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Behavioral/Cognitive

Deep Neural Networks for Modeling Visual Perceptual
Learning

X Li K. Wenliang1 and Aaron R. Seitz2

1Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom and 2Department of Psychology, University of
California–Riverside, Riverside, California 92521

Understanding visual perceptual learning (VPL) has become increasingly more challenging as new phenomena are discovered with novel
stimuli and training paradigms. Although existing models aid our knowledge of critical aspects of VPL, the connections shown by these
models between behavioral learning and plasticity across different brain areas are typically superficial. Most models explain VPL as
readout from simple perceptual representations to decision areas and are not easily adaptable to explain new findings. Here, we show that
a well -known instance of deep neural network (DNN), whereas not designed specifically for VPL, provides a computational model of VPL
with enough complexity to be studied at many levels of analyses. After learning a Gabor orientation discrimination task, the DNN model
reproduced key behavioral results, including increasing specificity with higher task precision, and also suggested that learning precise
discriminations could transfer asymmetrically to coarse discriminations when the stimulus conditions varied. Consistent with the
behavioral findings, the distribution of plasticity moved toward lower layers when task precision increased and this distribution was also
modulated by tasks with different stimulus types. Furthermore, learning in the network units demonstrated close resemblance to extant
electrophysiological recordings in monkey visual areas. Altogether, the DNN fulfilled predictions of existing theories regarding specific-
ity and plasticity and reproduced findings of tuning changes in neurons of the primate visual areas. Although the comparisons were
mostly qualitative, the DNN provides a new method of studying VPL, can serve as a test bed for theories, and assists in generating
predictions for physiological investigations.
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Introduction
Visual perceptual learning (VPL) refers to changes in sensitivity
to visual stimuli through training or experience and has been
demonstrated in the discrimination of simple features such as

orientation, contrast, and dot motion direction, as well as more
complicated patterns (Fiorentini and Berardi, 1980; Ball and
Sekuler, 1982; Karni and Sagi, 1991; Ahissar and Hochstein, 1997;
Mastropasqua et al., 2015). A common characteristic of VPL is its
lack of transfer to untrained stimulus conditions, such as when
rotated by 90° (Fiorentini and Berardi, 1981; Schoups et al., 1995;
Crist et al., 1997). Due to their retinotopic mapping and orienta-
tion tuning (Hubel and Wiesel, 1968; Blasdel, 1992; Tootell et al.,
1998), early visual areas have been hypothesized to contribute to
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Significance Statement

Visual perceptual learning (VPL) has been found to cause changes at multiple stages of the visual hierarchy. We found that training
a deep neural network (DNN) on an orientation discrimination task produced behavioral and physiological patterns similar to
those found in human and monkey experiments. Unlike existing VPL models, the DNN was pre-trained on natural images to reach
high performance in object recognition, but was not designed specifically for VPL; however, it fulfilled predictions of existing
theories regarding specificity and plasticity and reproduced findings of tuning changes in neurons of the primate visual areas.
When used with care, this unbiased and deep-hierarchical model can provide new ways of studying VPL from behavior to
physiology.
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VPL and its specificity (Fahle, 2004). Despite numerous examples
supporting this hypothesis (Schoups et al., 2001; Bejjanki et al.,
2011; Sagi, 2011; Jehee et al., 2012; Yu et al., 2016), there is sub-
stantial evidence that specificity does not require low-level changes
(Dosher and Lu, 2017; Ghose et al., 2002) and there is great con-
troversy regarding where learning happens in the visual hierarchy
(Wang et al., 2016; Maniglia and Seitz, 2018).

Most models of VPL are artificial neural networks with user-
parametrized receptive fields and shallow network structures.
Trained using Hebbian-like learning rules (Sotiropoulos et al.,
2011; Herzog et al., 2012; Dosher et al., 2013) or optimal decod-
ing methods (Zhaoping et al., 2003), these models can reproduce
and predict behavior, but rarely account for physiological data.
Moreover, a key limitation of these models is that they do not
address how the multiple known visual areas may contribute
jointly to learning (Hung and Seitz, 2014). Other more concep-
tual models, such as the reverse hierarchy theory (RHT) (Ahissar
and Hochstein, 1997, 2004) and the dual plasticity model (Wa-
tanabe and Sasaki, 2015), make predictions regarding what types
of learning scenarios may lead to differential plasticity across
visual areas, but these descriptive models do not predict specific
changes in tuning properties of neurons. Therefore, there is a
substantial need for a hierarchical model that can simulate learn-
ing and simultaneously produce behavioral and neurological
outcomes.

A novel approach to modeling VPL can be found in deep
neural networks (DNNs) which is readily adapted to learn differ-
ent tasks. These DNNs have shown impressive correspondences
to human behaviors and neural data from early visual areas and
inferior temporal cortex (IT) (Khaligh-Razavi and Kriegeskorte,
2014; Yamins et al., 2014; Guclu and van Gerven, 2015; Cichy et
al., 2016; Kheradpisheh et al., 2016; Eickenberg et al., 2017). This
hierarchical system opens up new opportunities for VPL research
(Kriegeskorte, 2015). As a start, Lee and Saxe (2014) and Saxe
(2015) produced experimental and theoretical analyses that re-
sembled RHT predictions using simple neural network architec-
tures. Cohen and Weinshall (2017) used a shallow network to
replicate relative performances of different training conditions
for a wide range of behavioral data. To date, the extent to which
DNNs can appropriately model physiological data of VPL re-
mains unexplored.

Here, we trained a DNN model modified from AlexNet (Kri-
zhevsky et al., 2012) to perform Gabor orientation and face gen-
der discriminations. The network reflected human behavioral
characteristics such as the dependence of specificity on stimulus
precision (Ahissar and Hochstein, 1997; Jeter et al., 2009). Fur-
thermore, the distribution of plasticity moved toward lower lay-
ers when task precision increased, and this distribution was also
modulated by tasks with different types of stimulus. Most im-
pressively, for orientation discrimination, the network units
changed in a similar way to neurons in primate visual cortex,
which helped reconcile divergent physiological findings in the
literature (Schoups et al., 2001; Ghose et al., 2002). These results
suggest that DNNs can serve as a computational model for study-
ing the relationship between behavioral learning and plasticity
across the visual hierarchy during VPL and how patterns of learn-
ing vary as a function of training parameters (Maniglia and Seitz,
2018).

Materials and Methods
Model. An AlexNet-based DNN was used to simulate VPL. We briefly
describe the network architecture here and refer readers to the original
study for more details (Krizhevsky et al., 2012). The original AlexNet

consists of eight layers of artificial neurons (units) connected through
feedforward weights. In the first five layers, each unit is connected locally
to a small patch of retinotopically arranged units in the previous layer or
the input image. These connections are replicated spatially so that the
same set of features is extracted at all locations through weight sharing.
The operation that combines local connection with weight sharing is
known as convolution. Activations in the last convolutional layer are sent
to three fully connected layers with the last layer corresponding to object
labels in the original object classification task. Unit activations are nor-
malized in the first two convolutional layers to mimic lateral inhibition.

To construct the DNN model, we took only the first five convolutional
layers of AlexNet and discarded the three fully connected layers to reduce
model complexity. An additional readout unit was added to fully connect
with the units in the last layer, forming a scalar representation of the
stimulus in layer 6. We removed the last three layers of AlexNet because
they exhibited low representational similarity to early visual areas but
high similarity to IT and thus may be more relevant to object classifica-
tion (Khaligh-Razavi and Kriegeskorte, 2014; Guclu and van Gerven,
2015); in addition, we assumed that early visual areas play a more critical
role for Gabor orientation discrimination. We kept all five convolutional
layers because one of our objectives was to study how learning was dis-
tributed over a visual hierarchy with more levels than most VPL models
which are usually limited to two to three levels. In addition, activations in
these five layers have been suggested to correspond to neural activities in
V1– 4 following a similar ascending order (Guclu and van Gerven, 2015).

The resulting six-layer network was further modified to model deci-
sion making in the two-interval two-alternative forced choice (2I-2AFC)
paradigm (Fig. 1A). In this paradigm, a reference stimulus is first shown
before a second target stimulus and the subject has to judge whether the
second stimulus is more clockwise or more counterclockwise compared
with the reference. In our DNN model, each of the reference and target
images is processed by the same six-layer network that yields a scalar
readout in layer 6 and the decision is made based on the difference
between the representations with some noise. More precisely, two iden-
tical streams of the six-layer network produce scalar representations for
the reference and target images, denoted by hr and ht, respectively. The
network outputs a clockwise decision with probability (or confidence) p
by passing the difference �h � ht � hr through the following logistic
function:

p �
exp��h�

exp��h� � 1
(1)

This construction assumes perfect memory about the two representa-
tions computed using the same model architecture and parameters, and
each choice is made with some decision noise. An advantage of using this
2I-2AFC architecture is that, when tested under transfer conditions (such
as a new reference orientation), the network can still compare the target
with the reference by taking the difference between the representations,
whereas if only one stream exists, then the model cannot know the new
reference orientation. We note that although this training paradigm is
suitable for this network and was thus kept consistent throughout the
simulations, it is different from those used in the physiological studies
(Schoups et al., 2001; Ghose et al., 2002; Yang and Maunsell, 2004;
Raiguel et al., 2006) with which we compare our network in the Results
section. Learning could also be influenced by details of those experiments
beyond what is accounted for by the present simulations.

Task and stimuli. All stimuli in the two experiments below were cen-
tered on 8-bit 227 � 227-pixel images with gray background.

Experiment 1. The network was trained to classify whether the target
Gabor stimulus was tilted clockwise or counter-clockwise compared with
the reference. We trained the network on all combinations of the follow-
ing parameters: orientation of reference Gabor from 0° to 165° at steps of
15° (12 orientations); angle separation between reference and target
(0.5°, 1.0°, 2.0°, 5.0°, and 10.0°); and spatial wavelength (10, 20, 30, and
40 pixels). To simulate the short period of stimulus presentation and
sensory noise, we kept the contrast low and added to each image isotropic
Gaussian noise with the following parameters: signal contrast (20%,
30%, 40%, to 50% of the dynamic range) and SD of the Gaussian additive
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noise (5, 10, 15). In addition, the SD of the Gabor Gaussian window was
50 pixels. Noise was generated at run time independently for each image.
An example of a Gabor stimulus pair is shown in Figure 1A.

Experiment 2. The network was trained on face gender discrimination
and Gabor orientation discrimination. For the face task, the network was
trained to classify whether the target face was more masculine or femi-
nine (closer to the original male or female in warping distance) than the
reference face. Stimuli were face images with gender labels from the
Photoface Dataset (Zafeiriou et al., 2011). A total of 647 male images and
74 female images with minimal facial hair were selected manually from
the dataset and were captured in the frontal pose with the blank stare
emotion. The bias in subject gender was addressed by subsampling to
form balanced training and testing sets. The facemorpher toolbox
(https://pypi.python.org/pypi/facemorpher/1.0.1) was used to create a
reference halfway between a male and a female image.

To manipulate task difficulty, target images were created that varied in
dissimilarity to the reference image ranging from 1 (closest to the refer-
ence) to 5 (the original male or female image) by adjusting a warping
(mixing) parameter in the facemorpher toolbox. The reference and tar-
get were morphed from the same pair of the original faces. The network
was trained and tested using 12-fold cross-validation. Each fold consists
of images morphed from 49 males and 49 females for training (2401
pairs) and 25 males and 25 females for testing (625 pairs) randomly
sampled from the full dataset. Examples of face stimuli at the five dissim-
ilarity levels are shown in Figure 1B.

The Gabor stimulus had a wavelength of 20 pixels and the SD of the
Gaussian window was 50. The reference angle ranged in 12 values from 0°
to 165° at steps of 15° and the target image deviated from the reference by
0.5°, 1.0°, 2.0°, 5.0°, or 10.0°. For both the face and Gabor tasks in this
experiment, contrast was set to 50% and noise SD was set to 5.

Training procedure. In both experiments, network weights were initial-
ized such that the readout weights in layer 6 were zeros and weights in the
other lower layers were copied from an AlexNet trained on object recogni-
tion (downloaded from http://dl.caffe.berkeleyvision.org/bvlc_alexnet.
caffemodel). The learning algorithm was a stochastic gradient descent (SGD)
whereby the weights were changed to minimize the discrepancy between
network output and stimulus label as follows:

�t�1 � �t � vt�1 (2)

vt�1 � �vt � ���t
l��t, It, Lt� (3)

where � (0.0001) and � (0.9) are learning rate and momentum, respec-
tively, which are held constant through training, �t is the network weights
at iteration t, and vt is the corresponding weight change. l(�t, It, Lt) is the
cross-entropy loss that depends on the network weights, input image
batch It of size 20 pairs and the corresponding labels Lt. Gradients were
obtained by backpropagation of the loss through layers (Rumelhart et al.,
1986).

Under this learning rule, zero initialization in the readout weights
prevents the weights in lower layers from changing in the first iteration
because the weights in those layers cannot affect performance and thus
have zero gradients. This initialization can be interpreted as receiving
instruction by subjects because all stimulus representations in the lower
layers are fixed while the network briefly learns the task on the highest
decision layer. After the first iteration, the readout weights will not be
optimal due to small learning rate, so weights in the lower layers will start
to change. Under each stimulus condition, the network was trained for
1000 iterations of 20-image batches so that one iteration is analogous to
a small training block for human subjects. Independent noise was gener-
ated to each image at each iteration. We outline the limitations of the
model in the Discussion section.

Behavioral performance. The network’s behavioral performance was
estimated as the classification confidence (Eq. 1) of the correct label
averaged over test trials. For the Gabor task, we tested the network’s
performance on stimuli generated from the same parameters as in train-
ing (trained condition) and also tested on stimuli generated from differ-
ent parameters (transfer conditions), including rotating the reference by
45 or 90°, halving or doubling the spatial frequencies, and changing angle
separations (or inverse precision) between the reference and target. A
total of 200 pairs of Gabor stimuli were used in each test condition. For
the face task, performance was tested on 625 unseen validation images.
Performance was measured at 20 approximately logarithmically spaced
iterations from 1 to 1000.

Figure 1. Model structure and stimulus examples. A, Model architecture and a pair of Gabor stimuli. The network consists of two identical processing streams producing scalar representations,
one for the reference (hr) and the other for the target (ht), and the difference of the two is used to obtain a probability of the target being more clockwise p(CW ) through the sigmoid function. Darker
colors indicate higher layers. Layers 1–5 consists of multiple units arranged in retinotopic order (rectangles) and convolutional weights (triple triangles, not indicative of the actual filter sizes or
counts) to their previous layers or image and layer 6 has a single unit (dark orange circles) fully connected to layer 5 units (single triangles). Weights at each layer are shared between the two streams
so that the representations of the two images are generated by the same parameters. Feedback is provided at the last sigmoidal unit. The Gabor examples have the following parameters: reference
orientation: 30°, target orientation: 20°, contrast: 50%, wavelength: 20 pixels, noise SD: 5. B, Face examples morphed from three males and three females. The reference (ref) is paired with either
a more masculine (M) or more feminine (F) target image, both morphed from the same two originals (M5 and F5), with the reference being the halfway morph. The number following the label
indicates dissimilarity with the reference.
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In Experiment 2, the contribution of DNN layers to performance was
estimated using an accuracy drop measure defined as follows. Under
each stimulus condition, we recorded the iteration at which the fully
plastic network reached 95% accuracy, denoted by t95; we then trained a
new network again from the original AlexNet weights under the same
stimulus condition while freezing successively more layers from layer 1
and used the accuracy drop at t95 compared with the all plastic network as
the contribution of the frozen layers. For example, suppose that the fully
plastic network reached 95% accuracy at 100 th iteration (t95 � 100) and,
at this iteration, the network trained with frozen layer 1 had 90% accu-
racy and the network trained with the first two layers frozen had 85%
accuracy. In this case, the first layer contributed 5% and the first two
layers together contributed 10%. This accuracy drop does not indicate
the contribution of each layer in isolation, but allows for different inter-
actions within the plastic higher layers when varying the number of fro-
zen lower layers.

Estimating learning in layers and neurons. After training, weights at
each layer were treated as a single vector and learning was measured
based on the difference from pre-train values. Specifically, for a particu-
lar layer with N total connections to its lower layer, we denote the original
N-dimensional weight vector trained on object classification as w (N and
w are specified in AlexNet), the change in this vector after perceptual
learning as �w, and define the layer change as follows:

drel1 �

�
i

N

��wi�

�
i

N

�wi�

(4)

where i indexes each element in the weight vector. Under this measure,
scaling the weight vector by a constant gives the same change regardless
of dimensionality, reducing the effect of unequal weight dimensionalities
on the magnitude of weight change. For the weights in the final readout
layer that were initialized with zeros, the denominator in Equation 4 was
set to N, effectively measuring the average change per connection in this
layer. Due to the convolutional nature of the layers 1–5, drel1 is equal to
the change in filters that are shared across location in those layers. When
comparing weight change across layers, we focus on the first five layers
unless otherwise stated. In addition, the following alternative layer
change measures were also used:

drel2 �

��
i

N

��wi
2�

��
i

N

�wi
2�

(4a)

dm1 �

�
i

N

��wi�

N
(4b)

dm2 �

��
i

N

��wi
2�

N
(4c)

which produced different values, but they did not change the general
effects of stimulus conditions on distribution of learning in weights. For
the results in the main text, we report weight change in terms of drel1

unless otherwise stated. To measure learning of a single unit, we used the
same equation but with w being the filter of each unit and N being the size
of the filter.

Tuning curves. For each unit in the network, we “recorded” its tuning
curve before and after training by measuring its responses to Gabor

stimuli presented at 100 orientations evenly spaced over the 180° cycle.
The stimuli were a subset of those used in Experiment 1 which had noise
SD 15, contrast 20%, and wavelength 10 pixels; this choice of wavelength
means that one period of the sinusoidal component of the Gabor stimu-
lus was contained within the receptive field of a layer 1 unit. The mean
and SD at each test orientation were obtained by presenting the network
with 50 realizations of noisy stimuli, followed by smoothing with a
Gaussian kernel. The gradients of tuning curves were computed by fil-
tering the mean response with a Laplace filter. Both the Gaussian and
Laplace filters had an SD of 1°. The raw tuning curves were padded
circularly to avoid boundary effect. Because the receptive fields were
shared across locations, we only chose the units with receptive fields at
the center of the image; therefore, the number of units measured at each
layer equals the number of filter types (channels) in that layer. In addi-
tion, to ensure that units were properly driven by the stimulus, we ex-
cluded units that had mean activation over all orientations 	1.0. The
same procedure was repeated under the five precisions and 12 refer-
ence orientations as in Experiment 1 before and after training. No
curve fitting was used. On average, training produced the following
number of units for analyses: 79.4 of 96 in layer 1, 91.0 of 256 in layer
2, 237.3 of 384 in layer 3, 100.3 of 384 in layer 4, and 16.0 of 256 in
layer 5. These numbers were approximately the same for the naive
populations. Units were pooled together for analyses from training on
the 12 reference orientations.

To compare with electrophysiological data in the literature, we mea-
sured the following attributes from tuning curves nonparametrically.
The preferred orientation was determined by the orientation at which a
unit attained its peak response. Tuning amplitude was taken to be the
difference between the highest and lowest responses over orientation.
Following Raiguel et al. (2006), the selectivity index (SI), a measure of
tuning sharpness, was measured as follows:

SI �

�� �
i

si sin�2�i��2

� ��
i

si cos�2�i��2

�
i

si

(5)

where si is the mean activation of a unit to a Gabor stimulus presented at
orientation �i (index i ranges from 1 to 100). The normalized variance
(or Fano factor, variance ratio) of the response at a particular orientation
was taken as the ratio of response variance to the mean. Following Yang
and Maunsell (2004), we measured the best discriminability of a unit by
taking the minimum, over orientation, of response variance divided by
tuning curve gradient squared.

To measure how much information about orientation was contained
in a layer per neuron, we computed the average linear Fisher information
(FI) (Seriès et al., 2004; Kanitscheider et al., 2015) at a particular orien-
tation as follows:

FI��� �
1

n
f 
��� � �����1 � f 
��� (6)

where f 
(�) is a vector of tuning curve gradients at orientation � for n
units in that layer (those with receptive fields at the center of the image),
and (�) is the corresponding response covariance matrix. In addition,
independently for each unit, we measured FI as its tuning curve gradient
squared divided by response variance at the measured orientation. For FI
calculation, units with activity 	1.0 at the measured orientation were
excluded to avoid very low response variance.

Experimental design and statistical analyses. In Experiment 1, the net-
work was trained on Gabor orientation discrimination under 2880 con-
ditions (12 reference orientation, four contrasts, four wavelengths, three
noise levels, and five angular separations). In Experiment 2, the network
was trained on 360 conditions in each of the Gabor and face tasks (12
reference orientations or training-testing data splits, five dissimilarity
levels and zero to five frozen layers).

We performed our analyses on three levels. On the behavioral level, the
effects of training and test angle separation on performance were tested
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using linear regression. On the layer level, the effects of layer number and
training angle separation on layer change were also tested using linear
regression. To determine whether the distribution of learning differed
between tasks, we used two-way ANOVA to test whether there was an
effect of task on layer change. At the unit level, we tested for significant
changes in various tuning curve attributes recorded in the literature,
using Kolmogorov–Smirnov (K–S) for distributional changes, Mann–
Whitney U for changes in tuning curve attributes from training, and
two-way ANOVA when neurons were grouped according to naive/
trained and their preferred orientations. Finally, to test whether there was
a relationship between the network’s initial sensitivity to the trained
orientation, we used a regression model described with the results. The
significance level for all tests was 0.01. Bonferroni corrections were ap-
plied for multiple comparisons.

All code was written in Python with Caffe (http://caffe.berkeleyvision.
org) for DNN stimulations and statsmodel (Seabold and Perktold, 2010)
was used for statistical analyses. Code and stimulated data are available
on request.

Results
Behavior
The network was trained to discriminate whether the target Ga-
bor patch was more clockwise or more counterclockwise to the
reference, repeated in 2880 conditions (12 reference orientation,
four contrasts, four wavelengths, three noise levels, and five
precisions or angle separations). The performance trajectories
grouped by precision are shown in Figure 2A (top, for the first 50
iterations, see Fig. 2-1, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.f2-1) for the trained and transfer
conditions of rotated reference orientations (clockwise by 45 or
90°) and scaled spatial frequencies (halved or doubled). The ac-
curacy measured at the first iteration (analogous to naive real
subjects) indicates the initial performance when only the readout
layer changed. Both initial performance and learning rate under
the trained condition were superior for the less precise tasks,
consistent with findings from the human literature (Ahissar and
Hochstein, 1997; Jeter et al., 2009). Percentage correct increased
in a similar way to human data on Vernier discrimination (Herzog
and Fahlet, 1997) and motion direction discrimination (Liu and
Weinshall, 2000). Convergence of performance for the transfer stim-

uli required more training (note the logarithmic x-axis in Fig. 2A)
than for the trained stimuli, which may imply that much more
training examples are necessary to achieve mastery on the
transfer stimuli, consistent with some studies of tactile percep-
tual learning (Dempsey-Jones et al., 2016).

Moreover, we characterized the dynamics of transfer by cal-
culating the transfer index as the ratio of transfer accuracy to the
corresponding trained accuracy. As shown in Figure 2A (bot-
tom), this ratio decreased initially but started to rise slowly for all
conditions, and the trajectory for orthogonal transfer (ori�90)
under the highest precision was almost flat toward the end of
training. Similar reduction in transfer index with increasing
training sessions has been demonstrated in human experiments
(Jeter et al., 2010).

Figure 2B shows the final transfer performance grouped by
transfer conditions and training precision. All transfer accuracies
were below 1.0, especially for the orientation transfers, indicating
various degrees of learning specificity. A linear regression on
transfer accuracy showed a significant positive main effect of log
angle separation in all four transfer conditions (p 	 0.0001; for
details, see Table 2-1, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.t2-1), implying better transfer per-
formance for less precise training. This result is consistent with
experimental data and theoretical prediction that greater speci-
ficity happens in finer precision tasks (Ahissar and Hochstein,
1997; Liu, 1999; Liu and Weinshall, 2000).

However, the transfer precisions were the same as used during
the respective trained conditions and thus varied in intrinsic dis-
criminability in the above comparisons, which could have deter-
mined the observed pattern on transfer conditions. We thus
tested each trained network on all angle separations to determine
whether we could reproduce human psychophysical data (Jeter et
al., 2009) in which a difference in test precision affects transfer
more than training precision. Indeed, Figure 2C shows a strong
positive main effect of test separation (p 	 0.001 and R 2 � 0.35
for all transfer conditions); however, we also found that training
separation had a significant effect (p 	 0.001) in all transfer
conditions and the effect size was the smallest in orthogonal ori-

Figure 2. Performance of the model when trained under various angle separations and tested at the trained and transfer conditions: reference orientation rotated clockwise by 45 (ori � 45) or
90° (ori � 90) and spatial frequency halved (SF � 0.5) or doubled (SF � 2.0). For statistical details, see Table 2-1 (available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t2-1). A, Accuracy
(top) and transfer index (bottom) trajectories against training iterations. Darker blue indicates finer precision. 1 SEM error bars are hardly visible. For accuracies plotted as mean � SD during the first
50 iterations, see Figure 2-1 (available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f2-1). B, Final performance under the four transfer conditions. There was a significant positive main
effect of log angle separation in each of the four transfer conditions ( p 	 0.0001, R 2 � 0.2 in all conditions), indicating greater transfer for coarser precisions. Error bar indicates 1 SD. C, Final mean
accuracies when the network was trained and tested on all combinations of training and test precisions. The diagonal lines in the four transfer conditions indicate equal training and test precision
for which the accuracies are also shown in B. For each transfer condition, there was a strong positive main effect of log test separation ( p 	 0.0001, R 2 � 0.35 in all conditions) shown as increasing
color gradient from bottom to top; Log training separation also had a weaker but significant negative effect ( p 	 0.0001 in all conditions, R 2 � 0.05 in all conditions except for angle � 90 where
R 2 � 0.018), shown as decreasing color gradient from left to right. Higher training precisions enhanced performance at transfer to low precisions, shown as higher accuracy on top-left quadrants
compared with lower-right quadrants.
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entation transfer (for details, see Table 2-1, available at https://
doi.org/10.1523/JNEUROSCI.1620-17.2018.t2-1). The more
substantial transfer to 45° from trained orientations compared
with 90° could be due to a larger overlap between the trained and
transfer orientation representations of the network units. There-
fore, despite the observation of diminishing transfer with increas-
ing precision when the training and test precisions are equal
(diagonal lines in Fig. 2C), the analyses across all precision com-
binations predict that transfer is more pronounced from precise
to coarse discrimination than vice versa, although transfer can be
very small at the orthogonal orientation.

Overall, these behavioral findings are consistent with extant
behavioral and modeling results of perceptual learning. Further-
more, the DNN model can simulate a wide number of trained
conditions and makes predictions regarding the relative perfor-
mances and learning rates of the trained stimuli compared with
that of transfer stimuli. However, it is expected that some details
of this DNN
s behavioral results will necessarily differ from ex-
perimental data.

Distribution of learning across layers
Learning in the weight space
We next examined the time course of learning across the layers as
a function of precision calculated using Equation 4 and shown in
Figure 3A. Overall, all layers changed faster at the beginning of
training in coarse than in precise angle separations, training pre-
cise angle separations produced greater overall changes. While
the highest readout layer (layer 6) changed faster than the other
layers, which was also found by Saxe (2015) on a linear deep
network, this was likely a consequence of zero initialization in the
readout weights. This result suggests that, when performance is at
chance level, due to naivety to the task, information about the
stimulus label cannot be passed on to lower layers while the per-
formance is close to chance. Due to this mismatch of weight
initialization, we focus on layers 1–5 with weights initialized from
the pre-trained AlexNet.

To characterize learning across layers, we studied when and
how much each layer changed during training. To quantify when

significant learning happened in each layer, we estimated the
iteration at which the gradient of a trajectory reached its peak
(peak speed iteration, PSI; shown in Figure 3B). In layers 1–5, we
observed significant negative main effects of log angle separation
(� � �46.02, t(14396) � �52.93, p � 0.0, R 2 � 0.40) and layer
number (� � �2.07, t(14396) � �13.65, p � 3.6 � 10�42, R 2 �
0.0031) and a positive interaction of the two (� � 2.93, t(14396) �
11.16, p � 8.0 � 10�29, R 2 � 0.0050) on PSI, suggesting that
layer change started to asymptote later for lower layers and
smaller angle separations. For individual precision conditions, a
linear regression analysis showed a significant negative effect of
layer number on PSI only in the two most precise tasks (p 	
0.0001; for details, see Table 3-1, available at https://doi.org/
10.1523/JNEUROSCI.1620-17.2018.t3-1). Therefore, under high
precisions, the order of change across layers is consistent with the
reverse hierarchy theory prediction that higher visual areas change
before earlier ones (Ahissar and Hochstein, 1997).

The final layer change at the end of training is shown in Figure
3C. For a better visual comparison, we calculated the relative
layer change under each stimulus condition by taking the ratio of
layer change against the change that resulted from training at the
same stimulus conditions but under the coarsest angle separation
(Fig. 3D). Weight changes in lower layers increased by a factor
larger than those in higher layers except layer 5. A linear regres-
sion analysis on the changes in layers 1–5 revealed significant
negative main effects of log angle separation (� � �0.0060, t �
�87.25, p � 0.0, R 2 � 0.34) and layer number (8.6 � �10�4, p �
0.0, R 2 � 0.092) and a positive interaction of the two (0.00010,
t � 49.23, p � 0.0, R 2 � 0.082). The interaction of angle separa-
tion � layer number on layer change is consistent with the pre-
diction that higher-precision training induces more change lower
in the hierarchy (Ahissar and Hochstein, 1997).

Change of information about orientation
Although we have considered thus far the changes in the weights
of the DNN, there is still a question of how the information about
orientation changed across layers and how this may vary as a
function of training precision. We address this by showing in

Figure 3. Layer change under different training precisions. A, Layer change (Eq. 4) trajectories during learning. Lighter colors indicate larger angle separations. 1 SEM error bars are hardly visible.
B, Iteration at which the rate of change peaked (PSI). Excluding layer 6, there were significant negative main effects of log angle separation (���37.24, t(14397) ��100.02, p � 0.0, R 2 � 0.41)
and layer number (� � �1.07, t(14397) � �8.73, p � 2.9 � 10 �18, R 2 � 0.0031) on PSI, suggesting that layer change started to asymptote earlier in higher layers and finer precisions. For
individual precisions, layer number had a significant effect only for the two smallest angle separations ( p 	 0.0001; for details, see Table 3-1, available at https://doi.org/10.1523/JNEUROSCI.1620-
17.2018.t3-1). C, Final layer change. Ignoring layer 6, for which the change was measured differently, a linear regression analysis on the logarithm of layer change yielded significant negative main
effects of log angle separation (���1.0, t(14397) ��208.4, p � 0.0, R 2 � 0.66) and layer number (���0.15, t(14397) ��91.2, p � 0.0, R 2 � 0.13), implying greater layer change in lower
layers and finer precisions. D, Ratio of final layer change relative to the change under the easiest condition (10.0°). Changes in lower layers increased by a larger factor than higher layers when
precision was high. B–D, Error bar indicates 1 SEM.
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Figure 4 the covariance-weighted linear Fisher information (FI)
(Eq. 6) of the trained and naive unit population at each layer and
each test orientation when trained at each angle separation. The
tuning curves used to evaluate FI were obtained from the units
with receptive fields at the center of the image (see Materials and
Methods). A prominent observation is that FI increased most
dramatically at the highest layers under the most precise task and
diminished toward lower layers and coarser precisions. Lower
layers saw significant FI improvement only in the most precise
tasks, whereas higher layers increased FI in all precisions.

However, the quantitative trend of FI increase was contrary to
the layer change where more substantial learning happened in the
lower layers. Notably, despite the large change in layer 1 weights
(Fig. 3C), there was no visible change in FI. The large FI increase
in higher layers may not be surprising due to a single hierarchy
with readout on the top layer and the accumulation of weight
changes from the lower layers.

In addition, we observed patterns of FI over orientations.
After training at the finest precision, the top layers exhibited
significant and substantial increase of FI around the trained ori-
entation; FI fell off at �20° away from trained orientation but
remained noticeable until the orthogonal orientation. This could
account for the transfer behavior predicted by the network (Fig.
2) where learning transferred more substantially if the Gabor
stimulus was rotated by 45° rather than the more common 90°.

These data show that the increase of information about
orientation over network layer changes as a function of train-
ing precision. Later, we will discuss how this information in
the pre-trained network may affect learning (see Fig. 10).

Effect of feature complexity on distribution of learning
Are the observed layer changes prescribed solely by the network
structure and learning rule regardless of the task? To find out
whether these patterns were task specific, we simulated learning
of a “higher-level” face gender discrimination task and investi-

gated its effect on the distribution of learning in network weights
compared with Gabor orientation discrimination. In the face task,
difficulty was manipulated by morphing between male and female
face images and the network was trained to discriminate whether the
target was more masculine or feminine compared with the reference.
Both tasks were repeated under 360 conditions (12 reference orien-
tations for the Gabor task or 12 training-testing data splits for the
face task, five dissimilarity levels and zero to five frozen layers). By the
end of training, the fully plastic network reached test accuracy above
95% for all stimulus conditions. In this section, we assume that
learning in stimulus representation happened in the lower 5 layers
and do not analyze the changes in layer 6.

Due to the hierarchical representation from earlier to later
visual areas, one may hypothesize that learning in lower layers of
the DNN would play a more important role in performance for
the Gabor task relative to the face task. To quantify the contribu-
tions of layers on performance, we measured how much accuracy
dropped when more lower layers were frozen (keeping weights
fixed) at a particular iteration during training (see Methods and
Materials). Results are shown in Figure 5A. Performance in the
Gabor task dropped considerably when freezing layer 2 onward,
whereas, in the face task, learning was significantly impaired only
when freezing all the first four layers or more. Although this
freezing technique is unnatural and it is possible that compensa-
tory changes occurred that did not reflect properties of learning
in the fully plastic network, these results support the hypothesis
that the higher layers are more informative for judgements on
more complex stimulus and the earlier layers are so for more
precise and simpler ones.

To further test whether the distribution of learning depended
on task, we calculated the proportions of layer change in the first
five layers by normalizing these changes against their sum (Fig.
5B; for other layer change measures, see Fig. 5-1, available at
https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f5-1). Because

Figure 4. Linear FI defined in Equation 6 of the trained (black) and naive (gray) populations at each layer and each test orientation and when trained at each precision. Each line is drawn as mean
and 1 SEM envelope. Only units with receptive fields at the center of the image and with minimum activation of 1.0 are included. Asterisk indicates significant increase in mean FI within 10° of the
trained orientation (threshold p � 0.01, Mann–Whitney U, Bonferroni corrected for 5 layers � 5 angle separations). The FI values at layer 5 do not reflect real discrimination thresholds because the
readout was noisy.
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the first layer did not have a large contribution to performance
(Fig. 5A) and response normalization happened after the first
layer, we also compared the layer change proportions after train-
ing while freezing the weights in layer 1 at pre-trained values. A
two-way ANOVA revealed a significant interaction of layer �
task on layer change proportion in both network conditions (p 	
0.0001; for details, see Table 5-1, available at https://doi.org/
10.1523/JNEUROSCI.1620-17.2018.t5-1), suggesting that task
indeed changed the distribution of learning over layers. Post hoc
analysis showed a significant increase in weight change propor-
tions in layers 4 and 5 and a significant decrease in layer 2 (Mann–
Whitney U, threshold p � 0.01, Bonferroni-corrected for 5 or 4
layers). Therefore, more weight change happened in lower layers
when learning the “low-level” Gabor task, and higher layers ac-
quired more change in the “high-level” face task, consistent with
theories of VPL (Ahissar and Hochstein, 1997, 2004; Watanabe
and Sasaki, 2015).

One should be careful when interpreting values of layer
change defined by Equation 4. For instance, the layer with max-
imum change varied between layers 1 and 3 depending on how
these changes were calculated (e.g. Eqs. 4a– 4c), although the gen-
eral effects of precision and task on layer change were consistent
under other weight change measures (Fig. 5-1, available at https://
doi.org/10.1523/JNEUROSCI.1620-17.2018.f5-1). In addition, it
may be tempting to infer the relationship between layer contri-
bution and change; however, freezing early layers created differ-
ent interactions between the higher plastic layers, which makes it
difficult to compare directly layer contribution with the layer
change obtained by the fully plastic network.

Therefore, by analyzing the weight changes in the network
layers, we have shown that the distribution of learning over the
network hierarchy moves toward lower layers for more precise
discriminations of simple features and toward higher layers for
less precise or more complex stimuli such as faces. To determine to
what extent this DNN model can reflect changes in the brain during
perceptual learning, we compared activations of individual units in
the network with activities of real neurons in the brain recorded by
electrophysiology, as described in the following section.

Tuning changes of single units
Single units in different layers of the DNN model were examined
to determine whether the changes in these units were similar to
those in monkey neurons after VPL. A key target of this investi-
gation was to address computationally some of the significant

findings in the literature that had led to diverging interpretations
of plasticity within the visual hierarchy. Previous research on
DNNs found that the representational geometries of layers 2 and
3 (but not layer 1) in this network were analogous to those in
human V1–3 (Khaligh-Razavi and Kriegeskorte, 2014), so we
focused our analyses on layers 2–5.

We compared the network units with V1–2 and V4 neurons
recorded in four electrophysiological studies; animals in these
studies were trained to discriminate orientations of Gabor
patches. Schoups et al. (2001) discovered an increase in the tun-
ing curve slope at the trained orientation for units tuned to 12–
20° away from trained orientation. The same group (Raiguel et
al., 2006) later found in V4 a similar change, along with other
effects of training. These studies used a single-interval 2AFC
training paradigm with an implicit reference that was never
shown. Conversely, Ghose et al. (2002) used a 2I-2AFC training
paradigm in which an irrelevant feature of the stimulus (spatial
frequency) varied between two values through training. Contrary
to Schoups et al. (2001), they did not find significant changes in
V1–2 regarding orientation tuning (except one case), but the final
discrimination thresholds reached by the subjects were higher.
This group later revealed several changes in V4 using the same
training paradigm (Yang and Maunsell, 2004). We hypothesized
that the differences between these studies could be explained by
differences in stimulus precision during training. To test this, we
trained the network on a common task, the 2I-2AFC Gabor dis-
crimination paradigm, and tested whether changing training pre-
cision, holding everything else constant, was sufficient to
reconcile the gross differences observed between these studies.

Overall, it appears that V1–2 only changed when the discrim-
ination threshold was small (0.5–1.2° by Schoups et al., 2001,
smaller than 3.3–7.3° by Ghose et al., 2002) and V4 changed in
both studies though the discrimination thresholds were similar to
each other (1.9 –3.0° by Raiguel et al., 2006 and 1.9 –5.4° by Yang
and Maunsell, 2004). Given the pattern of change in layer FI
demonstrated earlier (Fig. 4), we hypothesized that: (1) the con-
tradictory results in V1–2 (corresponding to lower layers in the
network) were due to the mismatch of the final thresholds
reached by the subjects in the two V1–2 studies, and (2) the
change in V4 (corresponding to higher layers in the network)
should persist from fine to coarse precisions in which V1–2 did
not change.

To test the first hypothesis using the DNN model, we approx-
imately matched the angle separations used to train the network

Figure 5. Effect of different tasks (Gabor orientation and face gender discriminations) on performance and layer change. A, Accuracy drop as successive low layers were frozen at the iteration
where the fully plastic network reached 95% accuracy for the two tasks. Asterisk indicates significant drop from zero (threshold p � 0.01, 1-sample t test against zero, Bonferroni-corrected for 5
frozen layers � 5 dissimilarities). Performance was impaired when freezing layer 2 onward in the Gabor task and when freezing layer 4 onward in the face task. The largest incremental performance
drop happened in layer 3 for the Gabor task and layer 5 for the face task. B, Distribution of learning over layers when the network was trained on the two tasks if the network was fully plastic (left)
or if layer 1 was frozen (right). There was a significant interaction of layer � task on layer change proportion ( p 	 0.0001, 2-way ANOVA; for details, see Table 5-1, available at https://doi.org/
10.1523/JNEUROSCI.1620-17.2018.t5-1). For demonstration of robustness to other measures of layer change, see Figure 5-1 (available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f5-1).
Asterisk indicates significant difference in the layer change proportion between the two tasks (threshold p �0.01, Mann–Whitney U, Bonferroni corrected for 5 or 4 layers). Error bar indicates 1 SEM.
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with the discrimination thresholds reached by the monkeys, 1.0°
for high and 5.0° for low precisions, and compared network units
in layer 2 with real V1–2 neurons. We then compared the tuning
attributes of units in layer 5 with those of V4 neurons to test our
second hypothesis. These choices were mainly motivated by pre-
vious research on comparing this particular network with the
visual brain areas (Khaligh-Razavi and Kriegeskorte, 2014; Guclu
and van Gerven, 2015; Eickenberg et al., 2017). It should be noted
that we used the same spatial frequency for the reference and
target (more similar to Schoups et al. (2001) than to Ghose et al.
(2002)); therefore, whereas we found that modeling the differ-
ences in thresholds is sufficient to account for many differences in
physiological findings between the four studies, it is likely that
other task and stimulus differences also contributed to the differ-
ent profiles of learning.

Tuning curves were obtained from the units with receptive
fields at the center of the image and are shown in Figure 6A for
layers 2 and 5. Many of the layer 2 units showed bell-shaped
tuning curves with clear orientation preferences, mirroring
the reported similarity between these two layers with human
early visual areas. In addition, there were also intriguing tun-
ing curves that showed more than one tuning peaks, which
may not be physiologically plausible. Tuning curves in layer 5
were harder to interpret, with some units showing clear orien-
tation tuning and the rest likely tuned to features other than
Gabor patches.

Lower layers trained under high precision (Schoups et al., 2001)
We first investigated whether this DNN model could reproduce
findings on V1 neurons by Schoups et al. (2001), who found that
monkeys obtained very small thresholds (�1°) and V1 neurons
showed a change in the slope of tuning curve at trained orientation
for neurons tuned between 12° and 20° from trained orientation
(Fig. 6B, for statistical details, see Table 6-1, available at https://
doi.org/10.1523/JNEUROSCI.1620-17.2018.t6-1; for layer 3 and
other precisions, see Fig. 6-1, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.f6-1). Similar to their procedure, we
took the orientation of the maximum response of a unit as its
preferred orientation and grouped all units by preferred
orientation relative to trained orientation. The slope of the
tuning curve at trained orientation was evaluated after nor-
malization by maximum activation (as done for neural data in
Schoups et al., 2001). The results for layer 2 units (Fig. 6C)
showed a similar slope increase for units tuned away from
trained orientation, overlapping but broader than the range
found in V1 neurons, when trained under high precision but
not low precision.

Despite a change in tuning slope, Schoups et al. (2001) found
that the preferred orientations of neurons were evenly distributed
over all orientations before and after training (Fig. 6D). This was
also the case for the network units which showed no significant
difference between trained and naive distributions of preferred ori-
entation in either of the precisions (Fig. 6E, p � 0.9, K–S; for de-

Figure 6. A, Tuning curve examples of network units before (gray dashed) and after (black solid) training in layers 2 and 5. B–E, Comparison between V1 neurons trained under high precision
in Schoups et al. (2001) with model units in layer 2 trained under high (1.0°, matching with experiment) and low (5.0°) precisions. B, Slope of normalized tuning curve at trained orientation for
trained and naive V1 neurons grouped according to preferred orientation. C, Same as B but from model units. Units tuned around 20° increased their slope (after normalization) magnitude at trained
orientation only under high precision. For statistical test details, see Table 6-1 (available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t6-1); for layer 3 and other precisions, see Figure 6-1
(available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f6-1). D, Distribution of preferred orientation in V1 was approximately uniform before and after training. E, Same as D but from
model units. There was no significant difference in the distribution of preferred orientation between the trained and naive populations under either of the two precisions ( p � 0.9, K–S; for details,
see Table 6-2, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t6-2; for layer 3 and other precisions, see Figure 6-2, available at https://doi.org/10.1523/JNEUROSCI.1620-
17.2018.f6-2). B and D were adapted with permission from Schoups et al. (2001).
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tails, see Table 6-2, available at https://doi.org/10.1523/JNEUROSCI.
1620-17.2018.t6-2; for layer3andotherprecisions, seeFig.6-2,available
at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f6-2).

Overall, these data from lower-layer units demonstrated an
impressive qualitative similarity to data from Schoups et al.
(2001) when the network was trained on high precision. We next
look at tuning curve changes in low precision training.

Lower areas trained under low precision (Ghose et al., 2002)
Contrary to Schoups et al. (2001), Ghose et al. (2002) found very
little change in V1–2 neurons after training. The tuning ampli-
tude of V1 and V2 neurons tuned around the trained orientation
did not differ significantly from other neurons after training (Fig.
7A). However, the monkeys trained by Ghose et al. (2002) achieved
relatively poorer discrimination thresholds (�5°) and, when we
modeled this as low precision training, we also found no significant
effect of preferred orientation on tuning amplitude in layers 2–3
(Fig. 7B, p � 0.30, Mann–Whitney U; for details, see Table 7-1,
available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.
t7-1; for layer 3 and other precisions, see Fig. 7-1, available at https://
doi.org/10.1523/JNEUROSCI.1620-17.2018.f7-1). In addition,
Ghose et al. (2002) found no significant change in the variance
ratio for V1–2 neurons (Fig. 7C), which was replicated by our
network units at both precisions (Fig. 7D, p � 0.6, Mann–Whitney
U; for details, see Table 7-2, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.t7-2; for layer 3 and other precisions, see
Fig. 7-2, available at https://doi.org/10.1523/JNEUROSCI.1620-
17.2018.f7-2). Ghose et al. (2002) did observe a decrease in the
number of neurons tuned to the trained orientation in V1, but
not in V2 (data not shown), contrary to Schoups et al. (2001).

In our model, no such change was found in either high or low
precision (Fig. 6D); therefore, here, the model did not agree
with the data.

Therefore, under low precision, we did not find significant
changes in tuning attributes in lower layers, which was also the
case for Ghose et al. (2002) except for the preferred orientation
distribution in V1. Together with the comparisons under high
training precision in previous sections, our first hypothesis was
supported by our simulations. The key in replicating these data is
the observation that the precision of training has a profound
effect on the distribution of learning across layers. By accounting
for the different orientation thresholds found across studies and
laboratories, the DNN model can address well the different ob-
servations, which was also demonstrated in a simpler network
(Saxe, 2015). In addition, the partial specificity of the network
trained under low precisions (Fig. 2B) did not require
orientation-specific changes in lower layers, consistent with pre-
vious models and data (Petrov et al., 2005; Sotiropoulos et al.,
2011; Dosher et al., 2013).

Higher layers compared with data of Raiguel et al. (2006)
Although neurons in primary visual cortex showed plasticity that
was largely limited to high-precision conditions, neurons in V4 gen-
erally showed more susceptibility to VPL (Yang and Maunsell, 2004;
Raiguel et al., 2006). We hypothesized that changes in V4 neurons
should happen in both low and high precisions and tested this hy-
pothesis by comparing the tuning attributes of units in layer 5 (layer
4 in Extended Data) with recordings in those studies.

We first compared the network units with the results of
Raiguel et al. (2006) showing that, similar to V1 (Fig. 6B), V4

Figure 7. Comparison between V1–2 neurons trained under low precision in Ghose et al. (2002) with model units in layers 2 and 3 trained under high (1.0°) and low (5.0°, matching with
experiment) precisions. Black bar indicates the orientation bin that contains the trained orientation. A, No significant effect of preferred orientation was found on tuning amplitude. B, Same as A but
from model units. Preferred orientation had a significant effect only in layer 3 when trained under high precision ( p 	 0.0001, one-way ANOVA; for details, see Table 7-1, available at https://
doi.org/10.1523/JNEUROSCI.1620-17.2018.t7-1; for layer 3 and other precisions, see Figure 7-1, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f7-1). C, No significant effect of
preferred orientation was found on variance ratio. D, Same as C but from model units. No significant effect of preferred orientation was found on variance ratio ( p � 0.6, one-way ANOVA; for details,
see Table 7-2, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t7-2; for layer 3 and other precisions, see Figure 7-2, available at https://doi.org/10.1523/JNEUROSCI.1620-
17.2018.f7-2). A and C were adapted with permission from Ghose et al. (2002).
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Figure 8. Comparison between V4 neurons in Raiguel et al. (2006) with model units in layer 5 trained under high (1.0°) and low (5.0°) precisions. Black and white bars indicate trained and naive
populations, respectively. A, Neurons tuned 22– 67° away from trained orientation increased their slopes at trained orientation. Asterisk indicates significant increase in slope before and after
training. B, Same as A but from model units. There was a significant interaction of training � preferred orientation under either of the precisions ( p 	 0.0002, two-way ANOVA; for details, see Table
8-1, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t8-1; for layer 4 and other precisions, see Figure 8-1, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f8-1).
Asterisk indicates significant increase in slope before and after training (threshold p�0.01, Mann–Whitney U, Bonferroni corrected for six orientation bins). Only neurons tuned within 48° of trained
orientation are shown; other neurons did not change significantly after training. C, Distribution of preferred orientation shifted away from uniform after training. D, Same as C but from model units.
The units under both precisions altered their preferred orientation distribution, which became significantly different from a uniform distribution ( p 	 0.003, K–S; for details, see Table 8-2, available
at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t8-2; for layer 4 and other precisions, see Figure 8-2, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f8-2). E–H, Black and gray
dashed lines indicate trained and naive distribution means, respectively. E, SI of V4 neurons increased significantly after training. F, Same as E but from model units. Training produced a significant
increase in SI under high precision ( p 	 0.0001, Mann–Whitney U; for details, see Table 8-3, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t8-3; for layer 4 and other precisions,
see Figure 8-3, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f8-3). G, Training significantly reduced normalized variance of V4 neurons. H, Same as G but from model units.
Normalized variance was significantly reduced after training under both precisions ( p 	 0.001, Mann–Whitney U; for details, see Table 8-4, available at https://doi.org/10.1523/JNEUROSCI.1620-
17.2018.t8-4; for layer 4 and other precisions, see Figure 8-4, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f8-4). A, C, E, and G were adapted with permission from Raiguel et al.
(2006).
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neurons tuned 22– 67° away from trained orientation signifi-
cantly increased their slopes at trained orientation (Fig. 8A). This
effect was replicated in the model units (Fig. 8B), which, unlike
layer 2 (Fig. 6C), showed significant increase in tuning slope not
only in high but also in low precisions (p 	 0.0002, two-way
ANOVA; for details, see Table 8-1, available at https://doi.org/
10.1523/JNEUROSCI.1620-17.2018.t8-1; for layer 4 and other
precisions, see Fig. 8-1, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.f8-1), although these units with in-
creased slopes were tuned much closer to trained orientation
than V4 neurons.

Furthermore, in monkey V4, the distribution of preferred ori-
entation became nonuniform after training (Fig. 8C). In our
model, this distribution also became significantly different
from a uniform distribution, as revealed by a K–S test in both
conditions ( p 	 0.003, K–S; for details, see Table 8-2, available
at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t8-2; for layer 4
and other precisions, see Fig. 8-2, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.f8-2). This is in contrast to layer 2, which
only showed such a change for high precision (Fig. 6E). There was
also a substantial increase in the number of neurons tuned very
close to trained orientation.

The strength of orientation tuning, measured by selectivity
index (SI) defined in Equation 5, was found to increase in V4 after
training (Fig. 8E). Similar results were found in the model (Fig.
8F) in which SI increased significantly when trained under high
precision (p 	 0.0001) but not under low precision (p � 0.10,
Mann–Whitney U; for details, see Table 8-3, available at https://
doi.org/10.1523/JNEUROSCI.1620-17.2018.t8-3; for layer 4 and
other precisions, see Fig. 8-3, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.f8-3). Although these results suggest
that higher-layer units became sharper after training when the pre-
cision was high, the shape of this distribution in layers 4 and 5 did not
match with real V4 neurons.

Raiguel et al. (2006) also discovered that training reduced
response variability at the preferred orientation quantified by the
normalized variance (Fig. 8G). We found the same in our model
units (Fig. 8H) at both precisions (p 	 0.001, Mann–Whitney U;
for details, see Table 8-4, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.t8-4; for layer 4 and other precisions,
see Fig. 8-4, available at https://doi.org/10.1523/JNEUROSCI.
1620-17.2018.f8-4), suggesting that noisy units in the lower layers
might be rejected by higher layers (Dosher and Lu, 1998).

Higher layers compared with data of Yang and Maunsell (2004)
Finally, we addressed whether the network units also replicated
the findings of Yang and Maunsell (2004) in which monkeys
achieved a threshold comparable with (Raiguel et al., 2006).
Overall, in contrast to the V1 study from the same group (Ghose
et al., 2002), Yang and Maunsell (2004) found many tuning
changes in V4. First, tuning amplitude of V4 neurons increased
significantly after training (Fig. 9A) and the same was observed in
the model under both precisions (p 	 0.0001, Mann–Whitney U;
for details, see Table 9-1, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.t9-1; for layer 4 and other precisions,
see Fig. 9-1, available at https://doi.org/10.1523/JNEUROSCI.
1620-17.2018.f9-1). Second, V4 neurons significantly lower their
best discriminability (Fig. 9C) after training, suggesting that finer
orientation differences could be detected. Units in the model
(Fig. 9C) reproduced the same change in both precision levels
(p 	 0.0005, Mann–Whitney U; for details, see Table 9-2, avail-
able at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t9-2;

for layer 4 and other precisions, see Fig. 9-2, available at
https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f9-2).

Yang and Maunsell (2004) went on to show that these changes
were not simply a result of the scaling, but rather the narrowing,
of tuning curves (Fig. 9E). In layer 5 of the model, the tuning
widths of naive units were already smaller than trained V4 neu-
rons; nonetheless, we found that, under high precision, the mean
activation of layer-5 units (Fig. 9F) in the nonpreferred orienta-
tion range (45° away from preferred orientation) was signifi-
cantly more reduced than that in the preferred orientation range
(within 45° of preferred orientation, p 	 0.0001, two-way
ANOVA; for details, see Table 9-3, available at https://doi.org/
10.1523/JNEUROSCI.1620-17.2018.t9-3; for layer 4 and other
precisions, see Fig. 9-3, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.f9-3).

More importantly, the mismatch in the tuning width between
network units and real neurons could explain several quantitative
discrepancies between model units and V4 neurons seen previ-
ously, including the different group of units that increased the
tuning slope (Fig. 8A,B), the sharp modes in preferred orienta-
tion distributions (Fig. 8C,D), and the higher SI distributions
than real neurons (Fig. 8E,F). The existence of these narrow tun-
ing curves and their consequences may require more accurate
physiological measurements to verify.

Multiple changes found in layer 5 at low precision provide
strong evidence supporting our second hypothesis. To conclude
the comparisons with physiological studies, we find that the
DNN model replicates a number of single-cell results found in
extant studies of primate visual cortex. In general, it appears that
the network units increased their responses at orientations close
to the trained orientation, providing more informative response
gradients essential for performance. Changes are more substan-
tial in higher layers through feedforward connections, resulting
in sharper tuning curves, larger tuning amplitudes, and a signif-
icant accumulation of tuning preference close to the trained ori-
entation. In addition, noisy neurons in lower layers may be
rejected by higher ones after training, reducing response variabil-
ity (Dosher and Lu, 1998). Nonetheless, it is important to note
the quantitative differences in data between the DNN model and
primates as noted in the comparisons above.

Linking initial sensitivities to weight changes
A key question in understanding learning of the DNN is the
extent to which learning depends on the initial conditions of the
network. Here, we focus on the first five layers and explore
whether there is any relationship between initial sensitivity to the
trained orientation and weight changes.

To test whether a larger layer sensitivity to the trained stimu-
lus may give rise to more learning in the weights of this layer, we
correlated the pre-train layer FI with layer change. Although the
network’s initial state was the same for all simulations, the refer-
ence orientations varied in 12 values to which the network were
differentially sensitive. We used the following regression model
to assess the contributions of various factors:

drel1 � �0 � �FIFI � �
l�1

5

�� l � � l�FIFI� 	 �
s�1

5

��s � �s�FIFI�

(7)

where �FI is the linear coefficient for FI, �l and �s are the main
effects of layer and angle separation, respectively, each with five
categorical levels, and �l�FI and �s�FI are the interactions of
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layer � FI and angle separation � FI, respectively. A regression
analysis using this model showed significant main effects of �l

and �s (p 	 0.0001), which accounted for 21% and 46% of vari-
ance, respectively, but the three effects involving FI were insignif-
icant (p � 0.1; for details, see Table 10-1, available at https://
doi.org/10.1523/JNEUROSCI.1620-17.2018.t10-1; for results
under different measures of weight change, see Fig. 10-1, available
at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f10-1). This
means that the weights in a layer did not change more when it was
more sensitive to the trained reference orientation.

To test whether a larger unit sensitivity to the trained stimulus
may give rise to more learning in the weights of the unit, we used
the pre-train FI of the units (tuning gradient squared divided by
variance at the trained orientation) as a proxy for sensitivity and
correlated this with their weight changes. We show in Figure 10B
the relationship between these two quantities for each training
condition after rescaling. Despite the generally positive correla-
tion (consistent with that observed in Raiguel et al. (2006)), there
was a tendency for the weights of less sensitive units to also
change substantially. Neurons in layer 3 showed the lowest cor-
relations compared with those in other layers even though this
layer had the highest initial FI. The same regression analyses

above revealed that all effects were significant (p 	 0.0001; for
details, see Table 10-2, available at https://doi.org/10.1523/
JNEUROSCI.1620-17.2018.t10-2), but
layer and angle separation explained 2.6% and 12.4% of the vari-
ance in weight change, respectively, whereas the effects involving
FI (�FI, �l�FI, and �s�FI) together explained 1.1%. In addition,
the distribution of FI became more spread out after training (Fig.
10C), particularly for higher layers, suggesting that training did
not improve FI for all units equally.

Therefore, although the network’s initial sensitivity to the
trained orientation might influence the magnitude of learning, its
effect size was less considerable compared with layer and training
precision. On the layer level, the correlation between initial sen-
sitivity and amount of learning was insignificant, and, on the unit
level, the effect of initial sensitivity on learning was mixed.

Discussion
We find that the DNN model studied here is a highly suitable
model with which to investigate visual perceptual learning. On
the behavioral level, when the network was trained on Gabor
orientation discrimination, the network’s initial performance,
learning rate, and degree of transfer to other reference orienta-

Figure 9. Comparison between V4 neurons in Yang and Maunsell (2004) with model units in layer 5 trained under high (1.0°) and low (5.0°) precisions. A–D, Black and white bars indicate trained
and naive populations, respectively; black and gray dashed lines indicate trained and naive distribution medians, respectively. A, Training significantly increased the tuning amplitude of V4 neurons.
B, Same as A but from model units. Training significantly increased response amplitude for both precisions ( p 	 0.0001, Mann–Whitney U; for details, see Table 9-1, available at https://doi.org/
10.1523/JNEUROSCI.1620-17.2018.t9-1; for layer 4 and other precisions, see Figure 9-1, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f9-1). C, Training produced a significant
reduction in best discriminability (lower indicates better discriminability) for V4 neurons. D, Same as B but from model units. Training significantly reduced the best discriminability for both
precisions ( p 	 0.0005, Mann–Whitney U; for details, see Table 9-2, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t9-2; for layer 4 and other precisions, see Figure 9-2, available
at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f9-2). E, Training resulted in narrower normalized tuning curves (by maximum response). F, Same as E but from model units. Activation was
significantly lower after training for the nonpreferred orientation range (�45° away of trained orientation) than preferred orientation range in high precision ( p 	 0.0001, two-way ANOVA; for
details, see Table 9-3, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t9-3; for layer 4 and other precisions, see Figure 9-3, available at https://doi.org/10.1523/JNEUROSCI.1620-
17.2018.f9-3). Red lines indicate orientations with significant reduction in activation (threshold p � 0.01, Mann–Whitney U, Bonferroni corrected for 100 test orientations). Curves are mean with
1 SEM envelope. A, C, E, and G were adapted with permission from Yang and Maunsell (2004).
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tions or spatial frequencies depended on the precision of the
stimuli in a similar manner as found in behavioral and theoretical
accounts of perceptual learning. We found slower learning with
less transfer under finer training precision, as predicted by RHT
(Ahissar and Hochstein, 1997, 2004); however, the model also
suggests that test precision had a major influence on the transfer
performance and was able to account for greater transfer from
precise to coarse stimuli (Jeter et al., 2009). This model makes the
novel prediction that high-precision training transfers more
broadly to untrained and coarse orientation discriminations than
low-precision training. On the layer level, increasing the task
precision resulted in slower but more substantial changes in
lower layers. In addition, learning to discriminate more complex
features (e.g., face gender discrimination) resulted in relatively
greater changes in higher layers of the network. On the unit level,
only high-precision tasks significantly changed tuning curve at-
tributes at lower layers, whereas units in the higher layers showed
more robust changes across precisions. Various changes found
in the network units mirrored many electrophysiological find-
ings of neurons in monkey visual cortex. Overall, this DNN
model, whereas not originally designed for VPL, arrived at
impressively convergent solutions to behavioral, layer-level,
and unit-level effects of VPL found in the extant literature of
theories and experiments.

The present findings help to reconcile disparate observations
in the literature regarding the plasticity in early visual cortex.
Although Schoups et al. (2001) found changes in orientation
tuning curves of neurons in primary visual cortex, these results
were not replicated by Ghose et al. (2002). The DNN model pro-

vides a parsimonious explanation for these results, accounting
for the discrepancy as related to the different discrimination
thresholds reached by the subjects between those experiments. In
Schoups et al. (2001), the subjects reached lower thresholds than
those in Ghose et al. (2002), and we found that training on such a
high precision moved plasticity down to the lower layers of the
model. Furthermore, through a number of observations on
higher-layer units that were similar to V4 neurons, the model
verified our hypothesis that these neurons are more susceptible to
changes after VPL even under low precisions.

Compared with a shallower model that would have no prob-
lem learning the tasks, a deeper network has the advantage of
demonstrating the distribution of learning over more levels of
hierarchy. Interestingly, our experiments suggest that recurrent
or feedback processes may not be necessary to capture the ex-
pected distribution and order of learning over layers because
lower layers changed before higher layers in the absence of inho-
mogeneous learning rate or attentional mechanisms. Moreover,
despite its biological implausibility, weight sharing in the con-
volutional layers did not result in substantial unwanted trans-
fer over reference orientation or spatial frequency in this
study; location specificity was also demonstrated in a shal-
lower convolutional network (Cohen and Weinshall, 2017),
although breaking this weight sharing may still be necessary to
better interpret learning.

Despite the striking resemblance between the DNN model
output and primate data, it is worth noting that a number of
choices that we made regarding training paradigm, noise injec-
tion, learning rule, and learning rate may have had significant

Figure 10. A, B, Effect of the network’s initial sensitivity to trained orientation (TO) on the magnitude of learning. A, Relationship between layer weight change and layer-wise pre-train linear
FI at TO. Color indicates different layers; darker color indicates higher training precision. Using a regression analysis on the layer change under the main effects of layer, precision, FI, and the
interactions of layer� FI and precision� FI, the effects of layer and precision were significant ( p 	0.0001), whereas the main effect of FI and its two-way interactions with layer and precision were
not ( p � 0.1; for details, see Table 10-1, available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t10-1; for results under different measures of weight change, see Figure 10-1, available at
https://doi.org/10.1523/JNEUROSCI.1620-17.2018.f10-1). B, Relationship between the change in the weights and pre-train FI at TO for network units, both of which are rescaled to between 0 and
1 after dividing by the respective maximum change for each angle separation and each layer. Significant Pearson’s correlation is shown for each layer and angle separation (Bonferroni corrected for
5 layer � 5 angle separations). Despite the general positive correlation, there was a tendency for units with lower FI to change more when training precision increased. For results of regression
analyses comparing effects related to FI and layer, see Table 10-2 (available at https://doi.org/10.1523/JNEUROSCI.1620-17.2018.t10-2). C, Distribution of network unit FI at TO before (white) and
after (black) training. In layers 1–2, most units had very low FI before and after training, whereas the distributions for units in layers 3 and 4 were more spread out and training increased FI for many
neurons.
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consequences to the results reported here. First, the network was
trained on fixed differences that differed from using staircases as
done in many VPL studies; the 2I-2AFC procedure, which
avoided explicit definition of classification label in transfer, may
produce different learning outcomes compared with the 2AFC
without a reference used by Schoups et al. (2001) or the varied
spatial frequencies used by Ghose et al. (2002). Second, there was
no source of internal noise in the middle layers to generate be-
havioral variability (Acerbi et al., 2014) and the readout weights
were zero initialized to minimize learning variability, in contrast
to previous network models that used random initialization to
simulate multiple subjects (Sotiropoulos et al., 2011; Talluri et al.,
2015). Third, the learning rule SGD does not compare favorably
with Hebbian-like learning methods (Sotiropoulos et al., 2011;
Dosher et al., 2013; Talluri et al., 2015) that are more biologically
plausible, although more biologically plausible versions have
been proposed (Lillicrap et al., 2016; Scellier and Bengio, 2017).
Other studies suggested that small differences in training para-
digms, including precision, as shown in the present data, can have
a significant impact on learning and plasticity (Hung and Seitz,
2014) and it will be an important target for future studies to
research the contributions of the numerous other differences be-
tween these studies.

Another issue is the distinction between representation learn-
ing in the lower layers and task or decision learning in the readout
layer. This DNN can perform very well even if only the final layer
is plastic, in which case both forms of learning are mixed into the
same layer. In our simulations, the use of a small learning rate was
necessary to ensure learning stability on precise tasks, but this
also caused more change in the lower layers. Other schemes can
be used to control learning between layers, such as pre-training
on an easier task or readout weight regularization. Direct connec-
tions from lower layers to the readout layer can also be intro-
duced given a reasonable weight initialization. Future research
will be necessary to examine the consequence of such alternative
schemes on the predictions regarding distribution of learning.

A long-standing topic in research of neural coding regards the
efficiency of sparse representations in visual cortex (Barlow,
1961; Olshausen and Field, 1997). This raises a question of
whether perceptual learning “raises all boats” or “makes the rich
get richer” and mostly the best tuned neurons change the most.
Some support for the latter possibility is found in physiological
studies in which neural responses changed primarily in the most
informative neurons. The present DNN model appears insuffi-
cient to address sparsity in learning. Although we found in the
network units (Fig. 10B) small positive correlations between ini-
tial FI and weights changes from training, consistent with the
notion of “the rich get richer,” there were also substantial changes
in many of the insensitive units across layers. This may be due to
the fact that the network was only trained on one task and was not
consistently performing the many visual tasks involving natural
stimuli that humans and animals must perform on a daily basis.
Therefore, to better address learning sparsity, a network may
need to be trained simultaneously on a number of tasks.

Furthermore, one must be cautious in inferring homologies
between layers of DNNs and areas in the brain. The similarity
between the network and visual areas depends on the layer pa-
rameters (such as number of filters, receptive field size, etc.) in a
subtle manner (Pinto et al., 2009; Yamins and DiCarlo, 2016). It
is also unknown how much our analyses on the changes in the
weights (instead of unit activity) can inform us about the synaptic
changes caused by VPL. Comparing results across different

DNNs may help us to understand which results are robust against
details of model architecture.

The simulations described here just touched the surface of the
vast VPL literature. Although beyond the scope of the present
study, future modeling targets can be considered in pursuit of
many of perceptual learning phenomena. For example, DNNs
may be used to replicate other psychophysical phenomena, in-
cluding disruption (Seitz et al., 2005), roving (Zhang et al., 2008;
Tartaglia et al., 2009; Hussain et al., 2012), double training (Xiao
et al., 2008; Zhang et al., 2010), and the effects of attention
(Ahissar and Hochstein, 1993; Byers and Serences, 2012; Bays et
al., 2015; Donovan et al., 2015) and adaptation (Harris et al.,
2012). Moreover, small variations in training procedures can lead
to dramatic changes in learning outcome (Hung and Seitz, 2014);
therefore, it is important for future simulations to take into con-
sideration how such details may affect learning in DNNs.

In addition, DNNs may provide a straightforward way to
model the “when” and “where” aspects of VPL that would be
otherwise difficult to test experimentally on subjects. As dis-
cussed in previous reviews (Watanabe and Sasaki, 2015; Seitz et
al., 2005), it is likely that VPL involves more areas than the two-
or three-layer models of pattern-matching representation and
nonlinear readout that typify the field (Dosher and Lu, 2017).
The distribution and time course of plasticity could be further
examined in other tasks using other DNNs or layer change
measures.

In conclusion, we have found that DNNs provide an appro-
priate framework for modeling VPL. An advantage of DNNs is
that they can be flexibly adapted to different tasks, stimulus types,
and training paradigms. In addition, layer- and unit-specific
changes resulting from learning can be examined and related to
fMRI and electrophysiological data. Although some caution is
needed in interpreting the relationship between these models and
biological systems, the striking similarities found in many studies
suggest that DNNs may provide solutions to learning and repre-
sentation problems faced by biological systems and therefore may
be useful in generating testable predictions to constrain and guide
perceptual learning research within living systems.
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