UC San Diego
UC San Diego Previously Published Works

Title
SD-PINN: Physics Informed Neural Networks for Spatially Dependent PDES

Permalink
https://escholarship.org/uc/item/8x283704

Authors

Liu, Ruixian
Gerstoft, Peter

Publication Date
2023-06-04

DOI
10.1109/icassp49357.2023.10095076

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,

availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8x28370z
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 978-1-7281-6327-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICASSP49357.2023.10095076

SD-PINN: PHYSICS INFORMED NEURAL NETWORKS FOR SPATIALLY DEPENDENT
PDES

Ruixian Liu, Peter Gerstoft

University of California, San Diego

ABSTRACT

The physics-informed neural network (PINN) is able to identify
partial differential equation (PDE) coefficients which are constant
across the space directly from physical measurements. In this paper,
we propose a modification of PINN, named as SD-PINN, which can
recover the coefficients in spatially-dependent PDEs using only one
neural network without the requirement of domain-specific physical
knowledge. The network structure is a simple fully connected neural
network, and multiple physical information like the time-invariance
and spatial-smoothness of the PDE coefficients is incorporated as
loss functions. The method is robust to noise due to introduced
physical constraints, which is verified by experiments.

Index Terms— physics informed neural networks (PINNs),
spatially-dependent PDEs, deep learning, data-driven.

1. INTRODUCTION

Many natural phenomena are described by parial differential equa-
tions (PDEs) which consist of multiple PDE terms. A PDE govern-
ing the dynamical behaviors of field U can be described by

N[U] :a1Ux+a2Uy—|—a3Ut+a4Utt—|—... D

where the partial derivatives U, Uy, Uy, ... are the PDE terms and
the a1, az, ... are PDE coefficients. The PDE coefficients can be
spatially-dependent, which indicates an inhomogeneous medium for
the dynamics. In this work, we use the attenuating wave equation as
the example:

N[U] = Ut + aU; = ¢*Uss)

where Uy, Uy are the 1st and 2nd-order temporal derivatives of U
and U, the 2nd-order spatial derivative of U. The PDE coefficient
a > 0 is the wave attenuation factor and ¢® > 0 is the square of the
phase speed c.

Recently, the increasing computer resources have encouraged
multiple efforts on data-drive PDE recovery from physical mea-
surements [1-14]. Among them, the physics informed neural net-
work (PINN) [1-3] has drawn significant attention from researchers
thanks to its robustness against measurement noise.

Given coordinates (z, t) and the measurements U (x, t) on these
spatio-temporal points, the PINN can learn the function that maps
the coordinate to the measurement by an L-layer fully connected
neural network (FCN) as shown in Fig. 1. The PINN assumes we
know which PDE is governing the physical system from prior knowl-
edge and only want to find the coefficients within the PDE, e.g., if
we know the PDE is the wave equation as (2), the PINN can be em-
ployed to recover the PDE coefficients, i.e., the attenuation o and
squared phase speed ¢?. We denote the weights and bias in all layers
as the neural network parameter 6.

Wi, by W,,b,

Wo_1,b, Wb,

Fig. 1: The structure of the neural network used in PINN and SD-
PINN.

In reality, the PDE governing the dynamics within a field can
be spatially-dependent, e.g., the phase speed ¢ can vary within an
area of the medium (like water) due to the spatial variations of the
temperature or the density. The PINN assumes that the PDE coef-
ficients are identical across the whole region of interest (ROI) and
thus is unable to identify the PDEs in these cases. There are only
a few efforts about using PINN to recover spatially-dependent PDE
coefficients [15, 16], in which they construct two neural networks
to recover the PDE coefficients in addition to approximating the so-
lution of the PDE. To be specific, both of [15, 16] use one neural
network to approximate the dynamical behaviors in the field and an-
other network to estimate the material parameters. The two networks
are then joined via domain-specific physical knowledge such as the
stress-strain relationship [15] or Maxwell’s equations [16].

In this paper, we propose the spatially dependent physics in-
formed neural network (SD-PINN) that is capable of recovering spa-
tially dependent PDEs. In contrast to [15, 16], we can recover the
spatially-dependent coefficients at the same time of approximating
the PDE solution using only one neural network, and do not re-
quire domain-specific physical knowledge. Compared to the previ-
ous spatially-dependent PDE recovery work which is based on least
squares regression [17], the major advantage of the SD-PINN is its
robustness against the noise in the input signals.

2. THEORY

Like for the original PINN, we assume the kind of PDE known and
the task is to recover the coefficients for each term in the assumed
PDE at all locations within the ROI. In addition, the true PDE coeffi-
cients at the spatial boundaries of the ROI are given in this work, and
we also know the sign information (non-positive or non-negative) of
each coefficients to be recovered. Given that the kind of PDE is
known, the sign information is not a strong additional assumption
because it is fixed by the physical background of the PDE. For ex-
ample, in (2) the coefficient —c? for U, must be non-positive since
c is a real number for the phase speed of the wave, and the o must

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 26,2023 at 00:02:29 UTC from IEEE Xplore. Restrictions apply.

be non-negative for a system without input energy from the external.

2.1. Formulation

We fix one term of the PDE as the left hand side (LHS) with its
coefficient arbitrarily set to one at every location, and recover the
coefficients for all other terms placed in the right hand side (RHS) for
all locations. In this part we use the wave equation as the example,
and for other PDEs the method works in the same way. We focus on
time-invariant homogeneous PDE here, e.g., N[U] = 0 in (2) which
indicates that there is no source in the ROI and the o, ¢* do not
change with time.
Since N[U] = 0, we can write the wave equation (2) as

Utt = _OéUt + CzUmz . (3)

For M spatial locations within the RO, if the PDE is spatially de-
pendent, then (3) becomes

Uit = —amUs + coUpe, m=1,..., M .)

Generally, if there are K PDE terms di,k = 1, ..., K in the RHS
with coefficients A\, kK = 1, ..., K, for location m at time step j, the
kth term in the RHS with its coefficient is

TZn,k = /\mkdznk ()

where dznk is the kth PDE term evaluated at location m and time
j and the coefficient A, is identical for all the time j because the
coefficients are time-invariant. For all the M locations, the RHS can
be denoted by

J J J 7

™1 o Mk A1l MK diy dl x

j J J J

a1 o Tk A21 A2k dz dyk

= o

J J J 7

1 K Am AMK &l i
(6)

where the o denotes element-wise product. For the wave equation
), K = 2, and dfnl,dfn2 are for Uy, Uy, respectively. The A1
and \,,2 denote —a,, and cm. The (6) indicates one difference be-
tween this work and the conventional PINN [1-3], in which there
are only K unknown PDE coefficients {\1,..., Ak } to be recov-
ered since the PDE is assumed to be spatially-independent and thus
the coefficients are identical for all locations.

Let the LHS at the same location m and time step j denoted by
¢J., then the PDE is written as

o= "1l)

For the wave equation (4), the 03, is the Uy, evaluated at time j and
location m.

2.2. Loss functions

During training the SD-PINN we are minimizing the overall loss
loss in Eq. (8):

loss = l0ssu+ws X1088f+Wsm X108Ssm +wp X [08SHL+wWsi X [08Ss;
(®)
which is a linear combination of 5 losses {lossy, l0sst, [0SSsm, 0SS,
losssi} with wg, wsm,wy, and ws; their weights. They can be
grouped into 3 categories: (i) the data fitting loss loss, is a func-
tion of only the neural network parameters 6 (weights and bias);

(ii) the functional loss losst is a function of both 6 and the PDE
coefficients \; (iii) the smoothness, boundary and sign losses
{lo$Ssm, lossy, losssi } are the functions of only the PDE coeffi-
cients A. They are detailed as follows.

The SD-PINN first learns the dynamics by maximizing the sim-
ilarity between the composite function described by the neural net-
work and the true function mapping the time steps ¢ and spatial lo-
cations x to corresponding physical measurements w in the training
dataset. Assuming there are M locations and 7" time indices within
the training dataset, the method is to minimize a loss function

M T
loss, = Z Z(Netg(xm,tj) - Um7j)2 9)

m=1 j=1

where the network parametrized by 6 (including weights W, and
bias by in all L layers) shown in Fig. 1 is denoted by Netg, which
is a non-linear function of (x, t):

Netg(z,t) = W (... (W3 tanh(WT m +b1)+by)...)+by

where the tanh is applied in an element-wise way.

After the estimated measurement U, ; = Neto(Tm,t;) is
calculated, the derivatives involved by the PDE are computed by
automatic differentiation [18]. The estimated U, at (zm,t;) is ac-
ONetg (x,t) which

Fz x:acm,tztj,
is a function of (z,t¢) parametrized by 6 (updated in the previ-
ous epochs during training) evaluated at (z.,,t;). For the 2nd

the result is acquired by

quired by computing the derivative

order derivative like Uy, which is de,
%(%)hzzm,t:% where the a%(ai\’%‘;(”‘t)) is also a
function parametrized by 6. The automatic differentiation is also
used to compute u: and the LHS Em, e.g., the estimated Uy in
(3). After & - and W are estimated by automatic differentiation,

inspired by [1-3], the)\mk could be estimated by minimizing

mkcﬁnk — G

(10)
because of (5) and (7). But we use a modified version of (10) as
detailed in the following.

To increase the robustness against noise, we add “virtual mea-
surements” evenly located between neighboring true measurements
in both spatial and temporal aspects. Let us evenly insert P “virtual
measurements” into two neighboring spacial locations and @) “vir-
tual measurements” into two neighboring time points, then we have
(M — 1)(P 4+ 1) + 1 spatial coefficients for each PDE term, and
every such spatial coefficient is invariant across all the (T'— 1)(Q +
1) 4 1 time steps. These “virtual measurements” are computed from
the forward process of the SD-PINN, e.g., U, gt =
Netg(ac,t)|m:ITmLsz»r1 forp € {1,...,P}andq €
{1,...,Q} where Ax and At are the step size between neighbor-
ing true measurements along space and time. In this work, we use
P =1 for simplicity, which indicates that there is only one “virtual
measurement” inserted at the mid-point of two neighboring spatial
locations. We define the functional loss to be

ST (S Xkdly)

j€Iy mEly k=1

~8,)? (11)

lossy =

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 26,2023 at 00:02:29 UTC from IEEE Xplore. Restrictions apply.

Update & to miminize
these losses
§ L

(lossy(1))
4
/ 105Ssm (1)
/4
// lossg(d)
[/A

Update A to miminize J
these losses \

N
lossg(6,1)

(ﬁxx) m+1,j*

(e mn,jo™

(@) mros,) < 2

Xm+1- ‘
Um,j Um+1,j

Umt1,j

at

Fig. 2: A demonstration for the losses of SD-PINN, for each loss, only a small part of the summation involving (Tm,t;), (Tm+o.5,¢;) and
(Zm+1,t;5) is shown. The input data are shown in blue. The spatial index m and time index j correspond to a true measurement instead of an
inserted “virtual measurement” and the Wm+0.5,; does not affect loss, since it is virtual. The dashed lines are for automatic differentiation,

which is computed by evaluating functions parametrized by

at given coordinates, e.g., (Zm, t;). The lossy is included only if m = 1 or

m + 1 = M (i.e., at boundaries). The loss functions are the functions of ¢ and/or), and the neural network is parametrized by ¢.. The three
Nety blocks denote just one neural network parametrized by ¢/ and structured as Fig.1, with the difference being the inputs and outputs.

where the set I; = {1,1 + ﬁ,...,T -1+ %,T} and set
I, ={1,15,2,...,M —1,M — 0.5, M }. Although in (11) the m
uses all values in the set I, which are stepped by 0.5, only the A,k
whose m is an integer is for the PDE coefficient at the true location.

Updating (10) to (11) indicates that the recovered PDE at any
location m can also describe the dynamics at () inserted time steps
between every pair of neighboring time steps of the true 7" obser-
vations. Meanwhile, all the recovered A with non-integer m are
used for smoothing. The smoothness penalty is

K M-1

108Ssm = Z Z (ka + X(m«kl)k - 2X(m+o.5)k)2 V)]

k=1 m=1

Minimizing (12) encourages a smoother transition of the recovered
PDE coefficients between two neighboring sensors.

To accelerate the training, we assume the PDE coefficients on
the spatial boundaries of the ROI known. Thus we define the bound-
ary loss lossy, according to the difference between the estimated and
true coefficients on the boundaries:

K

lossp = Z((Alk — i)+ Qark — Aark)?) - (13)
k=1

In addition, the assumed sign for the unknown PDE coefficient
is fixed. For example, in the wave equation (4), the cfn must be
non-negative for Vm to be physically meaningful as it is the squared
phase speed. Thus a loss function losss; penalizing the Ami whose
value violates the desired sign can be designed. We define the [0sssi

as

losssi = Z Z ReLU (—sign(Amk) Ami) (14)
m k

where sign(z) = 1,Vz > 0 and —1,Vz < 0. Note that the
sign(Amk) is determined by the assumed PDE form and thus is ir-
relevant to the recovered value Api and independent of m. For
example, in (4), sign(Amr) = —1 for k = 1 since A,,1 denotes
—am < 0 (if the A5 can be zero like here, we only care about the
possible sign when it is non-zero). ReLU is the Rectified Linear Unit
defined as ReLU(x) = z for > 0 and 0 otherwise. By minimizing
(14), the ka is encouraged to have its assumed sign.

A demonstration of how the inputs, the nueral network parame-
ter 6 and the PDE coefficients A are related by the losses discussed
above is shown in Fig. 2.

2.3. Robustness to noise

The advantage of the SD-PINN over the PDE recovery methods
based on finite difference (FD) [19] is its robustness against noise.
For SD-PINN the LHS [and the PDE terms in the RHS d in (6)
are both computed by automatic differentiation from the neural net-
work estimation & = Netg(z,t), which is supposed to be less noisy
(than the noisy measurements u) because it is also regularized by
losst, 10SSsm, losssi in addition to the data fitting loss loss,. Both
losst and losssi help suppressing the noise by introducing physical
constraints from the assumed PDE knowledge, and [osssm help sup-
pressing the noise by introducing smoothness constraint between the
recovered coefficients at neighboring locations.

We use two least squares regression (LSQ) based methods as the
baselines for comparison, where the PDE terms are directly com-
puted by FD from noisy measurements and then the LSQ is imple-
mented to find the PDE coefficients. For example, if the aim is to
recover the —a,, and ¢2, in (4), the T x 1 vectors u, us and Ugy
are first computed by FD using the data around the m-th location

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 26,2023 at 00:02:29 UTC from IEEE Xplore. Restrictions apply.

in the noisy measurements, and then [—am, c2,]7 = [us uge] usy
where the T denotes pseudo-inverse (which is the least squares re-
gression to solve Uy = [Uy Uge][—am 2] T).

If a naive FD [19] is used to compute the PDE terms, we name
the method as FD-LSQ. The naive FD can be robustified against
noise by adding a total variation (TV) regularization [20], and we
name the method using this TV-regularized FD as TVR-FD-LSQ.

3. EXPERIMENTS

We conduct two experiments, one for recovering one PDE coeffi-
cient (phase speed) from measurements with large noise, and the
other for recovering two PDE coefficients (phase speed and the
more implicit attenuation factor) from observations with noise. The
datasets are generated by finite difference modeling [21]. In both
experiments, the SD-PINN is trained by Adam [22].

3.1. Recovering phase speeds from noisy measurements

We assume no attenuation in the wave field for this experiment and
thus a,,, = 0 is set everywhere in (4). So there is only K = 1 PDE
coefficient to recover, which is cfn represented by Ap,1.

The network has 9 layers, and wr = wsm = wp, = wsi = 10
in the loss function (8). We set Q@ = 3. The wavefield is shown
in Fig. 3a in which the ROI is between [3,23]Az in space (thus
M = 21) and [5, 195]At in time as indicated by the red lines. The
governing PDE for the field is wave equation (4) without the U; term
and the spatially-dependent ¢? is indicated by the “True” line in Fig.
4a. The measurements of the field are polluted by the zero-mean
Gaussian noise with the signal-to-noise ratio SNR = 20 dB.

The recovered Xml, i.e., the c? with respect to locations is shown
in Fig. 4a. The phase speeds recovered by least squares regression
(LSQ) are also included for comparison, in which the U and Uy,
are calculated numerically by naive finite difference or TVR finite
difference at first, and then the coefficient for U,, is computed by
least squares regression. As shown in the row for Sec. 3.1 in Ta-
ble 1, the spatially-dependent ¢ recovered by SD-PINN has a much
smaller MSE (mean squared error) with respect to the true values.

SD-PINN FD-LSQ TVR-FD-LSQ

Sec. 3.1 | ¢ | 1.25x10° 2 | 7.87x 107! 1.49

Sec. 32 | —0 | 1.80 % 107° [531 x107% | 1.84x10°%
C Z [541x10° | 230x10 ' | 252x10 ¢

Table 1: For Sec. 3.1 and 3.2, the MSE between the true PDE coef-
ficients and the recovered ones from various methods.

100
1(At)

(b)

Fig. 3: The noisy measurements of (a) the waves without attenua-
tion; (b) the waves with attenuation. The ROI covering 3 < =z < 23
and 5 <t < 195 is indicated by red lines.

@ °
—— True

4- Recovered by FD-LSQ
Recovered by TVR-FD-LSQ
——Recovered by SD-PINN

—

3 5 10 15 20 23

z(Az)
(b) —— True Recovered by TVR-FD-LSQ
——Recovered by FD-LSQ ——Recovered by SD-PINN
0.05
0 A B
s A
-0.05 e
-0.1

3 5 10 15 20 23
z(Ax)

Fig. 4: (a) For the noisy data shown in Fig. 3a, the true ¢ and

the recovered values from SD-PINN and the least squares regression

(LSQ). (b) For the noisy data shown in Fig. 3b, the true —c, ¢ and

the recovered values from SD-PINN and the LSQ.

3.2. Recovering attenuation and phase speeds from noisy data

With attenuation, wave equation (4) is used. The attenuation « is
harder to recover since its absolute value can be much smaller and
the wave propagation is more obvious to observe than attenuation.

To recover (4), we still keep the Uy in the LHS and set the num-
ber of PDE terms in RHS K = 2. The k = lisfor Ui, and k = 2 is
for Uyg. Thus, the A1 is for —a and A2 for ¢ at location m.

We use a similar dataset as in Sec. 3.1 for this experiment, see
Fig. 3b. The initial state and the phase speeds distribution are the
same as before, and the only difference is that the attenuation is non-
zero for a part of ROI, as shown by the “True” line in Fig. 4b. The
measurements are polluted by the zero-mean Gaussian noise with
SNR = 30 dB.

The network has 5 layers here, and wy = wWsm = wWp = Wsi =
10 in the loss function (8). We set Q = 1. The SD-PINN works well
as the recovered o and c? are closer to the ground truth compared
to the baseline methods, as shown in Fig. 4b. The MSEs between
the true PDE coefficients and the recovered ones from various meth-
ods are recorded in the rows for Sec. 3.2 in Table 1, in which the
coefficients recoverd by SD-PINN have much smaller MSEs.

4. CONCLUSION

In this work, we proposed a neural network termed as SD-PINN that
can recover spatially dependent PDE coefficients using only one net-
work without the domain knowledge pertinent to a specific situation.
The network structure is a simple FCN and the physical information
for the PDE is encoded into the loss functions. The SD-PINN is
robust to noise, which is demonstrated by various experiments.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 26,2023 at 00:02:29 UTC from IEEE Xplore. Restrictions apply.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

5. REFERENCES

M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘“Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear par-
tial differential equations,” J. Comput. Phys., vol. 378, pp.
686-707, 2019.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘“Physics
informed deep learning (part i): Data-driven solutions of
nonlinear partial differential equations,” arXiv preprint
arXiv:1711.10561, 2017.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics
informed deep learning (part ii): data-driven discovery of
nonlinear partial differential equations,” arXiv preprint
arXiv:1711.10566, 2017.

S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering gov-
erning equations from data by sparse identification of nonlinear
dynamical systems,” Proc. Natl. Acad. Sci., vol. 113, no. 15,
pp- 3932-3937, 2016.

S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-
driven discovery of partial differential equations,” Sci. Adv.,
vol. 3, no. 4, pp. e1602614, 2017.

H. Schaeffer, G. Tran, and R. Ward, “Extracting sparse high-
dimensional dynamics from limited data,” SIAM J. Appl.
Math., vol. 78, no. 6, pp. 3279-3295, 2018.

Z. Long, Y. Lu, and B. Dong, “Pde-net 2.0: Learning pdes
from data with a numeric-symbolic hybrid deep network,” J.
Comput. Phys, vol. 399, pp. 108925, 2019.

S. L. Brunton and J. N. Kutz, Data-driven science and engi-
neering: Machine learning, dynamical systems, and control,
Cambridge University Press, 2019.

Camps-Valls G., Martino L., Svendsen D. H., Campos-
Taberner M., Mufioz-Mari J., Laparra V., Luengo D., and
Garcifa-Haro F. J., “Physics-aware gaussian processes in re-
mote sensing,” Appl. Soft Comput., vol. 68, pp. 69-82, 2018.

R. Liu, M. J. Bianco, and P. Gerstoft, “Wave equation extrac-
tion from a video using sparse modeling,” in Proc.53th Asilo-
mar Conf. on Circuits, Systems and Computers. IEEE, 2019,
pp- 2160-2165.

S. Zhang and G. Lin, “Robust data-driven discovery of gov-
erning physical laws with error bars,” Proc. Math. Phys. Eng.
Sci., vol. 474, no. 2217, pp. 20180305, 2018.

R. Liu, M. Bianco, and P. Gerstoft, “Automated partial differ-
ential equation identification,” J. Acoust. Soc. Am., vol. 150,
no. 4, pp. 2364-2374, 2021.

H. Xu, H. Chang, and D. Zhang, “DL-PDE: Deep-learning
based data-driven discovery of partial differential equations
from discrete and noisy data,” Commun. Comput. Phys., vol.
29, pp. 698-728, 2021.

P. Pilar and N. Wahlstrom, “Physics-informed neural net-
works with unknown measurement noise,” arXiv preprint
arXiv:2211.15498, 2022.

E. Zhang, M. Yin, and G. E. Karniadakis, “Physics-informed
neural networks for nonhomogeneous material identification in
elasticity imaging,” arXiv preprint arXiv:2009.04525, 2020.

[16]

[17]

(18]

[19]

[20]

(21]

[22]

Y. Zhang, H. Fu, Y. Qin, K. Wang, and J. Ma, “Physics-
informed deep neural network for inhomogeneous magnetized
plasma parameter inversion,” IEEE Antennas Wirel. Propag.
Lett., vol. 21, no. 4, pp. 828-832, 2022.

R. Liu, M. Bianco, P. Gerstoft, and B. D. Rao, “Data-driven
spatially dependent pde identification,” in Proc. 2022 IEEE Int.
Conf. Acoust. Speech Signal Process., ICASSP. 1EEE, 2022,
pp- 3383-3387.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.
Siskind, “Automatic differentiation in machine learning: a sur-
vey,” J. Mach. Learn. Res., vol. 18, pp. 1-43, 2018.

W. F. Ames, Numerical methods for partial differential equa-
tions, Academic press, 2014.

R. Chartrand, “Numerical differentiation of noisy, nonsmooth
data,” Int. Sch. Res. Notices, vol. 2011, 2011.

G. D. Smith, Numerical solution of partial differential equa-
tions: finite difference methods, Oxford university press, 1985.

D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 26,2023 at 00:02:29 UTC from IEEE Xplore. Restrictions apply.

