optimization problem (4.2) algorithmically? If the feasible set
K is convex, then (4.2) is a convex program. In this case, to solve this prob-
lem numerically one may tap into an array of available convex optimization
solvers, in particular interior-point methods [8] and proximal-splitting algo-
rithms [7].

Further, if K is a polytope, then (4.2) can be cast as a linear program,
which widens an array of algorithmic possibilities even further. For a quick
preview, let us mention that examples of the latter kind will be discussed
in detail in Section 7, where we will use K to enforce sparsity. We will thus
choose K to be a ball of `1 norm in Rn, so the program (4.2) will minimize
‖x′‖1 subject to Ax′ = y. This is a typical linear program in the area of
compressed sensing.

If K is not convex, then we can convexify it, thereby replacing K with
its convex hull conv(K). Convexification does not change the mean width
according to the remarkable property (3.4). Therefore, the generally non-
convex problem (4.2) can be relaxed to the convex program

minimize ‖x′‖conv(K) subject to Ax′ = y, (4.3)

without compromising the guarantee of estimation stated in Theorem 4.2.
The solution x̂ of the convex program (4.3) satisfies

E sup
x∈K
‖x̂− x‖2 ≤ E sup

x∈conv(K)
‖x̂− x‖2 ≤

Cw(conv(K))√
m

=
Cw(K)√

m
.

Summarizing, we see that in any case, whether K is convex or not, the
estimation problem reduces to solving an algorithmically tractable convex
program. Of course, one needs to be able to compute ‖z‖conv(K) algorith-
mically for a given vector z ∈ Rn. This is possible for many (but not all)
feasible sets K.

4.4. Information-theoretic aspects: effective dimension. If we fix a
desired error level, for example if we aim for

E sup
x∈K
‖x̂− x‖2 ≤ 0.01,
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then

m ∼ w(K)2

observations will suffice. The implicit constant factor here is determined by
the desired error level.

Notice that this result is uniform. By Markov’s inequality, with probabil-
ity, say 0.9 in A (which determines the observation model) the estimation is
accurate simultaneously for all vectors x ∈ K. Moreover, as we observed in
Section 5.2, the actual probability is much better than 0.9; it converges to
1 exponentially fast in the number of observations m.

The square of the mean width, w(K)2, can be thought of an effective
dimension of the feasible set K, as we pointed out in Section 3.5.6.

We can summarize our findings as follows.

Using convex programming, one can estimate a vector x in
a general feasible set K from m random linear observations.
A sufficient number of observations m is the same as the
effective dimension of K (the mean width squared), up to a
constant factor.

5. High dimensional sections: proof of a general M∗ bound

Let us give a quick proof of the M∗ bound, Theorem 3.12. In fact, without
much extra work we will be able to derive a more general result from [58].
First, it would allow us to treat noisy observations of the form y = Ax+ ν.
Second, it will be generalizable for non-gaussian observations.

Theorem 5.1 (General M∗ bound). Let T be a bounded subset of Rn. Let
A be an m × n Gaussian random matrix (with i.i.d. N(0, 1) entries). Fix
ε ≥ 0 and consider the set

Tε :=
{
u ∈ T :

1

m
‖Au‖1 ≤ ε

}
. (5.1)

Then3

E sup
u∈Tε

‖u‖2 ≤
√

8π

m
E sup
u∈T
| 〈g,u〉 |+

√
π

2
ε, (5.2)

where g ∼ N(0, In) is a standard Gaussian random vector in Rn.

To see that this result contains the classical M∗ bound, Theorem 3.12,
we can apply it for T = K −K, ε = 0, and identify ker(A) with E. In this
case,

Tε = (K −K) ∩ E.
It follows that Tε ⊇ (K ∩ E) − (K ∩ E), so the left hand side in (5.2) is
bounded below by diam(K ∩E). The right hand side in (5.2) by symmetry

equals
√

8π/mw(K). Thus, we recover Theorem 3.12 with C =
√

8π.

3The conclusion (5.2) is stated with the convenetion that supu∈Tε
‖u‖2 = 0 whenever

Tε = ∅.
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Our proof of Theorem 5.1 will be based on two basic tools in the theory
of stochastic processes – symmetrization and contraction.

A stochastic process is simply a collection of random variables (Z(t))t∈T
on the same probability space. The index space T can be arbitrary; it may
be a time interval (such as in Brownian motion) or a subset of Rn (as will
be our case). To avoid measurability issues, we can assume that T is finite
by discretizing it if necessary.

Proposition 5.2. Consider a finite collection of stochastic processes Z1(t), . . . , Zm(t)
indexed by t ∈ T . Let εi be independent Rademacher random variables (that
is, εi independently take values −1 and 1 with probabilities 1/2 each). Then
we have the following.

(i) (Symmetrization)

E sup
t∈T

∣∣∣ m∑
i=1

[
Zi(t)− EZi(t)

]∣∣∣ ≤ 2E sup
t∈T

∣∣∣ m∑
i=1

εiZi(t)
∣∣∣.

(ii) (Contraction)

E sup
t∈T

∣∣∣ m∑
i=1

εi|Zi(t)|
∣∣∣ ≤ 2E sup

t∈T

∣∣∣ m∑
i=1

εiZi(t)
∣∣∣.

Both statements are relatively easy to prove even in greater generality.
For example, taking the absolute values of Zi(t) in the contraction principle
can be replaced by applying general Lipschitz functions. Proofs of sym-
metrization and contraction principles can be found in [43, Lemma 6.3] and
[43, Theorem 4.12], respectively.

5.1. Proof of Theorem 5.1. Let aTi denote the rows of A; thus ai are
independent N(0, In) random vectors. The desired bound (5.2) would follow
from the deviation inequality

E sup
u∈T

∣∣∣ 1

m

m∑
i=1

| 〈ai,u〉 | −
√

2

π
‖u‖2

∣∣∣ ≤ 4√
m

E sup
u∈T
| 〈g,u〉 |. (5.3)

Indeed, if this inequality holds, then same is true if we replace T by the
smaller set Tε in the left hand side of (5.3). But for u ∈ Tε, we have
1
m

∑m
i=1 | 〈ai,u〉 | = 1

m‖Au‖1 ≤ ε, and the bound (5.2) follows by triangle
inequality.

The rotation invariance of Gaussian distribution implies that

E | 〈ai,u〉 | =
√

2

π
‖u‖2. (5.4)

Thus, using symmetrization and then contraction inequalities from Propo-
sition 5.2, we can bound the left side of (5.3) by

4E sup
u∈T

∣∣∣ 1

m

m∑
i=1

εi 〈ai,u〉
∣∣∣ = 4E sup

u∈T

∣∣∣∣∣
〈

1

m

m∑
i=1

εiai,u

〉∣∣∣∣∣ . (5.5)
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Here εi are independent Rademacher variables.
Conditioning on εi and using rotation invariance, we see that the random

vector

g :=
1√
m

m∑
i=1

εiai

has distribution N(0, In). Thus (5.5) can be written as

4√
m

E sup
u∈T
| 〈g,u〉 |.

This proves (5.3) and completes the proof of Theorem 5.1. �

5.2. From expectation to overwhelming probability. The M∗ bound
that we just proved, and in fact all results in this survey, are stated in terms
of expected value for simplicity of presentation. One can upgrade them to
estimates with overwhelming probability using concentration of measure, see
[42]. We will mention how do this for the results we just proved; the reader
should be able to do so for further results as well.

Let us first obtain a high-probability version of the deviation inequality
(5.3) using the Gaussian concentration inequality. We will consider the
deviation

Z(A) := sup
u∈T

∣∣∣ 1

m

m∑
i=1

| 〈ai,u〉 | −
√

2

π
‖u‖2

∣∣∣
as a function of the matrix A ∈ Rm×n. Let us show that it is a Lipschitz
function on Rm×n equipped with Frobenius norm ‖ · ‖F (which is the same
as the Euclidean norm on Rmn). Indeed, two applications of the triangle
inequality followed by two applications of the Cauchy-Schwarz inequality
imply that for matrices A and B with rows aTi and bTi respectively, we have

|Z(A)− Z(B)| ≤ sup
u∈T

1

m

m∑
i=1

| 〈ai − bi,u〉 |

≤ d(T )

m

m∑
i=1

‖ai − bi‖2 (where d(T ) = max
u∈T
‖u‖2)

≤ d(T )√
m
‖A−B‖F .

Thus the function A 7→ Z(A) has Lipschitz constant bounded by d(K)/
√
m.

We may now bound the deviation probability for Z using the Gaussian
concentration inequality (see [43, Equation 1.6]) as follows:

P {|Z − EZ| ≥ t} ≤ 2 exp
(
− mt2

2d(T )2

)
, t ≥ 0.

This is a high-probability version of the deviation inequality (5.3).
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Using this inequality, one quickly deduces a corresponding high-probability
version of Theorem 5.1. It states that

sup
u∈Tε

‖u‖2 ≤
√

8π

m
E sup
u∈T
| 〈g,u〉 |+

√
π

2
(ε+ t)

with probability at least 1− 2 exp(−mt2/2d(T )2).
As before, we obtain from this the following high-probability version of

the M∗ bound, Theorem 5.1. It states that

diam(K ∩ E) ≤ Cw(K)√
m

+ Ct

with probability at least 1− 2 exp(−mt2/2 diam(K)2).

6. Consequences: estimation from noisy linear observations

Let us apply the general M∗ bound, Theorem 5.1, to estimation problems.
This will be even more straightforward than our application of the standard
M∗ bound in Section 4. Moreover, we will now be able to treat noisy
observations.

Like before, our goal is to estimate an unknown vector x that lies in a
known feasible set K ⊂ Rn, from a random observation vector y ∈ Rm. This
time we assume that, for some known level of noise ε ≥ 0, we have

y = Ax+ ν,
1

m
‖ν‖1 =

1

m

m∑
i=1

|νi| ≤ ε. (6.1)

Here A is an m× n Gaussian matrix as before. The noise vector ν may be
unknown and have arbitrary structure. In particular ν may depend on A,
so even adversarial errors are allowed. The `1 constraint in (6.1) can clearly
be replaced by the stronger `2 constraint

1

m
‖ν‖22 =

1

m

m∑
i=1

ν2
i ≤ ε2.

The following result is a generalization of Theorem 4.1 for noisy observa-
tions (6.1). As before, it is valid for any bounded set K ⊂ Rn.

Theorem 6.1 (Estimation from noisy linear observations: feasibility pro-
gram). Choose x̂ to be any vector satisfying

x̂ ∈ K and
1

m
‖Ax̂− y‖1 ≤ ε. (6.2)

Then

E sup
x∈K
‖x̂− x‖2 ≤

√
8π

(
w(K)√
m

+ ε

)
.
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Proof. We apply the general M∗ bound, Theorem 5.1, for the set T = K−K,
and with 2ε instead of ε. It follows that

E sup
u∈T2ε

‖u‖2 ≤
√

8π

m
E sup
u∈T
| 〈g,u〉 |+

√
2π ε ≤

√
8π

(
w(K)√
m

+ ε

)
.

The last inequality follows from the definition of mean width and the sym-
metry of T .

To finish the proof, it remains to check that

x̂− x ∈ T2ε. (6.3)

To prove this, first note that x̂,x ∈ K, so x̂ − x ∈ K −K = T . Next, by
triangle inequality, we have

1

m
‖A(x̂− x)‖1 =

1

m
‖Ax̂− y + ν‖1 ≤

1

m
‖Ax̂− y‖1 +

1

m
‖ν‖1 ≤ 2ε.

The last inequality follows from (6.1) and (6.2). We showed that the vector
u = x̂ − x satisfies both constraints that define T2ε in (5.1). Hence (6.3)
holds, and the proof of the theorem is complete. �

And similarly to Theorem 4.2, we can cast estimation as an optimization
(rather than feasibility) program. As before, it is valid for any bounded
star-shaped set K ⊂ Rn with nonempty interior.

Theorem 6.2 (Estimation from noisy linear observations: optimization
program). Choose x̂ to be a solution to the program

minimize ‖x′‖K subject to
1

m
‖Ax′ − y‖1 ≤ ε. (6.4)

Then

E sup
x∈K
‖x̂− x‖2 ≤

√
8π

(
w(K)√
m

+ ε

)
.

Proof. It suffices to check that x̂ ∈ K; the conclusion would then follow
from Theorem 6.1. Note first that by choice of x̂ we have 1

m‖Ax̂− y‖1 ≤ ε,
and by assumption (6.1) we have 1

m‖Ax− y‖1 = 1
m‖ν‖1 ≤ ε. Thus both x̂

and x satisfy the constraint in (6.4). Therefore, by choice of x̂, we have

‖x̂‖K ≤ ‖x‖K ≤ 1;

the last inequality is nothing else than our assumption that x ∈ K. It
follows x̂ ∈ K as claimed. �

The remarks about algorithmic aspects of estimation made in Sections 4.3
and 4.4 apply also to the results of this section. In particular, the estimation
from noisy linear observations (6.1) can be formulated as a convex program.
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7. Applications to sparse recovery and regression

Remarkable examples of feasible sets K with low complexity come from
the notion of sparsity. Consider the set K of all unit s-sparse vectors in Rn.
As we mentioned in Example 3.9, the mean width of K is

w(K) ∼ s log(n/s).

According to the interpretation we discussed in Section 4.4, this means that
the effective dimension of K is of order s log(n/s). Therefore,

m ∼ s log(n/s)

observations should suffice to estimate any s-sparse vector in Rn. Results
of this type form the core of compressed sensing, a young area of signal
processing, see [19, 39, 15, 35].

In this section we consider a more general model, where an unknown
vector x has a sparse representation in some dictionary.

We will specialize Theorem 6.2 to the sparse recovery problem. The
convex program will in this case amount to minimizing the `1 norm of the
coefficients. We will note that the notion of sparsity can be relaxed to
accommodate approximate, or “effective”, sparsity. Finally, we will observe
that the estimate x̂ is most often unique and m-sparse.

7.1. Sparse recovery for general dictionaries. Let us fix a dictionary of
vectors d1, . . . ,dN ∈ Rn, which may be arbitrary (even linearly dependent).
The choice of a dictionary depends on the application; common examples
include unions of orthogonal bases and more generally tight frames (in par-
ticular, Gabor frames). See [18, 21, 20, 62] for an introduction to sparse
recovery problems with general dictionaries.

Suppose an unknown vector x ∈ Rn is s-sparse in the dictionary {di}.
This means that x can be represented as a linear combination of at most s
dictionary elements, i. e.

x =

N∑
i=1

αidi with at most s non-zero coefficients αi ∈ R. (7.1)

As in Section 6, our goal is to recover x from a noisy observation vector
y ∈ Rm of the form

y = Ax+ ν,
1

m
‖ν‖1 =

1

m

m∑
i=1

|νi| ≤ ε.

Recall that A is a known m×n Gaussian matrix, and and ν is an unknown
noise vector, which can have arbitrary structure (in particular, correlated
with A).

Theorem 6.2 will quickly imply the following recovery result.
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Theorem 7.1 (Sparse recovery: general dictionaries). Assume for normal-
ization that all dictionary vectors satisfy ‖di‖2 ≤ 1. Choose x̂ to be a
solution to the convex program

minimize ‖α′‖1 such that x′ =
N∑
i=1

α′idi satisfies
1

m
‖Ax′ − y‖1 ≤ ε. (7.2)

Then

E ‖x̂− x‖2 ≤ C
√
s logN

m
· ‖α‖2 +

√
2π ε.

Proof. Consider the sets

K̄ := conv{±di}Ni=1, K := ‖α‖1 · K̄.

Representation (7.1) implies that x ∈ K, so it makes sense to apply Theo-
rem 6.2 for K.

Let us first argue that the optimization program in Theorem 6.2 can be
written in the form (7.2). Observe that we can replace ‖x′‖K by ‖x′‖K̄
in the optimization problem (6.4) without changing its solution. (This is
because ‖x′‖K̄ = ‖α‖1 · ‖x′‖K and ‖α‖1 is a constant value.) Now, by
definition of K̄, we have

‖x′‖K̄ = min
{
‖α′‖1 : x′ =

N∑
i=1

α′idi

}
.

Therefore, the optimization programs (6.4) and (7.2) are indeed equivalent.
Next, to evaluate the error bound in Theorem 6.2, we need to bound the

mean width of K. The convexification property (3.4) and Example 3.8 yield

w(K) = ‖α‖1 · w(K̄) ≤ C‖α‖1 ·
√

logN.

Putting this into the conclusion of Theorem 6.2, we obtain the error bound

E sup
x∈K
‖x̂− x‖2 ≤

√
8π C

√
logN

m
· ‖α‖1 +

√
2π ε.

To complete the proof, it remains to note that

‖α‖1 ≤
√
s · ‖α‖2, (7.3)

since α is s-sparse, i.e. it has only s non-zero coordinates. �

7.2. Remarkable properties of sparse recovery. Let us pause to look
more closely at the statement of Theorem 7.1.

7.2.1. General dictionaries. Theorem 7.1 is very flexible with respect to the
choice of a dictionary {di}. Note that there are essentially no restrictions on
the dictionary. (The normalization assumption ‖di‖2 ≤ 1 can be dispensed
of at the cost of increasing the error bound by the factor of maxi ‖di‖2.) In
particular, the dictionary may be linearly dependent.
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7.2.2. Effective sparsity. The reader may have noticed that the proof of
Theorem 7.1 used sparsity in a quite mild way, only through inequality
(7.3). So the result is still true for vectors x that are approximately sparse
in the dictionary. Namely, the Theorem 7.1 will hold if we replace the exact
notion of sparsity (the number of nonzero coefficients) by the more flexible
notion of effective sparsity, defined as

effective sparsity(α) := (‖α‖1/‖α‖2)2.

It is now clear how to extend sparsity in a dictionary (7.1) to approximate
sparsity. We can say that a vector x is effectively s-sparse in a dictionary
{di} if it can be represented as x =

∑N
i=1 αidi where the coefficient vector

a = (α1, . . . , αN ) is effectively s-sparse.
The effective sparsity is clearly bounded by the exact sparsity, and it is

robust with respect to small perturbations.

7.2.3. Linear programming. The convex programs (7.2) and (7.5) can be
reformulated as linear programs. This can be done by introducing new vari-
ables u1, . . . , uN ; instead of minimizing ‖α′‖1 in (7.2), we can equivalently

minimize the linear function
∑N

i=1 ui subject to the additional linear con-
straints −ui ≤ α′i ≤ ui, i = 1, . . . , N . In a similar fashion, one can replace
the convex constraint 1

m‖Ax
′ − y‖1 ≤ ε in (7.2) by n linear constraints.

7.2.4. Estimating the coefficients of sparse representation. It is worthwhile
to notice that as a result of solving the convex recovery program (7.2), we
obtain not only an estimate x̂ of the vector x, but also an estimate α̂ of the
coefficient vector in the representation x =

∑
αidi.

7.2.5. Sparsity of solution. The solution of the sparse recovery problem (7.2)
may not be exact in general, that is x̂ 6= x can happen. This can be due to
several factors – the generality of the dictionary, approximate (rather than
exact) sparsity of x in the dictionary, and the noise ν in the observations.
But even in this general situation, the solution x is still m-sparse, in all but
degenerate cases. We will now state and prove this known fact (see [35]).

Proposition 7.2 (Sparsity of solution). Assume that a given convex recov-
ery program (7.2) has a unique solution α̂ for the coefficient vector. Then
α̂ is m-sparse, and consequently x̂ is m-sparse in the dictionary {di}. This
is true even in presence of noise in observations, and even when no sparsity
assumptions on x are in place.

Proof. The result follows by simple dimension considerations. First note
that the constraint on α′ in the optimization problem (7.2) can be written
in the form

1

m
‖ADα′ − y‖1 ≤ ε, (7.4)

where D is the n×N matrix whose columns are the dictionary vectors di.
Since matrix AD has dimensions m × N , the constraint defines a cylinder
in RN whose infinite directions are formed by the kernel of AD, which has
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dimension at least N −m. Moreover, this cylinder is a polyhedral set (due
to the `1 norm defining it), so it has no faces of dimension smaller than
N −m.

On the other hand, the level sets of the objective function ‖α′‖1 are also
polyhedral sets; they are dilates of the unit `1 ball. The solution α̂ of the
optimization problem (7.2) is thus a point in RN where the smallest dilate
of the `1 ball touches the cylinder. The uniqueness of solution means that
a touching point is unique. This is illustrated in Figure 7.

Figure 7. Illustration for the proof of Proposition 7.2. The
polytope on the left represents a level set of the `1 ball. The
cylinder on the right represents the vectors α′ satisfying the
constraint (7.4). The two polyhedral sets touch at point α̂.

Consider the faces of these two polyhedral sets of smallest dimensions
that contain the touching point; we may call these the touching faces. The
touching face of the cylinder has dimension at least N −m, as all of its faces
do. Then the touching face of the `1 ball must have dimension at most m,
otherwise the two touching faces would intersect by more than one point.
This translates into the m-sparsity of the solution α̂, as claimed. �

In view of Proposition 7.2, we can ask when the solution α̂ of the convex
program (7.2) is unique. This does not always happen; for example this fails
if d1 = d2.

Uniqueness of solutions of optimization problems like (7.2) is extensively
studied [35]. Let us mention here a cheap way to obtain uniqueness. This
can be achieved by an arbitrarily small generic perturbation of the dictionary
elements, such as adding a small independent Gaussian vector to each di.
Then one can see that the solution α̂ (and therefore x̂ as well) are unique
almost surely. Invoking Proposition 7.2 we see that x̂ is m-sparse in the
perturbed dictionary.

7.3. Sparse recovery for the canonical dictionary. Let us illustrate
Theorem 7.1 for the simplest example of a dictionary – the canonical basis
of Rn:

{di}ni=1 = {ei}ni=1.

In this case, our assumption is that an unknown vector x ∈ Rn is s-sparse
in the usual sense, meaning that x has at most s non-zero coordinates, or
effectively s-sparse as in Section 7.2.2. Theorem 7.1 then reads as follows.
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Corollary 7.3 (Sparse recovery). Choose x̂ to be a solution to the convex
program

minimize ‖x′‖1 subject to
1

m
‖Ax′ − y‖1 ≤ ε. (7.5)

Then

E ‖x̂− x‖2 ≤ C
√
s log n

m
· ‖x‖2 +

√
2π ε. �

Sparse recovery results like Corollary 7.3 form the core of the area of
compressed sensing, see [19, 39, 15, 35].

In the noiseless case (ε = 0) and for sparse (rather then effectively sparse)
vectors, one may even hope to recover x exactly, meaning that x̂ = x with
high probability. Conditions for exact recovery are now well understood
in compressed sensing. We will discuss some exact recovery problems in
Section 9.

We can summarize Theorem 7.1 and the discussion around it as follows.

Using linear programming, one can approximately recover a
vector x that is s-sparse (or effectively s-sparse) in a gen-
eral dictionary of size N , from m ∼ s logN random linear
observations.

7.4. Application: linear regression with constraints. The noisy esti-
mation problem (6.1) is equivalent to linear regression with constraints. So
in this section we will translate the story into the statistical language. We
present here just one class of examples out of a wide array of statistical prob-
lems; we refer the reader to [11, 74] for a recent review of high dimensional
estimation problems from a statistical viewpoint.

Linear regression is a model of linear relationship between one dependent
variable and n explanatory variables. It is usually written as

y = Xβ + ν.

Here X is an n × p matrix which contains a sample of n observations of p
explanatory variables; y ∈ Rn represents a sample of n observations of the
dependent variable; β ∈ Rp is a coefficient vector; ν ∈ Rn is a noise vector.
We assume that X and y are known, while β and ν are unknown. Our goal
is to estimate β.

We discussed a classical formulation of linear regression. In addition, we
often know, believe, or want to enforce some properties about the coefficient
vector β, (for example, sparsity). We can express such extra information as
the assumption that

β ∈ K
where K ⊂ Rp is a known feasible set. Such problem may be called a linear
regression with constraints.

The high dimensional estimation results we have seen so far can be trans-
lated into the language of regression in a straightforward way. Let us do
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this for Theorem 6.2; the interested reader can make a similar translation
or other results.

We assume that the explanatory variables are independent N(0, 1), so
the matrix X has all i.i.d. N(0, 1) entries. This requirement may be too
strong in practice; however see Section 8 on relaxing this assumption. The
noise vector ν is allowed have arbitrary structure (in particular, it can be
correlated with X). We assume that its magnitude is controlled:

1

n
‖ν‖1 =

1

n

n∑
i=1

|νi| ≤ ε

for some known noise level ε. Then we can restate Theorem 6.2 in the
following way.

Theorem 7.4 (Linear regression with constraints). Choose β̂ to be a solu-
tion to the program

minimize ‖β′‖K subject to
1

n
‖Xβ′ − y‖1 ≤ ε.

Then

E sup
β∈K
‖β̂ − β‖2 ≤

√
8π

(
w(K)√

n
+ ε

)
. �

8. Extensions from Gaussian to sub-gaussian distributions

So far, all our results were stated for Gaussian distributions. Let us show
how to relax this assumption. In this section, we will modify the proof
of the M∗ bound, Theorem 5.1 for general sub-gaussian distributions, and
indicate the consequences for the estimation problem. A result of this type
was proved in [51] with a much more complex argument.

8.1. Sub-gaussian random variables and random vectors. A system-
atic introduction into sub-gaussian distributions can be found in Sections
5.2.3 and 5.2.5 of [73]; here we briefly mention the basic definitions. Ac-
cording to one of the several equivalent definitions, a random variable X is
sub-gaussian if

E exp(X2/ψ2) ≤ e.
for some ψ > 0. The smallest ψ is called the sub-gaussian norm and is
denoted ‖X‖ψ2 . Normal and all bounded random variables are sub-gaussian,
while exponential random variables are not.

The notion of sub-gaussian distribution transfers to higher dimensions
as follows. A random vector X ∈ Rn is called sub-gaussian if all one-
dimensional marginals 〈X,u〉, u ∈ Rn, are sub-gaussian random variables.
The sub-gaussian norm of X is defined as

‖X‖ψ2 := sup
u∈Sn−1

‖ 〈X,u〉 ‖ψ2 (8.1)
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where, as before, Sn−1 denotes the Euclidean sphere in Rn. Recall also that
the random vector X is called isotropic if

EXXT = In.

Isotropy is a scaling condition; any distribution in Rn which is not supported
in a low-dimensional subspace can be made isotropic by an appropriate linear
transformation. To illustrate this notion with a couple of quick examples,
one can check that N(0, In) and the uniform distribution on the discrete
cube {−1, 1}n are isotropic and sub-gaussian distributions.

8.2. M∗ bound for sub-gaussian distributions. Now we state and prove
a version of M∗ bound, Theorem 5.1, for general sub-gaussian distributions.
It is a variant of a result from [51].

Theorem 8.1 (General M∗ bound for sub-gaussian distributions). Let T
be a bounded subset of Rn. Let A be an m × n matrix whose rows ai are
i.i.d., mean zero, isotropic and sub-gaussian random vectors in Rn. Choose
ψ ≥ 1 so that

‖ai‖ψ2 ≤ ψ, i = 1, . . . ,m. (8.2)

Fix ε ≥ 0 and consider the set

Tε :=
{
u ∈ T :

1

m
‖Au‖1 ≤ ε

}
.

Then

E sup
u∈Tε

‖u‖2 ≤ Cψ4
( 1√

m
E sup
u∈T
| 〈g,u〉 |+ ε

)
,

where g ∼ N(0, In) is a standard Gaussian random vector in Rn.

A proof of this result is an extension of the proof of the Gaussian M∗

bound, Theorem 5.1. Most of that argument generalizes to sub-gaussian
distributions in a standard way. The only non-trivial new step will be based
on the deep comparison theorem for sub-gaussian processes due to X. Fer-
nique and M. Talagrand, see [71, Section 2.1]. Informally, the result states
that any sub-gaussian process is dominated by a Gaussian process with the
same (or larger) increments.

Theorem 8.2 (Fernique-Talagrand’s comparison theorem). Let T be an
arbitrary set.4 Consider a Gaussian random process (G(t))t∈T and a sub-
gaussian random process (H(t))t∈T . Assume that EG(t) = EH(t) = 0 for
all t ∈ T . Assume also that for some M > 0, the following increment
comparison holds:5

‖H(s)−H(t)‖ψ2 ≤M (E ‖G(s)−G(t)‖22)1/2 for all s, t ∈ T.

4We can assume T to be finite to avoid measurability complications, and then proceed
by approximation; see e.g. [43, Section 2.2].

5The increment comparison may look better if we replace the L2 norm in the right hand
side by ψ2 norm. Indeed, it is easy to see that ‖G(s)−G(t)‖ψ2 � (E ‖G(s)−G(t)‖22)1/2.
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Then
E sup
t∈T

H(t) ≤ CM E sup
t∈T

G(t).

This theorem is a combination of a result of X. Fernique [34] that bounds
E supt∈T H(t) above by the so-called majorizing measure of T , and a result of
M. Talagrand [70] that bounds E supt∈T G(t) below by the same majorizing
measure of T .

Proof of Theorem 8.1. Let us examine the proof of the Gaussian M∗ bound,
Theorem 5.1, check where we used Gaussian assumptions, and try to accom-
modate sub-gaussian assumptions instead.

The first such place is identity (5.4). We claim that a version of it still
holds for the sub-gaussian random vector a, namely

‖u‖2 ≤ C0ψ
3 Ea | 〈a,u〉 | (8.3)

where C0 is an absolute constant.6

To check (8.3), we can assume that ‖u‖2 = 1 by dividing both sides by
‖u‖2 if necessary. Then Z := 〈a,u〉 is sub-gaussian random variable, since
according to (8.1) and (8.2), we have ‖Z‖ψ2 ≤ ‖a‖ψ2 ≤ ψ. Then, since sub-
gaussian distributions have moments of all orders (see [73, Lemma 5.5]), we

have (EZ3)1/3 ≤ C1‖Z‖ψ2 ≤ C1ψ, where C1 is an absolute constant. Using
this together with isotropy and Cauchy-Schwarz inequality, we obtain

1 = EZ2 = EZ1/2Z3/2 ≤ (EZ)1/2(EZ3)1/2 ≤ (EZ)1/2(C1ψ)3/2.

Squaring both sides implies (8.3), since we assumed that ‖u‖2 = 1.
The next steps in the proof of Theorem 5.1 – symmetrization and contrac-

tion – go through for sub-gaussian distributions without change. So (5.5) is
still valid in our case.

Next, the random vector

h :=
1√
m

m∑
i=1

εiai

is no longer Gaussian as in the proof of Theorem 5.1. Still, h is sub-gaussian
with

‖h‖ψ2 ≤ C2ψ (8.4)

due to the approximate rotation invariance of sub-gaussian distributions,
see [73, Lemma 5.9].

In the last step of the argument, we need to replace the sub-gaussian
random vector h by the Gaussian random vector g ∼ N(0, In), i.e. prove
an inequality of the form

E sup
u∈T
| 〈h,u〉 | . E sup

u∈T
| 〈g,u〉 |.

6We should mention that a reverse inequality also holds: by isotropy, one has
Ea | 〈a,u〉 | ≤ (Ea 〈a,u〉2)1/2 = ‖u‖2. However, this inequality will not be used in the
proof.
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This can be done by applying the comparison inequality of Theorem 8.2 for
the processes

H(u) = 〈h,u〉 and G(u) = 〈g,u〉 , u ∈ T ∪ (−T ).

To check the increment inequality, we can use (8.4), which yields

‖H(u)−H(v)‖ψ2 = ‖ 〈h,u− v〉 ‖ψ2 ≤ ‖h‖ψ2 ‖u− v‖2 ≤ C2ψ ‖u− v‖2.

On the other hand,

(E ‖G(u)−G(v)‖22)1/2 = ‖u− v‖2.

Therefore, the increment inequality in Theorem 8.2 holds with M = C2ψ.
It follows that

E sup
u∈T∪(−T )

〈h,u〉 ≤ C3ψ E sup
u∈T∪(−T )

〈g,u〉 .

This means that

E sup
u∈T
| 〈h,u〉 | ≤ C3ψ E sup

u∈T
| 〈g,u〉 |

as claimed.
Replacing all Gaussian inequalities by their sub-gaussian counterparts

discussed above, we complete the proof just like in Theorem 5.1. �

8.3. Estimation from sub-gaussian linear observations. It is now straight-
forward to generalize all recovery results we developed before from Gaussian
to sub-gaussian observations. So our observations are now

yi = 〈ai, x〉+ νi, i = 1, . . . ,m

where ai are i.i.d., mean zero, isotropic and sub-gaussian random vectors
in Rn. As in Theorem 8.1, we control the sub-gaussian norm with the
parameter ψ > 1, choosing it so that

‖ai‖ψ2 ≤ ψ, i = 1, . . . ,m.

We can write observations in the matrix form as in (6.1), i.e.

y = Ax+ ν,

where A is the m × n matrix with rows ai. As before, we assume some
control on the error:

1

m
‖ν‖1 =

1

m

m∑
i=1

|νi| ≤ ε.

Let us state a version of Theorem 6.1 for sub-gaussian observations. Its
proof is the same, except we use the sub-gaussian M∗ bound, Theorem 8.1
where previously a Gaussian M∗ bound was used.
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Theorem 8.3 (Estimation from sub-gaussian observations). Choose x̂ to
be any vector satisfying

x̂ ∈ K and
1

m
‖Ax̂− y‖1 ≤ ε.

Then

E sup
x∈K
‖x̂− x‖2 ≤ Cψ4

(
w(K)√
m

+ ε

)
. �

In a similar fashion, one can generalize all other estimation results estab-
lished before to sub-gaussian observations. We leave this to the interested
reader.

9. Exact recovery

In some situations, one can hope to estimate vector x ∈ K from y exactly,
without any error. Such results form the core of the area of compressed
sensing [19, 39, 35]. Here we will present an approach to exact recovery
based on Y. Gordon’s “escape through a mesh” theorem [31]. This argument
goes back to [66] for the set of sparse vectors, it was further developed in in
[69, 53] and was pushed forward for general feasible sets in [16, 2, 72].

In this tutorial we will present the most basic result; the reader will find
a more complete picture and many more examples in the papers just cited.

We will work here with Gaussian observations

y = Ax,

where A is an m × n Gaussian random matrix. This is the same model as
we considered in Section 4.

9.1. Exact recovery condition and the descent cone. When can x be
inferred from y exactly? Recall that we only know two things about x –
that it lies in the feasible set K and in the affine subspace

Ex := {x′ : Ax′ = y}.
This two pieces of information determine x uniquely if and only if these two
sets intersect at the single point x:

K ∩ Ex = {x}. (9.1)

Notice that this situation would go far beyond theM∗ bound on the diameter
of K ∩E (see Theorem 3.12) – indeed, in this case the diameter would equal
zero!

How can this be possible? Geometrically, the exact recovery condition
(9.1) states that the affine subspace Ex is tangent to the set K at the point
x; see Figure 8a for illustration.

This condition is local. Assuming that K is convex for better understand-
ing, we see that the tangency condition depends on the shape of K in an
infinitesimal neighborhood of x, while the global geometry of K is irrele-
vant. So we would not lose anything if we replace K by the descent cone
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(a) Exact recovery condition
(9.1): affine subspace Ex is tan-
gent to K at x

(b) Picture translated by −x:
subspace ker(A) is tangent to de-
scent cone D(K,x) at 0

Figure 8. Illustration of the exact recovery condition (9.1)

at point x, see Figure 8b. This set is formed by the rays emanating from x
into directions of points from K:

D(K,x) := {t(z − x) : z ∈ K, t ≥ 0}.

Translating by −x, can we rewrite the exact recovery condition (9.1) as

(K − x) ∩ (Ex − x) = {0}

Replacing K−x by the descent cone (a bigger set) and noting that Ex−x =
ker(A), we rewrite this again as

D(K,x) ∩ ker(A) = {0}.

The descent cone can be determined by its intersection with the unit sphere,
i.e. by7

S(K,x) := D(K,x) ∩ Sn−1 =
{ z − x
‖z − x‖2

: z ∈ K
}
. (9.2)

Thus we arrive at the following equivalent form of the exact recovery con-
dition (9.1):

S(K,x) ∩ ker(A) = ∅;

see Figure 8b for an illustration.

9.2. Escape through a mesh, and implications for exact recovery.
It remains to understand under what conditions the random subspace kerA
misses a given subset S = S(K,x) of the unit sphere. There is a remarkably
sharp result in asymptotic convex geometry that answers this question for
general subsets S. This is the theorem on escape through a mesh, which is
due to Y. Gordon [31]. Similarly to the other results we saw before, this

7In the definition (9.2), we adopt the convention that 0/0 = 0.
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theorem depends on the mean width of S, defined as8

w̄(S) = E sup
u∈S
〈g,u〉 , where g ∼ N(0, In).

Theorem 9.1 (Escape through a mesh). Let S be a fixed subset of Sn−1.
Let E be a random subspace of Rn of a fixed codimension m, drawn from
the Grassmanian Gn,n−m according to the Haar measure. Assume that

w̄(S) <
√
m.

Then

S ∩ E = ∅
with high probability, namely 1− 2.5 exp

[
− (m/

√
m+ 1− w̄(S))2/18

]
.

Before applying this result to high dimensional estimation, let us see how
a slightly weaker result follows from the general M∗ bound, Theorem 5.1.
Indeed, applying the latter theorem for T = S, E = ker(A) and ε = 0, we
obtain

E sup
u∈S∩E

‖u‖2 ≤
√

8π

m
E sup
u∈S
| 〈g,u〉 | ≤

√
8π

m
w̄(S). (9.3)

Since S ⊂ Sn−1, the supremum in the left hand side equals 1 when S∩E 6= ∅
and zero otherwise. Thus the expectation in (9.3) equals P {S ∩ E 6= ∅}.
Further, one can easily check that E supu∈S | 〈g,u〉 | ≤ w̄(S) +

√
2/π, see

[57, Proposition 2.1]. Thus we obtain

P {S ∩ E 6= ∅} ≤
√

8π

m

(
w̄(S) +

√
2

π

)
.

In other words, S ∩ E = ∅ with high probability if the codimension m is
sufficiently large so that w̄(S) �

√
m. Thus we obtain a somewhat weaker

form of Escape Theorem 9.1.

Now let us apply Theorem 9.1 for the descent S = S(K,x) and E =
ker(A). We conclude by the argument above that the exact recovery condi-
tion (9.1) holds with high probability if

m > w̄(S)2.

How can we algorithmically recover x in these circumstances? We can
do the same as in Section 4.1, either using the feasibility program (4.1)
or, better yet, the optimization program (4.2). The only difference is that
the diameter of the intersection is now zero, so the recovery is exact. The
following is an exact version of Theorem 4.2.

8The only (minor) difference with our former definition (3.2) of the mean width is that
we take supremum over S instead of S − S, so w̄(S) is a smaller quantity. The reason we
do not need to consider S − S because we already subtracted x in the definition of the
descent cone.
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Theorem 9.2 (Exact recovery from linear observations). Choose x̂ to be a
solution of the program

minimize ‖x′‖K subject to Ax′ = y.

Assume that the number of observations satisfies

m > w̄(S)2 (9.4)

where S = S(K,x) is the spherical part of the descent cone of K, defined in
(9.2). Then

x̂ = x

with high probability (the same as in Theorem 9.1). �

Note the familiar condition (9.4) on m which we have seen before, see e.g.
Section 4.3. Informally, it states the following:

Exact recovery is possible when the number of measurements
exceeds the effective dimension of the descent cone.

Remarkably, the condition (9.4) does not have absolute constant factors
which we had in results before.

9.3. Application: exact sparse recovery. Let us illustrate how Theo-
rem 9.2 works for exact sparse recovery. Assume that x is s-sparse, i.e.
it has at most s non-zero coefficients. For the feasible set, we can choose
K := ‖x‖1Bn

1 = {x′ : ‖x′‖1 ≤ ‖x‖1}. One can write down accurately an
expression for the descent cone, and derive a familiar bound on the mean
width of S = S(K,x):

w̄(S) ≤ C
√
s log(2n/s).

This computation goes back to [66]; see that paper and also [69, 16, 3] for
estimates with explicit absolute constants.

We plug this into Theorem 9.2, where we replace ‖x′‖K in the optimiza-
tion problem by the proportional quantity ‖x′‖1. This leads to the following
exact version of Corollary 7.3:

Theorem 9.3 (Exact sparse recovery). Assume that an unknown vector
x ∈ Rn is s-sparse. Choose x̂ to be a solution to the convex program

minimize ‖x′‖1 subject to Ax′ = y.

Assume that the number of observations satisfies m > Cs log n. Then

x̂ = x

with high probability, namely 1− 3e−m. �

Due to the remarkable sharpness of Gordon’s theorem, one may hope
to obtain sharp conditions on the number of observations m, without any
losses in absolute constants. This was done in [22] for the sparse recovery
problem (using geometry of polytopes rather than Gordon’s theorem), and
more recently in [3] for general feasible cones. The latter paper proposes a



36 ROMAN VERSHYNIN

notion of statistical dimension, which is a close relative of mean width, and
establishes a variant of Gordon’s theorem for statistical dimension.

10. Low-rank matrix recovery and matrix completion

10.1. Background: matrix norms. The theory we developed so far con-
cerns estimation of vectors in Rn. It should not be surprising that this theory
can also be applied for matrices. Matrix estimation problems were studied
recently, in particular in [12, 13, 37, 14, 63].

Let us recall some basic facts about matrices and their norms. We can
identify d1 × d2 matrices with vectors in Rd1×d2 . The `2 norm in Rd1×d2 is
then nothing else than Frobenius (or Hilbert-Schmidt) norm of matrices:

‖X‖F =
( d1∑
i=1

d2∑
j=1

|Xij |2
)1/2

.

The inner product in Rd1×d2 can be written in matrix form as follows:

〈X,Y 〉 = tr(XTY ).

Denote d = min(d1, d2). Let

s1(X) ≥ s2(X) ≥ · · · ≥ sd(X) ≥ 0

denote the singular values of X. Then Frobenius norm has the following
spectral representation:

‖X‖F =
( d∑
i=1

si(X)2
)1/2

.

Recall also the operator norm of X, which is

‖X‖ = max
u∈Rn\{0}

‖Xu‖2
‖u‖2

= max
i=1,...,d

si(X).

Finally, the nuclear norm of X is defined as

‖X‖∗ =

d∑
i=1

si(X).

Spectrally, i.e. on the level of singular values, the nuclear norm is a
version of `1 norm for matrices, the Frobenius norm is a version of `2 norm
for matrices, and the operator norm is a version of `∞ norm for matrices.
In particular, the following inequality holds:

‖X‖ ≤ ‖X‖F ≤ ‖X‖∗.
The reader should be able to derive many other useful inequalities in a
similar way, for example

‖X‖∗ ≤
√

rank(X) · ‖X‖F , ‖X‖F ≤
√

rank(X) · ‖X‖ (10.1)

and
〈X,Y 〉 ≤ ‖X‖ · ‖Y ‖∗. (10.2)
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10.2. Low-rank matrix recovery. We are ready to formulate a matrix
version of the sparse recovery problem from Section 7. Our goal is to esti-
mate an unknown d1 × d2 matrix X from m linear observations given by

yi = 〈Ai, X〉 , i = 1, . . . ,m. (10.3)

Here Ai are independent d1 × d2 Gaussian matrices with all i.i.d. N(0, 1)
entries.

There are two natural matrix versions of sparsity. The first version is the
sparsity of entries. We will be concerned with the other, spectral, type of
sparsity, where there are only a few non-zero singular values. This simply
means that the matrix has low rank. So let us assume that the unknown
matrix X satisfies

rank(X) ≤ r (10.4)

for some fixed (and possibly unknown) r ≤ n.
The following is a matrix version of Corollary 7.3; for simplicity we are

stating it in a noise-free setting (ε = 0).

Theorem 10.1 (Low-rank matrix recovery). Choose X̂ to be a solution to
the convex program

minimize ‖X ′‖∗ subject to
〈
Ai, X

′〉 = yi, i = 1, . . . ,m. (10.5)

Then

E sup
X
‖X̂ −X‖F ≤ 4

√
π

√
r(d1 + d2)

m
· ‖X‖F .

Here the supremum is taken over all d1 × d2 matrices X of rank at most r.

The proof of Theorem 10.1 will closely follow its vector prototype, that
of Theorem 7.1; we will just need to replace the `1 norm by the nuclear
norm. The only real difference will be in the computation of the mean width
of the unit ball of the nuclear norm. This computation will be based on
Y. Gordon’s bound on the operator norm of Gaussian random matrices, see
Theorem 5.32 in [73].

Theorem 10.2 (Gordon’s bound for Gaussian random matrices). Let G be
an d1×d2 matrix whose entries are i.i.d. mean zero random variables. Then

E ‖G‖ ≤
√
d1 +

√
d2.

Proposition 10.3 (Mean width of the unit ball of nuclear norm). Consider
the unit ball in the space of d1 × d2 matrices corresponding to the nuclear
norm:

B∗ := {X ∈ Rd1×d2 : ‖X‖∗ ≤ 1}.
Then

w(B∗) ≤ 2(
√
d1 +

√
d2).
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Proof. By definition and symmetry of B, we have

w(B) = E sup
X∈B∗−B∗

〈G,X〉 = 2E sup
X∈B∗

〈G,X〉 ,

where G is a d1 × d2 Gaussian random matrix with N(0, 1) entries. Using
inequality (10.2) and definition of B∗, we obtain we obtain

w(B∗) ≤ 2E sup
X∈B∗

‖G‖ · ‖X‖∗ ≤ 2E ‖G‖.

(The reader may notice that both these inequalities are in fact equalities,
although we do not need this in the proof.) To complete the proof, it remains
to apply Theorem 10.2. �

Let us mention an immediate consequence of Proposition 10.3, although
it will not be used in the proof of Theorem 10.1.

Proposition 10.4 (Mean width of the set of low-rank matrices). Let

D = {X ∈ Rd1×d2 : ‖X‖F = 1, rank(X) ≤ r}.
Then

w(D) ≤ 2
√

2r(d1 + d2).

Proof of Proposition 10.4. The bound follows immediately from Proposi-
tion 10.3 and the first inequality in (10.1), which implies that D ⊂

√
r ·

B∗. �

Proof of Theorem 10.1. The argument is a matrix version of the proof of
Theorem 7.1. We consider the following subsets of d1 × d2 matrices:

K̄ := {X ′ : ‖X ′‖∗ ≤ 1}, K := ‖X‖∗ · K̄.
Then obviously X ∈ K, so it makes sense to apply Theorem 6.2 (with ε = 0)
for K. It should also be clear that the optimization program in Theorem 6.2
can be written in the form (10.5).

Applying Theorem 6.2, we obtain

E sup
X
‖X̂ −X‖F ≤

√
2π · w(K)√

m
.

Recalling the definition of K and using Proposition 10.3 to bound its mean
width, we have

w(K) = w(K̄) · ‖X‖∗ ≤ 2
√

2
√
d1 + d2 · ‖X‖∗.

It follows that

E sup
X
‖X̂ −X‖F ≤ 4

√
π

√
d1 + d2

m
· ‖X‖∗.

It remains to use the low-rank assumption (10.4). According to the first
inequality in (10.1), we have

‖X‖∗ ≤
√
r‖X‖F .
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This completes the proof of Theorem 10.1. �

10.3. Low-rank matrix recovery: some extensions.

10.3.1. From exact to effective low rank. The exact low rank assumption
(10.4) can be replaced by approximate low rank assumption. This is a
matrix version of a similar observation about sparsity which we made in
Section 7.2.2. Indeed, our argument shows that Theorem 10.1 will hold if
we replace the rank by the more flexible effective rank, defined for a matrix
X as

r(X) = (‖X‖∗/‖X‖F )2.

The effective rank is clearly bounded by the algebraic rank, and it is robust
with respect to small perturbations.

10.3.2. Noisy and sub-gaussian observations. Our argument makes it easy
to allow noise in the observations (10.3), i.e. consider observations of the
form yi = 〈Ai, X〉+ νi. We leave details to the interested reader.

Further, just like in Section 8, we can relax the requirement that Ai be
Gaussian random matrices, replacing it with a sub-gaussian assumption.
Namely, it is enough to assume that the columns of Ai are i.i.d., mean zero,
isotropic and sub-gaussian random vectors in Rd1 , with a common bound
on the sub-gaussian norm. We again leave details to the interested reader.

We can summarize the results about low-rank matrix recovery as follows.

Using convex programming, one can approximately recover
a d1 × d2 matrix which has rank (or effective rank) r, from
m ∼ r(d1 + d2) random linear observations.

To understand this number of observations better, note that it is of the
same order as the number of degrees of freedom in the set of d1×d2 matrices
or rank r.

10.4. Matrix completion. Let us now consider a different, and perhaps
more natural, model of observations of matrices. Assume that we are given
a small random sample of entries of an unknown matrix matrix X. Our
goal is to estimate X from this sample. As before, we assume that X has
low rank. This is called a matrix completion problem, and it was extensively
studied recently [12, 13, 37, 63].

The theory we discussed earlier in this chapter does not apply here. While
sampling of entries is a linear operation, such observations are not Gaussian
or sub-gaussian (more accurately, we should say that the sub-gaussian norm
of such observations is too large). Nevertheless, it is possible able to derive
a matrix completion result in this setting. Our exposition will be based on
a direct and simple argument from [60]. The reader interested in deeper
understanding of the matrix completion problem (and in particular exact
completion) is referred to the papers cited above.
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Let us formalize the process of sampling the entries of X. First, we fix
the average size m of the sample. Then we generate selectors δij ∈ {0, 1}
for each entry of X. Those are i.i.d. random variables with

E δij =
m

d1d2
=: p.

Our observations are given as the d1 × d2 matrix Y whose entries are

Yij = δijXij .

Therefore, the observations are randomly and independently sampled entries
of X along with the indices of these entries; the average sample size is fixed
and equals m. We will require that

m ≥ d1 log d1, m ≥ d2 log d2. (10.6)

These restrictions ensure that, with high probability, the sample contains
at least one entry from each row and each column of X (recall the classical
coupon collector’s problem).

As before, we assume that

rank(X) ≤ r.
The next result shows that X can be estimated from Y using low-rank
approximation.

Theorem 10.5 (Matrix completion). Choose X̂ to be best rank-r approxi-
mation9 of p−1Y . Then

E
1√
d1d2

‖X̂ −X‖F ≤ C
√
r(d1 + d2)

m
‖X‖∞, (10.7)

where ‖X‖∞ = maxi,j |Xij |.

To understand the form of this estimate, note that the left side of (10.7)
measures the average error per entry of X:

1√
d1d2

‖X̂ −X‖F =
( 1

d1d2

d1∑
i=1

d2∑
j=1

|X̂ij −Xij |2
)1/2

.

So, Theorem 10.5 allows to make the average error per entry arbitrarily
smaller than the maximal entry of the matrix. Such estimation succeeds
with a sample of m ∼ r(d1 + d2) entries of X.

The proof of Theorem 10.5 will be based on a known bound on the op-
erator norm of random matrices, which is more general than Y. Gordon’s
Theorem 10.2. There are several ways to obtain general bounds; see [73]
for a systematic treatment of this topic. We will use one such result due to
Y. Seginer [67].

9Formally, consider the singular value decomposition p−1Y =
∑
i siuiv

T
i with non-

increasing singular values si. We define X̂ by retaining the r leading terms of this decom-

position, i.e. X̂ =
∑r
i=1 siuiv

T
i .
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Theorem 10.6 (Seginer’s bound for general random matrices). Let G be an
d1 × d2 matrix whose entries are i.i.d. mean zero random variables. Then

E ‖G‖ ≤ C
(
Emax

i
‖Gi‖2 + Emax

j
‖Gj‖2

)
where the maxima are taken over all rows Gi and over all columns Gj of G,
respectively.

Proof of Theorem 10.5. We shall first control the error in the operator norm.
By triangle inequality,

‖X̂ −X‖ ≤ ‖X̂ − p−1Y ‖+ ‖p−1Y −X‖. (10.8)

Since X̂ is the best rank-r approximation to p−1Y , and both X and X̂ are
rank-r matrices, the first term in (10.8) is bounded by the second term.
Thus

‖X̂ −X‖ ≤ 2‖p−1Y −X‖ =
2

p
‖Y − pX‖. (10.9)

The matrix Y − pX has independent mean zero entries, namely

(Y − pX)ij = (δij − p)Xij .

So we can apply Y. Seginer’s Theorem 10.6, which yields

E ‖Y − pX‖ ≤ C
(
Emax
i≤d1
‖(Y − pX)i‖2 + Emax

j≤d2
‖(Y − pX)j‖2

)
. (10.10)

It remains to bound the `2 norms of rows and columns of Y − pX. Let us
do this for rows; a similar argument would control the columns. Note that

‖(Y − pX)i‖22 =

d2∑
j=1

(δij − p)2|Xij |2 ≤
d2∑
j=1

(δij − p)2 · ‖X‖2∞, (10.11)

where ‖X‖∞ = maxi,j |Xij | is the `∞ norm of X considered as a vector in

Rd1×d2 . To further bound the quantity in (10.11) we can use concentration
inequalities for sums of independent random variables. In particular, we can
use Bernstein’s inequality (see [9]), which yields

P


d2∑
j=1

(δij − p)2 > pd2t

 ≤ exp(−cpd2t), t ≥ 2.

The first restriction in (10.6) guarantees that pd2 ≥ log d1. This enables us
to use the union bound over i ≤ d1, which yields

Emax
i≤d1

[ d2∑
j=1

(δij − p)2
]1/2
≤ C1

√
pd2.

This translates into the following bound for the rows of Y − pX:

Emax
i≤d1
‖(Y − pX)i‖2 ≤ C1

√
pd2 ‖X‖∞.
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Repeating this argument for columns and putting the two bounds into
(10.10), we obtain

E ‖Y − pX‖ ≤ C2

√
p(d1 + d2) ‖X‖∞.

Substituting into (10.9), we conclude that

E ‖X̂ −X‖ ≤ C3

√
d1 + d2

p
‖X‖∞. (10.12)

It remains to pass to the Frobeinus norm. This is where we use the low

rank assumption on X. Since both X and X̂ have ranks bounded by r, we

have rank(X̂−X) ≤ 2r. Then, according to the second inequality in (10.1),

‖X̂ −X‖F ≤
√

2r ‖X̂ −X‖.

Combining this with (10.12) and recalling that p = m/(d1d2) by definition,
we arrive at the desired bound (10.7). �

Remark 10.7 (Noisy observations). One can easily extend Theorem 10.5 for
noisy sampling, where every observed entry of X is independently corrupted
by a mean-zero noise. Formally, we assume that the entries of the observa-
tion matrix Y are

Yij = δij(Xij + νij)

where νij are independent and mean zero random variables. Let us further
assume that |νij | ≤M almost surely. Then a slight modification of the proof
of Theorem 10.5 yields the following error bound:

E
1√
d1d2

‖X̂ −X‖F ≤ C
√
r(d1 + d2)

m

(
‖X‖∞ +M

)
.

We leave details to the interested reader.

11. Single-bit observations via hyperplane tessellations

It may perhaps be surprising that a theory of similar strength can be
developed for estimation problems with non-linear observations, in which
the observation vector y ∈ Rm depends non-linearly on the unknown vector
x ∈ Rn.

In this and next sections we explore an example of extreme non-linearity
– the one given by the sign function. In Section 13, we will extend the theory
to completely general non-linearities.

11.1. Single-bit observations. As before, our goal is to estimate an un-
known vector x that lies in a known feasible set K ⊂ Rn, from a random
observation vector y = (y1, . . . , ym) ∈ Rm. This time, we will work with
single-bit observations yi ∈ {−1, 1}. So, we assume that

yi = sign 〈ai,x〉 , i = 1, . . . ,m, (11.1)
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where ai are standard Gaussian random vectors, i.e. ai ∼ N(0, In). We can
represent the model in a matrix form:

y = sign(Ax),

where A is an m × n Gaussian random matrix with rows ai, and where
our convention is that the sign function is applied to each coordinate of the
vector Ax.

The single-bit model represents an extreme quantization of the linear
model we explored before, where y = Ax. Only one bit is retained from
each linear observation yi. Yet we hope to estimate x as accurately as if all
bits were available.

The model of single-bit observations was first studied in this context in
[10]. Our discussion will follow [58].

11.2. Hyperplane tessellations. Let us try to understand single-bit ob-
servations yi from a geometric perspective. Each yi ∈ {−1, 1} represents
the orientation of the vector x with respect to the hyperplane with normal
ai. There are m such hyperplanes. The observation vector y = (y1, . . . , ym)
represents orientation of x with respect to all these hyperplanes.

Geometrically, the m hyperplanes induce a tessellation of Rn by cells.
A cell is a set of points that have the same orientation with respect to all
hyperplanes; see Figure 9. Knowing y is the same as knowing the cell where
x lies.

Figure 9. A tessellation of the feasible set K by hyperplanes.
The cell containing x is highlighted.

How can we estimate x? Recall that we know two pieces of information
about x:

1. x lies in a known cell of the hyperplane tessellation;
2. x lies in a known set K.

Therefore, a good estimator of x can be obtained by picking any vector x̂
from the intersection of these two sets. Moreover, since just these two pieces
of information about x are available, such an estimator is best possible in
some sense.
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11.3. M∗ bound for random tessellations. How good is such an esti-
mate? The maximal error is of course the diameter of the intersection of
the cell with K. So in order to bound the error, we need to prove that this
diameter is small.

Note that our strategy is parallel to what we have done for linear obser-
vations in Section 4.1. The only piece we are missing is a version of M∗

bound for random tessellations instead of random subspaces. Informally, we
need a result about the following question:

Question 11.1 (Pizza cutting). How many random hyperplanes would cut
a given set K into pieces that are at most ε in size?

A result about this problem was proved in [58].

Theorem 11.2 (M∗ bound for random tessellations). Consider a set K ⊆
Sn−1 and m independent random hyperplanes drawn uniformly from the
Grassmanian Gn,n−1. Then

Emax
C

diam(K ∩ C) ≤
[Cw(K)√

m

]1/3
, (11.2)

where the maximum is taken over all cells C of the hyperplane tessellation.10

Apart from the exponent 1/2 which is unlikely to be optimal, this result
is indeed a version of the M∗ bound, Theorem 3.12. To further highlight
the similarity, note that when m < n, the intersection of the m random
hyperplanes is a random linear subspace E of codimension m. This sub-
space lies in each cell of the tessellation. So in particular, Theorem 11.2
controls the quantity Ediam(K ∩E) appearing in the standard M∗ bound,
Theorem 3.12.

11.4. Estimation based on M∗ bound for random tessellations. Now
we can apply Theorem 11.2 for the estimation problem. Based on our dis-
cussion in Section 11.2, this result immediately implies the following.

Theorem 11.3 (Estimation from single-bit observations: feasibility pro-
gram). Assume the unknown vector x lies in some known set K ⊆ Sn−1,
and the single-bit observation vector y is given by (11.1). Choose x̂ to be
any vector satisfying

x̂ ∈ K and sign(Ax̂) = y. (11.3)

Then

E sup
x∈K
‖x̂− x‖2 ≤

[Cw(K)√
m

]1/3
. �

10A high-probability version of Theorem 11.2 was proved in [58]. Namely, denoting
by δ the right hand side of (11.2), we have maxC diam(K ∩ C) ≤ δ with probability at
least 1 − 2 exp(−cδ2m), as long as m ≥ Cδ−6w(K)2. The reader will easily deduce the
statement of Theorem 11.2 from this.
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We assumed in this result that feasible set K lies on the unit sphere. This
is because the magnitude ‖x‖2 is obviously lost in the single-bit observations.
So we can only hope to estimate the direction of x, which is the vector
x/‖x‖2 on the unit sphere.

A good news is that estimation can be made from m ∼ w(K)2 single-bit
observations, the same as for linear observations. So, perhaps surprisingly,
the essential information about x is contained in a single bit of each obser-
vation.

A bad news is that the feasibility program (11.3) is not convex. When K
is restricted to lie on the sphere, it can never be convex or be convexified.
One can get around this issue, for example, by lifting the restriction; see
[58] for pizza-cutting of general sets in Rn.

But a better idea will be to replace the feasibility problem (11.3) by an
optimization problem – just like we did in Section 4.2 – which will work for
general sets K in the unit ball Bn

2 rather than the unit sphere. Such sets
can be convexified. We will do this in the next section.

12. Single-bit observations via optimization, and applications
to logistic regression

Our goal remains the same as we described in Section 11.1. We would
like to estimate a vector x that lies in a known feasible set K ⊂ Rn, from
single-bit observations given as

y = sign(Ax) ∈ {−1, 1}m.

Instead of formulating estimation as a feasibility problem (11.3), we will
now state it as an optimization problem, as follows:

maximize
〈
Ax′,y

〉
subject to x′ ∈ K. (12.1)

This program tries to fit linear observations Ax′ to the single-bit obser-
vations y. It does so by maximizing the correlation between linear and
single-bit observations while searching inside the feasible set K.

If K is a convex set, (12.1) is a convex program. Otherwise one can
convexify K as we did several times before.

The following result from [59] provides a guarantee for such estimator.

Theorem 12.1 (Estimation from single-bit observations: optimization pro-
gram). Assume the unknown vector x ∈ Rn satisfies ‖x‖2 = 1 and x lies in
some known set K ⊆ Bn

2 . Choose x̂ to be a solution to the program (12.1).
Then

E ‖x̂− x‖22 ≤
Cw(K)√

m
.

Here C =
√

8π ≈ 5.01.
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Our proof of Theorem 12.1 will be based on properties of the loss function,
which we define as

Lx(x′) = − 1

m

〈
Ax′,y

〉
= − 1

m

m∑
i=1

yi
〈
ai,x

′〉 .
The index x indicates that the loss function depends on x through y. The
negative sign is chosen so that program (12.1) minimizes the loss function
over K.

We will now compute the expected value and the deviation of the loss
function for fixed x and x′.

Lemma 12.2 (Expectation of loss function). Let x ∈ Sn−1 and x′ ∈ Rn.
Then

ELx(x′) = −
√

2

π

〈
x,x′

〉
.

Proof. We have

ELx(x′) = −E y1

〈
a1,x

′〉 = −E sign(〈a1,x〉)
〈
a1,x

′〉 .
It remains to note that 〈a1,x〉 and 〈a1,x

′〉 are normal random variables with
zero mean, variances ‖x‖22 = 1 and ‖x′‖22 respectively, and covariance 〈x,x′〉.
A simple calculation renders the expectation above as −〈x,x′〉 · E sign(g)g

where g ∼ N(0, 1). It remains to recall that E sign(g)g = E |g| =
√

2/π. �

Lemma 12.3 (Uniform deviation of loss function). We have

E sup
u∈K−K

|Lx(u)− ELx(u)| ≤ 2w(K)√
m

. (12.2)

Proof. Due to the form of loss function, we can apply the symmetrization
inequality of Proposition 5.2, which bounds the left side of (12.2) by

2

m
E sup
u∈K−K

∣∣∣ m∑
i=1

εiyi 〈ai,u〉
∣∣∣ =

2

m
E sup
u∈K−K

∣∣∣〈 m∑
i=1

εiyiai,u

〉∣∣∣. (12.3)

By symmetry and since yi ∈ {−1, 1}, the random vectors {εiyiai} are
distributed identically with {ai}. In other words, we can remove εiyi from
(12.3) without changing the value of the expectation.

Next, by rotation invariance,
∑m

i=1 ai is distributed identically with
√
m g,

where g ∼ N(0, In). Therefore, the quantity in (12.3) equals

2√
m

E sup
u∈K−K

| 〈g,u〉 | = 2w(K)√
m

.

This completes the proof. �

Proof of Theorem 12.1. Fix x′ ∈ K. Let us try to bound ‖x−x′‖2 in terms
of Lx(x)− Lx(x′). By linearity of the loss function, we have

Lx(x)− Lx(x′) = Lx(x− x′) = ELx(x− x′) +Dx (12.4)
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where the deviation

Dx := sup
u∈K−K

|Lx(u)− ELx(u)|

will be controlled using Lemma 12.3 a bit later.
To compute the expected value in (12.4), we can use Lemma 12.2 along

with the conditions ‖x‖2 = 1, ‖x′‖2 ≤ 1 (the latter holds since x′ ∈ K ⊆
Bn

2 ). This way we obtain

ELx(x− x′) = −
√

2

π

〈
x,x− x′

〉
≤ −1

2

√
2

π
‖x− x′‖22.

Putting this into (12.4), we conclude that

Lx(x)− Lx(x′) ≤ − 1√
2π
‖x− x′‖22 +Dx. (12.5)

This bound holds for any fixed x′ ∈ K and for any point in the probability
space (i.e. for any realization of the random variables appearing in this
bound). Therefore (12.5) must hold for the random vector x′ = x̂, again for
any point in the probability space.

The solution x̂ was chosen to minimize the loss function, thus Lx(x̂) ≤
Lx(x). This means that for x′ = x̂, the left hand side of (12.5) is non-
negative. Rearranging the terms, we obtain

‖x− x̂‖22 ≤
√

2πDx.

It remains to take expectation of both sides and use Lemma 12.3. This
yields

E ‖x− x̂‖22 ≤
√

2π
2w(K)√

m
.

This completes the proof of Theorem 12.1. �

12.1. Single-bit observations with general non-linearities. The spe-
cific non-linearity of observations that we considered so far – the one given
by sign function – did not play a big role in our argument in the last sec-
tion. The same argument, and surprisingly, the same optimization program
(12.1), can serve any non-linearity in the observations.

So let us consider a general model of single-bit observations y = (y1, . . . , ym) ∈
{−1, 1}m, which satisfy

E yi = θ(〈ai,x〉), i = 1, . . . ,m (12.6)

Here θ : R → R is some link function, which describes non-linearity of ob-
servations. We assume that yi are independent given ai, which are standard
Gaussian random vectors as before. The matrix form of this model can be
written as

Ey = θ(Ax),

where A is an m× n Gaussian random matrix with rows ai, and where our
convention is that the θ is applied to each coordinate of the vector Ax.
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To estimate x, an unknown vector in a known feasible set K, we will try
to use the same optimization program (12.1) in the last section. This may
be surprising since the program does not even need to know the non-linearity
θ, nor does it attempt to estimate θ. Yet, this idea works in general as nicely
as for the specific sign function. The following result from [59] is a general
version of Theorem 12.1.

Theorem 12.4 (Estimation from single-bit observations with general non–
linearity). Assume the unknown vector x ∈ Rn satisfies ‖x‖2 = 1 and x
lies in some known set K ⊆ Bn

2 . Choose x̂ to be a solution to the program
(12.1). Then

E ‖x̂− x‖22 ≤
4w(K)

λ
√
m

.

Here we assume that

λ := E θ(g)g > 0 for g ∼ N(0, 1). (12.7)

Proof. The argument follows very closely the proof of Theorem 12.1. The
only different place is the computation of expected loss function in Lemma 12.2.
When the sign function is replaced by a general non-linearity θ, one easily
checks that the expected value becomes

ELx(x′) = −λ
〈
x,x′

〉
.

The rest of the argument is the same. �

For θ(z) = sign(z), Theorem 12.4 is identical with Theorem 12.1. How-
ever, the new result is much more general. Virtually no restrictions are
imposed on the non-linearity θ. In particular, θ needs not be continuous or
one-to-one.

The parameter λ simply measures the information content retained through
the non-linearity. It might be useful to express λ as

λ = E θ(〈ai,x〉) 〈ai,x〉 ,

so λ measures how much the non-linear observations θ(〈ai,x〉) are correlated
with linear observations 〈ai,x〉.

The assumption that λ > 0 is made for convenience; if λ < 0 we can switch
the sign of θ. However, if λ = 0, the non-linear and linear measurements
are uncorrelated, and often no estimation is possible. An extreme example
of the latter situation occurs when θ is a constant function, which clearly
carries no information about x.

12.2. Logistic regression, and beyond. For the link function θ(z) =
tanh(z/2), the estimation problem (12.6) is equivalent to logistic regression
with constraints. In the usual statistical notation explained in Section 7.4,
logistic regression takes the form

Ey = tanh(Xβ/2).
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The coefficient vector β is constrained to lie in some known feasible set
K. We will leave it to the interested reader to translate Theorem 12.4 into
the language of logistic regression, just like we did in Section 7.4 for linear
regression.

The fact that Theorem 12.4 applies for general and unknown link function
should be important in statistics. It means that one does not need to know
the non-linearity of the model (the link function) to make inference. Be
it the tanh function specific to logistic regression or (virtually) any other

non-linearity, the estimator β̂ is the same.

13. General non-linear observations via metric projection

Finally, we pass to the most general model of observations y = (y1, . . . , ym),
which are not necessarily linear or single-bit. In fact, we will not even spec-
ify a dependence of yi on x. Instead, we only require that yi be i.i.d.random
variables, and

each observation yi may depend on ai only through 〈ai,x〉. (13.1)

Technically, the latter requirement means that, given 〈ai,x〉, the observation
yi is independent from ai. This type of observation models are called single-
index models in statistics.

How can we estimate x ∈ K from such general observation vector y? Let
us look again at the optimization problem (12.1), writing it as follows:

maximize
〈
x′, ATy

〉
subject to x′ ∈ K.

It might be useful to imagine solving this program as a sequence of two
steps: (a) compute a linear estimate of x, which is

x̂lin =
1

m
ATy =

1

m

m∑
i=1

yiai, (13.2)

and then (b) fitting x̂lin to the feasible set K, which is done by choosing a
point in K that is most correlated with x̂lin.

Surprisingly, almost the same estimation procedure succeeds for the gen-
eral single-index model (13.1). We just need to adjust the second, fitting,
step. Instead of maximizing the correlation, let us metrically project x̂lin

onto the feasible set K, thus choosing x̂ to be a solution of the program

minimize ‖x′ − x̂lin‖2 subject to x′ ∈ K. (13.3)

Just like in the previous section, it may be surprising that this estimator
does not need to know the nature of the non-linearity in observations y. To
get a heuristic evidence of why this knowledge may not be needed, one can
quickly check (using roration invariance) that

E x̂lin = E y1a1 = λx̄, where x̄ = x/‖x‖2, λ = E y1 〈a1, x̄〉 .
So despite not knowing the non-linearity, x̂lin already provides an unbiased
estimate of x, up to scaling.
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A result from [60] provides a guarantee for the two-step estimator (13.2),
(13.3). Let us state this result in a special case where K is a cone, i.e.
tK = K for all t ≥ 0. A version for general sets K is not much more
difficult, see [60] for details.

Since cones are unbounded sets, the standard mean width (as defined in
(3.2)) would be infinite. To get around this issue, we should consider a local
version of mean width, which we can define as

w1(K) = E sup
u∈(K−K)∩Bn2

〈g,u〉 , g ∼ N(0, In).

Theorem 13.1 (Estimation from non-linear observations). Assume the un-
known vector x lies in a known closed cone K in Rn. Choose x̂ to be a
solution to the program (13.3). Let x̄ = x/‖x‖2. Then

E x̂ = λx̄ and E ‖x̂− λx̄‖2 ≤
Mw1(K)√

m
.

Here we assume that

λ = E y1 〈a1, x̄〉 > 0 and M =
√

2π
[
E y2

1 + Var
(
y1 〈a1, x̄〉

)]1/2
.

The proof of Theorem 13.1 is given in [60, Theorem 2.1]. It is not difficult,
and is close in spirit to the arguments we saw here; we will not reproduce
it.

The role of parameters λ and M is to determine the correct magnitude
and deviation of the estimator; one can think of them as constants that
are usually easy to compute or estimate. By rotation invariance, λ and
M depend on the magnitude ‖x‖2 (through y1) but not on the direction
x̄ = x/‖x‖2 of the unknown vector x.

We can summarize results of this and previous section as follows.

One can estimate a vector x in a general feasible set K from
m ∼ w(K)2 random non-linear observations, even if the non-
linearity is not known. If K is convex, estimation can be
done using convex programming.

13.1. Examples of observations. To give a couple of concrete examples,
consider noisy linear observations

yi = 〈ai,x〉+ νi.

We already explored this model in Section 6, where νi were arbitrary num-
bers representing noise. This time, let us assume νi are independent random
variables with zero mean and variance σ2. A quick computation gives

λ = ‖x‖2, M = C(‖x‖2 + σ).

Theorem 13.1 then yields the following error bound:

E ‖x̂− x‖2 ≤
Cw1(K)√

m
(‖x‖2 + σ).
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Let us give one more example, for the single-bit observations

yi = sign 〈ai,x〉 .

We explored this model in Sections 11 and 12. A quick computation gives

λ =

√
2

π
, M = C.

Theorem 13.1 then yields the following error bound:

E
∥∥x̂−√ 2

π
x
∥∥

2
≤ Cw1(K)√

m
.

13.2. Examples of feasible cones. To give a couple of concrete examples
of feasible cones, consider the set K of s-sparse vectors in Rn, those with at
most s non-zero coordinates. As we already noted in Example 3.9,

w1(K) ∼
√
s log(2n/s).

Further, solving the program (13.3) (i.e. computing the metric projection of
x̂lin onto K) amounts to hard thresholding of x′. The solution x̂ is obtained
from x̂lin by keeping the s largest coefficients (in absolute value) and zeroing
out all other coefficients.

So Theorem 13.1 in this case can be stated informally as follows:

One can estimate an s-sparse vector x in Rn from m ∼
s log n non-linear observations y, even if the non-linearity
is not known. The estimation is given by the hard threshold-
ing of x̂lin = m−1ATy.

Another popular example of a feasible cone is a set of low-rank matrices.
Let K be the set of d1 × d2 matrices with rank at most r. Proposition 10.4
implies that

w1(K) ≤ C
√
r(d1 + d2).

Further, solving the program (13.3) (i.e. computing the metric projection
of x′ onto K) amounts to computing the best rank-r approximation of x̂lin.
This amounts to hard thresholding of singular values of x̂lin, i.e. keeping
the leading s terms of the singular value decomposition. Recall that we
already came across this thresholding in the matrix completion problem,
Theorem 10.5.

So Theorem 13.1 in this case can be stated informally as follows:

One can estimate an d1 × d2 matrix with rank r from m ∼
r(d1+d2) non-linear observations, even if the non-linearity is
not known. The estimation is given by the hard thresholding
of singular values of x̂lin.
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14. Some extensions

14.1. From global to local mean width. As we have seen, the concept
of Gaussian mean width captures the complexity of a feasible set K quite
accurately. Still, it is not exactly the optimal quantity in geometric and
estimation results. An optimal quantity is the local mean width, which is a
function of radius r > 0, defined as

wr(K) = E sup
u∈(K−K)∩rBn2

〈g,u〉 , g ∼ N(0, In).

Comparing to Definition 3.4 of the usual mean width, we see that

wr(K) ≤ w(K) for all r.

The usefulness of local mean width was noted in asymptotic convex ge-
ometry by A. Giannopoulos and V. Milman [26, 27, 28, 30]. They showed
that the function wr(K) completely describes the diameter of high dimen-
sional sections K ∩ E, thus proving two-sided versions of the M∗ bound
(Theorem 3.12). An observation of a similar nature was made recently by
S. Chatterjee [17] in the context of high dimensional estimation. He noted
that a variant of local mean width provides optimal error rates for the metric
projection onto a feasible set considered in Section 13.

For most results discussed in this survey, one can be replace the usual
mean width by a local mean width, thus making them stronger. Let us
briefly indicate how this can be done for the M∗ bound (Theorem 3.12; see
[27, 28, 30, 51] for a more detailed discussion.

Such localization is in a sense automatic; it can be done as a “post-
processing” of the M∗ estimate. The conclusion of the general M∗ bound,
Theorem 5.1, for T ∩ rBn

2 , is that

sup
u∈Tε∩rBn2

‖u‖2 ≤ C
( 1√

m
E sup
u∈T∩rBn2

| 〈g,u〉 |+ ε
)

(14.1)

with high probability (see also Section 5.2.) Let us show that the intersection
with the ball rBn

2 can be automatically removed from the left side. Since

sup
u∈Tε∩rBn2

‖u‖2 = min
(

sup
u∈Tε

‖u‖2, r
)
,

it follows that if supu∈Tε∩rBn2 ‖u‖2 < r then supu∈Tε ‖u‖2 ≤ r. Thus, if the

right side of (14.1) is smaller than r, then supu∈Tε ‖u‖2 ≤ r.
When applied to the classical M∗ bound, Theorem 3.12, this argument

localizes it as follows.

wr(K)

r
≤ c
√
m implies diam(K ∩ E) ≤ r

with high probability.
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14.2. More general distributions. For simplicity of exposition, the es-
timation results in this survey were stated for isotropic Gaussian vectors
ai. We showed in Section 8 how to extend the M∗ bound and the corre-
sponding linear estimation results for line for sub-gaussian distributions. For
more heavy-tailed distributions, a version of M∗ bound was proved recently
in [46]; compressed sensing for such distributions was examined in [40, 41].

For single-bit observations of Section 12, a generalization for sub-gaussian
distributions is discussed in [2]. Some results can be formulated for anisotropic
Gaussian distributions, where ai ∼ N(0,Σ) with Σ 6= In, see e.g. [59, Sec-
tion 3.4].

Results for extremely heavy-tailed distributions, such as samples of entries
and random Fourier measurements, exist currently only for special cases of
feasible sets K. When K consists of sparse vectors, reconstruction of x from
Fourier measurements (random frequencies of x) was extensively studied in
compressed sensing [19, 39, 15, 35]. Reconstruction of a matrix from a
random sample of entries was discussed in Section 10.4 in the context of
matrix completion problem.

There are currently no results, for instance, about reconstruction of x ∈ K
from random Fourier measurements, where K is a general feasible set. It is
clear that K needs to be incoherent with the Fourier basis of exponentials,
but this has yet to be quantified. In the special case where K is a set of
sparse vectors, basic results of compressed sensing quantify this incoherence
via a restricted isometry property [19, 39, 15, 35].
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[40] G. Lecué, S. Mendelson, Sparse recovery under weak moment assumptions, submitted,
2014.
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169, Birkhäuser, Basel, 1998.

[51] S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Reconstruction and subgaussian
operators in asymptotic geometric analysis, Geom. Funct. Anal. 17 (2007), 1248–
1282.

[52] V. Milman, G. Schechtman, Asymptotic theory of finite-dimensional normed spaces.
With an appendix by M. Gromov. Lecture Notes in Mathematics, 1200. Springer-
Verlag, Berlin, 1986.

[53] S. Oymak, B. Hassibi, New null space results and recovery thresholds for matrix rank
minimization, available at arxiv.org/abs/1011.6326, 2010.

[54] G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006),
1021–1049.

[55] A. Pajor, N. Tomczak-Jaegermann, Subspaces of small codimension of finite dimen-
sional Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 637–642.



56 ROMAN VERSHYNIN

[56] G. Pisier, The volume of convex bodies and Banach space geometry. Cambridge Tracts
in Mathematics, 94. Cambridge University Press, Cambridge, 1989.

[57] Y. Plan, R. Vershynin, One-bit compressed sensing by linear programming, Commu-
nications on Pure and Applied Mathematics 66 (2013), 1275–1297.

[58] Y. Plan, R. Vershynin, Dimension reduction by random hyperplane tessellations, Dis-
crete and Computational Geometry 51 (2014), 438–461.

[59] Y. Plan, R. Vershynin, Robust 1-bit compressed sensing and sparse logistic regression:
a convex programming approach, IEEE Transactions on Information Theory 59 (2013),
482–494.

[60] Y. Plan, R. Vershynin, E. Yudovina, High-dimensional estimation with geometric
constraints, submitted. Arxiv: 1404.3749

[61] N. Rao, B. Recht, R. Nowak, Tight Measurement Bounds for Exact Recovery of
Structured Sparse Signals. In: Proceedings of AISTATS, 2012.

[62] H. Rauhut, K. Schnass, P. Vandergheynst, Compressed sensing and redundant dictio-
naries, IEEE Trans. Inform. Theory 54 (2008), 2210–2219.

[63] B. Recht, A simpler approach to matrix completion, J. Mach. Learn. Res. 12 (2011),
3413–3430.

[64] R. Rockafellar, Convex analysis. Princeton Mathematical Series, No. 28. Princeton
University Press, Princeton, N.J. 1970.

[65] M. Rudelson, R. Vershynin, Combinatorics of random processes and sections of convex
bodies, Annals of Mathematics 164 (2006), 603–648.

[66] M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian
measurements, Communications on Pure and Applied Mathematics 61 (2008), 1025–
1045.

[67] Y. Seginer, The expected norm of random matrices, Combin. Probab. Comput. 9
(2000), 149–166.

[68] N. Srebro, N. Alon, T. Jaakkola, Generalization error bounds for collaborative pre-
diction with low-rank matrices, Advances in Neural Information Processing Systems
(NIPS) 17, 2005.

[69] M. Stojnic, Various thresholds for `1-optimization in compressed sensing, 2009. Arxiv:
0907.3666.

[70] M. Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), 99–149.
[71] M. Talagrand, The generic chaining. Upper and lower bounds of stochastic processes.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.
[72] J. Tropp, Convex recovery of a structured signal from independent random linear

measurements, Sampling Theory, a Renaissance, to appear.
[73] R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, Com-

pressed sensing, 210–268, Cambridge Univ. Press, Cambridge, 2012.
[74] M. Wainwright, Structured regularizers for high-dimensional problems: Statistical and

computational issues, Annual Review of Statistics and its Applications 1 (2014), 233–
253.

Department of Mathematics, University of Michigan, 530 Church St., Ann
Arbor, MI 48109, U.S.A.

E-mail address: romanv@umich.edu

http://arxiv.org/abs/1404.3749
http://arxiv.org/abs/0907.3666
http://arxiv.org/abs/0907.3666

	1. Introduction
	2. High dimensional estimation problems
	3. An excursion into high dimensional convex geometry
	4. From geometry to estimation: linear observations
	5. High dimensional sections: proof of a general M* bound
	6. Consequences: estimation from noisy linear observations
	7. Applications to sparse recovery and regression
	8. Extensions from Gaussian to sub-gaussian distributions
	9. Exact recovery
	10. Low-rank matrix recovery and matrix completion
	11. Single-bit observations via hyperplane tessellations
	12. Single-bit observations via optimization, and applications to logistic regression
	13. General non-linear observations via metric projection
	14. Some extensions
	References



