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Abstract of the Dissertation

Stochastic Modeling and Analysis of Custom

Integrated Circuits

by

Fang Gong

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2012

Professor Lei He, Chair

In the past few decades, the semiconductor industry kept shrinking the feature size

of CMOS transistors with great efforts in order to pack more functional devices on-

to a smaller footprint, which follows the famous Moore’s law. However, it becomes

extremely difficult to ensure the correct functionalities of fabricated circuits in to-

day’s integrated circuit (IC) technology, because the increasing variations from the

manufacturing have introduced inevitable and significant uncertainties in circuit

performance. Moreover, the requirements of lower power consumption and higher

operating frequency for today’s mobile devices demand tighter performance con-

straints on fabricated circuits. Therefore, reliable and efficient statistical analysis

methodologies are highly sought to enable IC designers to predict the stochastic

behavior in fabricated circuits under random process variations before entering

expensive manufacturing.

In this research, the impacts of process variations are studied in the contexts

of failure analysis of memory circuits, stochastic behavioral modeling and varia-

tional capacitance extraction and novel solutions to these contexts are presented.

In particular, memory circuits require an extremely small failure probability for

one single cell due to their high replication count on a small footprint, thereby

making it a great challenging task to provide accurate estimations. To this end,
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an improved importance sampling algorithm is proposed to significantly expedite

the convergence rate of failure probability estimation for memory circuits without

compromising accuracy. For high dimensional problems, the conventional impor-

tance sampling schemes tend to lose accuracy and become very unreliable. To

fix this issue, a novel and fast statistical analysis is presented to estimate the

extremely small failure probability of memory circuits in high dimensions. In

addition, an efficient statistical analysis is proposed to explore the stochastic be-

havior of circuit designs due to random process variations. This methodology

enables IC designers to accurately predict the “arbitrary” probabilistic distribu-

tion of circuit performance considering the uncertainties from the manufacturing.

Lastly, parasitic capacitance has more impact on circuit performance in today’s

sub-micron CMOS technology, which leads to unpredictable delay variations and

severe timing errors. To address this issue, a novel and fast capacitance extraction

algorithm is proposed to model the geometric variations of interconnect circuits

and accurately calculate the variational parasitic capacitance. These stochastic

modeling and analysis methodologies can be used to analyze custom circuits un-

der process variations in the present nano-technology era and future generations

of IC technology.
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CHAPTER 1

Introduction

1.1 Background

The semiconductor industry has been migrating to the nanometer regime in order

to pack more functional devices into a smaller footprint in the past few decades.

In particular, the feature size of CMOS transistor has been shrinking to 45nm

and below which follows Moore’s law [Moo75]. As such, modern mobile devices

(e.g., smart phones, tablets, laptop computers and etc.) are able to provide more

functions, small sizes and high performance by integrating more transistors into

smaller devices. However, it has become extremely challenging to guarantee high-

precision and high-reliability in modern IC designs due to inevitable uncertainties

and variations.

Variations

Static Variation Dynamic Variation

Process Variation Voltage
Variation

Temperature
Variation

Figure 1.1: The categories of variations exist in custom integrated circuits.
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In general, these variations can be categorized into two types: “static varia-

tions” denote the uncertainties during the manufacturing process, such as process

variations (e.g., uncertainties of channel width, length and oxide thickness in C-

MOS transistors); “dynamic variations” include the uncertainties of fabricated

circuits during operations that change over time, such as variations of power sup-

ply voltage and environmental temperature. Specifically, the research in this thesis

focuses on process variations, which have been identified as the leading source that

introduces unavoidable uncertainties in circuit behavior and leads to significant

yield loss [BDM02,CCS04,EBS97].

Moreover, process variations have become larger as technology scales down

to smaller feature sizes. As shown in Fig. 1.2 [Ass05], the variability of CMOS

threshold voltage has increased in the past few years. Clearly, the large variability

of threshold voltage can be translated into large amount of variations in circuit

behavior (e.g., leakage power, timing delay, output swing, etc.), where circuit

performance merits have shifted from deterministic to probabilistic and are more

likely to fail the performance constraints. To compensate for the effects of process

variations, stochastic analysis tools are urgently sought to accurately character-

ize the random process variations and efficiently predict their effects on circuit

behavior.
carefully considered within today’s IC design flow. 

0%

20%

40%
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80%
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Figure 1.  Process variations in future IC technologies [2]. 

Figure 1.2: The trend of process variations on CMOS threshold voltage.
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1.2 Motivations

Standard cells (e.g., SRAM bit-cell, flip-flop, I/O cells, etc.) are very important

components in IC designs and need to be repeated millions of times to provide

high integration density. As such, it is a must that each cell has an extremely

small failure probability [HW04,BDG09] and tight layout footprint. In fact, the

failure probability of an SRAM cell should be kept extremely small (e.g., 1e-

5∼1e-8), making the failure event become a “rare event” [AN06]. In addition,

SRAM cell design tends to adopt the most advanced process technology to achieve

the minimum-sized cells and thus becomes more vulnerable to process variations.

Therefore, accurate failure analysis of SRAM design considering process variations

has become increasingly important and challenging to the modern VLSI industry.

To enable IC designers to predict the stochastic behavior of circuit designs due

to process variations, many statistical methodologies have been developed in the

past few years [Nas01,XK02,VWG06,PR90,LLG04,LL08]. Previous works usually

assume small deviations on variable parameters and make use of linearization

technique (e.g., [Nas01] models circuit performance as a first-order polynomial

function of variable parameters). These methodologies fail to handle today’s VLSI

technology for two reasons:

• Large Variation: each variable parameter tends to have a probabilistic

distribution with a greater standard deviation than ever before, which can

be translated to be larger uncertainty in circuit behavior.

• Strong Nonlinearity: the behaviors of modern custom circuits typically

have strongly nonlinear relationships with variable parameters. Therefore,

it becomes extremely difficult to accurately predict the stochastic behavior

of custom circuits with previous methodologies.

Consequently, novel stochastic methodologies are needed to accurately model the

3



circuit behavior in the presence of process variations.

Lastly, parasitic capacitance extraction considering process variations has re-

cently regained popularity [ZW05, ZZC07, CCS08]. Due to process variations,

fabricated interconnects and dielectrics show significant differences from the nom-

inal shapes. As a result, the extracted parasitic capacitance can be off from the

nominal value by a large margin, which may further lead to a significant variability

for the delay calculation and timing analysis. For example, as shown in [LNP00]

variations of interconnects can cause as much as 25% variations in the clock skew.

Thus, it becomes an urgent need to accurately extract variational parasitic capac-

itance under random process variations.

1.3 Contributions

Importance sampling scheme has been investigated in past few years to esti-

mate the failure probability of SRAM cells [KJN06,DQS08,QTD10,SR07,KHT10,

DL11], because the failure of SRAM cells is a “rare event” and classic Monte Carlo

(MC) method is extremely time-consuming (e.g., one million MC samples can only

capture one single failure event). However, these importance sampling method-

ologies are plagued by slow convergence rates of probability estimation. In this

thesis, an improved importance sampling algorithm is proposed to increase the

convergence speed while providing high accuracy. The proposed approach has

been applied to the failure analysis of SRAM cells and compared with other vari-

ous methods. Extensive experiments show several orders of magnitude speedups

over other existing techniques along with better accuracy.

The importance sampling schemes work sufficiently very well in low dimension-

al problems but become extremely inaccurate and unreliable in high dimensions.

To fix this issue, a fast statistical failure analysis of memory circuits in high di-

mensions is proposed in this thesis, which has been successfully applied to failure

4



probability prediction of memory circuits with up to hundreds variables. To the

best of our knowledge, this is the first work that successfully applies the impor-

tance sampling paradigm to high dimensional problems. Experimental results

show the failure of existing importance sampling methods and demonstrate the

validity of the proposed approach.

A novel moment-matching based algorithm is presented to extract the “arbi-

trary” probabilistic behavioral distributions of custom circuits. Note that “circuit

behavior” denotes the performance merits (e.g., node voltage, period, bandwidth,

etc.) and thus we use “circuit behavior” and “performance merits of circuit”

interchangeably in this thesis. In particular, the proposed method can accurate-

ly recover the “arbitrary” probabilistic distributions of circuit performance and

provide great computational complexity reduction. The proposed approach has

been successfully applied to high dimensional problems with large variations and

strongly nonlinear circuits. The extensive experiments demonstrate that the pro-

posed method can provide significant speedup over Monte Carlo method while

retaining the accuracy.

The existing parasitic capacitance extraction algorithms [NW91,SD97,SLK98]

fail to characterize the geometric variations of interconnects and usually needs to

solve a large-scale dense system with great computational efforts. To take varia-

tion effects into account and provide better efficiency, a parallel and variability-

aware solver for stochastic capacitance extraction is developed in this thesis, which

makes use of stochastic orthogonal polynomials to describe random geometric vari-

ations and solves the dense linear system in parallel for variational capacitance.

The overall extraction flow is called piCAP and a number of experiments show

that piCAP efficiently handles a large-scale on-chip capacitance extraction with

variations.

5



1.4 Structure of Dissertation

The research presented in this dissertation mainly focuses on process variation

modeling and analysis using numerical and statistical techniques, which studies

four important issues: failure analysis of SRAM cells, failure analysis of memory

circuits in high dimension, stochastic behavioral modeling and variational capac-

itance extraction.

The remainder of this dissertation is organized as follows:

• Chapter 2: Fast Failure Probability Estimation of SRAM Cells

An improved importance sampling method is presented for the failure anal-

ysis of SRAM cells where circuit failure is a rare event.

• Chapter 3: Fast Failure Analysis of Memory Circuits in High Di-

mensions

A fast statistical failure analysis of memory circuits in high dimensions is

proposed in this chapter.

• Chapter 4: Stochastic Behavioral Modeling and Analysis

The “arbitrary” probabilistic behavioral distributions of custom circuits are

accurately recovered with affordable computational efforts using the pro-

posed algorithm in this chapter.

• Chapter 5: Parallel and Variability-Aware Capacitance Extraction

The parasitic capacitance extraction under process variations is studied and

a novel solution is developed in this chapter.

• Chapter 6: Conclusion

The conclusion and future works are discussed.
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CHAPTER 2

Fast Failure Probability Estimation of SRAM

Cells

2.1 Introduction

It has become increasingly challenging to estimate the failure probability of S-

RAM cells under large-scale process variations, because SRAM bit-cell needs to

be copied millions or billions of times as an array for higher integration density

and the failure of one single cell could be catastrophic. Therefore, SRAM cells

require extremely small failure probability [HW04, BDG09] and the failure has

become a rare event [AN06] that can only be captured with millions of samples

and with extremely long Monte Carlo (MC) simulations.

To avoid the expensive MC runs, importance sampling has been proposed

based on the insight that only the “importance samples” of rare events can

improve the estimation accuracy and further speed up the estimation conver-

gence. This approach has been extensively used for rare event estimation prob-

lems [KJN06, DQS08,QTD10, SR07, KHT10, DL11]. However, one critical issue

that affects the efficiency of importance sampling is how to build an “optimal

sampling distribution” so that more “importance samples” of rare events can be

chosen.

Many statistical methodologies have been developed to build the optimal sam-

pling distribution for importance sampling and applied to failure rate estimation of

SRAM cells in the past few decades [KJN06,DQS08,QTD10,SR07,KHT10,DL11]:
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For example, [KJN06] approximates the optimal sampling distribution by mixing a

uniform distribution, the given sampling distribution and a “shifted” distribution

centering around the failure region. [DQS08,QTD10] simply shift the mean values

and keep the shape of original sampling distributions, but they minimize the norm

value of shift vectors to find the optimal sampling distribution. [SR07] makes use

of a “classifier” to block the Monte Carlo samples that are likely to satisfy the

given performance constraints and runs simulations on the remaining samples. In

addition, a “particle filtering” based approach was proposed in [KHT10] which

tilts more samples towards the failure region. Moreover, [DL11] was recently pro-

posed to adapt “Gibbs Sampling” in order to draw more failed samples directly

from the failure region, which demonstrated improved performance over previous

works. However, all the above-mentioned approaches either require many com-

plicated techniques and become highly difficult, if not impossible, to implement,

or converge to sub-optimal sampling distributions that cannot provide high ef-

ficiency. Therefore, one efficient algorithm with less implementation efforts and

improved performance is still urgently needed to accurately estimate the failure

rate of SRAM cells.

In this chapter, we present a fast algorithm based on probability collectives

method for failure rate estimation of SRAM cells. First, “Kullback-Leibler (KL)

distance” from probability theory [RE00] and information theory [CT91] is used

to quantitatively measure the distance between the optimal sampling distribution

and the given distribution of variable parameters. Then, a set of parameterized

sampling distributions can be analytically solved by minimizing the KL distance

with probability collectives method using immediate sampling [RWK06,RKW07],

which is as close to the optimal sampling distribution as possible. Therefore,

the estimation convergence of importance sampling can be significantly improved.

The experimental results show that the proposed algorithm not only provides

extremely high accuracy but also achieves 5200X speed-up over Monte Carlo.
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Moreover, the proposed method is more than 40X faster than other state-of-the-

art techniques (i.e. mixture importance sampling method [KJN06] and spherical

sampling method [QTD10]).

Although probability collectives was initially developed in the statistics field

[RWK06,RKW07], it remains unknown how to interface it to the importance sam-

pling method for failure analysis of SRAM cells. In fact, there are three major

issues that need to be resolved: first, one particular type of parameterized distribu-

tion should be chosen in order to approximate the optimal sampling distribution.

Second, it is important but unknown how to initialize the parameterized sam-

pling distribution. Third, the minimization of KL distance involves complicated

optimization problems and usually requires expensive computational efforts. To

resolve these issues, we select a set of Gaussian distributions parameterized by

mean and sigma, and adapt the “norm minimization” from [DQS08,QTD10] to

efficiently initialize them by shifting the given sampling distribution towards the

failure region. Moreover, the immediate sampling based probability collectives

method [RWK06,RKW07] can be used to analytically solve for the optimal pa-

rameterized sampling distributions for importance sampling. To the best of our

knowledge, it is the first time to present the probability collectives based impor-

tance sampling method for failure probability estimation of SRAM cells.

The rest of this chapter is organized as follows. In Section 2.2, we provide

necessary background on importance sampling, KL distance and probability col-

lectives methods. Section 2.3 contains more details of the required techniques

in the proposed method for SRAM failure analysis. The experiments and more

discussions are provided in Section 2.4 to validate the accuracy and efficiency of

proposed method. This chapter is concluded in Section 2.5.
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2.2 Background

2.2.1 Importance Sampling

Let ξi (i = 1, · · · , m) be independent random variables with probability density

function (PDF) as p(ξi) for circuit parameters under process variations, such as

the threshold voltage and effective channel length of transistors.

As such, one Monte Carlo sample ξj = (ξj1, · · · , ξ
j
m) consists of one sample from

each random variable distribution, and their joint PDF p(ξ) can be expressed as

follows due to independence property:

p(ξ) =
m∏

i=1

p(ξi). (2.1)

In addition, f(ξ) is the performance merit of interest, such as static noise

margin of SRAM cell (shown in Fig.2.2), and typically needs to be evaluated with

expensive transistor-level circuit simulation.

Without loss of generality, f0 can be a given performance constraint so that the

circuit failure f(ξ) < f0 becomes unlikely to happen or a “rare event”. Thereby,

one indicator function I(ξ) can be defined to identify pass/fail of f(ξ) as:

I(ξ) =







0 f(ξ) ≥ f0 (pass)

1 f(ξ) < f0 (fail)
(2.2)

Therefore, the probability of failure events can be estimated in (3.3) where the

failed samples count and passed samples are omitted:

prob(fail) =

∫

I(ξ) · p(ξ)dξ. (2.3)

In general, p(ξ) is known as given sampling distributions for variable parame-
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ters but I(ξ) is unknown. In fact, the indicator function I(ξ) cannot be evaluated

explicitly and usually needs extremely long Monte Carlo simulations on millions

samples of ξ because the failures are rare events.

To avoid massive Monte Carlos samples and simulations, the importance sam-

pling has been proposed to sample from one “distorted” sampling distribution g(ξ)

that tilts towards the failure region where failures become more likely to happen

or “less rare”:

prob(fail) =

∫

I(ξ) ·
p(ξ)

g(ξ)
· g(ξ)dξ =

∫

w(ξ) · I(ξ) · g(ξ)dξ. (2.4)

where w(ξ) is likelihood ratio or weight for each sample of ξ which can unbias the

probability estimation from g(ξ). Theoretically, the optimal sampling distribution

gopt(ξ) [DL11], where only one sample is needed to provide the accurate estimation

of failure probability, can be expressed as:

gopt(ξ) =
I(ξ) · p(ξ)

prob(fail)
(2.5)

However, gopt(ξ) cannot be evaluated with (2.5) directly because I(ξ) is un-

known and prob(fail) is the very desired failure rate. Instead, another sampling

distribution h(ξ) should be created to provide an approximation as close to gopt(ξ)

as possible so that the similar estimation behavior can be expected. As a result,

the Kullback-Leibler distance can be used to define the distance between h(ξ) and

gopt(ξ).

2.2.2 Kullback-Leibler Distance

The Kullback-Leibler (KL) distance was first proposed in probability theory [RE00]

and information theory communities [CT91] to measure the directional distance

from one distribution to the other. In other words, KL distance is defined between
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any two distributions and measures how “close” they are.

For example, the KL distance from distribution gopt(ξ) in (2.5) to h(ξ) can be

expressed as:

DKL(g
opt(ξ), h(ξ)) = Egopt

[

log(
gopt(ξ)

h(ξ)
)

]

. (2.6)

Note that both distribution gopt and h should be defined over the same random

variable ξ. In addition, E[·] denotes the expectation operator and the subscript

gopt indicates that E[·] is taken with respect to distribution gopt.

One important question would be why KL distance shall be chosen? In fact,

there exist several divergences in probability theory (e.g., KL distance, Hellinger

distance, total variation distance and etc. [LV06]) which can measure the difference

between two probability distributions. The reasons why KL distance is chosen in

this work are following:

• First, KL distance is a “non-symmetric” or “directed” measure of the dif-

ference between two probability distributions [CT91]. Here, the “directed”

measure implies that one distribution is the fixed prior reference distribution

and typically represents the “best” or “true” distribution, while the other

distribution is the “less good” or “approximate” distribution. For exam-

ple, the KL distance of h(ξ) from gopt(ξ) in (2.6) is a measure of the error

when the distribution h(ξ) is used to approximate the “true” distribution

gopt(ξ). Clearly, the KL distance is very suitable for our problem where the

distribution h(ξ) shall be as close to the fixed optimal distribution gopt(ξ)

as possible.

• Second, the minimization of KL distance can easily be turned into convex

optimization problems when Gaussian distributions are investigated [CT91,

MR02,RR07,Mel07,BKM05]. It is well known that for a convex optimization

problem, a local minimum is also a global minimum, which is easy to solve

numerically. In fact, an analytical solution is available for KL distance
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minimization problem in this work which will be discussed in Section 2.3.3.

Next, it is desired to minimize DKL(g
opt(ξ), h(ξ)) in order to achieve h∗(ξ) as

the best approximation of gopt(ξ). To this end, the probability collective method

can be adapted to solve the minimization problem efficiently.

2.2.3 Probability Collectives

In general, probability collectives (PC) method is an efficient optimization frame-

work under uncertainty [RWK06,RKW07], which can search the optimal probabil-

ity distributions of variable parameters in order to optimize the objective function.

As an illustration, we consider random variables ξ=(ξ1, · · · , ξm) and aim to

minimize the KL distance as:

argminEgopt

[

log(
gopt(ξ)

h(ξ)
)

]

. (2.7)

Clearly, the above minimization problem is equivalent to the following problem

because gopt(ξ) is independent of h(ξ) as shown in (2.5):

argmaxEh [I(ξ) · log(h(ξ))] . (2.8)

However, it is highly prohibitive to perform exhaustive search for h(ξ) since

the searching space is extremely large and contains arbitrary distributions. PC

method simplifies the problem by utilizing a set of parameterized sampling dis-

tributions h(ξ, θ) with extra parameters θ = (θ1, · · · , θm). As such, the problem

becomes:

θ∗ = argmax
θ

Eh [I(ξ) · log(h(ξ, θ))] . (2.9)

where θ∗ is the optimal parameter of distribution h(ξ, θ) which can lead to min-

imum KL distance in (2.7) and thereby h(ξ, θ∗) is the optimal approximation of
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gopt(ξ).

Note that the expectation value Eh in (2.9) cannot be evaluated with analytical

formula and thereby sampling techniques must be used. In fact, several sampling-

based PC methods have been proposed in past few years [RWK06,RKW07], such

as delay sampling based PC, immediate sampling based PC, etc.

In this chapter, we adapt the immediate sampling based PC method as sum-

marized in Algorithm (3) and interested readers are referred to [RWK06,RKW07]

for other PC methods.

Algorithm 1 Immediate Sampling based PC Algorithm

1: Choose the initial parameter θ(1) to build parameterized sampling distribu-
tions h(ξ, θ(1)).

2: Draw random samples from h(ξ, θ(1)) and set iteration index number t = 2.
3: repeat
4: Evaluate values of indicator function I(ξ) with those samples.
5: Solve for θ(t) by:

θ(t) = argmax
θ

Eh

[
I(ξ) · log(h(ξ, θ(t−1)))

]
.

6: Draw random samples from the parameterized distribution h(ξ, θ(t)) and set
t = t+ 1.

7: until Converged (e.g. θ(t) does not change for several subsequent iterations)
8: The optimum parameter θ∗ can be obtained.
9: Sample final h(ξ, θ∗) to get solution(s).

Since the updated distribution h(ξ, θ(t)) at t-th iteration will be sampled imme-

diately, the procedure is called “immediate sampling” based PC method. However,

there exist several issues that need to be resolved when immediate sampling PC

method is used for failure analysis of SRAM cells:

• First, there exist many types of parameterized distributions (e.g. Gaussian

distributions, Boltzmann distributions and etc.), and it remains unclear how

to choose h(ξ, θ) for SRAM failure analysis.

• It is important and nontrivial to find θ(1) which provides a “starting point”
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or “heuristic initial solution” for the solution of (2.9) and can significantly

affect the speed of convergence in Algorithm (3).

• The optimization problem in (2.9) is very difficult to solve and one closed-

form solution is highly desired.

Therefore, it is of interest to develop an approach to use immediate sampling

based PC method in a way that is suitable for SRAM failure analysis.

2.3 Proposed Method

In this section, we will introduce several existing techniques and highlight our

novel contributions that are needed to utilize the immediate sampling PC method

for SRAM failure analysis.

2.3.1 Parameterized Distribution Selection

Before we move forward, let us first introduce the modeling of process variations

in SRAM cells. In general, the variation sources of CMOS transistors can be

threshold voltage Vth, effective channel length Leff and other device parameters,

but Vth variation is dominant so that the variability effects of other parameters

are significantly masked [BDG09].

Moreover, Vth variations are typically modeled as independent random vari-

ables of Gaussian distributions [KJN06, DQS08,QTD10, SR07,DL11]. As such,

it is a natural choice to deploy a family of Gaussian distributions parameterized

by mean (µ) and stand deviation (σ). In fact, the choice of parameterized Gaus-

sian distributions can help us to find one closed-form solution to the optimization

problem in (2.9) as shown in following sections.

As an illustration, let ξi be the independent Gaussian random variable for i-th

Vth variation source, which has mean µ
(0)
i and standard deviation σ

(0)
i . To build
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the parameterized Gaussian distribution for ξi, we introduce the extra parameters

θi = (µθ
i , σ

θ
i ) by shifting the mean to µθ

i and reducing the standard deviation to

σθ
i , which are motivated by the following insights:

• Mean-shift can lean the sampling distribution towards the infeasible region

where the rare failures are more likely to happen, which is similar to the

finding in [DQS08] and has been extensively used by many previous works

such as [DQS08,QTD10,KHT10,MR02,RR07,Mel07,BKM05].

• σ-change can concentrate the samples around much smaller region where

rare failures can happen with higher probability.

Therefore, the samples drawn from the parameterized Gaussian distribution

h(ξi, µ
θ
i , σ

θ
i ) are more likely to fail, and can thereby expedite the convergence of

failure probability estimation in the importance sampling. However, it is still un-

known how to find the optimal parameters θ∗i efficiently, which will be investigated

in following sections.

2.3.2 Initial Parameter Selection

As shown in the Algorithm (3), the first step is to initialize the parameter θ, which,

in fact, provides a “starting point” or “heuristic initial solution” to search for the

optimal parameter θ∗. As such, the initial parameter θ(1) can significantly affect

the efficiency of the iterative search in Algorithm (3) or even lead to completely

misleading results.

To this end, we propose an efficient initial parameter selection method inspired

by the insights of “norm minimization” in [DQS08], which can rapidly shift the

given sampling distribution towards the failure region and make rare failures most

likely to happen.

Assume random variables ξi following N(µ
(0)
i , σ

(0)
i ) and the proposed initial
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parameter selection can be summarized as following: first, a few hundred uniform-

distributed samples of ξi can be generated using Quasi Monte Carlo method in

order to evenly cover the entire parameter range, such as eight-sigma range from

(µ
(0)
i − 4σ

(0)
i ) to (µ

(0)
i + 4σ

(0)
i ). Then, transistor-level simulations can be run on

these samples and the failed samples can be identified with given performance

constraints. We can further choose one failed sample with the minimum L2-norm

and use its value as the initial parameter for µ
(1)
i . In addition, the initial sigma

parameter σ
(1)
i can be the same as given σ

(0)
i .

It is worthwhile to point out that above “norm minimization” based method

can only be a heuristic for obtaining an initial parameterized Gaussian distribution

but cannot provide the optimal sampling distribution h(ξ, θ∗) in (2.9) by any

means. As a matter of fact, the optimization problem in (2.9) should be solved

for h(ξ, θ∗) and one efficient closed-form approach is highly needed that will be

discussed in next section.

2.3.3 Closed-Form Optimization Solution

Before we present the closed-form solution, it should be noted that the optimiza-

tion in (2.9) must be revised as (2.10) because samples are generated from the

parameterized distributions h(ξ, θ) rather than those given distributions h(ξ):

θ∗ = argmax
θ

Eh[I(ξ) · w(ξ, θ) · log(h(ξ, θ))]. (2.10)

where w(ξ, θ) denotes the weights to unbias the samples from the parameterized

distribution h(ξ, θ) and can be expressed as:

w(ξ, θ) =
h(ξ)

h(ξ, θ)
. (2.11)

For illustration purpose, let us consider following example with a little abuse
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of notation:

• ξ = (ξ1, · · · , ξm): independent random Gaussian variables.

• h(ξ) = (h(ξ1), · · · , h(ξm)): the given Gaussian sampling distributions of ξ.

• θi = (µθ
i , σ

θ
i ): the parameters used to parameterize given PDFs h(ξi).

• h(ξ, θ) =(h(ξ1, µ
θ
1, σ

θ
1), · · · , h(ξm, µ

θ
m, σ

θ
m)): the chosen parameterized Gaus-

sian distributions for ξ.

• ξ1i , · · · , ξ
j
i , · · · , ξ

N
i : the samples of ξi drawn from the parameterized Gaussian

distribution h(ξi, µ
θ
i , σ

θ
i ).

As such, the weights of j-th sample ξj=(ξj1, · · · , ξ
j
m) can be expressed as:

w(ξj, θ) =
h(ξj1)× · · · × h(ξjm)

h(ξj1, µ
θ
1, σ

θ
1)× · · · × h(ξjm, µθ

m, σ
θ
m)

. (2.12)

Moreover, the expectation value Eh in (2.10) cannot be evaluated directly

because there is no analytical formula for the integral operation, and sampling

methods must be used. For instance, with the samples ξji , (j = 1, · · · , N), the

optimization problem for θi becomes the sampled form as:

θ∗i = argmax
θ

1

N

N∑

j=1

(
I(ξj)× w(ξj, θ)× log(h(ξji , θi))

)
. (2.13)

As proposed in [RWK06], the above optimization problem is a convex opti-

mization problem that can be solved with closed-form formula, because the pa-

rameterized distribution h(ξ, θ), following Gaussian distribution, is a log-concave

distribution.

Specifically, the optimal parameters µθ,∗
i and σθ,∗

i can be analytically solved
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with closed-form formulae as [RWK06,RKW07]:

µθ,∗
i =

∑N

i=1 I(ξ
j)× w(ξj, θ)× ξji

∑N

i=1 I(ξ
j)× w(ξj, θ)

. (2.14)

where µθ,∗
i can be asymptotically approached by iteratively updating the θ and

re-evaluate the above formula. In practice, the iterative process can converge very

fast within only a few iterations. Note that [CT91,MR02,RR07,Mel07,BKM05]

have found the identical analytical formula to find the optimal parameter for mean

shift.

Similarly, the closed-form formula can be derived to analytically compute σθ,∗
i

as:

σθ,∗
i =

√
∑N

i=1 I(ξ
j)× w(ξj, θ)× (ξji − µθ,∗

i )2
∑N

i=1 I(ξ
j)× w(ξj, θ)

. (2.15)

It is obvious that the calculation of σθ,∗
i depends on the optimization result µθ,∗

i

from (3.8). In other words, the potential error from the optimization of µθ,∗
i can be

directly propagated into the computation of σθ,∗
i and lead to completely mislead-

ing results, which is especially undesired because the performance of importance

sampling is highly sensitive to the sampling distribution. This observation can

further validate the necessity of initial parameter selection presented in previous

section.

Therefore, the optimal sampling distribution can be obtained as h(ξ, µθ,∗, σθ,∗),

which can be finally sampled to estimate the probability of SRAM rare event

failures in the importance sampling and can provide significant improvement on

both accuracy and efficiency.

2.3.4 Overall Algorithm Flow

The proposed algorithm for SRAM failure analysis is based on above-mentioned

techniques. The overall algorithm flow has been described in Algorithm(2), which
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mainly consists of three stages as summarized below:

(1) Initial parameter selection: The first stage aims to initialize the pa-

rameterized sampling distribution h(ξ, θ) as a “heuristic initial solution” to

search for the optimal parameterized sampling distribution h(ξ, θ∗), which

adopts the insight of “norm minimization” from [DQS08] and shifts the giv-

en sampling distribution towards the failure region where SRAM failures are

more likely to happen.

(2) Optimal parameter finding: This stage starts with the initial parameter-

ized sampling distribution and analytically solves the optimization problem

as (3.8) and (2.15) to achieve the optimal parameterized sampling distribu-

tion h(ξ, θ∗).

(3) Failure probability estimation: The traditional importance sampling

method can be performed with the obtained optimal sampling distribution

h(ξ, θ∗) to estimate the failure rate of SRAM cells, where both faster con-

vergence speed and improved accuracy can be expected.

As shown in Section 2.4, the proposed approach in Algorithm(2) can provide

more than 40X speedup over the existing state-of-the-art techniques and be up

to 5200X faster than Monte Carlo method without compromising any accuracy.

2.4 Experimental Results

We have implemented our proposed algorithm using MATLAB and Hspice with

BSIM4 model. Also, Monte Carlo (MC), spherical sampling (SS) [QTD10] and

mixture importance sampling (MixIS) [KJN06] are all implemented. As an illus-

tration, the threshold voltages of all MOSFETs are considered as variation sources

and static noise margin (SNM) failure is studied. Note that the same algorithm
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Algorithm 2 Overall Algorithm for SRAM Failure Analysis

Input: random variables ξ = (ξ1, · · · , ξM) with Gaussian distributions h(ξ).
Output: the estimation of failure probability pr.

1: /* Stage 1: Initial Parameter Selection */
2: Draw uniform-distributed samples from h(ξ) and simulate these samples.
3: Identify those failed samples with given performance constraints and calculate

the L2-norm values.
4: Choose the failed sample with the minimum L2 norm and use the value of this

sample as the initial µ(1).
5: Set the initial sigma σ(1) to be the same as given σ(0).
6:

7: /* Stage 2: Optimal Parameter Finding */
8: Draw N2 samples from the initial parameterized distribution h(ξ, µ(1), σ(1))

and set the iteration index number t = 2.
9: repeat
10: Evaluate indicator function I(ξj) in (3.8) and (2.15) with these samples.
11: for i = 1 → M do
12: Solve for µ

(t)
i and σ

(t)
i with (3.8) and (2.15)

13:

14: Draw N2 samples from the updated parameterized distribution
h(ξ, µ(t), σ(t)) and set t = t+ 1.

15: until Converged; when µ(t) and σ(t) do not change for several subsequent
iterations.

16: Obtain the optimal parameter µ∗ and σ∗ for parameterized sampling distri-
bution.

17:

18: /* Stage 3: Failure Probability Estimation */
19: DrawN3 samples from the obtained optimal sampling distribution h(ξ, µ∗, σ∗).
20: Simulate the samples ξj and evaluate the indicator function I(ξj), (j =

1, · · · , N3).
21: Solve for the failure probability pr with sampled form, where w(ξj, µ∗, σ∗) is

the weight/liklihood-ratio for sample ξj.

pr =
1

N3

N3∑

i=1

I(ξj)× w(ξj, µ∗, σ∗).

can be applied to both other variation sources (i.e. Leff , Tox, etc.) and other rare

failures (i.e. reading/writing failures) as well.
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2.4.1 SRAM Cell and Static Noise Margin

The typical design of a 6-transistor SRAM cell has been shown in Fig. 3.5 and we

introduce process variations to threshold voltage Vth of all MOSFETs which can be

modeled as independent random variables of Gaussian distributions. Specifically,

the nominal mean values of threshold voltages for NMOS and PMOS are 0.466V

and −0.4118V , respectively. The standard deviations (σ) of threshold voltage

variations are 10% of nominal threshold voltage values.

Q

Q

WL

BL
BL

Vdd

Mn1

Mn2

Mn3

Mn4

Mp5 Mp6

WL

Figure 2.1: The schematic of the 6T SRAM cell.

The SRAM cell consists of six transistors: Mn2 and Mn4 control the access

of the cell during reading, writing and standby operations; the remaining four

transistors form two inverters and use two stable states (either ‘0’ or ‘1’) to store

the data in this memory cell.

Moreover, the static noise margin (SNM) has been extensively used to measure

the stability of SRAM cell by describing the noise voltage that is needed to flip the

stored data. More specifically, SNM can be measured by the length of maximum

embedded square in the butterfly curves as shown in Fig. 2.2 which consist of the

voltage transfer curve (VTC) of the two inverters in SRAM cell [MMR10]. As

such, when SNM is less than zero, the butterfly curve is collapsed and the data
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Figure 2.2: Illustration of SRAM static noise margin (SNM) butterfly curves.

retention failure happens.

2.4.2 Accuracy Comparison

2.4.2.1 Comparison of Failure Rate Estimation

To validate the estimation accuracy of the proposed algorithm, we perform all

different methods (e.g. Monte Carlo (MC), mixture importance sampling (Mix-

IS) [KJN06], spherical sampling (SS) [QTD10] and proposed algorithm) on the

same 6-T SRAM cell example in 45nm process to predict the probability of data

retention failure due to SNM variation. Here, we choose V DD = 300mV as an

example for comparison.

Evolutions of the probability estimation from different methods are plotted in

Fig. 3.7(a), where following observations can be made:

• First, the failure rate estimations from different methods can closely match

each other, which can validate the estimation accuracy of our proposed
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Figure 2.3: Evolution comparison of the failure probability estimation and figure
of merit for different methods.

method.

• Second, the proposed method in contrast to other methods starts with an

estimation that is very close to the final accurate result, because only the

proposed method can find the optimal sampling distribution using proba-

bility collectives method for importance sampling.

• The comparisons among MixIS, SS and proposed method also reveal that the

importance sampling is highly sensitive to the sampling distribution, which

can affect both the accuracy and efficiency. This is the very motivation

behind this chapter to exploit the optimal sampling distribution.
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2.4.2.2 Comparison of Figure-Of-Merit (FOM)

As stated in [DQS08,QTD10], Figure-Of-Merit (FOM), ρ, has been extensively

used to quantify the accuracy of probability estimation, which is defined as:

ρ =

√

σ2
prob(fail)

prob(fail)
. (2.16)

where prob(fail) is the estimation of failure probability and σprob(fail) is the stan-

dard deviation of prob(fail). In fact, the FOM can be treated as a relative error

so that smaller figure of merit means higher accuracy.

Similarly, we further calculate the evolution of FOM for different methods at

V dd = 300mV which are plotted in Fig. 3.7(b). To clearly compare the accuracy

of different methods, we plot a dashed line to indicate the 90% accuracy level

with 90% confidence interval (ρ = 0.1) and can have two important observations

as following:

• MixIS, SS and proposed method can quickly reach higher accuracy level

(> 90%) while Monte Carlo can only closely approach the 90% accuracy.

It is because importance sampling based methods can choose more failed

samples from the failure region so that to efficiently improve the accuracy,

while Monte Carlo method wastes a large number of samples that are far

from the failure region.

• It is obvious that proposed method can significantly improve the accuracy

in contrast to other methods when the same number of samples are available

to all different methods. For instance, we compare their accuracy level in

Table 2.1 with only 10, 000 samples for all different methods. In this table,

the proposed method can provide 98.2% accuracy while other methods can

only reach up to 90.42%, which is attributed to the choice of the optimal

sampling distribution.
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Table 2.1: Results of all methods with 10, 000 samples.

MC MIS SS Proposed

prob. of failure 5.455E-4 3.681E-4 4.342E-4 4.699E-4

ρ 0.8129 0.1111 0.9831 0.021

accuracy 18.71% 88.53% 90.42% 98.2%

#runs 1.0e+4 1.0e+4 1.0e+4 1.0e+4

2.4.3 Efficiency Comparison

2.4.3.1 Comparison of Convergence Speed

Observing Fig. 3.7(b) again can help us to investigate the efficiency of proposed

algorithm, which is shown to have the fastest speed of convergence between all

the different methods illustrated. In this figure, the proposed method can choose

more failed samples and increasingly improve the accuracy to an extremely high

accuracy level due to the optimal sampling distribution.

The similar observation can also be found from Fig. 3.7(a): the proposed

method starts with the estimation that is very close to the final accurate results

and quickly converge to the 95% confidence interval of final Monte Carlo result

(denoted by two dashed lines). Meanwhile, the estimations from other methods

keep fluctuating and asymptotically approach the final accurate results.

In fact, the proposed method can achieve 90% accuracy and 90% confidence

interval with only 231 samples. In the contrast, MixIS and SS need 2.85e+4

and 9.77e+3 samples to reach the same accuracy level, respectively. Monte Carlo

method cannot even reach 90% accuracy with up to 1.2e+6 samples. In other

words, the proposed method can achieve 5200X speedup over Monte Carlo, 123X

speedup over MixIS [KJN06] and 42X speedup over SS [QTD10].
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Table 2.2: Accuracy and efficiency comparison for different methods.

Vdd
Monte Carlo MixIS Spherical Sampling Proposed

(MC) [KJN06] (SS) [QTD10]

275mV
prob. 1.82E-3 2.282E-3 2.678E-3 2.1E-3

accuracy 90% 90% 90% 90%
#runs 1.22E+05 (1X) 9.5E+4 (1.28X) 2.359E+3 (51.7X) 257 (474X)

290mV
prob. 7.823E-4 7.97E-4 8.163E-4 8.1E-4

accuracy 90% 90% 90% 90%
#runs 2.46E+5 (1X) 2.27E+4 (10.8X) 1.383E+3 (178X) 281 (875X)

300mV
prob. 4.675E-4 4.332E-4 4.208E-4 4.7E-4

accuracy 88% 90% 90% 90%
#runs 1.2E+6 (1X) 2.85E+4 (42X) 9.771E+3 (123X) 231 (5200X)

2.4.3.2 Comparison on Different VDD Levels

We also perform our proposed method to the same SRAM cell example with dif-

ferent V DD levels, such as 275mV and 290mV , because the V DD level can signif-

icantly change the failure probability. The comparison is shown in Table 2.2 and

reveals that the proposed method can provide faster convergence and improved

accuracy for all V DD levels. For instance, when compared with Monte Carlo

method, the proposed method can achieve 474X speedup for V DD = 275mV ,

875X speedup for V DD = 290mV and 5200X speedup for V DD = 300mV in

order to achieve the 90% accuracy. More importantly, the speedup ratio keeps in-

creasing along with the increase of V DD value and the decrease of SRAM failure

rate.

2.4.3.3 Other Efficiency Comparison

It should be noted that all importance sampling based methods require some

“extra” samples to find the new sampling distribution, which are called “extra”

because Monte Carlo method does not need these extra samples and simulations.

For example, the stage 1 and stage 2 in Algorithm (2) need some “extra” samples

to construct the optimal sampling distribution before the failure probability can

be estimated in stage 3.
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Table 2.3: Comparison of total number of samples for similar accuracy.

MC MIS [KJN06] SS [QTD10] Proposed

prob. of failure 4.675E-4 4.332E-4 4.208E-4 4.7E-4
accuracy 88% 90% 90% 90%

#total samples 1.2E+6 3.15E+4 1.08E+4 2.23E+3

Specifically, in our experiments, the MixIS needs 3000 samples to find the

sampling distribution, because it mixes the uniform distribution, given sampling

distribution and mean-shifted distribution together and requires more samples.

SS method needs 2000 samples which mainly aims to locate the failed samples

with minimum L2-norm in a spherical manner. The proposed method also needs

2000 samples to find the optimal sampling distribution. Table 2.3 shows the total

number of required samples for all different methods. It is worthwhile to point out

that these “extra” samples become negligible when compared with Monte Carlo

method.

2.4.4 Discussion about Sigma-Change

One more question would be how the sigma-change can improve the convergence

and accuracy? To answer this question, we simply compare two implementations

of proposed algorithm: one only shifts the mean values of given sampling distri-

butions similar to [DQS08,QTD10,MR02,RR07,Mel07, BKM05], and the other

adopts both mean-shift and sigma-change to construct the optimal sampling dis-

tribution.

We apply these two implementations to the same SRAM cell problem at

V DD = 300mV and plot the evolutions of FOM in Fig. 2.4. In this figure,

we similarly draw a dashed line to indicate the 90% accuracy level. So, it can be

observed that proposed method with both mean-shift and sigma-change needs 231

samples, while the proposed method with only mean-shift requires 561 samples.

Clearly, the sigma-change technique provides an extra 2.4X speedup.
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Figure 2.4: Comparison to validate the performance of sigma-change.

Moreover, we compare and show the given sampling distribution and the op-

timal sampling distribution for one PMOS in Fig. 2.5 as an illustration. This

figure demonstrates the optimal sampling distribution not only shifts the mean

value from −0.4118 to −0.5185, but also reduces the sigma from 0.0412 to 0.0302.

Note that the sigma-change can also provide the potential sensitivity information

which can be used for design optimization purpose, since the proposed method

tends to find tightly peaked sampling distributions for those critical parameters

in terms of the rare failures.

2.5 Conclusion

In this chapter, we presented an improved importance sampling method based on

the probability collectives method to efficiently estimate the rare event failures

of SRAM cells. This method adopts the “Kullback-Leibler (KL) distance” to
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Figure 2.5: Comparison of given distribution and the optimal sampling distribu-
tion.

represent the distance between the optimal sampling distribution and a given

sampling distribution. Then, the KL distance is further analytically minimized

using immediate sampling based probability collectives method and parameterized

Gaussian distributions are obtained as the optimal sampling distribution. The

experiments demonstrate that the proposed algorithm can provide extremely high

accuracy and dramatically improve the convergence of importance sampling. For

instance, the proposed method can be 5200X faster than Monte Carlo method and

offer more than 40X speedup over other existing state-of-the-art techniques (e.g.

mixture importance sampling [KJN06] and spherical sampling [QTD10]) with the

same accuracy.
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CHAPTER 3

Fast Failure Analysis of Memory Circuits in

High Dimensions

3.1 Introduction

The reliability of memory circuits has become an increasingly challenging issue due

to inevitable process variations in the manufacturing. For example, the critical

components of memory circuits (e.g., SRAM bit-cell, delay chain, sense amplifier,

etc.) need to be replicated millions or even billions times for very high capacity,

thereby, making the circuit failure a “rare-event” with extremely small probability

[AN06].

The analysis of rare events is usually analytical intractable due to high com-

plexity of memory circuits. Sampling based methods must be used. The most s-

traightforward approach is the Monte Carlo (MC) method, which repeatedly draws

samples and evaluates circuit performance with transistor-level SPICE simulation.

However, MC is extremely time-consuming for rare-event estimation because mil-

lions or even billions of samples are needed to capture one single failure.

To mitigate the complexity issue of the MC method, many statistical method-

ologies have been developed to predict the probability of rare failure events for

SRAM cells in the past few years [SR09, KJN06, DQS08, QTD10, KHT10, GB-

D12,DL11]. These methods can be categorized into three groups:

(1) Classification: the approach in [SR09] makes use of a “classifier” to “block”

those Monte Carlo samples that are unlikely to cause failures and simulates the
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remaining samples. However, this method has two limitations. First, a perfect-

ly accurate classifier is usually unavailable. A safety margin is used in [SR09]

to prevent the classifier error. Second, the imperfect classifier can easily incur

large error beyond the safety margin for circuits with irregular failure region and

strongly nonlinear behavior, which typically cannot be detected by the approach

in [SR09].

(2) Importance Sampling: several approaches in [KJN06,DQS08,QTD10,KHT10,

GBD12] had been developed to construct a new “proposed” sampling distribution

under which a “rare event” becomes “less rare” so that more failures can be easily

captured. The critical issue is how to build an optimal proposed sampling distri-

bution. Previous works investigated different approaches. For example, [KJN06]

mixes a uniform distribution, the original sampling distribution and a “shifted”

distribution centering around the failure region. The approaches in [DQS08,QT-

D10] simply shift the sampling distribution towards the point of failure region

with a minimum L2-norm. The work in [KHT10] uses “particle filtering” to tilt

more samples towards the failure region. The approach in [GBD12] approximates

the optimal sampling distribution with a parameterized sampling distribution by

minimizing the Kullback-Leibler (KL) distance between them. These importance

sampling based methods are plagued by the curse of high dimensionality [AB03,B-

B05,RG09]. In general, they can only be used for low-dimensional problems (e.g.,

those with a scope of 6-12 variables) but become very untrustworthy for high-

dimensional problems.

(3) Markov Chain Monte Carlo: the approach in [DL11] uses a set of sample

“chains” to explore the failure region with the aid of the Markov Chain Monte

Carlo (MCMC) method. However, it is very difficult to cover the entire failure

region with several chains of MCMC samples, particularly when tens or hundreds

of random variables are considered.

Clearly, most of these existing approaches can successfully be applied to rel-
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atively simple problems with a few random variables but, in general, perform

poorly in high dimensions. Therefore, an effective and low-complexity approach

is still urgently needed for rare-event analysis in high dimensions.

In this chapter, we propose a novel statistical algorithm to efficiently estimate

the probability of rare events in high dimension, called “High Dimensional Impor-

tance Sampling (HDIS)”. We also successfully apply HDIS to failure probability

estimation of memory circuits with tens or hundreds of random variables. The

proposed algorithm constructs a new subset of the sampling space that dominates

the failure region and can be efficiently estimated with a few samples. Then,

the probabilities of rare failure events can be evaluated using the product rule

for conditional probability and an importance sampling-based method. More im-

portantly, it is proved that the estimation of the proposed algorithm is always

bounded, while the estimations of existing IS methods become unbounded in high

dimensions. The experiments show that the proposed approach can achieve up to

708X speedup over the MC method on a 108-dimensional problem without com-

promising any accuracy. Also, the proposed method is 17X faster than a classifi-

cation based method (e.g., Statistical Blockade [SR09]) while existing importance

sampling methods (i.e., Spherical Sampling [DQS08,QTD10]) completely fail to

provide reasonable accuracy.

In general, this work provides a fast and reliable rare-event analysis in high di-

mensions which can be applied to multiple application domains. In particular, this

work enables further studies that were prohibitive before due to high dimension-

ality, such as the analysis of large-scale circuits, the variation analysis with more

accurate models, fast system-level analysis with a large number of components

and etc.

The rest of this chapter is organized as follows. Section 3.2 provides the

necessary background on importance sampling and revisits the reasons for its

failure in high dimensions. Section 3.3 describes the techniques underpinning the
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proposed algorithm in detail. Section 3.4 provides experiments to validate the

accuracy and efficiency of proposed method. Section 3.5 concludes this chapter.

3.2 Background

3.2.1 Formulation of Probability Estimation

Let f(X) be a probability density function (PDF) for a random variable X (e.g.,

any process or electronic variable parameters) which is the input of a measurement

process as shown in (4.1); the output Y is an observation (e.g., voltage, amplitude,

period, etc.) with input X :

X
︸︷︷︸

variable

⇒ Measurement, SPICE, etc. ⇒ Y
︸︷︷︸

observation

(3.1)

Usually, it is of great interest to estimate the probability of Y from a small

subset S of the entire sampling space. For example, a small subset is the “failure

region” for SRAM design and includes all failed samples where performance con-

straints cannot be satisfied. Therefore, the probability p(Y ∈ S) can be estimated

as:

p(Y ∈ S) =

∫

I(X) · f(X)dX. (3.2)

I(X) =







0 if Y /∈ S

1 if Y ∈ S

where Y is the observation/performance with the input variable X and the in-

dicator function I(·) identifies whether Y ∈ S or not. Note that the integral in

equation (3.3) is intractable because the analytical formula of I(X) is unavailable.

Therefore, sampling based method must be used. For example, the MC method

enumerates as many samples of X as possible according to f(X) (e.g., x1, · · · , xn)
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and evaluates their indicator function values to estimate p(Y ∈ S) as:

p̃(Y ∈ S) =
1

n

n∑

i=1

I(xi)
a.s.
n→+∞
−−−−→ p(Y ∈ S). (3.3)

Here p̃(X ∈ S) is an unbiased estimate and can be very close to p(X ∈ S) with a

large number of samples.

3.2.2 Importance Sampling (IS)

When Y ∈ S is a rare event, the MC method becomes extremely inefficient because

most I(xi) are zeros. Millions or billions samples of X are needed to capture only

one failed sample from the failure region S.

To deal with this issue, the importance sampling (IS) has been introduced to

sample from a “proposed” sampling distribution g(X) that tilts towards S where

a rare-event becomes more likely to happen:

pIS(Y ∈ S) =

∫

I(X) ·
f(X)

g(X)
· g(X)dX

=

∫

I(X) · w(X) · g(X)dX. (3.4)

Here, w(X) is the “likelihood ratio” or the weight for each sample of X . w(X)

compensates for the discrepancy between f(X) and g(X) and unbiases the prob-

ability estimation under g(X). Sampling based methods can be used to evaluate

above integral as:

p̃IS(Y ∈ S) =
1

n

n∑

j=1

w(x̃j) · I(xj)
a.s.
n→+∞
−−−−→ p(Y ∈ S). (3.5)

It is worthwhile to point out that x̃j (j = 1, · · · , n) follows the “proposed”

sampling distribution g(X) rather than the original distribution f(X). As such,
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it becomes much easier to obtain rare-event samples from the subset S by sampling

from g(X).

Theoretically, p̃IS(Y ∈ S) is consistent with p(Y ∈ S) in (3.3) if supp(g(X)) ⊃

supp(I(X) · f(X)), where supp(·) denotes the support of a probabilistic distribu-

tion.

3.2.3 Failure Analysis of Importance Sampling

While importance sampling is, in principle, mathematically correct, the degenera-

tion or collapse of the likelihood ratios leads to the failure of importance sampling

in high dimensions as discussed in [BB05,RG09].

Let us consider a classical case, as shown in Fig. 3.1, where f(X) is the original

sampling distribution and g(X) is the proposed sampling distribution. The small

circles with the same size following g(X) are samples drawn from g(X). In the

bottom of Fig. 3.1, a few circles with different sizes represent the illustrative scales

of the likelihood ratios corresponding to the samples on top of them. Clearly,

if g(X) has thinner tails than f(X), the likelihood ratios w(X) = f(X)/g(X)

approach infinity in the tails of g(X). The likelihood ratios thus vary dramatically,

have extremely large variance and lead to unstable probability estimate.

 

f(X) g(X) 

Scale Illustration of Likelihood Ratios 

Figure 3.1: The scale illustration of likelihood ratios in importance sampling.

Moreover, the reason for the collapse of likelihood ratio can be explained from
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another perspective: when importance sampling shifts g(X) towards the rare-

event region that is typically in the tails of f(X), f(X) and g(X) become mutually

singular and have “disjoint” support [BB05]. Therefore, IS fails to retain its

accuracy.

This collapse issue of likelihood ratios in importance sampling becomes much

more severe in high dimensions because w(X) is a product of probabilities for

multiple parameters and consequently approaches infinity more quickly.

3.3 Proposed Method

3.3.1 Algorithm Overview

We consider a small subset S as the failure region in SRAM design under the

given performance constraint (e.g., the performance of SRAM circuit Y should be

greater than certain performance threshold tc). As such, the subset S = {Y |Y ≥

tc} contains all failed samples which should be “rare events”.

The basic idea of the proposed algorithm is to construct a new subset T with

certain threshold t (e.g., t = 0.99-quantile point so that P(Y ∈ T ) = 0.99, which

includes “non-rare” events and dominates the subset S containing rare events(e.g.,

supp(T ) ⊃ supp(S)).

In this way, the desired failure probability of SRAM design can be estimated

by a product rule from the probability theory [PP01]:

P (Y ≥ tc) = P (Y ≥ t) · P (Y ≥ tc|Y ≥ t). (3.6)

The proposed algorithm can be illustrated with Fig. 3.2 which consists of two

stages:

1) Initial Sampling with MC: This step aims to evaluate the probability P (Y ∈
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T ) = P (Y ≥ t) where t is the threshold, such as t = 0.99-quantile point shown in

the left of Fig. 3.2. Since the samples in T are “non-rare” events, this evaluation

needs only a few samples using standard MC method.

2) Conditional Probability Estimation: The most difficult task of the proposed

approach is to efficiently calculate the conditional probability P (Y ≥ tc|Y ≥ t)

with high accuracy. For this purpose, we propose an importance sampling-based

method which takes two steps to construct the “proposed” sampling distribution

g(X): first, the original sampling distribution f(X) is shifted towards a “non-rare”

subset T = {Y |Y ≥ t}; second, a larger standard deviation is properly chosen

for the shifted sampling distribution to reach the failure region S = {Y |Y ≥ tc}

(shown in the right of Fig. 3.2). We present more details in the following sections.

 

f(X2)

Threshold t

(0.99-quantile)

f(X1)

Failure Region

Y

Y is an observation with input X

X

Y

Failure Region

1( )g X

2 )(g X
X

Step1: Estimate P(Y>= t) using MC Step2: Calculate conditional 

probability P(Y>= tc | Y>= t)

Threshold t Performance

Constraint tc

Y>= tc

Y>= t

Figure 3.2: Overall flow in proposed algorithm.
(Noted that T = {Y |Y ≥ t} contains S = {Y |Y ≥ tc}).

Remarks: For better understanding purpose, we discuss the two-fold motiva-

tions intuitively behind the construction of g(X): first, f(X) is shifted towards a
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“non-rare” subset T which is typically around the mean of f(X). Thus the shift-

ed distribution share almost the same support with f(X) to avoid the “disjoint

support” issue. Second, the “proposed” sampling distribution should dominate or

completely cover the “rare-event” region S. Hence, a larger standard deviation is

chosen to easily draw samples from S which is typically in the tails of f(X). In

this way, a “proposed” sampling distribution g(X) can be obtained.

The overall algorithm flow is described in Algorithm(3). Section 3.4 shows

that the proposed algorithm can handle more than one hundred random variables

by providing MC accuracy and up to 708X speedup. Also, it is 17X faster than

the classification based method such as statistical blockade [SR09].

Algorithm 3 Overall Algorithm

Input: random variables X with sampling distributions f(X) and performance
constraints Y ≥ tc.
Output: the estimation of failure probability pIS(Y ≥ tc).

1: /* 1: Initial Sampling with MC */
2: Use few MC samples to find the threshold value t of performance (e.g., t =

0.99-quantile point).
3: Run standard Monte Carlo method to calculate PMC(Y ≥ t) with certain

accuracy level.
4:

5: /* 2: Conditional Probability Calculation */
6: Shift the sampling distribution f(X) towards a “non-rare” subset T =

{Y |Y ≥ t}.
7: Choose the standard deviation of sampling distribution to construct g(X).
8: Generate samples from g(X) and evaluate P (Y ≥ tc|Y ≥ t) using importance

sampling-based method.
9:

10: /* 3: Failure Probability Estimation */
11: Solve for the failure probability pIS(Y ≥ t) as

PIS(Y ≥ tc) = PMC(Y ≥ t) · P (Y ≥ tc|Y ≥ t).

The key problem is to accurately calculate conditional probability with as few

samples as possible. There exist several issues that need to be resolved:
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(1) The original sampling distribution f(X) needs to be shifted towards T but

it is, at the moment, unclear how to find the shift vector for f(X).

(2) It is important and nontrivial to find the value of the standard deviation for

the proposed sampling distribution g(X) since the standard deviation can

significantly affect both accuracy and convergence speed in Algorithm(3).

(3) With the properly-chosen g(X), an importance sampling-based method is

needed to calculate the conditional probability where conventional IS cannot

be applied.

(4) It is desired to investigate the robustness of proposed algorithm. For ex-

ample, it is of great interest to study whether the estimations of proposed

algorithm is always bounded or not.

The following sections discuss how we solve these issues.

3.3.2 Calculation of Conditional Probability

3.3.2.1 Mean-Shift Vector Selection

The first issue is to find the shift vector for sampling distribution f(X). This is

a classical problem in previous rare-event estimation works [KJN06,DQS08,QT-

D10,KHT10,GBD12]. Even though these works deploy different techniques, they

indeed share the same basic idea: shift the sampling distribution towards the point

where the failed samples are most likely to happen. In this work, we adopt the

insights from [GBD12] which provides a close-to-optimal sampling distribution.

For illustration purpose, we consider a 1-D example but similar technique can

be easily applied to high dimension as well. The algorithm in [GBD12] starts

with an initial parameterized distribution f̂(X, µ̂) and tries to update the mean

value in order to achieve a close-to-optimal sampling distribution f ∗(X, µ∗) by an
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analytic formula:

µ∗ =

∑N

i=1 I(xi) · w(xi) · xi
∑N

i=1 I(xi) · w(xi)
. (3.7)

Here xi (i = 1, · · · , N) are samples drawn from f̂(X, µ̂) and w(xi) are their

likelihood ratios as w(xi) = f(xi)/f̂(xi, µ̂).

Intuitively, the updated mean value µ∗ can be viewed as the coordinates of

the centroid point in the failure region where the failed samples are most likely

to happen. This interesting finding becomes more obvious if f̂(X, µ̂) equals f(X)

and all likelihood ratios take on value 1. Hence, µ∗ is:

µ∗ =

∑N

i=1 I(xi) · xi
∑N

i=1 I(xi)
. (3.8)

Therefore, our proposed algorithm shifts the sampling distribution towards

the “centroid point” of the subset T = {Y |Y ≥ t}, which can be calculated with

available MC samples from the first step in Algorithm (3) and requires no extra

sampling/simulation.

3.3.2.2 Standard Deviation Selection

The second issue is to choose the standard deviation for the proposed sampling

distribution g(X). As an illustration, let us consider a 2-D problem in Fig. 3.3.

The same method can be applied to high dimensional problems as well.

Note that f(X) has been shifted to the centroid point of subset T = {Y |Y ≥ t}

(as marked in Fig. 3.3). The problem now becomes how to choose the standard

deviation of the proposed sampling distribution g(X) to obtain the samples in

S = {Y |Y ≥ tc}.

The proposed algorithm first approximates the centroid point of S = {Y |Y ≥

tc} using uniformly-distributed samples and then calculates the distance between

these two centroid points along each parameter axis (e.g., dX1
and dX2

shown in
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X2

X1

Centroid of Y>=t

Centroid of Y>=tc

dX1

dX2

Figure 3.3: The distance between centroid points of two subsets along each pa-
rameter axis.

Fig.3.3). Then, we choose max(dXi
, σ(0,Xi)) as the standard deviation of g(Xi) for

the variable Xi, where σ(0,Xi) is the original standard deviation of f(Xi). This

choice can be intuitively explained as following:

• dXi
> σ(0,Xi): the failure region S is very far away from the subset T ,

therefore, the larger value dXi
is used to extend the range of g(Xi) and

obtain the rare-event samples in the failure region. In the meantime, g(Xi)

has almost the same supports with f(Xi) because its mean position locates

at the centroid point of T and is not far away from f(Xi).

• dXi
< σ(0,Xi): Suppose the smaller one, dXi

, is chosen as the standard de-

viation of g(Xi), the proposed sampling distribution g(X) will have much

smaller sampling space, thereby, making it fail to keep the same supports

with f(Xi) and suffer from “disjoint supports” issue. The proposed algo-

rithm chooses σ(0,Xi) as the standard deviation of g(Xi) in this case.

3.3.2.3 Importance Sampling-based Method

With the proposed sampling distribution g(X), an importance sampling-based

method has been proposed in this work to estimate the conditional probability in
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Algorithm(3). We can start with the product rule in the probability theory [PP01]:

P (Y ≥ tc|Y ≥ t) =
P (Y > tc, Y > t)

P (Y > t)
. (3.9)

In addition, the subset T = {Y |Y ≥ t} dominates the failure region S =

{Y |Y ≥ tc} (e.g., T ⊃ S), which implies following two properties [PP01]:

P (Y > tc, Y > t) = P (Y > tc),

P (Y > t) > P (Y > tc). (3.10)

Moreover, when samples xi (i = 1, · · · , N) are generated from g(X), both

P (Y > tc) and P (Y > t) can be estimated by conventional importance sampling

method. Thus, the equation (3.9) becomes:

PMIS(Y ≥ tc|Y ≥ t) =
P (Y > tc)

P (Y > t)

=
�
�1
N

N∑

i=1

w(xi) · I{Y >tc}(xi)

�
�1
N

N∑

i=1

w(xi) · I{Y >t}(xi)

. (3.11)

where I{Y >tc}(·) and I{Y >t}(·) are indicator functions for subsets Y ≥ tc and Y ≥ t,

respectively. w(xi) are likelihood ratios for these samples. In this way, the condi-

tional probability can be efficiently evaluated under proposed sampling distribu-

tion g(X).

3.3.3 Analysis of Boundedness

3.3.3.1 Importance Sampling

Let us first investigate the existing importance sampling and assume samples

xj (j = 1, · · · ,M) are generated from the proposed sampling distribution g(X).
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We find the upper bound of probability estimate from the conventional impor-

tance sampling according to Boole’s inequality (also known as the union bound

from probability theory [PP01]) as:

P (Y > tc) = Pf (

M∑

j=1

I{Y >tc}(xj)) 6

M∑

j=1

Pf(xj) · I{Y >tc}(xj)

=

M∑

j=1

w(xj) · I{Y >tc}(xj). (3.12)

where Pf stands for the probability estimation under sampling distribution f(X).

As discussed in [BB05,RG09], the likelihood ratios w(xj) can vary dramatically

in high dimension and be any random quantities. Therefore, the union bound of

the estimation P (Y > tc) in (3.12) approaches infinity and importance sampling

becomes unreliable and untrustworthy.

3.3.3.2 Proposed Algorithm

The proposed algorithm constructs a subset T = {Y |Y ≥ t} that dominates the

failure region S = {Y |Y ≥ tc} (i.e., T ⊃ S). Therefore, the upper bound of

conditional probability can be derived using the properties in (3.10) as:

P (Y > tc|Y > t) =
P (Y > tc)

P (Y > t)

=

N∑

j=1

w(xj) · I{Y >tc}(xj)

N∑

j=1

w(xj) · I{Y >t}(xj)

6 1. (3.13)

Clearly, no matter how likelihood ratios w(xj) vary, the conditional probability

estimation of proposed algorithm is always bounded by the upper bound 1 if and

only if the calculations of both P (Y > tc) and P (Y > t) utilize the same set of

samples xj (j = 1, · · · ,M) drawn from g(X). Therefore, the rare-event estimation
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of proposed algorithm can reliably provide bounded estimation results.

3.4 Experimental Results

In general, the proposed HDIS algorithm is intrinsically application-independent

and can be applied to broad disciplines. As an example, we investigate its per-

formance for a failure analysis on memory circuits (e.g., SRAM bit-cell and delay

chain) in this section. All experiments are performed using MATLAB and H-

spice with BSIM4 transistor model. In addition, Monte Carlo (MC), statistical

blockade (SB) [SR09], and spherical sampling (SS) [DQS08, QTD10] have been

implemented for comparison purpose.

3.4.1 SRAM Circuit and Variation Modeling

A functional diagram of SRAM circuit with one bit-cell column is shown in Fig.

3.4, which consists of a decoder, bit-cells, a sense amplifier and a delay chain

[PS08]. Let us consider a reading operation to illustrate the functionalities of

these components: the bit-cells store the data in forms of ‘0’ or ‘1’; the decoder

generates an address of a specific bit-cell and releases a read enable signal. As

such, the chosen bit-cell starts to discharge the bit-lines (i.e., the lines that connect

to all bit-cells) to produce a voltage difference between two bit-lines. The delay

chain serves as a timing control unit and aims to activate the sense amplifier which

reads out the stored data by capturing the voltage difference on bit-lines before

the read operation is complete.

The process variations are introduced into each transistor of SRAM circuit,

which are modeled by 9 process parameters shown in Table 4.1. The parameters

are physically independent [DM03] and can be considered to be Gaussian random

variables. Note that the threshold voltage Vth is not a process parameter and

depends on Vfb, tox, ∆L and ∆W through related effects [DM03].
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Figure 3.4: Functional diagram of an SRAM circuit.

Table 3.1: Process Parameters of MOSFETs.

Variable Name σ/µ unit
Flat-band Voltage (Vfb) 0.1 V
Gate Oxide Thickness (tox) 0.05 m
Mobility (µ0) 0.1 m2/V s
Doping concentration at depletion (Ndep) 0.1 cm−3

Channel-length offset (∆L) 0.05 m
Channel-width offset (∆W ) 0.05 m
Source/drain sheet resistance (Rsh) 0.1 Ohm/mm2

Source-gate overlap unit capacitance (Cgso) 0.1 F/m
Drain-gate overlap unit capacitance (Cgdo) 0.1 F/m

Table 3.2: Comparison for SRAM bit-cell with 90% target accuracy and confidence
level.

MC SS SB Proposed
[QTD10] [SR09] (HDIS)

failure probability 2.413E-05 2.8415E-05 2.7248e-05 2.4949E-05
relative error (0%) (+17.7%) (+12.9%) (+3.39%)
#sim. runs 4.6e+6 2e+4 8.16e+5 4e+3
speedup (1150X) (5X) (204X) (1X)
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3.4.2 SRAM Cell with Reading Failure

A typical 6-transistor SRAM bit-cell is shown in Fig. 3.5: Mn2 and Mn4 control

the accessing of the cell; the remaining four transistors form two inverters and

use two stable states (either ‘0’ or ‘1’) to store the data in this memory cell. The

reading access failure happens when the voltage difference between B̄L and BL

is too small to be sensed by the sense amplifier at the end of reading operation

[AN06].

Q

Q

WL

BL
BL

Vdd

Mn1

Mn2

Mn3

Mn4

Mp5 Mp6

WL

Figure 3.5: The schematic of the 6T SRAM cell.

We perform different methods (MC, SS [QTD10], SB [SR09], HDIS) on this 6-

T SRAM bit-cell example to predict the reading failure probability under process

variations and the comparison results are shown in Table 3.2.

3.4.2.1 Accuracy Comparison

At a first glance, we would be very surprised to find that SS [QTD10] method based

on conventional importance sampling framework can provide accurate failure rate

predictions in this 54-dim problem!

However, this comparison cannot allow us to reach that conclusion, because

this SRAM bit-cell example is a “pseudo” high-dimensional problem for two-fold

reasons: (1) during the reading operation, not all transistors are active. In fact,

both Mp5 and Mn3 are shut off, therefore, the process variations on these two
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transistors have no effect on discharge behavior of bit-lines at all; (2) without loss

of generality, assuming B̄L = ‘0’ and BL=‘1’, the discharge current flows from

B̄L to the ground through Mn2 and Mn1 so that to pull down the voltage of B̄L.

As such, the process variations in Mn2 and Mn1 have more significant effects on

the discharge behavior of bit-lines and can potentially mask the variation effects

in Mp6 and Mn4. In this way, there are only 18 “effective” variable parameters,

which suggests that this example is a problem with modest dimension.

When compared with MC results, the proposed HDIS method provides the

most accurate failure probability estimation with only 3.39% relative error, while

the estimations from SS [QTD10] and SB [SR09] have more than 10% relative

error.

3.4.2.2 Efficiency Comparison

From Table 3.2 we also compare the efficiency of these methods: MC is very time-

consuming and requires nearly 4.6 millions transistor-level SPICE simulations;

SB [SR09] can provide 6X complexity reduction by screening out and simulating

those “most-likely-to-fail”samples; SS [QTD10] method is made more efficien-

t (230X speedup over MC) by better choosing failed samples using importance

sampling algorithm; the proposed HDIS algorithm achieves the best convergence

rate (1150X faster than MC) by efficiently spreading more samples into the fail-

ure region using a sampling distribution with a large-standard-deviation in high

dimensions.

3.4.3 Delay Chain for Target Delay

Next, we consider a delay chain example which includes 6-stage inverters as shown

in Fig. 3.6.

In general, the delay chain generates timing intervals as the control signals for
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Vdd

Input Output

Figure 3.6: The schematic of a delay chain circuit.

the read/write operation, which should match with the delay of the discharge on

bit-lines. Due to the process variations, the timing interval from the delay chain

could become very small and activate the sense amplifier too early in the reading

operation when the voltage difference on bit-lines is not large enough to be sensed.

Therefore, a timing failure happens.

With the variation modeling summarized in Table 4.1, the delay chain exam-

ple has 108 random variables in total. More importantly, all of these variable

parameters are “effective” because all transistors are active and process variation-

s on each transistor can significantly change the delay interval, which is a truly

high-dimensional problem.

3.4.3.1 Accuracy Comparison

To validate the accuracy of the proposed algorithm, we apply different methods

(MC, SB [SR09], SS [QTD10] and HDIS) on this 108-dim delay chain problem to

predict the timing failure probability. Here, MC serves as the “gold standard”.

The evolution of the probability estimation in different methods are plotted in

Fig. 3.7(a). Several observations can be made:

• First, this figure shows the failure of conventional importance sampling (i.e.,
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Figure 3.7: Evolution comparison of the failure probability estimation and figure
of merit for different methods.

SS [QTD10]). In fact, due to the degeneration or collapse of likelihood ra-

tios, SS [DQS08, QTD10] method converges to a random quantity which

is obviously wrong and far away from the MC result. Moreover, SS [QT-

D10] does not have a mechanism for improving accuracy even though more

samples are added.

• SB [SR09] filters those “most-likely-to-fail” samples using machine learning

technique without using likelihood ratios. Therefore, it can provide accurate

failure probability. However, it captures no failure in the first thousand or

so samples at all because it manipulates MC samples directly and cannot

draw failed samples from the failure region more efficiently.

• The proposed HDIS method uses the likelihood ratios. But it calculates the

conditional probability using importance sampling-based method with an
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Table 3.3: Comparison for delay chain analysis with 90% target accuracy and
confidence level.

Target failure
MC SS SB Proposed

probability [QTD10] [SR09] (HDIS)

8e-3
prob.(failure) 0.0088125 (0%) 0.89646 0.0077333 (-12.2%) 0.0088552 (+0.48%)
#sim. runs 3.2e+4 (16X) 5e+3 5.9e+3 (6X) 1e+3 (1X)

6e-4
prob.(failure) 0.00065714 (0%) 2.6305 0.00068667 (+4.5%) 0.00066885 (+1.7%)
#sim. runs 7e+4 (54X) 1.5e+5 1.4e+4 (10X) 1.3e+3 (1X)

4e-5
prob.(failure) 3.897e-05 (0%) 16.2873 3.7244e-05 (-4.4%) 3.832e-05 (-1.6%)
#sim. runs 2.338e+6 (708X) 1e+5 5.6e+4 (17X) 3.3e+3 (1X)

effective proposed sampling distribution, which can tolerate the degenera-

tion of likelihood ratios and is theoretically bounded. Therefore, HDIS can

reliably estimate the failure probability that matches with MC results.

3.4.3.2 Efficiency Comparison

Even though the Fig. 3.7(a) provides a rough comparison of efficiency, the de-

tailed comparison can be shown in Fig. 3.7(b), where different methods try to

achieve the “comparable” accuracy. Note that circuit simulation is the most time-

consuming part and the runtime cost of the remaining computation becomes neg-

ligible. As such, the required number of circuit simulations for the same accuracy

and confidence level serves as a measurement of the efficiency.

First, the Figure-Of-Merit (FOM) is used to quantify the accuracy of proba-

bility estimation as [DQS08,QTD10]:

ρ =

√

σ2
p(fail)

p(fail)
. (3.14)

where p(fail) is the failure probability and σp(fail) is the standard deviation of

p(fail). In fact, the FOM can be viewed as a relative error so that lower FOM

means higher accuracy of probability estimation.

We compare the evolutions of FOM for different methods in Fig. 3.7(b) and

draw a dash line to indicate the 90% accuracy with 90% confidence (ρ = 0.1).
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And we can have following observations:

• SS [QTD10] has reached ρ = 0.1 but its estimation is completely wrong.

Clearly, it cannot detect the failure at all. The same observation is applied

to other existing importance sampling methods due to the boundedness

analysis in Section 3.3.3.

• SB [SR09] simulates “most-likely-to-fail” samples and captures more failed

samples with fewer simulations. However, it has to manipulate an extremely

huge number of MC samples and suffer from the undetectable error due to

the imperfect classifier.

• The proposed HDIS algorithm can provide the accurate estimation of failure

probability with only a few thousands samples, which dramatically relieves

the requirements of computing and storage efforts. As shown in this figure,

the proposed method can achieve 708X speedup over Monte Carlo and be

17X faster than statistical blockade method [SR09].

3.4.3.3 Comparison for Different Failure Probabilities

We study various methods on the delay chain example with three different failure

probabilities summarized in Table 3.3. It is obvious that SS [QTD10] method

fails to achieve any reasonable accuracy in all these cases. This demonstrates

the failure of conventional importance sampling method. On the contrary, the

estimates from SB [SR09] and the proposed HDIS method match the MC result.

In addition, the table reveals that the proposed HDIS method provides the

fastest convergence speed in all these cases and, more importantly, offers sub-

stantial complexity reduction as the failure probability becomes smaller. This

property makes HDIS suitable for industrial problems where exist “rare events”

with extremely small probability.

52



3.4.3.4 Discussion on Statistical Blockade

When compare the performance of SB [SR09] on these two examples, we may

observe better convergence rate for the delay chain example in high dimension.

However, it is not safe to conclude SB [SR09] provides better efficiency in high di-

mension due to below reasons: first, SB [SR09] adopts “linear classifier” to predict

the circuit performance, thereby, making it unsuitable for strongly nonlinear cir-

cuits. Second, a safety margin defined in [SR09] is used to compensate the error of

“classifier” which can significantly affect both the accuracy and efficiency. In fact,

the SRAM bit-cell has strongly nonlinearity in the discharge behavior, and a relax

safety margin (e.g., 0.95-quantile point) is used to prevent the error of classifier.

Thus, more “likely-to-fail” samples are screened out and actually 8e+5 samples

are simulated. On the contrary, weakly-nonlinear delay chain example can have

tight safety margin (i.e., 0.99-quantile point) without significant accuracy loss.

Hence, SB [SR09] screens out only ∼ 6e+ 4 samples to be simulated.

3.5 Conclusion

In this chapter, a fast failure analysis method for memory circuits (e.g., SRAM

bit-cell, delay chain) in high dimensions is proposed which has proved to be bound-

ed. Experiments show that the proposed method can provide 708X speedup over

MC with the same accuracy for a 108-dimensional problem. Also, the proposed

approach is 17X faster than the Statistical Blockade method [SR09] and trumps

existing importance sampling methods that completely fail to provide any reason-

able accuracy.
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CHAPTER 4

Stochastic Behavioral Modeling and Analysis

4.1 Introduction

Large-scale process variations have become inevitable in the nano-technology era

[Nas01,LZP08] and significantly change the behavior of custom integrated circuits

(e.g. voltage swing, timing delay, clock frequency, etc.) [BDM02,CCS04,EBS97,

YLW10,GYH09,GYS10,VWG06]. Therefore, it is urgently sought to accurately

extract the probabilistic behavioral distribution of custom circuits under process

variations.

In general, there are two types of process variation sources: systematic glob-

al variation and local random variation. In this chapter, we focus on the local

variation which is purely random and more difficult to model. The most straight-

forward approach is crude Monte Carlo (MC) method [GS96], which utilizes mas-

sive samples and expensive SPICE simulations to evaluate the probabilistic dis-

tributions (e.g., probability density function (PDF) and cumulative distribution

function (CDF)) of circuit behavior. MC method can be easily applied to any

variable parameter and circuit behavior with arbitrary distributions. However, it

is too time-consuming and not affordable.

Instead, many statistical methods have been developed in past few years: the

linear regression method [Nas01] models the circuit behavior as a linear function of

a number of normally distributed process variables and thus becomes inaccurate

for strongly nonlinear circuits. The work in [XK02, VWG06] can estimate the
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unknown distribution of circuit behavior with stochastic orthogonal polynomials

(SoPs) but requires prior knowledge of the distribution type which is unavailable

in practice.

In addition, asymptotic waveform evaluation (AWE) [PR90] approximates the

“arbitrary” circuit behavioral distribution with the impulse response of a lin-

ear time-invariant (LTI) system by matching a few high-order moments. This

approach requires no prior knowledge of the circuit behavioral distribution but

needs expensive computational efforts to evaluate the high-order moments. Note

that our work in this chapter is based on the AWE framework but proposes a

novel method to calculate high-order moments efficiently with high accuracy.

To resolve this issue of AWE [PR90], response-surface-method (RSM) based

methods [LLG04, LL08] have been proposed to model the circuit behavior as a

polynomial function of all variable process parameters and further evaluate the

high-order moments. For example, asymptotic probability extraction (APEX)

[LLG04] evaluates the RSM model using ordinary least-square (OLS) regression

method so that the number of needed SPICE simulations equals the total number

of unknown coefficients in the polynomial function of the RSM model. More-

over, a novel approach has been proposed [LL08] to extract all unknown coeffi-

cients of RSM model from a small number of samples with regularization based

regression method. In fact, this approach finds a unique sparse solution of an

under-determined equation system using L0-norm regularization [Li10].

However, these RSM based methods have been plagued by following issues:

first, fully nonlinear custom circuits tend to need higher order RSM models (e.g.

strongly nonlinear functions of random process variables) where the number of

unknown coefficients and required SPICE simulations in OLS based RSM method

can increase exponentially, thereby, making the OLS based RSM method infeasi-

ble; second, the regularization based regression method [LL08] suffers from bias-

variance tradeoff [HF08] which can potentially degrade the accuracy and robust-
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ness of the extracted RSM models; third, when a large number of process vari-

ables are considered, the RSM model becomes highly complicated and requires

more computational efforts. Therefore, an efficient and accurate method to eval-

uate high order moments and further extract the stochastic behavior of custom

circuits is, still, urgently sought.

In this chapter, we propose a novel and efficient algorithm to accurately predict

the arbitrary probabilistic distributions of circuit behavior based on asymptotic

waveform evaluation [PR90]. This approach first utilizes Latin Hypercube Sam-

pling (LHS) method along with correlation control technique to generate a few

samples (e.g. sample-size is in linear with respect to the number of variable pa-

rameters) and further evaluates the high-order moments accurately with analytical

formulae. Then, the PDF/CDF of stochastic circuit behavior can be recovered

using conventional moment-matching method in AWE. In addition, a normalized

PDF function is introduced to enhance the accuracy by eliminating the potential

numerical errors. The experiments demonstrate that the proposed method pro-

vides very high accuracy along with up to 1666X speed-up when compared with

MC.

It is worth noting the benefits that the proposed work can offer:

• This method does not need RSM models to estimate the moments and,

therefore, avoids the aforementioned exponential complexity and bias-variance

tradeoff.

• The proposed method can handle strongly nonlinear custom circuits and

high dimensional problems with a large number of random process variables.

• This approach can achieve nearly linear complexity while providing high

accuracy of behavioral distributions.

The rest of this chapter is organized as follows. Section 4.2 presents the nec-

essary background knowledge and Section 4.3 describes the high order moments
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estimation. The PDF/CDF calculation is presented in Section 4.4. Section 4.5

summarizes the overall algorithm. The experiments are provided in Section 4.6.

This chapter is concluded in Section 4.7.

4.2 Background

4.2.1 Mathematical Formulation

Assume
⇀
x = [x1, x2, · · · ] is a vector of random variables (e.g.,threshold voltage,

channel length, gate oxide capacitance, etc.) and can be characterized by a se-

quence of probabilistic distributions [pdf(x1), pdf(x2), · · · ] where pdf(xi) is the

PDF function associated with the element xi of
⇀
x. These random variables can

be fed into SPICE simulator engines and the output is the circuit behavior y (e.g.

voltage, bandwidth, power, etc.) as shown below:

⇀
x
︸︷︷︸

variable

⇒ SPICE simulators ⇒ y
︸︷︷︸

circuit behavior

. (4.1)

Clearly, there exist two spaces: “parameter space” contains all possible values

of
⇀
x and “performance space” has all possible values of y. In fact, there is a

mapping from the parameter space to the performance space so that each sample

of
⇀
x has its corresponding y. Mathematically, the mapping can be viewed as

an implicit function y = f(
⇀
x) which, unfortunately, has no analytical formula.

Therefore, our aim is to determine the unknown probabilistic distribution of y

that results from the uncertainties in
⇀
x.

To this purpose, the high-order moments of y need to be evaluated and then the

probabilistic distributions of y can be recovered by AWE method as proposed in

[PR90]. According to probability theory [PP01,DS11], the p-th order probabilistic
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moments of y can be defined as:

mp
y = E(yp) =

+∞∫

−∞

(yp · pdf(y))dy. (4.2)

where pdf(y) is the PDF function of y and mp
y is the p-th probabilistic moment

of y.

For illustration purpose, we introduce a significant observations of AWEmethod

[PR90] as below:

Property 1. The low order moments are more important to achieve high accuracy

when moments mp
y (p = 1, · · · ,+∞) are used to recover pdf(y).

Proof. Let Φ(ω) be the Fourier transform of pdf(y) as (detailed derivation can be

referred to [GYH11]):

Φ(ω) =
+∞∑

p=0

(−jω)p

p!
·mp

y. (4.3)

Equation (4.3) is equivalent to the Taylor expansion of Φ(ω) at the expansion

point ω = 0 [LLG04], and the high order moments are related to the coefficients

of the Taylor expansion. It is well-known that Taylor expansion linearizes the

function around the expansion point and thus equation (4.3) provides high ac-

curacy around ω = 0. As such, the low order moments (around ω = 0) are

more important for the accuracy of both the expansion in (4.3) and approximated

pdf(y).

From another point of view [LLG04], the magnitude of moments (coefficients)

reaches its maximum at ω = 0 as Φ(0) = 1 and decays as ω increases, which

behaves as a low-pass filter. Therefore, the low frequency band is much more

important for approximation accuracy which is mainly determined by low order

moments (ω around 0).
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4.2.2 Moment Matching for PDF Calculation

We will briefly review the method to extract pdf(y) with probabilistic moments

{mp
y} [PR90,LLG04]. First, “time moments” for y can be defined as:

⌢
m

k

y =
(−1)k

k!
·

+∞∫

−∞

yk · pdf(y)dy. (4.4)

It is clear that
⌢
m

k

y is different from mk
y in (4.2) due to a scaling factor (−1)k

/
k!.

In the mean time, consider a linear time-invariant (LTI) system H whose time

moments defined as [PR90]:

⌢
m

k

t =
(−1)k

k!
·

+∞∫

−∞

tk · h(t)dt. (4.5)

where t is the time variable and h(t) is the impulse response of the LTI system

H .

One important observation is that impulse response h(t) in (4.5) can be an

optimal approximation to pdf(y) in (4.4) if we treat t in (4.5) as y in (4.4) and

make
⌢
m

k

t equal to
⌢
m

k

y (i.e. moment-matching technique).

Moreover, according to probability theory [PR90, PP01,DS11], the time mo-

ments in (4.5) can be further expressed as:

⌢
m

k

t = −
M∑

r=1

ar
bk+1
r

. (4.6)

where ar and br (r = 1, · · · ,M) are the residues and poles of this LTI system,

respectively. As such, the impulse response of the LTI system can be evaluated

as:

h(t) =







M∑

r=1

ar · e
br ·t (t ≥ 0)

0 (t < 0)

(4.7)

59



The overall algorithm that calculates h(t) as an optimal approximation to

pdf(y) can be summarized as follows:

Algorithm 4 Overall Algorithm for PDF Calculation

1: Input probabilistic distributions of variable parameters.
2: /* Step 1: Moment Calculation */

3: Calculate the time moments of observations as
⌢
m

k

y with (4.4) in the perfor-
mance space.

4:

5: /* Step 2: Moment Matching */

6: Make
⌢
m

k

y equal to
⌢
m

k

t by matching first several moments.
7: Solve the resulting nonlinear equation system in (4.6) for residues ar and poles

br.
8:

9: /* Step 3: PDF Calculation */
10: Compute impulse response h(t) in (4.7) with residues ar and poles br.
11: Use h(t) as the optimal approximation of pdf(y).

The most challenging step is to evaluate high-order moments mk
y and time

moments
⌢
m

k

y in the performance space. In this chapter, we proposed a novel and

efficient algorithm to evaluate these high-order moments without response surface

model but with high accuracy.

4.3 High Order Moment Estimation

4.3.1 Moments via Point Estimation

Usually it is impractical to compute mk
y as (4.2) because pdf(y) is unknown.

Instead, “Point Estimation Method” proposed in [Ros75,ZO00] approximates mk
y

by a weighted sum of several sampling values of y. For example, assume x is the

only variable and xj (j = 1, · · · , p) are estimating points of x with weights Pj , the
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k-th order probabilistic moment of y can be approximated as:

mk
y =

+∞∫

−∞

yk · pdf(y)dy ≈

p∑

j=1

Pj · y
k
j =

p∑

j=1

Pj · f(xj)
k. (4.8)

The works in [Ros75] and [ZO00] only provide empirical analytical formulae

of xj and Pj for first four moments (e.g. the mean, the variance, the skewness,

the kurtosis) and thus cannot satisfy the requirement of AWE where higher order

moments (e.g. k ≫ 4) are needed. To this end, an systematical approach has

been established in [GYH11] to efficiently calculate the estimating points xj and

weights Pj for arbitrary order moments.

However, all these approaches [GYH11,Ros75, ZO00] can only handle simply

low-dimensional problems. Therefore, it is significant but remains unknown how to

evaluate high order moments for high-dimensional problems (e.g. tens or hundreds

of variables) which is the motivation behind this work.

4.3.2 Basic Idea of Moments via Sampling Method

The integral of mk
y in (4.2) is very difficult to compute because an analytical

evaluation is not available. Therefore, it is inevitable to utilize a sampling method.

In fact, “Point Estimation Method” is a sampling-like method, which picks a few

“representative” samples yj in (4.8) and weights them by Pj to approximate the

integral value.

Inspired by this observation, our proposed method tries to choose a few samples

as “good representatives” of the entire sampling space so that a huge number of

samples can be saved. For example, Fig. 4.1 shows a probability density map

consisting of two normal distributed variables. Note that only partial of the

probability density map is plotted in order to show the interior “representative”

sampling points.
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Figure 4.1: The probability density map and “representative” sampling points.

Since the integral of mk
y in (4.2) is defined over the entire space shown in Fig.

4.1, the most straightforward sampling method is to generate as many samples

as possible spreading over the “entire” sampling space which is infeasible due to

unaffordable computational efforts.

Instead, the proposed method chooses a few “representative” samples
⇀
xj =

[x1,j , x2,j, · · · ] shown as marked stems in Fig. 4.1 , which should satisfy below

conditions:

• The samples of each element of
⇀
x (e.g., xi) should follow its known marginal

distribution (e.g. pdf(xi)).

• Various correlations and other relationships between the elements of
⇀
x should

remain intact.

• These chosen samples should fully cover the entire sampling space to provide

closer approximation.
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• These samples should be incoherent so that the number of required samples

can be kept to be the minimum.

To meet above requirements, we propose to leverage well-established Latin

Hypercube Sampling (LHS) method [Ste87] along with correlation control tech-

nique [IC82] as discussed in the following section.

4.3.3 Latin Hypercube Sampling and Correlation Control

4.3.3.1 Latin Hypercube Sampling

The Latin Hypercube Sampling (LHS) method [Ste87] is a widely used variant of

Monte Carlo method which can “efficiently” generate samples. LHS method first

divides the cumulative distribution of each random variable into several intervals

with equal probability and picks one sample from each interval randomly. Then,

LHS transforms these samples into the desired probabilistic distribution using

inverse cumulative distribution function. As such, the samples for each variable

can be paired randomly to generate LHS samples. Note that LHS is “efficient”

because each random variable will be sampled only once from each of its intervals.

Thereby, LHS method can use a small number of samples to ensure a full coverage

of the sampling space.

For example, we plot some LHS samples in the probability density map con-

sisting of two standard-normal distributed variables in Fig. 4.2 where all samples

are dispersed over the entire parameter space and there is no duplicate/overlapped

samples. In addition, all samples have been projected into a 1-dimension space

in Fig. 4.3 which clearly demonstrates all samples follow the known marginal

distribution N(0, 1) and fully cover the entire sampling space. Moreover, it can

be observed from Fig. 4.3 that there is no duplicate samples, which implies that

any two different LHS samples have different values for the same random variable

so that these two LHS samples are incoherent.

63



3

3

5

10

15

20

25

30

P
a

ra
m

e
te

r 
2

Figure 4.2: Probability Density Map and LHS Samples.

Therefore, LHS samples can meet all requirements except for the condition of

correlation and thus correlation control technique [IC82] is needed.

4.3.3.2 Correlation Control Technique

The distributions of individual elements in
⇀
x can be correlated which can be

characterized by a correlation matrix C (e.g. entry Cij ∈ [−1, 1] is the correlation

coefficient between xi and xj variables). As an illustrative example, we consider

random variables in
⇀
x to be independent where the target correlation matrix

becomes an identity matrix.

The conventional sampling scheme is to generate samples for individual vari-

able xi independently and then pair them randomly (as combinations) to produce

samples of
⇀
x. In particular, we are more interested in the case when sample-size

N is small (e.g. N is in linear with the number of variables) and there is an

important observation in this case:
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Figure 4.3: LHS samples in 1-Dimension.

Property 2. The conventional sampling scheme can provide samples with desired

correlation only if the sample-size is large enough. When sample-size is small, the

generated samples have WRONG correlation relationship.

Proof. The reason behind this observation is when sample-size is small, arbitrary

correlations between individual elements of
⇀
x can be introduced during the pair-

ing/combination stage. However, this phenomena disappears as the sample-size

increases, since large sample-size can ensure a close approximation to purely ran-

dom combination.

As an example, we can consider two “independent” random variables which

follows standard normal distribution and ideally the correlation matrix should be

identity. We compare the correlation matrices with different number of samples

as: 


1 −0.0082

−0.0082 1





︸ ︷︷ ︸

100 samples




1 −0.73

−0.73 1





︸ ︷︷ ︸

4 samples
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Clearly, the correlation matrix extracted from 100 samples is closer to an identity

matrix so that samples of two independent variables are obtained, while 4 samples

introduce a strong correlation between these two independent random variables.

Is there any way to fix the correlation issue of cases with small sample-size?

The short answer is positive and we will now discuss the reasoning for this answer.

Since the incorrect correlation is introduced in the pairing/combination stage,

it is a natural choice to “re-pair or re-combine” samples for different random vari-

ables to achieve the correct correlation and thus the correlation control technique

developed by Iman and Conover [IC82] can be used. The theoretical basis can be

briefly described as following:

Let us consider m random variables and the desired correlation matrix is C

which is positive-definite and symmetric. First, n random samples can be gener-

ated for each variable and we can build a n×m matrix denoted as X , where Xij is

the i-the sample for the j-th variable. We assume R is the correlation matrix ex-

tracted from these n random samples, which would be different from C. Note that

any positive-definite and symmetric matrix has Cholesky decompositions such as

C = PP T and R = QQT where P and Q are lower triangular matrices.

In principle, the procedure in [IC82] re-pairs the samples in X in order to

obtain X̂ that has the closest correlation matrix to C. To do so, it builds another

n × m matrix K where each column has a random permutation of m van der

Waerden scores (the inverse of the standard normal distribution [Con80]). In this

way, K̂ = K(Q−1)TP T has the closest correlation matrix to C. Then, the desired

matrix X̂ can be obtained by simply re-pair the samples in X in the same order

as the samples in K̂. Therefore, X̂ has the same correlation matrix as K̂ which

is a close approximation to C.

For example, we apply the correlation control technique to the 4 samples for
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two independent variables in above example and the correlation matrix becomes

quite close to an identity matrix:




1 −0.73

−0.73 1





︸ ︷︷ ︸

before correlation control

⇒




1 −0.098

−0.098 1





︸ ︷︷ ︸

after correlation control

Therefore, the condition of correlation can also be satisfied.

Note we assume independent variables in this chapter for illustration purpose,

however, the random process variables are spatially correlated in practice. There-

fore, a correlation matrix extracted from the measurements is typically needed to

generate the correlated samples.

In addition, it is worthwhile to point out that the correlation control technique

[IC82] can only be applied to joint Normal distributions, since only second-order

statistics is needed as the input (i.e., the covariance matrix).

4.3.4 Moments via Sampling Methods

Next, we need to approximately evaluate the integral in (4.2) with a small num-

ber of “representative” LHS samples. In particular, the k-th order probabilistic

moment mk
y can be estimated as:

mk
y = E(yk) =

∫

yk · pdf(y)dy ≈
1

N
·

N∑

j=1

f(
⇀
xj)

k
. (4.9)

where
⇀
xj(j = 1, · · · , N) are the j-th samples of

⇀
x using LHS method and corre-

lation control technique. f(
⇀
xj) is the performance merit of the circuit with input

⇀
xj. This approach is actually the sampled-form of the expectation value E(yk)

and only utilizes these representative samples f(
⇀
xj).
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4.3.5 Discussion of Proposed Methods

The proposed method has following positive features: (i) proposed method need-

s no response-surface-model, therefore, it avoids the exponential complexity and

bias-variance tradeoff in the existing RSM models. (ii) LHS method is used to gen-

erate samples which is a variant of Monte Carlo method and intrinsically capable

of handling high dimension problems efficiently.

In the meantime, proposed method has a major drawback: these methods pick

a few samples as “representatives” of the entire sampling space, which implicitly

implies that the neighborhood around each sampling points
⇀
xj has the similar

circuit behavior f(
⇀
xj). This is a linearized assumption, thereby, more samples

could be needed to accurately describe the strongly nonlinear circuit behavior in

strongly nonlinear problems.

4.4 PDF/CDF Calculation with Moments

4.4.1 Normalized PDF for Error Prevention

The next step is to compute the residues ar and the poles br in (4.6) with high

order moments so that the impulse response h(t) in (4.7) can be evaluated to

approximate pdf(y). Note that probabilistic moments mk
y should be multiplied by

a scaling factor to compute time moments in (4.4). As such, the equation (4.6)

results in a nonlinear equation system as:

−
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. (4.10)
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This nonlinear system can be efficiently solved with the numerical solution

presented in [PR90]. However, the calculated residues ar and the poles br may

suffer from numerical noises such as roundoff error. Therefore, we propose to

normalize the PDF calculated from (4.7) to cancel out the roundoff error.

Let us denote
⌢
m

k

y as the exact value of k-th order time moment in (4.4), and m̃k
y

as the estimated value of k-th order time moment. Also, we assume m̃k
y = const·

⌢
m

k

y

due to roundoff error, where const is a scaling constant. As such, the right hand

side of (4.10) should be substituted by m̃k
y , which leads to ãj = const · aj and aj

are exact values of the residues.

In order to eliminate the scaling constant in ãj , we propose to normalize pdf(y)

as follows: first, y can be discretized into several discrete points yp, (p = 1, · · · , K).

Then, the PDF value on p-th discrete point can be divided with the sum of PDF

values for all discrete points as:

pdfnorm(yp) =

M∑

r=1

���const · ar · e
⌢
b
k+1

r ·yp

K∑

p=1

M∑

r=1

���const · ar · e
⌢
b
k+1

r ·yp

. (4.11)

In this way, the scaling constant can be canceled out and thus the normaliza-

tion procedure improves the numerical stability of proposed algorithm.

4.4.2 Error Estimation

It is significant to estimate the the approximation error of pdf(y) using AWE

method [PR90] but exact PDF is usually not available. Instead, we consider the

approximation with first q + 1 order moments as the exact value and use the

relative error of Φ(ω) (i.e. the Fourier transform of pdf(y) in (4.3)) to measure

the accuracy of PDF approximation using first q order moments.
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Error =

∣
∣
∣
∣

Φq+1(ω)− Φq(ω)

Φq+1(ω)

∣
∣
∣
∣

(4.12)

=

∣
∣
∣
∣
∣
∣

(−jω)q+1

(q + 1)!
·

(
q+1
∑

p=0

(−jω)p

p!
·

mp
y

mq+1
y

)−1
∣
∣
∣
∣
∣
∣

.

When |mp
y| ≥ |mq+1

y | ( p ≤ q + 1), above estimation error has upper bound:

Error ≤

∣
∣
∣
∣
∣
∣

(−jω)q+1

(q + 1)!
·

(
q+1
∑

p=0

(−jω)p

p!

)−1
∣
∣
∣
∣
∣
∣

. (4.13)

Above error analysis results in an important observation as:

Property 3. Assume high order moments mk
y(k = 1, · · · , N) are used to pre-

dict pdf(y). When the moments mk
y decay as the moment order increases, the

approximation of pdf(y) has upper error bound.

In this work, we consider a much stronger condition y ∈ [0, 1] with the help of lin-

ear transformations of y (e.g. scaling, shifting, etc.). As such, the approximation

of PDF/CDF can provide high accuracy with high order moments.

4.5 Overall Algorithm

4.5.1 Algorithm Flow

The overall algorithm flow for PDF/CDF approximation has been summarized in

Algorithm (5).

4.5.2 Implementation Details

We briefly discuss several implementation issues as below:

• Linear Transformation: To ensure an upper error bound exists, we pro-
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Algorithm 5 Overall Proposed Algorithm

Input: random variables
⇀
x = (x1, · · · , xM ) with known probabilistic distribu-

tions and correlation matrix C.
Output: the estimated PDF/CDF of circuit behavior y.

1: /* Step 1: High Order Moments Calculation */
2: Use Latin Hypercube Sampling method to generate N samples

⇀
xj (j =

1, · · · , N).
3: Re-pair these samples with correlation control technique to achieve the corre-

lation matrix C.
4: Run SPICE simulations on these samples for corresponding circuit behavior

yj (j = 1, · · · , N).
5: Compute moments mk

y with yj as (4.9).
6:

7: /* Step 2: Moment Matching */

8: Calculate the time moments
⌢
m

k

y with mk
y as (4.4).

9: Make
⌢
m

k

y equal to
⌢
m

k

t by matching first several moments.
10: Solve the resulting nonlinear equation system in (4.10) for residues ar and

poles br.
11:

12: /* Step 3: PDF Calculation */
13: Compute normalized PDF/CDF of y with ar and br.

pose to transform y into the interval [0, 1] so that moments can decay as

the moment order increases. In general, the transformations include scal-

ing, shifting, flipping and other linear operations. Note that the extracted

PDF/CDF should be converted back to be the real results.

• Numerical Instability: In principle, more high order moments can im-

prove the approximation accuracy of PDF/CDF. Unfortunately, it is not true

because the moments can decay dramatically and be close to zero when the

moment order increases. Therefore, the inevitable numerical noise (e.g., ill-

conditioned moment matrix) prevents further accuracy improvement. This

is an intrinsic drawback of the moment-matching method [PR90].

• PDF/CDF Shifting: The approximated PDF/CDF of y can be far from

the real location and display a large delay in the time domain [LLG04].
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Therefore, the PDF/CDF shifting technique using the modified Chebyshev

inequality in [LLG04] can be used to ensure the PDF/CDF approximations

match the MC results.

4.6 Experimental Results

The proposed algorithm has been implemented in MATLAB environment with

HSPICE and BSIM4 transistor model. We use a two-stage operational amplifi-

er and a SRAM bit-cell to demonstrate the accuracy and efficiency of proposed

algorithm on both AC and transient performance merits by comparing against

Monte Carlo method. In order to introduce process variations to these circuits,

we consider 9 process parameters for each transistor shown in Table 4.1 which are

physically independent parameters [DM03] and modeled as independent Gaussian

random variables.

Table 4.1: Process Parameters of MOSFETs.
Variable Name σ/µ unit
Flat-band Voltage (Vfb) 0.1 V
Gate Oxide Thickness (tox) 0.05 m
Mobility (µ0) 0.1 m2/V s
Doping concentration at depletion (Ndep) 0.1 cm−3

Channel-length offset (∆L) 0.05 m
Channel-width offset (∆W ) 0.05 m
Source/drain sheet resistance (Rsh) 0.1 Ohm/mm2

Source-gate overlap unit capacitance (Cgso) 0.1 F/m
Drain-gate overlap unit capacitance (Cgdo) 0.1 F/m

For comparison purpose, all experiments involve three different approaches as

following:

(1) Monte Carlo method: Calculate the probabilistic distributions (PDF

and CDF) from a huge number of Monte Carlo samples. This is the “gold

standard” for the comparison in this section.

(2) MC+Moment Matching method: The probabilistic distributions are

72



computed with moment matching method [PR90, LLG04] where the mo-

ments are evaluated using Monte Carlo samples.

(3) Proposed Method: The moments are calculated with (4.9) using a few

samples from the LHS method coupled with correlation control technique.

Also, the probabilistic distributions of circuit performance are approximated

using the moment-matching method in [PR90,LLG04].

4.6.1 6-T SRAM Bit-Cell

Let us first study a typical design of 6-transistor SRAM bit-cell as shown in Fig.

4.4 [WYL09], which stores one memory bit and consists of six transistors: the four

transistors Mn1, Mn3, Mp5 and Mp6 forms two inverters to keep either a logic

‘0’ or ‘1’. Two additional access transistors Mn2 and Mn4 controls the access

to the bit-cell during read and write operations. The word line WL is used to

determine whether the bit-cell should be accessed (connected to bit lines) and the

bit lines (BL and B̄L) are used to read/write the actual data from/to the cell.

To model the process variations, we introduce random variations to 9 pro-

cess parameters shown in Table 4.1 of each transistor, which implies totally 54

independent random variables in this example.

As an illustration, we investigate the discharge behavior on B̄L during the

reading operation when Q node stores 1. In details, both B̄L and BL are first

pre-charged to V dd and then B̄L starts to discharge when the word line WL

becomes high. When the voltage difference ∆v between B̄L and BL becomes

large, ∆v can be sensed by the sense amplifier connected to both B̄L and BL.

However, the process variations can significantly change the discharge behavior

and, particularly, a reading failure can happen when ∆v is too small to be sensed

by the sense amplifier at the end of reading operation. Therefore, it is of great

interests to study the probabilistic distribution of node voltage B̄L at the end time
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Figure 4.4: Schematic of a 6-T SRAM bit-cell.

step of reading operation considering the process variations. Note that the reading

failure of SRAM bit-cell is a “rare event” with extremely small probability [Den01]

that is not in the scope of this work, while the overall stochastic discharge behavior

in this SRAM cell will be studied.

4.6.1.1 Comparison of Moment Calculation

Before we move forward to the extracted probabilistic distributions of the circuit

behavior, let us study the accuracy of moments evaluations which significantly

affects the accuracy of probabilistic distributions. In details, we use two different

methods (e.g., MC and proposed method) to calculate the first ten moments and

show the results in Table 4.2. Here, the moments from MC with 1E+5 samples

serves as the “exact” moment values.

We have some observations from this table: first, the proposed method provides

accurate evaluations of high order moments (i.e., ≤ 6% relative error); second, the

proposed method, in general, incurs increasingly large error in moments calcula-

tion as the order increases, however, low order moments are more important to the

accuracy of extracted probabilistic distributions due to Property (1). Therefore,

the proposed method achieves high accuracy in circuit behavior distribution with
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Table 4.2: Comparison of First Ten Probabilistic Moments

Moment Order
Monte Carlo Proposed

(1E+5 samples) (54 samples)
0 1.000E+00 (0%) 1.000E+00 (0.00%)
1 1.611E-01 (0%) 1.623E-01 (+0.74%)
2 2.626E-02 (0%) 2.710E-02 (+3.19%)
3 4.331E-03 (0%) 4.436E-03 (+2.42%)
4 7.230E-04 (0%) 7.015E-04 (-2.97%)
5 1.221E-04 (0%) 1.262E-04 (+3.35%)
6 2.089E-05 (0%) 2.127E-05 (+1.81%)
7 3.620E-06 (0%) 3.596E-06 (-0.66%)
8 6.352E-07 (0%) 6.500E-07 (+2.32%)
9 1.129E-07 (0%) 1.198E-07 (-6.00%)

these moments as demonstrated in the following.

4.6.1.2 Comparison of PDF/CDF Approximation

With the moments available, the moment matching method is used to predict the

probabilistic distributions (PDF and CDF) of circuit behavior. We have applied

all different methods (i.e., MC, MC+Moment Matching, Proposed method) to

this SRAM bit-cell example and plotted their approximations of PDFs and CDFs

with first 20 moments in Fig. 4.5 and Fig. 4.6, respectively. Note that we use

kernel density estimation method [BA97] to estimate the PDF using 1E+5 MC

samples and then analytically integrate the PDF to get CDF.

For comparison purpose, we plotted PDF and CDF from proposed method

using first ten moments in the same figures, which have significant accuracy loss

and only provide rough approximations. When the approximation order increases

to 20, the PDF and CDF estimations are clearly improved and closely match with

MC results except for the tail regions.

In addition, the PDF from the proposed method (the curve with circle mark-

s) contains numerical oscillations in the tails. In fact, the similar oscillation-

s are demonstrated in the PDF from the MC+Moment Matching method (the

75



1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

voltage (volt)

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
(N

or
m

al
iz

ed
)

 

 

Monte Carlo method
MC+Moment Matching
(Approx. Order=20)
Proposed method
(Approx. Order=20)
Proposed method
(Approx. Order=10)

Figure 4.5: PDF approximation from proposed method for SRAM bit-cell exam-
ple.
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Figure 4.6: CDF approximation from proposed method for SRAM bit-cell exam-
ple.
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curve with square marks) where the “exact” moment values from MC samples

are used. In principle, the approximated PDF should eliminate these oscillations

and asymptotically approach the exact PDF when the approximation order in-

creases. However, the moment matrix which is used to calculate the residues ar

and poles br in (4.6) becomes severely ill-conditioned and leads to inaccurate and

unstable results of ar and br. The numerical instability issue of moment-matching

method [PR90] prevents further accuracy improvement with more probabilistic

moments and remains a challenging issue.

Moreover, the approximation accuracy can be quantitatively characterized by

the average error over several specific points of the CDF. The proposed method

achieves 5.03% relative error on average when compared with the CDF from MC

samples.

4.6.1.3 Comparison of Efficiency

We study the efficiency of different methods in Table 4.3 where the CDF from MC

method with 1E+5 samples serves as the exact CDF. In addition, the efficiency is

measured by the number of required samples which equals to the number of SPICE

simulations, since the transistor-level simulations are the most time-consuming

calculations. Note that the CDF from MC with 1E+5 samples serves as the

exact CDF. Also, the accuracy of CDF approximation is measured by the average

accuracy over several specific points of the CDF.

In order to provide fair comparison, we incrementally add MC samples to

provide the same accuracy as the proposed method. In fact, the MC method with

8.6E+3 samples offers 95% accuracy on average, therefore, the proposed method

is 159X faster than MC method for the same accuracy.
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Table 4.3: Efficiency Comparison of CDF Approximations.
MC method MC method Proposed method

accuracy 100% 95% 95%
#samples 1E+5 8.6E+3 (159X) 54 (1X)

4.6.2 Operational Amplifier

We have validated the proposed method on SRAM bit-cell example which in-

volves transient performance merits (e.g., voltage discharge in time domain) and

Gaussian-like probabilistic distribution. Next, an operational amplifier (OPAM-

P), shown in Fig. 4.7, is used to study the proposed method on AC performance

of merits (e.g. bandwidth) and non-Gaussian behavioral distributions.

In the OPAMP, vb n, vb p are bias voltages for NMOS and PMOS devices,

respectively. vfb is the feedback voltage set separately by common mode feedback

block. The small triangular devices denote the gain boosting components. We

introduce the variations to process parameters in the Table 4.1 for all transistors

except transistors associated with vb n, vb p and vfb. As such, there exist totally

90 random variables to model the local random variations, which is a typical

large-scale problem in practice.

The circuit behavior of the OPAMP is described by its bandwidth, therefore,

we aim to extract the “arbitrary” unknown distributions (PDF and CDF) of

bandwidth under process variations in this case. We applied all different methods

on this example and compared their performance in the following.

4.6.2.1 Comparison of Moment Calculation

We first validate the moments evaluation of proposed method in Table 4.4. The

moments from MC method with 5E+5 samples serves as the exact moment values

for comparison purpose. From this table, the proposed method can estimate fist

ten moments with high accuracy (i.e., < 4% relative error) using only 90 samples.
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Figure 4.7: Simplified Schematic of Operational Amplifier

Similar to the observation in SRAM bit-cell example, the error of moment evalu-

ations becomes increasingly larger as the order increases. However, the proposed

method retains high accuracy in low order moments which are more important to

the accuracy of PDF/CDF approximation, thereby, providing accurate PDF/CDF

using these moments.

Table 4.4: Comparison of First Ten Probabilistic Moments

Moment Order
Monte Carlo Proposed method

(5E+5 samples) (90 samples)
0 1.000E+00 (0%) 1.000E+00 (0.00%)
1 1.913E-01 (0%) 1.936E-01 (+1.19%)
2 5.825E-02 (0%) 5.961E-02 (+2.28%)
3 2.266E-02 (0%) 2.308E-02 (+1.80%)
4 9.990E-03 (0%) 1.006E-03 (+0.77%)
5 4.739E-03 (0%) 4.737E-03 (-0.04%)
6 2.362E-03 (0%) 2.355E-03 (-0.28%)
7 1.220E-03 (0%) 1.222E-03 (+0.20%)
8 6.484E-04 (0%) 6.579E-04 (+1.43%)
9 3.524E-04 (0%) 3.646E-04 (+3.35%)
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4.6.2.2 Comparison of PDF/CDF Approximation

We plot the approximated PDF and CDF from all different methods in Fig. 4.8

and Fig. 4.9, respectively. The PDF from MC method is estimated using kernel

density estimation method [BA97] with 5E+5 samples and is the “exact” PDF of

bandwidth. For comparison purpose, the PDF from proposed method with first 4

moments is plotted in the same figure, which clearly deviates from the exact PDF

from MC method (the curve with cross marks) by a large amount.

We further increase the approximation order to 12 and the extracted PDF (the

curve with circle marks) becomes much closer to the exact PDF from MC. How-

ever, there are some numerical oscillations in the PDFs from moment matching

based methods (i.e., proposed method and the MC+Moment Matching method),

which result from the numerical noise during moment matching.

The approximation accuracy is measured by the average error over several

specific points of the CDF. In this OPAMP case, the proposed method achieves

1.65% relative error on average when compared with the exact CDF from MC

method.

4.6.2.3 Comparison of Efficiency

We use the number of required samples to measure the efficiency between different

methods in Table 4.5. The CDF from MC method with 5E+5 samples is treated

as the exact CDF. In addition, the accuracy of CDF approximation is measured by

the average accuracy over several specific points of the CDF. From this table, we

can observe that the proposed method uses 90 samples to provide 98% accuracy

while MC method needs 1.5E+5 samples for the same accuracy. It implies the

proposed method offers nearly linear complexity and is 1666X faster than MC

method.
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Figure 4.8: PDF approximation from proposed method for OPAMP example.
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Figure 4.9: CDF approximation from proposed method for OPAMP example.

81



Table 4.5: Efficiency Comparison of CDF Approximations.
MC method MC method Proposed method

accuracy 100% 98% 98%
#samples 5E+5 1.5E+5 (1666X) 90 (1X)

4.7 Conclusion

In this chapter, we have proposed an efficient moment-matching based algorithm

to extract the arbitrary probabilistic distribution of stochastic circuit behavior.

Our approach can perform an efficient evaluation of high-order moments of cir-

cuit behavior and thus circumvent the use of response surface models (RSM).

Moreover, the proposed method has been successfully extended to deal with high

dimension problems with nearly linear complexity. Experiments show that the

proposed method can provide up to 1666X runtime speedup with the same accu-

racy when compared to the Monte Carlo method.

The work presented in this chapter has three-fold limitations: first, the de-

ployed circuit examples are relatively small when compared to industrial designs,

where 1000+ random variables can be easily involved. Second, most process vari-

ation sources are spatially correlated in practice but we assume independent ran-

dom variables for illustration purpose. Third, the conventional moment matching

method suffers from numerical noise and instability issues which remains a signif-

icant challenge. Our future study will investigate the correlated process variation

sources, study large-scale industrial problems and deal with the numerical noise

issues.
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CHAPTER 5

Parallel and Variability-Aware Capacitance

Extraction

5.1 Introduction

As IC designs are approaching processes below 45nm, there exist large uncer-

tainties from chemical mechanical polishing (CMP), etching, and lithography [L-

NP00,CCS04,ZW05,ZZC07,CCS08]. As a result, the fabricated interconnect and

dielectric can show a significant difference from the nominal shape. The value

of an extracted capacitance can differ from the nominal value by a large margin,

which may further lead to significant variability for timing analysis. For exam-

ple, as shown in [LNP00], variation of interconnects can cause as much as 25%

variation in the clock skew. Therefore, accurately extracting capacitance while

considering the stochastic process variation becomes a necessity.

To avoid discretizing the entire space, the boundary element method (BEM) is

used to evaluate capacitance by discretizing the surface into panels on the bound-

ary of the conductor and the dielectric [NW91, SD97, SLK98, YLS07]. Though

this results in a discretized system with a small dimension, the discretized sys-

tem under BEM is dense. FastCap [NW91] solves such a dense system by a

generalized minimal residual (GMRES) method. Instead of performing the ex-

pensive LU decomposition, GMRES iteratively reaches the solution with the use

of the matrix-vector multiplication. The computational cost of the matrix-vector-

product (MVP) can be reduced by either a fast-multipole-method (FMM) [NW91],
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a low-rank approximation [SD97], and a hierarchical-tree decomposition [SLK98].

As a result, the complexity of the fast full-chip extractions generally comes from

two parts: the evaluation of MVP and the preconditioned GMRES iteration.

A few recent works [ZW05,ZZC07,CCS08] discuss interconnect extraction con-

sidering process variation. The variation is represented by the stochastic orthogo-

nal polynomial (SOP) [XK02,VWG06] when calculating a variational capacitance.

Since the interconnect length and cross-area are at different scales, the variation-

al capacitance extraction is quite different between the on-chip [ZZC07,CCS08]

and the off-chip [ZW05]. The on-chip interconnect variation from the geometri-

cal parameters, such as width and length of one panel and distance between two

panels, is more dominant [ZZC07,CCS08] than the rough surface effect seen from

the off-chip package trace. However, it is unknown how to leverage the stochas-

tic process variation into the MVP by FMM [ZW05,ZZC07,CCS08]. Similar to

the issue of stochastic analog mismatch for transistors [PDW89], a cost-efficient

full-chip extraction needs to explore an explicit relation between the stochastic

variation and the geometrical parameter such that the electrical property can

show an explicit dependence on geometrical parameters. Moreover, the expansion

by SOP with different collocation schemes [XK02,VWG06,ZZC07,CCS08] always

results in an augmented and dense system equation. This significantly increases

the complexity when dealing with a large-scale problem. The according GMRES

thereby needs to be designed in an incremental fashion to consider the update

from the process variation. As a result, a scalable extraction algorithm similar

to [NW91,SD97,SLK98] is required to consider the process variation with the new

MVP and GMRES developed accordingly as well.

To address the aforementioned challenges, this chapter contributes as follows.

First, to reveal an explicit dependence on geometrical parameters, the potential

interaction is represented by a number of geometrical moments. As such, the pro-

cess variation can be further included by expanding the geometrical moments with
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use of stochastic orthogonal polynomials, called stochastic geometrical moments in

this chapter. Next, with the use of the stochastic geometric moment, the process

variation can be incorporated into a modified FMM algorithm that evaluates the

MVP in parallel. Finally, an incremental GMRES method is introduced to update

the preconditioner with different variations. Such a parallel and incremental full

chip capacitance extraction considering the stochastic variation is called piCAP.

Parallel and incremental analysis are the two effective techniques in reducing com-

putational cost. Experiments show that our method with stochastic polynomial

expansion is hundreds of times faster than the Monte-Carlo based method while

maintaining a similar accuracy. Moreover, the parallel MVP in our method is up

to 3X faster than the serial method, and the incremental GMRES in our method

is up to 15X faster than non-incremental GMRES methods.

The rest of the chapter is organized in the following manner. We first review

the background of the capacitance extraction and fast multipole method (FMM)

in Section 5.2. We introduce the concept of the stochastic geometrical moment in

Section 5.3, and illustrate a parallel FMM method based on the stochastic geo-

metrical moment in Section 5.4. We further propose a novel incremental GMRES

method in Section 5.5 and present experimental results in Section 5.6. Finally,

the chapter is concluded in Section 5.7.

5.2 Background

5.2.1 Boundary Element Method (BEM)

The boundary element method (BEM), used in most fast capacitance extractions

[NW91,SD97,SLK98], starts with an integral equation

φ(r) =

∫

r′∈a′

ρ(r′)

4πǫ0|r − r′|
da′, (5.1)
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where φ(r) is the potential at the observer metal, ρ(r′) is the surface-charge density

at the source metal, da′ is an incremental area at the surface of the source metal,

and the source r′ is on da′.

By discretizing the metal surface into N panels sufficiently such that the

charge-density is uniform at each panel, a linear system equation can be obtained

by the point-collocation [NW91]:

Pq = b, (5.2)

where P is an N × N matrix of potential coefficients (or potential interactions),

q is an N vector of panel charges, and b is an N vector of panel potentials. By

probing b iteratively with one volt at each panel in the form of [0,...,1,...,0], the

solved vector q is one column of the capacitance matrix.

Note that each entry Pij in the potential matrix P represents the potential

observed at the observer panel aj due to the charge at the source panel ai:

Pij =
1

ai

∫

ri∈ai

1

4πǫ0|ri − rj |
dai. (5.3)

When panel i and panel j are well-separated by definition, Pij can be well

approximated by 1
4πǫ0|ri−rj |

[NW91,SD97,SLK98,ZZC07,CCS08].

The resulting potential coefficient matrix P is usually dense in the BEM

method. As such, directly solving (5.2) would be computationally expensive.

FastCap [NW91] applies an iterative GMRES method [SS86] to solve (5.2). In-

stead of performing an expensive LU decomposition of the dense P , GMRES first

forms a preconditioner W such that W−1 ·P has a smaller condition number than

P , which can accelerate the convergence of iterative solvers [Saa03]. Take the left
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preconditioning as an example:

(W−1 · P )q = W−1 · b.

Then, using either multipole-expansion [NW91], low-rank approximation [S-

D97] or the hierarchical-tree method [SLK98] to efficiently evaluate the matrix-

vector-product (MVP) for (W−1 · P )qi (qi is the solution for i-th iteration), the

GMRES method minimizes below residue error iteratively till converged.

min : ||W−1 · b− (W−1 · P )qi||

Clearly, GMRES requires a well-designed preconditioner and a fast matrix-

vector-product (MVP). In fact, fast multipole method (FMM) is able to accelerate

the evaluation of MVP with O(N) time complexity where N is the number of

variables. We will introduce FMM first as what follows.

5.2.2 Fast Multipole Method (FMM)

The fast multipole method was initially proposed to speed up the evaluation of

long-ranged particle forces in the N-body problem [WS93, Ran99]. It can also

be applied to the iterative solvers by accelerating calculation of matrix-vector-

product [NW91]. Let’s take the capacitance extraction problem as an example

to introduce the operations in the FMM. In general, the FMM discretizes the

conductor surface into panels and forms a cube with a finite height containing a

number of panels. Then, it builds a hierarchical oct-tree of cubes and evaluates

the potential interaction P at different levels.

Specifically, the FMM first assigns all panels to leaf cells/cubes, and computes

the multipole expansions for all panels in each leaf cell. Then, FMM calculates

the multipole expansion of each parent cell using the expansions of its children
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cells (called M2M operations in Upward Pass). Next, the local field expansions of

the parent cells can be obtained by adding multipole expansions of well-separated

parent cells at the same levels (called M2L operations). After that, FMM descends

the tree structure to calculate the local field expansion of each panel based on

the local expansion of its parent cell (called L2L in Downward Pass). All these

operations are illustrated within Fig. 5.1.

 

 

 

  

 

 

 

Figure 5.1: Multipole Operations Within the FMM Algorithm

In order to further speed up the evaluation of MVP, our stochastic extraction

has a parallel evaluation Pq with variations, which is discussed in Section 5.4, and

an incremental preconditioner, which is discussed in Section 5.5. Both of these

features depend on how an explicit dependence between the stochastic process

variation and the geometric parameters can be found, which will be discussed in
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Section 5.3.

5.3 Stochastic Geometrical Moment (SGM)

With Fast Multipole Method, the complexity of MVP Pq evaluation can be re-

duced to O(N) during the GMRES iteration. Since the spatial decomposition

in FMM is geometrically dependent, it is helpful to express P using geometri-

cal moments with an explicit geometry-dependence. As a result, this can lead

to an efficient recursive update (M2M, M2L, L2L) of P on the oct-tree. The

geometry-dependence is also one key property to preserve in presence of the s-

tochastic variation. In this section, we first derive the geometrical moment and

then expand it by stochastic orthogonal polynomials to calculate the potential

interaction with variations.

5.3.1 Geometrical Moment

In this chapter, we focus on local random variations, or stochastic variations.

Without loss of generality, two primary geometrical parameters with stochastic

variation are considered for illustration purpose: panel-distance (d) and panel-

width (h). Due to the local random variation, the width of the discretized panel,

as well as the distance between panels, may show random deviations from the

nominal value. With expansions in Cartesian coordinates, we can relate the po-

tential interaction with the geometry parameter through geometrical moments

(GMs) that can be extended to consider stochastic variations.

Let the center of an observer-cube be r0 and the center of a source-cube be rc.

We assume that the distance between the i-th source-panel and rc is a vector r

r = rx
−→x + ry

−→y + rz
−→z
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with |r| = r, and the distance between r0 and rc is a vector d

d = dx
−→x + dy

−→y + dz
−→z

with |d| = d.

In Cartesian coordinates (x− y − z), when the observer is outside the source

region (d > r), a multipole expansion (ME) [Jac75,Bra04] can be defined as

1

|r− d|
=
∑

p=0

(−1)p

p!
(r · · · r
︸ ︷︷ ︸

p

)× · · ·×
︸ ︷︷ ︸

p

(∇ · · ·∇
︸ ︷︷ ︸

p

1

d
)

=
∑

p=0

Mp =
∑

p=0

lp(d)mp(r) (5.4)

by expanding r around rc, where

l0(d) =
1

d
, m0(r) = 1

l1(d) =
dk
d3

, m1(r) = −rk

l2(d) =
3dkdl
d5

, m2(r) =
1

6
(3rkrl − δklr

2)

...

lp(d) = ∇ · · ·∇
︸ ︷︷ ︸

p

1

d
, mp(r) =

(−1)p

p!
(r · · · r
︸ ︷︷ ︸

p

). (5.5)

Note that dk, dl are the coordinate components of vector r in Cartesian coordi-

nates. The same is true for rk and rl. ∇ is the Laplace operator to take the

spatial difference, δkl is the Kronecker delta function, and (r · · · r) and (∇ · · ·∇1
d
)

are rank-p tensors with xα, yβ, zγ (α + β + γ = p) components.

Assume that there is a spatial shift at the source-cubic center rc for example,

change one child’s center to its parent’s center by h (|h| = c · h), where c is a

constant and h is the panel width. This leads to the following transformation for
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mp in (5.5)

m′
p = ((r+ h) · · · (r+ h)

︸ ︷︷ ︸

p

)

= mp +

p
∑

q=0

p!

q!(p− q)!
(h · · ·h
︸ ︷︷ ︸

j

)mp−j. (5.6)

Moreover, when the observer is inside the source region (d < r), a local expan-

sion (LE) under Cartesian coordinates is simply achieved by exchanging d and h

in (5.4)

1

|r− h|
=
∑

p=0

Lp =
∑

p=0

mp(h)lp(r). (5.7)

Also, when there is a spatial shift of the observer-cubic center r0, the shift of

moments lp(r) can be derived similarly to (5.6).

Clearly, both Mp, Lp and their spatial shifts show an explicit dependence on

the panel-width h and panel-distance d. For this reason, we call Mp and Lp

geometrical moments. As such, we can also express the potential coefficient

4πǫ0 · P (h, d) ≃







∑

p=0Mp if d > r

∑

p=0 Lp otherwise

(5.8)

as a geometrical-dependence function P (h, d) via geometrical moments.

Moreover, assuming that local random variations are described by two random

variables. ξh for the panel-width h, and ξd for the panel-distance d, the stochastic

forms of Mk and Lk become

M̂p(ξh, ξd) = Mp(h0 + h1ξh, d0 + d1ξd)

L̂p(ξh, ξd) = Lp(h0 + h1ξh, d0 + d1ξd) (5.9)
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where h0 and d0 are the nominal values and h1 as well as d1 define the perturbation

range (% of nominal). Similarly, the stochastic potential interaction becomes

P̂ (ξh, ξd).

5.3.2 Stochastic Orthogonal Polynomial (SOP) Expansion

By expanding the stochastic potential interaction P̂ (ξh, ξd) with stochastic orthog-

onal polynomials (SOPs), we can further derive the stochastic geometric moments

(SGMs) below.

Assuming that there is one random distribution ξ related to one stochastic

geometric variation, its related stochastic orthogonal polynomial is Φ(ξ). For

example, for a Gaussian random distribution, Φi(ξ) is a Hermite polynomial

[XK02,VWG06]

Φ(ξ) = [1, ξ, ξ2 − 1, · · · , ]T . (5.10)

As such, we can get the n-th order expansion of a potential coefficient matrix

with n + 1 Hermite polynomials by

P̂ (ξ) = P0Φ0(ξ) + P1Φ1(ξ) + · · ·+ PnΦn(ξ)

=
n∑

k=0

PkΦk(ξ). (5.11)

Accordingly, the charge-density q̂(ξ) becomes:

q̂(ξ) =

n∑

j=0

qjΦk(ξ). (5.12)

By applying an inner-product with Φk(ξ)(k = 0, 1, ..., n)

〈Φk, P̂ (ξ)q̂(ξ)− b〉 = 0 (5.13)
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to minimize the residue, we can derive an augmented linear system equation

P ×Q = B. (5.14)

The augmented P is calculated by

P = (W0 ⊗ P0 +W1 ⊗ P1 + · · ·+Wn ⊗ Pn). (5.15)

Note that ⊗ represents a tensor product, and

Wk =











wk,0,0 wk,0,1 · · · wk,0,n

wk,1,0 wk,1,1 · · · wk,1,n

...
... wk,i,j

...

wk,n,0 wk,n,1 · · · wk,n,n











,

where wk,i,j =< ΦkΦiΦj > is the inner product of Hermite polynomials Φk, Φi,

and Φj .

In addition, the augmented Q, B and bi become

Q =











q0

q1
...

qn











, B =











b0

b1
...

bn











, bi =
n∑

k=0

n∑

j=0

wk,i,j × Pi × qj.

By further defining

Pi,j =
n∑

k=0

wk,i,j · Pk,

The augmented system equation illustrated in Eq.(5.14) will have an explicit
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block-structure as shown below











P0,0 P0,1 · · · P0,n

P1,0 P1,1 · · · P1,n

...
... Pi,j

...

Pn,0 Pn,1 · · · Pn,n











×











q0

q1
...

qn











=











b0

b1
...

bn











. (5.16)

We use n = 1 as an example to illustrate the above general expression. First,

the potential coefficient matrix P̂ can be expanded with the first two Hermite

polynomials by

P̂ (ξ) = P0Φ0(ξ) + P1Φ1(ξ) = P0 + P1ξ.

Then, the Wk (k = 0, 1) matrix becomes

W0 =








1 0 0

0 1 0

0 0 1








, W1 =








0 1 0

1 0 2

0 2 0








,

and the newly augmented coefficient system can be written as

P = W0 ⊗ P0 +W1 ⊗ P1

=








P0 0 0

0 P0 0

0 0 P0








+








0 P1 0

P1 0 2P1

0 2P1 0








=








P0 P1 0

P1 P0 2P1

0 2P1 P0








. (5.17)

By solving q0, q1, · · · and qn, the Hermite polynomial expansion of charge-

density can be obtained. Especially, the mean and the variance can be obtained
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from

E(q(ξd)) = q0

V ar(q(ξd)) = q21V ar(ξd) + q22V ar(ξ2d − 1) = q21 + 2q22.

Considering that the dimension of P̂ is further augmented, the complexity

to solve the augmented system in Eq.(5.16) would be expensive. To mitigate

this problem, we present a parallel FMM to reduce the cost of MVP evaluations

in Section 5.4 and an incremental preconditioner to reduce the cost of GMRES

evaluation in Section 5.5.

5.4 Parallel Fast Multipole Method with SGM

Although the parallel fast multipole method has been discussed before such as

[YBZ03], the extension to deal with stochastic variation for capacitance extraction

needs to be addressed in the content of stochastic geometric moments (SGMs). In

the following, we illustrate the parallel FMM considering the process variation.

The first step of a parallel FMM evaluation is to hierarchically subdivide space

in order to from the clusters of panels. This is accomplished by using a tree-

structure to represent each subdivision. We assume that there are N panels

at the finest (or bottom) level. Providing depth H , we build an oct-tree with

H = ⌈log8
N
n
⌉ by assigning n panels in one cube. In other words, there are 8h

cubes at the bottom level. A parallel FMM further distributes a number of cubes

into different processors to evaluate P. In the following steps, the stochastic P×Q

is evaluated in two passes: an upward pass for multipole-expansions (MEs) and

a downward pass for local-expansions (LEs), both of which are further illustrated

with details below.
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5.4.1 Upward Pass

The upward-pass accumulates the multipole-expanded near-field interaction start-

ing from the bottom level (l = 0). For each child cube (leaf) without variation

(nominal contribution to P0) at the bottom level, it first evaluates the stochastic

geometrical moment with (5.4) for all panels in that cube. If each panel expe-

riences a variation ξd or ξh, it calculates Pi(ξ) × q(i 6= 0, ξ = ξd, ξh) by adding

perturbation hiξh or diξd to consider different variation sources, and then evalu-

ates the stochastic geometric moments with (5.9).

After building the MEs for each panel, it transverses to the upper level to

consider the contribution from parents. The moment of a parent cube can be

efficiently updated by summing the moments of its 8 children via a M2M operation.

Based on Eq.(5.6), the M2M translates the children’s M̂p into their parents.

The M2M operations at different parents are performed in parallel since there

is no data-dependence. Each processor builds its own panels’ stochastic geometric

moments while ignoring the existence of other processors.

5.4.2 Downward Pass

The potential evaluation for the observer is managed during a downward pass.

At l-th level (l > 0), two cubes are said to be adjacent if they have at least one

common vertex. Two cubes are said to be well separated if they are not adjacent

at level l but their parent cubes are adjacent at level l − 1. Otherwise, they are

said to be far from each other. The list of all the well-separated cubes from one

cube at level l is called the interaction list of that cube.

From the top level l = H−1, interactions from the cubes on the interaction list

to one cube are calculated by a M2L operation at one level (M2L operation at top

level). Assuming that a source-parent center rc is changed to an observer-parent’s

center r0, this leads to a LE (5.7) using the ME (5.4) when exchanging the r and
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d. As such, the M2L operation translates the source’s M̂p into the observer’s L̂p

for a number of source-parents on the interaction list of one observer-parent at

the same level. Due to the use of the interaction list, the M2L operations have

the data-dependence that introduces overhead for a parallel evaluation.

After the M2L operation, interactions are further recursively distributed down

to the children from their parents by a L2L operation (converse of the upward

pass). Assume that the parent’s center r0 is changed to the child’s center r′0 by

a constant h. Identical to the M2M update by (5.6), a L2L operation updates r

by r′ = r + h for all children’s L̂ks. In this stage, all processors can perform the

same M2L operation at the same time on different data. This perfectly employs

the parallelism.

Finally, the FMM sums the L2L results for all leaves at the bottom level (l = 0)

and tabulates the computed products Pi × qj (i, j = 0, 1, · · · , n). By summing up

the products in order, the FMM returns the product P × Q(i) in (5.16) for the

next GMRES iteration.

5.4.3 Data Sharing and Communication

The total runtime complexity for the parallel FMM using stochastic geometrical

moments can be estimated by O(N/B) + O(log8B) + C(N,B), where N is the

total number of panels and B is the number of used processors. The C(N,B)

implies communication or synchronization overhead. Therefore, it is desired to

minimize the overhead of data sharing and communication.

We notice that data dependency mainly comes from the interaction list during

M2L operations. In this operation, a local cube needs to know the ME moments

from cubes in its interaction list. To design a task distribution with small latency

between computation and communication, our implementation uses a complement

interaction list and prefetch operation.
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Cube 1

Cube under calculation

Cube 0

Dependency List

Cube 0

Cube 1

…

Cube k

…

Cube k

Figure 5.2: Prefetch operation in M2L.
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As shown in Figure(5.2), the complement interaction list (or dependency list)

for the cube under calculation records cubes that require its ME moments to be

listed within the shaded area. As such, it first anticipates which ME moments

will be needed by other dependent cubes (such as Cube 0, · · · , Cube k shown in

Figure(5.2)) and distributes the required ME moments prior to the computation.

From the point of view of these dependent cubes, they can “prefetch” the re-

quired ME moments. Therefore, the communication overhead can be significantly

reduced.

5.5 Incremental GMRES

The parallel FMM presented in Section 5.4 provides a fast matrix-vector-product

for the fast GMRES iteration. As discussed in Section 5.2 and 5.3, another critical

factor for a fast GMRES is the construction of a good preconditioner. In this sec-

tion, to improve the convergence of GMRES iteration, we first present a deflated

power iteration to improve convergence during the extraction. Then, we introduce

an incremental precondition in the framework of the deflated power iteration.

5.5.1 Deflated Power Iteration

The convergence of GMRES can be slow in the presence of degenerated smal-

l eigen values of the potential matrix P, such as the case for most extraction

problems with fine meshes. Constructing a preconditioner W to shift the eigen

value distribution (spectrum) of a preconditioned matrix W · P can significantly

improve the convergence [GGM07]. This is one of the so called deflated GMRES

methods [SS07].

To avoid fully decomposing P, an implicitly restarted Arnoldi method by

ARPACK1 can be applied to find its first K eigen values [λ1, ..., λK ] and its Kth-

1http://www.caam.rice.edu/software/ARPACK/
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order Krylov subspace composed by the first K eigen vectors VK = [v1, ..., vK ],

where

PVK = VKDK , V T
KVK = I. (5.18)

Note that DK is a diagonal matrix composed of the first K eigen values

DK = V T
KAVK = diag[λ1, ..., λK ]. (5.19)

Then, an according spectrum preconditioner is formed

W = I + σ(VKD
−1
K V T

K ), (5.20)

which leads to a shifted eigen-spectrum using

(W · P)vi = (σ + λi)vi i = 1, ..., K. (5.21)

Note that σ is the shifting value that leads to a better convergence. This method

is called deflated power iteration. Moreover, as discussed below, the spectral pre-

conditioner W can be easily updated in an incremental fashion.

5.5.2 Incremental Precondition

The essence of the deflated GMRES is to form a preconditioner that shifts de-

generated small eigen values. For a new P ′ with updated δP, the distribution of

the degenerated small eigen values change accordingly. Therefore, given a pre-

conditioner W for the nominal system with the potential matrix P(0), it would be

expensive for another native Arnoldi iteration to form a new preconditioner W ′

for a new P ′ with updated δP from P(1), · · · , P(n) . Instead, we show that W can

be incrementally updated as follows.

If there is a perturbation δP in P, the perturbation δvi of ith eigen vectors vi
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(k = 1, ..., K) can be given by [Ste01]

δvi = ViB
−1
i V T

i δPvi. (5.22)

Note that Vi is the subspace composed of

[v1, ..., vj, ..., vK ]

and Bi is the perturbed spectrum

diag[λi − λ1, ..., λi − λj, ..., λi − λK ]

(j 6= i, i, j = 1, ..., K). As a result, δVK can be obtained similarly for K eigen

vectors.

Assume that the perturbed preconditioner is W ′

W ′ = (I + σV ′
K(D

′
K)

−1(V ′
K)

T )

= W + δW (5.23)

where

V ′
K = VK + δVK , D′

K = (V ′
K)

TPV ′
K. (5.24)

After expanding V ′
K by VK and δVK , the incremental change in the precondi-

tioner W can be obtained by

δW = σ(EK − VKD
−1
K FKD

−1
K VK). (5.25)

where

EK = δVKD
−1
K V T

K + (δVKD
−1
K V T

K )T . (5.26)
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and

FK = δV T
K VKDK + (δV T

K VKDK)
T . (5.27)

Note that all the above inverse operations only deal with the diagonal matrix DK

and hence the computational cost is low.

Since there is only one Arnoldi iteration to construct a nominal spectral pre-

conditioner W , it can only be efficiently updated when δP changes. For example,

δP is different when one alters the perturbation range h1 of panel-width or changes

the variation type from panel-width h to panel-distance d. We call this deflated

GMRES method with the incremental precondition an iGMRES method.

For our problem in Eq.(5.16), we first analyze an augmented nominal system

with

W = diag[W, W, · · · , W ]

P = diag[P(0), P(0), · · · , P(0)]

DK = diag[DK , DK , · · · , DK ]

VK = diag[VK , VK , · · · , VK ],

which are all block diagonal with n blocks. Hence there is only one preconditioning

cost from the nominal block P(0). In addition, the variation contributes to the

perturbation matrix by

δP =











0 P0,1 · · · P0,n

P1,0 0 · · · P1,n

...
...

. . .
...

Pn,0 Pn,1 · · · 0











. (5.28)
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5.6 Experimental Results

Based on the proposed algorithm, we have developed a program piCap using

C++ on Linux network servers with Xeon processors (2.4GHz CPU and 2GB

memory). In this section, we first validate the accuracy of stochastic geometrical

moments by comparing them with the Monte-Carlo integral. Then, we study the

parallel runtime scalability when evaluating the potential interaction using MVP

with charge. In addition, the incremental GMRES preconditioner is verified when

compared to its non-incremental counterpart with total runtime.

5.6.1 Accuracy Validation

To validate the accuracy of SGM by first-order and second-order expansions, we

use two distant square panels. The nominal center-to-center distance d is d0, and

nominal panel width h is h0.

5.6.1.1 Incremental Analysis

One possible concern is about the accuracy of incremental analysis, which con-

siders independent variation sources separately and combines their contributions

to get the total variable capacitance. In order to validate this, we first introduce

panel width variation (Gaussian distribution with perturbation range h1), and

calculate the variable capacitance distribution. Then, panel distance variation d1

is added and the same procedure is conducted. As such, according to incremental

analysis, we can obtain the total capacitance as a superposition of nominal capac-

itance and both variation contributions. Moreover, we introduce the Monte Carlo

simulations (10000 times) as the baseline, where both variations are introduced

simultaneously. The comparison is shown in Table 5.1, and we can observe that

the results from incremental analysis can achieve high accuracy.

Actually, it is ideal to consider all variations simultaneously, but the dimension
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Table 5.1: Incremental Analysis vs. Monte Carlo Method

2 panels, d0 = 10µm, h0 = 2µm, d1 = 30%d0, h1 = 30%h0

Incremental Analysis (fF ) Monte Carlo (fF ) Error (%)
µCij

-1.1115 -1.1137 0.19
σCij

0.11187 0.11211 0.21

2 panels, d0 = 25µm, h0 = 5µm, d1 = 20%d0, h1 = 20%h0

Incremental Analysis (fF ) Monte Carlo (fF ) Error (%)
µCij

-2.7763 -2.7758 0.018
σCij

0.19477 0.194 0.39

of system can increase exponentially with the number of variations and thus the

complexity is prohibited. As a result, when the variation sources are independent,

it is possible and necessary to separate them by solving the problem with each

variation individually.

5.6.1.2 Stochastic Geometrical Moments

Next, the accuracy of proposed method based on stochastic geometrical moments

(SGM) is verified with the same two panel examples. To do so, we introduce a set

of different random variation ranges with Gaussian distribution for their distance

d and width h. For this example, Monte-Carlo method is used to validate the

accuracy of stochastic geometrical moments.

First, Monte-Carlo method calculates their Cij 3000 times and each time the

variation with a normal distribution is introduced to distance d randomly.

Then, we introduce the same random variation to geometric moments in (5.9)

with stochastic polynomial expansion. Because of an explicit dependence on ge-

ometrical parameters according to (5.4), we can efficiently calculate Ĉij . Table

5.2 shows the Cij value and runtime using the aforementioned two approaches.

The comparison in Table 5.2 shows that stochastic geometric moments can not

only keep high accuracy, which yields an average error of 1.8%, but also are up to

∼ 347 faster than the Monte-Carlo method.
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Table 5.2: Accuracy and Runtime(s) Comparison between MC(3000), piCap.

2 panels, d0 = 7.07µm, h0 = 1µm, d1 = 20%d0
MC piCAP

Cij(fF ) -0.3113 -0.3056
Runtime (s) 2.6965 0.008486

2 panels, d0 = 11.31µm, h0 = 1µm, d1 = 10%d0
MC piCAP

Cij(fF ) -0.3861 -0.3824
Runtime (s) 2.694 0.007764

2 panels, d = 4.24µm, h0 = 1µm, d1 = 20%d0, h1 = 20%
MC piCAP

Cij(fF ) -0.2498 -0.2514
Runtime (s) 2.7929 0.008684

5.6.2 Speed Validation

In this part, we study the runtime scalability using a few large examples to show

both the advantage of the parallel FMM for MVP and the advantage of the de-

flated GMRES with incremental preconditions.

5.6.2.1 Parallel Fast Multipole Method

The four large examples are comprised of 20, 40, 80 and 160 conductors, respec-

tively. For the two-layer example with 20 conductors, each conductor is of size

1µm×1µm×25µm (width×thick×length), and piCap employs a uniform 3×3×50

discretization. Fig. 5.3 shows its structure and surface discretization.

For each example, we use a different number of processors to calculate the

MVP of P × q by the parallel FMM. Here we assume that only d has a 10%

perturbation range with Gaussian distribution. As shown in Table 5.3, the runtime

of the parallel MVP decreases evidently when more processors are involved. Due

to the use of the complement interaction list, the latency of communication is

largely reduced and the runtime shows a good scalability versus the number of
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Figure 5.3: The structure and discretization of two-layer example with 20 con-
ductors.

Table 5.3: MVP Runtime (seconds)/Speedup Comparison for four different ex-
amples

#wire 20 40 80 160
#panels 12360 10320 11040 12480
1 proc 0.737515/1.0 0.541515/1.0 0.605635/1.0 0.96831/1.0
2 procs 0.440821/1.7X 0.426389/1.4X 0.352113/1.7X 0.572964/1.7X
3 procs 0.36704/2.0X 0.274881/2.0X 0.301311/2.0X 0.489045/2.0X
4 procs 0.273408/2.7X 0.19012/2.9X 0.204606/3.0X 0.340954/2.8X

processors. Moreover, the total MVP runtime with four processors is about 3X

faster on average than runtime with a single processor.

It is worth mentioning that MVP needs to be performed many times in the

iterative solver such as GMRES. Hence, even a small reduction of MVP runtime

can lead to an essential impact on the total runtime of the solution, especially

when the problem size increases rapidly.

5.6.2.2 Deflated GMRES

piCap has been used to perform analysis for three different structures as shown

in Fig. 5.4. The first is a plate with size 32µm × 32µm and discretized as 16 ×

16 panels. The other two examples are Cubic capacitor and Bus2x2 cross-over
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structures. For each example, we can obtain two stochastic equation systems in

(5.17) by considering variations separately from width h of each panel and from

the centric distance d between two panels, both with 20% perturbation ranges

from their nominal values which should obey the Gaussian distribution.

To demonstrate the effectiveness of the deflated GMRES with a spectral pre-

conditioner, two different algorithms are compared in Table 5.4. In the baseline

algorithm (column “diagonal prec.”), it constructs a simple preconditioner using

diagonal entries. As the fine mesh structure in the extraction usually introduces

degenerated or small eigen values, such a preconditioning strategy within the tra-

ditional GMRES usually needs much more iterations to converge. In contrast,

since the deflated GMRES employs the spectral preconditioner to shift the dis-

tribution of non-dominant eigen values, it accelerates the convergence of GMRES

leads to a reduced number of iterations. As shown by Table 5.4, the deflated

GMRES consistently reduces the number of iterations by 3X on average.

Table 5.4: Runtime and Iteration Comparison for different Examples.

#panel #variable
diagonal prec. spectral prec.

# iter time # iter time

single plate 256 768 29 24.594 11 8.625

cubic 864 2592 32 49.59 11 19.394

cross-over 1272 3816 41 72.58 15 29.21

5.6.2.3 Incremental Preconditioner

With the spectral preconditioner, an incremental GMRES can be designed easily

to update the preconditioner when considering different stochastic variations. It

quite often happens that a change occurs in the perturbation range of one ge-

ometry parameter or in the variation type from one geometry parameter to the

other. As the system equation in (5.17) is augmented to 3X larger than the nom-

inal system, it becomes computationally expensive to apply any non-incremental
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GMRES methods whenever there is a change from the variation. As shown by the

experiments, the incremental preconditioning in the deflated GMRES can reduce

the computation cost dramatically.

As described in Section 5.5, iGMRES needs to perform the precondition only

one time for the nominal system and to update the preconditioner with perturba-

tions from matrix block P (1). In order to verify the efficiency of such an incremen-

tal preconditioner strategy, we apply two different perturbation ranges for h1 for

panels of the two-layer 20 conductors shown in Fig. 5.3. Then, we compare the

total runtime of the iGMRES and GMRES, both with the deflation. The results

are shown in Table 5.5.

(a) plate (b) cubic (c) bus2x2

Figure 5.4: Test structures:(a)plate;(b)cubic;(c)cross-over2x2

Table 5.5: Total Runtime (seconds) Comparison for 2-layer 20-conductor by dif-
ferent methods

discretization
#panel #variable

Total Runtime(s)

w×t×l non-incremental incremental

3× 3× 7 2040 6120 419.438 81.375

3× 3× 15 3960 11880 3375.205 208.266

3× 3× 24 6120 18360 - 504.202

3× 3× 60 14760 44280 - 7584.674

From Table 5.5, we can see that a non-incremental approach needs to con-

struct its preconditioner whenever there is an update of variations, which is very
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time consuming. Our proposed iGMRES can reduce CPU time greatly during the

construction of the preconditioner by only updating the nominal spectral precon-

ditioner incrementally with (5.25). The result of iGMRES shows a speedup up to

15X over non-incremental algorithms and only iGMRES can finish all large-scale

examples up to 14760 panels.

5.7 Conclusion

In this chapter, we have proposed the use of geometrical moments to capture

local random variations for full-chip capacitance extraction. Based on geometrical

moments, the stochastic capacitance can be calculated via stochastic orthogonal

polynomials (SoPs) by fast multi-pole method (FMM) in a parallel fashion. As

such, the complexity of the matrix-vector product (MVP) can be largely reduced

to evaluate both nominal and stochastic values. Moreover, one incrementally

preconditioned GMRES is developed to consider different types of updates of

variations with an improved convergence by spectrum deflation.

A number of experiments show that our approach is ∼ 347X faster than the

Monte-Carlo based evaluation of variation with a similar accuracy, up to 3X

faster than the serial method in MVP, and up to 15X faster than non-incremental

GMRES methods. The observed speedup of our approach is analyzed in two

manners: the first is from the efficient parallel FMM, and the other is from the non-

Monte-Carlo evaluation by SoPs. Future work is planned to extend our approach

to deal with the general capacitance extraction with a non-square-panel geometry.
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CHAPTER 6

Conclusion

As integrated circuits enter into the nanometer era, process variation has become

the dominant challenge for nanoscale circuit design and fabrication. Many uncer-

tainties can be introduced during the manufacturing process such as lithography,

chemical mechanical polishing (CMP), etching, etc. Consequently, circuit param-

eters can deviate significantly from their nominal values specified by designers.

This in turn will cause circuit behavior or performance merits to differ from de-

sign specifications under the nominal condition. To address this issue, efficient

and accurate statistical analysis methodologies are needed to model the effects of

process variations and further predict the stochastic behavior of custom circuit

designs.

In Chapter 2, an efficient algorithm is presented to accurately predict the

failure rate of SRAM cells based on importance sampling scheme. Specifically,

the “Kullback-Leibler (KL) distance” is adopted from information theory [CT91]

to measure the distance between the given distribution and the optimal proposed

distribution. Then, the KL distance is minimized by parameterizing Gaussian dis-

tributions to approximate the optimal proposed distribution as closely as possible.

As such, the convergence of failure rate estimation is significantly expedited. The

extensive experiments show that the proposed algorithm can accurately estimate

the failure probability of SRAM cells with 5200X speed-up over Monte Carlo and

can be more than 40X faster than other existing methods [QTD10,KJN06].

In Chapter 3, a fast statistical algorithm is proposed to predict the failure prob-
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ability of memory circuits in high dimensions (e.g., SRAM bit-cell, delay chain).

This is the first work that successfully applies the importance sampling paradigm

to high dimensional problems. Experiments show that the proposed method can

provide 708X speedup over MC with the same accuracy for a 108-dimensional

problem. Also, the proposed approach is 17X faster than the Statistical Blockade

method [SR09] and trumps existing importance sampling methods that completely

fail to provide any reasonable accuracy.

In Chapter 4, a new mapping algorithm is developed to obtain the “arbitrary”

circuit behavioral distributions with great computational complexity reduction.

This method utilizes Latin Hypercube Sampling (LHS) coupled with a correla-

tion control technique to generate a few samples and further analytically evaluate

the high-order moments of the circuit behavior. Afterwards, the “arbitrary” prob-

abilistic distributions of circuit behavior can be extracted using moment-matching

method. The proposed method has been successfully applied to high-dimensional

and strongly nonlinear problems with linear complexity. The experiments demon-

strate that the proposed method can provide several orders of magnitude speedup

over crude Monte Carlo method while retaining the accuracy.

In Chapter 5, a parallel full chip capacitance extraction algorithm named p-

iCAP is proposed. With the use of stochastic-polynomial expanded geometrical

moments, the parallel fast multipole method (FMM) can efficiently solve the large-

scale dense linear system in parallel and further evaluate the parasitic capacitance

and its variation. Experiments on a few different large examples show that piCAP

is hundreds of times faster than the Monte-Carlo method without compromising

the accuracy.
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