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ABSTRACT OF THE DISSERTATION

Domain-Knowledge-Guided Machine Learning Towards Accurate Materials Property
Prediction and Materials Discovery

by

Weike Ye

Doctor of Philosophy in Chemistry

University of California San Diego, 2021

Professor Shyue Ping Ong, Chair
Professor Francesco Paesani, Co-Chair

In the past few decades, the first principles modeling algorithms, especially density

functional theory (DFT), have been important complements to experiments in studying properties

and materials design. Thanks to the success of DFT and the fast development of computational

capabilities, we have witnessed the exploration of a huge amount of materials data. The logical

next step is the introduction of tools capable of making use of the generated data. Machine

learning (ML) techniques are such tools to extract knowledge from data and make predictions at a

sub-second speed, which are currently steering materials science into a new data-driven paradigm.

xii



In this thesis, following the close guidance of domain knowledge in materials science, we

strive to develop accurate, interpretable ML models that could potentially serve as the surrogate of

DFT in property prediction and the design of new materials. A unifying theme that differentiates

the models in this thesis from their counterparts in other existing ML works is the practice of

the principle of parsimony, where we aspire to develop and explain the models with minimum

features.

The thesis is divided into three topics. In the first topic (Chapter 2), we aimed at predicting

the phase stability of the inorganic crystals, which is often the first step in any materials discovery.

Inspired by Pauling’s rules, we show that deep neural networks utilizing just the Pauling elec-

tronegativity and ionic radii of the species of the symmetrically distinct sites can predict the DFT

formation energies of garnets and perovskites within the low mean absolute errors (MAEs) of

7-34 meV atom−1. The models can be easily extended to mixed garnets and perovskites with little

loss in accuracy by using a binary encoding scheme, extending the applicability of ML models to

the infinite universe of mixed-species crystals.

In the second topic (Chapter 3), we targeted predicting the bandgap. By machine learning

on 1823 data, we show that the eXtreme gradient boosting(XGBoost) model reaches the state-of-

the-art MAE of 0.13 eV at predicting the DFT bandgap (using generalized gradient approximation

functional) of garnets. Interpreting the model’s behavior reveals that the bandgap is affected

mainly by the atomic number of the species occupying the tetrahedron sites in a garnet crystal.

Integrating the models from both Chapter 2 and Chapter 3, we devised a high-throughput screening

(HTS) workflow to screen for Eu2+-doped red emission phosphors in the garnet crystal family.

Two candidates, Ca(Er,Tb)2Mg2Si3O12, were identified by rapidly transversing 5554 candidate

compositions, which is computationally prohibitive for pure DFT-based HTS workflows due to

the large cell size of the garnet structures.

In the last topic (Chapter 4), we investigated the 2D defect, grain boundary (GB), in

polycrystalline systems. We show that the energy of a grain boundary, normalized by the bulk

xiii



cohesive energy, can be described purely by four geometric features. By machine learning on

a large computed database of 369 low-Σ (Σ < 10) GBs of more than 50 metals, we developed

a model that can predict the grain boundary energies to within 0.12 J m−2. This universal GB

energy model can be extrapolated to the energies of higher sigma GBs with a modest increase in

prediction error.
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Chapter 1

Introduction
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1.1 Background

The prediction of materials properties and the discovery of new materials are among the

most important subjects in materials science. For the past decades, the growing computational

resources and the well-established quantum mechanical approximations to the Schrödinger’s

equation, in particular density functional theory (DFT)2,3, have enabled the researchers to predict

the physical and chemical properties of materials and virtually guide the experimental efforts.

The algorithm development in electronic structure codes such as DFT and the computing ca-

pabilities have advanced to the degree that first-principles calculations can be performed in a

high-throughput fashion. High-throughput DFT calculations have greatly accelerated the discov-

ery of numerous materials such as alkali-ion batteries4–6, catalysts7, organic semiconductors8,

and phosphors9,10. It also fueled the development of such large, high-quality open databases

of computed materials as the Materials Project11, Open Quantum Materials Database12, the

AFLOW repository13, etc14–17.

However, despite the advances in theoretical methodologies, DFT is known for its poor

scalability and high cost. On the one hand, there is a finite limit on the system size of ∼ 1000

atoms because the scaling of DFT to the number of electrons is typically O(n3
e) or higher18–20.

On the other hand, when the number of candidates reaches a medium level of thousands, the high

computational cost of DFT calculations becomes the bottleneck in high-throughput screening

(HTS) workflows.

Machine learning (ML) is the branch of artificial intelligence that focuses on developing

algorithms to extract patterns from data. Important advances of ML have been made across a

variety of tasks such as playing the Go21, natural language processing22, autonomous driving23

and etc. The growing accessibility of the large number of high-quality data in materials science

has nourished the application of ML to make rapid property predictions in the vast unexplored

structure space without performing first-principles calculations. The accuracy and efficiency of
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ML models make them promising solution to the scaling problem embedded in DFT.

There are three key steps of any ML tasks: (1) collecting data with sufficient quantity and

quality, and the curation of the data, (2) design of the task, including the scheme to map the input

data to a numerical representation (descriptor/feature) that is relevant to the target, and the choice

of proper target, and (3) the fitting of the model. In this chapter, we first discuss in details on these

steps for ML applications in material science. Then, we review the current ML applications in

materials’ property prediction. Lastly, we conclude with objectives and an overview of this thesis.

1.2 Machine learning model development

1.2.1 Data

Obtaining large and diverse data sets is the prerequisite for developing rational ML models,

and it has been one of the major limitations to applying ML in materials science. Quantity-wise,

50 data points are often considered the lower limit to build a descent ML model. Quality-wise,

the data should display a good coverage of both the chemistry space and the property space, and

maintain consistency. In principle, fit-to-experiment predictions are more exciting but existing

experimental data repositories24–26 are still limited by the scarcity of property data and suffer

from data inconsistency as a result of uncontrolled experimental conditions. Therefore, using

computed data sources is still the more prevailing choice. Take the Materials Project as an

example, it currently hosts ∼ 133000 crystals structures with properties such as DFT-relaxed

energies and bandgaps available, which breeds an extensive amount of high-impact ML works

in this field27–29. In addition to using the ready data from databases, generating data from

scratch sometimes is necessary. For one, it should be noted that most large computed materials

databases are still constructed using the Perdew-Berke-Ernzerhof (PBE)2 generalized gradient

approximation (GGA) functional, which is efficient in computing but could fail for systems with

strong electron correlation and van der waals interactions30–32. For another, general databases

3



could lose resolution in more constrained chemistry spaces. The data generation is often carried

out via high-throughput ab initio calculations, facilitated by open-source materials analysis

and HT workflow management softwares such as Pymatgen33, Fireworks34, Atomate scientific

workflow packages35, and etc13,14.

1.2.2 Task definition

To define an ML task, there are two key components, i.e., the mapping of the input data to

a numerical representation (descriptor/feature), and the choice of a learnable metric for the target.

The choice of descriptors is critical for the model performance. Basic requirements for descriptors

are informative and discriminating. Being informative requires the descriptors to reflect the

underlying physics behind the predicting target, whereas being discriminating challenges the

descriptors to have sufficient distance for instances that have small statistical distance. In materials

science, descriptors are typically two types, i.e., compositional and structural. Compositional

descriptors are numerical values that represent physical aspects of the constituent elements such as

the atomic number, electronegativity, atomic radii, electronic structure, etc. These descriptors have

been shown to have reasonably good performance for predicting as varied materials properties

as thermoelectric figures of merit36, thermal conductivity37, solute diffusion barriers in face-

centered-cubic metals38, elastic properties39, glass-forming ability40, and bandgaps40. While

compositions-based descriptors are usually highly informative, the limitation is obvious as they

are intrinsically unable to distinguish between polymorphs. For most problems, a feature set that

describes the full materials’ structure is desired. Graph-based representation41 of crystals and

molecules has gained substantial interest in recent years27,29,42. Neural networks based on such

representation (GNN) have achieved state-of-the-art performances in predicting the formation

energies, bandgaps, and other common materials properties27,29. However, we should be aware

that training of such models requires a large number of data; hence only a limited number of

properties can afford the training of such delicate models43. Furthermore, current available GNNs

4



are trained on general-purpose databases like Materials Project. There is no guarantee that the

performance of such models is also optimal in more contained chemistry or structure spaces.

In additional to the basic requirements, the compactness of the feature set is also critical

to the performance and generalizability of the ML model. The selection of features can be

knowledge-driven or data-driven. The former relies on applying physical and chemical intuition

to select appropriate features for the ML problem. The knowledge-driven approach often leads

to more efficient features and thus more interpretable models. However, there is no guarantee

of the optimal performance. On the other hand, the data-driven approach starts from a large

initial set of candidate features and down-selects an optimal subset. There are numerous available

statistical tools to automate this down-selection process, such as using L0 or L1 regularization

(least absolute shrinkage and selection operator, LASSO)44–46, feature importance47,48, principal

component analysis (PCA)42,49,50 and etc. Features chosen by this approach can often achieve

global-optimal performance while accompanied by possible sacrifice in the interpretability.

The definition or engineering of the target is arguably the most important but often

underestimated step. The target should have clear-defined uncertainties and errors and ideally

display a normal-like distribution. Choosing the wrong target could be detrimental to the model

performance and generalizability. For example, phase stability is one of the central problems

in materials science. The common metrics to measure the stability are the 0 K DFT formation

energy E f or the energy above convex hull Ehull
51. The latter is a much more difficult target than

the former since the errors of the Ehull are inconsistent across chemical spaces, and there is a

lower bound at zero of Ehull by definition.

1.2.3 Model fitting

Eventually, we enter the last step of model fitting. The machine learning algorithms are

normally categorized into supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning is by far the most common for ML in material science, where the data is

5



structured as composition/structure-property pair. There are numerous regression algorithms from

linear regression to graph networks in the ascending order of complexity. They can be easily

constructed and tuned for optimized performance with the aid from open-source ML software

libraries such as scikit-learn52, Tensorflow53, and Pytorch54.

Data Task Definition Model Fitting

Descriptors Target

Compositional 
Descriptors

Structural 
Descriptors

…… ……

Existing
 Databases DIY

Algorithm Hyper-parameter 
Tuning

Informative
Discriminative

Nonambiguous?

Quantity: Is there enough data?
Quality: Good distribution? Consistency?

Data Curation: Data preprocessing 

Data Source

Regression:
Linear & Multi-linear Regression
SVR
KRR
Gaussin Process
Ensemble Learning
Neural Networks
Graph Networks
…

Classification:
Decision Tree
Logistic Regression
…

Figure 1.1: Three key steps for constructing machine learning models, starting from collecting
enough high quality data, to defining the task by coming up with the descriptor scheme and
selecting the learnable metric of the target, and eventually fitting the model.
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1.3 Current application of machine learning in materials’ prop-

erty prediction

Property prediction is one of the significant applications of ML in materials science. In

this section, we summarize existing works categorized by the properties predicted. Phase stability

is a property of ubiquitous interest in materials science. ML works that predict phase stability can

be loosely categorized based on the applicable scope, i.e., the general models and structure-type-

specific models. The general models that are based on compositional-based features typically

have the higher error between 50-88 meV atom−1 40,55, whereas their counterparts that are based

on graph-neural-networks have the state-of-the-art accuracy within the error of only 28 meV

atom−1 27. For structure-specific models, there are multiple ML works that predicts the phase

stability of the perovskites48,56,57 and Heusler compounds58–60. The typical mean absolute error

of these works is at the level of 21-121 meV atom−1.

The bandgap is another important material property commonly estimated via first-principles

calculations. Similar to the phase stability, there are general models27,29,40,61,62 and more specific

models48,63–65. The typical mean absolute error of GGA band gap for non-metal crystals is ∼

0.24 eV for general models and ∼ 0.2 eV for specific models. It should be noted that the majority

of the works are based on GGA funcitonal which is known to underestimate the bandgap due to

the approximation in exchange-correlation functionals, the self-interaction error, and the missing

derivative discontinuity. There are more advanced but expensive algorithms that provide more

close-to-experiment bandgaps, such as the modified Becke–Johnson (mBJ) functional66, the

delta self-consistent-field (∆SCF) method67, hybrid functionals (HSE06)68, and GW calculations

based on many body perturbation theory69. Lee et al. developed a support vector regression

(SVR) model to predict the G0W0 bandgap, of which the root-means-squared error is 0.24 eV28.

In addition to bulk crystal properties, modeling of more complex defect systems are

possible. Grain boundary (GB), the interface between two grains in a polycrystalline material, is
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a 2D defect in the crystal structure. The energy of GB strongly affects polycrystalline materials’

mechanical properties such as strength, toughness, and corrosion resistance70,71. Multiple works

have developed ML models for such restricted chemistry and structure types as face-centered

cubic (fcc) Cu72, fcc Ni73,74, or fcc Al systems75 with the typical mean absolute error at the level

of below 0.1 J m−2. Note that all of the ML works are based on data calculated from embedded

atom model(EAM) potentials since the more accurate and general ab initio database of GB energy

is only available recently76.

1.4 Objectives and overview

Despite the increasingly important role ML plays in property prediction, there is ample

room for improvements on multiple fronts. To begin with, the infusion of domain knowledge in

feature and target engineering can lead to more efficient and interpretable models. The feature

selection process can be a hybrid of both knowledge-driven and data-driven to ensure both

interpretability and optimal performance. Furthermore, carefully designed targets under the

guidance of domain knowledge offer advantages in the model’s predictive ability. Secondly,

property prediction often the times is not the ultimate goal in materials science, but rather a

intermediate step towards the discovery of novel materials with desired properties. The integration

of ML models into HTS workflow to surrogate pure-DFT counterparts enables more efficient

screening.

In this thesis, we showcase that under the guidance of domain-knowledge, a series of

high accuracy, interpretable ML models are developed and are integrated into HTS workflows

to accelerate the discover of promising phosphor materials. The thesis can be divided into three

topics. In the first topic, we demonstrate the neural networks that can accurately predict the

phase stability of bulk crystal. In developing the phase stability model, the intuitive chemical

hypothesis that the ionic crystal stability should be quantitatively related to the electronegtivity
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and ionic radii of the species occupying symmetrically distinctive sites guided our choice of

features. The knowledge of the well-known limitations of DFT calculations in handling redox

reaction energies77 directed us to choose the formation energy from the binary oxides as the

appropriate target instead of more widely used formation energy from the elements and the energy

above the hull. Starting from the carefully designed features and target, we developed neural

network models that are able to predict the DFT formation energies of garnets and perovskites

to within 7-34 meV atom−1, and extended the models to mixed compositions with little loss in

accuracy.

In the second topic, We continued to develop an eXtreme gradient boosting (XGBoost)

model to predict the GGA bandgap of garnets to within the error of 0.13 eV, a substantial

improvement compared to a common mean absolute error of 0.2 eV for structure-specific ML

models. The feature selection was performed utilizing both the domain knowledge and data

techniques, where starting from elemental attributes related to crystal electronic structures,

we down-selected the optimal feature set by evaluating the whole feature space. The highly

interpretable model reveals that the atomic number of the species occupying the tetrahedron sites

of the garnets has the most strong negative correlation with the bandgap of the garnets. We further

integrated both models for predicting the phase stability and the GGA bandgap of garnets into an

ML-DFT hybrid workflow to screen for the Eu2+-doped red-emission phosphors. Two candidates

(Ca(Er,Tb)2Mg2Si3O12) were identified from more than 5000 candidates compositions, the

screening of which is computational prohibitive by pure DFT-based workflow.

In the last topic, we considered more complex structures of 2D defects in polycrystalline

metals. By normalizing the grain boundary energy over the bulk cohesive energy, we show that a

universal and extrapolatable model can predict the grain energies to within 0.12 J m−2 by machine

learning on 369 low-sigma GBs of more than 50 metals using only four pure geometric features.

A brief description for each subsequent chapter is provided as follows:

• Chapter 2 presents the development of deep neural networks utilizing just two attributes—the

9



Pauling electronegativity and ionic radii to predict the DFT formation energies of C3A2D3O12

garnets and ABO3 perovskites within the error of 7–34 meV atom−1, well within the limits

of DFT accuracy. A further extension to mixed garnets and perovskites with little loss in

accuracy can be achieved using a binary encoding scheme, addressing a critical gap in the

extension of machine-learning models to the vast combinatorial chemical spaces. Finally,

we demonstrate that the potential of these models to rapidly transverse vast chemical spaces

to accurately identify stable compositions, accelerating the discovery of novel materials

with potentially superior properties.

• Chapter 3 presents a study on developing an ML model that predicts the PBE bandgap of

garnets to within the error of 0.13 eV using only six features per structure. We integrated

the models from Chapter 2 and this work into an HTS workflow to screen for Eu2+-doped

red-emission phosphor. Two superior candidates, Ca(Er,Tb)2Mg2Si3O12 were identified

from more than 5000 compositions.

• Chapter 4 presents a study showcasing that the energy of a grain boundary, normalized by

the bulk cohesive energy, can be described purely by four geometric features. By machine

learning on a large computed database of 369 low-sigma (sigma < 10) GBs of more than

50 metals, we developed an interpretable and extrapolatable model that can predict the

grain energies within 0.12 J m−2.

10



Chapter 2

Deep neural networks for accurate

predictions of crystal stability
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2.1 Introduction

The formation energy of a crystal is a key metric of its stability and synthesizability. It is

typically defined relative to constituent unary/binary phases (E f ) or the stable linear combination

of competing phases in the phase diagram (Ehull , or energy above convex hull)51. In recent years,

machine learning (ML) models trained on DFT2 calculations have garnered widespread interest

as a means to scale quantitative predictions of materials properties28,57,64,78,79, including energies

of crystals. However, most previous efforts at predicting E f or Ehull of crystals40,57,80–83 using

ML models have yielded mean absolute errors (MAEs) of 70-100 meV atom−1, falling far short

of the necessary accuracy for useful crystal stability predictions. This is because approximately

90% of the crystals in the Inorganic Crystal Structure Database (ICSD) have Ehull < 70 meV

atom−1 84, and the errors of DFT-calculated formation energies of ternary oxides from binary

oxides relative to experiments are ∼ 24 meV atom−1 85.

We propose to approach the crystal stability prediction problem by using artificial neural

networks (ANNs)86, i.e., algorithms that are loosely modeled on the animal brain, to quantify

well-established chemical intuition. The Pauling electronegativity and ionic radii guide much

of our understanding about the bonding and stability of crystals today, for example, in the form

of Pauling’s five rules87 and the Goldschmidt tolerance factor for perovskites88. Though these

rules are qualitative in nature, their great success points to the potential existence of a direct

relationship between crystal stability and these descriptors.

To probe these relationships, we choose, as our initial model system, the garnets, a large

family of crystals with widespread technological applications such as luminescent materials for

solid-state lighting89 and lithium superionic conductors for rechargeable lithium-ion batteries90,91.

Garnets have the general formula C3A2D3O12, where C, A and D denote the three cation sites

with Wyckoff symbols 24c (dodecahedron), 16a (octahedron) and 24d (tetrahedron), respectively,

in the prototypical cubic Ia3̄d garnet crystal shown in Fig. 2.1a. The distinct coordination
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environments of the three sites result in different minimum ionic radii ratios (and hence, species

preference) according to Pauling’s first rule. We further demonstrate the generalizability of our

approach to the ABO3 perovskites (Fig. 2.1b), another broad class of technologically important

crystals92–96.

In this work, we show that ANNs using only the Pauling electronegativity97 and ionic

radii98 of the constituent species as the input descriptors can achieve extremely low MAEs of

7–10 meV atom−1 and 20-34 meV atom−1 in predicting the formation energies of garnets and

perovskites, respectively. We also introduce two alternative approaches to extend such ANN

models beyond simple unmixed crystals to the much larger universe of mixed cation crystals

– a rigorously defined averaging scheme for the electronegativity and ionic radii for modeling

complete cation disorder, and a novel binary encoding scheme to account for the effect of cation

orderings with minimal increase in feature dimension. Finally, we demonstrate the application of

the NN models in accurately and efficiently identifying stable compositions out of thousands of

garnet and perovskite candidates, greatly expanding the space for the discovery of materials with

potentially superior properties.

2.2 Results

2.2.1 Model construction and definitions

We start with the hypothesis that the formation energy E f of a C3A2D3O12 garnet is some

unknown function f of the Pauling electronegativities (χ) and Shannon ionic radii (r) of the

species in the C, A and D sites, i.e.,

E f = f (χC,rC,χA,rA,χD,rD) (2.1)

Here, we define E f as the change in energy in forming the garnet from binary oxides with
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Figure 2.1: Crystal structures of garnet and perovskite prototypes. a. Crystal structure of Ia3̄d
C3A2D3O12 garnet prototype. Green (C), blue (A) and red (D) spheres are atoms in the 24c
(dodecahedron), 16a (octahedron) and 24d (tetrahedron) sites, respectively. The orange spheres
are oxygen atoms. b. Crystal structure of Pnma ABO3 perovskite prototype. Green (A) and
blue (B) spheres are atoms in the 4c (cuboctahedron) and 4d (octahedron) sites, respectively.
The orange spheres are oxygen atoms.
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elements in the same oxidation states, i.e., Eoxide
f as opposed to the more commonly used formation

energy from the elements Eelement
f used in previous works40,80–82. Using the Ca3Al2Si3O12

garnet (grossular) as an example, Eoxide
f is given by the energy of the reaction: 3CaO+Al2O3 +

3SiO2 −−→ Ca3Al2Si3O12. This choice of definition of E f is motivated by two reasons. First,

binary oxides are frequently used as synthesis precursors. Second, our definition ensures that

garnets that share elements in the same oxidation states have E f that are referenced to the same

binary oxides, minimizing well-known DFT errors. In contrast, Eelement
f and Ehull are both poor

target metrics for a ML model. Eelement
f suffers from non-systematic DFT errors associated

with the incomplete cancellation of the self-interaction error in redox reactions77, while Ehull is

defined with respect to the linear combination of stable phases at the C3A2D3O12 composition in

the C-A-D-O phase diagram, which can vary unpredictably even for highly similar chemistries.

Henceforth, the notation E f in this work refers to Eoxide
f unless otherwise stated. The binary

oxides used to calculate the E f for garnets and perovskites are listed in Supplementary Table A.2

and A.3, respectively.

Based on the universal approximation theorem99, we may model the unknown function

f (χC,rC,χA,rA,χD,rD), which is clearly non-linear (see Supplementary Fig. A.1), using a feed-

forward artificial neural network (ANN), as depicted in Fig. 2.2. The loss function and metric

are chosen to be the mean squared error (MSE) and MAE, respectively. We will denote the

architecture of the ANN using ni-n[1]-n[2]-· · · -1, where ni and n[l] are the number of neurons in

the input and lth hidden layer, respectively.

2.2.2 Neural network model for unmixed garnets

We developed an initial ANN model for unmixed garnets, i.e., garnets with only one

type of species each in C, A and D. A data set comprising 635 unmixed garnets was generated

by performing full DFT relaxation and energy calculations (see Methods) on all charge-neural

combinations of allowed species (Supplementary Table A.2) on the C, A and D sites1. This
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Ef

Figure 2.2: General schematic of the artificial neural network. The artificial neural network
(ANN) comprises an input layer of descriptors (the Pauling electronegativity and ionic radii
on each site), followed by a number of hidden layers, and finally an output layer (E f ). The
large circle in the centre shows how the output of the ith neuron in lth layer, a[l]i , is related to the
received inputs from (l− 1)th layer a[l−1]

j . w[l]
(i, j) and b[l]i denote the weight and bias between

the jth neuron in (l−1)th layer and ith neuron in lth layer. σ is the activation function (rectified
linear unit in this work). The ANN models were implemented using Keras100 deep learning
library with the Tensorflow53 backend.
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dataset was randomly divided into training, validation and test data in the ratio of 64:16:20. Using

50 repeated random sub-sampling cross validation, we find that a 6-24-1 ANN architecture yields

a small root mean square error (RMSE) of 12 meV atom−1, as well as the smallest standard

deviation in the RMSE among the 50 sub-samples (Supplementary Fig. A.2a). The training,

validation and test MAEs for the optimized 6-24-1 model are ∼ 7–10 meV atom−1 (Fig. 2.3a), an

order of magnitude lower than the ∼ 100 meV atom−1 achieved in previous ML models40,57,80,81.

For comparison, the error in the DFT E f of garnets relative to experimental values is around 14

meV atom−1 (Supplementary Table A.4). Similar RMSEs are obtained for deep neural network

(DNN) architectures containing two hidden layers (Supplementary Fig. A.2b), indicating that

a single-hidden-layer architecture is sufficient to model the relationship between E f and the

descriptors.

2.2.3 Averaged neural network models for mixed garnets

To extend our model to mixed garnets, i.e., garnets with more than one type of species

in the C, A, and D sites, we explored two alternative approaches — one based on averaging of

descriptors, and another based on expanding the number of descriptors to account for the effect

of species ordering. The data set for mixed garnets were created using the same species pool,

but allowing two species to occupy one of the sites. Mixing on the A sites was set at a 1:1 ratio,

and that on the C and D sites was set at a 2:1 ratio, generating garnets of the form C3A′A′′D3O12

(211 compositions), C′C′′A2D3O12 (445 compositions) and C3A2D′D′′2O12 (116 compositions).

For each composition, we calculated the energies of all symmetrically distinct orderings within

a single primitive unit cell of the garnet. All orderings must belong to a subgroup of the Ia3̄d

garnet space group.

In the first approach, we characterized each C, A, or D site using weighted averages of

the ionic radii and electronegativities of the species present in each site, given by the following
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Figure 2.3: Performance of artificial neural network (ANN) models. a. Plot of EANN
f against

EDFT
f of unmixed garnets for optimized 6-24-1 ANN model. The histograms at the top and right

show that the training, validation and test sets contain a good spread of data across the entire
energy range of interest with standard deviations of 122-134 meV atom−1. Low mean absolute
errors (MAEs) in E f of 7, 10 and 9 meV atom−1 are observed for the training, validation and test
sets respectively. b. MAEs in E f of unmixed and mixed samples in training, validation and test
sets of all garnet models. The C-, A- and D-mixed DNNs have similar MAEs as the unmixed
ANN model, indicating that the neural network has learned the effect of orderings on E f . Each
C-, A- and D-mixed composition has 20, 18, and 7 distinct orderings, respectively, which are
encoded using 5-bit, 5-bit and 3-bit binary arrays, respectively. c. MAEs in E f of unmixed and
mixed samples for training, validation and test sets of unmixed perovskites for 4-12-1 ANN
model. The EDFT

f of training, validation and test sets similarly contain a good spread of data
across the entire energy range of interest with standard deviations of 104-122 meV atom−1. Low
mean absolute errors (MAEs) in E f of 21, 34 and 30 meV atom−1 are observed for the training,
validation and test sets, respectively. d. MAEs in E f for training, validation and test sets of all
perovskite models. Each A- and B- mixed perovskite compositions has ten distinct orderings,
which are both encoded using 4-bit binary arrays. The black lines (dashed) in a. and c. are the
identity lines serving as references.
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expressions (see Methods):

ravg = xrX +(1− x)rY (2.2)

χavg = χO−
√

x(χX−χO)2 +(1− x)(χY−χO)2 (2.3)

where X and Y are the species present in a site with fraction x and (1-x), respectively, and O refers

to the element oxygen. The implicit assumption in this “averaged” ANN model is that species X

and Y are completely disordered, i.e., different orderings of X and Y result in negligible DFT

energy differences.

Using the same 6-24-1 ANN architecture, we fitted an “averaged” model using the energy

of the ground state ordering of the 635 unmixed and 772 mixed garnets. We find that the training,

validation, and test MAEs of the optimized model are 22, 26, and 26 meV atom−1 , respectively

(Supplementary Fig. A.3a). These MAEs are about double that of the unmixed ANN model, but

still comparable to the error of the DFT E f relative to experiments. The larger MAEs may be

attributed to the fact that the effect of species orderings on the crystal energy is not accounted for

in this “averaged” model.

2.2.4 Ordered neural network model for mixed garnets

In the second approach, we undertook a more ambitious effort to account for the effect

of species orderings on crystal energy. Here, we discuss the results for species mixing on the

C site only, for which the largest number of computed compositions and orderings is available.

For 2:1 mixing, there are 20 symmetrically distinct orderings within the primitive garnet cell,

which can be encoded using a 5-bit binary array [b0, b1, b2, b3, b4]. This binary encoding scheme

is significantly more compact that the commonly used one-hot encoding scheme, and hence,

minimizes the increase in the descriptor dimensionality. We may then modify Eqn. 2.1 as follows:
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E f = f (χC′,rC′,χC′′ ,rC′′ ,χA,rA,χD,rD,b0,b1,b2,b3,b4) (2.4)

where the electronegativities and ionic radii of both species on the C sites are explicitly

represented. In contrast to the “averaged” model, we now treat the 20 ordering-E f pairs at each

composition as distinct data points. Each unmixed composition was also included as 20 data

points with the same descriptor values and E f , but different binary encodings.

We find that a two-hidden-layer DNN is necessary to model this more complex composition-

ordering-energy relationship. The final optimized 13-22-8-1 model exhibits overall training,

validation and test MAEs of ∼ 11-12 meV atom−1 on the entire unmixed and mixed dataset

(Supplementary Fig. A.3b). The comparable MAEs between this extended DNN model and

the unmixed ANN model is clear evidence that the DNN model has successfully captured the

additional effect of orderings on E f . We note that the average standard deviation of the predicted

E f of different orderings of unmixed compositions using this extended DNN model is only 2.8

meV atom−1, indicating that the DNN has also learned the fact that orderings of the same species

on a particular site have little effect on the energy. Finally, similar MAEs can be achieved for A

and D site mixing (Supplementary Fig. A.3c and A.3d) using the same approach.

2.2.5 Stability classification of garnets using ANN models

While E f is a good target metric for a predictive ANN model, the stability of a crystal

is ultimately characterized by its Ehull . Using the predicted E f from our DNN models and

pre-calculated DFT data from the Materials Project11, we have computed Ehull by constructing

the 0 K C-A-D-O phase diagrams. From Fig. 2.4a, we may observe that the extended C-mixed

DNN model can achieve a > 90% accuracy in classifying stable/unstable unmixed garnets at a

strict Ehull threshold of 0 meV atom−1 and rises rapidly with increasing threshold. Similarly, high

classification accuracies of greater than 90% are achieved for all three types of mixed garnets.
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Given the great flexibility of the garnet prototype in accommodating different species, there

are potentially millions of undiscovered compositions. Even using our restrictive protocol of

single-site mixing in specified ratios, 8,427 mixed garnet compositions can be generated, of which

2,307 are predicted to have Ehull of 0 meV atom−1, i.e., potentially synthesizable (Supplementary

Fig. A.4a). A web application that computes E f and Ehull for any garnet composition using the

optimized DNNs has been made publicly available for researchers at http://crystals.ai.

2.2.6 Neural network models for unmixed and mixed perovskites

To demonstrate that our proposed approach is generalizable and not specific to the gar-

net crystal prototype, we have constructed similar neural network models using a dataset of

240 unmixed, 222 A-mixed and 80 B-mixed ABO3 perovskites generated using the species in

Supplementary Table A.3. We find that a 4-12-1 single-hidden-layer neural network is able to

achieve MAEs of 21-34 meV atom−1 in the predicted E f for unmixed perovskites (Fig. 2.3c),

while two 10-24-1 neural networks are able to achieve MAEs of 22-39 meV atom−1 in the E f

of the mixed perovskites (Supplementary Fig. A.5). These MAEs are far lower than those of

prior ML models of unmixed perovskites, which generally have MAEs of close to 100 meV

atom−1 or higher57,81. As shown in Fig. 2.3,
¯

the accuracy of classifying stable versus unstable

perovskites exceeds 80% at a strict Ehull threshold of 0 meV atom−1 and maintains at above 70%

at a loosened Ehull threshold of 30 meV atom−1. During the review of this work, a new work by

Li et al.56 reported achieving comparable MAEs of ∼ 28 meV atom−1 in predicting the Ehull of

perovskites using a kernel ridge regression model. However, this performance was achieved using

a set of 70 descriptors, with model performance sharply dropping with less than 70 descriptors.

Furthermore, Li et al.’s model is restricted to perovskites with Ehull < 400 meV atom−1 and only

a single ordering for each mixed perovskite, while in this work, the highest Ehull is 747 meV

atom−1 for the perovskite dataset and all symmetrically distinct orderings on the A and B sites

within a
√

2×
√

2×1 orthorhombic conventional perovskite unit cell (ten structures each) are
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considered.

2.3 Discussion

To summarize, we have shown that NN models can quantify the relationship between

traditionally chemically intuitive descriptors, such as the Pauling electronegativity and ionic radii,

and the energy of a given crystal prototype. A key advantage of our proposed NN models is that

they rely only on an extremely small number (two) of site-based descriptors, i.e., no structural

degrees of freedom are considered beyond the ionic radii of a particular species in a site and the

ordering of the cations in the mixed oxides. This is in stark contrast to most machine-learning

models in the literature utilizing a large number of correlated descriptors, which render such

models highly susceptible to overfitting, or machine-learning force-fields, which can incorporate

structural and atomic degrees of freedom but at a significant loss of transferability to different

compositions. Most importantly, we derive two alternative approaches — a rigorously defined

averaging scheme to model complete cation disorder and a binary encoding scheme to account for

the effect of orderings—to extend high-performing unmixed deep learning models to mixed cation

crystals with little/no loss in error performance and minimal increase in descriptor dimensionality.

It should be noted that our NN models are still restricted to the garnet and perovskite compositions

(with or without cation mixing) with no vacancies, though further extensions to other common

crystal structure prototypes and to account for vacancies should in principle be possible. Finally,

we show how predictive models of E f can be combined with existing large public databases of

DFT computed energies to predict Ehull and hence, phase stability. These capabilities can be

used to efficiently traverse large chemical spaces of unmixed and mixed crystals to identify stable

compositions and orderings, greatly accelerating the potential for novel materials discovery.
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Figure 2.4: Accuracy of stability classification. Plots of the accuracy of stability classification
of the ANN models compared to DFT as a function of the Ehull threshold for a. garnets, and
b. perovskites. The accuracy is defined as the sum of the true positive and true negative
classification rates. A true positive (negative) means that the Ehull for a particular composition
predicted from the optimized artificial neural network model and DFT are both below (above)
the threshold. For the mixed compositions, an Ehull is calculated for all orderings (20, 7 and 18
orderings per composition for C-, A- and D-mixed garnets, respectively, and 10 orderings per
composition for both A- and B-mixed perovskites).
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2.4 Methods

2.4.1 DFT calculations

All DFT calculations were performed using Vienna ab initio simulation package (VASP)

within the projector augmented wave approach101,102. Calculation parameters were chosen

to be consistent with those used in the Materials Project, an open database of pre-computed

energies for all known inorganic materials11. The Perdew-Burke-Ernzehof generalized gradient

approximation exchange-correlation functional103 and a plane-wave energy cut-off of 520 eV

were used. Energies were converged to within 5 × 10−5 eV atom−1, and all structures were fully

relaxed. For mixed compositions, symmetrically distinct orderings within the 80-atom primitive

garnet unit cell and the 40-atom
√

2×
√

2×1 orthorhombic perovskite supercell were generated

using the enumlib library104 via the Python Materials Genomics package33.

2.4.2 Training of ANNs

Training of the artificial neural networks (ANNs) was carried out using the Adam opti-

mizer105 at a learning rate of 0.2, with the mean square error of E f as the loss metric. For each

architecture, we ran with a random 64:16:20 split of training, validation and test data, i.e., random

sub-sampling cross validation.

2.4.3 Electronegativity averaging

Pauling’s definition of electronegativity is based on an “additional stabilization” of a

heteronuclear bond X-O compared to average of X-X and O-O bonds, as follows.

(χX−χO)
2 = Ed(XO)− Ed(XX)+Ed(OO)

2
(2.5)
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where χX and χO are the electronegativities of species X and O, respectively, and Ed is the

dissociation energy of the bond in parentheses. Here, O refers to oxygen.

For a disordered site containing species X and Y in the fractions x and (1-x), respectively,

we obtain the following:

(χXxY1−x−χO)
2 = xEd(XO)+(1− x)Ed(YO)− xEd(XX)+(1− x)Ed(YY)+Ed(OO)

2

= x(χX−χO)
2 +(1− x)(χY−χO)

2
(2.6)

We then obtain the effective electronegativity for the disordered site as follows:

χXxY1−x = χO−
√

x(χX−χO)2 +(1− x)(χY−χO)2 (2.7)

2.4.4 Data availability

The datasets generated during and/or analysed during the current study are available in the

GitHub repository https://github.com/materialsvirtuallab/garnetdnn as well as the Dryad Digital

Repository (doi: 10.5061/dryad.760r5b6). A web application that estimates E f and Ehull for any

given garnet or perovskite composition using the optimized DNNs is available at http://crystals.ai/.

Chapter 2, in full, is a reprint of the material “Deep neural networks for accurate predictions

of crystal stability” as it appears on Nature Communications, Weike Ye, Chi Chen, Zhenbin

Wang, Iek-Heng Chu, Shyue Ping Ong, 2018, 9 (1), 1-6. The dissertation author was the primary

investigator and author of this paper.
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Chapter 3

High-throughput screening of Eu2+-doped

red-emission garnet phosphors using

density functional theory and machine

learning
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3.1 Introduction

Solid-state white-light-emitting diodes (wLEDs) are energy efficient, robust, durable and

environment-friendly solid state lighting devices106,107. Nowadays, a blue diode chip combined

with a yellow phosphor such as Y3Al5O12:Ce3+ is still the most mature method for fabricating

commercial wLEDs. However, they suffer from poor color rendering effects due to the lack of

red components108. To this end, great efforts have been made to explore novel red phosphors. So

far, the popular choices of red-emitting activators are Mn4+ 109,110, Eu3+ 111,112, and Eu2+ 113–116.

Mn4+-doped phosphors are mainly fluorides109,117, which are notoriously known for poor chemi-

cal stability and great synthesis difficulty. On the other hand, the Eu3+-doped phosphors suffer

from poor absorption efficiency under blue light excitation as the maximum absorption peaks are

often the results of the charge transfers taking place in the UV and near-UV region. This problem

can be circumvented by doping Eu2+ instead. However, existing high-profile Eu2+-doped red

phosphors are mainly nitrides113–116,118–120, which require harsh synthesis conditions. Therefore,

the developments of Eu2+-doped red oxide phosphors are necessary to complement current

phosphor materials. Garnets are known as superior hosts for high efficiency and thermal stabil-

ity121–124, however, there is only one Eu2+-doped red-emission phosphor reported hitherto110

that adopts the garnet structure, leaving many opportunities for new materials discovery.

Computational high throughput screening (HTS) is an effective approach that down-selects

a large pool of candidates based on successive property evaluations and is often adopted to search

for new phosphors10,125. Screening of phosphor usually considers cost, safety, phase stability,

emission color, thermal quenching (percentage loss of emission at elevated temperatures during

operation), and other more refined assessments9. The cost and safety factors are often assured by

the constraints on the candidates’ constituent elements, and the rest of the properties are often

assessed by the density functional theory (DFT)2. Despite the advances in theoretical method-

ologies and computational power, the major bottleneck in HTS is still the high computational
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cost of DFT calculations when the number of candidates reaches a medium level of thousands.

An emerging bypass is to develop surrogate machine learning (ML) models for DFT, which

accurately map the structures to the properties at sub-second high speed. In fact, there have

already been several successful cases of utilizing ML-DFT hybrid HTS to discover novel energy

materials, such as quaternary Heusler compounds60, photovoltaic materials126, nitrogen fixation

catalysts127, etc.

A critical property to evaluate in the phosphor HTS is the emission color. Previous works

have shown that the bandgap (Ebg) of the host material is inversely related to the emission wave-

length10. Predicting bandgap using ML models has been investigated extensively27,62–65,128–130.

Due to the diversity of the models, the accuracy of them varies. In general, two categories

of structure-related ML models exist, namely the structure-agnostic models that work with all

structures, and the structure-specific models that deal with a specific structure type, e.g., per-

ovskite63–65, MXene131, etc. The typical mean absolute errors (MAEs) of structure-specific

models are 0.1 to 0.3 eV28,28,129–131. Despite the generalizability of the structure-agnostic models,

they usually have higher errors. Up to now, there has not been reported a structure-specific model

for garnet, whereas the state-of-the-art general model MEGNet27 shows MAE of 0.43 eV on our

garnet data set, which is higher than that of the general structure-specific models. Hence, it is

necessary to develop a more accurate ML model to allow rapid assessment of garnet bandgaps.

In this work, we developed an accurate and interpretable ML model to predict the bandgap

of garnets. We devised an ML-DFT hybrid workflow for screening Eu2+-doped red-emission

phosphor materials in the garnet family. The workflow combines the deep neural networks (DNNs)

for phase stability132, a newly developed model for bandgap as a proxy for emission, and the

thermal quenching prediction algorithm133. Following the workflow, we successfully identified

two promising candidates, Eu2+-doped CaEr2Mg2Si3O12 and CaTb2Mg2Si3O12, which have

high synthesizability, desired emission, and thermal stability.
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3.2 Methods

3.2.1 DFT

Host structure All DFT calculations were performed using Vienna ab initio simulation

package (VASP) within the projector augmented-wave approach101,102. The exchange-correlation

interaction was described using the Perdew-Burke-Ernzerhof (PBE) generalized gradient ap-

proximation (GGA) functional103. The plane-wave energy cut-off was set at 520 eV, and the

energies were converged to within 5×10−5 eV atom−1. Symmetrically distinct orderings within

the 80-atom primitive garnet unit cell for mixed compositions were generated using the enumlib

library104 via the python materials genomics (pymatgen) package33. For the calculation of the

GGA bandgaps of the hosts, the k-point line density along the high symmetry line of the Brillouin

zone is set at 20.

Doped structure To obtain the doped structure, Eu2+ replaces one of the +2 cation

occupying C site or A site in the primitive cell. PBE calculations with a Hubbard U134 parameter

of 2.5 eV for Eu was used for these doped systems, same as the previous work done on oxide

phosphors135. To compare energies and calculate doping formation energies, the structure

relaxation and energy calculation were computed using the same settings as the host. The doping

formation energy E f (Eu×M) was calculated using the formalism illustrated by Zhu et al.136, where

the Kröger-Vink notation137 for defect is used and M is the +2 cation replaced by Eu2+. The

structures were further relaxed until the electronic energy and the atomic forces were converged

to within 1.25×10−6 eV atom−1, and 0.01 eV Å−1.

The excited 4 f 65d1 state of Eu2+ doped garnets was approximated using constrained

DFT (CDFT) method, where the occupancy of the top most Eu 4f state (at the valence band) was

transferred to the lowest 5d state (at the conduction band) and kept fixed during the calculations

using the ground state structure. The energy difference between this state and the ground state

is considered the excitation energy. The 4 f 65d1 ground-level crystal structure was obtained
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through structural optimization under the same electron configuration. The energy difference

of the obtained structure under the electron occupancy of the excited state (4 f 65d1) and that

of the ground state (4 f 7) is considered as the emission energy135. We tested the method on

a known Eu2+-doped phosphor, Sr3Y2Ge3O12:Eu2+ 138. The calculated and experimentally

reported excitation wavelengths are 450 nm and 468 nm, and that of emission wavelengths are

632 nm and 612 nm (Figure B.5).

3.2.2 Feature and model developments

Feature All the elemental attributes were obtained through pymatgen33, except the

number of valence electrons (NV E), which was obtained from Magpie40.

Feature selection is the procedural approach to find the relevant subset of input variables.

Simplification of the input variables brings mainly four benefits, i.e., enhancing the model

interpretability, shortening the training time, avoiding the “curse of dimensionality” and reducing

overfitting. In this work, we adopted an exhaustive feature selection method, where the cross-

validation (CV) scores of the models trained with all possible combinations of features under

the same hyper-parameters are recorded. The best feature set emerges at the turning point where

adding any new feature leads to little change in the performance of the model.

ML model development eXtreme gradient boosting (XGBoost)139 is a decision-tree-

based ensemble ML algorithm that uses a gradient boosting framework. It provides a parallel tree

boosting that solve many data science problems in a fast and accurate fashion, which also makes

it our choice. The training of the gradient-boosted tree model was carried out using the XGBoost

library139. 1823 data points were split in the ratio of 4:1 for training and test, respectively. During

the training, 5-fold CV was performed.

Model interpretation SHapley Additive exPlanations (SHAP) is a technique that explains

the output of a ML model by applying a game-theoretic approach to calculate the importance of

individual input features to a given model prediction140. A positive (negative) SHAP value means
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that, at the given feature value, there are more instances with predicted bandgap higher (lower)

than the average prediction. The analysis is often presented in a summary plot, and/or a partial

dependent plot (PDP) of chosen features. In the former, the SHAP values of all the data and for

all the features are presented. Usually, information such as the rank of the feature importance

and the general trend of the impact of each feature on the model prediction can be obtained. The

PDPs, on the other hand, show the marginal effect one feature has on the predicted outcome of an

ML model141.

3.3 Results

3.3.1 Data overview

Garnet structures have the general formula of C3A2D3O12, where C, A, and D refer

to the three symmetrically distinct cation sites with Wyckoff symbols 24c(dodecahedron),

16a(octahedron) and 24d(tetrahedron), respectively, in the prototypical cubic Ia3̄d garnet crys-

tal. By making variations of the species on the C, A, and D sites (Figure 3.1(b)), we have

generated “unmix” garnets with the formula C3A2D3O12 and “mixed” garnets of the formulas

C3A′A′′D3O12, C′C′′A2D3O12 and C3A2D′D′′2O12. The structure generation strategy leads to

a total of 20406 charge-neutral garnet compositions. We performed DFT band structure calcu-

lations using the PBE functional on 1823 of the generated garnets, which comprise 517 unmix

(C3A2D3O12), 517 C-mixed (C′C′′A2D3O12), 484 A-mixed (C3A′A′′D3O12) and 305 D-mixed

(C3A2D′D′′2O12) garnets (Figure 3.1(a)). All the EDFT
bg s are spread in the range of 1-5 eV, with

the highest population lies in between 2-4 eV, as shown in Figure3.1(a). The distributions are

unbiased among categories and have a reasonable population of data in the range of 3-4 eV. In

particular, the distribution of C-mixed, which spans from 1.5 to 4.5 eV, is slightly “narrower” than

that of the A- and D-mixed. The EDFT
bg medians of both A-mixed and D-mixed are lower than

that of the unmix. These observations could potentially suggest that introducing doping in A site
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and D site could be an effective strategy to change the Ebg, whereas doping in C site may have a

milder effect.

3.3.2 Feature selection and model selection

We adopted the gradient boosting tree regression models for the bandgap prediction task

and an exhaustive feature selection method to locate the most compact and effective set of features.

The XGBoost algorithm is used for the model training, with the hyper-parameter settings as

follows: n estimators = 200, max depth = 6, learning rate = 0.1, gamma = 0, and default values

for the rest.

We performed the feature selection in two steps, i.e., the attribute selection and the feature

selection. Here, the attribute refers to the elemental property, and the feature is the combination

of the attributes of species in C, A, and D sites. The latter is the actual inputs of the model.

Attribute selection We started with a list of elemental properties that relate to the crystal

electronic structure. It should include periodic table information of constituent elements (atomic

number (Z), group number (Group), row number (Row), and Mendeleev number (Mendeleev)),

the size of the atoms (atomic radius (AR)), and the electronic structure (electronegativity (χ),

ionization energy (IE), polarizability, and the number of valence electrons (NV E)). There is

redundant information among the chosen attributes to some degree. For example, the Group

and NV E are the same for elements in periods 1-3, and the χ and IE have exactly the opposite

trend theoretically. Therefore we calculated the Pearson correlation matrix for all the attributes

(Figure3.2(a)), and for the pairs with correlation coefficients above 0.75, i.e., Mendeleev and χ, Z

and row, AR and χ, Mendeleev and AR, χ and IE, AR and IE, and Mendeleev and IE, we kept

the ones with which the model performs better with single attribute features. For example, in the

pair of Mendeleev and χ, the 5-fold CV MAE of the feature Mendeleev is 0.22 eV and that of the

χ is 0.19 eV (Figure B.2), therefore we kept χ and discarded Mendeleev. After the elimination

process, the final attributes are Z, Group, IE, and NV E.
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Figure 3.1: Overview of data. (a) Data distribution for different data categories. The numbers in
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Feature selection Given the selected 4 attributes, there are 12 features per structure: 4

for each of the C, A, and D sites. This gives a total of 4095 feature subsets. We exhaustively

examined the performances of all the feature subsets using the same training data and model

settings. CV scores for all 4095 combinations can be found in Figure B.3, and the best-achieved

CV scores of each dimension of features are shown in 3.2(b). We observe the performance of

model converges at around 0.1 eV when the dimension of feature reaches 6, and the best feature

array in the dimension of 6 is ZC, IEC, ZA, IEA, ZD and NV ED, with which the model achieves

the mean CV score of 0.13 eV.

Figure3.2(c) presents the parity plot of the selected model. The model’s test MAE is the

same as the mean CV score, 0.13 eV, suggesting the model’s superior generalizability. The MAE

of 0.13 eV is on par with the state-of-the-art structure-specific models, with an extremely compact

set of features.

3.3.3 Model interpretation

Scrutiny on the model’s behavior is critical in materials science since the model needs

to make both statistical and physical/chemical sense. We employed the SHAP technique (see

Method) to shed light on the relationships between features and the model predictions, of which

the results are shown in Figure 3.3. To begin with, the features in the figure are shown in the

descending order of importance from top to bottom, where we observe that ZD is the most

important feature, followed by IE and Z from both A and C sites, and the least importance goes

to the NV E of the D site. The horizontal location in the left part of the Figure 3.3 shows whether

the effect of that feature value is associated with a higher or lower SHAP value, and the color is

an indication of the feature values. One should quickly notice that all the features are negatively

correlated with the prediction since most of the instances with lower feature values (blue points)

have positive SHAP values and vice versa. Similar correlations can also be captured from the

training data itself. Figure B.4 shows that the feature values and the distributions of PBE bandgap
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Figure 3.2: Feature selection. (a) The Pearson correlation matrix of the initial 10 atomic
attributes. Pairs of atomic attributes with a correlation coefficient larger than 0.75 are considered
highly correlated. (b) The lowest MAE achieved versus dimension of features ranging from 1 to
12. (c) The parity plot of the model using the feature set of (ZC,IEC,ZA,IEA,ZD,NV ED).
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for the elements in various sites, where patterns of the negative correlation between the features of

IEC, IEA, ZD and NV ED, and the mean of the PBE bandgap are observed. To rationalize the trend,

we start from the most physical intuitive attribute, IE, and explain other attributes by relating to it.

IE describes the atomic electronic structure directly, and the higher the IE, the less ionic the M-O

(M: metal, O: oxygen) bonds become and the smaller the overlap between metal valence bands

and the oxygen 2p bands, hence the smaller the energy gap. An increase in the Z can increase

either the group number (increasing the IE) or the row number (decreasing the IE). However,

changing the group number usually induces a more significant variation in the IE than changing

the row number. Therefore, the net effect of increasing the Z should have the most similar trend

as increasing the IE, i.e., the higher the Z, the smaller the prediction. The increase of the NV E

can result from the increase of the group number in the same period, where the effective nuclear

charge felt by each electron rises as the NV E increases, hence the IE increases. It explains a

similar negative correlation of the NV E to the predicted bandgap as that of the IE. In terms of

the ranking of feature importance, the plot shows that features from D and A sites outrank those

from C site, which agrees with our observation from the breakdown of the EDFT
bg distributions in

Figure 3.1(a). One possible explanation is that the elements that prefer D sites are mostly from p

blocks (Figure 3.1(b)), making them highly possible to form such polyatomic anions as PO 3 –
4 in

a tetrahedron coordination environment, and thus mainly affect the valence band positions.

We continue the analysis with the partial dependence plots (PDP) in the right part of

Figure 3.3. Before we start, it is worth mentioning that the PDP’s validity requires independence

in the features, which has been assured by our rigorously-performed feature selection procedure.

From the PDP plots of the Z features, increasing ZC up to about 60 (the beginning of lanthanides)

decreases the bandgap predictions, after which the trend reverses. It is similar with ZA, despite

more noises in the data. For ZD, it reveals a more straightforward monotonic pattern, where

increasing ZD decreases the prediction. We can also observe three plateaus of the SHAP values at

around 10-20, 25-37, and 37-50, which should map to p elements in the periods of 2 (Al, Si, P), 3
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(Ga, Ge, As), and 4 (In, Sn), respectively. In terms of IEs, both for IEC and IEA, small IE values

have limited contribution to the prediction and increase IE after around 6.7 eV starts to reduce

the bandgap prediction. Finally, the PDP of NV E from the D site shows increasing of the valence

electrons up to 8 leads to the decrease of the prediction, and after 8 the trend reverses. It can be

explained by the shielding effect, where when the NV E is larger than 8, the electrons start to fill

the more localized d orbitals and shield the nuclear charge, making the valence electron easier

to remove and hence the larger bandgaps. Again we notice a strong resemblance between the

model’s behavior and the pattern of the training data. According to Figure B.4(c), the D elements

of Sn, Ge, Ga, and As, which all have the Z above 30, and the NV E above 8, have the smallest

mean of the PBE bandgap. This agrees with the negative SHAP values associated with the same

range of Z and NV E as shown in the PDPs.

To summarize, the developed model captures the observed patterns in the training data,

and the behaviors of the model agree well with physical and chemical intuitions.

3.3.4 Screening of Eu2+-doped red-emission phosphor

Design of workflow The screening workflow considers the material cost, safety, phase

stability, emission color, thermal stability, dopabilitiy, and dynamic stability. The cost and safety

are often assured by the constraints on the constituent elements of the candidates. The phase

stability of garnets can be rapidly assessed by our previously developed ML models132. For

thermal stability, the algorithm developed by Amachraa et al. based on Voronoi area renders us

the ability to approximate the percentage of intensity that can be maintained by the phosphor

material when temperature elevates from 300 to 500 K in sub-minute133. The dopability, which is

usually measured by the doping formation energy, and dynamic stability, as is often approached

by phonon spectrum, can be completed by DFT for a narrowed list of candidates. The emission

color screening is the only remaining challenge in the design of the workflow.

Based on the underlying physics of photoluminescence, the emission wavelength should
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be negatively related to the bandgap. Indeed, according to Wang et al.9 and Figure B.1, which

summarizes the emission wavelengths and the calculated Perdew–Burke-Ernzerhof (PBE)103

bandgaps of reported Eu2+-doped phosphors, most of the Eu2+ red emission phosphors require

the host (PBE) bandgap to be below 4 eV but above 3 eV. Particularly, the one red phosphors

in the figure that adopts the garnet structure, i.e. Sr3Y2Ge3O12, has a PBE bandgap of 3.12 eV,

well within the window of 3-4 eV. Therefore, the PBE bandgap can be an effective proxy for the

emission energy or color of the phosphors. Based on the assumptions, we assembled the hybrid

phosphor screening workflow as shown in Figure 3.4.

Screening results Starting from the 20406 charge-neutral candidates discussed in Section

3.3.1, we excluded the compositions containing elements Yb, Ho, Dy, Eu, Sc, Rh, Cd, As, and

Pb from cost and toxicity considerations. Furthermore, we limited the stoichiometric ratio of

rare-earth (RE) elements to be less than 2.5%, i.e., less than two RE elements per standard

formula. This step filtered out most compositions and left 5554 candidates. 1357 out of the 5554

compositions are predicted to have Ehull = 0, which signals phase stability. Out of these 1357

stable garnets, the model developed by this work predicts 667 to have a PBE bandgap between 3-4

eV. The DFT verification on the Ehull and Ebg confirms 183 out of the 667 are valid. Furthermore,

the Voronoi area analysis predicts that only 22 (shown in Table 3.1) can maintain more than 85%

of the efficiency when the temperature is elevated from 300K to 500K.

A similarity noticed among the candidates is that the C site species are mostly Ca and Sr.

According to Figure 3.3(b), when ZC is 20 (Ca) or 38 (Sr), and IEC is 6.1 (Ca) or 5.7 (Sr) eV, the

SHAP values are close to but above 0, meaning the majority of the instances have the predicted

bandgap close to but higher than the mean of the target (2.92 eV), well within our desired range.

We successfully verified the emission energies via the CDFT method for two out of these

candidates. As shown in the band structures (BS) and densities of states (DOS) from Figure 3.5

(e) and (f), for the doped candidates, the PBE bandgaps are both ∼ 4 eV, which are expected

based on the insights we extracted from the model, manifesting that when there are light elements
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Figure 3.4: The workflow of high-throughput screening (HTS) of Eu2+-doped red-emission
garnet phosphors using density functional theory (DFT) and machine learning (ML). The cubic
Ia3̄d prototypical garnet structure contains three cation sites, i.e., 24c (dodecahedron), 16a
(octahedron), and 24d (tetrahedron). By varying the composition of each site, we created 20406
candidate garnet materials. For the development of ML models, the phase stability and bandgap
of 1823 out of the 20406 structures were calculated by DFT and were used as training data. The
HT screening starts with elemental screening based on the cost and toxicity of the constituent
elements. Then the two ML models were used to identify candidates with stable phase (EML

hull
= 0 eV atom−1) and desired bandgap (EML

bg between 3 to 4 eV). DFT was performed to verify
EDFT

hull and EDFT
bg for the candidates hitherto, and at the same time, the optimized structures

of the candidates were obtained. The algorithm then approximated thermal quenching ratio
(TQ) based on Voronoi area133 and candidates with TQ less than 15 % were kept. Doping
formation energy and the candidates’ phonon dispersion spectrum were also calculated for the
final candidates to shed light on dopability and dynamic stability. Following this workflow, we
successfully identified two promising Eu2+-doped garnet phosphors, i.e. CaEr2Mg2Si3O12 and
CaTb2Mg2Si3O12.
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on both A (Mg) and D (Si) sites, the PBE bandgaps are likely to be higher than the average

prediction of 2.92 eV. Furthermore, we located the lowest bands in the conduction band minimum

(CBM) with the most 5d character from the BS and DOS. Afterward, we calculated the excited

state by adjusting the electron occupancy from the highest 4f band to the lowest 5d band. The

emission energies for CaEr2Mg2Si3O12 and CaTb2Mg2Si3O12 are calculated to be 639 nm and

685 nm, respectively (Figure 3.5(c) and (d)). The previous discussion on the emission energy is

based on the PBE bandgap of the host. Now that we have the doped structure at hand, we shall

revisit the topic from the perspective of the activator’s local environment. First of all, Eu2+, in

both candidates, replaces the smaller C site cation, i.e., Er3+ and Tb3+, making the overall bond

lengths shorter, which leads to a stronger crystal field splitting. Secondly, the difference in the two

candidates’ emission energy can be explained by the local environment’s distortion. As defined

by Wang et al.142, the distortion index D for a polyhedron local environment can be calculated as

follows:

D =
1
n

n

∑
i=1

|li− lav|
lav

, (3.1)

where li is the distance from the center atom (Eu) to the ith coordinating atom (O), lav is the

average bond length, and n is the coordination number (n = 8 in the dodecahedron environment).

The D for the EuO8 polyhedron in CaEr2Mg2Si3O12 and CaTb2Mg2Si3O12 are 0.011 and 0.014,

respectively (Figure 3.5 (a) and (b)), indicating that the Tb compound is more distorted. The

stronger distortion leads to the more significant splitting of the 5d bands, and therefore the lower

CBM and smaller the emission energy.

Regarding the synthesizability, DFT calculations confirmed that Ehull of the both candi-

dates are 0 eV atom−1, and there are no imaginary frequencies in their phonon dispersion spectra

(Figure 3.5(g) and (h)). To our best knowledge, there are no reports of the synthesis of the two

candidates. However, similar garnet of the formula CaY2Mg2Si3O12 has been synthesized143, and

Meng et al. discussed the effect of Mg-Si replacing Al-Al in (Gd,Lu)3Al5O12
144, which suggests

a possible synthesis route of Ca(Er,Tb)2Mg2Si3O12 from Ca(Er,Tb)2Al5O12. These evidences,
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Table 3.1: Candidates with Ehull = 0, Ebg between 3 and 4 eV, and thermal quenching within
15% (300K to 500K). The formulas marked in bold are final candidates.

Formula EDFT
bg (eV) EML

bg (eV) TQ (%)
Ca3Lu2SiGe2O12 3.47 3.54 6
Ca3Tm2SiGe2O12 3.50 3.47 7
Ca3Er2SiGe2O12 3.42 3.43 8
Ca3Zr2SiGa2O12 3.73 3.62 9
Ca3Sn2SiAl2O12 3.44 3.34 9
Sr3Y2Ti3O12 3.96 3.95 10
CaY2Mg2Si3O12 3.66 3.58 10
CaEr2Mg2Si3O12 4.00 3.38 11
Sr3Tm2Ti3O12 3.96 3.89 11
Sr3Er2Ti3O12 3.96 3.87 11
Ca3Al2SiGe2O12 3.76 3.67 12
Ca3Zr2GeAl2O12 3.72 3.8 13
Ca3LuInGe3O12 3.02 3.38 13
Ca3TmInGe3O12 3.02 3.37 14
Sr3Zr2SiGa2O12 3.49 3.35 14
Ca3Tm2Si3O12 3.95 3.97 14
MgCa2Al2Ge3O12 3.39 3.5 14
SmCa2Zr2Al3O12 4.35 3.78 15
SrCa2Lu2Ge3O12 3.28 3.28 15
Sr3Lu2Ti3O12 3.97 3.88 15
Ca3ErInGe3O12 3.00 3.36 15
CaTb2Mg2Si3O12 3.89 3.28 15

both theoretical and experimental, suggest that these are two highly synthesizable hosts. The

doping formation energy(E f (Eu×M)) was also calculated for the candidates. The results are 0.26

eV per Eu2+ and 0.82 eV per Eu2+ for CaEr2Mg2Si3O12 and CaTb2Mg2Si3O12, respectively.

They are both higher than that of the experimentally discovered Eu2+-doped Sr3Y2Ge3O12, which

is 0.14 eV per Eu2+. However, compounds with doping formation energy higher than 1 eV per

dopant have been reported in previous work136, suggesting probable dopability of our candidates.
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Figure 3.5: The DFT verification of candidates. (a) and (b) are the local environments of the
Eu2+ in the candidates. The numbers around the bonds indicate the bond length in Å. Atoms
marked with A and B represent two equivalent sets of sites in the dodecahedron coordination
environment.(c) and (d) are the configurational coordinate diagrams for the Eu2+ in the candi-
dates. Excitation is allowed from the vibrational level n = 0 of the ground state to the excited
state and results in the excitation energy Eex. The relaxation of the system from the lowest
vibrational levels (m =0) of the excited state to the ground state results in the emission energy
Eem. The displacement ∆r = X∗0 −X0 is the polyhedron average bond length difference between
the excited and the ground states of Eu2+. The CDFT calculated Eex and Eem are shown in the
diagrams. (e) and (f) are the bandstructures and density of the states of the Eu2+ phosphors. (g)
and (h) are the phonon dispersion spectra.
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3.4 Discussion

The interpretability of the ML models is important in two aspects. One is for the “debug-

ging” of the model, and another is to provide new scientific insights. In our case, the model’s

interpretation adds to the value of the model by shedding light on the design of the garnets.

According to the model, changing the D site species seems to be the most effective approach

to engineer the bandgap. Decreasing ZD, whether by replacing or mixing with lighter elements,

increases the bandgap. For example, we find 3 cases out of the 22 candidates have SiGe2 compo-

sition on the D site. They can be seen as doping a lighter element with smaller Z and NV E into a

heavier element Ge, which increases the bandgap. Indeed, the PBE bandgaps of Ca3RE2Ge3O12

for RE = Lu, Tm, and Er are 3.32, 3.27, and 3.25 eV, respectively, all smaller than that of their

Si-mixed counterparts by ∼ 0.2 eV. In general, species with smaller IE lowers the bandgap, and

for species in the periodic table before lanthanides, the larger the Z, the smaller the bandgap. For

example, Sr in C site could lead to smaller bandgap than Ca because ZCa is smaller than ZSr while

the contributions of IEC at IECa(6.11 eV) and IESr(5.69 eV) are similar. A similar rule applied to

A site species as well.

Up to now, we have not proven that the inter- or extrapolations of the model for the finer

grid of the compositions are valid. Therefore there could be room for fine-tuning of the candidates,

especially on the Ca-Er/Tb ratios. For making the bandgap adjustment, mixing Al with Si can

help increase the bandgap, while mixing with Ge for can lead to a decrease. We also noticed that

for the two candidates, the excitation wavelengths, even though still in the cyan to the blue range,

are higher than the ideal blue LED emission, which is 450 nm. The key to solving this mismatch

is to tune the band curvature of the 5d band to enlarge the excitation energy while the emission

energy remains in the range of red.

The necessity of hybridizing ML models into the high-throughput screening scheme has

been illustrated in this work. Based on the statistics of the calculation of 1823 training data, the
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average CPU hours required to obtain the bandgap of the garnet primitive cell using a single node

of Intel Xeon Phi ”Knight’s Landing” with 68 cores per node @ 1.4 GHz is 10 hours. Given the

minimal compositions to be calculated by DFT, in this case, 5554, it would have taken about 78

months to finish by DFT solely. Now, with the assistance of ML models, such screening can be

finished in weeks.

In this work, we have limited ourselves only to perform screening for novel phosphor

materials. However, the developed models and even the whole workflow can work for other

applications with minimum modifications. For example, screening for garnet photovoltaics is a

suitable target, as the solar absorber materials also project a requirement for phase stability and

bandgap on the candidates.

3.5 Conclusion

To conclude, we have developed an accurate, interpretable ML model that predicts the

bandgap for garnet structures. Our model’s MAE is 0.13 eV, far below the common MAEs of

0.2 eV for structure-specific ML models. The feature selection was performed systematically

and exhaustively to ensure an optimal and compact feature subset. These efforts lead to a highly

interpretable model that makes physical and chemical sense and could effectively guide the design

of novel materials. Furthermore, we integrated our two garnet models, targeting the phase stability

and bandgap, respectively, to develop an ML-DFT hybrid high-throughput screening workflow

to search for novel red-emission Eu2+-doped garnet phosphors. Out of 20406 compositions, we

identified two up-and-coming candidates, two candidates, Ca(Er,Tb)2Mg2Si3O12, which were

verified theoretically to have emission in red, a substantial chance of synthesizability (both the

host and the doped structure), and are predicted to have less than 15% thermal quenching from

300K to 500K. We believe it is a successful demonstration of accelerating the discovery of novel

materials through statistical learning.
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Chapter 3, in full, is under preparation for publication of the material ”High Throughput

Screening of Eu2+-Doped Red-Emission Garnet Phosphors Using Density Functional Theory and

Machine Learning”, Weike Ye, Chi Chen, Mahdi Amachraa, Yunxing Zuo, Shyue Ping Ong. The

dissertation author was the primary investigator and author of this paper.
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Chapter 4

A universal machine learning model for

elemental grain boundary energies
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4.1 Introduction

Grain boundaries (GBs) play an important role in determining the strength, toughness,

and corrosion resistance of materials70,71. A key property of a GB is its energy, which determines

grain growth and the GB distribution. While the GB energy can be accurately calculated using

electronic structure methods such as density functional theory (DFT) calculations, the require-

ment for relatively large supercells to model the inherently low symmetry GB structure limits

such computationally intensive approaches to relatively small Σ GBs. Nevertheless, substantial

databases of GB energies and other properties have been developed using high-throughput DFT.

For example, the GB database (GBDB)76 developed by the present authors contain the calculated

GB energies and work of separation of more than 50 elemental metals for both tilt and twist GBs

up to Σ = 9.

Alternatively, machine learning (ML) techniques have emerged as a means to develop

models that can directly predict the GB energy from compositional and structural features72–75.

However, existing models are limited in scope by chemistry or structure type, such as fcc Cu72,

Ni73,74, or Al systems75. These limitations are a result of the choice of data source; these prior

works have been developed using data sets computed using embedded atom method (EAM)

potentials. While much less computationally intensive than DFT methods, EAM calculations

are far less accurate, especially for non-fcc metals76, and are available for only a limited subset

of elements. Further, all these prior works rely on featurization approaches such as the Smooth

Overlap of Atomic Positions (SOAP)73,74 and the pair-correlation function (PCF)75 that generates

a large number of features (relative to the data set size) which do not provide direct interpretability.

In this letter, we outline a fundamentally different, physics-informed approach to devel-

oping a universal ML model for the GB energy of metals. We will demonstrate that the energy

of small Σ GBs of metals can be predicted to within a mean absolute error (MAE) of 0.12 J

m−2 using an eXtreme Gradient Boosting (XGBoost) model of four GB geometric features.
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Extrapolation to high Σs GBs results in only a modest increase in MAE to 0.17 J m−2.

4.2 Results

4.2.1 Normalization of EGB

The starting point of this work is in re-evaluating the choice of target for our ML GB

model. While prior works have attempted to directly predict the absolute GB energy, we do not

believe this to be an optimal choice of target. The GB energy EGB is the excess energy of the GB

compared to the bulk per unit area, which can be obtained computationally as:

EGB =
EGB,supercell−n ·Eatom

bulk
2A

(4.1)

where EGB,supercell is the energy of the supercell GB model, n is the number of atoms in

the GB model, Eatom
bulk is the energy per atom of the bulk, A is the area of the GB and the factor

of 2 accounts for the fact that there are two GBs per supercell model. EGB is related to the

energy necessary to break or stretch bonds at the GB from their bulk equilibrium configuration.

This energy to stretch or break bonds scales with the cohesive energy of the metal Ecoh
145 (see

Figure C.1), which ranges from ∼ 1.1 eV atom−1 for the alkali metals to ∼ 8.9 eV atom−1 for

tungsten. To remove this chemical scaling effect, we have elected to use the normalized GB

energy ˆEGB = EGB/Ecoh as our choice of target.

4.2.2 Feature selection

Based on the coincident-site-lattice (CSL) theory146,147, the GB can be specified at a

macroscopic level by five degrees of freedom (DOF), namely two DOFs from the plane normal

of the GB (or alternatively the Miller indices (hkl)), two DOFs from the rotation axis ([uvw])

and one DOF from the misorientation angle (θ). As integer Miller indices are non-optimal for a
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regression task, the (hkl) and [uvw] were converted to the inter-planar distance of the GB plane

(dGB) and inter-planar distance of the normal plane to the rotation axis (drot), respectively (see

Methods), and the cosine of the misorientation angle (cos(θ)) was used instead.

To these geometric GB features, we added three additional features related to bond

stretching and breaking at the GB that are partially inspired by prior works in the literature. To

describe the bond deformation, we used the average change in bond lengths between the GB

supercell and its bulk conventional lattice, ¯∆(BL) = ∑
n
i=1(BLi

GB−BL0)/n, where BLi
GB is the

bond length of the ith bond in the GB supercell, BL0 is the bond length in the corresponding

bulk conventional structure, and n is the number of bonds counted in the GB supercell. Here,

the bonds are identified by performing a local environment analysis via a Voronoi tessellation-

based algorithm implemented in the Python Materials Genomics (pymatgen) package33. A

positive (negative) ¯∆(BL) indicates overall bond stretching (compressing) at the GB. According

to the Read-Shockley dislocation model148, EGB of GBs with small misorientation angles is

proportional to the shear modulus G. Ratanaphan et al.145 have also shown previously that the

GB energies of bcc Mo and Fe are related to G ·a0, where a0 is the cubic lattice parameter. The

multi-linear regression models developed by Zheng et al.76 extended this conclusion to more bcc,

face-centered cubic (fcc), and hexagonal closest packed (hcp) metals. Therefore, we include the

Voigt-Reuss-Hill shear modulus G, and the bulk lattice parameter a0 into the feature candidates.

Figure 4.1 summarizes the initial set of six features considered in work.

A potential risk of domain-knowledge-driven feature selection is that some of the features

may be correlated or redundant. For instance, G has a direct relationship with Ecoh, which was

used to normalize the GB energy. Therefore, we performed an exhaustive evaluation of all the

63 subsets of the initial 6 features (Figure4.1(a)). Figure 4.1(b) shows the performances of the

optimal subset for feature subsets of each dimension, which shows that the model’s performance

converges at the number of features (n f ) of 4 when both the MAE(EGB)s of the training and the

test data reach plateaus. We hence locate the optimal feature dimension at four, and the best
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feature subset (dGB, cos(θ), a0, ¯∆(BL)). Note that G, the only non-geometric feature, is excluded

from the optimal subset, suggesting that the normalization scheme of the target is an effective

strategy to shield most of the chemical scaling effect.

4.2.3 Model performance

The final ML model for EGB was obtained by feeding the optimal feature set and normal-

ized target into a tree-based pipeline optimization tool (TPOT)149, as shown in Figure 4.2(a). To

increase model flexibility, a polynomial transformation was performed on the four input features,

resulting in a total of 14 compound features. Following this pipeline, we achieved the MAE(EGB)

of 0.06 and 0.12 J m−2 for the training and test data, respectively (Figure 4.2 (b)). The distribution

of the normalized absolute errors shows 43 out of 53 elements have MAE(EGB)s less than 0.1

J m−2 (Figure 4.2(c)). Elements with the highest errors are such metals as Fe and Cr. The

uncertainty in the magnetic ordering at the ground-state GB supercell of the two metals may lead

to higher errors in the DFT calculations, hence higher errors for the models.

4.2.4 Model interpretation

One benefit of tree-based ensemble learning algorithms such as XGboost is the ease of

retrieving the feature importance scores. However, in our case, the scores calculated from the

XGBoost model should be taken skeptically due to the high correlations between the polynomial

features (Figure C.3). To bypass the problem, we treated the pipeline as a whole, and calculated

the permutation importance for the input four features instead. From Figure 4.3(b), we noticed

that dGB and cos(θ) are the two most important features. It agrees with the previous study145

that the macroscopic geometry of the boundary plays an important role in determining the grain

boundary energy. Furthermore, the feature dGB being dominantly more important than cos(θ)

echos with the conclusion drawn from Rohrer et al.150 which states that variations in the grain
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63 Subsets

θ (hkl)

Macroscopic GB 
(5 DOF)

Bond 
Length

28

Ni
[Ar]3d84s2

58.6934

Face-centered cubic

[uvw]

(a)

(b)
nf = 1 nf = 2 nf = 3 nf = 4 nf = 5 nf = 6

Figure 4.1: Feature engineering. (a) The knowledge-driven selection of initial feature candidates
based on the macroscopic geometry, microscopic bonding environment in the GB supercell, and
the corresponding elemental information. (b) The data-driven feature selection process. For the
initial 6 features, there are in total of 63 feature subsets, which can be categorized by the number
of features (n f ). The scatter plot shows the performances of the optimal subset in each category.
The global optimal feature set is (dGB, cos(θ), a0, ¯∆(BL)), with which both the train and the test
MAE(EGB) reaches the plateau.
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Figure 4.2: The pipeline and the performance. (a) The schematic illustration of the pipeline
developed in this work. There are in total of 14 2nd-degree polynomial terms associated with
the optimized feature subset. The XGBoost model takes the 14 compounded features as input
and output the predicted ˆEGB. (b) The parity plot demonstrating the performance of the pipeline.
The MAE(EGB) for the training and the test data sets are 0.06 and 0.12 J m−2, respectively. (c)
The box plot of the normalized absolute error for each element. The elements are presented in
the increasing order of the MAE(EGB) from top to bottom.
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(a) (b)

Figure 4.3: The feature importance analysis. (a) The correlation matrix for the optimized
feature subsets. The four features can be considered independent. (b) The permutation feature
importance calculated for the four input features of the pipeline.

boundary plane induce greater change in the energy than the variations in the misorientation.

Such agreements between the model’s behavior and the physical intuitions are strong evidence

that the model has a solid grasp of the fundamental physics behind the grain boundary energy.

4.2.5 Model verification

It is often more important to explore the candidates outside of the current materials pool

in actual materials science applications. It poses a challenge on the ML models to have great

extrapolability towards the unknown structures. In our case, the model has only learned from

data with a very limited range of low Σs (i.e., 3, 5, 7, 9) due to the limitation of the computation

capacity. However, it is known that boundaries with larger fraction of coincident may have

different properties compared to the ones with lower fraction due to the more severe deformation,

making it necessary to test the extrapolability of the developed model on GBs with larger Σs.

Therefore, we prepared an extrapolation test set, which contains 48 GBs of five elements (Ta,

Pd, Cu, Pt, Li) with the Σ ranging from 17 to 66, far outside of the Σ range of the training data

(Figure C.2). The model achieved a satisfactory MAE(EGB) of 0.17 J m−2 on this data set, only a

54



modest 0.05 J m−2 increase compared to the error of the test set, signaling a reliable extrapobility

of the model.

Another evidence of the validity of the model is its qualitative reproducing of a well-

acknowledged trend of GB energies, i.e., for fcc Ni, the symmetric twist boundaries that are joined

by the widely-spaced (111), (100), and (110) planes have relatively low energies compared to that

of GBs adopting other types151,152. Figure 4.4(b) shows the distribution of EML
GB s for a group of

76 GBs of fcc Ni, which contains 15, 19, and 6 symmetric twist GBs (STGBs) bounded by the

planes of (111), (110), and (100), respectively, and 35 GBs of normal tilt or mixed GB types. The

results show that the average energies of the three STGB categories are indeed lower than the

energies of other GB configurations, especially (111) and (100) STGBs. Note that 69 out of the

79 GBs have the supercells containing more than 200 atoms, including 17 with more than 1000

atoms, making them computational prohibitive and thus impossible to determine the accuracy

quantitatively. Nevertheless, it showcases the model’s capability to qualitatively reproduce the

well-documented energy trend of GBs outside of the range of training data and could potentially

serve as a solution to the scaling difficulty of DFT.

4.3 Discussion

In this work, we found that normalizing the grain boundary energy by the elemental cohe-

sive energy could reduce the chemical scaling effect. It suggests that the chemical influence on the

grain boundary energy is dominated by Ecoh, which agrees with the order-of-magnitude energetic

analysis showing that Ecoh’s contribution outweighs that of the G by almost a magnitude153.

However, the extension of the normalization strategy beyond elemental systems is unlikely to

succeed due to the more complex chemical interactions. We suspect that for alloys, the formation

energy of the heterogeneous bonds plays a non-negligible role in the anisotropy of the EGB
153.

It is worth mentioning that drot was also excluded from the final feature set. While it may
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(a)

(b)

Figure 4.4: (a) The parity plot illustrating the model’s performance on the extrapolation test
data set. The MAE(EGB) is 0.17 J m−2, merely 0.05 J m−2 higher than the test MAE(EGB).(b)
The distributions of EML

GB of fcc Ni Σ3-111 (111) STGBs , Σ5-65 (100) STGBs, Σ5-65 (110)
STGBs, and Σ3-67 normal tilt or mixed GBs. The four categories are arranged from left to right
in the order of increasing mean energies. STGBs bounded by the (111) and (100) planes have
noticeable lower mean energies compared to GBs of other configurations.
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be a result of the fact that the grain boundary plane outweighs the misorientation in affecting

EGB
150, it is also likely to be a result of the limitation in our data. As illustrated in the Methods

section, the MMI of the rotation axis is ≤ 1 for all the DFT-computed GBs in this work. More

specifically, there are in total only four axes considered, i.e., [110], [100], [111], and [0001]. The

low variance in dGB makes it almost trivial for the model’s performance. Future improvements

can be made by creating GBs with a broader range of rotation axes.

4.4 Methods

4.4.1 Collection of data

The GB data used in this work were obtained from two sources. The first and the major

part comes from the GBDB76, which contains the energies of 316 GBs of 53 elements in fcc, bcc,

hcp and double-hcp (dhcp) structures, after excluding Lu, Eu, and Hg due to the unavailability of

the bulk elastic data. The Σs of the GBs range from 3 to 9. The upper limits of the maximum

Miller index (MMI) for the rotation axis, and the grain boundary plane are 1 and 3, respectively.

Interested readers are referred to ref 76 for the details on the GB structure generation and

computational methods. The second part of GB data is from our calculations using the same

computational methods as the previous work76. We calculated the energies for another 53 GBs of

elements Ta, Pd, Cu, Pt and Li, which were generated by extending the limit of the Σ to 66, and

the MMI of the grain boundary plane to be ≤ 8, while keeping the MMI of the rotation axis to be

≤ 1.

In the total of available 369 GBs, 321 GBs with Σ≤ 9 were used for the model develop-

ment, which were divided into the training (258 GBs) and the test (63 GBs) set. The training

data was selected by randomly sampling 80% of the GBs from elements with more than one

GB entries, and including all the GBs from elements with single GB entry. The remaining 48

GBs with Σ ranging from 17 to 66 were specifically used to test the extrapolability of the model.
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Details of the distributions of the chemistry and Σ for each data subsets can be found in Figure

3.1.

In order to test the model’s ability to reproduce qualitatively the well-acknowledged trend

of lower energies of the STGBs correspond to the three widely-spaced (111), (110), and (100)

boundary planes for fcc Ni151,152, we prepared a set of 76 Ni fcc GBs with wide variations in

GB types. This data set contains 15 STGBs bounded by the (111) plane, 19 STGBs bounded

by the (110) plane, 6 STGBs bounded by the (100) plane, 15 normal tilt GBs, and 20 mixed

GBs. The Σ of the prepared data set ranges from 3 to 111, and the upper limit of the MMIs of the

rotation axis and the grain boundary plane is 1 and 6, respectively. To model GBs with large Σs

and joined by more closely-spaced planes, the supercells are usually too large in size to perform

DFT calculations. For example, 69 out of the 79 GBs have supercells containing more than 200

atoms, including 17 with more than 1000 atoms. Therefore, this data set is only prepared for

observing the qualitative trend of the EML
GB .

4.4.2 Inter-planar distance

The features dGB and drot are inter-planar distances of the grain boundary plane ((hkl))

and the normal plane to the rotation axis ([uvw]). The formulas of dGB and drot are as follows:

1
d2

GB
=

1
d2

hkl

=
h2 + k2 + l2

a2 (cubic crystals)

=
4
3

h2 +hk+ k2

a2 +
l2

c2 (hexagonal crystals)

(4.2)
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1
d2

rot
=

1
d2

uvw

=
u2 + v2 +w2

a2 (cubic crystals)

=
4
3

u2 +uv+ v2

a2 +
w2

c2 (hexagonal crystals)

(4.3)

where a and c are the crystal lattice constants of the bulk conventional crystal. Note

that [uvw] used here should be normalized Miller indices of the rotation axis. For hexagonal

systems, the Miller indices of the planes are first converted from the 4-index notation to the

3-index notation to calculate dGB and drot .

4.4.3 Model development

The optimized machine learning pipeline was selected with the aid of a tree-based pipeline

optimization tool (TPOT)149. Briefly, machine learning pipelines can be represented by binary

expression trees with ML operators as primitives. TPOT automatically generates and optimizes

the ML pipelines based on the accuracy and the complexity using genetic programming. In

the current implementation of TPOT (https://github.com/EpistasisLab/tpot), the ML

operators include a wide range of algorithms implemented in scikit-learn52 and other advanced

algorithms such as XGBoost139. In this work, we set the population size, the generations, and the

offspring size at 50, 10, and 50, respectively, to allow for the evaluation of a total of 550 × (50 +

10 × 50) pipelines by TPOT.

The optimized model pipeline found by TPOT149 is an XGBoost model preceded by

a polynomial feature preprocessing step. The learning rate, max depth, n estimator, and

min child weight are 0.1, 5, 100 and 7, respectively, for optimal learning ability. The subsample ratio

is set at 0.7 to regulate over-fitting. Default values are used for all other hyper-parameters of the

XGBoost model.
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To inspect the model’s behavior, we calculated the permutation feature importance. It

is calculated by randomly shuffling the values of one feature, then calculating the decrease in

the score of the model154. The calculation was performed by using the permutation importance

method implemented in the open-source scikit-learn52 package.

Chapter 4, in full, is under preparation for publication of the material ”A Universal

Machine Learning Model for Elemental Grain Boundary Energies”, Weike Ye, Hui Zheng, Chi

Chen, Shyue Ping Ong. The dissertation author was the primary investigator and author of this

paper.
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Chapter 5

Summary and Outlook
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In the first work, we have developed deep neural network models that are able to predict the

DFT formation energies of garnets and perovskites to within 7-34 meV atom−1. The substantially

lowered MAE compared to existing works is achieved by using only the electronegativity and

ionic radius of the species on each symmetrically distinct site as features, and the formation

energy referenced to the binary oxides as the target. By introducing a binary encoding scheme,

the models were successfully extended from the unmixed garnets and perovskites to mixed

compositions, opening the applicability of the models to the vast unexplored chemistry spaces.

Finally, we have shown that these models can be used to classify stable/unstable garnet and

perovskite compositions with ≥ 80% accuracy.

In the second work, we have developed an accurate, interpretable ML model that predicts

the bandgap for garnet structures. Our model’s MAE is 0.13 eV, far below the common MAEs

of 0.2 eV for structure-specific ML models. The feature selection was performed systemati-

cally and exhaustively to ensure the most economic feature set. These efforts lead to a highly

interpretable model that makes physical and chemical sense and could effectively guide the

design of novel materials. Furthermore, we integrated our two garnet models to develop an ML-

DFT hybrid high-throughput screening workflow, which led to the discovery of two candidates,

Ca(Er,Tb)2Mg2Si3O12, with desired properties. We believe it is a successful demonstration of

applying ML to accelerate materials discovery.

In the third work, we successfully developed an accurate, universal machine learning

pipeline for predicting the grain boundary energy across a wide variety of elemental systems. The

model was trained on a data set based on the first-principles calculation that is more accurate and

has broader chemistry scope than the data calculated using the EAM potential. We showcases that

only four geometric features, dGB, cos(θ), a0 and ¯∆(BL), are enough to predict the grain boundary

energy after normalization by the bulk cohesive energy. The model developed achieves a test

error of 0.12 J m−2, and demonstrates great extrapolability to larger Σs with a modest increase of

MAE to 0.17 J m−2. The model also successfully identified the low energy GB types in the fcc
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Ni system which agrees with the trend discovered experimentally. To conclude, the model’s high

accuracy and superior generalizability make it a potential surrogate of DFT calculations and a

significant enhancement to DFT’s accessibility.

To conclude, we have successfully developed highly interpretable ML models that predict

the essential materials properties including the phase stability, the bandgap, and the grain boundary

energy to the state-of-the-art accuracy. In all the models, we showcase the identification of optimal

features with much more compact length compared to existing works that uses pure data-driven

approach to perform feature selection. We also provide knowledge-driven engineering of the

learning target that allows the more efficient learning and broadened applicability. Furthermore,

we present real application of the developed models in accelerating materials discovery by

devising ML-DFT hybrid HTS workflow and identifying novel phosphors with desired emission.

Last but not least, in the process of the model development and verification, important insights

are revealed in understanding the fundamental physics and the materials design. Meanwhile, we

also notice that there are possible avenues for future work. To name a few, the compositional

features that used in the first work are not extendable across structure types; the error with GGA

bandgap limited its capability in narrowing the candidates pool; lastly, the simple normalization

of the grain boundary energy in the third work can hardly extend to alloy systems.
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Figure A.1: Performance of multiple linear regression model on EDFT
f of unmixed garnets.

The high training, validation and test mean absolute errors (MAEs) of 54, 57 and 57 meV
atom−1 indicate that a simple linear functional form is insufficient to model the relationship
between EDFT

f and the Pauling electronegativity and ionic radii descriptors. The R2 for training,
validation and test data are 0.63, 0.63 and 0.63, respectively. The black line (dashed) in the
figure is the identity line serving as reference.
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b

Figure A.2: Optimization of artificial neural network (ANN) architecture. a, Plot of the root
mean square error (RMSE) loss metric versus number of neurons in a single-hidden-layer ANN
model. The RMSE converges at n[1] ∼20, and the smallest standard deviation is observed at
n[1]=24. b, Plot of the RMSE loss metric versus number of neurons in a two-hidden-layer deep
neural network (DNN) model for unmixed garnets. Only the 20 best-performing models are
shown for brevity. The RMSE loss metric achieved by the DNN model is similar to that of the
single-hidden-layer ANN model. The box shows the quartiles of the dataset while the whiskers
extend to show the rest of the distribution.
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a b

c d

Figure A.3: Performance of optimized artificial neural network models for garnets. Plot of
ENN

f against EDFT
f for a. “averaged” ANN model trained on all unmixed and mixed garnets,

b. ordered DNN model trained on unmixed garnets with C-mixed garnets(standard deviations
of EDFT

f for training, validation and test set are: 130, 128 and 130 meV atom−1), c. ordered
DNN model trained on unmixed garnets with A-mixed garnets (standard deviations of EDFT

f for
training, validation and test set are: 132, 134 and 131 meV atom−1), and d. ordered DNN model
trained on unmixed garnets with D-mixed garnets (standard deviations of EDFT

f for training,
validation and test set are: 126, 126 and 127 meV aatom−1). The black lines (dashed) in all
subfigures are the identity lines serving as references.
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b

Figure A.4: Histograms of Ehull predicted using the optimized neural network models for
garnets and perovskites. a. A total of 8,427 garnet compositions were generated based on 2:1
mixing on the C or D sites, or 1:1 mixing on the A site. Only the ordering with the lowest Ehull
is presented at each composition. Of the 8,385 compositions, 2,307 compositions are predicted
to have Ehull=0 meV atom−1. b. A total of 2,791 perovskite compositions were generated based
on 1:1 mixing on the A or D sites. Only the ordering with lowest Ehull is presented at each
composition. Of the 2,791 compositions, 1,147 compositions are predicted to have Ehull = 0
meV atom−1.
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b

Figure A.5: Performance of optimized artificial neural network models for perovskites. Plot of
EANN

f against EDFT
f for a. ordered ANN model trained on unmixed with A-mixed perovskites

(standard deviation of EDFT
f for training, validation and test sets are: 95, 94 and 96 meV atom−1),

and b. ordered ANN model trained on unmixed with B-mixed perovskites (standard deviations
of EDFT

f for training, validation and test sets are: 121, 117 and 115 meV atom−1). The black
lines (dashed) in a. and b. are the identity lines serving as references.
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Table A.1: Binary oxides used as reference states for E f calculations.

Element Oxidation State Binary Oxide ICSD ID Materials ID

Rh 3 Rh2O3 181829 mp-542734

Ga 3 Ga2O3 166198 mp-886

Sc 3 Sc2O3 647397 mp-216

Nd 3 Nd2O3 645664 mp-1045

Au 3 Au2O3 8014 mp-27253

B 3 B2O3 36066 mp-306

Mn 3 Mn2O3 76087 mp-542877

Hf 4 HfO2 27313 mp-352

Zr 4 ZrO2 68782 mp-2858

Ge 4 GeO2 92551 mp-470

Ti 4 TiO2 69331 mp-2657

Si 4 SiO2 200726 mp-7000

Ru 4 RuO2 56007 mp-825

Sn 4 SnO2 39173 mp-856

Pt 4 PtO2 647320 mp-1285

Mo 4 MoO2 36263 mp-510536

Re 4 ReO2 24060 mp-7228

Se 4 SeO2 412234 mp-726

Te 4 TeO2 26844 mp-2125

In 3 In2O3 181833 mp-22598

Tc 4 TcO2 173153 mp-33137

Ir 4 IrO2 640887 mp-2723

Continued on next page
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Table A.1 – continued from previous page

Element Oxidation State Binary Oxide ICSD ID Materials ID

Os 4 OsO2 30400 mp-996

Nb 5 Nb2O5 25750 [1]

P 5 P2O5 40865 mp-562613

Sb 5 Sb2O5 1422 mp-1705

Ta 5 Ta2O5 [2] mvc-4415

As 5 As2O5 10015 mp-555434

V 5 V2O5 40488 mp-25620

W 6 WO3 50728 mp-19342

Fe 3 α−Fe2O3 161283 mp-24972

Fe 2 FeO 633029 mp-18905

Ag 1 Ag2O 173984 mp-353

Al 3 Al2O3 60419 mp-1143

Au 3 Au2O3 8014 mp-27253

As 5 As2O5 10015 mp-555434

Ba 2 BaO 616004 mp-1342

Bi 3 Bi2O3 15072 mp-23262

Ca 2 CaO 60704 mp-2605

Cd 2 CdO 181057 mp-1132

Ce 3 Ce2O3 96202 mp-542313

Ce 4 CeO2 164225 mp-20194

Co 2 CoO 9865 mp-19079

Co 3 Co2O3 mvc-852

Cr 3 Cr2O3 201102 mp-19399

Continued on next page
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Table A.1 – continued from previous page

Element Oxidation State Binary Oxide ICSD ID Materials ID

Cr 4 CrO2 166021 mp-19177

Cs 1 Cs2O 27919 mp-7988

Cu 2 CuO 653723 mp-1692

Dy 3 Dy2O3 96208 mp-2345

Er 3 Er2O3 39521 mp-679

Eu 3 Eu2O3 40472 1

Fe 2 FeO 633029 mp-18905

Fe 3 Fe2O3 161283 mp-24972

Fe 4 FeO2 mp-850222

Ga 3 Ga2O3 34243 mp-886

Gd 3 Gd2O3 152449 mp-504886

Ge 4 GeO2 158592 mp-470

Hf 4 HfO2 172165 mp-352

Hg 2 HgO 40316 mp-1224

Ho 3 Ho2O3 44516 mp-812

I 5 I2O5 182672 mp-23261

In 3 In2O3 640179 mp-22598

Ir 4 IrO2 84577 mp-2723

K 1 K2O 44674 mp-971

La 3 La2O3 96201 mp-2292

Li 1 Li2O 54368 mp-1960

Continued on next page

1There is no corresponding entry in MP. The energy was obtained by applying DFT calculation on the structure
using MP-compatible parameters.
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Table A.1 – continued from previous page

Element Oxidation State Binary Oxide ICSD ID Materials ID

Lu 3 Lu2O3 642477 mp-1427

Mg 2 MgO 41990 mp-1265

Mn 2 MnO 28898 mp-714882

Mn 3 Mn2O3 9091 mp-542877

Mn 4 MnO2 20227 mp-19395

Mo 4 MoO2 99714 mp-510536

Na 1 Na2O 180570 mp-2352

Nb 4 NbO2 35181 mp-557057

Nb 5 Nb2O5 25750

Nd 3 Nd2O3 645664 mp-1045

Ni 2 NiO 61318 mp-19009

Os 4 OsO2 30400 mp-996

P 5 P2O5 40865 mp-562613

Pb 2 PbO 99777 mp-672237

Pb 4 PbO2 43460 mp-20725

Pd 4 PdO2 647283 mp-1018886

Pd 2 PdO 29281 mp-1336

Pr 3 Pr2O3 96203 mp-16705

Pr 4 PrO2 647300 mp-1302

Pt 2 PtO 164290 mp-7947

Pt 4 PtO2 647320 mp-1285

Pu 4 PuO2 55456 mp-1959

Rb 1 Rb2O 180572 mp-1394

Continued on next page
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Table A.1 – continued from previous page

Element Oxidation State Binary Oxide ICSD ID Materials ID

Re 4 ReO2 24060 mp-7228

Rh 3 Rh2O3 108941 mp-542734

Sc 3 Sc2O3 647397 mp-216

Se 4 SeO2 59712 mp-726

Si 4 SiO2 200726 mp-7000

Sm 3 Sm2O3 647461 mp-218

Sn 4 SnO2 39173 mp-856

Sr 2 SrO 180194 mp-2472

Tc 4 TcO2 173152 mp-33137

Ta 5 Ta2O5
2 mvc-4415

Tb 3 Tb2O3 40474 mp-1056

Tb 4 TbO2 647500 mp-2458

Te 4 TeO2 26844 mp-2125

Ti 3 Ti2O3 77696 mp-458

Ti 4 TiO2 202240 mp-2657

Tl 1 Tl2O 16220 mp-27484

Tl 3 Tl2O3 74090 mp-1658

Tm 3 Tm2O3 647581 mp-1767

V 3 V2O3 260212 mp-25787

V 4 VO2 1504 mp-19094

V 5 V2O5 99808 mp-25620

Continued on next page

2This structure is not included in ICSD, but the DFT calculation from MP shows that it has a calculated formation
energy of -23.489 eV per formula unit(fu), which is close to reported experimental value (-21.209 eV per fu)155
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Table A.1 – continued from previous page

Element Oxidation State Binary Oxide ICSD ID Materials ID

W 4 WO2 8217 mp-19372

Y 4 Y2O3 23811 mp-2652

Yb 3 Yb2O3 62872 mp-2814

Zn 2 ZnO 647681 mp-2133

Zr 4 ZrO2 172161 mp-2858
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Table A.2: Species on the C, A and D sites in garnet, adapted from ref. 1

Site Ions

C
Ba2+, Na+, Sr2+, Ca2+, Tb3+, La3+, Pr3+, Nd3+, Sm3+, Gd3+, Eu3+,
Dy3+, Y3+, Ho3+, Er3+, Tm3+, Lu3+, Hf4+, Mg2+, Zr4+, Zn2+, Cd2+,
Bi3+

A
Dy3+, Y3+, Ho3+, Er3+, Tm3+, Lu3+, Hf4+, Mg2+, Zr4+, Sc3+, Ta5+,
Ti4+, Nb5+, Al3+, Zn2+, Cr3+, In3+, Ga3+, Sn4+, Ge4+, Sb5+, Ru4+,
Rh3+

D Li+, Ti4+, Al3+, Ga3+, Si4+, Sn4+, Ge4+, As5+, P5+

Table A.3: Species on the A and B sites in perovskites

Site Ions

A
Ba2+, Sr2+, Ca2+, La3+, Tb3+, Ce3+, Ce4+, Pr3+, Nd3+, Sm3+, Gd3+,
Dy3+, Y3+, Ho3+, Er3+, Tm3+, Mg2+, Sc3+, Mn2+, Al3+, Tl3+, Zn2+,
Cd2+, Ni2+, Sn4+, Bi3+, Pd2+, Pt2+, Rh3+, Pb2+

B

La3+, Tb3+, Ce3+, Ce4+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Y3+,
Ho3+, Er3+, Tm3+, Lu3+, Hf4+, Mg2+, Zr4+, Sc3+, Ta5+, Ti4+, Mn2+,
Mn4+, Al3+, Tl3+, V5+, Cr3+, In3+, Ga3+, Fe2+, Fe3+, Co2+, Co3+,
Cu2+, Re4+, Si4+, Tc4+, Ni2+, Sn4+, Ge4+, Bi3+, Mo4+, Ir4+, Os4+,
Pd4+, Ru4+, Pt4+, Rh3+, Pb4+, W4+, Au3+
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Table A.4: Accuracy of DFT formation energies versus experiments.

Formula EEXP
f (meV atom−1) EDFT

f (meV atom−1) Source
Dy3Al5O12 -51(977 K) -54 Ref. 156
Ho3Al5O12 -53(977 K) -51 Ref. 156
Er3Al5O12 -50(977 K) -49 Ref. 156
Tm3Al5O12 -50(977 K) -46 Ref. 156
Lu3Al5O12 -38(977 K) -37 Ref. 156
Y3Al5O12 -60(977 K) -51 Ref. 156
Sm3Ga5O12 -76(977 K) -67 Ref. 156
Eu3Ga5O12 -72(977 K) -28 Ref. 156
Gd3Ga5O12 -76(977 K) -53 Ref. 156
Dy3Ga5O12 -62(977 K) -53 Ref. 156
Ho3Ga5O12 -66(977 K) -48 Ref. 156
Er3Ga5O12 -62(977 K) -44 Ref. 156
Tm3Ga5O12 -56(977 K) -38 Ref. 156
Lu3Ga5O12 -45(977 K) -25 Ref. 156
Y3Ga5O12 -69(977 K) -52 Ref. 156
Ca3Al2Si3O12 -169 -132 Ref. 157

EEXP
f is the enthalpy of formation of garnets from binary oxides, i.e., the enthalpy change

of the reaction 3
2Ln2O3 +

5
2M2O3 −−→ Ln3M5O12 (Ln = Rare Earth, M=Al, Ga), and EDFT

f is

the DFT computed formation energy based on the same reaction. The mean absolute error (MAE)

between EEXP
f and EDFT

f is ∼ 14 meV atom−1.
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Appendix B

Supporting information: High-throughput

screening of Eu2+-doped red-emission

garnet phosphors using density functional

theory and machine learning
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Figure B.1: The emission wavelength Eem vs. GGA bandgap EDFT
bg . The emission energy (Eem)

are obtained from113,114,158–164. The PBE bandgaps are obtained from Materials Project11 and
Table 1 in Ref. 9.
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Figure B.2: The MAEs of XGBoost model using single attribute.
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Figure B.3: The swamplot of exhaustive search result.

80



a
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c

Figure B.4: The site features and the violin plot of the distribution of EDFT
bg vs. element

occupying (a) the C site elements, (b) the A site elements, and (c) the D site elements. The
elements are sorted from left to right in the increasing order of the mean of the EDFT

bg .
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Figure B.5: The excitation ECDFT
ex and emission ECDFT

em wavelength calculated by CDFT are
450 nm and 632 nm, respectively. And the values reported from ref. 138 are 468 nm (EEXP

ex )
and 612 nm (EEXP

em ).
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Appendix C

Supporting information: A universal

machine learning model for elemental

grain boundary energies
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Figure C.1: The averaged elemental grain boundary energy plotted against the cohesive energy.
The dotted line is a fitted linear function of y=0.20x-0.13, which helps to visualize the correlation
between the EGB and Ecoh. The inset periodic table shows the marker and color scheme of the
scatter plot.
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(a) (b)

(c)

Figure C.2: (a) The distribution of the EDFT
GB for different of data sets. The numbers in the

bracket refer the number of data contained in the corresponding data set. (b) The Σ distribution.
For the training and test set, we only used GBs with Σ ≤ 9. In addition, we also prepared an
external test data, of which the Σ ranges from 17 to 66, to test the extrapolability of the model
on Σ. (c) The element distribution of the GBs.
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Figure C.3: The Pearson correlation matrix of the 2nd-degree polynomial terms of the optimized
feature subsets. There are 12 pairs of the features that have an absolute a correlation coefficient
larger than 0.75, which are considered highly correlated.
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A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[55] Dipendra Jha, Logan Ward, Arindam Paul, Wei-keng Liao, Alok Choudhary, Chris Wolver-
ton, and Ankit Agrawal. ElemNet : Deep Learning the Chemistry of Materials From Only
Elemental Composition. Sci Rep, 8(1):17593, December 2018. ISSN 2045-2322. doi:
10.1038/s41598-018-35934-y.

[56] Wei Li, Ryan Jacobs, and Dane Morgan. Predicting the thermodynamic stability of
perovskite oxides using machine learning models. Computational Materials Science, 150:
454–463, July 2018. ISSN 0927-0256. doi: 10.1016/j.commatsci.2018.04.033.

92



[57] Jonathan Schmidt, Jingming Shi, Pedro Borlido, Liming Chen, Silvana Botti, and Miguel
A. L. Marques. Predicting the Thermodynamic Stability of Solids Combining Density
Functional Theory and Machine Learning. Chem. Mater., 29(12):5090–5103, June 2017.
ISSN 0897-4756. doi: 10.1021/acs.chemmater.7b00156.

[58] Alexander S. Gzyl, Anton O. Oliynyk, and Arthur Mar. Half-Heusler Structures with
Full-Heusler Counterparts: Machine-Learning Predictions and Experimental Validation.
Crystal Growth & Design, 20(10):6469–6477, October 2020. ISSN 1528-7483. doi:
10.1021/acs.cgd.0c00646.

[59] Anton O. Oliynyk, Erin Antono, Taylor D. Sparks, Leila Ghadbeigi, Michael W. Gaultois,
Bryce Meredig, and Arthur Mar. High-Throughput Machine-Learning-Driven Synthesis
of Full-Heusler Compounds. Chem. Mater., 28(20):7324–7331, October 2016. ISSN
0897-4756, 1520-5002. doi: 10.1021/acs.chemmater.6b02724.

[60] Kyoungdoc Kim, Logan Ward, Jiangang He, Amar Krishna, Ankit Agrawal, and C. Wolver-
ton. Machine-learning-accelerated high-throughput materials screening: Discovery of
novel quaternary Heusler compounds. Phys. Rev. Materials, 2(12):123801, December
2018. doi: 10.1103/physrevmaterials.2.123801.

[61] Chi Chen, Yunxing Zuo, Weike Ye, Xiangguo Li, and Shyue Ping Ong. Learning properties
of ordered and disordered materials from multi-fidelity data. Nat Comput Sci, 1(1):46–53,
January 2021. ISSN 2662-8457. doi: 10.1038/s43588-020-00002-x.

[62] Ya Zhuo, Aria Mansouri Tehrani, and Jakoah Brgoch. Predicting the Band Gaps of
Inorganic Solids by Machine Learning. J. Phys. Chem. Lett., 9(7):1668–1673, April 2018.
doi: 10.1021/acs.jpclett.8b00124.

[63] Shuaihua Lu, Qionghua Zhou, Yixin Ouyang, Yilv Guo, Qiang Li, and Jinlan Wang.
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine
learning. Nature Communications, 9(1):3405, August 2018. ISSN 2041-1723. doi:
10.1038/s41467-018-05761-w.

[64] G. Pilania, A. Mannodi-Kanakkithodi, B. P. Uberuaga, R. Ramprasad, J. E. Gubernatis,
and T. Lookman. Machine learning bandgaps of double perovskites. Sci Rep, 6(1):19375,
January 2016. ISSN 2045-2322. doi: 10.1038/srep19375.

[65] Vladislav Gladkikh, Dong Yeon Kim, Amir Hajibabaei, Atanu Jana, Chang Woo Myung,
and Kwang S. Kim. Machine Learning for Predicting the Band Gaps of ABX3 Perovskites
from Elemental Properties. J. Phys. Chem. C, 124(16):8905–8918, April 2020. ISSN
1932-7447. doi: 10.1021/acs.jpcc.9b11768.

[66] Fabien Tran and Peter Blaha. Accurate band gaps of semiconductors and insulators with a
semilocal exchange-correlation potential. Physical review letters, 102(22):226401, 2009.
doi: 10.1103/physrevlett.102.226401.

93



[67] M. K. Y. Chan and Gerbrand Ceder. Efficient band gap prediction for solids. Physical
review letters, 105(19):196403, 2010. doi: 10.1103/physrevlett.105.196403.

[68] Jochen Heyd, Gustavo E. Scuseria, and Matthias Ernzerhof. Hybrid functionals based on a
screened Coulomb potential. The Journal of chemical physics, 118(18):8207–8215, 2003.
doi: 10.1063/1.1564060.

[69] F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse. Quasiparticle band
structure based on a generalized Kohn-Sham scheme. Physical Review B, 76(11):115109,
2007. doi: 10.1103/physrevb.76.115109.

[70] L. Tan, K. Sridharan, T. R. Allen, R. K. Nanstad, and D. A. McClintock. Microstructure
tailoring for property improvements by grain boundary engineering. Journal of Nuclear
Materials, 374(1):270–280, February 2008. ISSN 0022-3115. doi: 10.1016/j.jnucmat.20
07.08.015.

[71] M Shimada, H Kokawa, Z. J Wang, Y. S Sato, and I Karibe. Optimization of grain
boundary character distribution for intergranular corrosion resistant 304 stainless steel by
twin-induced grain boundary engineering. Acta Materialia, 50(9):2331–2341, May 2002.
ISSN 1359-6454. doi: 10.1016/s1359-6454(02)00064-2.

[72] Shin Kiyohara, Hiromi Oda, Tomohiro Miyata, and Teruyasu Mizoguchi. Prediction of
interface structures and energies via virtual screening. Science Advances, 2(11):e1600746,
November 2016. ISSN 2375-2548. doi: 10.1126/sciadv.1600746.

[73] Conrad W. Rosenbrock, Eric R. Homer, Gábor Csányi, and Gus L. W. Hart. Discovering
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